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ABSTRACT

We introduce DAG-TFRC, a novel method for learning directed acyclic graphs
(DAGs) from time series with few root causes. By this, we mean that the data are
generated by a small number of events at certain, unknown nodes and time points
under a structural vector autoregression model. For such data, we (i) learn the
DAGs representing both the instantaneous and time-lagged dependencies between
nodes, and (ii) discover the location and time of the root causes. For synthetic
data with few root causes, DAG-TFRC shows superior performance in accuracy
and runtime over prior work, scaling up to thousands of nodes. Experiments on
simulated and real-world financial data demonstrate the viability of our sparse root
cause assumption. On S&P 500 data, DAG-TFRC successfully clusters stocks by
sectors and discovers major stock movements as root causes.

1 INTRODUCTION

Many applications produce time-series data: multi-dimensional data measured in regular time steps.
Examples include temperature measurements at different sites in meteorology (Yang et al., 2022),
stock prices in finance (Kleinberg, 2013; Jiang &Shimizu, 2023), and brain data in medicine (Smith
et al., 2011). A key problem in analyzing time-series data is causal structure discovery, which aims
to understand the generation mechanism of such data between nodes and across time (Assaad et al.,
2022b; Runge et al., 2023; Gong et al., 2023; Hasan et al., 2023). On common structural model
associates time-series data with directed acyclic graphs (DAGs) that encode how the data in one
time step is obtained from prior ones. Our work specifically focuses on learning these DAGs from
time-series data (Sun et al., 2023; Gao et al., 2022; Pamfil et al., 2020). This approach simplifies
the broader problem of causal discovery by abstracting away the need for true causal relationships,
which often require techniques like interventions. Despite this simplification, DAG learning from
time series still poses a challenge due to the complexity of temporal dependencies and the high
dimensionality of data.

Structural vector autoregression. Prior work on structure discovery from time series parametrizes
the data generation as structural vector autoregression (SVAR) (Lütkepohl, 2005; Pamfil et al.,
2020), which was first introduced by Sims (1980) and is commonly used in econometrics (Kil-
ian, 2013). SVAR describes linear dependencies between nodes that are either instantaneous, if
the nodes are at the same time point, or lagged if there is a time delay between the nodes. The
SVAR model implies stationarity, i.e., that these dependencies are the same for every time point.
Together they form a DAG, called the window graph, which uniquely determines the parameters of
the SVAR. Learning a window graph with time lags is a challenging task and requires more param-
eters than learning DAGs from static data, which is already an NP-hard problem (Chickering et al.,
2004). Various methods to learn the (weighted) window graph from time-series data have been pro-
posed, e.g., by Hyvärinen et al. (2010); Nauta et al. (2019); Pamfil et al. (2020). However, some
methods, including Granger causality methods (Bussmann et al., 2021; Marcinkevičs &Vogt, 2020)
ignore the time lags or do not consider instantaneous dependencies (Entner &Hoyer, 2010; Khanna
&Tan, 2019). In addition, methods are generally inefficient to compute graphs with thousands of
nodes (Cheng et al., 2024). Moreover, there is a limited interpretation of the input variables of the
SVAR, which we will refer to as root causes. Here, we aim to make progress on those challenges
with a novel efficient method based on the assumption of few root causes.
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Root causes. In this paper we are concerned with learning the window graph under the assumption
that the time series are generated from an SVAR with few root causes. Intuitively this means that
there exist (approximately) few significant events on nodes and in time that propagate through the
graph and time, as stipulated by the SVAR to produce the time-series data. This assumption differs
from prior work in which the input is typically assumed as zero-mean random i.i.d. noise (Pamfil
et al., 2020; Gao et al., 2022; Tank et al., 2021). Our motivation comes from the few root causes as-
sumption for static data proposed by Misiakos et al. (2023b), successfully applied to gene activation
data (Misiakos et al., 2023a). Our work expands the applicability of this assumption to the case of
time series and, in addition, interprets the root causes in an experiment on real-world financial data.
Note, that the root cause terminology we use is different but related to root cause analysis in (Ikram
et al., 2022) as we explain in the related work later.

Contributions. In this paper we learn the weighted window graph associated with an SVAR for
time-series data under the assumption of few root causes and, in addition, recover their values,
locations and time points. Specifically:

• We formulate the few root causes assumption for time-series data generated from an SVAR.
We show that the ground truth window graph is identifiable and is the global minimizer of
the number of non-zero root causes for absent noise.

• We present DAG-TFRC, which learns the window graph from time-series data assuming
an SVAR with few root causes. In synthetic experiments with few root causes, we show
that DAG-TFRC can learn window graphs with up to several thousands of nodes and shows
superior performance over various prior state-of-the-art methods.

• We show the viability of the few root cause assumption on simulated and real-world finance
data. On simulated data (where the ground truth is known) the few root cause assumption
achieves the best results. On real-world stock market data from the S&P 500 index, the few
root cause assumption allows us to reasonably cluster the stocks within sectors and identify
root causes that reflect significant changes in the stock prices.

2 SVAR AND ROOT CAUSES

We introduce notation, the needed background on SVARs, and the concept of root causes.

Time-series data. A multi-dimensional data vector xt, measured at time point t ∈
0, 1, . . . , T − 1 = [T ], is written as xt = (xt,1, xt,2, . . . , xt,d) ∈ R1×d. A time series consists
of a sequence of such data vectors x0, . . . ,xT−1 recorded at consecutive time points. We assume
these vectors stacked as rows in a matrix, representing the entire time series, denoted as X ∈ RT×d.
When multiple realizations of X are available, they are collected as slices of a tensor X ∈ RN×T×d.
These are typically obtained by dividing a long time series into smaller segments of length T .

Example: stock market. We consider an example of time-series data from the stock market. We
collect daily stock values xt for a particular stock index (e.g., S&P 500) for, say, 20 years. A time
series for one year is denoted with the matrix X and 20 years yield the data tensor X.

Model demonstration. We impose a graph model assumption on the generation of time-series data
and demonstrate it first with a simple example. Assume that the vector xt at time t is generated from
the data xt−1 of the previous time step according to the equation:

xt = xt−1B + ct, (1)

where ct are input variables, which we call root causes following Misiakos et al. (2023b), but have
been also referred to as structural shocks (Kilian, 2013). The (i, j) entry of the matrix B ∈ Rd×d

represents the influence of xt−1,i on xt,j and corresponds to the adjacency matrix of a directed graph
G = (V,B) where V is a set of nodes enumerated as V = {1, 2, ..., d}. The goal is to learn B. The
model (1) is stationary, since B is the same for all t, and has time lag one, since xt is explained by
the previous time step (and the new inputs at time t).

Example. In the stock market example, the stocks 1, 2, . . . , d in the S&P market index would
represent the nodes of a graph and B would encode the influences between these stocks. The model
then implies that the value xt,i of a stock i on day t is determined by the stock values xt−1 from day
t− 1, combined with a root cause ct.i representing an event occurring on day t.
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Figure 1: Generating time series X with 7 time steps from an SVAR with few root causes C.
Root causes (top) corresponding to nodes can be positive, negative or zero, with only a few being
non-zero. There can be at most 4 × 7 = 28 root causes, and in our example only a few 7 are
significant. The window graph W consisting of B0,B1,B2 produces the observed dense time
series X (bottom) with (4).

Structural vector autoregression. We expand (1) to the general form of an SVAR (Lütkepohl,
2005; Pamfil et al., 2020) with time lag k. Namely, we assume there exist adjacency matrices
B0,B1, ...,Bk ∈ Rd×d and ct ∈ R1×d, t ∈ [T ], such that for all t ∈ [T ]1:

xt = xtB0 + xt−1B1 + ...+ xt−kBk + ct. (2)

The (i, j) entry of Bτ represents the influence of i to j after τ time-steps (i.e., a lag of τ ) and ct are
the root causes. B0 represents the instantaneous dependencies, while the B1, ...,Bk represent the
lagged dependencies. The SVAR is stationary, since the Bτ do not depend on t.

As in prior work (Pamfil et al., 2020) we assume that B0 corresponds to a DAG, which ensures that
the recurrence (2) is solvable with respect to xt.

The instantaneous B0 and lagged dependencies B1, ...,Bk are collected as block-rows in a matrix
W ∈ Rd(k+1)×d which forms the so-called window graph23 depicted with an example in Fig. 1.
Note that the window graph is a DAG since the edges go only forward in time. The problem we
aim to solve is to infer the window graph W from time-series data under the assumption that there
are few root causes. To achieve this, our approach imposes a sparsity assumption on the root cause
terms.

Example. In the previous stock market example, B0 would model instantaneous influences within
the same day, and the other Bτ influences across days. In this case, one would expect most influ-
ences to be captured by B0 since stock markets usually react close to instantaneously.

