
Extended Abstract Track
Under Review - Extended Abstract Track 1–53, 2024 Symmetry and Geometry in Neural Representations

Efficient Subgraph GNNs via Graph Products and
Coarsening

Editors: List of editors’ names

Abstract

Subgraph Graph Neural Networks (Subgraph GNNs) improve message-passing GNNs by
representing graphs as a set of subgraphs, achieving strong performance, but their complex-
ity limits applications to larger graphs. Previous methods use random or learnable sampling
of subgraph subsets, but these lead to suboptimal subgraph selections or restricted subset
sizes, causing performance drops. This paper presents a new framework to overcome these
challenges. We use a graph coarsening function to cluster nodes into super-nodes with
induced connectivity. The product of the coarsened and original graph reveals an implicit
structure, where subgraphs are tied to specific node sets. By applying generalized message-
passing to this graph product, we create an efficient and powerful Subgraph GNN. Unlike
previous methods, our approach allows flexible subgraph selection and is compatible with
standard training. Additionally, we uncover new permutation symmetries in the result-
ing node feature tensor, which we leverage by designing linear equivariant layers for our
Subgraph GNN architecture. Extensive experiments on several datasets show our method
is more flexible than previous approaches, effortlessly handling any number of subgraphs
while consistently outperforming baselines.

Keywords: Subgraph GNNs, Equivariance, Symmetries

1. Introduction

Subgraph GNNs Bevilacqua et al. (2022); Frasca et al. (2022); Zhang and Li (2021); Cotta
et al. (2021); Papp et al. (2021); Qian et al. (2022); Zhang et al. (2023); Bar-Shalom et al.
(2024) enhance MPNN expressiveness by transforming graphs into bags of subgraphs, show-
ing strong results on graph benchmarks. However, they face quadratic time complexity due
to message-passing across all subgraphs. Approaches like random sampling Cotta et al.
(2021); Bevilacqua et al. (2022); Bar-Shalom et al. (2024) or learning Bevilacqua et al.
(2024); Kong et al. (2024); Qian et al. (2022) to select subgraphs and reduce the bag size
aim to mitigate this but often lead to suboptimal performance or slow, complex training.
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Figure 1: Product graph construction. Left: Trans-
forming the graph into a coarse graph; Right: Carte-
sian product of the coarsened and original graph: the
vertical axis represents the subgraph dimension (super-
nodes), and the horizontal axis represents the node di-
mension (nodes).

Our approach. We propose a
Subgraph GNN that flexibly gen-
erates and processes variable-
sized subgraph policies, achiev-
ing strong results without com-
plex training. Building on Bar-
Shalom et al. (2024), we replace
the first element in the Cartesian
product G□G with a coarsened
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graph T (G), leading to a smaller product graph T (G)□G, as illustrated in Figure 1(right).
This allows flexible subgraph selection by adjusting the coarsening, shown in Figure 1(left).

Our method uses message passing on T (G)□G, leveraging unstudied symmetries in the
sparse node feature tensor. We incorporate affine equivariant operations and a node-marking
technique to improve performance. As shown in Figure 2, Section 4, experiments on Zinc-
12k demonstrate our method outperforms baselines in the small bag setting and competes
with state-of-the-art Subgraph GNNs in the full bag setting.

Contributions. This paper introduces a flexible Subgraph GNN framework for construct-
ing and processing subgraphs of any size, a characterization of affine invariant/equivariant
layers for this new node feature tensors, a theoretical analysis demonstrating the expressivity
benefits of the approach, and a comprehensive experimental evaluation showing state-of-
the-art results across both small and large bag sizes.

2. Preliminaries

Notation. Let G be a family of undirected graphs, with G = (V,E) representing a graph
in this family. The adjacency matrix A ∈ Rn×n defines graph connectivity, and the feature
matrix X ∈ Rn×d represents node features. The set of nodes is V , edges are E, and |V | = n.
We use v1 ∼A v2 to indicate neighboring nodes in A. Let [n] = {1, 2, . . . , n}, and P([n]) be
its power set.

Subgraph GNNs as graph cartesian products. Bar-Shalom et al. (2024) showed
that Subgraph GNNs and specifically the (node-based) maximally expressive variant Zhang
et al. (2023), GNN-SSWL+, can be simulated using the Cartesian product of two graphs
and applying message passing on the resulting product graph. The Cartesian product of G1

and G2, denoted G1□G2, creates a graph with vertex set V (G1)×V (G2). The adjacency and
node feature matrices of the product graph are A and X , where AG1□G2 = A1⊗ I+ I⊗A2.
As we shall see, our framework utilizes a cartesian product of the original graph and a
coarsened version of it, as illustrated in Figure 1 (right).

3. Coarsening-Based Subgraph GNN

Overview. This section introduces the Coarsening-based Subgraph GNN (CS-GNN) frame-
work. The main idea is to select and process subgraphs in a principled and flexible manner
through the following approach: (1) coarsen the original graph via a coarsening function, T
– see Figure 1(left); (2) Obtain the product graph – Figure 1(right) defined by the combi-
nation of two adjacencies, AT (G) (red edges), AG (grey edges), which arise from the graph
Cartesian product operation (details follow); (3) leveraging the symmetry of this product
graph to develop symmetry-based updates, described by AEquiv (this part is not visualized
in Figure 1). The general update of our suggested layer takes the following form 1,

X t+1(S, v) = f t
(
X (S, v)t, (1)

{{X (S′, v′)t}}(S′,v′)∼AG
(S,v)︸ ︷︷ ︸

Original connectivity (horizontal)

, {{X (S′, v′)t}}(S′,v′)∼AT (G)
(S,v)︸ ︷︷ ︸

Induced connectivity (vertical)

, {{X (S′, v′)t}}(S′,v′)∼AEquiv
(S,v)︸ ︷︷ ︸

Symmetry-based updates

)
,

1. Omitting edge features
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where the superscript t indicates the layer index. In what follows, we further elaborate
on these three steps. We note that each connectivity in Equation (1) is processed using a
different MPNN.

