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ABSTRACT

Image interpolation based on diffusion models is promising in creating fresh and
interesting images. Advanced interpolation methods mainly focus on spherical
linear interpolation, where images are encoded into the noise space and then in-
terpolated for denoising to images. However, existing methods face challenges
in effectively interpolating natural images (not generated by diffusion models),
thereby restricting their practical applicability. Our experimental investigations
reveal that these challenges stem from the invalidity of the encoding noise, which
may no longer obey the expected noise distribution, e.g., a normal distribution.
To address these challenges, we propose a novel approach to correct noise for
image interpolation, NoiseDiffusion. Specifically, NoiseDiffusion approaches the
invalid noise to the expected distribution by introducing subtle Gaussian noise and
introduces a constraint to suppress noise with extreme values. In this context, pro-
moting noise validity contributes to mitigating image artifacts, but the constraint
and introduced exogenous noise typically lead to a reduction in signal-to-noise
ratio, i.e., loss of original image information. Hence, NoiseDiffusion performs
interpolation within the noisy image space and injects raw images into these noisy
counterparts to address the challenge of information loss. Consequently, NoiseD-
iffusion enables us to interpolate natural images without causing artifacts or infor-
mation loss, thus achieving the best interpolation results. Our code is available at
https://github.com/tmlr-group/NoiseDiffusion.

Figure 1: Comparison of images generated with different interpolation methods.

1 INTRODUCTION

Image interpolation is an exceptionally fascinating task, not only for generating analogous images
but also for igniting creative applications, especially in domains like advertising and video gener-
ation. At present, state-of-the-art generative models showcase the ability to produce intricate and
captivating visuals, with many recent breakthroughs deriving from diffusion models (Ho et al., 2020;
Song et al., 2021a; Rombach et al., 2022; Saharia et al., 2022b; Ramesh et al., 2022). The potential
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of diffusion models is widely acknowledged, but to our knowledge, there has been relatively little
research on image interpolation with diffusion models (Croitoru et al., 2023).

Within the realm of diffusion models, the prevailing technique for image interpolation is spherical
linear interpolation (Song et al., 2021a;b). This approach shines when employed with images gener-
ated by diffusion models. However, when extrapolated to natural images, the quality of interpolation
results might fall short of expectations and frequently introduce artifacts, as depicted in Figure 2.

We initially analyze the spherical linear interpolation process and attribute subpar interpolation re-
sults to the invalidity of the encoding noise. This noise does not obey the expected normal distri-
bution and may contain noise components at levels higher or lower than the denoising threshold1,
resulting in artifacts in the final interpolated images. Directly manipulating the mean and variance
of the noise through translation and scaling is a straightforward approach to bring it closer to the
desired distribution. However, this not only fails to improve the image quality but also results in the
loss of image information. In addition, combined with the SDEdit method(Meng et al., 2022), we
directly introduce standard Gaussian noise for interpolation. While this method improves the quality
of images, it comes at the expense of introducing additional information, as depicted in Figure 4.

To improve the interpolation results, we propose a novel approach to correct noise for image inter-
polation, NoiseDiffusion. Specifically, NoiseDiffusion approaches the invalid noise to the expected
distribution by introducing subtle Gaussian noise and introduces a constraint to suppress noise with
extreme values. In this context, promoting noise validity contributes to mitigating image artifacts,
but the constraint and introduced exogenous noise typically lead to a reduction in signal-to-noise
ratio, i.e., loss of original image information. Hence, NoiseDiffusion subsequently performs in-
terpolation in the noisy image space and injects raw images into these noisy images to tackle the
information loss issue. These enhancements enable us to interpolate with natural images without
artifacts, yielding the best interpolation results achieved to date. Considering the limited explo-
ration of previous research in this field (Croitoru et al., 2023), we hope that our research can provide
inspiration for future research.

2 RELATED WORK

Diffusion Models Diffusion models create samples from the Gaussian noise using sequential de-
noising steps. To date, diffusion models have been applied to various tasks, including image gen-
eration (Rombach et al., 2022; Song & Ermon, 2020; Nichol et al., 2022; Jiang et al., 2022), image
super-resolution (Saharia et al., 2022c; Batzolis et al., 2021; Daniels et al., 2021), image inpaint-
ing (Esser et al., 2021), image editing (Meng et al., 2022), and image-to-image translation (Saharia
et al., 2022a). In particular, latent diffusion models (Rombach et al., 2022) excel in generating
text-conditioned images, receiving widespread acclaim for their ability to produce realistic images.