Few root causes. We denote with xt,past = (xt,xt−1, ...,xt−k) , t ∈ [T ] the data at previous
time steps of xt with lag up to a chosen fixed k. Analogously, Xpast contains as rows the vectors
xt,past, t ∈ [T ] and Xpast multiple instantiations of Xpast. With this notation, the SVAR (2) can be
written concisely in the following matrix format:

X = XpastW +C ⇔ X = XpastW + C. (3)

The name root causes is motivated by the fact that the time-series data X in (3) are uniquely deter-
mined by the input data C. Few root causes mean the input C is sparse (Misiakos et al., 2023b).
Intuitively, the nonzero values in C represent unobserved events that propagate through space (ac-
cording to B0) and also through time t to generate X via (3). In practical applications the sparsity

1Vectors with negative indices are zero.
2Formally W is not the adjacency matrix of the window graph, but contains all the necessary parameters to

represent it. We will thus refer to the window graph with W .
3We will also always assume that (2) is stable for any time-series length T , i.e., that the data X remain

bounded. We provide a stability condition on W in Appendix C.1.
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in the root causes can only be satisfied approximately, thus we consider noise Nc together with C
with zero mean and low standard deviation.

X = XpastW +C +Nc ⇔ X = XpastW + C + Nc. (4)

In Fig. 1 we illustrate the data generation process (4). The root causes C in the upper part are
denoted in color, whereas white nodes correspond to approximately zero values (noise). The root
causes percolate in time and space according to W and generate the dense measured data X .

Example. In our stock market example, the root causes ct would represent significant events (big
news) that trigger changes in the prices of the stocks at day t. Examples include unexpected quarterly
results, administrative changes in the company, capital investment, lancing a new product, etc. It is
intuitive that such events happen rarely and affect few stocks every day, and thus C is sparse. Later,
we confirm the few root cause assumption in experiments with real-world financial time series.

3 LEARNING THE SVAR

Here we show the identifiability of our setting, formulate a discrete optimization problem with the
ground truth window graph as a global solution, and present our proposed method DAG-TFRC.

Identifiability. A natural question to ask in structure discovery is whether the graph is identifiable
from data (Park, 2020). By this, we mean that there is a unique ground truth graph W corresponding
to the probability distribution of the data X. Thus, the unknown graph can be uniquely determined
from the data. Theorem 3.1 establishes the identifiability of W in our setting.

Theorem 3.1. Consider the time-series model (4). We assume that any root cause takes a uniform
random value from [−1, 1] with probability p4 and is zero with probability 1−p. Then the adjacency
matrices B0,B1, ...,Bk ∈ Rd×d are identifiable from the time-series data X.

Proof sketch. The idea is to unroll W over time into a DAG and rewrite (4) as a linear structural
equation model (SEM) as explained in (Misiakos et al., 2024). Then, considering the (varying)
locations of the non-zero entries in C modeled as Bernoulli random variables, the identifiability of
the unrolled DAG is established from (Misiakos et al., 2023b, Theorem 3.1) which is a consequence
of the non-Gaussian identifiability theorem by Shimizu et al. (2006). The window graph can then be
identified by extracting B0,B1, ...,Bk from the unrolled DAG. A full proof is in Appendix C.2.

Global minimizer. Consider time-series data X generated with the SVAR (3), which is the noiseless
version of (4). To solve for the window graph W the motivation is that the root causes tensor C is
assumed to be sparse and therefore the approximation Ŵ should achieve as low number of non-zero
root causes as possible. We thus propose approximating the window graph W with the following
discrete optimization problem:

Ŵ = argmin
W∈Rd(k+1)×d

∥X − XpastW ∥
0
, s.t. B0 is acyclic, (5)

where ∥ · ∥0 is the L0 pseudonorm (number of non-zero entries). We can show that there is no other
matrix than the ground truth W that can achieve the lowest number of non-zero root causes. This
result holds with high probability and in the case where the number of data is large enough and the
root causes C are generated as in Theorem 3.1. Formally, the following Theorem 3.2 holds.

Theorem 3.2. Consider time-series data X generated from (3). Then given a large (exponential in
dT ) amount of samples N , the matrix W is with high probability the unique global minimizer of
optimization problem (5).

Proof sketch. As before, we unroll the window graph W over time into a DAG and rewrite (4) as
a linear SEM. Then the root causes satisfy the conditions of (Misiakos et al., 2023b, Theorem 3.2),
and the ground truth unrolled DAG is the unique global minimizer. This also implies that W is the
unique global minimizer of (5). A complete proof is shown in Appendix C.3.

4Low p provides sparsity in C: few root causes.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

DAG-TFRC. Based on the discrete optimization problem (5), we formulate our algorithm to learn
the window graph W from time-series data X that are generated via (4). We refer to it as DAG-
TFRC and it extends SparseRC in the same way as DYNOTEARS (Pamfil et al., 2020) extends
NOTEARS (Zheng et al., 2018) to time series. Using continuous relaxation to handle the presence
of noise and enforcing acyclicity with a continuous constraint h(A) (e.g., NOTEARS (Zheng et al.,
2018)) yields the following optimization problem:

Ŵ = argmin
W∈Rd(k+1)×d

∥X − XpastW ∥
1
+ λ1 ∥W ∥1 + λ2 · h (B0) . (6)

The first term in (6) promotes sparsity in the root causes and the other two terms promote the sparsity
of the window graph W , and the acyclicity of B0, respectively. Note that (6) is well suited for
GPU operations with tensors, making it very efficient in practice. However, the implementation
is non-trivial since it requires expressing W with the parameters of a (PyTorch) linear layer with
(k + 1)d inputs and d outputs where the precomputed Xpast is fed as input. The output of the linear
layer is then subtracted from the data X and the computed objective in (6) is optimized with Adam
optimizer (Kingma &Ba, 2014).

With Ŵ computed via (6), we obtain an approximation Ĉ of the associated root causes via (7).

Ĉ = X − XpastŴ . (7)

Ĉ is an approximation since it is subject to the root cause noise Nc of the data generation equa-
tion (4). Thus, we also use thresholding to filter out the insignificant values in Ĉ.

4 RELATED WORK

Causal discovery from time series. Causal discovery methods for time-series data aim to find the
causal dependencies between nodes in time and recover either the window or summary graph which
ignores the time delays (Gong et al., 2023). Many methods do not find dependencies that are truly
causal (Assaad et al., 2022b) but rather discover spurious correlations (Assaad et al., 2022b).

Constraint-based methods utilize conditional independence tests to infer whether an edge exists
between two nodes. Examples include Runge et al. (2019) that adapts the Peter-Clark (PC) algo-
rithm (Spirtes et al., 2000) to time series as well as Entner &Hoyer (2010) do for the Fast Causal
Inference (FCI) (Spirtes et al., 2000) to construct tsFCI. Other constraint-based methods are varia-
tions of PCMCI including (Runge, 2020; Gerhardus &Runge, 2020; Assaad et al., 2022a) or based
on tsFCI (Malinsky &Spirtes, 2018).

Functional causal model-based methods consider the causal dependencies formulated according to a
functional form. In this category, VAR-LiNGAM (Hyvärinen et al., 2010), models the data genera-
tion using an SVAR with non-Gaussian noise as input. This method extends LiNGAM (Shimizu
et al., 2006) to time series and learns the window graph. TiMINO (Peters et al., 2013) and
NBCB (Assaad et al., 2021) belong into the same category but only learn the summary graph.
Closely related to functional causal models are methods that apply continuous optimization to learn
the window graph. Such methods are extensions of NOTEARS (Zheng et al., 2018) to time series
and include DYNOTEARS (Pamfil et al., 2020), NTS-NOTEARS (Sun et al., 2023) for non-linear
data, and iDYNO (Gao et al., 2022) for interventional data.

Granger causality methods typically utilize the SVAR model to deduce the summary graph of
pairwise Granger causal dependencies (Tank et al., 2021). (Pair-wise) Granger causality means
that i Granger-causes j if the past values of the ith time series improve on the prediction of the
present value of jth time series. Related works include neural Granger causality (Tank et al., 2021),
eSRU (Khanna &Tan, 2019), GrID-Net (Wu et al., 2021), kernel (Marinazzo et al., 2008) and cop-
ula (Hu &Liang, 2014) Granger causalities and also convergent cross mapping (Sugihara et al.,
2012). Another line of work employs neural networks for causal discovery from time series, like
TCDF (Nauta et al., 2019), SCGL (Xu et al., 2019), neural graphical modelling (Bellot et al., 2022)
and amortized learning (Löwe et al., 2022).

