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Abstract

Large learning rates, when applied to gradient descent for nonconvex optimization,
yield various implicit biases including edge of stability [1], balancing [2], and
catapult [3]. These phenomena cannot be well explained by classical optimization
theory. Significant theoretical progress has been made to understand these implicit
biases, but it remains unclear for which objective functions would they occur. This
paper provides an initial step in answering this question, showing that these implicit
biases are different tips of the same iceberg. To establish these results, we develop
a global convergence theory under large learning rates for two examples of noncon-
vex functions without global smoothness, departing from typical assumptions in
traditional analyses. Specifically, these phenomena are more likely to occur when
the optimization objective function has good regularity. This regularity, together
with gradient descent using a large learning rate that favors flatter regions, result in
these nontrivial dynamical behaviors. We also discuss the implications on training
neural networks, where different losses and activations can affect regularity and
lead to highly varied training dynamics.

1 Introduction
Large learning rates are often employed in deep learning practices, which is believed to improve
training efficiency and generalization [4, 3, 5, 6], while they are still theoretically under-explored. A
prevalent hypothesis states that using large learning rates results in the emergence of "flat minima,"
which in turn leads to better generalization. This belief has served as a catalyst for many novel insights
examining the ‘sharpness’ of the solution under large learning rates, i.e., the largest eigenvalue of
the Hessian matrix associated with the objective function. This perspective has given rise to diverse
implicit biases, including edge of stability (EoS) [1], balancing [2], and catapult [3]. Collectively,
these phenomena will hereafter be referred to as as large learning rate phenomena.

There are a lot of theoretical works that analyze EoS and balancing for specific objective functions
[7–16]. However, it was unclear whether or how these phenomena are related to each other, or what
trigger them. Two important but unsolved questions are the following:

When and why do EoS and other large learning rate phenomena occur?

To answer these questions, we consider minu f(u) for two example functions 1 optimized by gradient
descent (GD) uk+1 = uk − h∇f(uk), where h > 0 is the learning rate. We analyze the convergence
of GD under large learning rate, where 2

L
< h ≲ 4

L
and L is the local Lipschitz constant of ∇f (see

Sec. 2.3 and 2.4 for detailed definitions and discussions) and obtain the following theoretical results:

● About ‘when’. Under the two example functions, we demonstrate that large learning rate phenom-
ena depend on the regularity of the objective functions. Roughly speaking, in the case of functions

1A longer version of this paper that studies more general functions can be found in [17].
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with good regularity, EoS and balancing phenomena are more prone to appear. However, when
dealing with functions of poor regularity, these two phenomena are more likely to disappear.

● About ‘why’. Our theoretical analysis reveals that a crucial characteristics of these phenomena is
the ability of large learning rates to steer GD towards flatter regions. In other words, the sharpness
along GD iterations is influenced and controlled by how large the learning rate is. In fact, upon the
convergence of GD, which is nontrivial due to large learning rate but proved as a groundwork for our
theory, the limiting sharpness is within Õ(h) distance below 2/h for the function of good regularity.
For the bad one, it is bounded by 1/h and we name this nontrivial phenomenon as one-sided stability.
Moreover, when the objective function has good regularity, GD is guaranteed to enter a region with
sharpness less than its limiting sharpness (which is an early stage of progressive sharpening), and
then ‘crawl’ up in sharpness till ≈ 2/h (near the edge of stability).

Notation. We use ≲ such that a ≲ b means a < b + ϵ for some small ϵ > 0. We denote Sk to be
the largest eigenvalue of Hessian, i.e., sharpness, at kth iteration of GD. We follow the theoretical
computer science convention and use O(⋅) to indicate the order of a quantity and Õ(⋅) for its order
omitting logarithmic dependence. We use ∥ ⋅ ∥F to denote the Frobenius norm of a matrix.

2 Main theory
To better quantify the effect of regularity, we define the following concept:
Definition 1 (Degree of regularity). Given function F (s) ∶ R→ R, its degree of regularity is

dor(F ) = inf {n ∶ ∣F (s)∣ ≤ C1∣s∣n, for ∣s∣ ≥ C0 with some constant C0,C1 > 0}. (1)

Inspired by [2, 11, 9], we analyze and compare the following two example functions of x, y
fgood(x, y) = Fgood(xy) = 2(log(exp(xy − 1) + 1) + log(exp(1 − xy) + 1)), (2)

fbad(x, y) = Fbad(xy) = (1 − (xy)3)2/18. (3)
The two functions are designed for a fair comparison with the following properties:
● All the minima of these functions are global minima, located at xy = 1;
● The sharpness at any minimizer (x, y) is x2 + y2.

According to Def. 1, these two functions have different degrees of regularity:
dor(Fgood) = 1 < dor(Fbad) = 6.

We prove that for good regularity function fgood(x, y) = Fgood(xy) (small dor), EoS and balancing
occur, while for bad regularity function fbad(x, y) = Fbad(xy) (large dor), these phenomena
disappear. Before proceeding with the main results, we first describe the two phenomena, EoS and
balancing (and also catapult).

2.1 Description of Edge of Stability (EoS) in our framework
EoS is a large learning rate phenomenon. Its original description in [1] contained two stages, namely
progressive sharpening, and limiting sharpness stabilization around 2/h. [9] later observed a third
stage before progressive sharpening, which will be referred to as pre-EoS, where the sharpness will
first decrease before increasing. A description of the full process is the following:

●Pre-EoS (de-sharpening). This stage characterizes the situation where at the very beginning of the
iterations, the sharpness decreases sharply before the occurrence of the well-known EoS (see [9]). It
does not necessarily come with all the EoS phenomenon and only appears when the initial sharpness
is very large. Nevertheless, it helps demonstrate the behavior of GD under large learning rate.

●Progressive sharpening. This stage is governed by increasing sharpness. Due to the preparation
of the pre-EoS stage, progressive sharpening is guaranteed to start in a relatively flat region (small
sharpness), even if GD was initialized in a sharp region. Then, as GD further proceeds, the minimizer
that GD eventually converges to will have larger sharpness than the majority of sharpness values
along GD trajectory in this stage. Such behavior stems from the good regularity of the functions.

●Limiting sharpness near 2/h. Stability theory of the GD dynamics (see Appendix A) guarantees
that the limiting sharpness has to be not exceeding 2/h, but not necessarily close to 2/h. It is the
good regularity of objective function that will drive the final sharpness towards 2/h.

2.2 Description of Balancing and Catapult in our framework
The existence of balancing phenomenon is originally proved in matrix factorization problem with ob-
jective function 1

2
∥A−XY ⊺∥2F [2], for which GD optimization can still converge when LR h exceeds
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2/L, and its limiting point (X∞, Y∞) satisfies ∣∥X∞∥F − ∥Y∞∥F ∣2 < 2
c1h
− c2, for some c1, c2 > 0.

The larger the learning rate is, the smaller the gap between the magnitudes of X and Y will be, i.e.
X and Y will become more balanced when compared to their initials. This is in stark contrast to
the behavior observed under small learning rates, where weight discrepancies remain approximately
constant [18–20]. Consequently, large learning rates bias GD towards flat minima, even when the
optimization is initiated arbitrarily close to a sharp minimum (see Corollary 3.3 in [2] and Sec. 2.3).

There are two phases in the balancing mechanism. The first phase gives rise to loss catapulting [3]
which is another intriguing empirical observation. In this phase, the loss experiences an initial increase
before subsequent decrease, due to GD escaping from the neighborhood of a sharp minimum and
then searching for a flatter region that is close to a flat minimum. Additionally, the main mechanism
of balancing (the first phase) is similar to de-sharpening (pre-EoS) in EoS.

2.3 Good regularity function
In this section, we show that for function with good regularity (2), both EoS and balancing occur
when learning rate is large.

