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ABSTRACT

Visual prompting (VP) is a new technique that adapts well-trained frozen models
for source domain tasks to target domain tasks. This study examines VP’s benefits
for black-box model-level backdoor detection. The visual prompt in VP maps class
subspaces between source and target domains. We identify a misalignment, termed
class subspace inconsistency, between clean and poisoned datasets. Based on
this, we introduce BPROM, a black-box model-level detection method to identify
backdoors in suspicious models, if any. BPROM leverages the low classification
accuracy of prompted models when backdoors are present. Extensive experiments
confirm BPROM’s effectiveness.

1 INTRODUCTION

Deep neural networks (DNNs) are commonly used in complex applications but require extensive
computational power, leading to significant costs. Users often access these models through online
platforms like BigML model marketﬁ and ONNX ZO(ﬂ or via Machine Learning as a Service (MLaaS)
platforms. However, DNNs can include backdoors (Gu et al.,|2017} Liu et al.,[2018b; [Tang et al.,
20215 Qi1 et al., [2023b; [Nguyen & Tranl 2021} [Chen et al., 2017, which manipulate model responses
to inputs with specific triggers (like certain pixel patterns) while functioning correctly on other inputs.
In backdoor attacks, attackers embed these triggers in the training data, leading the model to associate
the trigger with a particular outcome and misclassify inputs containing it.

Why Black-Box Model-Level Detection. Black-box backdoor detection, which uses only black-
box queries to the suspicious model (i.e., the model to be inspected), is gaining attention. This
detection method is divided into input-level (Li et al., [2021c} |Qiu et al., 2021} |Gao et al., [2022; [Liu
et al.| 20235 Q1 et al.,2023c; |Zeng et al.| 2023} |Guo et al., 2023} |Hou et al., 2024; |Xu et al., 2024; Mo
et al.,|2024)) and model-level (Huang et al.| 2020; |Dong et al.l 2021} (Guo et al.| 2022; Xu et al.| [2019;
Wang et al., 2024) techniques. Input-level detection identifies trigger samples in an infected model,
while model-level detection determines if a model contains backdoors. Input-level detection relies
on the model having backdoors; otherwise, its accuracy drops significantly. For example, as shown
in Table TeCo (Liu et al.| |2023)) and SCALE-UP (Guo et al.| [2023)), state-of-the-art input-level
detectors, show AUROC:S of 0.8113 and 0.7877, respectively, on a BadNets-infected model (Gu et al.,
2017), but only 0.4509 and 0.5103 on a clean model. If a model is clean, many legitimate samples
may be misclassified as triggers, reducing the model’s practical utility. Thus, model-level detection
should be performed first. If backdoors are found but the model must still be used, input-level
detection should then be applied to each input.

Design Challenge. Despite its importance, black-box model-level detection faces two main chal-
lenges. First, unlike input-level detection, which benefits from the presence of an infected model,
model-level detection has limited ground truth, relying on only a few clean samples. Second, it needs
a stable feature to differentiate between clean and infected models across various backdoor types,
which is difficult to find. For instance, B3D (Dong et al., 2021)) targets trigger localization but is
mainly effective for patch-based triggers. Similarly, AEVA (Guo et al.| |2022) may struggle with
larger triggers due to its dependence on adversarial peak analysis.

Our Design. Visual prompting (VP) (Bahng et al.| 2022} Jia et al.| 2022) allows a frozen, pre-trained
model from a source domain to correctly predict samples from a target domain by applying a visual
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Table 1: A significant drop of Fl-score and AUROC in black-box input-level detection methods,

TeCo (Liu et al'}[2023) and SCALE-UP 2023).
BadNet (Gu et al."m Blended (Chen et al.] WaNet (Nguyen & Tran"m

TeCo (Liu et al.l 2023 Backdoored Clean Backdoored Clean Backdoored Clean
Fl 0.8014 0.5263 0.7621 0.5033 0.9295 0.5137
AUROC 0.8113 0.4509 0.7259 0.3954 0.9345 0.4406
ScaleUp (Guo et al.] 2023) Backdoored Clean Backdoored Clean Backdoored Clean
F1 0.7964 0.5236 0.7991 0.5046 0.7199 0.4768
AUROC 0.7877 0.5103 0.7694 0.4643 0.7772 0.4246
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ageNet classifier, whose output has a mapping be-

ready for ImageNet classifier. tween the labels from MNIST and ImageNet.

Figure 1: How a frozen ImageNet classifier is adapted for the MNIST classification when VP is used.

prompt. This technique can work across very different domains; for example, an ImageNet classifier
(source) can detect melanoma (target) via VP 2020). Figure|[T]illustrates VP, where the
visual prompt (trainable noise in Figure[Ta) maps between class subspaces of the source and target
domains, enabling the frozen classifier to handle the target task efficiently.

In an infected model, the target class subspace in the feature space is adjacent to all other class
subspaces (Wang et al.} [2019). We identify a class subspace inconsistency where misalignment
between class subspaces in the poisoned (source) and clean (target) datasets leads to low classification
accuracy of the prompted model. This phenomenon is illustrated in Figure 2] and experimentally
validated in both Figure[3|and Section[C| Based on this, we propose BPROM for black-box model-
level backdoor detection. BPROM applies VP to a suspicious model using an unrelated clean dataset;
poor accuracy in the prompted model indicates the presence of backdoors.

Contribution. Our contributions can be summarized as follows. 1) We identify a class subspace
inconsistency in VP on backdoor-infected models. This misalignment between class subspaces
of the poisoned dataset and an external clean dataset signals backdoor infection. 2) Utilizing this
inconsistency, we develop BPROM, a black-box model-level backdoor detection method.

2 RELATED WORKS

We do not aim to provide a comprehensive review of backdoor attacks and defenses; for a detailed

survey, see (Li et al.,[2022).

Four class€ubspaces in feature space Four class subspaces in pace of back
of clean model trained from MNIST trained from poisoned CIFAR-10 with car as target class

model Four classubspaces in feature space

of clean model trained from CIFAR-10 of clean model trained from MNIST

(a) Class subspace inconsistency does not occur: vi-
sual prompt as a mapping between two clean datasets.

(b) Subspace inconsistency occurs: visual prompt as
a mapping between clean and poisoned datasets.

Figure 2: A conceptual illustration of (a) VP on clean model and (b) VP on backdoor-infected model.
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(d) Infected target model shows severe class confusion.

Figure 3: Class subspaces inconsistency (CIFAR-10 for source model and STL-10 for target model).

Backdoor Attack Methods. Badnets (Gu et al, 2017) introduced the first backdoor attack on
DNNs, with many following works adopting its approach to poison training datasets. Backdoor
attacks are categorized by trigger appearance into universal (Chen et al.| 2017} [Gu et all, 2017} Zeng

et al.
2020; [Salem et al.}, 2022]
backdoors (Doan et al.|

human inspection, and clean-label backdoors (Zhao et al., 2020

Turner et al.| [2018), which stealthily
anti-defense attacks (Qi et al.|[2023b

Backdoor Detection Methods.

White-box detection 2021} [Ci et al, 2021a} |
2020; 2021Db 2022; Wang et al., 2019; Hu et al., 20

2021)), where all triggers are identical, and sample-specific (Li et al., 2020; Nguyen & Tran,

, where triggers vary per sample. Subsequent developments include invisible

2021} [Li et al} 2020; Nguyen & Tran| [2021)), which are harder to detect by

ing et al., 2021}, [Shafahi et al.} 2018},

poison target class samples without label changes. Additionally,
circumvent detection by preventing latent separation.

Backdoor detection is categorized into white-box and black-box.

Xia et al| 2022}
)22} [Tao et al.,[2022;

Du et al.|

et al.,[2024; |Li et al.| [2023a; [Wang et al.,

parameters. Some methods identify backd

2024) requires access to a poisoned training set or model

oors, while others remove them. However, it is unsuitable
for MLaaS applications and safety-critical deployments (e.g., autonomous vehicles).