Extensions of the above methods consider irregular data (Cheng et al., 2023; 2024), subsampled
data (Gong et al., 2015; Liu et al., 2023), or non-stationary time-series (Gao et al., 2024).
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Few root causes. Our work falls into the category of continuous optimization methods but under
the different data assumption of few root causes. Thus, our optimization objective differs from prior
methods by minimizing the L1 of the approximated root causes, whereas prior work employed the
mean-square error loss. More comparison details are provided in Appendix B. The only method
relying on the assumption of few root causes was SparseRC proposed by Misiakos et al. (2023b),
designed for DAG learning from static data and successfully applied to gene data (Misiakos et al.,
2023a). Here we advance over SparseRC in two aspects. The first is efficient, meaning fast and
accurate, DAG learning from time series, particularly for larger DAGs and time lags. The second is
applying the assumption of few root causes in financial data, broadening the range of its practical
applications and for the first time providing a real interpretation on the approximated root causes.
Misiakos et al. (2024) applied SparseRC for learning graphs from time series, by unrolling the
window graph over time into a DAG, which requires learning dT × dT parameters. In this form
SparseRC is not applicable to our experiments due to the resulting high complexity and times out,
but we propose an alternative way of executing it to make the comparison feasible. However do-
ing so cannot exactly mimic the assumed SVAR model. More details about this adaptation are in
Appendix A.

Root cause analysis. The term root cause as used in our work is related to the use in prior root
cause analysis (RCA) (Ikram et al., 2022). RCA is the process of determining the initial cause
event that made some subcomponents of a system to fail. In RCA there is typically only one root
cause; in our work there are multiple (but few) root causes in varying locations. RCA causes refer to
defects or anomalies in the data, where in our case the root causes generate the entire measured data.
Finally, the root cause in RCA is located at the closest (by some measure) ancestor of the failing
nodes, where in our setting the root causes have a linear relation with the data. An application of
our method to RCA may be a possible future direction.

5 EXPERIMENTS

We evaluate DAG-TFRC by comparing to prior state-of-the-art work on learning the window graph
from time-series data. We consider synthetic, simulated and real data.

Baselines. We consider a variety of benchmarks ranging from linear data to non-linear that employ
neural networks, considering only those that learn the full window graph. Concretely, we compare
against VAR-LiNGAM, Directed VARLiNGAM (Hyvärinen et al., 2010), DYNOTEARS (Pamfil
et al., 2020) using continuous optimization (like ours), NTS-NOTEARS (Sun et al., 2023) that as-
sumes non-linear data generation, the constraint-based methods tsFCI (Entner &Hoyer, 2010) and
PCMCI (Runge et al., 2019), as well as the deep learning method TCDF (Nauta et al., 2019).

We also compare against SparseRC, which is the only prior method explicitly imposing few root
causes. SparseRC is designed for static data but has also been applied to time-series data in (Misi-
akos et al., 2024) by creating a static DAG by unrolling the time dimension. Doing so, SparseRC has
to learn a DAG with dT nodes, which, in our smallest experiment, already corresponds to 20 · 1000
nodes and times out. To give it a fair chance in our comparison we adapt its use to learn a smaller
unrolled DAG corresponding to k + 1 time steps with (k + 1)d nodes. The idea is to feed as input
the data Xpast and learn a matrix A ∈ R(k+1)d×(k+1)d, from which then the window graph W is
extracted. With this formulation, we expect to compromise the performance of SparseRC but at least
it becomes executable. More details are in Appendix A.

For the implementation, we use the publicly available repositories listed in Appendix D.9 with hy-
perparameters chosen with grid search listed in Appendix D.7 for synthetic and simulated data.

Metrics. We evaluate the unweighted approximation of W with the structural Hamming distance
(SHD), i.e., the number of edge removals, insertions, and reverses needed to obtain the ground truth.
In Appendix D.2 we include more metrics such as the area under ROC curve (AUROC), the F1
score and the normalized mean square error (NMSE), for the weighted approximation of W . SID
is computationally very expensive (times out) to run on DAGs with thousands of nodes and thus
was not used. For the locations of the root causes in C we use again the SHD, computed as the
total number of false or missed locations and the NMSE, shown in Appendix D.2, for the weighted
approximation of C. For every metric, we report the average and standard deviation (shown as
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Figure 2: Performance on synthetic data. From top to bottom (lower is better): SHD, root causes
SHD, and runtime. (a), (b) shows N = 1 and N = 10 samples of time-series with T = 1000 and
varying number d of nodes. (c) shows d = 500 nodes and varying samples N of time-series of
length T = 1000. Any non-reported point implies a time-out (execution time > 10000s).

shade in plots in Fig. 2) over five repetitions of the same experiment. In the real-world stock market
dataset, the ground truth graph is unknown and thus the outcome can only be empirically evaluated.

5.1 SYNTHETIC EXPERIMENTS

Data generation. We use similar settings as (Pamfil et al., 2020) for the SVAR parameters
and (Misiakos et al., 2023b) for the root causes, as explained next. First, we set the number of nodes
d, the length of the time-series data T , the number of samples N of the time series and the maximum
lag k of the SVAR model. For the window graph W we choose directed random Erdös-Renyi graphs
B0,B1, ...,Bk, where B0 is a DAG with average degree 5 and B1, ...,Bk have average degree 2.
We consider a time lag of k = 2 by default and include a version with k = 5 in Appendix D.2. The
edges of W are assigned uniform random weights from [0.1, 0.5]. Then, our time-series data are
generated according to the SVAR in (4). With the upper bound 0.5 in the weights of W , the data X
is likely bounded and we only discard it when its average value is higher than a large threshold (see
Appendix D.1). The entries of C in (4) are non-zero with probability p = 5%, in which case they
are assigned a uniform weight from [−1,−0.1] ∪ [0.1, 1], otherwise they are = 0 with probability
1 − p. We choose the threshold 0.1 in (7) for all methods on evaluating the recovery of locations
and time of the root causes. Finally, we consider Nc as zero-mean Gaussian with standard deviation
0.01.

Results. Fig. 2 presents three variations of the synthetic experiment. Figs. 2a, 2b correspond to a
fixed number of samples N = 1, 10 of time-series of length T = 1000. The number of nodes d in
each adjacency matrix B0,B1, ...,Bk, ranges from 20 with 90 edges to 4000 with 36000 edges.

The SHD metric in Figs. 2a, 2b of PCMCI, TCDF, tsFCI and NTS-NOTEARS quickly deteriorates
even for a small number of nodes. The same observation holds for C SHD which is anticipated
as (7) requires a good approximation of W . DYNOTEARS and SparseRC perform best among
the baselines in Fig. 2a, but poorly in both 2a, 2b compared to DAG-TFRC. For DYNOTEARS
this is expected as it promotes uniform and low-magnitude root cause values with the L2-norm.
But, it is surprising for SparseRC, and we believe the reason is computational errors because some
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Table 1: SHD report for larger graphs. T is set to 1000. Dashes represent timeouts > 10000s.

Graph nodes d 1000 2000 4000 8000

Samples N 1 2 4 8 16 1 2 4 8 16 8 16 32 64 32
DAG-TFRC (SHD) 508 11 0 0 0 4890 929 2 0 0 4278 69 14 2 -
VAR-LiNGAM (SHD) - - - 115 29 - - - - - - - - - -

Table 2: Performance on the simulated financial dataset (Kleinberg, 2013).

Method SHD (↓) Time [s]

DAG-TFRC (Ours) 11.36± 7.46 6.32± 0.85
SparseRC 9.92± 8.22 9.74± 1.21
VAR-LiNGAM 19.25± 10.64 1.64± 0.10
Directed VARLiNGAM 15.31± 9.38 4.85± 0.31
TCDF 19.06± 10.18 33.56± 1.01

time lags Bτ ,Bτ+1, ...,Bk, τ > 0 are missing from the root cause equations, as explained in
Appendix (A). In Fig. 2b, for N = 10 samples, the best competitors are VAR-LiNGAM and Directed
VARLiNGAM and achieve a performance close to ours. But both are significantly slower than DAG-
TFRC. Directed VARLiNGAM has a time-out on 500 nodes and VAR-LiNGAM on 2000 nodes. In
particular, for 1000 nodes, VAR-LiNGAM is almost 1000 times slower than DAG-TFRC. In Fig. 2c,
we set the number of nodes to d = 500 and vary the number of samples N from 1 to 20 to see that
VAR-LiNGAM requires many more samples than DAG-TFRC to perform reasonably well and is
then always slower. Here, baselines that are not shown perform worse or have time-outs.

Larger graphs. We evaluate the performance of VAR-LiNGAM and DAG-TFRC for graphs with
thousands of nodes and varying number of samples in Table 1. Those were the only methods without
time-out and reasonable performance for 1000 nodes. First, we observe that VAR-LiNGAM times
out for 2000 and 4000 nodes. For 1000 nodes we see that it requires more data time points to give
a reasonable result. On the other hand, DAG-TFRC requires only a few samples on each case to
achieve an excellent performance, except for 8000 nodes where it also times out. As one example
we mention that DAG-TFRC can learn almost perfectly a window graph with 3 × 4000 (including
the lags) nodes and 64× 1000 data time points, in 2530s.