Theorem 1. Assume the initial condition satisfies (x0, y0) ∈ {(x, y) ∶
√
2 < xy < 4, x2 + y2 ≳

48 3
√
12}/B, where B is a Lebesgue measure-0 set. Let the learning rate be h = C

x2
0+y

2
0

for 2.2 ≲ C ≤ 4.
Then for fgood(x, y) (2), GD converges to a global minimum (x∞, y∞), and:
● EoS (end of pre-EoS; preparation for progressive sharpening): There exists N ∈ N, such that the
sharpness at the N th iteration satisfies SN ≲ 1

4
(6 −C)S∞, which is < S∞ for all C above.

● EoS (Limiting sharpness): The limiting sharpness satisfies 2
h
− Õ(h) ≤ S∞ = x2∞ + y2∞ ≤ 2

h
.

● Balancing: The limit (x∞, y∞) satisfies (x∞ − y∞)2 ≤ 2
C
(x0 − y0)2 + 2(x0y0 − 1).

Interpretation of EoS results. The above theorem embodies a detailed description of the whole
EoS process. More precisely, there is progressive sharpening: since there is at least one point along
the trajectory with small sharpness (smaller than limiting sharpness), the sharpness will eventually
increase to the limiting sharpness. In the end, the sharpness stabilizes near 2/h within a distance of
Õ(h). The pre-EoS (de-sharpening) can also occur if the initial condition (x0, y0) is close to the
minima. In this case, the initial sharpness S0 is approximately x20 + y20 and we have

SN ≲
1

4
(6 −C)S∞ ≈

1

4
(6 −C) 2

h
= ( 3

C
− 1

2
) (x20 + y20) ≈ (

3

C
− 1

2
)S0 < S0, for 2.2 ≲ C ≤ 4

which means the sharpness will first decrease before GD enters the progressive sharpening stage.
This also implies that the limiting sharpness is smaller than the initial sharpness, which corresponds
to the balancing phenomenon (see the discussion below).

Interpretation of balancing result. The above result states that the limiting difference (x∞ − y∞)2
is upper bounded by its initial. Moreover, if the learning rate h increases (i.e., C increases), the upper
bound of (x∞ − y∞)2 will be smaller. For example, when C = 4 and (x0 − y0)2 are large, we have
(x∞−y∞)2 ≲ 1

2
(x0−y0)2. Indeed, balancing can be used as an explicit characterization of sharpness.

To see this, let us first recall that at any minimizer (xy = 1), the sharpness is x2 + y2. Then at that
minimizer, we have (∣x∣ − ∣y∣)2 = (x − y)2 = x2 + y2 − 2xy = x2 + y2 − 2, i.e., (x − y)2 is equivalent
to the sharpness x2 + y2 up to a constant shift. Therefore, if GD starts near a sharp minimum, large
learning rate leads to smaller value of (x∞ − y∞)2, meaning GD converges to a flatter minimum.

Interpretation of large learning rate. Here is how the h’s that we considered are large learning
rates even when there is no global Lipschitzness: given any h considered in the theorem, we showed
GD will converge. Its trajectory is thus in a bounded region. We then consider the maximum of local
Lipschitz constant of the gradient over all points in this region, denoted by L. We can show that our
h satisfies h ≥ 2

L
and can be approximately 4

L
. Especially, if GD is initialized near the minima, the

initial sharpness is ≈ x20 + y20 , which is ≈ L. Consequently, h ≈ C/L > 2/L. See more explanation in
our longer version.

2.4 Bad regularity function
This section shows that for bad regularity function (3), neither EoS nor balancing occurs even when
the learning rate is large.
Theorem 2. Assume the same initial conditions as Theorem 1. Let the learning rate be h =

C
(x2

0+y
2
0+4)(x0y0)4

for 2 ≤ C ≤ 3. Then for fbad(x, y) (3), GD converges to a global minimum
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(x∞, y∞), and:
● No EoS: The limiting sharpness S∞ satisfies S∞ = x2∞ + y2∞ ≤ 1

h
.

● No balancing: (x∞ − y∞)2 ≥ (x0 − y0)2 +min{2(x0y0 − 1) − 2C
3
x0y0,− 2C

12−C
(x0y0 − 1)}.
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Figure 1: No EoS or balancing for bad regularity no matter
what the learning rate is. All the figures share the same initial
condition x0 = 6, y0 = 1.
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Figure 2: Large learning rate phenomena in neural network
models. The dashed lines are 2/h for different learning rate h.

Interpretation of results. The
above theorem shows that the lim-
iting sharpness is 1/h, which is far
below 2/h, and therefore there is
no EoS in this case. We refer to
this phenomenon as one-sided sta-
bility. Additionally, the limiting
difference (x∞ − y∞)2 has a lower
bound, implying that the sharpness
cannot decrease much at the limit,
i.e., GD will not find flatter mini-
mum. Note the lower bound is a
monotonically decreasing function
w.r.t. C and consequently the learn-
ing rate h. This means that larger
learning rate can still reduce this
lower bound although it cannot re-
produce balancing phenomenon.

Larger learning rate cannot help.
By Lemma 10, such choice of h is
indeed large learning rate, meaning
h > 2

L
and its upper bound is also

≥ 4
L

, where L is the local Lipschitz
constant of gradient in the bounded
region containing the trajectory.
Beyond this upper bound, GD may
still converge. Nevertheless, the
elimination of large learning rate
phenomena is independent of learn-
ing rate. As is shown in Fig. 1,
we implement GD with various
learning rates h = C

(x2
0+y

2
0)(x0y0)4

,
where C = 2,4,6,8, until diver-
gence. In all cases, the limiting
sharpness is far below 2/h and
hence there is no EoS; also, we
have (x∞ − y∞)2 > (x0 − y0)2 and hence there is no balancing either.

3 Neural network implications
To relate the much-more-complicated neural network models to our theory, let’s consider a toy
example of a 3-layer neural network trained on one data point (1,1) with linear first layer
and fixed last layer (assumed to be 1). Then the training objective function is f(W1,W2) =
L(1, σ(W2W1)), where W1,W

⊺
2 ∈ Rn are the weights and L is the loss. This function could

be rewritten as f(W1,W2) = F (W1W2) and we have dor(F ) = dor(L(1, ⋅))dor(σ). This means
the regularity of this objective function depends on two parts: one is the neural network model g
whose regularity depends on that of the activation function, and the other is the loss function L.
To exemplify such differences, we consider huber loss+ReLU (dor = 1, good regularity) and ℓ2
loss+cubic ReLU (dor = 6, bad regularity). As is shown in Fig. 2, the former case exhibits large
learning rate phenomena (EoS and balancing), while the latter case does not. More details can be
found in Appdx.E and our longer version.
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A Necessary condition of convergence from stability theory
For an objective function f(u), consider the GD update in terms of a iterative map ψ

uk+1 = ψ(uk) ∶= uk − h∇f(uk).
We further consider a stationary point u∗ of the objective function f , i.e., ∇f(u∗) = 0. Then this
point u∗ is a fixed point of the map ψ since

u∗ = u∗ − h∇f(u∗) = ψ(u∗).
If all the magnitudes of the eigenvalues of Jacobian matrix ∇ψ(u∗) are less than 1, u∗ is a stable
fixed point (see more explanation in Section 5 of [2]). Consequently, we have the following theorem
Theorem 3 (Necessary condition). Let u∗ be a local minimum point of f(u) and consider GD
updates. If −I ≺ I − h∇2f(u∗) ≺ I , i.e., h < 2

L∗
, where ∇2f(u∗) ⪯ L∗I , we have that u∗ is a stable

fixed point of GD map.