Black-box detection only requires access to the suspicious model, making it more applicable. It is

divided into input-level and model-level. In

put-level detection (Li et al., 2021c

Qiu et al.l 2021}

Gao

et al.,[2022

ILiu et al.| 2023} Qi et al.

2023¢

;[Zeng et al}[2023}|Guo et al.,[2023

Xian et al.

et al., 2022} |Pan et al 2023} Jin et a

1 [2022} |Chen et al, 2024} [Zhu et al., [2024; [Hou et al.

2024 Ma
2024: Xu;

2024) distinguishes trigger samples from benign ones. Since infected models act benign except
for trigger samples, they can be used safely if detection works per input. However, this can result in
high false positives, rejecting many benign samples if the model is clean, as shown in Table[T}

This paper focuses on model-level detection

Xu et al, 2019; [Shi et al.| 2024} [Xiang et al.]

Huang et al., 2020
2024; Sun et al.} 2

Dong et al, 2021}, [Guo et al., 2022}

023} Rezaei et al., 2023} Wang et al.
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2024)), which identifies backdoors in suspicious models and serves as front-line detection before
input-level methods.

3 BACKGROUND KNOWLEDGE

Both visual prompting (VP) (Chen et al., |2023; Bahng et al., [2022; Jia et al.| 2022)) and model
reprogramming (MR) (Tsai et al., |2020; |Chenl [2024; [Elsayed et al., [2019; Neekhara et al., 2022))
enable a frozen pre-trained model for one task to perform a different target domain classification task
by deriving a visual prompt for inputs from the target domain. Initially, MR was considered an attack
that misused cloud services (i.e., MLaaS) to perform undocumented tasks (Elsayed et al.,2019). VP
was recently introduced in (Bahng et al.,2022). Although VP and MR share the same concept, VP
focuses exclusively on images. VP has been extended to image inpainting (Bar et al.,2022), antibody
sequence infilling (Melnyk et al., [2023)), and differentially private classifiers (Li et al.,|2023b)). In
this paper, VP and MR are used interchangeably, with the visual prompt in VP corresponding to the
trainable noise in MR. More formally, VP/MR proceeds with four steps (Chen, 2024)).

1. Initialization: Let fs(-) and Dy = {(xp,yr)} be the source model (the model trained from the
source domain dataset) and the target domain dataset, respectively. Randomly initialize 6 and w
(defined below).

2. Visual prompt padding: Obtain the prompted input sample Zr = V (x|0), where 0 is the visual
prompt. A common method for V(-) is to resize xr and add the visual prompt (trainable noise)
around it. Although Zp visually differs from the source domain, it can still be used as input for the
source domain classifier. Figure illustrates this with 27 as “3” from MNIST, 6 in the middle, and
V(+) resizing xr and padding it with 6.

3. Output mapping: Obtain the target task prediction via g = O(fs(Z1)|w), where w represents
the trainable parameters for output label mapping. This step is optional for VP/MR. In our experiment,
we omitted this step.

4. Prompted model training: Optimize ¢ and w by minimizing a task-specific loss £(¢r, yr) on Dr.

After executing the four-step procedure, we obtain the prompted model f = O o fg o V from fg(-)
with optimized 6* and optionally w™*. This results in g7 = O(fs(V (z7]0*))|w™).

4 SYSTEM MODEL

Threat Model. We consider two roles: attacker and defender. The attacker’s goal aligns with
previous work (Gu et al., 2017} |Chen et al.,2017; Tang et al., 2021} Qi et al.|[2023b; [Liu et al., [2018b)).
Specifically, the attacker poisons the training dataset by injecting trigger samples. The DNN model
(e.g., an image classifier) trained on this poisoned dataset behaves normally with clean inputs but
always predicts an attacker-specified target class for inputs with a trigger. Essentially, an all-to-one
backdoor is implanted, mapping all trigger inputs to a specific target class.

Defender’s Goal and Capability. The defender’s goal is to detect if a suspicious model is back-
doored, primarily measured by AUROC (see Section[6). The defender has limited abilities: no access
to the poisoned dataset, model structure, or parameters. In MLaaS applications, detection involves
only black-box queries on the model to obtain confidence vectors. The defender also has a small
reserved clean dataset Dg (1%, 5%, 10% of the test dataset in our experiment) to aid detection.

5 PROPOSED METHOD

We present our detection method, BPROM. The notation table can be found in Table[27]in Appendix [E}

5.1 OVERVIEW

Different clean datasets have distinct class subspace “shapes” in feature space. However, as noted
in Wang et al.|(2019), poisoned datasets exhibit target class subspaces that share boundaries with
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Figure 4: The workflow of BPROM. The blue and red components are related to Dg and Dp,
respectively. The parts are related to VP and D7. The gray components have connection to
D¢ and are used for train fiera

all others. This creates misalignment when adapting a poisoned model to a clean dataset, termed
class subspace inconsistency, resulting in reduced prompted model accuracy. This is conceptually
illustrated in Figure [2] and experimentally validated in Section [C] and Figure [3] As an evidence,
Table 2| also shows that an increasing number of target classes worsens the inconsistency (i.e., lower
accuracy). BPROM leverages this for backdoor detection. The core idea is that adapting an infected
source model to a clean target task via visual prompting is significantly harder due to the class
subspace mismatch. Theorem 1 in|Yang et al.|(2021)) states that target risk is bounded by source risk
and representation alignment loss. For BPROM, this alignment loss is amplified by the inconsistency
in infected models, leading to poor target task performance. Thus, low prompted accuracy signals
potential backdoors. To achieve effective detection, the BPROM training has three steps: shadow
model generation, prompting, and meta-model training. First, diverse poisoned and clean shadow
models are trained. Second, visual prompts are learned for each shadow model using an external clean
dataset. Finally, a meta-classifier is trained on confidence vectors from prompted shadow models to
detect backdoors. The workflow and pseudocode are shown in Figure @] and Algorithm 1]

5.2 BPRrROM

Generating Shadow Models. The goal of this
step is to construct shadow models, categorized
into clean and backdoor shadow models. Clean
shadow models are trained on a clean dataset,

while backdoor shadow models are trained on a ¥ target classes 1 3 3

poisoned dataset. CIFARIO 03286 02427 02338
GTSRB 02711 0.1988 0.1986

Table 2: Class subspace inconsistency worsens
(i.e., the prompted model’s testing accuracy de-
creases) as the number of target classes increases.

Let Dg be the reserved clean dataset. To check
if a suspicious model was trained on CIFAR-
10, Dg includes a limited number of CIFAR-10 samples (e.g., 1%, 5%, 10% in our experiment).
The defender trains n clean shadow models, f;’s, with different parameter initializations. Given a
poisoning rate p and a chosen backdoor attack, the defender creates M — n poisoned datasets by
injecting trigger samples according to the chosen attacks, where M is the total number of shadow
models. Specifically, each poisoned dataset D p is constructed as follows:

Step 1: A proportion p of samples (z,y) from the clean dataset Dg are extracted to form Dp.

Step 2: The extracted samples are transformed by adding a trigger pattern (m, ¢, o, y;) to obtain
poisoned counterparts {(z’,y')[z' = (1 —m) -z +m- (1 —a)t + ax), y =y}, where y;,, m, t, o,
- denote the target class, trigger mask, trigger, intensity, and element-wise product, respectively (Guo
et al., 2022} 2023).

Step 3: Construct Dp = (Dg \ Dg) U {(2/,y')}. By sampling different combinations of backdoor
patterns (m, t, o, y¢), various D p can be generated. Backdoor shadow models are trained on Dp’s.
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Prompting Shadow Models. This step applies VP to both types of shadow models (clean and
poisoned) to generate prompted shadow models. Let Dy = D™ U D5 be an external clean dataset,
with DI ag the training set and D' as the test set. D can have a different distribution than
Dg. For shadow models, prompts (6;) are learned via standard backpropagation on D", This
process is also applied to the suspicious model fs,s, but using a gradient-free optimization method
(e.g., CMA-ES) since we only have black-box access. This results in the prompted shadow models
fi(:) = f:(V(-|67)), and prompted suspicious model f(-) = fous(V (+|07,,)). Detailed steps for VP
can be found in SectionE](e.g., (Bahng et al.,[2022)).

