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Abstract

Cross-modal retrieval tasks, such as image-to-text and text-to-image, are cru-
cial for assessing vision-language models (VLMs). State-of-the-art VLMs like
CLIP and BLIP-2 excel on benchmarks like MSCOCO and Flickr30K. Due
to high similarity between the evaluation (Flickr30K) and finetuning datasets
(MSCOCO), this setup is insufficient to assess the OOD generalization capabil-
ity. We introduce WIKIDO (drawn from Wikipedia Diversity Observatory), a
new benchmark featuring 384K image-text pairs, along with carefully curated,
human-verified in-distribution (ID) and OOD test sets of size 3K each. Our
evaluations reveal that BLIP-2 achieves a zero-shot R@1 of 66% on WIKIDO’s
OOD test set, compared to 81% on MSCOCO and 95% on Flickr. Fine-tuning
on WIKIDO yields modest improvements, highlighting the benchmark’s utility
in testing OOD generalization. Our benchmark is hosted as a competition at
https://kaggle.com/competitions/wikido24 with public access to dataset
and code.

1 Introduction

Vision-language models (VLMs) are pretrained on very large amounts of diverse image and text data,
thus making them capable of robust reasoning. A true measure of this capability is to evaluate how
well VLMs generalize to out-of-distribution (OOD) instances. This has been addressed in prior work
[1, 2] by finetuning VLMs on a given corpus for a given task and conducting zero-shot evaluations
on a new corpus. However, the mere use of an unseen corpus for evaluation does not imply it is OOD.
We present a new benchmark WIKIDO to measure how well VLMs generalize to OOD instances.
WIKIDO consists of image-text data derived from Wikipedia Diversity Observatory, a diverse source
of Wikipedia articles. We curate a dataset consisting of 1) 354K training images with corresponding
text and 2) two evaluation sets – an in-domain (ID) set and an out-of-domain (OOD) set1 drawn
from domains that are seen and unseen during training, respectively. Our OOD evaluation set is
carefully constructed to be used as a reliable testbed for VLMs.

Figure 1 highlights the main aspects of WIKIDO including the domains spanned by the articles,
their distribution and a few illustrative image-text pairs. In this work, we focus on cross-modal
(image-to-text and text-to-image) retrieval tasks. We show retrieval performance of well-known
VLMs, namely CLIP [3], BLIP [1] and BLIP-2 [2], on WIKIDO test sets before and after finetuning
on the WIKIDO training instances.

1OOD might be more appropriately expanded as out-of-domain rather than out-of-distribution in WIKIDO,
given that both ID and OOD images are extracted from the same source (i.e., Wikipedia).
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Figure 1: Distribution of topics in the final filtered dataset

2 Related Work

Image-text datasets. Image-text datasets are broadly classified into large, automatically-filtered
datasets that are crawled from the web and smaller datasets that are human-annotated. The larger
datasets comprising millions of instances include SBU [4], CC3M [5], CC12M [6], YFCC-100M
[7], WIT [8], LAION-400M [9], and LAION-5B [10]. The smaller datasets include Flickr30K [11],
MSCOCO [12] and Visual Genome [13]. Flickr30K and MSCOCO consist of images of everyday
activities, most commonly used as evaluation benchmarks for cross-modal retrieval. Office-Home
[14], PACS [15], and VLCS [16] are existing domain generalization benchmarks focused on image
classification and are not multimodal. DGIC [17] collates popular existing datasets: MSCOCO,
Vizwiz [18], Flickr30k, CUB-200 [19], and Oxford102 [20]. While datasets like MSCOCO, Vizwiz,
and Flickr30k represent common objects from daily life and are easier domains for VLMs [17, 21, 22],
the avian (CUB-200) and floral (Oxford102) domains are significantly more challenging.
Vision-language models. VLMs are broadly focused on tasks related to cross-modal understanding
and cross-modal generation. A critical component of understanding is aligning the visual and textual
features. Models like CLIP [3] and ALIGN [23] use a dual-encoder model to individually extract
features and align them through a global contrastive loss. UNITER [24] utilizes a multimodal encoder
to extract visual and textual characteristics jointly. ALBEF [25] introduced image-text matching
and masked language modelling to align the image-text representations. FILIP [26] works at the
granularity of image patches and textual words to further refine the alignment. BLIP [1] introduces a
new vision-language pretraining framework with both vision-language understanding (image-text
contrastive loss and image-text matching loss) and generation objectives (language modelling loss).
BLIP-2 [2] also uses both kinds of objectives but bootstraps vision-language pre-training from
off-the-shelf pre-trained image encoders and large language models as textual encoders.