3.1. Product Graph Definition

A maximally expressive node-based Subgraph GNN can be achieved via the Cartesian prod-
uct of a graph G with itself, G□G Bar-Shalom et al. (2024). We extend this by using a
coarsened version of G, denoted T (G), as the left operand.

Graph coarsening. Given a graph G = (V,E) with n nodes and adjacency matrix A,
the coarsened graph T (G) has an adjacency matrix AT ∈ R2n×2n , where nodes represent
super-nodes (subsets of [n]). The connectivity is sparse and induced by A(v, u) = 1 if any
node in two subsets is connected in G.

In our implementation, we use spectral clustering to partition the graph into T clusters,
creating a coarsened graph with fewer nodes and edges. We emphasize that the space
complexity of T (G) is upper-bounded by that of the original graph.

Defining T (G)□G. The product graph T (G)□G is defined by the tensors AT (G)□G ∈

R(2n×n)×(2n×n) and X ∈ R2n×n×d. The connectivity is defined by: AT (G)□G =

≜AT (G)︷ ︸︸ ︷
AT ⊗ I +

≜AG︷ ︸︸ ︷
I ⊗A.

This product graph induces horizontal (AG) and vertical (AT (G)) updates, visualized in Fig-
ure 1(right) via grey and red edges, respectively.

3.2. Symmetry Based Updates

Using a coarsening function and graph Cartesian product, we derived AG and AT (G), en-
abling message-passing on the product graph (see Equation (1)). Building on recent Sub-
graph GNNs Frasca et al. (2022); Bar-Shalom et al. (2024); Zhang et al. (2023), in this sec-
tion we construct the Symmetry-based updates (AEquiv) by studying the symmetry structure
of the node feature tensor X (S, v). We present here the final results; detailed discussion
and derivations are available in Appendix F. For clarity, we change the notation from nodes
(v) to indices (i).

Symmetries of our product graph. Since the node order in G is arbitrary, our architec-
ture must be equivariant to permutations in both G and T (G). The adjacency and feature
matrices, A ∈ R(2n×n)×(2n×n) and X ∈ R2n×n×d, respect the symmetries of the symmetric
group Sn. For any σ ∈ Sn, the transformation rules are:

(σ · A)(S1, i1, S2, i2) = A(σ−1(S1), σ
−1(i1), σ

−1(S2), σ
−1(i2)), (2)

(σ · X )(S, i) = X (σ−1(S), σ−1(i)). (3)

Equivariant Bias and Invariant Layers. The bias vectors are in R2n×n, defined by the
indicators of the partition induced by the orbits under Sn. For pairs (S, i) ∈ P([n]) × [n],
γk

+
includes pairs with |S| = k and i /∈ S, and γk

−
with i ∈ S, resulting in the partition:

(P([n])× [n])/∼ ≜ {γk∗ : k = 1, . . . , n; ∗ ∈ {+,−}}. (4)
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The bias tensor basis is defined as:

Bγ
S,i =

{
1, if (S, i) ∈ γ;

0, otherwise.
(5)

Weight Matrices. Similarly, weight matrix elements (S1, i1, S2, i2) are partitioned by six
conditions, including the sizes of S1, S2 and S1 ∩ S2. The weight tensor basis is defined as:

BΓ
S1,i1;S2,i2 =

{
1, if (S1, i1, S2, i2) ∈ Γ;

0, otherwise,
(6)

where Γ is an equivalence class, or orbit. These tensors form an orthogonal basis for invariant
and equivariant layers. We revert to the original notation, using v for nodes instead of i.
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Using the symmetry-based updates. Any linear equivari-
ant layer can be realized through an MPNN applied to a fully
connected graph with appropriate edge features, as stated in
Lemma 24. The construction ofAEquiv uses these edge features
derived from the parameter-sharing scheme. To maintain effi-
ciency (and align with GNN-SSWL+ in our full-bag setting),
we use a subset of basis vectors to construct AEquiv (see inset – the parameter-sharing
scheme is represented by edges with matching colors). Nodes (S, v) that satisfy v ∈ S send
messages to nodes (S′, v′) where v = v′.

Node Marking. Instead of using the bias term for node marking Papp and Wattenhofer
(2022), we propose a more expressive variant: XS,v ←

∑
u∈S zSPD(v,u) where SPD(v, u) is

the shortest path distance in G. In Appendix D we justify this choice.

Pooling. After stacking layers, we apply a pooling layer to obtain the graph representation:
ρ(X T) = MLPT

(∑
S

(∑n
v=1X T(S, v)

))
with T as the final layer.

We conclude this section by refering to Appendix A, where a detailed table of contents
references various theoretical aspects of our model, thoroughly discussed in the appendix.

4. Experiments

Bag size

Zi
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Figure 2: Performance of Subgraph GNNs
with varying subgraph counts: Our method
excels in smaller bag sizes and matches state-
of-the-art performance in the full-bag setting.

