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ABSTRACT

Visual prompting (VP) is a new technique that adapts well-trained frozen models
for source domain tasks to target domain tasks. This study examines VP’s benefits
for black-box model-level backdoor detection. The visual prompt in VP maps class
subspaces between source and target domains. We identify a misalignment, termed
class subspace inconsistency, between clean and poisoned datasets. Based on
this, we introduce BPROM, a black-box model-level detection method to identify
backdoors in suspicious models, if any. BPROM leverages the low classification
accuracy of prompted models when backdoors are present. Extensive experiments
confirm BPROM’s effectiveness.

1 INTRODUCTION

Deep neural networks (DNNs) are commonly used in complex applications but require extensive
computational power, leading to significant costs. Users often access these models through online
platforms like BigML model market1 and ONNX zoo2, or via Machine Learning as a Service (MLaaS)
platforms. However, DNNs can include backdoors (Gu et al., 2017; Liu et al., 2018b; Tang et al.,
2021; Qi et al., 2023b; Nguyen & Tran, 2021; Chen et al., 2017), which manipulate model responses
to inputs with specific triggers (like certain pixel patterns) while functioning correctly on other inputs.
In backdoor attacks, attackers embed these triggers in the training data, leading the model to associate
the trigger with a particular outcome and misclassify inputs containing it.
Why Black-Box Model-Level Detection. Black-box backdoor detection, which uses only black-
box queries to the suspicious model (i.e., the model to be inspected), is gaining attention. This
detection method is divided into input-level (Li et al., 2021c; Qiu et al., 2021; Gao et al., 2022; Liu
et al., 2023; Qi et al., 2023c; Zeng et al., 2023; Guo et al., 2023; Hou et al., 2024; Xu et al., 2024; Mo
et al., 2024) and model-level (Huang et al., 2020; Dong et al., 2021; Guo et al., 2022; Xu et al., 2019;
Wang et al., 2024) techniques. Input-level detection identifies trigger samples in an infected model,
while model-level detection determines if a model contains backdoors. Input-level detection relies
on the model having backdoors; otherwise, its accuracy drops significantly. For example, as shown
in Table 1, TeCo (Liu et al., 2023) and SCALE-UP (Guo et al., 2023), state-of-the-art input-level
detectors, show AUROCs of 0.8113 and 0.7877, respectively, on a BadNets-infected model (Gu et al.,
2017), but only 0.4509 and 0.5103 on a clean model. If a model is clean, many legitimate samples
may be misclassified as triggers, reducing the model’s practical utility. Thus, model-level detection
should be performed first. If backdoors are found but the model must still be used, input-level
detection should then be applied to each input.
Design Challenge. Despite its importance, black-box model-level detection faces two main chal-
lenges. First, unlike input-level detection, which benefits from the presence of an infected model,
model-level detection has limited ground truth, relying on only a few clean samples. Second, it needs
a stable feature to differentiate between clean and infected models across various backdoor types,
which is difficult to find. For instance, B3D (Dong et al., 2021) targets trigger localization but is
mainly effective for patch-based triggers. Similarly, AEVA (Guo et al., 2022) may struggle with
larger triggers due to its dependence on adversarial peak analysis.
Our Design. Visual prompting (VP) (Bahng et al., 2022; Jia et al., 2022) allows a frozen, pre-trained
model from a source domain to correctly predict samples from a target domain by applying a visual

1https://bigml.com/
2https://github.com/shaoxiaohu/model-zoo
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Table 1: A significant drop of F1-score and AUROC in black-box input-level detection methods,
TeCo (Liu et al., 2023) and SCALE-UP (Guo et al., 2023).

BadNet (Gu et al., 2017) Blended (Chen et al., 2017) WaNet (Nguyen & Tran, 2021)

TeCo (Liu et al., 2023) Backdoored Clean Backdoored Clean Backdoored Clean

F1 0.8014 0.5263 0.7621 0.5033 0.9295 0.5137
AUROC 0.8113 0.4509 0.7259 0.3954 0.9345 0.4406

ScaleUp (Guo et al., 2023) Backdoored Clean Backdoored Clean Backdoored Clean

F1 0.7964 0.5236 0.7991 0.5046 0.7199 0.4768
AUROC 0.7877 0.5103 0.7694 0.4643 0.7772 0.4246

+

(a) The “3” is from MNIST, while the middle part
shows the visual prompt. The prompted sample is
ready for ImageNet classifier.

ImageNet 
 Classifier

Cat
Truck

Ship
2
1

0
Dog

... ...
...

(b) The prompted sample can be fed into the Im-
ageNet classifier, whose output has a mapping be-
tween the labels from MNIST and ImageNet.

Figure 1: How a frozen ImageNet classifier is adapted for the MNIST classification when VP is used.

prompt. This technique can work across very different domains; for example, an ImageNet classifier
(source) can detect melanoma (target) via VP (Tsai et al., 2020). Figure 1 illustrates VP, where the
visual prompt (trainable noise in Figure 1a) maps between class subspaces of the source and target
domains, enabling the frozen classifier to handle the target task efficiently.

In an infected model, the target class subspace in the feature space is adjacent to all other class
subspaces (Wang et al., 2019). We identify a class subspace inconsistency where misalignment
between class subspaces in the poisoned (source) and clean (target) datasets leads to low classification
accuracy of the prompted model. This phenomenon is illustrated in Figure 2 and experimentally
validated in both Figure 3 and Section C. Based on this, we propose BPROM for black-box model-
level backdoor detection. BPROM applies VP to a suspicious model using an unrelated clean dataset;
poor accuracy in the prompted model indicates the presence of backdoors.

Contribution. Our contributions can be summarized as follows. 1) We identify a class subspace
inconsistency in VP on backdoor-infected models. This misalignment between class subspaces
of the poisoned dataset and an external clean dataset signals backdoor infection. 2) Utilizing this
inconsistency, we develop BPROM, a black-box model-level backdoor detection method.

2 RELATED WORKS

We do not aim to provide a comprehensive review of backdoor attacks and defenses; for a detailed
survey, see (Li et al., 2022).

Four class subspaces in feature space 

of clean model trained from CIFAR-10

Four class subspaces in feature space 

of clean model trained from MNIST

(a) Class subspace inconsistency does not occur: vi-
sual prompt as a mapping between two clean datasets.

Four class subspaces in feature space of backdoor-infected model 

trained from poisoned CIFAR-10 with car as target class

Four class subspaces in feature space 

of clean model trained from MNIST

(b) Subspace inconsistency occurs: visual prompt as
a mapping between clean and poisoned datasets.

Figure 2: A conceptual illustration of (a) VP on clean model and (b) VP on backdoor-infected model.
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15

10

5

0

5

10

15

15 10 5 0 5 10 15 20

(b) Clean target model preserves clear separation.
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(c) Target class (0) is adj. to others in infected source model.
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(d) Infected target model shows severe class confusion.

Figure 3: Class subspaces inconsistency (CIFAR-10 for source model and STL-10 for target model).

Backdoor Attack Methods. Badnets (Gu et al., 2017) introduced the first backdoor attack on
DNNs, with many following works adopting its approach to poison training datasets. Backdoor
attacks are categorized by trigger appearance into universal (Chen et al., 2017; Gu et al., 2017; Zeng
et al., 2021), where all triggers are identical, and sample-specific (Li et al., 2020; Nguyen & Tran,
2020; Salem et al., 2022), where triggers vary per sample. Subsequent developments include invisible
backdoors (Doan et al., 2021; Li et al., 2020; Nguyen & Tran, 2021), which are harder to detect by
human inspection, and clean-label backdoors (Zhao et al., 2020; Ning et al., 2021; Shafahi et al., 2018;
Turner et al., 2018), which stealthily poison target class samples without label changes. Additionally,
anti-defense attacks (Qi et al., 2023b) circumvent detection by preventing latent separation.

Backdoor Detection Methods. Backdoor detection is categorized into white-box and black-box.
White-box detection (Liu et al., 2018a; Wu & Wang, 2021; Li et al., 2021a; Xia et al., 2022; Du et al.,
2020; Li et al., 2021b; Huang et al., 2022; Wang et al., 2019; Hu et al., 2022; Tao et al., 2022; Wei
et al., 2024; Li et al., 2023a; Wang et al., 2024) requires access to a poisoned training set or model
parameters. Some methods identify backdoors, while others remove them. However, it is unsuitable
for MLaaS applications and safety-critical deployments (e.g., autonomous vehicles).