Meta Model Training. The goal of this step is
to train a binary classifier fine fqr backdoor de-
tection. For each shadow model f;, the defender
randomly selects ¢ samples from D to form
Dq :~{xb, ..., x$, }. Each sample from Dy is
fedto f;. Thg defender creates a dataset Dpera =
D = {(fi(ey) ||+~ || i), clean) 1y U
{(fizIl--- |lfi(xy), backdoon) }E,, .

Here, fl(xgg) is the confidence vector, and its

length, Kg, is the number of classes in Dg.

The defender then trains a binary classifier fier, - )
. 9 /* Prompting Shadow Models */
using Dyyeqa-

10 fori =1to M do _

11 learn visual prompt §; on Df*"
Backdoor Detection on Suspicious Model. 1 | construct f; = f; o V(:|0)

To inspect a suspicious model fs,s, we firstob- 13 /« Training Meta Model */

Algorithm 1: BPROM.
Input: Dg and Dy = DIy Dist;
Output: fe,
1 /* Generating Shadow Models «/
2 fori=1to M do
Copy Dg into D
if i < n then
‘ train f; from D%
else
augment DY with triggers
train f; from the augmented D%

® N B W

tain ¢ confidence vectors from the prompted
suspicious model f. These vectors are con-
catenated and fed to fie. Specifically, v =

1 Construct Do = {x,, 3, ..., x4} by
randomly sampling ¢ samples from D
15 Initialize Dyern as an empty set

(Flp)ll - Hf(qu)) is computed and inputto 1 fori = 1 to M do

fmetas Which outputs either clean or backdoor. 17 | ifi <n then ~
13 vi = (filzp)ll - [1fi(zd))
19 l; + ‘clean’
5.3 DISCUSSION 2 Dineta = Dimeta U { (v, i)}
21 else
BPROM is similar to MNTD (Xu et al| 2019), =2 vi = (filzp)ll -~ (1 fi(zd))
but they have important differences. 23 l; + ‘backdoor’
24 Dmeta = Dmela U {(Ui7 lv)}

More Efficient Data Generation: In BPROM,
the defender uses a single backdoor attack to
generate Dp, whereas MNTD uses multiple
backdoor attacks. Even if multiple methods are
used in BPROM, detection accuracy improves
only marginally. MNTD needs to ”see” various backdoor types to better detect unknown backdoors.
However, BPROM focuses on class subspace inconsistency, where D p learns different feature space
partitions, with the target class adjacent to all other classes.

25 Train the binary classifier fie using Dieta
26 return f.;,

Much Fewer Shadow Models Required: BPROM needs only a few shadow models (e.g., 20 in our
experiments), while MNTD requires hundreds due to the variety of backdoor attacks (e.g., 256 in
MNTD). This reduces training costs and allows BPROM to achieve high performance (1.0 AUROC
on CIFAR-10 for both BadNets and Blend, compared to MNTD’s 0.92 and 0.955) even with a single
backdoor type. Training MNTD is also much more complex than training BPROM.

Novel Design Principle: Most importantly, their design principles differ fundamentally. MNTD
relies on meta-learning and needs to ”see” various backdoor properties. BPROM relies on class
subspace inconsistency, achieving decent detection accuracy (e.g., 0.8137 Fl-score on CIFAR-10
with BadNets and STL-10, and 0.7499 with GTSRB and STL-10) even with a single shadow model
and no reserved clean samples. The auxiliary design with a similar MNTD structure further improves
performance.
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6 EXPERIMENTS

We overview the experimental setup, including datasets, model architectures, attack methods, and
defense baselines, consistent with recent works (Qi et al.,2023c} |Guo et al., 2023} [Huang et al.,|2020;
Liu et al.,[2023). We then present the experimental results and hyperparameter study.

6.1 EXPERIMENTAL SETUP

Datasets and Model Architectures. We use five image datasets: CIFAR-10 (Krizhevsky, [2009)),
GTSRB (Stallkamp et al., 2011), and STL-10 (Coates et al., 201 1)), Tiny-ImageNet (Le & Yang, 2015),
and ImageNet (Russakovsky et al.,|2015). For a suspicious model fs(-) trained on CIFAR-10, GTSRB,
Tiny-ImageNet or ImageNet, we first train shadow models f;’s using an a% (« € {1, 5,10}) subset
of the corresponding test set as Dg. Then, we apply VP on f;’s using STL-10 as D to obtain the
corresponding prompted models f;’s. We experiment with ResNet18 and MobileNetV2 architectures,
training models on each ng and D‘}"‘in using standard procedures. For the meta-classifier fpen, we
use a random forest with 10,000 trees to detect backdoors based on confidence vectors. We mainly
use Area Under the ROC Curve (AUROC) and F1-score to measure the detection effectiveness of
backdoor detection methods. Our experiments were performed on a workstation equipped with a
16-core Intel 19 CPU (64GB RAM) and an RTX4090 GPU.

Attack Methods and Defense Baselines. We evaluate BPROM against 9 backdoor poisoning
attacks from the Backdoor ToolboxE], including classical dirty label, clean label, sample-specific
trigger, and adaptive attacks. Default hyperparameters are used to ensure at least 98% attack success
rate. We compare BPROM with 10 backdoor defenses either from Backdoor Toolbox or from their
official code. Default hyperparameters are used for each defense.

6.2 EXPERIMENTAL RESULT

We know from class subspace inconsistency that a prompted model’s accuracy degrades if the
suspicious model is backdoored. We conducted experiments with backdoor attacks using varying
trigger sizes (4 x 4, 8 x 8, 16 x 16 pixels) and poisoning rates (5%, 10%, 20% of training data) to
further examine the impact of class subspace inconsistency on prompted model accuracy. For each
experiment, we generated a backdoor-infected model and prompted it for a new task on STL-10.
These experiments also cover adaptive attacks, where BPROM maintains high performance, achieving
an AUROC of 1 even at low poison rates (e.g., 0.2% for BadNets on CIFAR-10; see Section @

Trigger Size Impact. Table [3|shows the accu- Table 3: Testing accuracy for different trigger sizes.
racy of prompted models on STL-10 with vary-

ing trigger sizes. We trained backdoored models CIFAR-10 GTSRB
on CIFAR-10 and GTSRB, then prompted them Blend Adap- Blend Adap-
to classify STL-10. As trigger size increases, ac-

. . . (4*4) 0.3830 0.3336 0.1783 0.1245
curacy decreases. This is because larger triggers (8+3) 03517 0.3250 0.1641 0.1183
distort feature representations more, worsening (1616) 03172 03127 0.1571 0.1080

class subspace inconsistency.

Poison Rate Impact. Table 4] shows the accu-
racy of prompted models with varying poison Table 4: Testing accuracy for various poison rates.
rates. Similar to the trigger size experiments,

we trained backdoored models on CIFAR-10 CIFAR-10 GTSRB
and GTSRB, then prompted them for STL-10. Blend Adap- Blend Adap-
Higher poison rates lead to lower accuracy due Blend Blend

. . . . . 5% 0.5297 0.5233 0.2488 0.2368
to increased feature distortion, consistent with 0% 04772 0.4830 02328 0.2036
our class subspace inconsistency explanation. 20% 03985 0.3358 0.2222 0.1705

Both Table 3] and Table [d] show low accuracies,
supporting this reasoning.

Performance on CIFAR-10 and GTSRB Baselines. Table [25|compares defenses using ResNet18
as the shadow and suspicious model (infected ResNet18 has accuracy > 0.92 and attack success

*https://github.com/vtu8l/backdoor-toolbox
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Table 5: Area Under the ROC Curve (AUROC) of defenses on ResNet18 with different datasets.
AVG stands for the average AUROC. Green (red) cells denote values greater (lower) than 0.8.