3 WIKIDO: A New Evaluation Benchmark

WIKIDO is derived from the Wikipedia Diversity Observatory2 (WDO). WDO consists of data,
visualizations and tools to analyze and bridge the gap in content in Wikipedia, based on the current

2https://wdo.wmcloud.org/
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state of diversity across Wikipedia articles. This diversity is assessed based on a few specific
categories: geographical location, gender, sexual orientation, ethnic groups, religious groups and
topical coverage. We chose English articles from the topical coverage category to create the WIKIDO
dataset, since this was most extensive in terms of coverage across topics. The Wikipedia articles in
this category are labelled with one of the following topics: Earth, Monuments and Buildings, GLAM
(Galleries, Libraries, Archives and Museums), Folk, Food, Books, Paintings, Clothing and Fashion,
Sports and Teams, Music Creations and Organizations, and People. This categorization of articles
into topics also aids the construction of ID and OOD test sets in WIKIDO.

3.1 Details of Data Curation

Table 1: Dataset schema

Key Description

image_path path of the image
image_id Wiki ID of the image
orig_cap Reference text from Wikipedia
image Unique image ID given in the dataset
page_id Wiki ID of the page from which the

image was extracted
page_title Title of the wikipedia article from

which the image was extracted
topic Topic label from Wikipedia Diversity

Observatory
caption Caption obtained by passing

orig_cap through LLava (for test, val
sets also human verified)

The data from WDO contains meta-information about
an article and the corresponding topic label. We find all
Wikipedia pages from Wikipedia dumps [27] and extract
the URLs of the images from the articles. The topic la-
bel associated with the page is assumed to be the topic
label for all the images in the page. For each image, we
extracted metadata like the page URL, page title, height,
width, and three different types of text associated with the
image. These are: 1. Reference description: The caption
that is visible on the Wikipedia page just below the image.
2. Attribution: Text appearing on the Wikimedia page of
the image. 3. Alt-text description: Text used by accessi-
bility/screen readers when the image is not visible. This
crawled dataset consists of 2.7M image-text pairs out of
which 1.2M are unique images. We follow the filtering
steps adopted from WIT [8]. All images have a research-
permissive license such as Creative Commons; Wikipedia
text is licensed underCC-BY-SA license. The final filtered dataset consists of 384K unique image-text
pairs, each labelled with a topic label. These images and the corresponding text were passed through
the visual instruction-tuned model LLaVA [28] for enhancing the captions. To create train-val-test
splits, we identified a subset of topics that were semantically different from the rest, both visually
and linguistically. We used t-SNE analysis and MMD (Maximum Mean Discrepancy) of domains to
chose the topics food, paintings and medicine to appear in the OOD test set (see appendix A.3). The
remaining topics are included in the train, validation and in-domain test sets. we only retain those
samples (3k) in the OOD test set that are highly dissimilar from the train set w.r.t. both image and
text modalities. 354K samples remain in the train set after creating the validation and test splits. We
created three different kinds of train splits – a balanced train set consisting of almost equal number of
samples from each topic amounting to a total of 100K instances. Henceforth, this set will be referred
to as the train set unless mentioned otherwise. Similarly, a balanced training set is created using 200K
samples and, the training set containing all 354K samples. As reference texts were enhanced using
LLaVA (which may hallucinate), we revised the validation, ID, OOD test set captions via a human
verification pass (see appendix A.5).