Black-box detection only requires access to the suspicious model, making it more applicable. It is
divided into input-level and model-level. Input-level detection (Li et al., 2021c; Qiu et al., 2021; Gao
et al., 2022; Liu et al., 2023; Qi et al., 2023c; Zeng et al., 2023; Guo et al., 2023; Xian et al., 2024; Ma
et al., 2022; Pan et al., 2023; Jin et al., 2022; Chen et al., 2024; Zhu et al., 2024; Hou et al., 2024; Xu
et al., 2024) distinguishes trigger samples from benign ones. Since infected models act benign except
for trigger samples, they can be used safely if detection works per input. However, this can result in
high false positives, rejecting many benign samples if the model is clean, as shown in Table 1.

This paper focuses on model-level detection (Huang et al., 2020; Dong et al., 2021; Guo et al., 2022;
Xu et al., 2019; Shi et al., 2024; Xiang et al., 2024; Sun et al., 2023; Rezaei et al., 2023; Wang et al.,

3
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2024), which identifies backdoors in suspicious models and serves as front-line detection before
input-level methods.

3 BACKGROUND KNOWLEDGE

Both visual prompting (VP) (Chen et al., 2023; Bahng et al., 2022; Jia et al., 2022) and model
reprogramming (MR) (Tsai et al., 2020; Chen, 2024; Elsayed et al., 2019; Neekhara et al., 2022)
enable a frozen pre-trained model for one task to perform a different target domain classification task
by deriving a visual prompt for inputs from the target domain. Initially, MR was considered an attack
that misused cloud services (i.e., MLaaS) to perform undocumented tasks (Elsayed et al., 2019). VP
was recently introduced in (Bahng et al., 2022). Although VP and MR share the same concept, VP
focuses exclusively on images. VP has been extended to image inpainting (Bar et al., 2022), antibody
sequence infilling (Melnyk et al., 2023), and differentially private classifiers (Li et al., 2023b). In
this paper, VP and MR are used interchangeably, with the visual prompt in VP corresponding to the
trainable noise in MR. More formally, VP/MR proceeds with four steps (Chen, 2024).

1. Initialization: Let fS(·) and DT = {(xT , yT )} be the source model (the model trained from the
source domain dataset) and the target domain dataset, respectively. Randomly initialize θ and w
(defined below).

2. Visual prompt padding: Obtain the prompted input sample x̃T = V (xT |θ), where θ is the visual
prompt. A common method for V (·) is to resize xT and add the visual prompt (trainable noise)
around it. Although x̃T visually differs from the source domain, it can still be used as input for the
source domain classifier. Figure 1a illustrates this with xT as “3” from MNIST, θ in the middle, and
V (·) resizing xT and padding it with θ.

3. Output mapping: Obtain the target task prediction via ŷT = O(fS(x̃T )|w), where w represents
the trainable parameters for output label mapping. This step is optional for VP/MR. In our experiment,
we omitted this step.

4. Prompted model training: Optimize θ and w by minimizing a task-specific loss L(ŷT , yT ) on DT .

After executing the four-step procedure, we obtain the prompted model fT = O ◦ fS ◦ V from fS(·)
with optimized θ∗ and optionally w∗. This results in ŷT = O(fS(V (xT |θ∗))|w∗).

4 SYSTEM MODEL

Threat Model. We consider two roles: attacker and defender. The attacker’s goal aligns with
previous work (Gu et al., 2017; Chen et al., 2017; Tang et al., 2021; Qi et al., 2023b; Liu et al., 2018b).
Specifically, the attacker poisons the training dataset by injecting trigger samples. The DNN model
(e.g., an image classifier) trained on this poisoned dataset behaves normally with clean inputs but
always predicts an attacker-specified target class for inputs with a trigger. Essentially, an all-to-one
backdoor is implanted, mapping all trigger inputs to a specific target class.

Defender’s Goal and Capability. The defender’s goal is to detect if a suspicious model is back-
doored, primarily measured by AUROC (see Section 6). The defender has limited abilities: no access
to the poisoned dataset, model structure, or parameters. In MLaaS applications, detection involves
only black-box queries on the model to obtain confidence vectors. The defender also has a small
reserved clean dataset DS (1%, 5%, 10% of the test dataset in our experiment) to aid detection.

5 PROPOSED METHOD

We present our detection method, BPROM. The notation table can be found in Table 27 in Appendix E.

5.1 OVERVIEW

Different clean datasets have distinct class subspace ”shapes” in feature space. However, as noted
in Wang et al. (2019), poisoned datasets exhibit target class subspaces that share boundaries with

4
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Training
Meta-Model

Train

Predict

Prompting
Shadow Models

Generating 
Shadow Models

Figure 4: The workflow of BPROM. The blue and red components are related to DS and DP ,
respectively. The yellow parts are related to VP and DT . The gray components have connection to
DQ and are used for train fmeta

.

all others. This creates misalignment when adapting a poisoned model to a clean dataset, termed
class subspace inconsistency, resulting in reduced prompted model accuracy. This is conceptually
illustrated in Figure 2 and experimentally validated in Section C and Figure 3. As an evidence,
Table 2 also shows that an increasing number of target classes worsens the inconsistency (i.e., lower
accuracy). BPROM leverages this for backdoor detection. The core idea is that adapting an infected
source model to a clean target task via visual prompting is significantly harder due to the class
subspace mismatch. Theorem 1 in Yang et al. (2021) states that target risk is bounded by source risk
and representation alignment loss. For BPROM, this alignment loss is amplified by the inconsistency
in infected models, leading to poor target task performance. Thus, low prompted accuracy signals
potential backdoors. To achieve effective detection, the BPROM training has three steps: shadow
model generation, prompting, and meta-model training. First, diverse poisoned and clean shadow
models are trained. Second, visual prompts are learned for each shadow model using an external clean
dataset. Finally, a meta-classifier is trained on confidence vectors from prompted shadow models to
detect backdoors. The workflow and pseudocode are shown in Figure 4 and Algorithm 1.

5.2 BPROM

Table 2: Class subspace inconsistency worsens
(i.e., the prompted model’s testing accuracy de-
creases) as the number of target classes increases.

# target classes 1 2 3
CIFAR10 0.3286 0.2427 0.2338
GTSRB 0.2711 0.1988 0.1986

Generating Shadow Models. The goal of this
step is to construct shadow models, categorized
into clean and backdoor shadow models. Clean
shadow models are trained on a clean dataset,
while backdoor shadow models are trained on a
poisoned dataset.

Let DS be the reserved clean dataset. To check
if a suspicious model was trained on CIFAR-
10, DS includes a limited number of CIFAR-10 samples (e.g., 1%, 5%, 10% in our experiment).
The defender trains n clean shadow models, fi’s, with different parameter initializations. Given a
poisoning rate p and a chosen backdoor attack, the defender creates M − n poisoned datasets by
injecting trigger samples according to the chosen attacks, where M is the total number of shadow
models. Specifically, each poisoned dataset DP is constructed as follows:

Step 1: A proportion p of samples (x, y) from the clean dataset DS are extracted to form DE .

Step 2: The extracted samples are transformed by adding a trigger pattern (m, t, α, yt) to obtain
poisoned counterparts {(x′, y′)|x′ = (1−m) · x+m · ((1−α)t+αx), y′ = yt}, where yt, m, t, α,
· denote the target class, trigger mask, trigger, intensity, and element-wise product, respectively (Guo
et al., 2022; 2023).

Step 3: Construct DP = (DS \DE) ∪ {(x′, y′)}. By sampling different combinations of backdoor
patterns (m, t, α, yt), various DP can be generated. Backdoor shadow models are trained on DP ’s.

5
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Prompting Shadow Models. This step applies VP to both types of shadow models (clean and
poisoned) to generate prompted shadow models. Let DT = Dtrain

T ∪Dtest
T be an external clean dataset,

with Dtrain
T as the training set and Dtest

T as the test set. DT can have a different distribution than
DS . For shadow models, prompts (θi) are learned via standard backpropagation on Dtrain

T . This
process is also applied to the suspicious model fsus, but using a gradient-free optimization method
(e.g., CMA-ES) since we only have black-box access. This results in the prompted shadow models
f̃i(·) = fi(V (·|θ∗i )), and prompted suspicious model f̄(·) = fsus(V (·|θ∗sus)). Detailed steps for VP
can be found in Section 3 (e.g., (Bahng et al., 2022)).