Image Interpolation Earlier approaches, such as StyleGAN (Karras et al., 2019), allowed for in-
terpolation using the latent variables of images. However, their effectiveness is constrained by the
model’s ability to represent only a subset of the image manifold, presenting challenges when applied
to natural images (Xia et al., 2022). What’s more, latent diffusion models can utilize prompts to in-
terpolate the generated images (like Lunarring), but its interpolation potential on natural images has
not yet been discovered. To the best of our knowledge, a method for interpolating natural images
using latent variables with diffusion models has not been encountered.

3 PRELIMINARIES

In this section, we first introduce how to describe the diffusion model’s noise injection and denoising
process in the form of stochastic differential equations (SDEs). Building upon this, we provide a
brief overview of how diffusion models are used for image interpolation and editing. Through image
editing, we can implement an interpolation method that doesn’t require latent variables, that is,
introducing Gaussian noise and then denoising. These methods form the foundation of the proposed
approach, NoiseDiffusion.

1Noise level of denoising
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3.1 THE DETAILS OF DIFFUSION MODELS

Perturbing Data With SDEs (Song et al., 2021b) We denote the distribution of training data as
pdata(x), and the Gaussian perturbations applied to pdata(x) by the diffusion model can be de-
scribed by the following stochastic differential equation expression:

dxt = µ(xt, t)dt+ σ(t)dwt, (1)

where t ∈ [0, T ], T > 0 is a fixed constant, {wt}t∈[0,T ] denotes the standard Wiener process (a.k.a.,
Brownian motion), µ(·, ·) : Rd → Rd is a vector-valued function called the drift coefficient of xt,
and σ(·) : R → R is a scalar function known as the diffusion coefficient.

We denote the distribution of xt as pt(xt) and consequently, p0 represents for the training data
distribution pdata and pT is an unstructured prior distribution that contains no information of p0.

Generating Samples By Reversing the SDEs (Song et al., 2021b) By starting from samples of pT
and reversing the perturbation process, we can obtain samples x0 ∼ p0. The reverse of a diffusion
process is also a diffusion process and can be given by the reverse-time SDE (Anderson, 1982):

dx = [µ(xt, t)− σ(t)2∇ log pt(xt)]dt+ σ(t)dw̄, (2)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an in-
finitesimal negative timestep. Once the score of each marginal distribution, ∇ log pt(x), is known
for all t, we can derive the reverse diffusion process from Eq.2 and simulate it to sample from p0.
And methods like stochastic Runge-Kutta (Kloeden et al., 1992) methods can be used to solve this.

Probability Flow ODE (Song et al., 2021b) Diffusion models enable another numerical method for
solving the reverse-time SDE. For all diffusion processes, there exists a corresponding deterministic
process whose trajectories share the same marginal probability densities {pt(xt)}Tt=0 as the SDE.
This deterministic process satisfies an ordinary differential equation (ODE) :

dxt = [µ(xt, t)−
1

2
σ(t)2∇ log pt(xt)]dt, (3)

which can be determined from the SDE once scores are known. Usually we call the ODE in Eq.3
the probability flow ODE.

3.2 IMAGE EDITING

Spherical Linear Interpolation In diffusion models, the prevailing image interpolation method is
spherical linear interpolation (Song et al., 2021a;b):

x
(λ)
T =

sin((1− λ)θ)

sin(θ)
x
(0)
T +

sin(λθ)

sin(θ)
x
(1)
T ,

where θ = arccos(
(x

(0)
T )⊺x

(1)
T

∥x(0)
T ∥∥x(1)

T ∥
), and λ is a coefficient that controls interpolation style between

two images. x
(i)
T can be either a noisy image encoded from image x

(i)
0 by integrating Eq.3, or

randomly sampled standard Gaussian noise. After completing the interpolation of latent variables
through the above equation, decoding can be achieved by integrating the corresponding ODE for
the reverse-time SDE. In the rest of the paper, we use slerp(x(0)

t ,x
(1)
t , λ) to denote the spherical

linear interpolation of the latent variables x(0)
t and x

(1)
t with the interpolation coefficient λ.

Image Editing with SDEdit (Meng et al., 2022) The SDEdit accomplishes image modifications by
overlaying the desired alterations onto the image, introducing noise, and subsequently denoising the
composite. This process ensures that the resulting image maintains a high level of quality. For any
given image x0, the SDEdit procedure is defined as follows:

Sample xt ∼ N (x0;σ
2(t0)I), then produce x̂0 by solving Eq.2.

For appropriately trained SDE models, a trade-off between realism and faithfulness emerges when
varying the values of t0. When we add more Gaussian noise and run the SDE for longer, the
synthesized images are more realistic but less faithful. Conversely, adding less Gaussian noise and
running the SDE produces synthesized images that are more faithful but less realistic.
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Figure 2: The spherical linear interpolation. Original images: The images on the left are natural
images, whereas the images on the right are generated by the diffusion model. Interpolation results:
The images on the left and right are the interpolation results of natural images and images generated
by diffusion model respectively.