We conduct an extensive set of experiments
across six datasets, focusing here on eval-
uating CS-GNN using the ZINC12k Ster-
ling and Irwin (2015) molecular benchmark
under a 500k parameter budget. For full
experimental details and results, see Ap-
pendix G. We compare CS-GNN against
random, learned, and full-bag baselines,
and as illustrated in Figure 2, CS-GNN out-
performs all efficient baselines (sometimes
significantly), achieving state-of-the-art re-
sults in the full-bag setting.
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Appendix A. Appendix: Table of Contents

The appendix is organized as follows:

• In Appendix B, we provide some basic definitions that will be used in later sections
in the appendix.

• In Appendix C we discuss some theoretical aspects of our model implementation, and
its relation to Equation (1).

• In Appendix D we define four natural general node marking policies and analyze their
theoretical effects on our model, as well as their relation to other node-based node
marking policies. Finally, we provide a principled derivation of one of these policies
using the natural symmetry of our base object.

• In Appendix E.1 we compare our model to node-based subgraph GNNs, which are
the most widely used variant of subgraph GNNs. Additionally, we demonstrate that
different choices of coarsening functions can recover various existing subgraph GNN
designs.

• In Appendix E.2 we demonstrate how our model can leverage the information provided
by the coarsening function in an effective way, comparing its expressivity to a natural
baseline which also leverages the coarsening function. We show that for all coarsening
functions, we are at least as expressive as the baseline and that for some coarsening
functions, our model is strictly more expressive.

• In Appendix F we delve deeper into the characterization of all linear maps L :
RP([n])×[n] → RP([n])×[n] that are equivariant to the action of the symmetric group.

• In Appendix G, we provide additional results and detailed explanations of the exper-
imental setup, including instructions on how to reproduce our findings.

• In Appendix H we provide detailed proofs to all propositions in this paper.

Appendix B. Basic Definitions

We devote this section to formally defining the key concepts of this paper, as well as in-
troducing new useful notation. We start by defining the two principle components of our
pipeline, the cartesian product graph and the coarsening function:

Definition 1 (Cartesian Product Graph) Given two graphs G1 and G2, their Carte-
sian product G1□G2 is defined as:

• The vertex set V (G1□G2) = V (G1)× V (G2).

• Vertices (u1, u2) and (v1, v2) in G1□G2 are adjacent if:

– u1 = v1 and u2 is adjacent to v2 in G2, or

– u2 = v2 and u1 is adjacent to v1 in G1.

Definition 2 (Coarsening Function) A Coarsening function T (·) is defined as a func-
tion that, given a graph G = (V,E) with vertex set V = [n] and adjacency matrix A ∈ Rn×n,

7
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takes A as input and returns a set of ”super-nodes” T (A) ⊆ P([n]). The function T (·) is
considered equivariant if, for any permutation σ ∈ Sn, the following condition holds:

T (σ ·A) = σ · T (A). (7)

Here, σ · A, and σ · T (A) represent the group action of the symmetric group Sn on Rn×n,
and P([n]) respectively.

A coarsening function allows us to naturally define a graph structure on the ”super-nodes”
obtained from a given graph in the following way:

Definition 3 (Coarsened Graph) Given a coarsening function T (·) and a graph G =
(V,E) with vertex set V = [n] , adjacency matrix A ∈ Rn×n, we abuse notation and define
the coarsened graph T (G) = (V T , ET ) as follows:

• V T = T (A)

• ET = {{S, S′} | S, S′ ∈ T (A), ∃i ∈ S, i′ ∈ S′ s.t. Ai,i′ = 1}.

The adjacency matrix of the coarsened graph can be expressed in two ways. The dense
representation AT

dense ∈ R|V T |×|V T | is defined by:

AT
dense(S, S

′) =

{
1 {S, S′} ∈ ET

0 otherwise.
(8)

The sparse representation AT
sparse ∈ RP([n])×P([n]) is defined by:

AT
sparse(S, S

′) =

{
1 S, S′ ∈ V T , {S, S′} ∈ ET

0 otherwise.
(9)

We note that if the coarsened graph T (G) has a corresponding node feature map X : V T →
Rd, it also has sparse and dense vector representations defined similarly. Though the dense
representation seems more natural, the sparse representation is also useful, as the symmetric
group Sn acts on it by:

σ ·AT
sparse(S, S

′) = AT
sparse(σ

−1(S), σ−1(S′)). (10)

When the type of representation is clear from context, we abuse notation and writeAT . Note
also that in the above discussion, we have used the term ”node feature map”. Throughout
this paper, in order to denote the node features of a graph G = (V,E) with |V | = n, we
use both the vector representation X ∈ Rn×d and the map representation X : V → Rd

interchangeably. Now, recalling that our pipeline is defined to create and update a node
feature map X (S, v) supported on the nodes of the product graph G□T (G), we define a
general node marking policy, the following way:

Definition 4 (General Node Marking Policy) A general node marking policy π(·, ·),
is a function which takes as input a graph G = (V,E), and a coarsening function T (·), and
returns a node feature map X : V T × V → Rd.
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In Appendix D We provide four different node marking policies, and analyze the effect on
our pipeline. We now move on to define the general way in which we update a given node
feature map on the product graph.