Algorithm 1: BPROM.

Input: DS and DT = Dtrain
T ∪Dtest

T ;
Output: fmeta

1 /* Generating Shadow Models */
2 for i = 1 to M do
3 Copy DS into Di

S
4 if i ≤ n then
5 train fi from Di

S
6 else
7 augment Di

S with triggers
8 train fi from the augmented Di

S

9 /* Prompting Shadow Models */
10 for i = 1 to M do
11 learn visual prompt θi on Dtrain

T

12 construct f̃i = fi ◦ V (·|θ)
13 /* Training Meta Model */
14 Construct DQ = {x1

Q, x
2
Q, ..., x

q
Q} by

randomly sampling q samples from Dtest
T

15 Initialize Dmeta as an empty set
16 for i = 1 to M do
17 if i ≤ n then
18 vi ← (f̃i(x

1
Q)|| · · · ||f̃i(x

q
Q))

19 li ← ‘clean’
20 Dmeta = Dmeta ∪ {(vi, li)}
21 else
22 vi ← (f̃i(x

1
Q)|| · · · ||f̃i(x

q
Q))

23 li ← ‘backdoor’
24 Dmeta = Dmeta ∪ {(vi, li)}

25 Train the binary classifier fmeta using Dmeta
26 return fmeta

Meta Model Training. The goal of this step is
to train a binary classifier fmeta for backdoor de-
tection. For each shadow model f̃i, the defender
randomly selects q samples from Dtest

T to form
DQ = {x1

Q, . . . , x
q
Q}. Each sample from DQ is

fed to f̃i. The defender creates a dataset Dmeta =
Dmeta = {(f̃i(x1

Q)|| · · · ||f̃i(x
q
Q), clean)}ni=1 ∪

{(f̃i(x1
Q)|| · · · ||f̃i(x

q
Q),backdoor)}Mi=n+1.

Here, f̃i(x
j
Q) is the confidence vector, and its

length, KS , is the number of classes in DS .
The defender then trains a binary classifier fmeta
using Dmeta.

Backdoor Detection on Suspicious Model.
To inspect a suspicious model fsus, we first ob-
tain q confidence vectors from the prompted
suspicious model f̄ . These vectors are con-
catenated and fed to fmeta. Specifically, v =
(f̄(x1

Q)|| · · · ||f̄(x
q
Q)) is computed and input to

fmeta, which outputs either clean or backdoor.

5.3 DISCUSSION

BPROM is similar to MNTD (Xu et al., 2019),
but they have important differences.

More Efficient Data Generation: In BPROM,
the defender uses a single backdoor attack to
generate DP , whereas MNTD uses multiple
backdoor attacks. Even if multiple methods are
used in BPROM, detection accuracy improves
only marginally. MNTD needs to ”see” various backdoor types to better detect unknown backdoors.
However, BPROM focuses on class subspace inconsistency, where DP learns different feature space
partitions, with the target class adjacent to all other classes.

Much Fewer Shadow Models Required: BPROM needs only a few shadow models (e.g., 20 in our
experiments), while MNTD requires hundreds due to the variety of backdoor attacks (e.g., 256 in
MNTD). This reduces training costs and allows BPROM to achieve high performance (1.0 AUROC
on CIFAR-10 for both BadNets and Blend, compared to MNTD’s 0.92 and 0.955) even with a single
backdoor type. Training MNTD is also much more complex than training BPROM.

Novel Design Principle: Most importantly, their design principles differ fundamentally. MNTD
relies on meta-learning and needs to ”see” various backdoor properties. BPROM relies on class
subspace inconsistency, achieving decent detection accuracy (e.g., 0.8137 F1-score on CIFAR-10
with BadNets and STL-10, and 0.7499 with GTSRB and STL-10) even with a single shadow model
and no reserved clean samples. The auxiliary design with a similar MNTD structure further improves
performance.
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6 EXPERIMENTS

We overview the experimental setup, including datasets, model architectures, attack methods, and
defense baselines, consistent with recent works (Qi et al., 2023c; Guo et al., 2023; Huang et al., 2020;
Liu et al., 2023). We then present the experimental results and hyperparameter study.

6.1 EXPERIMENTAL SETUP

Datasets and Model Architectures. We use five image datasets: CIFAR-10 (Krizhevsky, 2009),
GTSRB (Stallkamp et al., 2011), and STL-10 (Coates et al., 2011), Tiny-ImageNet (Le & Yang, 2015),
and ImageNet (Russakovsky et al., 2015). For a suspicious model fS(·) trained on CIFAR-10, GTSRB,
Tiny-ImageNet or ImageNet, we first train shadow models fi’s using an α% (α ∈ {1, 5, 10}) subset
of the corresponding test set as DS . Then, we apply VP on fi’s using STL-10 as DT to obtain the
corresponding prompted models f̃i’s. We experiment with ResNet18 and MobileNetV2 architectures,
training models on each Di

S and Dtrain
T using standard procedures. For the meta-classifier fmeta, we

use a random forest with 10,000 trees to detect backdoors based on confidence vectors. We mainly
use Area Under the ROC Curve (AUROC) and F1-score to measure the detection effectiveness of
backdoor detection methods. Our experiments were performed on a workstation equipped with a
16-core Intel i9 CPU (64GB RAM) and an RTX4090 GPU.

Attack Methods and Defense Baselines. We evaluate BPROM against 9 backdoor poisoning
attacks from the Backdoor Toolbox3, including classical dirty label, clean label, sample-specific
trigger, and adaptive attacks. Default hyperparameters are used to ensure at least 98% attack success
rate. We compare BPROM with 10 backdoor defenses either from Backdoor Toolbox or from their
official code. Default hyperparameters are used for each defense.

6.2 EXPERIMENTAL RESULT

We know from class subspace inconsistency that a prompted model’s accuracy degrades if the
suspicious model is backdoored. We conducted experiments with backdoor attacks using varying
trigger sizes (4× 4, 8× 8, 16× 16 pixels) and poisoning rates (5%, 10%, 20% of training data) to
further examine the impact of class subspace inconsistency on prompted model accuracy. For each
experiment, we generated a backdoor-infected model and prompted it for a new task on STL-10.
These experiments also cover adaptive attacks, where BPROM maintains high performance, achieving
an AUROC of 1 even at low poison rates (e.g., 0.2% for BadNets on CIFAR-10; see Section 6.4).

Table 3: Testing accuracy for different trigger sizes.

CIFAR-10 GTSRB

Blend Adap-
Blend Blend Adap-

Blend

(4*4) 0.3830 0.3336 0.1783 0.1245
(8*8) 0.3517 0.3250 0.1641 0.1183
(16*16) 0.3172 0.3127 0.1571 0.1080

Trigger Size Impact. Table 3 shows the accu-
racy of prompted models on STL-10 with vary-
ing trigger sizes. We trained backdoored models
on CIFAR-10 and GTSRB, then prompted them
to classify STL-10. As trigger size increases, ac-
curacy decreases. This is because larger triggers
distort feature representations more, worsening
class subspace inconsistency.

Table 4: Testing accuracy for various poison rates.

CIFAR-10 GTSRB

Blend Adap-
Blend Blend Adap-

Blend

5% 0.5297 0.5233 0.2488 0.2368
10% 0.4772 0.4830 0.2328 0.2036
20% 0.3985 0.3358 0.2222 0.1705

Poison Rate Impact. Table 4 shows the accu-
racy of prompted models with varying poison
rates. Similar to the trigger size experiments,
we trained backdoored models on CIFAR-10
and GTSRB, then prompted them for STL-10.
Higher poison rates lead to lower accuracy due
to increased feature distortion, consistent with
our class subspace inconsistency explanation.
Both Table 3 and Table 4 show low accuracies,
supporting this reasoning.

Performance on CIFAR-10 and GTSRB Baselines. Table 25 compares defenses using ResNet18
as the shadow and suspicious model (infected ResNet18 has accuracy > 0.92 and attack success

3https://github.com/vtu81/backdoor-toolbox
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Table 5: Area Under the ROC Curve (AUROC) of defenses on ResNet18 with different datasets.
AVG stands for the average AUROC. Green (red) cells denote values greater (lower) than 0.8.