4 THE IMAGE INTERPOLATION METHODS

4.1 THE SPHERICAL LINEAR INTERPOLATION OF IMAGES

Let’s start by introducing the process of spherical linear interpolation of images. Given two images,
the initial step involves encoding them into a latent space, i.e., Eq. 4 and 5. Then, we can perform
spherical linear interpolation on the latent variables, i.e., Eq. 6, followed by denoising to generate
the interpolation results with Eq. 7.

x
(0)
t = f(x

(0)
0 , t), (4)

x
(1)
t = f(x

(1)
0 , t), (5)

xt = slerp(x(0)
t ,x

(1)
t , λ), (6)

x̂0 = f−1(xt, t). (7)

In this context, we denote the Gaussian noise as ϵt ∼ N (0, σ(t)2I) and the original image as x(i)
0

with i ∈ {0, 1}, respectively. Accordingly, x(i)
t represents the noisy image corresponding to the

variable of the image in the latent space with noise level σ(t). Using the probability flow ODE for
its stability and unique encoding capabilities, we encode x0 into the latent space by integrating Eq.3,
and we denote this encoding process as a function f . Similarly, we denote the decoding process as
f−1, which corresponds to denoising through the ODE associated with the reverse-time SDE.

Figure 3: The impact of noise levels. We added Gaussian noise with lev-
els of σ(t) = [70, 75, 80, 85, 90] to the image on the left. Subsequently,
we applied denoising to each noisy image with the same noise level of
σ(t′) = 80, resulting in the denoised images on the right.

Examining Figure 2, we
notice that the interpola-
tion result derived from
natural images (not gen-
erated from diffusion
model) displays notice-
able artifacts, contrast-
ing with the one derived
from images generated
by the diffusion model,
which is free from such
imperfections.

4.2 THE REASON FOR FAILURE

To explore what kind of potential variables can be better denoised, we add Gaussian noise to the
image at various noise levels σ(t), resulting in xt = x0 + ϵt, and then denoise them at the same
noise level σ(t′), yielding x̂0 = f−1(xt, t

′). The results are shown in Figure 3.

Based on the results depicted in Figure 3, we observe that adding Gaussian noise matching the de-
noising level produces high-quality images. However, when the noise level exceeds the denoising
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threshold, additional artifacts are introduced in the generated images. Conversely, when the noise
level falls below the denoising threshold, the resulting images appear somewhat blurred, accompa-
nied by a noticeable loss of features.

This phenomenon is rather peculiar since, in the context of a Gaussian distribution, points closer
to the mean typically exhibit higher probability density. In other words, within the framework of
the diffusion model, noisy images with lower noise levels (closer to the mean) should ideally be
more effectively denoised. Building upon these observations, we introduce Theorem 1 to provide an
explanation for this phenomenon:

Theorem 1. The standard normal distribution N (0, In) in high dimensions is close to the uniform
distribution on the sphere of radius

√
n.

The detailed proof process of Theorem 1 can be found in Appendix A.1. Theorem 1 indicates
that random variables following the standard normal distribution in high dimensions are primarily
distributed on a hypersphere. This is because, as we approach the mean, the probability density
increases, but the volume in high-dimensional space gradually expands as we move away from the
mean. This result neatly explains why only noisy images with noise levels matching the denoising
threshold can produce high-quality results after denoising: During the training process, the model
can only observe noisy images primarily reside on the hypersphere. Consequently, it can only effec-
tively recover images of this nature.

Building upon Theorem 1, we can attribute the failure of spherical linear image interpolation to the
mismatch between noise levels and denoising threshold. The natural images encompass numerous
features that the model has not previously encountered. Consequently, the latent variables do not
obey the expected normal distribution, and may contain noise components at levels higher or lower
than the denoising threshold, resulting in low image quality after denoising. Inspired by SDEdit, we
can directly introduce Gaussian noise to the images as a solution to this mismatch problem. Details
are as follows.

4.3 INTRODUCING NOISE FOR INTERPOLATION

Here, we introduce the image interpolation method combined with SDEdit. When given two images,
the method starts by introducing Gaussian noise at the same level to each of them. Following this,
we employ spherical linear interpolation and subsequently apply denoising:

x
(0)
t = x

(0)
0 + ϵt, (8)

x
(1)
t = x

(1)
0 + ϵt, (9)

xt = slerp(x(0)
t ,x

(1)
t , λ), (10)

x̂0 = f−1(xt, t). (11)

The noise added to the images can be either the same or different. Shortly, we will demonstrate that
they exhibit only minor distinctions. However, it is crucial to emphasize that since this image inter-
polation method is based on SDEdit, it unavoidably inherits the drawbacks of the SDEdit method,
as illustrated in Figure 4.