4 Experiments and Results

We benchmark the performance of pretrained CLIP (ViT-L/14@336px), BLIP (ViT-L, ViT-B) and
BLIP-2 (ViT-L, ViT-G) models on WIKIDO, MSCOCO and Flickr. We show zero-shot performance
and the effect of finetuning with different objectives using these pretrained models on all three
datasets. Unlike CLIP which uses ITC (image-text contrastive) scores,both BLIP and BLIP-2 use a
re-ranking strategy called ITM (Image-text matching) after ITC for evaluation (top N captions from
ITC are used; see appendix B.2). All evaluations use the Recall@k (R@k, k= 1, 5, 10) metric.

z-shot BLIP and BLIP-2 perform better on ID than OOD by 3-7% across all R@K, while CLIP
performs almost similarly on both ID and OOD (≈2-3% gap), suggesting better domain coverage
during pretraining. Zero-shot performance of CLIP and BLIP-2 is significantly higher than that of
BLIP. This could be attributed to the larger training data of CLIP compared to BLIP (>3x). We use
the 100K balanced train set to finetune all models and evaluate on WIKIDO ID and OOD test sets;
these numbers are denoted as W in Table 2. The gap between ID and OOD sets have significantly
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Table 2: Comparison of state-of-the-art VLMs. Z denotes zero-shot and W denotes model fine-tuned
on 100K split of WIKIDO dataset. Number of parameters are listed alongside model names.

Model
WIKIDO ID Test set (3K) (N=128) WIKIDO OOD Test set (3K) (N=128)

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

BLIP (ViT-B)-223M
Z 58.8 81.0 87.7 63.8 82.9 88.7 55.1 73.2 79.4 58.7 76.1 81.6
W 73.2 90.8 94.6 73.4 89.7 93.9 62.3 79.6 84.3 62.8 80.0 85.2

BLIP (ViT-L)-446M
Z 61.6 83.5 89.7 65.8 85.4 91.1 58.9 76.4 82.6 62.1 79.0 83.9
W 72.6 90.8 94.6 73.7 90.3 94.2 63.6 80.8 86.1 65.9 81.8 86.9

CLIP (ViT-L)-428M
Z 72.9 88.8 93.1 69.5 87.2 91.6 68.2 85.8 90.3 66.3 84.3 88.9
W 82.8 95.0 97.4 81.5 94.4 96.7 73.4 87.7 91.8 72.9 88.3 91.9

BLIP-2 (ViT-L)-473M
Z 70.3 87.8 91.8 74.1 89.3 93.2 66.4 82.2 86.9 70.4 84.9 88.6
W 82.1 94.0 96.4 82.5 94.3 96.7 72.1 85.9 90.3 73.6 87.1 90.3

BLIP-2 (ViT-G)-1172M
Z 70.8 89.1 93.1 75.3 90.6 94.1 66.1 81.4 86.2 69.3 84.7 88.3
W 79.4 93.3 96.2 80.0 93.3 96.1 70.5 84.3 88.2 72.0 85.9 89.2

Table 3: Overview of results for the current way of showing OOD generalization. Z denotes zero-shot,
C denotes model fine-tuned on MSCOCO, and F denotes model fine-tuned on Flickr.

Model
COCO Test set (5K) (N=128) Flickr Test set (5K) (N=128)

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP (ViT-L)-428M
Z 57.5 80.7 87.8 36.6 60.9 71.0 86.6 98.0 99.1 67.2 88.9 93.4
C 75.4 92.8 96.2 58.6 82.2 89.3 94.5 99.7 99.7 83.1 96.9 98.5
F 68.9 87.6 92.7 51.8 75.8 84.0 95.5 99.5 99.9 85.0 97.7 98.9

BLIP-2 (ViT-L)-473M
Z 78.9 93.9 96.9 62.4 84.1 90.2 95.3 99.7 100.0 85.2 96.9 98.3
C 83.2 95.9 98.0 66.1 86.6 91.8 97.1 100.0 100.0 88.3 98.0 98.9
F 80.7 94.7 97.5 64.4 85.4 91.1 97.0 100.0 100.0 89.9 98.4 99.2

grown from 3-7% in the zero-shot setting to 9-11% across all R@K. For OOD, R@k improvement
for the majority of models are under 5% (none above 10%). Table 3 shows finetuning on MSCOCO
significantly improves Flickr performance and vice versa, therefore not a reliable test for OOD
generalization. CLIP’s zero-shot performance is lower than that of the BLIP model as the latter
has already seen image-caption pairs similar to those of MSCOCO during pretraining. For BLIP,
finetuning on MSCOCO and testing on Flickr is almost the same as finetuning on Flickr, suggesting
significant overlap between datasets and making MSCOCO-Flickr a not-so-strong pair for testing
generalization.