Badnets
(Gu et al.,
2017)

Blend
(Chen
et al.,
2017)

Trojan
(Liu et al.,
2018b)

BPP
(Wang
et al.,
2022)

WaNet
(Nguyen &
Tran, 2021)

Dynamic
(Nguyen
& Tran,
2020)

Adap-
Blend
(Qi et al.,
2023b)

Adap-
Patch
(Qi et al.,
2023b)

AVG

STRIP (Gao et al., 2019)
cifar10 0.937 0.834 0.517 0.499 0.499 0.955 0.787 0.520 0.694
gtsrb 0.955 0.772 0.670 0.500 0.500 0.971 0.917 0.577 0.733

AC (Chen et al., 2018)
cifar10 0.999 0.992 1.000 0.500 0.500 0.958 0.958 1.000 0.863
gtsrb 0.322 0.435 0.255 0.501 0.501 0.696 0.694 0.787 0.524

Frequency (Zeng et al., 2021)
cifar10 1.000 0.936 1.000 0.999 0.999 0.969 0.896 0.902 0.963
gtsrb 0.999 0.939 0.999 0.998 0.998 0.959 0.832 0.879 0.950

SentiNet (Chou et al., 2018)
cifar10 0.949 0.463 0.949 0.502 0.502 0.949 0.470 0.947 0.716
gtsrb 0.949 0.590 0.949 0.503 0.503 0.949 0.814 0.949 0.776

CT (Qi et al., 2023c)
cifar10 0.9898 0.921 0.999 0.502 0.502 0.991 0.954 0.859 0.840
gtsrb 0.967 0.978 0.999 0.504 0.504 0.955 0.983 0.861 0.844

SS Tran et al. (2018)
cifar10 0.929 0.921 0.446 0.503 0.503 0.920 0.926 0.830 0.747
gtsrb 0.808 0.722 0.800 0.502 0.502 0.800 0.722 0.680 0.692

SCAn (Tang et al., 2021)
cifar10 0.985 0.983 0.986 0.498 0.498 0.991 0.815 0.819 0.822
gtsrb 0.994 0.956 1.000 0.500 0.500 0.968 0.845 0.867 0.829

SPECTRE (Hayase et al., 2021)
cifar10 0.895 0.765 0.931 0.545 0.545 0.841 0.5123 0.396 0.679
gtsrb 0.911 0.599 0.800 0.502 0.502 0.567 0.615 0.626 0.640

MM-BD (Wang et al., 2024)
cifar10 0.867 0.633 0.867 0.867 0.867 0.867 0.867 0.867 0.838
gtsrb 0.567 0.633 0.500 0.633 0.767 0.567 0.833 0.833 0.667

TED (Mo et al., 2024)
cifar10 0.642 0.485 0.503 0.411 0.676 0.433 0.526 0.664 0.543
gtsrb 0.842 0.843 0.558 0.589 0.501 0.663 0.885 0.864 0.718

BPROM (10%)
cifar10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
gtsrb 1.000 1.000 1.000 0.933 0.933 1.000 1.000 1.000 0.983

rate (ASR) > 0.98, shown in Table 14 of Section B.1). The meta-classifier, trained on Badnets-
infected shadow models, classifies suspicious models under 9 attacks. Results from 30 clean and 30
backdoored suspicious models (Section 6.1) show BPROM outperforms all other defenses in average
AUROC, even when the attack differs from the one used to train the meta-classifier.

BPROM achieves high AUROC using only 10% of the CIFAR-10 (GTSRB) test dataset as the reserved
clean dataset DS . Please see Table 23 in Section B.2 for BPROM (5%)’s and BPROM (1%)’s results.
In contrast, baseline defenses’ AUROC varies significantly across attacks and is heavily influenced
by backdoor type. Defenses using activations or saliency maps fail against invisible backdoors spread
throughout the image (Qi et al., 2023a), while perturbation and frequency-based methods cannot
handle sample-specific or randomized triggers (Nguyen & Tran, 2021; 2020). Tables 17 and 18
in Section B.2 show that BPROM maintains high AUROC even with different architectures like
MobileNetV2. We also evaluate BPROM on MobileViT and Swim Transformer, demonstrating its
effectiveness across different architectures (see Section B.3 for details). We also tested feature-based
backdoors like Refool (Yunfei Liu, 2020), BPP (Wang et al., 2022), and Poison Ink (Zhang et al.,
2022), with results in Table 22 of Section B.2 showing perfect detection.

Performance on Tiny-ImageNet and ImageNet. In addition to the CIFAR-10 and GTSRB datasets,
we also evaluated BPROM on the Tiny-ImageNet and ImageNet datasets. These larger datasets
present greater challenges for backdoor detection due to the increased complexity of the images
and the larger number of classes. Table 6 (Table 26 in Section D) shows the results on Tiny-
ImageNet (ImageNet), comparing BPROM with several state-of-the-art defenses. In particular,
for Tiny-ImageNet, BPROM achieves an average AUROC of 0.899 for ResNet18 and 0.912 for
MobileNet, significantly outperforming other defenses.

Training Time of BPROM. BPROM’s training time, while longer due to shadow model and
meta-classifier training, remains practical for deployment given its accuracy and black-box na-
ture. BPROM’s training time with different shadow model counts and architectures (CIFAR-10 as
DS , STL-10 as DT ) is shown below. In particular, for ResNet18, BPROM’s training time is 2.3, 4.8,
and 9.5 hours if 10, 20, 40 shadow models are considered, respectively. For MobileNetV2, BPROM’s
training time is 1.2, 2.4, and 5.2 hours if 10, 20, 40 shadow models are considered, respectively.
Reported times are averaged over five trials.
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Table 6: AUROC of defenses on Tiny-ImageNet, using ResNet18 and MobileNetV2. AVG stands for
the average AUROC. Green (red) cells denote values greater (lower) than 0.8.

Badnets Blend Trojan BPP WaNet
Adap-
Blend

Adap-
Patch AVG

STRIP (Gao et al., 2019)
ResNet18 0.938 0.905 0.440 0.500 0.500 0.914 0.925 0.732

MobileNetV2 0.936 0.935 0.940 0.500 0.500 0.838 0.830 0.783

AC (Chen et al., 2018)
ResNet18 0.490 0.475 0.473 0.501 0.501 0.492 0.491 0.489

MobileNetV2 0.489 0.485 0.480 0.500 0.500 0.617 0.487 0.508

SS Tran et al. (2018)
ResNet18 0.505 0.485 0.488 0.499 0.499 0.487 0.502 0.495

MobileNetV2 0.487 0.486 0.487 0.502 0.502 0.488 0.500 0.493

SCAn (Tang et al., 2021)
ResNet18 0.987 0.987 0.994 0.502 0.502 0.741 0.788 0.786

MobileNetV2 0.982 0.987 0.986 0.502 0.502 0.888 0.882 0.818

CT (Qi et al., 2023c)
ResNet18 0.945 0.936 0.882 0.501 0.501 0.778 0.776 0.760

MobileNetV2 0.889 0.864 0.915 0.500 0.500 0.823 0.818 0.758

SCALE-UP (Guo et al., 2023)
ResNet18 0.742 0.724 0.515 1.000 1.000 0.515 0.606 0.729

MobileNetV2 0.651 0.548 0.510 0.980 0.980 0.510 0.717 0.699

CD (Huang et al., 2023)
ResNet18 0.918 0.954 0.961 0.628 0.628 0.542 0.647 0.754

MobileNetV2 0.904 0.985 0.997 0.514 0.514 0.591 0.933 0.805

MM-BD (Wang et al., 2024)
ResNet18 0.800 0.567 0.467 0.967 0.467 0.867 0.867 0.715

MobileNetV2 0.633 0.500 0.467 1.000 0.700 0.633 0.767 0.671

BPROM (10%) ResNet18 1.000 0.984 0.900 1.000 1.000 0.966 1.000 0.979

MobileNetV2 1.000 0.978 0.966 1.000 1.000 1.000 1.000 0.992

6.3 HYPERPARAMETER STUDY

We conduct hyperparameter studies to analyze key factors affecting BPROM’s effectiveness.

Table 7: AUROC relative to the number of shadow
models in meta-classifier training.