Definition 5 (General CS-GNN Layer Update) Given a graph G = (V,E) and a
coarsening function T (·), let X t(S, v) : V × V T → Rd denote the node feature map at layer
t. The general CS-GNNlayer update is defined by:

X t+1(S, v) = f t

(
X t(S, v),

aggt1{{(X t(S, v′), ev,v′) | v′ ∼G v}},
aggt2{{(X t(S′, v), ẽS,S′) | S′ ∼GT S}},
aggt3{{(X t(S′, v), z(S, v, S′, v)) | S′ ∈ V T s.t. v ∈ S′}},

aggt4{{(X t(S, v′), z(S, v, S, v′)) | v′ ∈ V s.t. v′ ∈ S}}
)
.

(11)

Here, f t is an arbitrary (parameterized) continuous function, aggti, i = 1, . . . 4 are learnable
permutation invariant aggregation functions, ev,v′ , ẽS,S′ are the (optional) edge features of G
and T (G) respectively and the function z : P([n])× [n]×P([n])× [n]→ Rd maps each tuple
of indices v = (S, v, S′, v′) to a vector uniquely encoding the orbit of v under the action of
Sn as described in 68.

We note that for brevity, the notation used in the main body of the paper omits the
aggregation functions aggt1, . . . , agg

t
4 and the edge features from the formulation of some of

the layer updates. However, we explicitly state each component of the update, as we heavily
utilize them in later proofs. We also note that this update is different than the general layer
update presented in Equation (1), as it doesn’t use all global updates characterized in 6. The
reason for this is that some of the global updates have an asymptotic runtime of Õ(n2)where
n is the number of nodes in the input graph. As our goal was to create models that improve
on the scalability of standard subgraph GNNs which have an asymptotic runtime of Õ(n2),
We decided to discard some of the general global updates and keep only the ones that are
induced by the last two entries in equation 11 which all have a linear runtime. After a
stacking of the layers in Equation (11), we employ the following pooling procedure on the
final node feature map X T :

ρ(X T ) = MLP2

 ∑
S ∈V T

(
MLP1

(∑
v∈V
X T (S, v)

)) . (12)

Finally, we define the set of all functions that can be expressed by our model:

Definition 6 (Expressivity of Family of Graph Functions) Let F be a family of
graph functions, we say that F can express a graph function g(·) if for every finite family
of graphs G there exists a function f ∈ F such that:

f(G) = g(G) ∀G ∈ G. (13)

Here, G is a finite family of graphs if all possible values of node/edge features of the graphs
in G form a finite set, and the maximal size of the graphs within G is bounded.

9
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Definition 7 (Family of Functions Expressed By CS-GNN) Let π be a general
node marking policy and T be a coarsening function. Define S(T , π) to be the family of
graph functions, which when given input graph G = (V,E), first compute X 0(S, v) using
π(G, T ), then update this node feature map by stacking T layers of the form 11, and finally
pooling X 0(S, v) using equation 12. We define CS-GNN(T , π) to be the set of all functions
that can be expressed by S(T , π).

Appendix C. Theoretical Validation of Implementation Details

In this section, we provide implementation details of our model and prove that they enable
us to recover the conceptual framework of the model discussed thus far. First, we note that
in Section 3.2, we characterized all equivariant linear maps L : RP([n])×[n] → RP([n])×[n] in
order to incorporate them into our layer update. Given the high dimensionality of the space
of all such linear maps, and in order to save parameters, we demonstrate that it is possible
to integrate these layers into our layer update by adding edge features to a standard MPNN
model. This is formalized in the following proposition:

Lemma 8 (Parameter Sharing as MPNN) Let B1, . . . Bk : Rn×n be orthogonal ma-
trices with entries restricted to 0 or 1, and let W1, . . .Wk ∈ Rd×d′ denote a sequence of
weight matrices. Define B+ =

∑k
i=1Bi and choose z1, . . . zk ∈ Rd∗ to be a set of unique

vectors representing an encoding of the index set. The function that represents an update
via parameter sharing:

f(X) =
k∑

i=1

BiXWi, (14)

can be implemented on any finite family of graphs G, by a stack of MPNN layers of the
following form Gilmer et al. (2017),

ml
v =

∑
u∈NB+

(v)

M l(X l
u, eu,v), (15)

X l+1
v = U l(X l

v,m
l
v), (16)

where U l,M l are multilayer perceptrons (MLPs). The inputs to this MPNN are the adja-
cency matrix B+, node feature vector X, and edge features – the feature of edge (u, v) is
given by:

eu,v =
k∑

i=1

zi ·Bi(u, v). (17)

Here, Bi(u, v) denotes the (u, v) entry to matrix Bi.

The proof is given in Appendix H. The analysis in Section 3.2 demonstrates that the basis of
the space of all equivariant linear maps L : RP([n])×[n] → RP([n])×[n] satisfies the conditions
of Theorem 24. Additionally, we notice that some of the equivariant linear functions have
an asymptotic runtime of Õ(n2) where n is the number of nodes in the input graph. As our
main goal is to construct a more scalable alternative to node-based subgraph GNNs, which
also have a runtime of Õ(n2), we limit ourselves to a subset of the basis for which all maps
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run in linear time. This is implemented by adding edge features to the adjacency matrices
AP1 and AP2 , defined later in this section.

We now move on to discussing our specific implementation of the general layer update from
Theorem 5.

Given a graph G = (V,E) and a coarsening function T , we aim to implement this general
layer update by combining several standard message passing updates on the product graph
G□T (G). In the next two definitions, we define the adjacency matrices supported on the
node set V × V T , which serve as the foundation for these message passing procedures, and
formalize the procedures themselves.