The interpolation results presented in Figure 4 indicate that the method can address the issue of
poor image quality. However, when we add more Gaussian noise and denoise, the interpolated
images, while maintaining the original style, exhibit a phenomenon resembling direct image overlay.
Conversely, selecting less Gaussian noise and denoising, while ensuring realistic images, introduces
additional information, ultimately resulting in interpolation failure.

4.4 NOISEDIFFUSION

Based on the experimental results above, we can conclude the following: when spherical linear in-
terpolation is directly applied to natural images, the resulting images can better preserve the original
features but may contain artifacts. Conversely, directly introducing noise for image interpolation
may yield high-quality images but often causes the information loss issue. To integrate these two
methods, we propose the following theorem.
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Figure 4: Introducing noise for image interpolation. In the interpolated images, the top one repre-
sents the interpolation result with less Gaussian noise, while the bottom one represents the interpo-
lation result with more Gaussian noise.

Theorem 2. In high-dimensional spaces, independent and isotropic random vectors tend to be al-
most orthogonal.

The detailed proof process of Theorem 2 can be found in Appendix A.2. Based on Theorem 1
and Theorem 2, we proposed a new image interpolation method called NoiseDiffusion: Given two
images, we begin by encoding them into the latent space and clip them to suppress noise with
extreme values. Next, we synthesize the latent variables with Gaussian noise, combining them with
the original images, and finally apply clipping and denoising to produce the interpolation results:

x
(0)
t = clip(f(x(0)

0 , t)), (12)

x
(1)
t = clip(f(x(1)

0 , t)), (13)

xt = α ∗ x(0)
t + β ∗ x(1)

t + (µ− α) ∗ x(0)
0 + (ν − β) ∗ x(1)

0 + γ ∗ ϵt, (14)
x̂0 = f−1(clip(xt), t). (15)

In these equations, α and β correspond to coefficients for image style, while µ and ν serve as com-
pensation coefficients to adjust the amount of original image information. Additionally, γ represents
the lubrication coefficient, which can be used to adjust the amount of noise to enhance image quality.

Ensuring that the formula
√
α2 + β2 + γ2 = 1 is satisfied is crucial. Drawing from Theorem 1 and

Theorem 2, we can infer that for any three high-dimensional vectors on a hypersphere with a radius
of ∥r∥, denoted as v1, v2 and v3, the magnitude of the weighted sum v12 is given by ∥v12∥ = ∥α ·
v1 + β · v2∥ =

√
α2∥v1∥2 + β2∥v2∥2 + 2∥v1∥∥v2∥ cos θ =

√
α2 + β2∥r∥. Moreover, it is worth

noting that the newly obtained vector v12 and the vector v3 also remain orthogonal. Consequently,
we can represent the magnitude of the weighted sum of these vectors as: ∥α ·v1+β ·v2+γ ·v3∥ =√
α2 + β2 + γ2∥r∥. While the denoised image in Figure 2 displays some artifacts, the majority of

its content remains clear. This observation implies that the latent variables of natural images v1 =

x
(0)
t , v2 = x

(1)
t also tend to be near the hypersphere. Therefore, considering that Gaussian noise

v3 = ϵt also resides on the hypersphere, it is crucial to maintain the formula
√
α2 + β2 + γ2 = 1

to ensure that the final synthesized latent variable also possesses the same properties.

4.5 BOUNDARY CONTROL

According to the widely recognized statistical principle known as the empirical rule (also known
as 68–95–99.7 rule) (Pukelsheim, 1994), which pertains to the behavior of data within a normal dis-
tribution, approximately 99.7% of data points are located within three standard deviations from the
mean. Consequently, considering our analysis of how noise above the denoising threshold impacts
images, data points exhibiting significant deviations from the mean are considered potential sources
of image artifacts, a hypothesis that will be validated in subsequent experiments. To mitigate their
influence, we employ the following boundary control (clip) procedure :

Pixel Value =


Boundary, if Pixel Value > Boundary,
−Boundary, if Pixel Value < −Boundary,
Pixel Value, otherwise.
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4.6 THE CONNECTION OF METHODS

Here, we establish the relationship between our approach and other methods, highlighting the ad-
vantages of our approach. To begin with, our method, when coupled with appropriate parameter
choices, can be adapted into two other methods:

Spherical Linear Interpolation Combining Theorem 2, as high-dimensional random vectors are
orthogonal, we can express spherical linear interpolation in the following form with θ = π

2 :

x
(λ)
t =

sin((1− λ)θ)

sin(θ)
x
(0)
t +

sin(λθ)

sin(θ)
x
(1)
t = sin((1− λ) · π

2
)x

(0)
t + sin(λ · π

2
)x

(1)
t .