Note the above theorem is a necessary condition of the convergence of GD to a minimizer. This
is due to the fact that if h > 2

L∗
, there exists at least one eigendirection s.t. the magnitude of its

eigenvalue is greater than 1. Namely, there will be an unstable direction of the map that prevents GD
from converging towards the point u∗.

B Preparation for proofs
Before the proofs, we first take a closer look at the GD iteration for the function f(x, y) = F (xy)

(xk+1
yk+1
) = (xk

yk
) − hℓk (

0 1
1 0

)(xk
yk
) = ( 1 −hℓk

−hℓk 1
)(xk
yk
) ,

where ℓk = F ′(xkyk). Let uk = (
xk
yk
). Then

u⊺k+1uk+1 = (1 + h2ℓ2k)u⊺kuk − 4hℓkxkyk, (4)

u⊺k+2uk+2 = (1 + h2ℓ2k+1)u⊺k+1uk+1 − 4hℓk+1xk+1yk+1
= (1 + h2ℓ2k+1)((1 + h2ℓ2k)u⊺kuk − 4hℓkxkyk) − 4hℓk+1xk+1yk+1. (5)

Lemma 1. Under the same assumption as Theorem 1, we have
u⊺k+1uk+1 ≲ u⊺kuk − 4hℓk(xkyk − ℓk)

Proof. By Lemma 3, we have
u⊺kuk ≤

4

h
+O(h).

Then by (4), we have
u⊺k+1uk+1 ≤ u⊺kuk − 4hℓk(xkyk − ℓk) +O(h3ℓ2k)

For the update of xkyk, we have
xk+1yk+1 = (1 + h2ℓ2k)xkyk − hℓku⊺kuk, (6)

xk+1yk+1 − 1 = (xkyk − 1) (1 − h
ℓk

xkyk − 1
(u⊺kuk − hℓkxkyk)) . (7)

Let δ ∶= xy − 1 and δk ∶= xkyk − 1. Then we define the following functions:
ℓ(δ) = F ′(δ + 1), and then ℓk = ℓ(δk) = F ′(xkyk);

q(δ) = ℓ(δ)
δ
, and then q(δk) =

ℓk
xkyk − 1

;

r(uk, δ) = 1−hq(δ)(u⊺kuk−hℓ(δ)(δ+1)), and then rk = r(uk, δk) = 1−h
ℓk

xkyk − 1
(u⊺kuk−hℓkxkyk).

Let
Ck =

1 − rk
q(δk)

, and then rk = 1 −Ckq(δk).

From Lemma 1, we also define
L(δ) = ℓ(δ)(δ + 1 − ℓ(δ)), and then L(δk) = ℓk(xkyk − ℓk).

All the above functions also depends on a or b. If not specified, all the properties for these functions
used in the proofs are valid for all 0 < a ≤ 1 or b = 2n + 1 with n ∈ N.
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C Proof of Theorem 1 for function fgood (2)
The following propositions show the properties of the functions defined above under this objective.
The proof is based on simple analysis and Taylor expansion and thus omitted. If not specified, these
properties are independent of a.

Proposition 1. The function ℓ(δ) = 2(eδ−1)

eδ+1
has the following properties:

• ℓ(δ) = −ℓ(−δ)

• ℓ(δ) > 0 for δ > 0.

• ∣ℓ(δ)∣ ≤ 3 for all δ > 0.

Proposition 2. The function L(δ) = ℓ(δ)(δ + 1 − ℓ(δ)) has the following properties:

• L(δ) monotonically increases for δ ≥ 0, and L(δ) ≥ L(0) for δ ≥ 0.

• L(δ) +L(−δ) ≥ 0 for all δ.

• L(δ1) +L(δ) ≥ 0 for δ1 ≥ 1 and all δ.

• L(δ) +L(rδ) ≥ 0.8(1 + r)δ for δ > 0 and −1 < r < 0.

Proposition 3. The function q(δ) = ℓ(δ)
δ

has the following properties:

• q(δ) is symmetric with respect to δ = 0, i.e., q(δ) = q(−δ).

• For δ ≥ 0, q(δ) monotonically decreases as δ increases, and then q(δ) ≤ q(0) = 1.

• From Taylor expansion, we have

q(δ) ≥ 1 − c1δ2, where c1 =
1

12
> 0.

Also, when δ ≤ 1,
q(δ) ≤ 1 − c2δ2, where c2 =

1

15
.

• For 2 ≤ C ≤ 4,
δ = q−1( 1

C
) ≤ 2C.

From the above propositions, we will use δk = ∣xkyk − 1∣ instead of xkyk − 1 for the rest of the proofs.

C.1 Proof of convergence
Proof. By Proposition 3 and Proposition 1,

rk = 1 − hq(δk)(u⊺kuk − hℓkxkyk) < 1.
As is discussed in Lemma 4, the initial condition set removes a null set of converging initial conditions
within finite steps, i.e., rk ≠ 0. If rk > 0, then ∣xkyk − 1∣ will monotonically decreases. Otherwise,
rk < 0 and by Lemma 5, for all n ≥ k, if xnyn > 1, then xn+1yn+1 < 1 and vice versa. Then we can
consider the kth iteration when xkyk > 1 and we have xk+2n > 1 for n = 1,⋯,.
By Lemma 8, ∣xkyk − 1∣ is guaranteed to decrease monotonically in ∣xkyk − 1∣ ≤ R2, with ∣rk ∣ < 1.
Therefore, GD will converge to xy = 1 (otherwise, if xkyk converges to c ≠ 1, with ∣rk ∣ < 1, ∣xkyk −1∣
will keep decreasing, contradiction).

C.2 Proofs of EoS
Proof of Part II: limiting sharpness. From the proof above, GD converges to a global minimum.
Throughout this proof, we will use the big O notation for complexity and distance. The proof can be
made more rigorous by considering specific constant scaling of these orders.

By the lower bound of h, u⊺0u0 ≳
2/q(1)+O(h)

h
, i.e., ∣r0(1)∣ ≥ 1+O(h). Then we consider the decrease

of u⊺kuk until GD enter the region ∣rk ∣ < 1. More precisely, we consider three regions: 1) when ∣δk ∣ is
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small enough s.t. u⊺kuk does not decrease every two steps. By the following bound,

u⊺k+2uk+2 = (1 + h2ℓ2k+1)u⊺k+1uk+1 − 4hℓk+1xk+1yk+1
= (1 + h2ℓ2k+1)((1 + h2ℓ2k)u⊺kuk − 4hℓkxkyk) − 4hℓk+1xk+1yk+1

≥ u⊺kuk − 4h[ℓkxkyk −
1

2
ℓ2k + ℓk+1xk+1yk+1 −

1

2
ℓ2k+1] − 4h3ℓ2k+1ℓkxkyk + h4ℓ2k+1ℓ2ku⊺kuk

≥ u⊺kuk − 4h[(1 + rk)(xkyk − 1) +
1

2
(1 + r2k)(xkyk − 1)2] − 4h3ℓ2k+1ℓkxkyk + h4ℓ2k+1ℓ2ku⊺kuk,

we have that such ∣δk ∣ ≤ O(h). 2) Starting from ∣δk ∣ = O(h), consider ∣δk ∣ increases to some region
that is O(h) away from 1, i.e., the rate of increase is at least 1 +O(h). In this region, it takes GD at
most O(− logh/h) steps and u⊺kuk may decreases every two steps, where the order of decrease is
O(h). 3) Starting from the end of 2), if the rate of increase is at least 1 +O(h), then the complexity
of entering the region ∣rk ∣ < 1 is at most O(1/h) which follows the same derivation as 2). Otherwise,
i.e., the rate of increase is less than 1 + O(h). Since the decrease of u⊺kuk is O(h) and q(δk)
keep decreasing before ∣rk ∣ < 1, it takes GD at most O(1/h) steps such that ∣rk ∣ is O(h) less than
1 +O(h), i.e., ∣rk ∣ < 1. Therefore, the overall decrease of u⊺kuk is at most Õ(1) and we still have

u⊺kuk ≥
2/q(1)− ˜O(h)

h
at the end of all the above processes. Also, according to Lemma 6, u⊺kuk will

decrease to at least 2/q(1)+O(h)
h

. Otherwise, ∣rk ∣ > 1 in ∣xkyk − 1∣ ≥ R1 and therefore u⊺kuk will keep
decreasing.