In Appendix D.2 we further include experiments on the sensitivity of the time lag k showing that
DAG-TFRC performance remains unaffected as long as it parametrizes a large enough time lag.

5.2 SIMULATED FINANCIAL PORTFOLIOS

We consider simulated financial time-series data from Kleinberg (2013). These represent daily stock
returns generated with the Fama-French three-factor model (Fama, 1970) (volatility, size and value).
The return xi,t of stock i at time t is computed as xt,i =

∑
j bijft,i + ϵt,i, where ft,i are the three

factors, bij are weights and ϵt,i are (correlated) idiosyncratic terms. Out of the available datasets, we
use 16 that contain time lags up to 3 time steps. The data consists of daily returns of d = 25 stocks
and the ground truth DAGs contain 22 edges on average. Each dataset contains a (multivariate) time
series X with 4000 time steps which we split into 50 time-steps to create X of shape 80× 50× 25.

In Table 2 we report the SHD and runtime. Note that here we cannot evaluate the root causes as there
exist no ground truth ones. The hyperparameters of each method were chosen with grid search as
explained in Appendix D.7. The top-performing methods are DAG-TFRC and SparseRC, indicating
that few root causes is a valid assumption for these financial data. SparseRC performs slightly better
than DAG-TFRC, which can be due to the very small scale: both time lag and number of nodes are
small. However, SparseRC is still slower. The fastest method VAR-LiNGAM is worse in terms of
performance. The other baselines didn’t perform well and are left in the Appendix D.4.
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(a) DAG-TFRC estimate for B̂0

NVDA, 24th May 2024

META, 1st Feb 2024

(b) DAG-TFRC estimate for Ĉ

Figure 3: Real experiment on the S&P 500 stock market index. (a) Instantaneous relations B̂0

between the 45 highest weighted stocks within S&P 500, grouped by sectors (squares), and (b) the
discovered root causes Ĉ for 60 days. In (a) the direction of influence is from row to column.

5.3 APPLICATION: S&P 500 STOCK DATA

Dataset. We consider stock values from the Standard and Poor’s (S&P) 500 market index. A smaller
version (S&P 100) of this index has been considered in (Pamfil et al., 2020). We gather data from
the last 5 years: March 1st, 2019 to March 1st, 2024. We only consider the stocks that are present
in the index during the entire time, which leaves d = 410 stocks as nodes. We collect the available
daily close values for every stock which result in 1259 data time points for every stock and compute
as data values the normalized log-returns (Pamfil et al., 2020). For the stock i on day t it is computed
as xt,i = log(yt+1,i/yt,i), where yt,i is the closing value of stock i at day t. We partition the time
series into shorter time intervals of length 50 to obtain time-series data X of shape 25 × 50 × 410.
Using these data we learn the window graph that reveals the temporary relations between stocks and
the underlying root causes that generate the data.

Learning stock relations. We execute all baselines with hyperparameters set according to the
synthetic experiment. Fig. 3a shows the DAG-TFRC estimate for B̂0 representing the instantaneous
relations between stocks. A figure with similar properties is discovered by SparseRC, but with the
other baselines we did not manage to obtain reasonable result with our choice of hyperparameters
or the ones from the published papers, see Appendix D.6. Below we analyze this result and argue
that the few root cause assumption yields interpretable results for financial data.

For better visualization, we focus on the 45 highest weighted stocks in the S&P 500 index. In the
execution of DAG-TFRC we set a maximum time lag k = 2, but it discovered that only B0 was
significant. This confirms the known (Markovian) stock market principle: the previous day of the
stock market contains all information from the past Fama (1970). Fig. 3a can be well interpreted.
The edges of B̂0 roughly cluster the stocks w.r.t. their economic sectors. The few outliers are caused
by the big IT companies being spread over three sectors as shown: (i) MSFT influences GOOGL (ii)
META, AAPL both influence AMZN and (iii) AMZN influences MSFT and NVDA. Also, we note
that the weights of B̂0 are positive which implies that stocks have a positive effect on each other: if
one increases or decreases the others move along the same direction.

Learning root causes. From the window graph approximation Ŵ , we can estimate the root causes
with (7). In Fig. 3b we show the estimation for the same 45 stocks and 60 randomly chosen dates. As
one may expect, they reflect significant changes in the stock price. To inspect further, we evaluated
all computed root causes regarding their correspondence to stock price changes. We say that a root
cause ct,i aligns with the change in data if ct,i [xt+1,i − (1 + ct,i/2)xt,i] > 0. For example, if a root
cause equal to +0.1 aligns with the data change then xt+1,i is at least 1.05 times xti. Considering
a threshold of 0.07 in C results in 4228 significant root causes which amounts to around 1% of the
total time-series data points NdT = 512500. 99.6% of those aligned with the data changes. Thus,
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whenever there is a significant root cause at day t, then the price of the stock at day t + 15 will
increase if the root cause is positive (red) or decrease if the root cause is negative. Therefore, the
root causes will reflect significant events affecting the stock values.

News and dividends. We conjecture that the root causes only correspond to significant changes
that reflect unexpected events. For example META has a positive root cause +0.18 on 1st Feb 2024
(Fig 3b). The same day META announced that it would pay dividends for the first time according
to Reuters (2024). Similarly for the positive root cause +0.21 of NVDA on 24th May 2023, the
company announced jumps in its sales forecast as the demand for AI infrastructure increased, ac-
cording to Reuters (2023). On the other hand, an event that is expected, but still affects the stock
prices is the dividends, which are deducted on the ex-dividend date known well before. We conjec-
tured that it is unlikely that a root cause reflects a dividend payment. In our dataset, we have a total
of 3796 paid dividends, but only 35 of those coincided with a negative root cause, as conjectured.

Limitations. DAG-TFRC inherits limitations of structure learning based on SVAR. Using SVAR
implies a linear model and stationarity, i.e., the window graph is the same for every time point and
also across all time-series samples. The directed edges found are not necessarily true causal rela-
tions; establishing those would require further causal tools like interventions. We implicitly assume
no undersampling: the measurement frequency is at least as high as the causal effects frequency.
Undersampling may affect the stock market experiment where we used daily the measurements, but
stock market effects happen within split seconds. In addition, we assume that there are no missing
values in the data and the measurements on each node are taken with the same frequency. Also,
while we can scale to thousands of nodes and better than prior work, very large graphs beyond
that are still out of reach. Finally, we work with the underlying assumption of few root causes. In
Appendix D.5 we include an experiment on the Dream3 challenge, a time series gene expression
dataset. Our method is not the most appropriate, potentially because the linearity or the few root
cause assumptions are violated.

6 CONCLUSION

Our main contribution to the body of work on causal inference from time-series data is the novel
assumption of few root causes, which means that the data are generated via a small number of events
in (node, time point) pairs. Assuming a standard SVAR model, we provided a practical algorithm
that leverages this assumption to achieve both, higher accuracy and significantly faster execution on
thousands of nodes than prior work as we illustrated in experiments. In particular, this included the
accuracy in the discovery of the locations and time points of root causes. We motivated the few root
cause assumption intuitively and with experiments on simulated and real financial data that yielded
reasonable and interpretable results.

5The root cause effect happens on the next day as the data we consider are the log returns of stock prices.
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ETHICS

DAG-TFRC inherits the broader impact of other DAG learning methods from time series. From an
ethical viewpoint, the methodology is generic and poses no specific potential risk.

REPRODUCIBILITY

We acknowledge the importance of reproducibility and here we explain the actions that we took
towards a more effortless reproduction of our results.

Code. We provide our code written in Python 3.9 as supplementary material and will make it
available on github upon acceptance. In the README.md file, we explain the Python environment
installation, how the code can be executed, and provide a Jupyter notebook demonstrating a synthetic
experiment. More importantly, our code not only provides an implementation of our method but
rather the whole experimental pipeline, showing how the data are generated and how the baselines
are applied.

Data. The few root causes data generation can be executed using our code or reproduced according
to the parameters explained in the experimental section of the main text and the details in Ap-
pendix D.1. For the simulated financial and the S&P 500 data we provide in Appendix D.10 the
sources to download them.

Methods. We have explained in great detail in the main text the optimization problem solved by
DAG-TFRC and the adapted version of SparseRC that we use for fair comparison, also explained in
Appendix A. For the execution of all baselines, we use publicly available repositories listed in D.9
with hyperparameters set as shown in D.7. Competitor methods can also be executed using the
provided code.
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A APPLYING SPARSERC TO TIME-SERIES DATA

SparseRC (Misiakos et al., 2023b) is designed to learn a DAG from static data. Misiakos et al. (2024)
applied SparseRC to learn graphs from time-series data by exploiting the structure of the unrolled
DAG corresponding to the time series. For long time series, such a formulation creates a huge DAG
to be learned - ranging from 20 thousand to 1 million nodes in our experiments. However, SparseRC
can only be executed for ≈ 5000 nodes at maximum to terminate in a reasonable time (Misiakos
et al., 2023b). Thus it is impossible to be applied in our scenario in its prior form. For this reason, we
propose an alternative way to apply SparseRC, which however, comes with a cost in approximation
performance.