CIFAR-10 GTSRB

# Shadow Model Blend Adap-
Blend Blend Adap-

Blend

2 (1+1) 0.667 0.938 0.789 0.967
10 (5+5) 0.874 0.985 0.854 0.989

20 (10+10) 1.000 1.000 1.000 1.000
40 (20+20) 1.000 1.000 1.000 1.000

Impact of Number of Shadow Models. Ta-
ble 7 shows AUROC as we vary the number
of shadow models used to train the backdoor
classifier. In the table, “2 (1+1)” means one
clean and one backdoor shadow model. The
F1 score increases rapidly with more shadow
models but plateaus after about 20 models. This
indicates that approximately 20 shadow models
are sufficient for effective training, with minimal
AUROC improvement beyond this number. Table 8: ASR and AUROC for Blend and Adap-

Blend attacks across different trigger sizes.

Trigger Size Blend Adap-Blend

ASR AUROC ASR AUROC

CIFAR-10
(4*4) 0.269 1.000 0.016 1.000
(8*8) 0.974 1.000 0.049 1.000

(16*16) 0.994 1.000 0.963 1.000

GTSRB
(4*4) 0.842 1.000 0.027 1.000
(8*8) 0.994 1.000 0.194 1.000

(16*16) 0.994 1.000 0.997 1.000

Impact of Trigger Size and Poison Rate. We
analyze how detection performance (AUROC)
changes with varying trigger size and poison
rate. The settings in Tables 8 and 9 match those
in Tables 3 and 4, which show the prompted
model accuracy for different trigger sizes and
poison rates. Tables 8 and 9 show both attack
success rate (ASR) and AUROC for CIFAR-10
models as trigger size and poison rate vary.

Table 9: ASR and AUROC for Blend and Adap-
Blend attacks at different poison rates.

Poison Rate Blend Adap-Blend

ASR AUROC ASR AUROC

CIFAR-10
5% 0.996 0.607 0.998 0.607

10% 0.990 0.933 0.998 0.909
20% 0.998 1.000 1.000 1.000

GTSRB
5% 0.998 1.000 1.000 1.000

10% 0.998 1.000 1.000 1.000
20% 0.991 1.000 1.000 1.000

We observe two key points: 1) ASR increases
with larger trigger sizes and poison rates, indi-
cating stronger backdoor attacks. 2) Despite
stronger attacks, our detection method’s AU-
ROC remains stable, with minor fluctuations.
GTSRB results show similar trends: as trigger
size increases from 4×4 to 16×16, ASR rises
from 26% to 99%, while AUROC stays between
0.98 and 1.00. This demonstrates that our back-
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door detection technique remains reliable even as attacks strengthen, highlighting its robustness
against varying attack strengths.

Structural Differences between Shadow and Suspicious Models. We analyze the impact of using
different architectures for shadow and suspicious models on BPROM’s performance. Table 10 shows
AUROC results with MobileNetV2 as the suspicious model and ResNet18 as the shadow model,
indicating that BPROM’s detection effectiveness remains robust despite structural differences.

Table 10: F1 score and AUROC of BPROM when
the suspicious model is MobileNetV2 and the
shadow model is ResNet18.

WaNet Adap-Blend Adap-Patch AVG

F1 1.000 1.000 1.000 1.000

AUROC 1.000 1.000 1.000 1.000

Impact of External Dataset. We ran ad-
ditional experiments with DS as CIFAR-
10/GTSRB and DT changed to SVHN. Results
in Tables 19 and 20 of Section B.2 show consis-
tent detection performance.

Impact of the Inconsistency between Num-
bers of classes in DS and DT . In previous
experiments, we used CIFAR-10 and GTSRB as
DS and STL-10 as DT , maintaining class con-
sistency between DS and DT . We also ran experiments with DT as STL-10 and DS as CIFAR-100.
The results in Table 21 of Section B.2 still show consistent detection performance.

6.4 ADAPTIVE ATTACK

Table 11: Adaptive attacks with low poison rate.

Poison Rate AUROC ASR Poison Rate AUROC ASR
0.2% 1 0.709 2% 1 1
0.5% 1 0.838 5% 1 1
1% 1 1 10% 1 1

To evaluate BPROM’s robustness against adap-
tive attacks, we followed the experimental setup
described in Guo et al. (2023) (Section 5.3.2),
focusing on BadNets attacks on CIFAR-10. It
remains unknown how an attacker adds a regu-
larization term to reduce class subspace incon-
sistency. We examine two candidate adaptive attacks below.

First, as shown in Qi et al. (2023b), the backdoor with a very low poison rate can act as an adaptive
attack. Table 11 presents the AUROC and ASR of BPROM at various poison rates. These results
show that BPROM maintains perfect detection (AUROC = 1) even at extremely low poison rates,
demonstrating its effectiveness against stealthy adaptive attacks. Our observed ASR values for
BadNets at 0.2% and 0.5% poison rates align with those reported in Figure 7b of Guo et al. (2023),
validating the correctness of our implementation.

Table 12: Adaptive attacks with clean labels.

Dataset SIG LC
CIFAR-10 1.00 0.95
GTSRB 0.83 0.78

Clean-label backdoors, like SIG (Barni et al.,
2019) and LC (Turner et al., 2019) can also be
regarded as a different adaptive attack. These
attacks do not modify labels and only poison a
portion of the training images, potentially pre-
serving class subspaces and hindering BPROM’s
detection based on class subspace inconsistency. BPROM. Table 12 shows BPROM’s performance on
SIG and LC. While not perfect, BPROM still achieves decent AUROC, indicating its resilience even
against these challenging attacks.

7 CONCLUSION AND LIMITATION

We present BPROM as a novel VP-based black-box model-level backdoor detection method. BPROM
relies on class subspace inconsistency, where the prompted model’s accuracy degrades if the source
model is backdoored. This inconsistency is common in various backdoor attacks due to feature space
distortion from the poisoned dataset. Our experiments show BPROM effectively detects all-to-one
backdoors. However, it struggles with all-to-all backdoors, as their feature space distortion is more
controllable by the attacker. Addressing this limitation is left for future work.
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APPENDIX OF BPROM: BLACK-BOX MODEL-LEVEL BACKDOOR DETECTION
VIA VISUAL PROMPTING

This appendix provides additional details and experimental results supporting our main findings.
Section A details the implementation and configurations of the experiments. Section B presents
BPROM’s evaluation on different model architectures, datasets, and attack settings, including analyses
of label mapping, class number inconsistency, and feature-based backdoors. Section C provides
additional visualizations of class subspace inconsistency to further illustrate our method.

A IMPLEMENTATION DETAILS

We provide details on the configurations of the experiments used to evaluate BPROM and other
defenses.

A.1 ATTACK CONFIGURATIONS

The configurations of the baseline attacks used in our experiments are summarized in Table 13. For
each attack, we specify parameters related to the backdoor trigger insertion, including poison rate
and cover rate.

• Poison rate: The proportion of training data with the trigger pattern. A higher poison rate
increases the attacker’s influence on the model’s behavior but also raises the detection risk.

• Cover rate: The proportion of data with the trigger pattern that shares the original label. A
higher cover rate makes the trigger pattern more stealthy and consistent with the original
data distribution but weakens the attack.

All attacks are implemented using the default settings in the Backdoor Toolbox4; refer to the code
repository for more details.

Table 13: Configurations of baseline attacks

Attacks CIFAR-10 GTSRB

BadNets Gu et al. (2017) Poison Rate: 0.3% Poison Rate: 1.0%

Blend Chen et al. (2017) Poison Rate: 0.3% Poison Rate: 1.0%

Trojan Liu et al. (2018b) Poison Rate: 0.3% Poison Rate: 1.0%

WaNet Nguyen & Tran (2021) Poison Rate: 5.0% Poison Rate: 5.0%
Cover Rate: 10.0% Cover Rate: 10.0%

Dynamic Nguyen & Tran (2020) Poison Rate: 0.3% Poison Rate: 0.3%

Adap-Blend Qi et al. (2023b) Poison Rate: 0.3% Poison Rate: 0.5%
Cover Rate: 0.6% Cover Rate: 1.0%

Adap-Patch Qi et al. (2023b) Poison Rate: 0.3% Poison Rate: 0.3%
Cover Rate: 0.3% Cover Rate: 0.6%

A.2 DEFENSE CONFIGURATIONS

The important settings used for baseline defenses in our evaluations are summarized below:

• STRIP (Gao et al., 2019): Number of superimposing images = 10; defense false positive
rate budget = 10%.