Badnets Blend Trojan BPP WaNet Dynamic ~ Adap- Adap-

(Chen - (Wang (Nguyen | Blend Patch
(Gu et al.| (Liu et al.| (Nguyen & < . AVG
5017 et al.| 20186 et al.} Tranl 203T) &  Tran, (Qi et al) (Qietal)

2017) 2022) & 2020) 2023b) 2023b)

cifarl0 ~ 0.937 0.834 0.517 0.499 0.499 0.955 0.787 0.520 0.694
gtsrb 0.955 0.772 0.670 0.500 0.500 0.971 0.917 0.577 0.733

cifarl0  0.999 0.992 1.000 0.500 0.500 0.958 0.958 1.000 0.863
gtsrb 0.322 0.435 0.255 0.501 0.501 0.696 0.694 0.787 0.524

cifarl0 ~ 1.000 0.936 1.000 0.999 0.999 0.969 0.896 0.902 0.963
gtsrb 0.999 0.939 0.999 0.998 0.998 0.959 0.832 0.879 0.950

cifarl0 ~ 0.949 0.463 0.949 0.502 0.502 0.949 0.470 0.947 0.716
gtsrb 0.949 0.590 0.949 0.503 0.503 0.949 0.814 0.949 0.776

cifarl0 09898  0.921 0.999 0.502 0.502 0.991 0.954 0.859 0.840
gtsrb 0.967 0.978 0.999 0.504 0.504 0.955 0.983 0.861 0.844

cifarl0 ~ 0.929 0.921 0.446 0.503 0.503 0.920 0.926 0.830 0.747
gtsrb 0.808 0.722 0.800 0.502 0.502 0.800 0.722 0.680 0.692

cifarl0 ~ 0.985 0.983 0.986 0.498 0.498 0.991 0.815 0.819 0.822
gtsrb 0.994 0.956 1.000 0.500 0.500 0.968 0.845 0.867 0.829

cifarl0  0.895 0.765 0.931 0.545 0.545 0.841 05123  0.396 0.679
gtsrb 0911 0.599 0.800 0.502 0.502 0.567 0.615 0.626 0.640

cifarl0  0.867 0.633 0.867 0.867 0.867 0.867 0.867 0.867 0.838
gtsrb 0.567 0.633 0.500 0.633 0.767 0.567 0.833 0.833 0.667

cifarl0 = 0.642 0.485 0.503 0.411 0.676 0.433 0.526 0.664 0.543
gtsrb 0.842 0.843 0.558 0.589 0.501 0.663 0.885 0.864 0.718

cifarl0 ~ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
gtsrb 1.000 1.000 1.000 0.933 0.933 1.000 1.000 1.000 0.983

STRIP (Gao et al.}|2019)

AC (Chen et al.}2018)

Frequency (Zeng et al.|[2021)

SentiNet (Chou et al.||2018)

CT (Qi et al] 2023¢)

SS|Tran et al.|(2018)

SCAn (Tang et al.||2021)

SPECTRE (Hayase et al.|[2021)

MM-BD (Wang et al.|[2024)

TED (Mo et al.|[2024)

BPROM (10%)

rate (ASR) > 0.98, shown in Table [14] of Section [B.I). The meta-classifier, trained on Badnets-
infected shadow models, classifies suspicious models under 9 attacks. Results from 30 clean and 30
backdoored suspicious models (Section [6.1)) show BPROM outperforms all other defenses in average
AUROC, even when the attack differs from the one used to train the meta-classifier.

BPROM achieves high AUROC using only 10% of the CIFAR-10 (GTSRB) test dataset as the reserved
clean dataset Dg. Please see Tablein Sectionfor BPROM (5%)’s and BPROM (1%)’s results.
In contrast, baseline defenses” AUROC varies significantly across attacks and is heavily influenced
by backdoor type. Defenses using activations or saliency maps fail against invisible backdoors spread
throughout the image (Q1 et al.| 2023a)), while perturbation and frequency-based methods cannot
handle sample-specific or randomized triggers (Nguyen & Tranl 2021} 2020). Tables [I7] and [I§]
in Section show that BPROM maintains high AUROC even with different architectures like
MobileNetV2. We also evaluate BPROM on MobileViT and Swim Transformer, demonstrating its
effectiveness across different architectures (see Section [B.3]for details). We also tested feature-based
backdoors like Refool (Yunfei Liu, [2020), BPP (Wang et al., [2022)), and Poison Ink (Zhang et al.,
2022), with results in Table [22|of Section showing perfect detection.

Performance on Tiny-ImageNet and ImageNet. In addition to the CIFAR-10 and GTSRB datasets,
we also evaluated BPROM on the Tiny-ImageNet and ImageNet datasets. These larger datasets
present greater challenges for backdoor detection due to the increased complexity of the images
and the larger number of classes. Table [¢] (Table [26] in Section [D)) shows the results on Tiny-
ImageNet (ImageNet), comparing BPROM with several state-of-the-art defenses. In particular,
for Tiny-ImageNet, BPROM achieves an average AUROC of 0.899 for ResNet18 and 0.912 for
MobileNet, significantly outperforming other defenses.

Training Time of BPROM. BPROM’s training time, while longer due to shadow model and
meta-classifier training, remains practical for deployment given its accuracy and black-box na-
ture. BPROM’s training time with different shadow model counts and architectures (CIFAR-10 as
Dg, STL-10 as D7) is shown below. In particular, for ResNet18, BPROM’s training time is 2.3, 4.8,
and 9.5 hours if 10, 20, 40 shadow models are considered, respectively. For MobileNetV2, BPROM’s
training time is 1.2, 2.4, and 5.2 hours if 10, 20, 40 shadow models are considered, respectively.
Reported times are averaged over five trials.
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Table 6: AUROC of defenses on Tiny-ImageNet, using ResNet18 and MobileNetV2. AVG stands for
the average AUROC. Green (red) cells denote values greater (lower) than 0.8.

Adap- Adap-
Blend Patch

ResNet18 0.938 0.905 0.440 0.500 0.500 0.914 0.925 0.732
MobileNetvV2  0.936 0.935 0.940 0.500 0.500 0.838 0.830 0.783
ResNet18 0.490 0.475 0.473 0.501 0.501 0.492 0.491 0.489
MobileNetvV2 ~ 0.489 0.485 0.480 0.500 0.500 0.617 0.487 0.508

Badnets  Blend Trojan BPP WaNet AVG

STRIP (Gao et al.}|2019)

AC (Chen et al.}|2018)

ssFTran etall G018) ResNet18 0.505 0.485 0.488 0.499 0.499 0.487 0.502 0.495

MobileNetV2  0.487 0.486 0.487 0.502 0.502 0.488 0.500 0.493

ResNet18 0.987 0.987 0.994 0.502 0.502 0.741 0.788 0.786
MobileNetV2  0.982 0.987 0.986 0.502 0.502 0.888 0.882 0.818
ResNet18 0.945 0.936 0.882 0.501 0.501 0.778 0.776 0.760
MobileNetV2  0.889 0.864 0.915 0.500 0.500 0.823 0.818 0.758
ResNet18 0.742 0.724 0.515 1.000 1.000 0.515 0.606 0.729
MobileNetvV2 ~ 0.651 0.548 0.510 0.980 0.980 0.510 0.717 0.699

SCAn (Tang et al.||2021)

CT (Qi et al.}|2023c)

SCALE-UP (Guo et al.|[2023)

CD {fiuang ot al] 2023} ResNet18 0.918 0.954 0.961 0.628 0.628 0.542 0.647 0.754

MobileNetV2  0.904 0.985 0.997 0.514 0.514 0.591 0.933 0.805

ResNet18 0.800 0.567 0.467 0.967 0.467 0.867 0.867 0.715
MobileNetvV2 ~ 0.633 0.500 0.467 1.000 0.700 0.633 0.767 0.671
ResNet18 1.000 0.984 0.900 1.000 1.000 0.966 1.000 0.979
MobileNetV2 1.000 0.978 0.966 1.000 1.000 1.000 1.000 0.992

MM-BD (Wang et al.;[2024)

BPRroM (10%)

6.3 HYPERPARAMETER STUDY

We conduct hyperparameter studies to analyze key factors affecting BPROM’s effectiveness.