SVAR as a Linear SEM. To start with we show how an SVAR can be written as a linear structural
equation model (SEM), which is the analogous model for generating linear static DAG data. We
consider a time series X generated with the SVAR in (3) (noiseless for simplicity). Consider the
single-row vector x = (x0,x1, ...,xT−1) ∈ R1×dT consisting of the concatenation of the time-
series vectors x0,x1, ...,xT−1 along the first dimension. Then (3) can also be encoded as:

x = xA+ c, (8)

where the root causes c here also have dimension 1× dT . The matrix A is the adjacency matrix of
a DAG with a special structure called the unrolled DAG (Kim &Anderson, 2012), which occurs by
repeating the window graph corresponding to (2) for every time step t ∈ [T ]:

A =



B0 B1 . . . Bk . . . 0

0 B0 B1
. . .

...
...

. . . . . . . . . Bk

. . . . . .
...

0 . . . 0 B0 B1

0 0 . . . 0 B0


. (9)

This allows us to rewrite (3) as a linear structural equation model (SEM) (Shimizu et al., 2006):

X̃ = X̃A+ C̃, (10)

where X̃ ∈ RN×dT consists of the N time series as rows and C̃ is defined similarly for the root
causes. Since A is a DAG, (10) represents a linear SEM.

Original SparseRC. We now explain how SparseRC can be applied to learn the window graph
from time series according to Misiakos et al. (2024). SparseRC can be used to learn A from (many
samples of) x stacked as a matrix X̃ ∈ RN×dT , generated from a linear SEM (10). Its optimization
objective aims to minimize the number of approximated non-zero root causes C̃ in (10). This is
expressed with the following discrete optimization problem

Â = argmin
A∈RdT×dT

∥∥∥X̃ − X̃A
∥∥∥
0
, s.t. A is acyclic. (11)

The window graph Ŵ can be then extracted from the first row of the approximated Â. SparseRC
in practice uses a continuous relaxation to solve optimization problem (11), but here we keep the
discrete formulation for simplicity.

It can be seen that the DAG A consists of dT nodes. In our smallest experiment this equals to
20 × 1000 = 20000 nodes, which is already out of reach for SparseRC. In contrast, DAG-TFRC
requires to learn only (k + 1)× DAGs with d nodes each. Thus, we necessarily need to formulate
SparseRC differently to be able to compare against it.

Modified SparseRC. The idea is to reduce the size of A by getting rid of the 0′s in (9). Specifically,
instead of feeding SparseRC X̃ we feed as input Xpast. The resulting algorithm aims to find an Â
according to:

Â = argmin
A∈R(k+1)d×(k+1)d

∥Xpast − XpastA∥
0
, s.t. A is acyclic. (12)
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To be compatible with the data-generating process, the following structure is assumed for A:

A =



B0 0 ... 0 0

B1 B0
. . . 0

... B1
. . . . . .

...

Bk−1
. . . B0 0

Bk Bk−1 . . . B1 B0,

 (13)

The optimization objective (12) is different from ∥X − XpastW ∥
0

used from DAG-TFRC and
promotes a different convention in the data generating process. In particular by setting C̃ =
Xpast − XpastA the root cause c̃t−j corresponding to the position j of row t of xt,past =
(xt,xt−1, ...,xt−j , ...,xt−k) of a sample i of Xpast would be:

c̃t−j = xt−j − xt−jB0 + xt−j−1B1 + ...+ xt−kBk−j ̸= ct−j . (14)

This implies that the approximation of the root causes is not consistent with the data generation
in (3), except when j = 0. Thus, only the first column of A promotes the correct equations and the
rest undermine the performance of SparseRC. Resolving this discrepancy and keeping only the first
column as trainable parameters is among the technical contributions of our paper.

B DAG-TFRC OPTIMIZATION AND COMPARISON WITH BASELINES

DAG-TFRC. Our implementation in PyTorch is outlined in Algorithm 1. It parametrizes the win-
dow graph matrix W using a single PyTorch linear layer and optimizes the objective function (6)
with the Adam optimizer. The overall computational complexity of the algorithm is:

O
(
M · (NTd2k + d3)

)
, (15)

where M is the total number of epochs (up to 104).

The primary term in our objective, 1
2NT ∥X − L (X)∥1, represents a fundamental difference from

prior work on causal discovery in time series. Methods such as VAR-based optimization approaches
(Pamfil et al., 2020; Sun et al., 2023) typically rely on a mean-squared error loss supplemented by
an L1 penalty to promote sparsity in the DAG.

In contrast, both the main term and the regularizer in our objective are L1 norms, promoting sparsity
not only in the DAG but also in the root causes. This design aligns with the assumption of a few
root causes in the data. Additionally, the L1 norm has a constant gradient, ensuring consistent
convergence speed. By comparison, L2 minimization results in a diminishing gradient near the
local optimum, potentially leading to longer convergence times.

B.1 COMPARISON WITH BASELINES

SparseRC. As we explained in the main text, the method from Misiakos et al. (2023b) is in-
feasible to execute for long time series data. In its original form, SparseRC has complexity
O
(
M · (Nd2T 2 + d3T 3)

)
, where M is the total number of iterations. SparseRC learns a dT × dT

unrolled DAG, which for our smaller scenario, results in a DAG with d× T = 20× 1000 = 20000
nodes that goes beyond its computational reach (Misiakos et al., 2023b).

In Appendix A, we design a modified version of SparseRC that learns a (k+1)d×(k+1)d adjacency
matrix, which ultimately leads to a complexity of O

(
M · (NTd2k2 + d3k3)

)
. This adaptation can

be executed in most scenarios but comes at the cost of reduced model performance.

VAR-LiNGAM. First, the method fits a VAR model to the data:

xt = B̃1xt−1 + ...+ B̃kxt−k + nt, (16)

and then performs Independent Component Analysis (ICA) to compute the self-dependencies matrix
B0:

nt = (I −B0)nt + ct. (17)
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Algorithm 1 DAG-TFRC: DAG Learning from Time Series with Few Root Causes

Input: Time series data tensor X ∈ RN×T×d, λ1, λ2 regularization parameters and threshold ω.

Output: Weighted window graph Ŵ =

B0

...
Bk

 and root causes Ĉ.

1: Initialize:
2: A single linear layer L(input: d(k + 1), output: d) in PyTorch that represents Ŵ .
3: Tensor Xpast ∈ RN×T×d(k+1), where the (n, t) entry is the vector xt,past =

(xt, xt−1, ..., xt−k) ∈ R1×d(k+1).

4: Iterate:
5: for each training epoch up to M = 104 do
6: Compute the loss:

1

2NT
∥X − L (X)∥1 + λ1∥W ∥1 + λ2h(B0),

where h(B) = tr
(
eB⊙B

)
− d .

7: Update the linear layer parameters Ŵ with Adam optimizer.
8: Stop early if the loss doesn’t improve for 40 epochs.
9: end for

10: Post-processing:
11: Set the entries wij of W with |wij | < ω to zero.
12: Compute the unweighted version U ∈ {0, 1}d(k+1)×d of W .
13: Compute the approximated root causes:

Ĉ = X − XpastŴ .

14: return Ŵ , Û , Ĉ

The resulting matrices are calculated as

Bτ = (I −B0)B̃τ .

The ICA step can be replaced with Direct LiNGAM (Shimizu et al., 2011), which guarantees con-
vergence in a finite number of steps (under certain assumptions). This variation leads to the method
Directed VARLiNGAM. However, both approaches have worse complexity compared to ours:

• For Direct LiNGAM: O
(
NTd2k +NTd3M2 + d4M3

)
, where M is the number of iter-

ations of Direct LiNGAM.
• For ICA LiNGAM: O

(
NTd2k +NTd3 + d4

)
, which lacks convergence guarantees.

In the large-DAG regime, these algorithms are inevitably slower than ours.

DYNOTEARS. Here, the mean-square error (MSE) is used, transforming the optimization into a
quadratic problem:

1

2NT
∥X − XW ∥2 + λw∥W ∥1 +

ρ

2
h(B0)

2 + ah(B0), (18)

where the L2 norm in the first term doesn’t enforce sparsity on the root causes. As a result, this
method experiences longer convergence times and produces a poor approximation of the ground
truth window graph.

TCDF. This method fits convolutional neural networks (CNNs) to predict the time series at each
node, based on the time-series values of other nodes in previous time steps. The approximation is
optimized using the MSE loss. However, both the non-linearity of CNNs and the MSE loss do not
align with our data generation process, which limits the method’s effectiveness for our specific task.