• AC (Chen et al., 2018): Cluster threshold = 35% of class size.
• Frequency (Zeng et al., 2021): Predicts samples as poisoned or clean using a pretrained

binary classifier.
• SentiNet (Chou et al., 2018): FPR = 5%, number of high activation pixels = top 15%.
• CT (Qi et al., 2023c): Confusion iterations = 6000; confusion factor = 20.
• SS (Tran et al., 2018): Number of removed samples = min(1.5 × |Dpoison|/|D|, 0.5 ×

class size).

4https://github.com/vtu81/backdoor-toolbox
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• SCAn (Tang et al., 2021): Threshold for abnormal score = 0.5.
• SPECTRE (Hayase et al., 2021): Number of removed samples = min(1.5 ∗
|Dpoison|/|D|, 0.5× class size) from top 50% suspicious classes.

B EVALUATIONS ON DIFFERENT ARCHITECTURES AND DATASETS

To evaluate the effectiveness of BPROM on different architectures, we conducted experiments using
ResNet (He et al., 2015) and MobileNetV2 (Sandler et al., 2018) as backbone models. . The models
are trained on the CIFAR-10 (Krizhevsky, 2009) and GTSRB (Stallkamp et al., 2011) datasets,
attacked with 9 different backdoor attacks, and then defended with state-of-the-art methods.

B.1 ACCURACY AND ATTACK SUCCESS RATE

We report the clean accuracy (ACC) of the infected models on benign test samples without triggers
and the attack success rate (ASR), which indicates the percentage of Trojan inputs successfully
predicted as the attacker-specified target class. The results are shown in Table 14 for ResNet18 and
Table 15 for MobileNetV2.

Table 14: Accuracy and ASR on ResNet18.

Badnets
Gu et al.
(2017)

Blend
Chen et al.
(2017)

Trojan
Liu et al.
(2018b)

WaNet
Nguyen &
Tran (2021)

Dynamic
Nguyen
& Tran
(2020)

Adap-
Blend
Qi et al.
(2023b)

Adap-
Patch
Qi et al.
(2023b)

Clean

CIFAR-10 ACC 0.936 0.934 0.939 0.926 0.941 0.933 0.936 0.937
ASR 1.000 0.998 1.000 0.987 0.998 0.998 1.000 -

GTSRB ACC 0.968 0.968 0.972 0.952 0.971 0.971 0.974 0.976
ASR 1.000 0.996 1.000 0.986 1.000 0.995 0.982 -

Table 15: Accuracy and ASR on MobileNetV2.

Badnets
Gu et al.
(2017)

Blend
Chen et al.
(2017)

Trojan
Liu et al.
(2018b)

WaNet
Nguyen &
Tran (2021)

Dynamic
Nguyen
& Tran
(2020)

Adap-
Blend
Qi et al.
(2023b)

Adap-
Patch
Qi et al.
(2023b)

Clean

CIFAR-10 ACC 0.905 0.906 0.901 0.907 0.905 0.898 0.902 0.906
ASR 1.000 0.994 1.000 0.990 1.000 1.000 1.000 -

GTSRB ACC 0.935 0.927 0.938 0.905 0.922 0.921 0.937 0.931
ASR 1.000 0.994 1.000 0.991 1.000 1.000 1.000 -

The results presented in Table 14 and Table 15 reveal that despite maintaining high clean accuracy,
both models exhibit very high attack success rates (>98%) across various attacks when triggers
are present. This suggests that the backdoors effectively induce misclassification towards the target
label. With the effectiveness of the backdoor attacks established, the subsequent evaluation involves
assessing the performance of BPROM and other state-of-the-art defense methods in detecting these
compromised models.

B.2 AUROC AND F1 SCORE

We evaluate defense methods in detecting backdoor attacks using AUROC and F1 score metrics.
Experiments are conducted on CIFAR-10 and GTSRB datasets using ResNet18 and MobileNetV2
architectures to assess and compare detection effectiveness across different model designs. This
allows for determining the robustness and architecture-agnostic capability of techniques.

Experiments on ResNet18. From the AUROC results in Table 25 and F1 scores in Table 16 of
defenses evaluated on the ResNet18 model, we observe that BPROM demonstrates competitive or
superior detection performance over defenses for the majority of attacks. It also significantly elevates
the average AUROC and F1 score over the strongest baselines. Although it exhibits relatively lower
scores on two attacks, BPROM still demonstrates detection capability on par with or better than other
methods.
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Table 16: F1 scores of defense methods against backdoor attacks in CIFAR-10 and GTSRB. AVG
stands for the average F1 score.

Badnets
Gu et al.
(2017)

Blend
Chen et al.
(2017)

Trojan
Liu et al.
(2018b)

WaNet
Nguyen &
Tran (2021)

Dynamic
Nguyen
& Tran
(2020)

Adap-
Blend
Qi et al.
(2023b)

Adap-
Patch
Qi et al.
(2023b)

AVG

STRIP Gao et al. (2019)
cifar10 0.952 0.466 0.951 0.471 0.951 0.848 0.009 0.664
gtsrb 0.952 0.851 0.924 0.489 0.952 0.937 0.052 0.737

AC Chen et al. (2018)
cifar10 1.000 0.946 1.000 0.883 0.978 1.000 0.000 0.830
gtsrb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Frequency Zeng et al. (2021)
cifar10 1.000 0.921 1.000 0.141 0.981 0.921 0.784 0.821
gtsrb 0.854 0.812 0.854 0.361 0.792 0.814 0.679 0.738

SentiNet Chou et al. (2018)
cifar10 0.952 0.114 0.291 0.170 0.596 0.121 0.957 0.457
gtsrb 0.952 0.434 0.952 0.484 0.721 0.792 0.975 0.759

CT Qi et al. (2023c)
cifar10 0.470 0.630 0.949 0.682 0.664 0.908 0.965 0.753
gtsrb 0.747 0.654 0.576 0.962 0.916 0.892 0.965 0.816

SS Tran et al. (2018)
cifar10 0.979 0.936 0.294 0.741 0.789 0.661 0.0208 0.632
gtsrb 0.829 0.807 0.965 0.530 0.875 0.538 0.681 0.746

SCAn Tang et al. (2021)
cifar10 0.993 0.964 0.991 0.935 0.979 0.000 0.000 0.695
gtsrb 0.990 0.966 0.999 0.956 0.874 0.000 0.000 0.684

SPECTRE Hayase et al. (2021)
cifar10 0.990 0.990 0.991 0.839 0.991 0.938 0.865 0.943
gtsrb 0.957 0.954 0.968 0.000 0.976 0.000 0.000 0.551

BPROM (10%)
cifar10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
gtsrb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BPROM (5%)
cifar10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
gtsrb 1.000 0.965 1.000 1.000 1.000 1.000 1.000 0.995

BPROM (1%)
cifar10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
gtsrb 1.000 0.782 1.000 1.000 1.000 1.000 1.000 0.969

Experiments on MobileNetV2. We further evaluate the effectiveness of backdoor detection meth-
ods when using the MobileNetV2 architecture, which utilizes depth-separable convolutions to build
a lightweight model. This represents a different design choice than ResNet, which uses residual
connections to train deeper models. As shown in Table 17 and Table 18, we observe consistently
outstanding detection effectiveness of BPROM over defenses.

Table 17: AUROC of defenses on MobileNetV2 under backdoor attacks on CIFAR-10 and GTSRB.
AVG stands for the average AUROC.