Impact of Number of Shadow Models. Ta- Table 7. AUROC relative to the number of shadow
ble [7] shows AUROC as we vary the number models in meta-classifier training.
of shadow models used to train the backdoor

classifier. In the table, “2 (1+1)” means one CIFAR-10 GTSRB
clean and one backdoor shadow model. The  ,gndowModel  Blend Adap- Blend Adap-

F1 score increases rapidly with more shadow Yo — Bl;";s — Bl;";m
models but plateaus after about 20 models. This 10 (5+5) 0874 0,985 0.854 0.989
indicates that approximately 20 shadow models e 88:;8; oo o Lo 100
are sufficient for effective training, with minimal

AUROC improvement beyond this number.  Taple 8: ASR and AUROC for Blend and Adap-

Blend attacks across different trigger sizes.
Impact of Trigger Size and Poison Rate. We

analyze how detection performance (AUROC) Trigger Size Blend Adap-Blend
changes with varying trigger size and poison ASR  AUROC ASR AUROC
rate. The settings in Tables[§]and [9] match those @) 0269 1000 0016  1.000

in Tables [3] and 4] which show the prompted ~ CIFAR-10  (8*8) 0974 1000 0049 1000
model accuracy for different trigger sizes and (6¥16) 0994 1000 0963 1.000

. (4%4) 0.842  1.000 0027  1.000
poison rates. Tables [§ and O] show both attack .o 6*8) 0994 1000 0194 1000
success rate (ASR) and AUROC for CIFAR-10 (16%16) 0994  1.000  0.997  1.000

models as trigger size and poison rate vary.
Table 9: ASR and AUROC for Blend and Adap-

We observe two key points: 1) ASR increases Blend attacks at different poison rates.

with larger trigger sizes and poison rates, indi-
cating stronger backdoor attacks. 2) Despite

. ) . Blend Adap-Blend
stronger attacks, our detection method’s AU- Poison Rate "SR AUROC  ASR AUROC
ROC remains stable, with minor fluctuations. - 0996 0607 0998 0607
GTSRB results show similar trends: as trigger  cipar-10 10% 0990 0933 0998  0.909
size increases from 4x4 to 16x16, ASR rises 20% 0.998  1.000  1.000  1.000
from 26% to 99%, while AUROC stays between 5% 0998  1.000  1.000  1.000

: _ GTSRB 10% 0998  1.000  1.000  1.000
0.98 and 1.00. This demonstrates that our back 0% 0991 1000 1000 1000
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door detection technique remains reliable even as attacks strengthen, highlighting its robustness
against varying attack strengths.

Structural Differences between Shadow and Suspicious Models. We analyze the impact of using
different architectures for shadow and suspicious models on BPROM’s performance. Table [I0shows
AUROC results with MobileNetV2 as the suspicious model and ResNet18 as the shadow model,
indicating that BPROM’s detection effectiveness remains robust despite structural differences.

Impact of External Dataset. We ran ad- Table 10: F1 score and AUROC of BPROM when
ditional experiments with Dg as CIFAR- the suspicious model is MobileNetV2 and the
10/GTSRB and Dt changed to SVHN. Results shadow model is ResNet18.

in Tables[T9and 20] of Section [B.2]show consis-

tent detection performance. WaNet  Adap-Blend Adap-Patch AVG
F1 1.000 1.000 1.000 1.000
Impact of the Inconsistency between Num- AUROC  1.000 1.000 1.000 1.000

bers of classes in Dg and Dy. In previous

experiments, we used CIFAR-10 and GTSRB as

Dg and STL-10 as Dp, maintaining class con-

sistency between Dg and Dr. We also ran experiments with D as STL-10 and Dg as CIFAR-100.
The results in Table [21] of Section [B.2]still show consistent detection performance.

6.4 ADAPTIVE ATTACK

To evaluate BPROM’s robustness against adap- Table 11: Adaptive attacks with low poison rate.
tive attacks, we followed the experimental setup

described in [Guo et al| 2023) (Section 5.3.2), P‘“B";qlfa‘e AUTOC (;*7559 POiS;‘;URatC AUTOC A§R
focusing on BadNets attacks on CIFAR-10. It 0.5% 1 0.838 5% 1 1
remains unknown how an attacker adds a regu- 1% ! ! 10% ! !

larization term to reduce class subspace incon-
sistency. We examine two candidate adaptive attacks below.

First, as shown in |Q1 et al.|(2023b)), the backdoor with a very low poison rate can act as an adaptive
attack. Table [IT]presents the AUROC and ASR of BPROM at various poison rates. These results
show that BPROM maintains perfect detection (AUROC = 1) even at extremely low poison rates,
demonstrating its effectiveness against stealthy adaptive attacks. Our observed ASR values for
BadNets at 0.2% and 0.5% poison rates align with those reported in Figure 7b of (Guo et al.| (2023)),
validating the correctness of our implementation.

Clean-label backdoors, like SIG (Barni et al., Table 12: Adaptive attacks with clean labels.
2019) and LC (Turner et al., 2019) can also be

regarded as a different adaptive attack. These Dataset SIG LC
attacks do not modify labels and only poison a CIFAR-10 1.00 0.95
portion of the training images, potentially pre- GTSRB 0.83 0.78

serving class subspaces and hindering BPROM’s

detection based on class subspace inconsistency. BPROM. Table[I2]shows BPROM’s performance on
SIG and LC. While not perfect, BPROM still achieves decent AUROC, indicating its resilience even
against these challenging attacks.

7 CONCLUSION AND LIMITATION

We present BPROM as a novel VP-based black-box model-level backdoor detection method. BPROM
relies on class subspace inconsistency, where the prompted model’s accuracy degrades if the source
model is backdoored. This inconsistency is common in various backdoor attacks due to feature space
distortion from the poisoned dataset. Our experiments show BPROM effectively detects all-to-one
backdoors. However, it struggles with all-to-all backdoors, as their feature space distortion is more
controllable by the attacker. Addressing this limitation is left for future work.

10
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APPENDIX OF BPROM: BLACK-BOX MODEL-LEVEL BACKDOOR DETECTION
VIA VISUAL PROMPTING

This appendix provides additional details and experimental results supporting our main findings.
Section A details the implementation and configurations of the experiments. Section B presents
BPROM’s evaluation on different model architectures, datasets, and attack settings, including analyses
of label mapping, class number inconsistency, and feature-based backdoors. Section C provides
additional visualizations of class subspace inconsistency to further illustrate our method.

A IMPLEMENTATION DETAILS

We provide details on the configurations of the experiments used to evaluate BPROM and other
defenses.

A.1 ATTACK CONFIGURATIONS

The configurations of the baseline attacks used in our experiments are summarized in Table [I3] For
each attack, we specify parameters related to the backdoor trigger insertion, including poison rate
and cover rate.

* Poison rate: The proportion of training data with the trigger pattern. A higher poison rate
increases the attacker’s influence on the model’s behavior but also raises the detection risk.

» Cover rate: The proportion of data with the trigger pattern that shares the original label. A
higher cover rate makes the trigger pattern more stealthy and consistent with the original
data distribution but weakens the attack.