NTS-NOTEARS. Similar to TCDF, this method also uses CNNs and MSE loss to approximate
the window graph. In addition, the acyclicity regularizer from NOTEARS is applied. For similar

17
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reasons, we anticipate low performance in our experiments with this method as well, due to the
mismatch between the assumptions of the method and the characteristics of our data.

tsFCI, PCMCI. For the constraint-based baselines, there is no clear comparison in terms of opti-
mization. These methods rely on statistical independence tests to infer causal dependencies between
nodes at different time points. Empirically, however, these methods perform poorly, likely due to
their inability to determine the causal direction for every edge they discover.

C PROOFS

In this section we present the proofs for the technical results of the paper regarding the stability of
the time series, the identifiability of the window graph from time-series data, and the proof that the
ground truth window graph is the global minimizer in (5).

C.1 SVAR STABILITY

Whenever a measurement can be taken in a system, stability in the measured data holds by definition.
For example, temperature measurements or stock price markets are never unbounded. To ensure
that the same happens for synthetic data, one needs to guarantee the stability of the data generation
process. A few prior works mention stability (Gong et al., 2015; Khanna &Tan, 2019; Bellot et al.,
2022; Malinsky &Spirtes, 2018), and here we want to acknowledge its importance.

Equation (4) can be viewed as a discrete-time multi-input multi-output (MIMO) system (Skogestad
&Postlethwaite, 2005), in which the input is the root causes C (together with noise) and the output
is the time-series data X . As the time-series length T in (2) increases, the values of X can get
arbitrarily large. We desire to find a range of weights for the matrices B0,B1, ...,Bk that guarantees
that our time-series data are bounded. In particular, we require a condition for the bounded-input
bounded-output (BIBO) stability of this system. This has been already considered by Lütkepohl
(2005) (linear case, for non-linear refer to (Saikkonen, 2001)). The proposed condition requires
the roots of the reverse characteristic polynomial to have a modulus less than 1. Here, we prove a
practical and intuitive condition for stability as a derivation of the (Lütkepohl, 2005) result.

Transitive closure. To begin, we introduce the definition of the weighted transitive closure of the
unrolled DAG (9).

X̃ = X̃A+ C̃ ⇔ X̃ = C̃ (I −A)
−1

= C̃
(
I +A

)
, (19)

On the right hand (19) A = A+ ...+AdT−1 is the weighted transitive closure (Seifert et al., 2023)
of the unrolled DAG A.

Stability of model (4). We will now prove Theorem C.1 that we are interested in. This provides a
sufficient condition under which the model (4) is BIBO stable. BIBO stability here means that if the
input root causes C and the noise Nc are bounded, then so are the output measurements X .
Theorem C.1. The model (4) is BIBO stable if for some (sub-multiplicative) matrix norm ∥ · ∥:

∥W ∥ < 1

Proof. If ∥W ∥ = λ < 1 then from the structure of A also ∥A∥ = ∥W ∥ = λ < 1. Therefore:

∥∥I +A
∥∥ =

∥∥I +A+ ...+AdT−1
∥∥ ≤

dT−1∑
t=0

∥A∥t ≤
dT−1∑
t=0

λt ≤
∞∑
t=0

λt =
1

1− λ
= M

Thus

lim
T→∞

∥X∥ = lim
T→∞

∥∥(I +A
)
(C +Nc)

∥∥
≤ lim

T→∞

∥∥I +A
∥∥ ∥C +Nc∥

≤ M ∥C +Nc∥
This implies that ∥X∥ is bounded for all T and the model (4) is BIBO stable.
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Example. Consider the induced L∞−norm as ∥A∥∞ = maxj
∑d

i=1 |aij |. The induced L∞−norm
is sub-multiplicative and thus Theorem C.1 can be utilized. In fact it can be proved that any in-
duced vector norm is sub-multiplicative (Theorem 5.6.2 in (Horn &Johnson, 2012)). Then, condi-
tion ∥W ∥∞ < 1 translates to all outcoming weights (rows of the window graph matrix) having the
sum of absolute values less than 1.

For the sake of completeness, we provide a proof of the submultiplicativity property of the
L∞−norm in Lemma C.2.
Lemma C.2. The induced L∞−norm is submultiplicative.

Proof. Consider any two square matrices A,B ∈ Rd×d. We need to show that ∥AB∥ ≤ ∥A∥ ∥B∥.
Indeed,

∥AB∥ = max
i

d∑
j=1

∣∣∣∣∣
d∑

k=1

aikbkj

∣∣∣∣∣
≤ max

i

d∑
j=1

d∑
k=1

|aikbkj |

= max
i

d∑
k=1

d∑
j=1

|aik| |bkj |

= max
i

d∑
k=1

|aik|

 d∑
j=1

|bkj |


≤ max

i

d∑
k=1

|aik|

max
k

d∑
j=1

|bkj |


= max

i

d∑
k=1

|aik| ∥B∥

≤ ∥A∥ ∥B∥

Example. The L∞−norm is particularly interesting for our scenario as the condition of Theo-
rem C.1 provides an intuitive interpretation for the weights. Consider our stock market example.
Then the condition in C.1 means that for every stock that affects a set of other stocks, each with
some factor < 1, the total sum should be less than 1. Of course, this is only a sufficient condition for
the data to be bounded, but we believe that it is meaningful to consider that the influences between
stocks are of this form in reality. To understand better why the condition in C.1 provides bounded
data, we can think about it in the following way. When the L∞−norm is bounded, the total ef-
fect of a stock is divided into individual fractions that affect other stocks and doesn’t get iteratively
increased (which could be the case with sum L∞−norm > 1).

Bounding the sum of outcoming weights to 1 has also been considered in (Seifert et al., 2023;
Misiakos et al., 2023b) in the scenario of pollution propagation in a river network.

C.2 SVAR IDENTIFIABILITY

Theorem C.3. Consider the time-series model (4). We assume that any root cause takes a uniform
random value from [−1, 1] with probability p and is zero with probability 1− p. Then the adjacency
matrices B0,B1, ...,Bk ∈ Rd×d are identifiable from the time-series data X.

Proof. As explained in Appendix A we can rewrite the SVAR (4) as a linear SEM:

X = XpastW + C + Nc ⇔ X̃ = X̃A+ C̃ + ÑC . (20)
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The root causes follow a non-Gaussian distribution which implies that C̃+ÑC is also non-Gaussian.
Moreover, based on the acyclicity assumption on B0, the unrolled matrix A represents a DAG and
therefore (10) describes an SEM with non-Gaussian noise variables as in (Shimizu et al., 2006). The
proof then follows from Theorem 3.1 in (Misiakos et al., 2023b) or similarly from the identifiability
result in (Shimizu et al., 2006). Moreover, identifiability on A in turn implies identifiability for the
parameters B0,B1, ...,Bk of the window graph W , as desired.

C.3 GLOBAL MINIMIZER

Theorem C.4. Consider time-series data X generated from (3). Then given a large (exponential in
dT ) amount of samples N , the matrix W is with high probability the unique global minimizer of
optimization problem (5).

Proof. As explained in Appendix A we can rewrite the SVAR (4) as a linear SEM: We will use again
the equivalent of the SVAR as a linear SEM with the unrolled DAG.

X = XpastW + C + Nc ⇔ X̃ = X̃A+ C̃ + ÑC . (21)

Since, by construction, it is true that

∥C + Nc∥0 =
∥∥∥C̃ + ÑC

∥∥∥
0
, (22)

from the previous equation, we get that:

∥X − XpastW ∥
0
=

∥∥∥X̃ − X̃A
∥∥∥
0
. (23)

The root causes C (or C̃) are generated entry-wise, each with probability 1 − p being 0 and with
probability p taking a uniform value in [−1,−0.1] ∪ [0.1, 1]. Also, the linear SEM matrix A gen-
erating the data according to (10) is acyclic because of our assumption that B0 is acyclic and its
construction, as shown in (9). Therefore, the conditions of Theorem 3.2 in (Misiakos et al., 2023b)
are satisfied. This means that given a large amount of data that is exponential in the dimension of A
(= dT ) and also depends on the probability p, then it is guaranteed with high probability that any
global minimizer of optimization problem (5) is equal to the ground truth A. That also implies that
the global minimizer is unique.