This is equivalent to our method with γ = 0, µ = α = sin((1− λ) · π2 ), and ν = β = sin(λ · π2 ).
Introducing Noise for Interpolation We classify the method of introducing noise for image inter-
polation into two categories, assuming that the noise level is substantially higher than that of the
image, which is often the common case. In this scenario, we can show that our approach can be
adapted into this method:

1. The noise added to the image is the same:

xt = slerp(x(0)
t ,x

(1)
t , λ) =

sin((1− λ) · 0)
sin(0)

x
(0)
t +

sin(λ · 0)
sin(0)

x
(1)
t

= (1− λ)x
(0)
t + λx

(1)
t = (1− λ)x

(0)
0 + λx

(1)
0 + (1− λ+ λ)ϵt

= (1− λ)x
(0)
0 + λx

(1)
0 + ϵt.

This is equivalent to our method with α = β = 0, µ = 1− λ, ν = λ.

2. The noise added to the image is different:

xt = slerp(x(0)
t ,x

(1)
t , λ) =

sin((1− λ) · π2 )
sin(π2 )

x
(0)
t +

sin(λ · π2 )
sin(π2 )

x
(1)
t

= sin((1− λ) · π
2
)x

(0)
0 + sin(λ · π

2
)x

(1)
0 + sin((1− λ) · π

2
)ϵ

(0)
t + sin(λ · π

2
)ϵ

(1)
t

= sin((1− λ) · π
2
)x

(0)
0 + sin(λ · π

2
)x

(1)
0 + ϵ′t.

This is equivalent to our method with α = β = 0, µ = sin((1− λ) · π2 ), ν = sin(λ · π2 ).

Compared with spherical linear interpolation, our method introduces Gaussian noise to better posi-
tion latent variables on the hypersphere. In contrast to the approach of introducing noise for inter-
polation, our method incorporates noise correction, which enables us to position latent variables on
the hypersphere and remove artifacts with a smaller amount of Gaussian noise.

5 EXPERIMENTS

The SDE is typically designed such that pT is close to a tractable Gaussian distribution π(x). We
hereafter adopt the configurations in Karras et al. (2022), who set µ(x, t) = 0 and σ(t) =

√
2t. In

this case, we have pt(x) = pdata(x)⊗N (0, t2I), where ⊗ denotes the convolution operation, and
π(x) = N(0, T 2I). We conduct evaluations on diffusion models trained on LSUN Cat-256 and
LSUN Bedroom-256 images as a basis for our evaluation. We verify the effectiveness of our method
on the Stable Diffusion (Rombach et al., 2022), and the results are provided in the Appendix C.

5.1 THE LUBRICATING COEFFICIENT

We keep all other parameters unchanged and incrementally increase γ from 0 to 1, as illustrated in
Figure 5. Upon observation, it is apparent that as γ increases, the artifacts in the image gradually
diminish, resulting in a notable enhancement in image quality. However, at the same time, the image
gradually loses some of its original features and introduces additional information.
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Figure 5: The impact of lubricating coefficient γ.

5.2 THE CHANGE IN STYLE

As shown in Figure 6, we can change the style of images by modifying the values of α and β.
In order to facilitate comparison with the results of spherical linear interpolation, we choose α =
sin

(
π
2 · λ

)
, β = cos

(
π
2 · λ

)
and γ = 0. Additionally, more interpolation results are available in the

appendix (Figure 11 and Figure 12).

Figure 6: The image style changes with the variation of λ.

5.3 BOUNDARY CONTROL

Figure 7: The effect of image scaling is demon-
strated in the top and bottom rows of images, show-
casing results obtained by scaling the original im-
age with scales l = [10, 2, 1, 0.5, 0.1]. In the middle
row, we present the outcomes of image interpola-
tion, maintaining all parameters except for µ and ν,
which are adjusted to µ = ν = [10, 2, 1, 0.5, 0.1].

We implemented boundary control on the la-
tent variables, and the results are depicted
in Figure 8. It can be seen that as the
boundaries decrease, the artifacts on the im-
age are greatly reduced, which substantially
improves the quality of the images. Fur-
thermore, we compared three boundary con-
trol methods: control before interpolation,
control after interpolation, and control be-
fore and after interpolation. The results of
the three methods are shown in Figure 10.
Upon examination, it can be observed that the
method of applying constraints to latent vari-
ables before and after interpolation is more
effective in reducing artifacts.

However, reducing the boundaries also leads
to some loss of image features and darken-
ing, which implies that boundary control can
result in information loss. To address this is-
sue, one effective strategy is to incorporate
the original image information in the noisy
image space, as detailed below.