Definition 9 (Adjacency Matrices on Product Graph) Let G = (V,E) be a graph
with adjacency matrix A and node feature vector X, and let T (·) be a coarsening function.
We define the following four adjacency matrices on the vertex set V T × V :

AG(S, v, S
′, v′) =

{
1 v ∼G v′, S = S′

0 otherwise.
(18)

AT (G)(S, v, S
′, v′) =

{
1 S ∼T (G) S

′, v = v′

0 otherwise.
(19)

AP1(S, v, S
′, v′) =

{
1 v ∈ S′, v = v′

0 otherwise.
(20)

AP2(S, v, S
′, v′) =

{
1 v′ ∈ S, S′ = S

0 otherwise.
(21)

Given edge features {ev,v′ | v ∼G v′} and {ẽS,S′ | s ∼T (G) s
′} corresponding to the graphs G

and T (G), respectively, we can trivially define the edge features corresponding to AG and
AGT as follows:

eG(S, v, S
′, v′) = ev,v′ , (22)

eT (G)(S, v, S
′, v′) = ẽS,S′ . (23)

In addition, for i = 1, 2, we define the edge features corresponding to adjacency matrices
APi as follows:

ePi(S, v, S
′, v′) = z(S, v, S′, v′). (24)

Here, the function z : P([n])× [n]×P([n])× [n]→ Rd maps each tuple v = (S, v, S′, v′) to a
vector uniquely encoding the orbit of v under the action of Sn as described in Equation 68.

Definition 10 (CS-GNN Update Implementation) Given a graph G = (V,E), and
a coarsening function T (·), let A1 . . . A4 enumerate the set of adjacency matrices {AG, AT (G), AP1 , AP2}.
We define a CS-GNN layer update in the following way:

X t
i (S, v) = U t

i

(1 + ϵti) · X t(S, v) +
∑

(S′,v′)∼Ai
(S,v)

M t(X t(S′, v′) + ei(S, v, S
′, v′))

 . (25)

11
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X t+1(S, v) = Ut
fin

(
4∑

i=1

X t
i (S, v)

)
. (26)

Here X t(S, v) and X t+1(S, v) denote the node feature maps of the product graph at layers t
and t+ 1, respectively. e1(S, v, S′, v′), . . . , e4(S, v, S′, v′) denote the edge features associated
with adjacency matrices A1, . . . , A4. ϵt1, . . . , ϵ

t
4 represent learnable parameters in R, and

U t
1, . . . , U

t
4, U

t
fin, M

t all refer to multilayer perceptrons.

The next proposition states that using the layer update defined in equations 25 and 26 is
enough to efficiently recover the general layer update defined in equation 11.

Proposition 11 (Equivalence of General Layer and Implemented Layer) Let T (·)
be a coarsening function, π be a generalized node marking policy, and G be a finite family
of graphs. Applying a stack of t general layer updates as defined in Equation 11 to the node
feature map X (S, v) induced by π(G, T ), can be effectively implemented by applying a stack
of t layer updates specified in Equations 25 and 26 to X (S, v). Additionally, the depths of
all MLPs that appear in 25 and 26 can be bounded by 4.

Appendix D. Node Marking Policies – Theoretical Analysis

In this section, we define and analyze various general node marking policies, starting with
four natural choices.

Definition 12 (Four General Node Marking policies) Let G = (V,E) be a graph
with adjacency matrix A ∈ Rn×n and node feature vector X ∈ Rn×d, and let T (·) be a
coarsening function. All of the following node marking policies take the form:

π(G, T ) = X (S, v) = [Xu, bπ(S, v)], (27)

where [·, ·] denotes the concatenation operator. We focus on four choices for bπ(S, v):

1. Simple Node Marking:

bπ(S, v) =

{
1 if v ∈ S,

0 if v /∈ S.
(28)

We denote this node marking policy by πS.

2. Node + Size Marking:

bπ(S, v) =

{
(1, |S|) if v ∈ S,

(0, |S|) if v /∈ S.
(29)

We denote this node marking policy by πSS.

3. Minimum Distance:
bπ(S, v) = min

v′∈S
dG(v, v

′) (30)

where dG(v, v
′) is the shortest path distance between nodes v and v′ in the original

graph. We denote this node marking policy by πMD.
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4. Learned Distance Function:

bπ(S, v) = ϕ({dG(v, v′) | v′ ∈ S}) (31)

where ϕ(·) is a learned permutation-invariant function. We denote this node marking
policy by πLD.

We note that when using the identity coarsening function T (G) = G, our general node
marking policies output node feature maps supported on the product V × V . Thus, they
can be compared to node marking policies used in node-based subgraph GNNs. In fact,
in this case, both πS and πSS reduce to classical node-based node marking, while πMD

and πLD reduce to distance encoding. The definitions of these can be found in Zhang et al.
(2023). Interestingly, even though in the case of node-based subgraph GNNSs, both distance
encoding and node marking were proven to be maximally expressive Zhang et al. (2023), in
our case for some choices of T , πLD is strictly more expressive than the other three choices.
The exact effect of each generalized node marking policy on the expressivity of our model
is explored in the following two propositions.