5 Conclusion

We introduced WIKIDO, a novel benchmark specifically designed to evaluate the out-of-distribution
(OOD) generalization capabilities of vision-language models (VLMs) in the context of cross-modal
retrieval. While CLIP demonstrated superior zero-shot performance on the OOD test set, this was
notably lower compared to its performance on traditional benchmarks like MSCOCO and Flickr.
Moreover, fine-tuning on WIKIDO yielded a relatively modest improvement of approximately ≈5%
on OOD instances, suggesting inherent challenges in achieving robust OOD generalization. These
findings underscore the limitations of current VLMs in handling truly OOD data. WIKIDO thus
serves as an effective testbed to help develop, evaluate and guide future VLMs towards superior
generalization capabilities.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 3.1 and Section 4 to validate the dataset
contribution and experimental claims.

(b) Did you describe the limitations of your work? [Yes] See Appendix B.7
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We present

data scraped from Wikipedia with open licenses to evaluate current vision-language
models. Our data is objectively limited to domains and does not reflect any societal
elements.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We do not
present any theoretical results in the paper

(b) Did you include complete proofs of all theoretical results? [N/A] We do not present
any theoretical results in the paper

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Section 4 and
Appendix B.2 has details of codebases and datasets used. Code and benchmark will be
made public soon.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Appendix B.2 has detailed explanation of training setting and
Table 7 has hyperparameter details.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Due to compute limitations, we have ran experiment with
multiple seed only for the best model. Results can be found in supplementary.
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(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Appendix B.2 has details of the
amount of compute used.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Section 2 contains

the details of all models and data used.
(b) Did you mention the license of the assets? [Yes] Section 3.1 contains the license of the

assets used.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

Code and benchmark will be made public soon.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] We are using publicly available data at https://wdo.wmcloud.
org/. Details are provided in the supplementary material.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Details are provided in the supplementary
material.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] Used human annotators to help with caption enhancement. Annotator
guidelines are mentioned in the supplementary material.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No potential participant risks, as research
is not based around human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] Yes, human annotators were paid. Details of
compensation is mentioned in the supplementary material.

A Dataset Details

A.1 Caption enhancement

Here is the prompt template for LLava.

<Image> Wikipedia caption: <Caption>
Given the image and the wikipedia caption above, give an exact and concise caption.
Do not miss any information from the wikipedia caption.

Some examples of original and enhanced captions are given in Table 5.

Most frequently occurring noun phrases in both original and enhanced captions are given in Table 4.

A.2 POS Analysis

Figure 2 shows the POS tag distributions for both original and enhanced captions. While there is a loss
of unique POS-word pairs after enhancement, the retained POS-word pairs tend to repeat at a much
higher rate in the enhanced captions compared to the original captions. While retained proper nouns do
not often repeat in enhanced and original captions, common nouns, adjectives, verbs, and determiners
tend to repeat a lot in enhanced captions. This may be due to the replacement/paraphrasing of specific
proper nouns and nouns with more general nouns. Qualitative examples of the most frequently
occurring nouns in original and enhanced captions are given in the appendix A.1.

A.3 Measuring the domain gap.

Figure 3: T-SNE plot for embeddings of 1000 ran-
dom images and texts per topic with perplexity 30

The final WIKIDO dataset we use in all our ex-
periments uses LLaVA-enhanced captions. To
create train-val-test splits, we identified a subset
of topics that were semantically different from
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Table 4: Most frequently occurring noun phrases in original and enhanced captions.

Original Enhanced Original Enhanced
noun freq. noun freq. noun freq. noun freq.

st 7390 st 5253 view 16582 building 83017
street 6687 park 4279 station 12932 front 38729
park 6070 museum 4268 building 7086 people 35632
house 5907 new 4196 entrance 7008 man 35472
museum 5835 school 4069 church 4057 train 26638
church 5528 house 4024 century 3772 view 26415
new 4666 street 3891 side 3520 group 24159
hall 4641 church 3747 c 3511 sign 23713
school 4473 hall 3386 right 3398 image 23262
us 4357 national 3039 bridge 3349 background 23221
de 4330 de 3008 train 3339 photo 20967
bridge 4070 island 2763 part 3297 street 19211
lake 3939 city 2655 line 3149 station 17741
national 3879 lake 2601 tower 3062 painting 17497
station 3790 river 2453 background 2994 stone 16995
island 3779 john 2434 construction 2987 brick 16812
road 3651 station 2416 image 2978 tower 16508
river 3267 us 2397 site 2903 woman 16065
castle 3197 bridge 2385 end 2739 side 15880
city 3176 north 2330 railway 2635 scene 15390