Before further discussing the complexity of GD, we still need an upper bound of xkyk. Let u⊺kuk =
Ck

h
.

Then since rk < 0 for all k, we can consider the maximum δ s.t. r0 ≈ 0, i.e., δ = q−1( 1
Ck
) ≤ 2Ck by

Proposition 3. Therefore, δk ≲ 2Ck ≤ 5. Here we just relax Ck to be upper bounded by 2.5 based on
2/q(1) +O(h).
If ∣xkyk − 1∣ > R2, suppose ∣xkyk − 1∣ > 1.5 then ∣rk ∣ < rk(1.5) < 0.8 +O(h2) < 0.85. Then the
complexity of entering δk ≤ 1.5 is log(1.5/5)

log(0.85)
= O(1). Therefore, the step of GD entering this region

is less than the order O(1/ log(rk(1.5))) = Õ(1).
Then consider the complexity of GD entering {r < 1, ∣xy − 1∣ < 1 −O(h2)} (By Lemma 7, R2 ≥
1−O(h2)). We can consider ∣rk ∣ via the map g(δ) = δ(Ckq(δ)−1), where we ignore theO(h2) terms
and fixCk = CN for someN . We would like to analyze the complexity of the map converging toO(h)
error of the fixed point δ∗ near δ = 1, i.e., (Ckq(δ)−1) = 1. Since (Ckq(1−O(h2))−1) = 1−O(h),

1 = Ckq(δ∗) − 1 ≥ Ck(1 − c1(δ∗)2) − 1
= Ck(1 − c1) − 1 + (1 − (δ∗)2)Ckc1

= 1 −O(h) + (1 − (δ∗)2)Ckc1
Therefore δ∗ ≥ 1 −O(h/c1).
By checking the derivative of the map, we have g′(δ) = Ckq(δ) − 1 +Ckδq

′(δ) and q′(δ) < −c1 for
0.8 < δ < 1.5. Since Ck > 2, when δ > δ∗, Ckq(δ)− 1 < 1 and thus 0 < g′(δ) ≤ 1−Ckδ

∗c1. Then the
map will decrease from above to enter the region within O(h) distance of δ∗ with the complexity of
O(− log(h)/c1). For the O(h2) terms, the error between this map and the true δk update is of the
order O(exp(h2 ⋅ log(h)/c1) − 1) < O(h) and thus can be omitted. Then GD starts to decrease in
the monotone decreasing region of ∣xkyk − 1∣ with u⊺kuk ≥

2
h
+O(1).

Next we consider the N th iteration with u⊺NuN = 2
h
+ C̄N , for some C̄N = O(1). For k ≥ N ,

u⊺kuk >
2
h

, and xkyk > 1, we have that C̄k − C̄k+2 = O(h). We would like to prove that eventually
∣rk ∣ ≥ 1 −O(h2) when u⊺kuk ≥

2
h

, i.e., we would like to analyze the complexity of ∣rk ∣ increasing to
∣rk ∣ = 1 −O(h2).
First note ∣rk ∣ ≥ q(δk)h(u⊺kuk − hℓkxkyk) − 1 = 1 − 2c1δ2k + 2C̄Nh ±O(h2).
Then the complexity is upper bounded by the complexity of δk decreasing to the value s.t. −2c1δ2k +
2C̄Nh = 0, i.e., δk = O(

√
h/c1). Let c1 = hp. By the assumption of h, we have p ≤ 3

4
. Therefore√

h/c1 = h
1−p
2 . Then we analyze

δn+N = δN − 2hpδ3N + 2C̄NhδN − 2hpδ3N(1 − 2hpδ2N + 2C̄Nh)2 +⋯ = O(h
1−p
2 )
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We further remove all the C̄N terms since the sum of them is O(h) < O(h 1−p
2 ). We first consider

δN − 2hpδ3N − 2hpδ3N(1 − 2hpδ2N)2 +⋯ = hp1

Ignoring the O(h2) part, we have that ∣rk ∣ is increasing as ∣δk ∣ decreases. Then

hp1 = LHS ≲ δN − hph3p1 − hph3p1 +⋯ = δN − n1h3p1+p ≤ 1 − n1h3p1+p

Then

n1 ≤ h−(3p1+p)

Iteratively, we consider δN = hp1 and p2 = 4
3
p1. Then

hp2 = LHS ≲ hp1 − hph3p2 − hph3p2 +⋯ = δN − n2h3p2+p ≤ hp1 − n2h3p2+p

n2 ≤ h−(3p2+p−p1) = h−(3p1+p)

We can next solve i s.t.

(4
3
)
i−1

p1 =
1 − p
2
⇒ i = 1 +

log 1−p
2p1

log 4
3

From the above, we also need to consider the C̄N part and thus require

3p1 + p <min{1 + 3p
2

,1}

Then
1 − p
2p1

> 3

2
and i is at most O(logh)

Then the total complexity of achieving h
1−p
2 is O(h−(3p1+p)) < O(h−1). Thus we will eventually

have ∣rk ∣ = 1 − O(h2) when u⊺kuk ≥
2
h

. For the k + 2th iteration, the increase of 1 − cδ2k is
O((1 − ∣rk ∣)δ2k + (1 − ∣rk+1∣)δ2k) = O((1 − ∣rk ∣)δ2k), where one step change of ∣rk ∣ is at most O(h2)
and thus can be omitted, and the decrease of h(u⊺kuk − hℓkxkyk) is O(h2δk(1 − ∣rk ∣)) by Lemma 6.
Thus when δk ≥ O(h2),O((1−∣rk ∣)δ2k) ≥ O(h2δk(1−∣rk ∣)), i.e., ∣rk ∣ ≥ 1−O(h2); when δk < O(h2),
from the expression of ∣rk ∣, we have ∣rk ∣ = 1 −O(h2) for the kth iteration s.t. u⊺kuk ≥

2
h
−O(h).

Therefore, ∣rk ∣ ≥ 1 −O(h2) for all the kth iteration s.t. u⊺kuk ≥
2
h
−O(h).

Next, consider the first step when 2
h
≥ u⊺NuN ≥ 2

h
− O(h) and xNyN > 1 since the decrease of

u⊺kuk at each step is at most O(h). Then based on the expression of rN , we have ∣rN ∣ ≤ 1 −O(h2)
and additionally by Lemma 6, we have ∣rk ∣ = 1 − O(h2) for all k ≥ N . By series expansion,
ℓN+kxN+kyN+k = O(∣xN+kyN+k − 1∣). Then

uN+k+2
⊺uN+k+2 ≥ uN+k⊺uN+k − 4h[ℓN+kxN+kyN+k + ℓN+k+1xN+k+1yN+k+1] −O(h3)

≥ uN+k⊺uN+k −O (h[ℓN+kxN+kyN+k + ℓN+k+1xN+k+1yN+k+1])
≥ uN+k⊺uN+k −O (h[(1 − ∣rN+k ∣)δN+k])

≥ uN⊺uN −O (h
k

∑
i=0

[(1 − ∣rN+i∣)δN+i])

≥ uN⊺uN −O
⎛
⎝
h

k

∑
i=0

[(1 − ∣rN+i∣)
i

∏
j=0

rN+jδN ]
⎞
⎠

≥ uN⊺uN −O (h3δN
k

∑
i=0

(1 −O(h2))i)

Take k →∞ for both side and we have u⊺∞u∞ ≥ u⊺NuN −O(h).