Proposition 13 (Equal Expressivity of Node Marking Policies) For any coarsen-
ing function T (·) the following holds:

CS-GNN(T , πS) = CS-GNN(T , πSS) = CS-GNN(T , πMD). (32)

Proposition 14 (Expressivity of Learned Distance Policy) For any coarsening func-
tion T (·) the following holds:

CS-GNN(T , πS) ⊆ CS-GNN(T , πLD). (33)

In addition, for some choices of T (·) the containment is strict.

The proofs of both propositions can be found in Appendix H. Finally, we provide a principled
approach to deriving a generalized node marking policy based on symmetry invariance, and
prove its equivalence to πSS. Given a graph G = (V,E) with V = [n], adjacency matrix A,
and node feature vector X ∈ Rn×d, along with a coarsening function T (·). We define an
action of the symmetric group Sn on the space RP([n])×[n] as follows:

σ · X (S, v) = X (σ−1(S), σ−1(v)) for σ ∈ Sn,X ∈ RP([n])×[n]. (34)

Now, for each orbit γ ∈ (P([n])× [n])/Sn, we define 1γ ∈ RP([n])×[n] as follows:

1γ(S, v) =

{
1 (S, v) ∈ γ,

0 otherwise.
(35)

Choosing some enumeration of the orbit set (P([n])× [n])/Sn = {γ1, . . . , γk}, We now define
the invariant generalized node marking policy πinv by first setting:

bsparseπinv
(S, v) : P([n])× [n]→ Rk

and
bπinv : V T × V → Rk

13
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as follows:

bsparseπinv
(S, v) = [1γ1(S, v), . . . ,1γk(S, v)] S ∈ P(V ), v ∈ V, (36)

bπinv(S, v) = bsparseπinv
(S, v) S ∈ V T , v ∈ V. (37)

Then, we define the node feature map induced by πinv as:

X πinv(S, v) = [Xv, bπinv(S, v)]. (38)

Interestingly, πinv, derived solely from the group action of Sn on P([n])× [n], is equivalent
to the generalized node marking policy πSS. This is stated more rigorously in the following
proposition:

Proposition 15 (Node + Size Marking as Invariant Marking) Given a graph G =
(V,E) with node feature vector X ∈ Rn×d, and a coarsening function T (·), let X πSS ,X πinv

be the node feature maps induced by πSS and πinv respectively. Recall that:

X πSS(S, v) = [Xv, bπSS(S, v)], (39)

X πinv(S, v) = [Xv, bπinv(S, v)]. (40)

The following now holds:

bπinv(S, v) = OHE(bπSS(S, v)) ∀S ∈ V T , ∀v ∈ V. (41)

Here, OHE denotes a one-hot encoder, independent of the choice of both G and T .

The proof of proposition 15 can be found in Appendix H.

Appendix E. Expressive Power of CS-GNN

E.1. Recovering Subgraph GNNs

In this section, we demonstrate that by choosing suitable coarsening functions, our archi-
tecture can replicate various previous subgraph GNN designs. We begin by focusing on
node-based models, which are the most widely used type. We define a variant of these
models which was proven in Zhang et al. (2023) to be maximally expressive, and show that
our approach can recover it.

Definition 16 (Maximally Expressive Subgraph GNN) We define MSGNN(πNM)
as the set of all functions expressible by the following procedure:

1. Node Marking: The representation of tuple (u, v) ∈ V × V is initially given by:

X 0(u, v) =

{
1 if u = v,

0 if u ̸= v.
(42)
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2. Update: The representation of tuple (u, v) is updated according to:

X t+1(u, v) = f t

(
X t(u, v),X t(u, u),X t(v, v),

aggt1{{(X t(u, v′), ev,v′) | v′ ∼ v}},

aggt2{{(X t(v, u′), eu,u′) | u′ ∼ u}}
)
.

(43)

3. Pooling: The final node feature vector X T (u, v) is pooled according to:

MLP2

(∑
u∈V

MLP1

(∑
v∈V
X T (u, v)

))
. (44)

Here, for any t ∈ [T ], f t is any continuous (parameterized) functions, aggt1, , agg
t
2 are any

continuous (parameterized) permutation-invariant functions and MLP1,MLP2 are multi-
layer preceptrons.

Proposition 17 (CS-GNN Can Implement MSGNN) Let T (·) be the identity coars-
ening function defined by:

T (G) = {{v} | v ∈ V } ∀G = (V,E). (45)

The following holds:
CS-GNN(T , πS) = MSGNN(πNM). (46)

The proof of proposition 17 can be found in Appendix H. We observe that, similarly, by
selecting the coarsening function:

T (G) = E ∀G = (V,E), (47)

one can recover edge-based subgraph GNNs. An example of such a model is presented in
Bevilacqua et al. (2022) (DS-GNN), where it was proven capable of distinguishing between
two 3-WL indistinguishable graphs, despite having an asymptotic runtime of Õ(m2), where
m is the number of edges in the input graph. This demonstrates our model’s ability to
achieve expressivity improvements while maintaining a (relatively) low asymptotic runtime
by exploiting the graph’s sparsity through the coarsening function. Finally, we note that
by selecting the coarsening function:

T (G) = {S ∈ P(V ) | |S| = k} G = (V,E), (48)

We can recover an unordered variant of the k-OSAN model presented in Qian et al. (2022).