Denote:

Â = argmin
A∈RdT×dT

∥∥∥X̃ − X̃A
∥∥∥
0
, Ŵ = argmin

W∈Rd(k+1)×d

∥X − XpastW ∥
0

Then according to (Misiakos et al., 2023b) Â = A, the ground truth DAG, which has the form of
an unrolled DAG corresponding to W . We derive

min
A∈RdT×dT

∥∥∥X̃ − X̃A
∥∥∥
0
=

∥∥∥X̃ − X̃Â
∥∥∥
0
=

∥∥∥X̃ − X̃A
∥∥∥
0
= ∥X − XpastW ∥

0

It follows that the ground truth window graph W is the global minimizer Ŵ . Indeed for shake of
contradiction, if there is W ′ with

∥X − XpastW
′∥

0
< ∥X − XpastW ∥

0

Then this would allow us to construct an unrolled DAG A′ with∥∥∥X̃ − X̃A′
∥∥∥
0
= ∥X − XpastW

′∥
0
< ∥X − XpastW ∥

0
=

∥∥∥X̃ − X̃A
∥∥∥
0

which is absurd. This concludes the desired result.
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(a) N = 1, T = 1000
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(b) N = 10, T = 1000
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(c) d = 500, T = 1000

DAG-TFRC (Ours)

SparseRC

VARLiNGAM

Directed VARLiNGAM

DYNOTEARS

NTS-NOTEARS

tsFCI
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TCDF

Figure 4: Performance on synthetic data: AUROC (↑), F1-score (↑) NMSE (↓) and root causes
NMSE (↓). (a), (b) correspond to N = 1 and N = 10 samples of time-series with T = 1000 and
varying number of nodes. (c) corresponds to d = 500 nodes and varying samples N of time-series
of length T = 1000. Any non-reported point implies execution time-out (over 10000s).

D EXPERIMENTS

D.1 EXPERIMENTAL DETAILS

The stability of the time-series data X according to Theorem C.1 would require all B0,B1, ...,Bk

to have an upper bound w on their weights equal to (5 + 2 + 2)w = 9w < 1, or w < 0.11. Instead,
to have a larger variety of weights we assign uniformly random weights from [0.1, 0.5] to the edges.
In practice, X most likely converges. Whenever we encounter unbounded data (X has an average
value larger than 106 ·NdT ) we discard them and repeat the generation process.

D.2 SYNTHETIC EXPERIMENTS

In Fig. 4 we provide the additional metrics AUROC (area under ROC curve), F1-score, the normal-
ized mean square error (NMSE) and the NMSE on the root causes approximation. Formally, if Ŵ
and Ĉ are the approximations of the ground truth window graph W and root causes C then:

NMSE =

∥∥∥Ŵ −W
∥∥∥
2

∥W ∥2
, C NMSE =

∥∥∥Ĉ −C
∥∥∥
2

∥C∥2
. (24)
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Figure 5: Performance on the experiment with more lags k = 5. The number of samples is set to
N = 10 and each time series sample has length T = 1000. The plots show performance for varying
number of nodes. The weight bounds are set to [0.1, 0.2] for data convergence.

Larger time lag. In Fig. 5 we include an experiment with larger number of time lags k = 5. In
this experiment, we have N = 10 samples of time series of length T = 1000 and varying number
of nodes. The rest of the experimental settings are set the same as the main experiment. The only
exception is the weight bounds for W that here are set [0.1, 0.2], because more lags imply that the
weights need to be smaller to have bounded data according to the property of Theorem C.1. The
results here are similar to Fig 2b. DAG-TFRC performs even better.
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Figure 6: Evaluating the sensitivity of the time-lag k in synthetic settings with original k = 3,
d = 1000 nodes, T = 1000 and N = 10 samples. The algorithms have varying time-lag from 1 to
6.

20 30 50 10
0

20
0

50
0

10
00

20
00

40
00

Nodes d

0

500

1000

1500

2000

SH
D

20 30 50 10
0

20
0

50
0

10
00

20
00

40
00

Nodes d

0

100

200

300

T
im

e 
[s

]

20 30 50 10
0

20
0

50
0

10
00

20
00

40
00

Nodes d

0.0275

0.0300

0.0325

0.0350

0.0375

C 
N

M
SE

DAG-TFRC (Ours)

Figure 7: Evaluating the outcome of DAG-TFRC in the case where Gaussian noise N (0, 1) is fed
as input. We consider standard synthetic settings with original k = 2, T = 1000, N = 1 sample
and varying number of nodes from 20 to 4000. The hyperparameters of DAG-TFRC are set to
λ1 = 0.001 ·N · T = 1, λ2 = 1 ·N · T = 1000.

Sensitivity of time lag. We examine the sensitivity of the time lag parameter of the algorithms with
the experiment in Fig. 6. In this experiment, we consider standard synthetic settings with d = 1000,
T = 1000, and true time-lag k = 3.

When DAG-TFRC has time-lag k′ ≥ k = 3 as parameter, its approximation remains optimal.
Therefore, given a large enough time-lag to DAG-TFRC, it can correctly detect the true underlying
maximum time-lag k of the system under consideration. We also saw this in our real experiment
with stocks, in Fig. 3 where it didn’t discover any time-lagged dependencies as expected (the stock
market reacts almost instantaneously). As expected, DAG-TFRC performs poorly if the time-lag k′

given to the algorithm is smaller than 3.

SparseRC, performs well as long as k′ > k, but still with worse approximation compared to DAG-
TFRC. Moreover, it has higher execution runtime and times-out for k′ = 6. VAR-LiNGAM
performs reasonably when the algorithm is given the exact real time-lag k, but times-out when
k′ > k = 3.

Other baselines had a time-out or poor performance.
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D.3 GAUSSIAN ROOT CAUSES

We evaluate the behavior of DAG-TFRC in a special case scenario that doesn’t obey the sparse root
causes assumption. We consider that each entry in the input X is an independent noise variable
∼ N (0, 1).

This scenario is equivalent to the data generation equation (4)

X = XpastW + C + Nc. (25)

where W = 0 and C = 0. Thus X = Nc. Our algorithm in this case will approximate the noisy
root causes C + Nc which are dense. Thus, in this case we re-weight the optimization objective (6)
to give more emphasis in the terms λ1 ∥W ∥1 and λ2 ·h (B0), in order to give Ŵ = 0 as output and
less emphasis on the sparsity of root causes ∥X − XpastW ∥

1
.

In Fig. 7 we show our results on this scenario. We choose hyperparameters λ1 = 0.001 ·N · T = 1

and λ2 = 1 ·N ·T = 1000. With this approach, our algorithm manages to correctly find Ŵ = 0 and
give a close approximation Ĉ on the ground truth root causes which are now equal to C+Nc = Nc.
Note, that in this trivial case it is crucial to account the noise in the root causes, as its contribution is
very significant (large standard deviation of noise and empty root causes tensor).

D.4 SIMULATED FINANCIAL DATASET

In Table 3 we show the results of the rest of the methods in the simulated financial dataset (Kleinberg,
2013). These methods perform worse for this setup, compared to methods utilizing the few root
cause assumption.

Table 3: Performance on the simulated financial dataset Kleinberg (2013).

Method SHD (↓) Time [s]

DYNOTEARS 33.92± 9.09 112.91± 29.59
NTS-NOTEARS 57.83± 37.22 16.40± 14.45
tsFCI 21.94± 9.52 17.50± 12.82
PCMCI 361.69± 67.80 16.23± 4.69

D.5 DREAM3 CHALLENGE DATASET

Table 4: AUROC report on the Dream3 challenge dataset (Marbach et al., 2009; Prill et al., 2010).
The methods are partitioned into non-linear and linear for a fair comparison. Best performances are
marked with bold.

Model E.coli-1 E.coli-2 Yeast-1 Yeast-2 Yeast-3

Non-linear

MLP 0.644 0.568 0.585 0.506 0.528
LSTM 0.629 0.609 0.579 0.519 0.555
TCDF 0.614 0.647 0.581 0.556 0.557
SRU 0.657 0.666 0.617 0.575 0.55
eSRU 0.66 0.629 0.627 0.557 0.55
PCMCI 0.594 0.545 0.498 0.491 0.508
NTS-NOTEARS 0.592 0.471 0.551 0.551 0.507
tsFCI 0.5 0.5 0.5 0.5 0.5

Linear

DAG-TFRC (Ours) 0.529 0.518 0.561 0.524 0.516
VARLiNGAM 0.574 0.531 0.542 0.5 0.519
Directed VARLiNGAM 0.517 0.481 0.510 0.488 0.514
DYNOTEARS 0.590 0.547 0.527 0.526 0.510

In Table 4 we report the AUROC performance of our method compared to baselines. There,
Component-wise MLP and LSTM are from (Tank et al., 2021) and SRU and eSRU from (Khanna
&Tan, 2019). while the rest of the methods are present in the main paper. The results of the first
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5 rows are taken from (Khanna &Tan, 2019) and DYNOTEARS from (Gong et al., 2022). The
methods are partitioned into non-linear and linear for a fair comparison.

Our method is competitive to other linear-model baselines but worse than those assuming a nonlinear
model. Apparently, one of the two assumptions, either the few root causes assumption or linearity of
the data generation does not hold in this dataset and our method might not be the most appropriate.

D.6 S&P 500 REAL EXPERIMENT

In Figs. 8 and 9 we show the performance of SparseRC, VAR-LiNGAM, TCDF and PCMCI on the
S&P 500 stock market index.