Proof of Part I: end of pre-EoS and preparation for progressive sharpening. Let a = 1 for the rest
of the proof. Consider the Hessian ∇2f . The trace is

tr(∇2f) = (x2 + y2)G1(xy − 1),
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where

G1(δ) =
22−a log1−a(2) (log (e−δ + 1) + log (eδ + 1))a−2 ((a − 1) (eδ − 1)2 + 2eδ log (e−δ + 1) + 2eδ log (eδ + 1))

(eδ + 1)2

=
23−aeδ log1−a(2) (log (e−δ + 1) + log (eδ + 1))a−1

(eδ + 1)2

+
22−a(a − 1) (eδ − 1)2 log1−a(2) (log (e−δ + 1) + log (eδ + 1))a−2

(eδ + 1)2

= q(δ) 2δ

eδ − e−δ + q(δ)
(a − 1) (eδ − 1) δ

(eδ + 1) (log (e−δ + 1) + log (eδ + 1))

≤ q(δ) 2δ

eδ − e−δ + q(δ)(a − 1) (1 −
2δ

eδ − e−δ )

= ((2 − a) 2δ

eδ − e−δ − (1 − a)) q(δ).
Let

q1(δ, a) = (2 − a)
2δ

eδ − e−δ − (1 − a).
Then both q1(δ, a) and q(δ) decreases as δ increases for δ ≥ 0. Also, fix δ, q1(δ, a) and q(δ, a)
increases as a increases.

The determinant is
det(∇2f) = G2(xy − 1)

where

G2(δ) = −
42−a (eδ − 1) log2−2a(2) (log (e−δ + 1) + log (eδ + 1))2a−3

(eδ + 1)3

× (2(a − 1)(δ + 1) (eδ − 1)2 + (4eδ(δ + 1) + e2δ − 1) (log (e−δ + 1) + log (eδ + 1))) .
Then

G2(δ) ∼ O(δ2a−2) as δ →∞, and G2(0) = 0.
Thus we have that G2(δ) is bounded since G2(δ) ∈ C1. Therefore, by Taylor expansion, the largest
eigenvalue of Hessian (sharpness) is upper bounded by

G1(δ)(x2 + y2) +O (
∣G2(xy − 1)∣
x2 + y2 ) ,

where ∣G2(xy − 1)∣ is bounded due to the boundedness of x0y0 in the initial condition set and the
convergence of the GD trajectory (see more details in the proof of limiting sharpness).

Let h = C
x2
0+y

2
0

. If ∣r0∣ < 1, then

q(δ0) ≲
2

C
.

Otherwise, similar to the proof of part II, u⊺kuk decreases at most Õ(1) before GD enters the region
where δk starts to decrease for the first time, i.e., ∣rk ∣ < 1. Therefore, for such δ = δk, we also have

1 − c1δ2 ≤ q(δ) ≲
2

C
,

where Õ(h) term is omitted. Then

δ ≳
√
C − 2√
Cc1

,

and
G1(δ) ≲

2

C
q1(
√
C − 2√
Cc1

, a) ≤ 2

C
q1(
√
C − 2√
C/12

,1),

where the last inequality follows easily from checking the derivative of q1(
√
C−2

√
Cc1(a)

, a) w.r.t. a. Also,

S∞ ≈ 2
h
= 2

C
u⊺0u0. Based on the above discussion, u⊺kuk ≤ u⊺0u0 −O(h1−m). Therefore,

Sk ≲ G1(δk)u⊺kuk ≲ q1(
√
C − 2√
C/12

,1)S∞ ≤
1

4
(6 −C)S∞,

where the last inequality follows from linearization and shift.
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C.3 Proof of balancing
Proof. By the limiting sharpness in Theorem 1 and the global minima xy = 1,

(x∞ − y∞)2 = u⊺∞u∞ − 2 ≤
2

h
− 2 = 2

C
(x20 + y20 − 2x0y0) +

4

C
x0y0 − 2 ≤

2

C
(x0 − y0)2 + 2(x0y0 − 1).

C.4 Supplementary lemmas

We first show a summary of the behavior of u⊺kuk in the following lemma, which is the main idea of
the proof of convergence.
Lemma 2. Under the assumption of Theorem 1, there exist an increasing sequence {2Ni}i∈Z with
Ni ∈ Z and Ni+1 > Ni, s.t., u2Ni+1

⊺u2Ni+1 ≤ u2Ni

⊺u2Ni . More previsely, consider the even number
of iteration, i.e., k = 2i for i ∈ Z,

• Stage I (not necessary): u⊺kuk increases but is bounded by 4
h
+O(h). This happens when

∣xkyk − 1∣ is too small at the early stage of iterations (see Lemma 3);

• Stage II: u⊺kuk decreases every two steps when xk, yk is outside a ‘monotone decreasing
region’ (see Lemma 6);

• Stage III: when xk, yk is near the ‘monotone decreasing region’, there exists N , s.t.
u⊺k+2Nuk+2N is smaller than u⊺kuk (see Lemma 8);

• Stage IV: when ∣xkyk − 1∣ monotonically decreases, u⊺kuk decreases every two steps (see
Lemma 6 and Lemma 8)

Lemma 3. Under the assumption of Theorem 1, we have

u⊺kuk ≤
4

h
+O(h),∀k ∈ N.

Proof. By Lemma 5 and Lemma 6, we know that the increase of u⊺kuk after two step can only happen
when rk ≤ −1 and 0 < xkyk − 1 < 1.

WOLG assume N is the first step s.t. u⊺NuN = 4/h +O(h). By Lemma 6, we would like to show
that there exists k s.t. for xkyk > 1, we have either xkyk − 1 > 1 or −1 < rk < 0.

Let δk = ∣xkyk − 1∣. Then
∣rk ∣ ≥ 4(1 − c1δ2k) − 1 +O(h2) ≥ 4(1 − δ2k/4) − 1 +O(h2)

and therefore
δk+1 ≥ δk(3 − 4c1δ2k +O(h2)) ≥ δk(3 − δ2k +O(h2)).

If δk < 1, it takes GD O(− log(δ0)) steps to go to δk ≥ 1. When δk ≥ 1 u⊺kuk already starts to
decrease every two steps. Moreover,

δk+1 ≥ δk(3 − δ2k +O(h2)) = δk + 2δk − δ3k +O(h2).
Therefore, δk keeps increasing for a while, staying in δk ≥ 1. Therefore, u⊺kuk stays in the decreasing
region with increase of at most O(h) for each step (for more detailed version, see Lemma 2), i.e.,
u⊺kuk ≤

4
h
+O(h) for all k.

Lemma 4. Under the assumption of Theorem 1, GD does not converge outside {(x, y)∣x2+y2 ≤ 2/h}.

Proof. We first would like to remove the initial condition that can converge in finite steps to the
minima outside of this region. It turns out that such initial conditions form a null set. The proof is
almost the same as [2] except for some easy calculations and thus omitted. We further remove all
the initial conditions that converges to the periodic orbits, i.e.,∏n

i=1 rk⋯rk+2i−1 = 1 for all k and n.
By similar argument in [2] (i.e., for each k,n, this is a null set, and therefore the union of countably
many null sets is still a null set), such initial conditions also form a null set.

Assume u⊺kuk ≥ 2/h + ϵ0 for all k, where ϵ0 > 0. Consider the case when ∣xkyk − 1∣ < ϵ1 =
√
hϵ0
2

.
Then

∣rk ∣ ≥ ∣h(1 −O(ϵ21))(2/h + ϵ0) +O(h2ϵ1) − 1∣
= ∣1 − 2ϵ21 + hϵ0 +O(h2ϵ1)∣

= ∣1 + h
2
ϵ0∣ > 0

Namely, GD cannot converge with u⊺kuk > 2/h.
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Lemma 5. Under the assumption of Theorem 1, if rk < 0, then rn < 0 for all n ≥ k.