Badnets
Gu et al.
(2017)

Blend
Chen et al.
(2017)

Trojan
Liu et al.
(2018b)

WaNet
Nguyen &
Tran (2021)

Dynamic
Nguyen
& Tran
(2020)

Adap-
Blend
Qi et al.
(2023b)

Adap-
Patch
Qi et al.
(2023b)

AVG

STRIP Gao et al. (2019)
cifar10 0.739 0.833 0.957 0.473 0.987 0.987 0.952 0.847
gtsrb 0.798 0.873 0.745 0.489 0.998 0.981 0.999 0.840

AC Chen et al. (2018)
cifar10 0.364 0.398 0.996 0.889 0.425 0.390 1.000 0.637
gtsrb 0.225 0.309 0.263 0.355 0.288 0.576 0.263 0.326

Frequency Zeng et al. (2021)
cifar10 1.000 0.996 1.000 0.999 0.970 0.996 1.000 0.994
gtsrb 1.000 0.973 1.000 0.777 0.960 0.973 1.000 0.955

CT Qi et al. (2023c)
cifar10 0.999 0.996 0.999 0.943 0.985 0.992 0.802 0.959
gtsrb 0.993 0.984 0.998 0.852 0.985 0.985 0.616 0.916

SS Tran et al. (2018)
cifar10 0.439 0.428 0.375 0.381 0.426 0.377 0.442 0.410
gtsrb 0.492 0.492 0.492 0.492 0.487 0.492 0.487 0.491

SCAn Tang et al. (2021)
cifar10 0.991 0.921 0.953 0.926 0.988 0.981 0.926 0.955
gtsrb 0.999 0.979 0.969 0.952 0.986 0.969 0.976 0.976

SPECTRE Hayase et al. (2021)
cifar10 0.857 0.376 0.876 0.534 0.897 0.510 0.376 0.632
gtsrb 0.911 0.699 0.797 0.597 0.595 0.617 0.581 0.685

BPROM (10%)
cifar10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
gtsrb 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000

The consistent behavior shows that the effectiveness of BPROM in detecting backdoors is preserved
irrespective of model complexity and design choices.
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Table 18: F1 score of defenses on MobileNetV2 under backdoor attacks on CIFAR-10 and GTSRB.
AVG stands for the average F1 score.

Badnets
Gu et al.
(2017)

Blend
Chen et al.
(2017)

Trojan
Liu et al.
(2018b)

WaNet
Nguyen &
Tran (2021)

Dynamic
Nguyen
& Tran
(2020)

Adap-
Blend
Qi et al.
(2023b)

Adap-
Patch
Qi et al.
(2023b)

AVG

STRIP Gao et al. (2019)
cifar10 0.552 0.673 0.916 0.122 0.939 0.943 0.999 0.735
gtsrb 0.513 0.800 0.442 0.148 0.954 0.937 0.955 0.678

AC Chen et al. (2018)
cifar10 0.000 0.000 0.998 0.942 0.000 0.000 1.000 0.420
gtsrb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Frequency Zeng et al. (2021)
cifar10 0.983 0.922 0.984 0.981 0.139 0.92 0.983 0.844
gtsrb 0.865 0.825 0.864 0.392 0.804 0.826 0.865 0.777

CT Qi et al. (2023c)
cifar10 0.998 0.988 0.999 0.936 0.981 0.992 0.753 0.950
gtsrb 0.976 0.967 0.992 0.810 0.960 0.968 0.378 0.864

SS Tran et al. (2018)
cifar10 0.230 0.222 0.141 0.176 0.218 0.173 0.232 0.199
gtsrb 0.278 0.279 0.278 0.278 0.272 0.278 0.278 0.277

SCAn Tang et al. (2021)
cifar10 0.938 0.908 0.997 0.920 0.987 0.981 0.974 0.958
gtsrb 0.642 0.769 1.000 0.818 0.968 0.450 0.335 0.712

SPECTRE Hayase et al. (2021)
cifar10 0.774 0.676 0.125 0.282 0.775 0.252 0.169 0.436
gtsrb 0.897 0.401 0.748 0.358 0.356 0.388 0.338 0.498

BPROM (10%)
cifar10 1.000 1.000 1.000 0.967 1.000 1.000 1.000 0.995
gtsrb 1.000 0.965 1.000 1.000 0.965 0.965 1.000 0.985

Experiments on extra external dataset. We ran extra experiments, where DS is kept as CIFAR-
10/GTSRB, but DT is changed to SVHN. Table 19 shows the results when DS is GTSRB and
Table 20 shows the results when DS is CIFAR-10. Both results demonstrate consistent detection
performance of BPROM even when using a different external dataset DT . This indicates that the
choice of external dataset does not significantly impact BPROM’s effectiveness.

Table 19: DT is changed to SVHN, DS is kept as GTSRB.

Badnets
(Gu et al.,
2017)

Blend
(Chen
et al.,
2017)

Trojan
(Liu
et al.,
2018b)

WaNet
(Nguyen
& Tran,
2021)

Dynamic
(Nguyen
& Tran,
2020)

Adap-
Blend
(Qi et al.,
2023b)

Adap-
Patch
(Qi
et al.,
2023b)

AVG

F1 0.882 1.000 1.000 0.667 1.000 0.937 1.000 0.927

AUROC 0.867 1.000 1.000 0.500 1.000 0.933 1.000 0.9001

Table 20: DT is changed to SVHN, DS is kept as CIFAR-10.

Badnets
(Gu et al.,
2017)

Blend
(Chen
et al.,
2017)

Trojan
(Liu
et al.,
2018b)

WaNet
(Nguyen
& Tran,
2021)

Dynamic
(Nguyen
& Tran,
2020)

Adap-
Blend
(Qi
et al.,
2023b)

Adap-
Patch
(Qi
et al.,
2023b)

AVG

F1 1.000 1.000 1.000 0.967 1.000 1.000 1.000 0.995

AUROC 1.000 1.000 1.000 0.967 1.000 1.000 1.000 0.995

Experiments on CIFAR-100. To investigate the impact of inconsistency between the numbers
of classes in DS and DT , we conducted experiments using CIFAR-100 as DS and STL-10 as DT .
Table 21 shows that BPROM achieves high AUROC and F1 scores across various backdoor attacks,
demonstrating its robustness even when there is a significant mismatch in the number of classes (100
classes in DS vs. 10 classes in DT ). This suggests that BPROM is capable of handling scenarios
where the source and target domains have different numbers of classes, making it a versatile detection
method.

Experiments on feature-based backdoors. We further evaluated BPROM’s performance on feature-
based backdoors, which manipulate the model’s feature representations instead of directly modifying
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Table 21: AUROC of defenses on ResNet18 under backdoor attacks on CIFAR-100. AVG stands for
the average AUROC.

Badnets
(Gu et al.,
2017)

Blend
(Chen
et al.,
2017)

Trojan
(Liu
et al.,
2018b)

WaNet
(Nguyen
& Tran,
2021)

Adap-
Blend
(Qi et al.,
2023b)

Adap-
Patch
(Qi
et al.,
2023b)

AVG

STRIP (Gao et al., 2019) 0.876 0.732 0.762 0.135 0.941 0.964 0.729

AC (Chen et al., 2018) 0.000 0.000 0.000 0.000 0.998 1.000 0.333

Frequency (Zeng et al., 2021) 0.986 0.896 0.895 0.883 0.865 0.985 0.926

SentiNet Chou et al. (2018) 0.952 0.047 0.952 0.115 0.240 0.952 0.551

SS (Tran et al., 2018) 0.661 0.005 0.661 0.673 0.633 0.672 0.551

SCAn(Tang et al., 2021) 0.992 0.980 0.982 0.612 0.877 0.380 0.804

BPROM(10%) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

input images. Table 22 presents the results of BPROM on three feature-based backdoor methods:
Refool (Yunfei Liu, 2020), BPP (Wang et al., 2022), and Poison Ink (Zhang et al., 2022), using the
same configuration as previous experiments. The high F1 scores and AUROC values indicate that
BPROM effectively detects these feature-based backdoors, demonstrating its versatility in handling
diverse backdoor attack strategies.

Table 22: Feature-based backdoors like Refool, BPP, Poison Ink.

Attack Dataset F1 Score AUROC

Refool (Yunfei Liu, 2020) CIFAR-10 1.000 1.000

BPP (Wang et al., 2022) CIFAR-10 1.000 1.000

Poison Ink (Zhang et al., 2022) CIFAR-10 1.000 1.000

Impact of Reserved Clean Dataset Size. We analyze the impact of the reserved clean dataset size
(DS) on BPROM’s performance. As shown in Table 23, BPROM maintains high AUROC across
different DS sizes (1%, 5%, and 10% of the CIFAR-10 and GTSRB test sets). Even with a limited
DS (1%), BPROM achieves competitive performance, demonstrating its efficiency in leveraging small
amounts of clean data. This robustness to DS size makes BPROM practical for real-world scenarios
where clean data might be scarce.

B.3 BPROM PERFORMANCE ON MOBILEVIT AND SWIM TRANSFORMER

To demonstrate BPROM’s architecture-agnostic nature, we evaluated its performance on MobileViT
and Swim Transformer, models combining CNN and transformer components. Tables 24 and 25
present the AUROC scores on CIFAR-10 and GTSRB across various backdoor attacks. The results
show that BPROM maintains competitive performance on both MobileViT and Swim Transformer,
indicating its effectiveness is not limited to ResNet-based architectures. The average AUROC is
calculated for each defense and dataset.