All attacks are implemented using the default settings in the Backdoor ToolboxE]; refer to the code
repository for more details.
Table 13: Configurations of baseline attacks

GTSRB

Poison Rate: 1.0%
Poison Rate: 1.0%
Poison Rate: 1.0%
Poison Rate: 5.0%

CIFAR-10

Poison Rate: 0.3%
Poison Rate: 0.3%
Poison Rate: 0.3%
Poison Rate: 5.0%

Attacks

BadNets|Gu et al.|(2017)
Blend|Chen et al.|(2017)
Trojan Liu et al.|(2018b)
WaNet|Nguyen & Tran|(2021)

Cover Rate: 10.0%

Cover Rate: 10.0%

Dynamic|Nguyen & Tran|(2020)

Poison Rate: 0.3%

Poison Rate: 0.3%

Adap-Blend Qi et al. |(2023b)

Poison Rate: 0.3%
Cover Rate: 0.6%

Poison Rate: 0.5%
Cover Rate: 1.0%

Adap-Patch|Qi et al.|(2023b)

Poison Rate: 0.3%
Cover Rate: 0.3%

Poison Rate: 0.3%
Cover Rate: 0.6%

A.2 DEFENSE CONFIGURATIONS
The important settings used for baseline defenses in our evaluations are summarized below:

* STRIP (Gao et al.,[2019): Number of superimposing images = 10; defense false positive
rate budget = 10%.

¢ AC (Chen et al.| 2018)): Cluster threshold = 35% of class size.

* Frequency (Zeng et al.,[2021): Predicts samples as poisoned or clean using a pretrained
binary classifier.

* SentiNet (Chou et al.,|2018): FPR = 5%, number of high activation pixels = top 15%.
¢ CT (Q1 et al., 2023c): Confusion iterations = 6000; confusion factor = 20.

* SS (Tran et al 2018): Number of removed samples = min(1.5 X |Dpoison|/|D], 0.5 X
class size).

*nttps://github.com/vtusl/backdoor-toolbox
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* SCAn (Tang et al.} 2021)): Threshold for abnormal score = 0.5.

* SPECTRE (Hayase et all [2021): Number of removed samples = min(1.5 *
| Dpoisonl/|D]|, 0.5 x class size) from top 50% suspicious classes.

B EVALUATIONS ON DIFFERENT ARCHITECTURES AND DATASETS

To evaluate the effectiveness of BPROM on different architectures, we conducted experiments using
ResNet (He et al., [2015) and MobileNetV2 (Sandler et al.,[2018]) as backbone models. . The models
are trained on the CIFAR-10 (Krizhevsky, |2009) and GTSRB (Stallkamp et al., [2011)) datasets,
attacked with 9 different backdoor attacks, and then defended with state-of-the-art methods.

B.1 ACCURACY AND ATTACK SUCCESS RATE

We report the clean accuracy (ACC) of the infected models on benign test samples without triggers
and the attack success rate (ASR), which indicates the percentage of Trojan inputs successfully
predicted as the attacker-specified target class. The results are shown in Table|14|for ResNet18 and
Table [[3] for MobileNetV2.

Table 14: Accuracy and ASR on ResNet18.

. Dynamic Adap- Adap-
Badnets Blend Tfoym WaNet Neuyen Blend Patch
Gy " G Gmy - maoon & T O el @aan  Clean
CIFAR-10 ACC 0936 0934 0939 0926 0941 0933 0936 0.937
ASR 1.000  0.998 1.000 0.987 0.998 0.998 1.000 -
GTSRB ACC 0.968 0968 0.972 0952 0971 0971 0974 0976
ASR 1.000  0.996 1.000 0.986 1.000 0.995 0982 -
Table 15: Accuracy and ASR on MobileNetV2.
adnets en rojan aNe Dynamic Adap- Adap-
gud e: al gLend etal Luj et_al. \Iilvglljy;n & gguy?ﬁ_an gliende[ T ga;tc:t - Clean
2017) 2017) (2018b) (Tran|(2021) 0020) 0336} : D0735) :
CIFAR-10 ACC 0.905 0.906 0.901 0.907 0905 0.898 0902 0.906
ASR 1.000 0.994 1.000 0.990 1.000 1.000 1.000 -
GTSRB ACC 0.935 0.927 0938 0905 0922 0921 0937 0.931

ASR 1.000 0994 1.000 0991 1.000 1.000 1.000 -

The results presented in Table [I4]and Table[I3]reveal that despite maintaining high clean accuracy,
both models exhibit very high attack success rates (>98%) across various attacks when triggers
are present. This suggests that the backdoors effectively induce misclassification towards the target
label. With the effectiveness of the backdoor attacks established, the subsequent evaluation involves
assessing the performance of BPROM and other state-of-the-art defense methods in detecting these
compromised models.

B.2 AUROC AND F1 SCORE

We evaluate defense methods in detecting backdoor attacks using AUROC and F1 score metrics.
Experiments are conducted on CIFAR-10 and GTSRB datasets using ResNet18 and MobileNetV2
architectures to assess and compare detection effectiveness across different model designs. This
allows for determining the robustness and architecture-agnostic capability of techniques.

Experiments on ResNet18. From the AUROC results in Table 25| and F1 scores in Table [T6 of
defenses evaluated on the ResNet18 model, we observe that BPROM demonstrates competitive or
superior detection performance over defenses for the majority of attacks. It also significantly elevates
the average AUROC and F1 score over the strongest baselines. Although it exhibits relatively lower
scores on two attacks, BPROM still demonstrates detection capability on par with or better than other
methods.

17



Under review as a conference paper at ICLR 2025

Table 16: F1 scores of defense methods against backdoor attacks in CIFAR-10 and GTSRB. AVG
stands for the average F1 score.

Badnets Blend Trojan WaNet Ig% g;ie?d- ‘:;if{
Gu_et_all [Cheneta ju_et_al] [Nguyen & - - - - AVG
2017) 2017) (2018b) Tran 031y ‘&—lranl [Qi__et_al] [Q et al.

(2020) (2023b) (2023b)
ifar10 0.952 0.466 0.951 0.471 0.951 0.848 0.009 0.664

atstb 0952 0851 0924 0480 0952 0937 0052 0737
cifarl0 1000 0946 1.000 0883 0978 1000 0000  0.830

AC[Chen ofal] 0TS gtsrb 0000 0000 0000 0000 0000 0000 0000  0.000
cifarl0 1000 0921 1000 0.141 0.981 0921 0784 0821

Froquency{Zeng etal]@021) 0.854 0812 0854 036l 0792 0814 0679 0738
_ cifarl0 0952 0.114 0291 0.170 059  0.121 0957 0457
SentiNet{Chou etal 2018) gtstb 0.952 0.434 0.952 0.484 0.721 0.792 0.975 0.759
: cifarl0 0470 0630 0949 0682 0664 0908 0965  0.53
criQietal] po23d gtstb 0747 0654 0576 0962 0916 0892 0965 0816
cifarl0 0979 0936 0294 0741 0789 0661 00208 0632

ss[fran et al] 2015} gtstb 0820 0807 0965 0530 0875 0538 0681  0.746
cifarl0 0993 0964 0991 0935 0979 0000 0000 0695

SCAn[Tang et al| 021} gtstb 0990 0966 0999 0956 0874 0000 0000  0.684
cifarl0 0990 0990 0991 0839 0991 0938 0865 0943

SPECTRE[Hayase etal|@021) o\ Gy 0957 0954 0968 0000 0976  0.000 0000 0551
BPron (104 cifarl0 1000 1000 1.000  1.000  1.000  1.000  1.000  1.000
oM (10%) gtstb 1.000 1.000 1.000 1.000 1.000 1.000 1000 1.000
BPron (55 cifarl0 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
%) atstb 1.000 0.965 1.000 1.000 1.000 1.000 1000 0.995
BProN (1) cifarl0  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
g gtstb 1.000 0782 1.000 1.000 1.000 1000 1.000 0969

Experiments on MobileNetV2. We further evaluate the effectiveness of backdoor detection meth-
ods when using the MobileNetV2 architecture, which utilizes depth-separable convolutions to build
a lightweight model. This represents a different design choice than ResNet, which uses residual
connections to train deeper models. As shown in Table [I7]and Table[I8] we observe consistently
outstanding detection effectiveness of BPROM over defenses.

Table 17: AUROC of defenses on MobileNetV2 under backdoor attacks on CIFAR-10 and GTSRB.
AVG stands for the average AUROC.