5.4 THE IMPACT OF IMAGE INFORMATION

Figure 7 illustrates the impact of modifying the information of the original images (i.e., modifying
the values of µ and ν) on the interpolation results. It can be observed that smaller values of µ and ν
lead to darker images while increasing them results in overly bright pictures. Images obtained with
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Figure 8: The impact of the boundary.

Figure 9: Supplementing the original image information.

smaller µ and ν values exhibit similarities to those obtained with boundary control applied. Thus,
by modifying the values of µ and ν, we may be able to mitigate the feature loss and darkening issues
caused by boundary control, which can be seen in Figure 9. What’s more, our method ensures that
noise levels meet the necessary threshold, but the information of images may exceed or fall short of
the desired threshold because this is determined by α and β. Therefore, by adjusting the parameters
µ and ν, we can regulate the information of images, thereby improving the interpolation results.

5.5 FINAL RESULT

We collected images from the Internet and employed three different methods for image interpola-
tion. Throughout the interpolation process, we maintained consistency in parameter settings, with
detailed information available in the Appendix. From the interpolation results, we observe that our
method effectively reduces artifacts and maximally preserves information compared to directly ap-
plying spherical linear interpolation. Furthermore, our approach outperforms methods involving
noise introduction in preserving original image features, as illustrated in Figures 13 and 14.

6 CONCLUSION

In this paper, we propose a novel method that surpasses the limitations of spherical linear inter-
polation. Our approach establishes a unified framework for both spherical linear interpolation and
directly introducing noise for interpolation methods, leveraging the strengths of each. Addition-
ally, by imposing boundary control on noise and supplementing the original image information,
our method effectively tackles the challenges posed by noise levels exceeding or falling below the
denoising threshold. Through the correction of latent variables, our approach improves the interpo-
lation results of natural images, achieving superior interpolation outcomes.

Limitation and future work. Our approach, like any method, is not without its drawbacks and
constraints. Compared to directly introducing noise for interpolation, our method involves an extra
step: mapping the images to the latent variables. This additional overhead will double the pro-
cessing time. However, this extra overhead leads to better feature preservation. Furthermore, our
paper mainly focuses on image data. Accordingly, its effectiveness in other modalities has not been
validated, which is a potential limitation of our work. Thus, we will explore the possibility of our
method in different modalities in our future work. We will also explore the possibility of apply-
ing our method to different scenarios, such as a) investigating the interpolation between natural
and adversarial images (Zhang et al., 2022), b) studying the interpolation among different envi-
ronments (Arjovsky et al., 2019), and c) exploring the interpolation between in-distribution and
out-of-distribution data (Fang et al., 2022). Moreover, it is exciting to apply our method to many
interesting scenarios, like interpolation between different person images, interpolation for low-level
computer vision (Zamir et al., 2021), and interpolation for video generation (Liu et al., 2024).
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A PROOFS

A.1 THE PROOF OF THEOREM 1

Lemma 1. Let X = (X1, ..., Xn) ∈ Rn be a random vector with independent, sub-gaussian
coordinates Xi that satisfy EX2

i = 1. Then
∥∥X∥2 −

√
n∥ψ2 ≤ CK2

where K = maxi ∥Xi∥ψ2
, C is an absolute constant and we define:
∥X∥ψ1

= inf{t > 0 : E exp(|X|/t) ≤ 2}
∥X∥ψ2 = inf{t > 0 : E exp(X2/t2) ≤ 2}

Proof. For simplicity, we assume that K ≥ 1. We shall apply Bernstein’s deviation inequality for
the normalized sum of independent, mean zero random variables

1

n
∥X∥22 − 1 =

1

n

n∑
i=1

(X2
i − 1)

Since the random variable Xi is sub-gaussian, X2
i − 1 is sub-exponential, and more precisely

∥X2
i − 1∥ψ1 ≤ C∥X2

i ∥ψ1

= C∥Xi∥2ψ2

≤ CK2

Applying Bernstein’s inequality, we obtain for any u ≥ 0 that

P{| 1
n
∥X∥22 − 1| ≥ u} ≤ 2 exp(− cn

K4
min(u2, u))

This is a good concentration inequality for ∥X∥22, from which we are going to deduce a concentration
inequality for ∥X∥. To make the link, we can use the following elementary observation that is valid
for all numbers z ≥ 0:

|z − 1| ≥ δ implies |z2 − 1| ≥ max(δ, δ2)
We obtain for any δ ≥ 0 that

P{| 1
n
∥X∥22 − 1| ≥ δ} ≤ P{| 1

n
∥X∥22 − 1| ≥ max(δ, δ2)}

≤ 2 exp(− cn

K4
· δ2) (for u = max(δ, δ2))

Changing variables to t = δ
√
n, we obtain the desired sub-gaussian tail

P{|∥X∥2 −
√
n| ≥ t} ≤ 2 exp(− ct2

K4
) for all t ≥ 0

As we know form Sub-gaussian properties, this is equivalent to the conclusion of the theorem.