As also mentioned in the main text, SparseRC approximates a DAG similar to DAG-TFRC. This is
due to the few root cause assumption that both methods use.

VAR-LiNGAM seems to identify significant edges for any random stock combination, thus produc-
ing a poor result. Also, the approximated root causes Ĉ are less expressive than ours in the sense
that out of the 4507 discovered root causes only 33.7% of them align with the data changes.

TCDF produces a very sparse DAG with not enough information.

Also, PCMCI outputs a zero graph for time-lag 0 and a not well-structured graph for time-lag 1. As
a consequence, we don’t see a meaningful pattern in the root causes.

DYNOTEARS had as output an empty graph and thus its performance is not reported. Regarding
its hyperparameters, we minimized the weight threshold up to 0 (all weights included as edges) and
we tried both λw = λa = 0.01 and k = 2, which were the optimal from our synthetic experiments
and λw = λa = 0.1 which is the reported best in the S&P 100 experiment in (Pamfil et al., 2020).

Directed VARLiNGAM, tsFCI and NTS-NOTEARS had time-out in this experiment.
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(a) SparseRC estimate for B̂0
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(d) VAR-LiNGAM estimate for Ĉ

Figure 8: Evaluating baselines on the real experiment with S&P 500 stock market index. (a) Instan-
taneous relations between the 45 highest weighted stocks within S&P 500 and (b) the discovered
root causes for 60 dates.

D.7 HYPERPARAMETER SEARCH

To find the most suitable hyperparameter selection for each method in our synthetic and simulated
experiments we perform a grid search and choose the parameter combination that achieves the best
SHD performance.

D.7.1 SYNTHETIC EXPERIMENTS

For convenience we perform the grid search on small synthetic experimental settings (N = 1 sam-
ple, T = 1000 time steps, d = 20 nodes) where all methods have reasonable execution time. Note
that for all methods we set their parameters regarding the number of lags correctly, to equal the
ground truth lag (default k = 2). Also, the weight threshold is set to 0.09 for all methods that
compute the weighted adjacency matrix (true weights have magnitude ranging in [0.1, 0.5]). Any
non-relevant hyperparameter that is not mentioned is set to its default value. The hyperparameter
search gave the following optimal hyperparameters for each method:

DAG-TFRC. We set λ1 = 0.001, λ2 = 1 the coefficients for the L1 and acyclicity regularizer,
respectively. We let DAG-TFRC run for 10000 epochs, although usually it terminates earlier as we
have an early stopping activated when for 40 consecutive epochs the loss didn’t decrease.
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(a) TCDF estimate for B̂0
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(c) PCMCI estimate for B̂1
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(d) PCMCI estimate for Ĉ

Figure 9: Evaluating PCMCI on the real experiment with S&P 500 stock market index. (a) Relations
between the 45 highest weighted stocks within S&P 500 with time-lag 1 and (b) the discovered root
causes for 60 dates.

SparseRC. We set λ1 = 0.001, λ2 = 1, λ3 = 0.001 the coefficients for the L1, acyclicity and
block-Toeplitz regularizers, respectively. We similarly let SparseRC run for 10000 epochs, although
usually it terminates earlier using early stopping as with DAG-TFRC.

VAR-LiNGAM. We may choose between ICA or Direct LiNGAM. In our experiments, we consider
both cases (VAR-LiNGAM and Directed VARLiNGAM). The weight threshold is set to 0.09.

DYNOTEARS. The resulting values are λw = λa = 0.01.

NTS-NOTEARS. The resulting values are λ1 = 0.002, λ2 = 0.01. The htol and the dimensions of
the neural network were left to default.

tsFCI. Significance level is set to 0.1. Note that the output of tsFCI is a partial ancestral graph
(PAG), which we therefore need to interpret as a DAG. For this scope we follow the rules of
DYNOTEARS (Pamfil et al., 2020), meaning that whenever there is ambiguity in the directionality
of the discovered edge we assume that tsFCI made the correct choice (this favors and over-states the
performance of tsFCI). In particular, we translate the edge between nodes i and j in the following
ways (i) if i → we keep it, (ii) if i ↔ j in the PAG we discard it, (iii) either i◦ → j or i ◦ − ◦ j we
assume tsFCI made the correct choice, by looking at the ground truth graph.

PCMCI. The ParCorr conditional independence test was chosen. We do so because this test is
suitable for linear additive noise models. Parameters are set as pca = 0.1, alevel = 0.01. The
output can sometimes be ambiguous (◦ − ◦) because the algorithm can only find the graph up to the
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Markov equivalence class, or there be conflicts (x− x) in the conditional independence tests. In the
former case, we assume that PCMCI made the correct choice and in the latter we disregard the edge.

TCDF. Here the kernel size and the dilation coefficient are set as the number of lags +1 (k+1 = 3).
The other parameters are significance = 1 and epochs = 1000.

D.7.2 SIMULATED FINANCIAL DATA

Here we perform the grid search on the first available dataset of the simulated data (out of the 16
available) and choose the hyperparameters offering the best SHD performance. Here, we search for
the most compatible weight threshold ω as the distribution of the ground truth weights is not known
from the data generation. For all methods we set the number of maximum time lags at 3, which
is the maximal ground truth lag. Any non-relevant hyperparameter that is not mentioned is set to
its default value. The hyperparameter search gave the following optimal hyperparameters for each
method:

DAG-TFRC. We set λ1 = 0.0001, λ2 = 1, ω = 0.5. We let DAG-TFRC run for 10000 epochs at
maximum.

SparseRC. We set λ1 = 0.001, λ2 = 1, λ3 = 0.1, ω = 0.3. We similarly let SparseRC run for
10000 epochs at maximum.

VAR-LiNGAM. The weight threshold is set to ω = 0.5 for VAR-LiNGAM and ω = 0.6 for
Directed VARLiNGAM.

DYNOTEARS. The resulting values are λw = 0.05, λa = 0.01, ω = 0.3.

NTS-NOTEARS. The resulting values are λ1 = 0.001, λ2 = 1, ω = 0.1. The htol and the
dimensions of the neural network were left to default.

tsFCI. Significance level is set to 0.001 and ω = 0.1 As previously we favor tsFCI in case of
ambiguity, using the ground truth.

PCMCI. The ParCorr conditional independence test was chosen and parameters are set as pca =
0.1, alevel = 0.01, ω = 0.1. In case of ambiguity, we assume PCMCI made the correct choice.

TCDF. The kernel size and the dilation coefficient are set as number of lags +1 (k + 1 = 4). The
other parameters are significance = 0.8, epochs = 1000, ω = 0.2.

D.8 COMPUTE RESOURCES

Our experiments were run on a single laptop machine (Dell Alienware x17 R2) with 8 core CPU with
32GB RAM and an NVIDIA GeForce RTX 3080 GPU. The execution of the synthetic experiments
for the 5 repetitions amounts to approximately 1 week of full run. Of course, initially there were
some failed experiments, and after debugging the experiments were executed for only 1 repetition
to determine where each method has a time-out. We thus chose the time-out to 10000 to try to make
our experiments with as little cost as possible.

D.9 CODE RESOURCES

For the implementation of the methods in our experiments we use the following publicly available
repositories or websites. All github repositories are licensed under the Apache 2.0 or MIT license,
except tigramite and TCDF which are under the GPL-3.0 license.

SparseRC. SparseRC code https://github.com/pmisiakos/SparseRC/. (MIT license)

VAR-LiNGAM. We use the official LiNGAM repo which we clone from github:
https://github.com/cdt15/lingam. (MIT license)

DYNOTEARS. Code is available from the CausalNex library of QuantumBlack. The code is at
https://github.com/mckinsey/causalnex/blob/develop/causalnex/structure/dynotears.py (Apache 2.0
license)

NTS-NOTEARS. We use the github code https://github.com/xiangyu-sun-789/NTS-NOTEARS
provided by Sun et al. (2023). (Apache 2.0 license)
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tsFCI. We use the R implementation from Doris Entner website which in turn
utilizes the https://www.cmu.edu/dietrich/philosophy/tetrad/. Tetrad is licensed
under the GNU General Public License v2.0. We also used the repository
https://github.com/ckassaad/causal discovery for time series corresponding to the causal time
series survey (Assaad et al., 2022b) (no license available).

PCMCI. We use the PCMCI implementation from (Runge et al., 2019) within the tigramite package.
(GNU General Public License v3.0)

TCDF. We use the repository https://github.com/M-Nauta/TCDF from Nauta et al. (2019). (GNU
General Public License v3.0)

eSRU. We use the repository https://github.com/iancovert/Neural-GC from Khanna &Tan (2019).
(MIT License)

D.10 DATA RESOURCES

Simulated financial time series. We take the data from http://www.skleinberg.org/data.html li-
censed under CC BY-NC 3.0

S&P 500 stock returns. The data are downloaded using yahoofinancials python library.
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