Badnets Blend Trojan WaNet 'w‘ gld apci ?daﬁ—

Gu_et_al| |Chenetal] [Liu et all |[Nguyen & U e,lf' en Tl atct I AVG

[Tran| (2021) u@r . %T_Ecﬁ—bal '917%_2%-;,%'
cifarl0 | 0.739 0.833 0.957 0473 0.987 0.987 0.952 0.847
STRIP|Gao et 2015) atstb 0.798 0.873 0.745 0.489 0.998 0.981 0.999 0.840
cifarl0 | 0.364 0.398 0.996 0.889 0.425 0.390 1.000 0.637
AC[Chen etal] Z0T8) gtstb 0.225 0.309 0.263 0.355 0.288 0.576 0.263 0.326
cifarl0  1.000 0.996 1.000 0.999 0.970 0.996 1.000 0.994
F‘e““e“cy gtsrb 1.000 0.973 1.000 0.777 0.960 0.973 1.000 0.955
. cifarl0 0.999 0.996 0.999 0.943 0.985 0.992 0.802 0.959
criQietal] po23d gtsrb 0.993 0.984 0.998 0.852 0.985 0.985 0.616 0916
cifarl0 | 0439 0.428 0.375 0.381 0.426 0.377 0.442 0.410
gtstb 0.492 0.492 0.492 0.492 0.487 0.492 0.487 0.491
cifarl0  0.991 0.921 0.953 0.926 0.988 0.981 0.926 0.955
SCAn[Tang et al] (2021} atstb 0999 0979 0969 0952 098 0969 0976 0976

cifarl0  0.857 0376 0.876 0.534 0.897 0.510 0.376 0.632
SPECTRE[Hayase et al]2021) atsrb 0911 0.699 0.797 0.597 0.595 0.617 0.581 0.685
cifarl0  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
atsrb 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000

BPROM (10%)

The consistent behavior shows that the effectiveness of BPROM in detecting backdoors is preserved
irrespective of model complexity and design choices.
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Table 18: F1 score of defenses on MobileNetV2 under backdoor attacks on CIFAR-10 and GTSRB.
AVG stands for the average F1 score.

. Dynamic Adap- Adap-
Badnets Blend Trojan WaNet L
Gu_et_all |Chenetal| [Liu et all |Nguyen & gguy?l"‘;an gliendet al 5‘2“:[ I AVG
(2017) (2017) (2018b) Tran|(2021) 0020) D0236) D0236)
cifarl0 | 0.552 0.673 0.916 0.122 0.939 0.943 0.999 0.735
STRIP|Gao et al | 2015 atstb 0513 0800 0442 0148 0954 0937 0955  0.678
ATl cifarl0 | 0.000 0.000 0.998 0.942 0.000 0.000 1.000 0.420
i gtsrb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
b 7y o cifarl0  0.983 0.922 0.984 0.981 0.139 0.92 0.983 0.844
Tequencyjrene S a gtstb 0.865 0.825 0.864 0.392 0.804 0.826 0.865 0.777
criorer ] 3 cifarl0 0.998 0.988 0.999 0.936 0.981 0.992 0.753 0.950
A | S gtstb 0.976 0.967 0.992 0.810 0.960 0.968 0.378 0.864
ssfreralGors cifarl0 | 0.230 0.222 0.141 0.176 0.218 0.173 0.232 0.199
mnetan { gtsrb 0.278 0.279 0.278 0.278 0.272 0.278 0.278 0.277
scaf 1657 cifarl0 0938 0.908 0.997 0.920 0.987 0.981 0.974 0.958
angeta gtsrb 0.642 0.769 1.000 0.818 0.968 0.450 0.335 0.712
cifarl0 | 0.774 0.676 0.125 0.282 0.775 0.252 0.169 0.436
SPECTRE{Hayase et al{@021) oy 0897  0.401 0748 0358 0356 038 0338 0498
cifarl0 1.000 1.000 1.000 0.967 1.000 1.000 1.000 0.995
BPROM (10%)
gtstb 1.000 0.965 1.000 1.000 0.965 0.965 1.000 0.985

Experiments on extra external dataset. We ran extra experiments, where Dy is kept as CIFAR-
10/GTSRB, but Dy is changed to SVHN. Table [I9] shows the results when Dg is GTSRB and
Table [20] shows the results when Dg is CIFAR-10. Both results demonstrate consistent detection
performance of BPROM even when using a different external dataset Dp. This indicates that the
choice of external dataset does not significantly impact BPROM’s effectiveness.

Table 19: Dy is changed to SVHN, Dy is kept as GTSRB.

Blend Trojan WaNet Dynamic Adap- Adap-
Badnets Ch . A . Patch
Guetar Chen | (L (Nguyen| ~ (Nguyen |  Blen @ AVG
o) + et all Jet al)] & Tran, |& Tran, (Qietal} |

2017) 2018b) 2021) 2020) 2023b) 2023]3)-'

F1 0.882 1.000 1.000 0.667 1.000 0.937 1.000 0.927
Auroc  0.867 1.000 1.000 0.500 1.000 0.933 1.000 0.9001

Table 20: D is changed to SVHN, Dy is kept as CIFAR-10.

. . . Adap- Adap-
Badnets Blend Tr(')Jan ‘WaNet Dynamic Blend Patch
(Guetal (Chen (Liu (Nguyen (Nguyen ol (©r AVG
5017) o et all et al, |& Tran, |& Tran| ot al ot al
2017) 2018b) 2021) 2020) o o

2023b)  [2023b)
Fl 1.000  1.000 1.000 0.967 1.000 1.000 1.000 0.995

avrRoc  1.000  1.000 1.000 0.967 1.000 1.000 1.000 0.995

Experiments on CIFAR-100. To investigate the impact of inconsistency between the numbers
of classes in Dg and Dr, we conducted experiments using CIFAR-100 as Dg and STL-10 as Dr.
Table 2] shows that BPROM achieves high AUROC and F1 scores across various backdoor attacks,
demonstrating its robustness even when there is a significant mismatch in the number of classes (100
classes in Dg vs. 10 classes in Dr). This suggests that BPROM is capable of handling scenarios
where the source and target domains have different numbers of classes, making it a versatile detection
method.

Experiments on feature-based backdoors. We further evaluated BPROM’s performance on feature-
based backdoors, which manipulate the model’s feature representations instead of directly modifying
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Table 21: AUROC of defenses on ResNet18 under backdoor attacks on CIFAR-100. AVG stands for
the average AUROC.

i Adap-
Badnets Blend Tr(')J an ‘WaNet Adap- Patch
(Guetal (Chen (Liu (Nguyen|  Blend Fel AVG
sor7)  ebald fetall & Tran,  (Qietal] e
2017) 2018b) 2021) 2023b) J

2023b)
STRIP (Gao et al}[2019) 0876 0.732 0.762 0.135 0941 0.964 0.729

AC (Chen et al}2018) 0.000 0.000 0.000 0.000 0998 1.000 0.333
Frequency (Zeng et al.,[2021) 0.986 0.896 0.895 0.883 0.865 0.985 0.926
SentiNet|Chouetal(2018) ~ 0.952  0.047 0.952 0.115 0.240 0.952 0.551

SS (Tran et al.|[2018) 0.661 0.005 0.661 0.673 0.633 0.672 0.551
SCAn(Tang et al.}[2021) 0992 0.980 0982 0.612 0.877 0380 0.804
BPROM(10%) 1.000  1.000 1.000 1.000 1.000 1.000 1.000

input images. Table 22 presents the results of BPROM on three feature-based backdoor methods:
Refool (Yunfei Liu, 2020), BPP (Wang et al.,[2022), and Poison Ink (Zhang et al., 2022)), using the
same configuration as previous experiments. The high F1 scores and AUROC values indicate that
BPROM effectively detects these feature-based backdoors, demonstrating its versatility in handling
diverse backdoor attack strategies.

Table 22: Feature-based backdoors like Refool, BPP, Poison Ink.