Figure 2: Top: Proportion of POS tags in original captions and those retained in the enhanced captions.
Bottom: Average repetition count of retained POS-word pairs in the original and enhanced captions.
∗ denotes that the repetition count of determiners is scaled down by a factor of 1000 for visualization.
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Table 5: Examples of original and enhanced version of captions

Original Caption Enhanced Caption Image
Rakuten Kitazawa created
the first modern Japanese
comic strip. (Tagosaku to
Mokube no T0̆14dky0̆14d
Kenbutsu,[f] 1902)

A comic strip by Rakuten Ki-
tazawa depicts a man being
attacked by a snake.

Highest peak, Mogielica (top
centre)

A mountain range with the
highest peak being Mogiel-
ica.

Ceremonial bag of the
Fr0̆0edas culture

A ceremonial bag from the
Frías culture is displayed in
a glass case.

The Model A Ford Museum The Model A Ford Museum
is a large brick building with
a blue flag on top. The build-
ing is surrounded by a park-
ing lot and has a sign out
front.

the rest, both visually and linguistically. We ran-
domly sampled 1000 instances from each topic
and passed the instances through CLIP (ViT-L)
to get embeddings. Figure 3 shows the t-SNE
plots for both image and text embeddings. Al-
though most topics in the dataset overlap in the
representation space, paintings, medicine and
food (shown in blue) are fairly well-separated in
both image and text space. We further validate
this quantitatively by measuring the domain gap
using Maximum Mean Discrepancy (MMD) [17]. Table 6 highlights that food, medicine and paint-
ings differ linguistically from the other topics. MMD for visual embeddings show that earth, food
and medicine are the most distant topics. The appendix A.4 provides implementation details and
results for MMD.
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Figure 4: Percentage of instances that were marked as Correct (no hallucination), Hallucinated, and
Wrong (caption and image do not match).

A.4 MMD

The MMD distance between domains DS and DT can be measured according to the following
equation:

MMD(DS , D̂T ) =
∥∥EX∼DS [φ(X)]− EY∼D̂T [φ(Y )]

∥∥
H (1)

=
1

n2
s

ns∑
i=1

ns∑
j=1

k(xi, xj) +
1

n2
t

nt∑
i=1

nt∑
j=1

k(yi, yj)−
2

nsnt

ns∑
i=1

nt∑
j=1

k(xi, yj) (2)

where k represents the RBF kernel and ns, nt represent the sample sizes in the source and target
domains. For visual representations, we use pretrained ResNet-101 [29] to extract final 2048-D
embeddings {vi, vj} for images in each pair of datasets {DS , D̂T }. For the semantic representation
of the captions, we choose pre-trained BERT [30] to encode captions {qi, qj} from pairwise datasets
{DS , D̂T }.

Table 6: Measuring the topic gaps with MMD. Red is linguistic domain gaps over 2048-D ResNet
embeddings, and green is visual domain gaps over 768-D BERT embeddings. Following is the order
of topics: food (1), medicine (2), industry (3), sport and teams (4), paintings (5), religion (6), folk (7),
books (8), glam (9), music creations and organizations (10), clothing and fashion (11), monuments
and buildings (12), earth (13).

1 2 3 4 5 6 7 8 9 10 11 12 13

1 - 0.02 0.05 0.06 0.07 0.05 0.05 0.04 0.05 0.08 0.04 0.06 0.07
2 0.03 - 0.04 0.04 0.04 0.03 0.03 0.01 0.04 0.04 0.02 0.05 0.06
3 0.02 0.03 - 0.03 0.06 0.03 0.02 0.04 0.01 0.05 0.04 0.01 0.05
4 0.03 0.03 0.01 - 0.04 0.03 0.02 0.04 0.03 0.03 0.02 0.04 0.06
5 0.05 0.04 0.04 0.04 - 0.02 0.02 0.03 0.04 0.03 0.03 0.05 0.07
6 0.03 0.03 0.02 0.02 0.02 - 0.01 0.02 0.01 0.04 0.02 0.02 0.05
7 0.03 0.02 0.01 0.01 0.03 0.01 - 0.03 0.02 0.02 0.02 0.02 0.05
8 0.02 0.02 0.01 0.02 0.02 0.01 0.01 - 0.03 0.04 0.02 0.04 0.06
9 0.03 0.03 0.01 0.02 0.03 0.01 0.01 0.01 - 0.05 0.04 0.01 0.04