Theorem 1. The standard normal distribution N (0, In) in high dimensions is close to the uniform
distribution on the sphere of radius

√
n.

Proof. from Lemma 1, for the norm of g ∼ N (0, In) we have the following concentration inequal-
ity:

P{|∥g∥2 −
√
n| ≥ t} ≤ 2 exp(−ct2) for all t ≥ 0

Let us represent g ∼ N (0, In) in polar form as
g = rθ

where r = ∥g∥2 is the length and θ = g/∥g∥2 is the direction of g.

Concentration inequality says that r = ∥g∥2 ≈
√
n with high probability, so

g ≈
√
nθ ∼ Unif(

√
nSn−1)

In other words, the standard normal distribution in high dimensions is close to the uniform distribu-
tion on the sphere of radius

√
n, i.e.
N (0, In) ≈

√
nθ ∼ Unif(

√
nSn−1)
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A.2 THE PROOF OF THEOREM 2

Definition 1. A random vector X in Rn is called isotropic if∑
(X) = EXXT = In

where In denotes the identity matrix in Rn.
Lemma 2. A random vector X in Rn is isotropic if and only if

E⟨X,x⟩2 = ∥x∥22 for all x ∈ Rn

Proof. Recall that two symmetric n×n matrices A and B are equal if and only if xTAx = xTBx
for all x ∈ Rn. Thus X is isotropic if and only if

xT (EXXT )x = xT Inx for all x ∈ Rn

The left side of this identity equals E⟨X,x⟩2, and the right side is ∥x∥22.

Lemma 3. Let X be an isotropic random vector in Rn. Then

E∥X∥22 = n

Moreover, if X and Y are two independent isotropic random vectors in Rn, then

E⟨X,Y ⟩2 = n

Proof. To prove the first part, we have

E∥X∥22 = EXTX = E tr(XTX) (viewing XTX as a 1× 1 matrix)

= E tr(XXT ) (by the cyclic property of trace)

= trE(XXT ) (by linearity)
= tr(In) (by isotropy)
= n

To prove the second part, we use a conditioning argument. Fix a realization of Y and take the
conditional expectation (with respect to X) which we denote EX . The law of total expectation says
that

E⟨X,Y ⟩2 = EY EX [⟨X,Y ⟩2|Y ],

where by EY we of course denote the expectation with respect to Y . To compute the inner ex-
pectation, we apply Lemma 2. with x = Y and conclude that the inner expectation equals ∥Y ∥22.
Thus

E⟨X,Y ⟩2 = EY ∥Y ∥22
= n (by the first part of lemma)

Theorem 2. In high-dimensional spaces, independent and isotropic random vectors tend to be al-
most orthogonal

Proof. Let us normalize the random vectors X and Y in Lemma 3 setting

X̄ :=
X

∥X∥2
and Ȳ :=

Y

∥Y ∥2
Lemma 3 is basically telling us that ∥X∥2 ≍

√
n, ∥Y ∥2 ≍

√
n and ⟨X,Y ⟩ ≍

√
n with high

probability, which implies that

|⟨X̄, Ȳ ⟩| ≍ 1√
n

Thus, in high-dimensional spaces independent and isotropic random vectors tend to be almost or-
thogonal.
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B EXPERIMENTS WITH MODELS TRAINING IN SINGLE DOMAIN

Parameter choices To facilitate comparison with spherical linear interpolation results, we maintain
the condition α/β = sin

(
π
2 · λ

)
/ cos

(
π
2 · λ

)
, and ensure that

√
α2 + β2 + γ2 = 1 when comput-

ing α and β. And we set µ = 2.0 ∗ α/(α + β), ν = 2.0 ∗ β/(α + β). Additionally, several other
parameters, albeit hyperparameters, have predefined ranges for user convenience. For instance, the
boundary ranges from 2.0 to 2.4, γ ∈ [0,

√
0.1]. Users only need to determine the value of λ to

specify the style of interpolation results.

B.1 THE IMPACT OF THE BOUNDARY

Figure 10: The impact of the boundary. From top to bottom: controlling noise before inter-
polation, controlling noise after interpolation, and controlling noise both before and after inter-
polation. From left to right: the coefficient ratio of the noise boundary to the variance are
[2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2].

We compared three boundary control methods: control before interpolation, control after interpo-
lation, and control before and after interpolation, as shown in Figure 10. From the figure, we can
observe that all three methods introduced a similar level of blurriness, indicating a loss of image
information, and applying constraints to noise both before and after interpolation is more effective
in reducing artifacts.