Attack Dataset  F1 Score AUROC
Refool (Yunfei Liu, 2020) CIFAR-10 1.000 1.000
BPP (Wang et al.| [2022) CIFAR-10 1.000 1.000
Poison Ink (Zhang et al.,[2022) CIFAR-10 1.000 1.000

Impact of Reserved Clean Dataset Size. We analyze the impact of the reserved clean dataset size
(Dg) on BPROM’s performance. As shown in Table BPROM maintains high AUROC across
different Dg sizes (1%, 5%, and 10% of the CIFAR-10 and GTSRB test sets). Even with a limited
Dgs (1%), BPROM achieves competitive performance, demonstrating its efficiency in leveraging small
amounts of clean data. This robustness to Dg size makes BPROM practical for real-world scenarios
where clean data might be scarce.

B.3 BPROM PERFORMANCE ON MOBILEVIT AND SWIM TRANSFORMER

To demonstrate BPROM’s architecture-agnostic nature, we evaluated its performance on MobileViT
and Swim Transformer, models combining CNN and transformer components. Tables [24] and 25]
present the AUROC scores on CIFAR-10 and GTSRB across various backdoor attacks. The results
show that BPROM maintains competitive performance on both MobileViT and Swim Transformer,
indicating its effectiveness is not limited to ResNet-based architectures. The average AUROC is
calculated for each defense and dataset.

C ANOTHER VISUALIZATION OF CLASS SUBSPACE INCONSISTENCY

Figure [54| illustrates, using principal component analysis (PCA), 30 suspicious models (15 clean
and 15 backdoor) trained on the complete CIFAR-10 dataset, along with 40 shadow models (20
clean-shadow and 20 backdoor-shadow) trained on 10% of the CIFAR-10 test set. All models are
based on ResNet18, with the Trojan method [Liu et al.|(2018b) employed as the backdoor technique.
Subsequently, a random forest-based meta-model (binary classifier) with 50 estimators is trained on
the confidence vectors produced by the 40 shadow models. A distinct separation between clean (
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Table 23: Detailed AUROC of BPROM with varying sizes of the reserved clean dataset (Dg).

Badnets Blend Trojan WaNet Dynamic Adap- Adap-

(Gu et al] \ (Ciu ot al (Neuyen & (N uTernn Blfndt ] Patl(:hl | AVG
2017) 3 al. 2013b) 2021) [&__ Tran| Qi et al} (Qictal}

2017) [2020) [2023b) [2023b)
BProw (10%)  Sifart0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
) gsb 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
cifar10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BPROM (5%) o1y, 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Bprow (1) Cifarl0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
) gtsib 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 24: AUROC on MobileViT for CIFAR-10 and GTSRB. AVG stands for the average AUROC.
Green (red) cells denote values greater (lower) than 0.8.

Blend WaNet Dynamic Adap- Adap-

Badnets Trojan
Gu et al] (Guetal] (Newyen & (Newyen | Blend - Pach iy

G et owm oS ome ORGS0 b ew
N
o ) Wt G OB GNS G I i ien o
CEER  ant omh omn ohn Gk R bm bw
SEED e (GIR e Gan oun oue ona oum obn
oufaET et |GEE OGS omR Gem 0SS IR b bom
e ) e’ | oUE GTR Ui G 4Bm bEn o
BPROM (10%) cifarl0 1.0000 1.0000 0.9667 1.0000 1.0000 1.0000 1.0000 0.9952

gtsrb 1.0000 1.0000 1.0000 1.0000 0.9655 0.9655 1.0000 0.9901

dots) and backdoor models (blue dots) is evident after VP, attributed to class subspace inconsistency.
The same meta-model is also used to classify clean (green dots) and Adap-Blend-infected models

(red dots) (2023b). A similar pattern is observable in Figure [5b]

30 30
201 204
°
L] L] o9 ®
g ’ o‘. ;
10 4 ° 10 A g
. c e .
[ X J
04 o O 04
%
* o °
-101 L4 L4 ® clean —101 e clean
o L] ® clean-shadow ° @ clean-shadow
L ® Trojan L ® Adap-Blend
—20 4 L[] ® Trojan-shadow —20 (] Adap-Blend-shadow
- '2 0 - Z‘LO 6 1‘0 2‘0 3‘0 4‘ 0 5‘0 - '2 0 - '1 0 6 1‘0 Zb Bb 4b 5‘0
(a) Trojan-infected model. (b) Adaptive-Blend-infected model.

Figure 5: Visualization of class subspace inconsistency through PCA.
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Table 25: AUROC on Swim Transformer for CIFAR-10 and GTSRB. AVG stands for the average
AUROC. Green (red) cells denote values greater (lower) than 0.8.

Badnets Blend Trojan WaNet Dynamic  Adap- Adap-

(Chen - (Nguyen Blend Patch
(Gu et al| - (Liu et al.}  (Nguyen & - - - — AVG
3017 et al.} 5018b) Tranl 203T) &  Tran, (Qi et al| (Qietal}

2017) ' 2020) 2023b) 2023b)

STRIP (Gag st 113019 cifar10 0.998 0.9761 0.9386 0.483 0.9794 0.8558 0.8622 0.8704

gtsrb 09851 07922 08036 05805 09999 07494 08174  0.8183
AC T TIETT cifarl0 05001 05005 04999 05000 05002 04998 05001  0.5001
cnetay gtsrb 02198 02591 05001 05012  0.5702 04999 05001  0.4358

b oIk cifarl0  1.0000 09563  0.9594 05707 09999  0.8564 08125  0.8793
Tequency (ferecta ) gtstb 09283  0.8835 09194 06767 08301 08531  0.8794  0.8529
crfo el cifarl0 0.868 0.9968 09994 05142 09919 08766 09758  0.8890
Lot alfe0239 gtsrb 09125  0.867 09967 04279 09991  0.8638  0.7455  0.8304
ssfreralGors cifarlo 03877 03745 03753 02747 03749 03749 03913 03648
aneres { atsrb 0.4961 04925 04946 04987 04925 04925 04925 04942
scan IR cifarl0 09943 09943 09549 07596 07495 08451  0.6215  0.8456
n {Tang et aly gtsrb 0.8973  0.6869  0.7661 05219  0.8141 0.6451 05577  0.6984
cifarl0 05964 05981 05959 04751 05997 04751 04752  0.5451

SPECTRE (Hayase et al | p021) 4oy, 07383 04911 07383 04911 04995 04991 04911  0.5641
BPRoM (10%) cifarl0 1.0000  1.0000  1.0000  1.0000  0.8000  0.8949  0.8667  0.9374
o gtsrb 1.0000  1.0000  1.0000  1.0000  1.0000  0.8000 09334  0.9619

D EXPERIMENTAL RESULTS ON IMAGENET

This section includes the experimental results on ImageNet. In particular, BPROM achieves an
average AUROC of 0.9996 for ResNet18, significantly outperforming other defenses.

Table 26: AUROC of BPROM and other defense methods against various backdoor attacks on
ImageNet. AVG stands for the average AUROC.

Badnets Trojan Adap-Blend Adap-Patch AVG

CD (Huang et al., 2023) 0.7954  0.9424 0.6648 0.5842 0.7467
SCALE-UP (Guo et al.}[2023)  0.9912  0.6556 0.3971 0.3339 0.5944
STRIP (Gao et al.,2019) 0.0500  0.0500 0.5244 0.5500 0.2936
BPRrOM (10%) 1.0000  1.0000 0.9986 0.8296 0.9570

E NOTATION AND DEFINITIONS

For clarity and reproducibility, Table 27] summarizes the notation and definitions used throughout the
paper.

Table 27: Notation and Definitions

Symbol | Description

Dg Reserved clean dataset (1-10% of test set)
Dg Extracted samples from Dg for poisoning
Dp Poisoned dataset created from Dg

Dr External clean dataset for visual prompting
Dg Random samples from Drp’s test set

Dineta Samples for training meta-classifier
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