10 0.03 0.03 0.02 0.01 0.04 0.02 0.01 0.02 0.02 - 0.03 0.06 0.09
11 0.02 0.02 0.01 0.01 0.03 0.01 0.01 0.01 0.02 0.01 - 0.05 0.08
12 0.02 0.03 0.01 0.02 0.03 0.01 0.01 0.01 0.0 0.02 0.02 - 0.03
13 0.02 0.03 0.01 0.02 0.04 0.02 0.02 0.01 0.01 0.02 0.02 0.01 -

A.5 Human Verification

Since the reference texts were enhanced using LLaVA and could result in hallucinations, we revised
the validation, ID, OOD test set captions via a human verification pass. For each image, the evaluator
was specifically asked, "Is there any made-up/ hallucinated content in the caption that is not supported
by the image/reference text?" with an option to answer with a "Yes" or "No". If they answer "Yes",
then the evaluator was asked to correct the reference text by mainly removing the hallucinations in the
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Figure 5: Average edit distance between human-corrected and hallucinated captions is shown. The
contribution of various edit types is shown.

enhanced captions. Figure 4 shows that the percentage of instances marked as having hallucinations
is comparatively much smaller than correct captions across all splits. Almost all edits done by human
raters to the hallucinated captions are "deletion" edits to remove hallucinations. Since the task of
human verification is to label is caption as hallucinated or not and remove any hallucinations from the
incorrect captions, we expect most edits done by humans are deletions. This is validated by finding
the Edit distance between the enhanced caption and the human-verified caption.Figure 5 summarizes
different types of edits and shows the edit distance.

B Experiments

B.1 Models

CLIP We use CLIP with Vision Transformer ViT/14 with pixel resolution 336px (ViT/14@336px).
This is the best model reported by the authors of CLIP. CLIP is trained on 400 million image-text
pairs collected from publicly available sources on the Internet. CLIP is pretrained with contrastive
learning objective (ITC) in a shared image-text space with large data making it robust to unseen
domains.

BLIP introduces a unified vision-language pretraining method which jointly optimizes three
objectives: image-text contrastive learning (ITC), image-text matching (ITM), and image-conditioned
language modeling. BLIP is trained with 129M images, including MSCOCO, Visual Genome,
CC3M, CC12M, SBU, and 115M images from the LAION-400M dataset. We perform experiment
on different image encoders i.e BLIP with ViT-B and ViT-L.

BLIP-2 bridges the modality gap of existing pretrained frozen image and text encoders using a
lightweight Querying Transformer (Q-Former) which uses learnt prompt queries and a BERT-based
text encoder. BLIP-2 is trained with same data and same training objectives as BLIP. Similar to BLIP,
we experiment with two BLIP-2 model variants: ViT-L and ViT-G. ViT-L is pretrained CLIP ViT-L
and ViT-G is pretrained Eva-CLIP ViT-G. ViT-L and ViT-G are trained on different but similar sized
(400M image-text pairs) datasets (CLIP-400M vs LAION-400M).

B.2 Experimental Details

Hyperparameters. We use the standard train, validation and test sets introduced in MSCOCO
[12] and Flickr [11]. For WIKIDO, we use the splits introduced in Section 3.1. To finetune BLIP
and BLIP-2, we follow the official code published by the authors. To finetune CLIP, we use LAVIS
codebase3. We use two variants of BLIP (ViT-L, ViT-B) and BLIP-2 (ViT-L, ViT-G) as well as CLIP

3https://github.com/salesforce/LAVIS
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Table 7: Hyperparameter settings
BLIP BLIP-2 CLIP
ViT-L (ViT-
B)

ViT-L (ViT-G)

Batch size 256 224 256
Queue
size

57600 57600 -

Pixel Res. 256 256 336
Optimizer AdamW AdamW Adam
lr 5e−6(1e−5) 5e−6(1e−5) 1e−6

Decay 0.05 0.05 1e−3

β1, β2 0.9, 0.999 0.9, 0.98 (0.9,
0.999)