Proof. From Lemma 1, we have ∣Ck−1 −Ck ∣ = O(h2). Also Ck = 1−rk
q(δk)

. If rk < 0,

rk+1 = 1 −Ck+1q(δk+1) ≤ 1 −
1 − rk
q(δk)

q(δk+1) +O(h2)

= 1 − 1 − rk
q(δk)

q(rkδk) +O(h2)
By Proposition 3, it suffices to prove that

R0(δk,−rk) ∶= (1 − rk)q(−rkδk) − q(δk) > 0, ∀δk > 0
We abuse the notation and let rk(δ) = 1 − Ckq(δ) for fixed Ck > 0. By Proposition 3, rk(δ)
monotonically increases for δ > 0 and there is only one root denoted as δ0 s.t. rk(δ) = 0 (Since
rk < 0, there exists δ s.t. rk(δ) < 0 and when δ is large, rk(δ) > 0; therefore, it has a root). When
rk(δ0) = rk = 0, by Proposition 3, R0(δ0,−rk(δ0)) = R0(δ0,0) = 1 − q(δ0) > 0. Also

R0(δ,−rk(δ)) = Ckq(δ)q ((Ckq(δ) − 1)δ) − q(δ)
= q(δ) [Ckq ((Ckq(δ) − 1)δ) − 1]

Therefore, we only need to show K(δ) ∶= (Ckq(δ) − 1)δ < δ0 for δ ∈ (0, δ0). The derivative of K is
K ′(δ) = Ckq(δ) − 1 +Ckδq

′(δ) < Ckq(δ) − 1.
Then the maximum point of K(δ) is achieved at δ1 < δ0 by Proposition 3. Thus, R0(δ,−rk(δ)) > 0,
and consequently

R0(δk,−rk) ≥ q(δk)(Ckq(K(δ1)) − 1) > 0,
rk+1 ≤ −

R0(δk,−rk)
q(δk)

+O(h2) ≤ −(Ckq(R1(δ1)) − 1) +O(h2) < 0,
since thisO(h2) is indeed bounded by c δkh2 for some universal constant c > 0 and can be controlled
by the first term.

Lemma 6. Under the assumption of Theorem 1, the following properties are the two step decrease of
u⊺kuk in different cases:

1. If rk < 0 and u⊺kuk ≤
4
h
+O(h), there exists R1(a, rk) ≤ 1, s.t., when xkyk − 1 > R1(a, rk),

we have
u⊺k+2uk+2 ≤ u⊺kuk −

1

2
h +O(h3ℓ2k+1).

2. If −1 < rk < 0 and 0 < xkyk − 1 ≤ 1, then
u⊺k+2uk+2 ≤ u⊺kuk − 3.2h(1 + rk)(xkyk − 1).

3. If rk ≤ −1, u⊺kuk ≤
3
h

, and xkyk < 1, then
u⊺k+2uk+2 ≤ u⊺kuk −min{O(h),O(h(xkyk − 1))}.

Proof. First we consider the two step update of u⊺kuk in the following
u⊺k+2uk+2 = (1 + h2ℓ2k+1)u⊺k+1uk+1 − 4hℓk+1xk+1yk+1

= (1 + h2ℓ2k+1)((1 + h2ℓ2k)u⊺kuk − 4hℓkxkyk) − 4hℓk+1xk+1yk+1
≤ u⊺kuk − 4h[ℓkxkyk − ℓ2k + ℓk+1xk+1yk+1 − ℓ2k+1] − 4h3ℓ2k+1ℓkxkyk + h4ℓ2k+1ℓ2ku⊺kuk +O(h3ℓ2k+1)
= u⊺kuk − 4h[ℓkxkyk − ℓ2k + ℓk+1xk+1yk+1 − ℓ2k+1] +O(h3ℓ2k+1).

It surffices to analyze
ℓkxkyk − ℓ2k + ℓk+1xk+1yk+1 − ℓ2k+1 = L(δk) +L(rkδk), where L(δ) = ℓ(δ)(δ + 1 − ℓ(δ)).

By checking the slop and values of the above function, we have
L(δk) +L(rkδk) ≥ L(1) +L(rk) > 0.14

for all rk < 0, 0 < a ≤ 1, and δk ≥ 1.

When 0 < xkyk − 1 ≤ 1, in order to make −1 < rk < 0, we should at least have u⊺kuk ≤
4
h

. Also we
have ℓk ≤ xkyk − 1 ≤ 1 in this region by Proposition 3. Therefore, by Proposition 2
u⊺k+2uk+2 = (1 + h2ℓ2k+1)u⊺k+1uk+1 − 4hℓk+1xk+1yk+1

= (1 + h2ℓ2k+1)((1 + h2ℓ2k)u⊺kuk − 4hℓkxkyk) − 4hℓk+1xk+1yk+1
≤ u⊺kuk − 4h[ℓkxkyk − ℓ2k + ℓk+1xk+1yk+1 − ℓ2k+1] − 4h3ℓ2k+1ℓkxkyk + h4ℓ2k+1ℓ2ku⊺kuk
≤ u⊺kuk − 4h[ℓkxkyk − ℓ2k + ℓk+1xk+1yk+1 − ℓ2k+1]
≤ u⊺kuk − 3.2h(1 + rk)(xkyk − 1).
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When rk ≤ −1, u⊺kuk ≤
3
h

, and xkyk < 1, by Taylor series and simple calculation, we have L(δ) +
L(rδ) ≥min{0.5(1 + r)δ,L(−1) +L(1)}, where L(−1) +L(1) ≥ 0.14. Then

u⊺k+2uk+2 ≤ u⊺kuk − 4h[ℓkxkyk − ℓ2k + ℓk+1xk+1yk+1 − ℓ2k+1] − h(ℓ2k + ℓ2k+1) +O(h3ℓ2k+1)
≤ u⊺kuk − 4hmin{0.5(1 + rk)(xkyk − 1), L(−1) +L(1)}.

Lemma 7. Under the assumption of Theorem 1, if −1 ≤ rk < 0, there exists R2(a, rk) ≥ 1 −O(h2),
s.t., for ∣xkyk − 1∣ ≤ R2(a, rk), we have rk+1 > −1.

Proof. Since rk = 1 −Ckq(δk), we have

rk+1 = 1 −Ck+1q(δk+1) = 1 −
1 − rk
q(δk)

q(rkδk) ±O(h2).
We denote

δr(rk, δk) ∶= 2 −
1 − rk
q(δk)

q(rkδk).
When δk > 0, δr(rk, δk) monotonically decreases as δk increases. Consider

δr(rk,1) = 2 −
1 − rk
q(1) q(rk).

This function δr(rk,1)monotonically decreases when rk increases between -1 and 0 and δr(−1,0) >
0. Therefore, rk+1 > −1 ±O(h2) and the conclusion follows from series expansion.

Lemma 8. Under the assumption of Theorem 1, if rk < 0 for all k ≥ n given some n ≥ 0, ∣xkyk − 1∣
will eventually start to decrease in the region ∣xkyk − 1∣ < R2.

Proof. By Lemma 6, when ∣xkyk − 1∣ ≥ R1(a, rk), u⊺kuk keeps decreasing every two step with
certain amount away from 0. Eventually, by the expression of ∣rk ∣, u⊺kuk will decrease until GD
enters ∣xkyk − 1∣ ≤ R2(a, rk). Note it can be checked that R1 ≤ 1 < 1.5 ≤ R2. However, ∣xkyk − 1∣
may not keep decreasing inside this region. WOLG, consider a lower bound of R2(a, rk) to be
R2 ≥ 1 −O(h2) and we will use R2 independent of iterations. From the expression of ∣rk ∣, we have
at least u⊺kuk ≤

3
h

in this case.