E.2. Comparison to Theoretical Baseline

In this section, we demonstrate how our model can leverage the information provided by
the coarsening function T (·) in an effective way. First, we define a baseline model that
incorporates T in a straightforward manner. We then prove that, for any T (·), our model
is at least as expressive as this baseline. Additionally, we show that for certain choices of
T (·), our model exhibits strictly greater expressivity. To construct the baseline model, we
first provide the following definition:
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Definition 18 (Coarsened Sum Graph) Given a graph G = (V,E) and a coarsening
function T (·), we define the coarsened sum graph GT

+ = (V T
+ , ET

+ ) by:

• V T
+ = V ∪ V T .

• ET
+ = E ∪ ET ∪ {{S, v} | S ∈ V T , v ∈ V v ∈ S}.

If graph G had a node feature vector X ∈ Rn×d, we define the node feature vector of GT
+ as:

Xv =

{
[Xv, 1] v ∈ V

0d+1 v ∈ V T . (49)

Here we concatenated a 1 to the end of node features of V to distinguish them from the
nodes of V T .

{a, b,
c, d}#

b
c
d
e

a

f

! "(!)

{e}

{f}

{a, b,
c, d}b

c
d
e

a

f

% %!

{e}

{f}

The connectivity of the sum graph (for our running example Figure 1)
is visualized inset.

We now define our baseline model:

Definition 19 (Coarse MPNN) Let T (·) be a coarsening func-
tion. Define MPNN+(T ) as the set of all functions which can be
expressed by the following procedure:

1. Preprocessing: We first construct the sum graph GT
+ of the

input graph G, along with a node feature map X 0 : V T
+ → Rd defined according to

equation 49.

2. Update: The representation of node v ∈ V T
+ is updated accord-

ing to:

For v ∈ V : X t+1(v) = f t
V

(
X t(v), aggt1{{(X t(u), eu,v) | u ∼G v}},

aggt2{{X t(S) | S ∈ V T , v ∈ S}}
)
,

For S ∈ V T : X t+1(S) = f t
V T
(
X t(S), aggt1{{(X t(S′), eS,S′) | S′ ∼T (G) S}},

aggt2{{X t(v) | v ∈ V, v ∈ S
}
}}).

(50)

3. Pooling: The final node feature vector X T (·) is pooled accord-
ing to:

MLP

∑
v∈V T

+

X T (v)

 . (51)

Here, for t ∈ [T ], f t
V ,, f

t
V T are continuous (parameterized) functions and , aggt1, agg

t
2T are

continuous (parameterized) permutation invariant functions. Finally, we notice that for the
trivial coarsening function defined by

T∅(G) = ∅, (52)
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the update in Equation (50) devolves into a standard MPNN update, as defined in Gilmer
et al. (2017) and so we define:

MPNN = MPNN+(T∅). (53)

In essence, given an input graph G = (V,E), the MPNN+(T ) pipeline first constructs
the coarsened graph T (G). It then adds edges between each super-node S ∈ V T and the
nodes it is comprised of (i.e., any v ∈ S). This is followed by a standard message passing
procedure on the graph. The following two propositions suggest that this simple approach
to incorporating T into a GNN pipeline is less powerful than our model.

Proposition 20 (CS-GNN Is at Least as Expressive as Coarse MPNN ) For any
coarsening function T (·) the following holds:

MPNN ⊆ MPNN+(T ) ⊆ CS-GNN(T , πS) (54)

Proposition 21 (CS-GNN Can Be More Expressive Than MPNN+) Let T (·) be
the identity coarsening function defined by:

T (G) = {{v} | v ∈ V } G = (V,E). (55)

The following holds:

MPNN = MPNN+(T ). (56)

Thus:
MPNN+(T ) ⊂ CS-GNN(T , πS), (57)

where this containment is strict.

The proofs to the last two propositions can be found in Appendix H. Theorem 21 demon-
strates that CS-GNNis strictly more expressive than MPNN+ when using the identity coars-
ening function. However, this result extends to more complex coarsening functions as well.
We briefly discuss one such example. Let T (·) be the coarsening function defined by:

T△(G) = {v1, v2, v3 | G[v1, v2, v3] ∼= △}, (58)

i.e. for an input graph G, the set of super-nodes is composed of all triplets of nodes
whose induced subgraph is isomorphic to a triangle. To see that CS-GNN is strictly more
expressive then MPNN+ when using T△(·), we look at the two graphs G and H depicted in
Figure 3. In the figure, we see the two original graphs, G and H, their corresponding sum

graphs G
T△
+ and H

T△
+ , and a subgraph of their corresponging product graphs G□T△(G) and

H□T△(H) induced by the sets {(S0, v) | v ∈ VG} and {(S0, v) | v ∈ VH} respectively (this
can be thought of as looking at a single subgraph from the bag of subgraphs induced by
CS-GNN). One can clearly see that both the original graphs and their respective sum graphs
are 1-WL indistinguishable. On the other hand, the subgraphs induced by our method are
1-WL distinguishable. Since for both G and H the ”bag of subgraphs” induced by CS-GNN
is composed of 6 isomorphic copies of the same graph, this would imply that our method
can distinguish between G and H, making it strictly mor expressive then MPNN+.
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Figure 3: Rows 1 and 3 depict two 1-WL indistinguishable graphs¿ Rows 2 and 4 depict the
sum graph of each of these graphs, as well as one subgraph of their product graphs induced
by all node, super-node tuples whose super-node is fixed.