C ANOTHER VISUALIZATION OF CLASS SUBSPACE INCONSISTENCY

Figure 5a illustrates, using principal component analysis (PCA), 30 suspicious models (15 clean
and 15 backdoor) trained on the complete CIFAR-10 dataset, along with 40 shadow models (20
clean-shadow and 20 backdoor-shadow) trained on 10% of the CIFAR-10 test set. All models are
based on ResNet18, with the Trojan method Liu et al. (2018b) employed as the backdoor technique.
Subsequently, a random forest-based meta-model (binary classifier) with 50 estimators is trained on
the confidence vectors produced by the 40 shadow models. A distinct separation between clean (green
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Table 23: Detailed AUROC of BPROM with varying sizes of the reserved clean dataset (DS).

Badnets
(Gu et al.,
2017)

Blend
(Chen
et al.,
2017)

Trojan
(Liu et al.,
2018b)

WaNet
(Nguyen &
Tran, 2021)

Dynamic
(Nguyen
& Tran,
2020)

Adap-
Blend
(Qi et al.,
2023b)

Adap-
Patch
(Qi et al.,
2023b)

AVG

BPROM (10%) cifar10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
gtsrb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BPROM (5%) cifar10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
gtsrb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

BPROM (1%) cifar10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
gtsrb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 24: AUROC on MobileViT for CIFAR-10 and GTSRB. AVG stands for the average AUROC.
Green (red) cells denote values greater (lower) than 0.8.

Badnets
(Gu et al.,
2017)

Blend
(Chen
et al.,
2017)

Trojan
(Liu et al.,
2018b)

WaNet
(Nguyen &
Tran, 2021)

Dynamic
(Nguyen
& Tran,
2020)

Adap-
Blend
(Qi et al.,
2023b)

Adap-
Patch
(Qi et al.,
2023b)

AVG

STRIP (Gao et al., 2019)
cifar10 0.4974 0.7775 0.9495 0.4705 0.9555 0.9497 0.9501 0.7929
gtsrb 0.9140 0.900 0.9497 0.4855 0.9501 0.9447 0.9501 0.8706

AC (Chen et al., 2018)
cifar10 0.4738 0.7745 1.0000 0.4252 0.8334 0.9930 0.8996 0.7714
gtsrb 0.2198 0.2591 1.0000 0.312 0.6702 0.9999 1.0000 0.6373

Frequency (Zeng et al., 2021)
cifar10 1.000 0.9962 1.000 0.969 0.9999 0.9961 0.9643 0.9893
gtsrb 0.9994 0.9732 0.9993 0.7782 0.9601 0.8731 0.8993 0.9261

CT (Qi et al., 2023c)
cifar10 0.9941 0.9379 0.9843 0.7475 0.9892 0.9439 0.8815 0.9255
gtsrb 0.9727 0.9718 0.9744 0.9677 0.5652 0.9684 0.9289 0.9070

SS Tran et al. (2018)
cifar10 0.5002 0.3902 0.3745 0.5145 0.6154 0.3801 0.3977 0.4532
gtsrb 0.4925 0.4987 0.4925 0.4925 0.4966 0.4961 0.4929 0.4945

SCAn (Tang et al., 2021)
cifar10 0.5000 0.5000 0.9999 0.6578 0.5652 0.5000 0.5000 0.6104
gtsrb 0.4771 0.5481 0.4747 0.8439 0.5000 0.8758 0.6902 0.6300

SPECTRE (Hayase et al., 2021)
cifar10 0.4752 0.4752 0.5961 0.4754 0.4754 0.5015 0.4752 0.4963
gtsrb 0.7383 0.4995 0.7383 0.4995 0.4995 0.4995 0.4991 0.5677

BPROM (10%)
cifar10 1.0000 1.0000 0.9667 1.0000 1.0000 1.0000 1.0000 0.9952
gtsrb 1.0000 1.0000 1.0000 1.0000 0.9655 0.9655 1.0000 0.9901

dots) and backdoor models (blue dots) is evident after VP, attributed to class subspace inconsistency.
The same meta-model is also used to classify clean (green dots) and Adap-Blend-infected models
(red dots) Qi et al. (2023b). A similar pattern is observable in Figure 5b.
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(a) Trojan-infected model.
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Adap-Blend-shadow

(b) Adaptive-Blend-infected model.

Figure 5: Visualization of class subspace inconsistency through PCA.
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Table 25: AUROC on Swim Transformer for CIFAR-10 and GTSRB. AVG stands for the average
AUROC. Green (red) cells denote values greater (lower) than 0.8.

Badnets
(Gu et al.,
2017)

Blend
(Chen
et al.,
2017)

Trojan
(Liu et al.,
2018b)

WaNet
(Nguyen &
Tran, 2021)

Dynamic
(Nguyen
& Tran,
2020)

Adap-
Blend
(Qi et al.,
2023b)

Adap-
Patch
(Qi et al.,
2023b)

AVG

STRIP (Gao et al., 2019)
cifar10 0.998 0.9761 0.9386 0.483 0.9794 0.8558 0.8622 0.8704
gtsrb 0.9851 0.7922 0.8036 0.5805 0.9999 0.7494 0.8174 0.8183

AC (Chen et al., 2018)
cifar10 0.5001 0.5005 0.4999 0.5000 0.5002 0.4998 0.5001 0.5001
gtsrb 0.2198 0.2591 0.5001 0.5012 0.5702 0.4999 0.5001 0.4358

Frequency (Zeng et al., 2021)
cifar10 1.0000 0.9563 0.9594 0.5707 0.9999 0.8564 0.8125 0.8793
gtsrb 0.9283 0.8835 0.9194 0.6767 0.8301 0.8531 0.8794 0.8529

CT (Qi et al., 2023c)
cifar10 0.868 0.9968 0.9994 0.5142 0.9919 0.8766 0.9758 0.8890
gtsrb 0.9125 0.867 0.9967 0.4279 0.9991 0.8638 0.7455 0.8304

SS Tran et al. (2018)
cifar10 0.3877 0.3745 0.3753 0.2747 0.3749 0.3749 0.3913 0.3648
gtsrb 0.4961 0.4925 0.4946 0.4987 0.4925 0.4925 0.4925 0.4942

SCAn (Tang et al., 2021)
cifar10 0.9943 0.9943 0.9549 0.7596 0.7495 0.8451 0.6215 0.8456
gtsrb 0.8973 0.6869 0.7661 0.5219 0.8141 0.6451 0.5577 0.6984

SPECTRE (Hayase et al., 2021)
cifar10 0.5964 0.5981 0.5959 0.4751 0.5997 0.4751 0.4752 0.5451
gtsrb 0.7383 0.4911 0.7383 0.4911 0.4995 0.4991 0.4911 0.5641

BPROM (10%)
cifar10 1.0000 1.0000 1.0000 1.0000 0.8000 0.8949 0.8667 0.9374
gtsrb 1.0000 1.0000 1.0000 1.0000 1.0000 0.8000 0.9334 0.9619

D EXPERIMENTAL RESULTS ON IMAGENET

This section includes the experimental results on ImageNet. In particular, BPROM achieves an
average AUROC of 0.9996 for ResNet18, significantly outperforming other defenses.

Table 26: AUROC of BPROM and other defense methods against various backdoor attacks on
ImageNet. AVG stands for the average AUROC.

Badnets Trojan Adap-Blend Adap-Patch AVG

CD (Huang et al., 2023) 0.7954 0.9424 0.6648 0.5842 0.7467

SCALE-UP (Guo et al., 2023) 0.9912 0.6556 0.3971 0.3339 0.5944

STRIP (Gao et al., 2019) 0.0500 0.0500 0.5244 0.5500 0.2936

BPROM (10%) 1.0000 1.0000 0.9986 0.8296 0.9570

E NOTATION AND DEFINITIONS

For clarity and reproducibility, Table 27 summarizes the notation and definitions used throughout the
paper.

Table 27: Notation and Definitions

Symbol Description
DS Reserved clean dataset (1-10% of test set)
DE Extracted samples from DS for poisoning
DP Poisoned dataset created from DS

DT External clean dataset for visual prompting
DQ Random samples from DT ’s test set
Dmeta Samples for training meta-classifier
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