First consider ∣xkyk − 1∣ > R2. According to Lemma 6 and Proposition 3, u⊺kuk decreases every two
steps and the function q decreases when ∣xkyk − 1∣ increases. Therefore there exists k s.t. ∣rk ∣ < 1.
Moreover, for ∣rk ∣ < 1, there exists n, s.t. xk+2nyk+2n < xkyk and ∣rk+2n∣ < 1 if xk+2nyk+2n −1 ≥ R1.

Next, assume k is such that ∣xkyk − 1∣ > R2 but ∣xk+2yk+2 − 1∣ ≤ R2. According to the initial
condition, there is no periodic orbit in the trajectory (see details in the proof of Lemma 4). We claim
that there exists n, s.t., ∣rk+2n∣ < 1 and ∣xk+2nyk+2n − 1∣ ≤ R2. Otherwise, if u⊺k+2uk+2 will still
decrease every two steps, then it returns to the above cases when ∣xkyk − 1∣ > R2. Then we analyze
the case where u⊺k+2uk+2 will increase after two steps. For the first n s.t. xk+2nyk+2n > R2, if we
have ∣rk+2n(R2)∣ < ∣rk(R2)∣, this implies u⊺k+2nuk+2n < u⊺kuk which can be either absorbed in the
above cases, or eventually fall into the following case. For the first n s.t. xk+2nyk+2n > R2, consider
∣rk+2n(R2)∣ > ∣rk(R2)∣, with ∣rk+2i∣ ≥ 1 for all i < n and u⊺k+2nuk+2n > u⊺kuk. Then if such process
repeats, ∣rk+2n(R2)∣ will be larger and larger until GD either starts to decrease in ∣xy − 1∣ ≤ R2

or enters the two-step decreasing region of u⊺kuk in ∣xy − 1∣ ≤ R2 (we can use ∣xy − 1∣ ≥ R1 to
represent this region; however, R1 is just a bound, meaning the actual region is larger), which will
lead to ∣rk+2n∣ < 1 inside this region due to the same reasoning as the previous paragraph. Detailed
characterization of this stage can be seen in the proof of limiting sharpness.

D Proofs of Theorem 2 for function (3)

Let b = 3 in this section. Let p(s) = ∑b−1
i=0 s

i. Then
1 − (xy)b = (1 − xy)p(xy).

Apart from the equations in Appendix B, we will also use the following two equations in our proofs

xk+1yk+1 − 1 = (xkyk − 1)(1 −
h

b
(xkyk)b−1p(xkyk)u⊺kuk +

h2

b2
(xkyk − 1)(xkyk)2b−2p(xkyk)2xkyk) ,

u⊺k+1uk+1 = u⊺kuk −
h

b
(xkyk − 1) ((xkyk)b−1p(xkyk)xkyk (4 −

h

b
(xkyk)b−1p(xkyk)u⊺kuk) +

h

b
(xkyk)2b−2p(xkyk)2u⊺kuk) .
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D.1 Proof of convergence
Proof. By Lemma 4 (with a different choice of null set based on the functions), GD can only converge
to the point s.t. x2 +y2 ≤ 2/h. Also we remove all the points (which is in a null set) s.t. they converge
in finite step. Therefore, rk ≠ 0 for all k ≥ 0.

If 0 < r0 < 1, we have x1y1 > 1 and for any xkyk > 1,

u⊺k+1uk+1 = u⊺kuk −
h

b
(xkyk − 1)((xkyk)b−1p(xkyk)xkyk (4 −

h

b
(xkyk)b−1p(xkyk)u⊺kuk)

+ h
b
(xkyk)2b−2p(xkyk)2u⊺kuk)

≤ u⊺kuk.

Assume ri > 0 for i = 0,⋯, k. Consider

rk+1 = (1 − h
ℓk+1

xk+1yk+1 − 1
(u⊺k+1uk+1 − hℓk+1xk+1yk+1))

where ℓk =
(xkyk)

b−1
((xkyk)

b
−1)

b
and therefore qk = ℓk

xkyk−1
= 1

b
(xkyk)b−1p(xkyk). Moreover,

W (s) = 1
b
sb−1p(s) monotonically increases when s > 1, which implies qk+1 ≤ qk. Also,

0 < u⊺k+1uk+1 − hℓk+1xk+1yk+1 = (1 + h2ℓ2k)u⊺kuk − 4hℓkxkyk − hℓk+1xk+1yk+1

≤ u⊺kuk − hℓkxkyk + h
C

b
ℓkxkyk − 3hℓkxkyk − hℓk+1xk+1yk+1

≤ u⊺kuk − hℓkxkyk.

Therefore, rk+1 ≥ rk > 0. Moreover, we have

rk+1 = 1 − h
ℓk+1

xk+1yk+1 − 1
(u⊺k+1uk+1 − hℓk+1xk+1yk+1)

≤ 1 − h ℓk+1
xk+1yk+1 − 1

(2xk+1yk+1 − hℓk+1xk+1yk+1)

≤ 1 − h(2 − hℓ0) < 1

where the second inequality follows from the value at xk+1yk+1 = 1. Then xkyk − 1 exponentially
decreases until it converges.

If r0 < 0, from the upper bound of h, we have 0 < r1 < 1, 0 < x1y1 < 1, and u⊺1u1 ≤ u⊺0u0 (according
to the above discussion for x0y0 > 1). Then if 0 < xkyk < 1,

u⊺k+1uk+1 = (1 + h2ℓ2k)u⊺kuk − 4hℓkxkyk
= u⊺kuk + h∣ℓk ∣(4xkyk + h∣ℓk ∣u⊺kuk)
≤ u⊺kuk + (4 +Cu⊺kuk/(bu⊺0u0))h∣ℓk ∣xkyk

where the inequality follows from xkyk < 1 and x0y0 > 1.

Also, when 0 < xkyk < 1,

xk+1yk+1 = xkyk + (1 − rk)(1 − xkyk)
= xkyk − hℓk(u⊺kuk − hℓkxkyk)
≥ xkyk − hℓkxkyk(2 − hℓk)
= xkyk + h∣ℓk ∣xkyk(2 + h∣ℓk ∣)
≥ xkyk + 2h∣ℓk ∣xkyk.

We claim that when u⊺kuk ≤ u⊺0u0 and 0 < xkyk < 1, we have u⊺nun ≤ u⊺0u0 + C1 for all n ≥ k
and for constant 10

3
< C1 ≤ 7

2
. Otherwise, consider N s.t. u⊺nun ≤ u⊺0u0 + C1 for k ≤ n ≤ N and
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u⊺N+1uN+1 ≥ u⊺0u0 +C1. If 0 < xnyn < 1,

rn = 1 − h
ℓn

xnyn − 1
(u⊺nun − hℓnxnyn)

≥ 1 − h(u⊺nun − hℓnxnyn)

≥ 1 − C

4(u⊺0u0 + 4)
(u⊺nun − hℓnxnyn)

≥ 1 − u
⊺
0u0 +C1 + h∣ℓn∣xnyn

u⊺0u0 + 4

≥ 1 − u
⊺
0u0 + 15/4
u⊺0u0 + 4

> 0
where the first inequality follows from qn ≤ 1 for 0 < xnyn < 1; the second inequality follows from
the initial condition and the requirement of h; the last inequality follows from h∣ℓn∣xnyn < 1

4
for

0 < xnyn < 1 (can be easily checked from the initial condition that h ≤ 1
8

, and the rest follows from
analyzing the expression of the function). Therefore, 0 < xn+1yn+1 < 1 and consequently, 0 < rn < 1
for n = k,⋯,N . Especially, consider n = N . Then iteratively from the lower bound of xN+1yN+1
above, we have

N

∑
i=k

2h∣ℓi∣xiyi < 1
and thus
N

∑
i=k

(4+Cu⊺i ui/(bu⊺0u0))h∣ℓi∣xiyi ≤ (4+C(u⊺0u0+C1)/(bu⊺0u0))
N

∑
i=k

h∣ℓi∣xiyi <
20

3

N

∑
i=k

h∣ℓi∣xiyi <
10

3
< C1.