0.9,
0.98

Table 8: Another table to empirically show coco flickr are not great for OOD generalization: zhsot,
coco finetuned, flickr finetuned for MSCOCO and Flickr splits

Model
COCO Test set (5k) (K=128) Flickr Test set (5k) (K=128)

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

BLIP (ViT-B)-223M
Z 70.6 90.2 94.4 56.4 80.4 87.4 87.2 98.0 99.1 78.2 94.1 96.9
C 81.9 95.2 97.6 64.3 85.7 91.5 96.0 99.9 100.0 85.0 96.8 98.6
F 77.9 93.3 96.6 61.3 83.7 89.9 97.2 99.9 100.0 87.3 97.6 99.0

BLIP (ViT-L)-446M
Z 73.7 91.6 95.6 58.2 81.7 88.7 89.9 98.8 99.7 80.4 94.9 97.1
C 82.3 95.3 97.9 65.1 86.3 91.9 96.7 100.0 100.0 86.7 97.3 98.7
F 78.9 93.7 97.1 62.7 84.7 90.6 97.4 99.8 99.9 87.6 97.7 99.0

CLIP (ViT-L)-428M
Z 57.5 80.7 87.8 36.6 60.9 71.0 86.6 98.0 99.1 67.2 88.9 93.4
C 75.4 92.8 96.2 58.6 82.2 89.3 94.5 99.7 99.7 83.1 96.9 98.5
F 68.9 87.6 92.7 51.8 75.8 84.0 95.5 99.5 99.9 85.0 97.7 98.9

BLIP-2 (ViT-L)-473M
Z 78.9 93.9 96.9 62.4 84.1 90.2 95.3 99.7 100.0 85.2 96.9 98.3
C 83.2 95.9 98.0 66.1 86.6 91.8 97.1 100.0 100.0 88.3 98.0 98.9
F 80.7 94.7 97.5 64.4 85.4 91.1 97.0 100.0 100.0 89.9 98.4 99.2

BLIP-2 (ViT-G)-1172M
Z 81.1 95.1 97.6 64.5 85.1 90.7 94.8 99.8 99.9 86.4 97.1 98.5
C 83.9 96.5 98.2 67.0 86.8 92.0 96.7 99.9 100.0 87.2 97.3 98.7
F 82.5 95.8 98.0 65.9 85.9 91.5 97.7 100.0 100.0 89.5 98.2 99.2

(ViT-L/14@336px). All models are trained for 6 epochs on 4 A100 80GB Nvidia GPUs. We used a
cosine learning rate scheduler. Hyperparameter settings are given in Table 7.

Evaluation metrics. Unlike CLIP, both BLIP and BLIP-2 use a re-ranking strategy for evaluation.
For instance, in the re-ranking strategy, we first select the top N captions (N = 128 for all exper-
iments) for a given image using ITC (image-text contrastive) scores, i.e., cosine similarity scores.
Then, we compute ITM (image-text matching) scores between the image and each of these N texts.
The final scores used for ranking are obtained by adding both ITC and ITM scores. For CLIP, we
only use cosine similarity (ITC scores) between the image and text for ranking. Conversely, the same
applies to text-to-image retrieval. All evaluations use the Recall@k (R@k, k= 1, 5, 10) metric.

B.3 Flickr-COCO

We finetune all models MSCOCO and test on Flickr to see the impact of OOD generalization.
Conversely, we also finetune with Flickr and test on MSCOCO, results shown in Table 8. It is
empirically evident MSCOCO and Flickr benefit from each other. For all models, finetuning dataset
helps the test dataset significantly. In fact, either finetuning with MSCOCO or Flickr gives almost
equal gains in Flickr Test set performance, suggesting overlap between MSCOCO and Flickr.
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Table 9: Effect of scaling the ID data on OOD generalization using BLIP (ViT-L).

# samples
WIKIDO ID Test set (3K) (N=128) WIKIDO OOD Test set (3K) (N=128)

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

100K 72.6 90.8 94.6 73.7 90.3 94.2 63.6 80.8 86.1 65.9 81.8 86.9
200K 74.1 91.4 95.4 75.4 91.1 94.9 64.4 81.1 86.1 66.5 82.1 86.7
354K 76.2 92.2 96.0 76.5 92.2 95.6 64.3 80.8 86.1 66.6 82.1 86.7

Table 10: Performance of models trained on different finetuning objectives trained on 100K split.
ViT-L backbone is used for both BLIP and BLIP-2.