B.2 INTERPOLATION OF IMAGES WITH MODELS TRAINED ON LSUN BEDROOM-256

We searched online for images of bedroom and used a diffusion model trained exclusively on LSUN
Bedroom-256 images for interpolation. We gradually increased the value of λ to modify the style
of the interpolation images and ensuring that other parameters are within the specified range. The
results are shown in Figure11.

B.3 INTERPOLATION OF IMAGES WITH MODELS TRAINED ON LSUN CAT-256

We searched online for images of cat and used a diffusion model trained exclusively on LSUN
Cat-256 images for interpolation. We gradually increased the value of λ to modify the style of the
interpolation images and ensuring that other parameters are within the specified range. The results
are shown in Figure12.

B.4 COMPARISON OF RESULTS FROM DIFFERENT METHODS

We compared our method with spherical linear interpolation and the method of introducing noise for
interpolation, using models separately trained on LSUN Cat-256 and LSUN Bedroom-256 datasets.
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Figure 11: Interpolation with natural images. By modifying λ, our method can generate interpolated
results with different image styles.

The results are displayed in Figure 13 and Figure 14. From the figures, it’s clear that spherical linear
interpolation introduces significant artifacts, while introducing noise for interpolation introduces
extra information. In contrast, our method not only preserves the original image informations but
also enhances the quality of images.

C EXPERIMENTS ON STABLE DIFFUSION

C.1 STABLE DIFFUSION

We extended our experiments on Stable Diffusion and compared it with other methods. Due to the
differences in the form of µ(xt, t) and σ(t) in Stable Diffusion, there have been significant changes
in its latent variables. However, the challenges faced by different interpolation methods are simi-
lar: spherical linear interpolation produces images with noticeable defects (Figure 21 - Figure 25),
while the method of introducing noise for interpolation introduces additional information (Figure 16
- Figure 20). Due to the highly unstructured latent space of the Stable Diffusion, it becomes chal-
lenging to interpolate between two image samples, as depicted in Figure 15.Therefore, we consider
interpolating latent variables in the noisy image space, here we chose to interpolate the images when
t = 700.

C.2 EXPERIMENTAL RESULTS

We collected various images online to interpolate on Stable Diffusion. The results are shown be-
low. To facilitate comparison with spherical linear interpolation results, we maintain the condition
α/β = sin

(
π
2 · λ

)
/ cos

(
π
2 · λ

)
, and ensure that

√
α2 + β2 + γ2 = 1 when computing α and β.

Additionally, the boundary is set to 2.0, γ ∈ [0,
√
0.1], and µ = 1.2∗α/(α+β), ν = 1.2∗β/(α+β).

Users need to determine the value of λ to modify the style of interpolation results.
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Figure 12: Interpolation with natural images. By modifying λ, our method can generate interpolated
results with different image styles.

Figure 13: Comparison between spherical linear interpolation and our method. The top and left-
most images represent the original images. The second row displays the results of spherical linear
interpolation, while the third row shows the outcomes of our method.

16



Published as a conference paper at ICLR 2024

Figure 14: Comparison between the method of introducing noise for interpolation and our method.
The top and leftmost images show the original images. The second and third rows display the
interpolation results obtained by directly introducing noise. The fourth row illustrates the outcomes
of our method.

Figure 15: Spherical linear interpolation results when the images are encoded into the noise space.
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Figure 16: Interpolation results with Stable Diffusion (Introducing Noise) (1/5).

Figure 17: Interpolation results with Stable Diffusion (Introducing Noise) (2/5).
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Figure 18: Interpolation results with Stable Diffusion (Introducing Noise) (3/5).

Figure 19: Interpolation results with Stable Diffusion (Introducing Noise) (4/5).
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Figure 20: Interpolation results with Stable Diffusion (Introducing Noise) (5/5).

Figure 21: Interpolation results with Stable Diffusion (Spherical Linear Interpolation) (1/5).
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Figure 22: Interpolation results with Stable Diffusion (Spherical Linear Interpolation) (2/5).

Figure 23: Interpolation results with Stable Diffusion (Spherical Linear Interpolation) (3/5).
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Figure 24: Interpolation results with Stable Diffusion (Spherical Linear Interpolation) (4/5).

Figure 25: Interpolation results with Stable Diffusion (Spherical Linear Interpolation) (5/5).
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Figure 26: Interpolation results with Stable Diffusion (NoiseDiffusion) (1/5) .

Figure 27: Interpolation results with Stable Diffusion (NoiseDiffusion) (2/5) .
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Figure 28: Interpolation results with Stable Diffusion (NoiseDiffusion) (3/5) .

Figure 29: Interpolation results with Stable Diffusion (NoiseDiffusion) (4/5) .
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Figure 30: Interpolation results with Stable Diffusion (NoiseDiffusion) (5/5).
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