Contradiction.

Then, we have 0 < rn < 1 for all n ≥ k. Take k = 1, and then we have the monotone decreasing of
1 − xnyn. Also,

rn = 1 − h
ℓn

xnyn − 1
(u⊺nun − hℓnxnyn)

≤ 1 − hq1(2xnyn − hℓnxnyn)
≤ 1 − hq1x1y1(2 − hℓn)
≤ 1 − h(2 − h)q1x1y1 < 1.

Thus, GD will converge to xy = 1.

D.2 Proof of non-EoS
Proof. From the proof of convergence, we know rk > 0 for k ≥ 1. Thus when xkyk is very close to 1,
rk > 0. Take the limit and we have

lim
k→∞

rk = 1 − hu⊺∞u∞ ≥ 0.
Therefore,

S∞ = u⊺∞u∞ ≤
1

h

D.3 Proof of non-balancing

Proof. Let h = C
(x2

0+y
2
0+4)(x0y0)2b−2

. Before the proof, let first consider

hℓ0 =
C

(x20 + y20 + 4)(x0y0)2b−2
(x0y0)b−1 ((x0y0)b − 1)

b
≤ Cx0y0
b(x20 + y20 + 4)

≤ C
2b
.

If r0 > 0, from the proof of convergence, we know: rk > 0 for all k, and ℓk ≥ 0 for all k. Moreover,
we have xkyk ≥ xk+1yk+1, and consequently ℓk ≤ ℓ0 for all k (by the monotone decreasing of this
function; see details in the proof of convergence). Then

xk+1yk+1 = xkyk − hℓk(u⊺kuk − hℓkxkyk) ≤ xkyk − hℓkxkyk(2 − hℓk)

≤ xkyk − hℓkxkyk(2 −
C

2b
)
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Therefore

x0y0 − 1 =
∞

∑
k=0

xkyk − xk+1yk+1 ≥
∞

∑
k=0

hℓkxkyk(2 −
C

2b
).

Also, we have
u⊺k+1uk+1 = (1 + h2ℓ2k)u⊺kuk − 4hℓkxkyk

≥ u⊺kuk − 4hℓkxkyk
Then

u⊺0u0 − u⊺∞u∞ =
∞

∑
k=0

u⊺kuk − u⊺k+1uk+1 ≤
∞

∑
k=0

4hℓkxkyk ≤
8b

4b −C (x0y0 − 1) ≤
2b

b − 1(x0y0 − 1)

Then

(x∞ − y∞)2 = u⊺∞u∞ − 2x∞y∞ ≥ u⊺0u0 − 2x∞y∞ −
8b

4b −C (x0y0 − 1)

= u⊺0u0 − 2x0y0 + 2x0y0 − 2 −
8b

4b −C (x0y0 − 1)

= (x0 − y0)2 −
2C

4b −C (x0y0 − 1).

If r0 < 0, from the proof of convergence, we have: rk > 0 for k ≥ 1, and u⊺k+1uk+1 ≥ u⊺kuk for k ≥ 1.
Thus

u⊺0u0 − u⊺∞u∞ ≤ u⊺0u0 − u⊺1u1 ≤ 4hℓ0x0y0 ≤
2C

b
x0y0

Then

(x∞ − y∞)2 = u⊺∞u∞ − 2x∞y∞ ≥ u⊺0u0 − 2x∞y∞ −
2C

b
x0y0

= u⊺0u0 − 2x0y0 + 2x0y0 − 2 −
2C

b
x0y0

= (x0 − y0)2 + 2(x0y0 − 1) −
2C

b
x0y0.

D.4 Supplementary lemmas
Lemma 9. Under the assumption of Theorem 2, M3 > 3.

Proof. By the assumption, we have

⎛
⎝
1 + ( C

(x20 + y20 + 4)(x0y0)2b−2
)
2

ℓ20
⎞
⎠
x0y0 −

C

(x20 + y20 + 4)(x0y0)2b−2
ℓ0(x20 + y20)

=
⎛
⎜
⎝
1 +
⎛
⎝

C ((x0y0)b − 1)
b(x20 + y20 + 4)(x0y0)b−1

⎞
⎠

2⎞
⎟
⎠
x0y0 −

C ((x0y0)b − 1)
b(x20 + y20 + 4)(x0y0)b−1

(x20 + y20)

≥ x0y0 −
C(x20 + y20) ((x0y0)b − 1)
b(x20 + y20 + 4)(x0y0)b−1

Since b ≥ 3, when C = 3, we have

x0y0 −
C(x20 + y20) ((x0y0)b − 1)
b(x20 + y20 + 4)(x0y0)b−1

> 0.

Lemma 10 (stepsize). When x20 + y20 ≥ 4 (
√
2 + 2)C1, the learning rate bound in Theorem 2

2

(u⊺0u0 +C1)(x0y0)2b−2
≤ h ≤ 3

(u⊺0u0 +C1)(x0y0)2b−2
satisfies

2

S0
< 2

(u⊺0u0 +C1)(x0y0)2b−2
, and

4

S0
≤ 3

(u⊺0u0 +C1)(x0y0)2b−2
.
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Proof. Consider the Hessian ∇2f(x, y). The trace is

tr∇2f(x, y) = (1 + (1 − 1/b)(1 − 1/(xy)b))(x2 + y2)(xy)2b−2

> (1 + (1 − 1/b)(1 − 1

4
b

2b−2

))(x2 + y2)(xy)2b−2

≥ (1 + 2

3
(1 − 1

2
√
2
))(x2 + y2)(xy)2b−2

> 4

3
(x2 + y2)(xy)2b−2.

The determinant is

det∇2f(x, y) = −
(xy)2b ((xy)b − 1) (−(xy)b + b (4(xy)b − 2) + 1)

b2x2y2
.

When xy > 1, det∇2f(x, y) < 0. Therefore, initial sharpness

S0 > tr∇2f(x0, y0).

Then when x20 + y20 ≥ 4 (
√
2 + 2)C1 = 16 (

√
2 + 2), we have

S0 > (1 +
2

3
(1 − 1

2
√
2
))(x20 + y20)(x0y0)2b−2 ≥

4

3
(x20 + y20 +C1)(x0y0)2b−2,

and thus the lower bound of h is greater than 2
S0

, actually 8
3S0

, and the upper bound of h is greater
than 4

S0
.

E Experiments
For the experimental setup, we test on CIFAR-10 and MNIST, and consider neural network model
with one hidden layer of width N1 = 200 and no bias. The input dimension N0 is 32 × 32 × 3 = 3072
for CIFAR-10-1k, and 28 × 28 = 784 for MNIST. The output dimension N2 is 10. Therefore the
weight matrices for each layer are W1 ∈ RN0×N1 , W2 ∈ RN1×N2 . There are 1000 training data points
in our model randomly chosen in CIFAR-10 and MNIST.

For the training, we use full batch gradient descent without weight decay and momentum. The weight
initialization follows the default uniform distribution on interval [− 1

√
Ni−1

, 1
√
Ni−1
] in PyTorch for the

ith layer, with a rescaling of the two weights such that ∥W1∥F = 6 and ∥W2∥F = 20, which falls into
the sharp/unbalanced initialization.
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