Loss Model
WIKIDO ID Test set (3K) (N=128) WIKIDO OOD Test set (3K) (N=128)

Image → Text Text → Image Image → Text Text → Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ITC CLIP 82.8 95.0 97.4 81.5 94.4 96.7 73.4 87.7 91.8 72.9 88.3 91.9
BLIP 68.9 88.3 93.0 69.0 88.4 93.1 59.6 77.5 83.4 60.4 78.1 83.7
BLIP-2 74.4 92.9 95.7 75.6 92.3 95.7 61.2 80.1 85.6 62.5 82.0 87.6

ITC+ITM BLIP 72.6 90.8 94.6 73.7 90.3 94.2 63.6 80.8 86.1 65.9 81.8 86.9
BLIP-2 80.4 93.2 96.3 80.6 93.3 95.6 70.9 85.4 89.5 73.3 86.7 90.2

ITC+ITM+ITG BLIP-2 82.1 94.0 96.4 82.5 94.3 96.7 72.1 85.9 90.3 73.6 87.1 90.3

B.4 Effect of scaling ID data

To find out whether the performance gap between the ID and OOD test sets can be bri by adding
more data from the ID, we train BLIP with 200K and 354K image-text pairs. The results in Table
9 show minimal improvements in OOD, suggesting that scaling ID data is insufficient to close the
performance gap. In addition, the distribution of the largest train set is heavily biased towards only a
few domains, indicating the need for more diverse data during training.

B.5 Ablations on finetuning objectives.

All three models were trained with different pre-training objectives (described in Section 2). Table 10
shows the results of using different losses during fine-tuning. All models are of comparable size.
Even without the use of additional objectives, CLIP proves to be very robust. In BLIP-2, the addition
of ITM as an additional fine-tuning objective results in the largest R@1 improvement of ≈ 5-6%,
and ITG slightly improves performance. The performance improvement for BLIP by adding ITM is
limited to approximately ≈ 3-4%.

B.6 Object Overlap

To analyze object overlap between ID and OOD sets, we first use a parser [31] to extract noun phrases
from all sentences. Next, we use Grounding-DINO [32] to detect object boxes from the corresponding
image and label each box with the corresponding noun chunk if they semantically represent the
same thing. We recognize roughly 1M image boxes with the corresponding noun chunks in the text.
We pass these image boxes to DINOv2 [33] to extract the image features. After applying K-means
clustering to these embeddings with K=100, we obtain 100 meaningful clusters. To visualize this, we
select 1000 boxes per cluster that are closest to the centroid. Figure 6 shows these object clusters
with the difference between the objects present in OOD compared to ID. While there are a few
clearly separated clusters for OOD objects, there are clusters that contain both objects in OOD and
ID instances. This object overlap explains the gains in R@K for OOD after fine-tuning.

B.7 Limitations

While our work presents a carefully constructed test bed for OOD evaluation of VLMs, it is important
to acknowledge several limitations:
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Figure 6: TSNE of 100 object clusters. Blue shows OOD objects, and green denotes objects from ID
images.

Limited Scope of Image-Text Retrieval. Our primary focus has been on image-text retrieval.
Although this approach can be extended to other tasks, such as generation and contextual understand-
ing, our current evaluation framework does not cover these tasks. Since the data is extracted from
Wikipedia along with the meta-data like page ID and title, it can be used for tasks like contextual
image-captioning [34], image-suggestion and image-promotion [35].

Use of Topics Axis Only. In WIKIDO, we have primarily explored diversity only through the lens
of topical content. There are numerous other diversity axes, such as cultural context, ethnicity, gender
and religion, etc. that could provide a more robust and diverse evaluation framework. Additionally,
our data is currently limited to English despite the availability of similar data in multiple languages.
Expanding our evaluation to include multilingual datasets would help evaluate multilingual VLMs.

Lack of Manual Verification for Enhanced Training Set. The enhanced training set captions,
due to their large size, have not been manually verified. While our test and validation sets indicate
that the quality of the enhanced captions is high, the absence of manual verification could mean that
some errors remain in the training data.
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