Appendix F. Linear Invariant (Equivariant) Layer – Extended Section

We introduce some key notation. In the matrix X , the i-th row corresponds to the i-th sub-
set S arranged in the lexicographic order of all subsets of [n], namely, [{0}, {0, 1}, {0, 2}, . . . , {0, 1, 2, . . . , n}].
Each i-th position in this sequence aligns with the i-th row index in X . It follows, that
the standard basis for such matrices in R2n×n is expressed as e(S) · e(i)T , where e(S) is a
1-hot vector, with the value 1 positioned according to S in the lexicographic order. For a
matrix X ∈ Ra×b, the operation of vectorization, denoted by vec(X), transforms X into a
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single column vector in Rab×1 by sequentially stacking its columns; in the context of X , the
basis vectors of those vectors are e(i) ⊗ e(S). The inverse process, reshaping a vectorized
matrix back to its original format, is denoted as [vec(X)] = X. We also denote an arbi-
trary permutation by σ ∈ Sn. The actions of permutations on vectors, whether indexed by
sets or individual indices, are represented by PS ∈ GL(2n) and PI ∈ GL(n), respectively.
This framework acknowledges Sn as a subgroup of the larger permutation group S2n , which
permutes all 2n positions in a given vector vS ∈ R2n .

Let L ∈ R1×2n·n be the matrix representation of a general linear operator L : R2n×n → R
in the standard basis. The operator L is order-invariant iff

L vec(PT
SXPI) = L vec(X ). (59)

Similarly, let L ∈ R2n·n×2n·n denote the matrix for L : R2n×n → R2n×n. The operator L is
order-equivariant if and only if

[L vec(PT
SXPI)] = PT

S [L vec(X )]PI . (60)

Using properties of the Kronecker product (see Appendices F.1 and F.2 for details), we
derive the following conditions for invariant and equivariant linear layers:

Invariant L : PI ⊗PS vec(L) = vec(L), (61)

Equivariant L : PI ⊗PS ⊗PI ⊗PS vec(L) = vec(L). (62)

Solving Equations (61) and (62). Let σ ∈ Sn denote a permutation corresponding to
the permutation matrix P. Let P⋆L denote the tensor that results from expressing L after
renumbering the nodes in V T , V according to the permutation σ. Explicitly, for L ∈ R2n×n,
the (σ(S), σ(i))-entry of P ⋆L equals to the (S, i)-entry of L. The matrix that corresponds
to the operator P⋆ in the standard basis, e(i) ⊗ e(S) is the kronecker product PI ⊗ PS .
Since vec(L) is exactly the coordinate vector of the tensor L in the standard basis we have,

vec(P ⋆ L) = PI ⊗PS vec(L), (63)

following the same logic, the following holds for the equivariant case, where L ∈ R2n·n×2n·n,

vec(P ⋆ L) = PI ⊗PS ⊗PI ⊗PS vec(L). (64)

Given Equations (61) and (63) and Equations (62) and (64), it holds that we should focus
on solving,

P ⋆ L = L, ∀P permutation matrices, (65)

for both cases where L ∈ R2n×n and L ∈ R2n×n×2n×n, corresponding to the bias term, and
linear term.

Bias. To this end, let us define an equivalence relation in the index space of a tensor in
R2n×n. Given a pair (S, i) ∈ P([n])× [n], we define γk

+
to correspond to all pairs (S, i) such
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that |S| = k and i /∈ S. Similarly, γk

−
corresponds to all pairs (S, i) such that |S| = k and

i ∈ S. We denote this equivalence relation as follows:

(P([n])× [n])/∼ ≜ {γk∗ : k = 1, . . . , n; ∗ ∈ {+,−}}. (66)

For each set-equivalence class γ ∈ (P([n])× [n])∼, we define a basis tensor, Bγ ∈ R2n×n by
setting:

Bγ
S,i =

{
1, if (S, i) ∈ γ;

0, otherwise.
(67)

Following similar reasoning, consider elements (S1, i1, S2, i2) ∈ (P([n])× [n]×P([n])× [n]).
We define a partition according to six conditions: the relationship between i1 and i2, denoted
as i1 ↔ i2, which is determines by the condition: i1 = i2 or i1 ̸= i2; the cardinalities of S1

and S2, denoted as k1 and k2, respectively; the size of the intersection S1∩S2, denoted as k∩;
the membership of il in Sl for l ∈ {1, 2}, denoted as δsame ∈ {1, 2, 3, 4}; and the membership
of il1 in Sl2 for distinct l1, l2 ∈ {1, 2}, denoted as δdiff ∈ {1, 2, 3, 4}. The equivalence relation
thus defined can be represented as:

(P([n])× [n]× P([n])× [n])/∼ ≜ {Γ↔;k1;k2;k∩;δsame;δdiff}. (68)

For each set-equivalence class Γ ∈ (P([n])× [n]×P([n])× [n])/∼, we define a basis tensor,
BΓ ∈ R2n×n×2n×n by setting:

BΓ
S1,i1;S2,i2 =

{
1, if (S1, i1, S2, i2) ∈ Γ;

0, otherwise.
(69)

The following two proposition summarizes the results in this section,

Lemma 22 (γ (Γ) are orbits) The sets {γk∗ : k = 1, . . . , n; ∗ ∈ {+,−}} and {Γ↔;k1;k2;k∩;δsame;δdiff}
are the orbits of Sn on the index space (P([n])× [n]) and (P([n])× [n]× (P([n])× [n]), re-
spectively.

Proposition 23 (Basis of Invariant (Equivariant) Layer) The tensors Bγ (BΓ) in
Equation (67) (Equation (69)) form an orthogonal basis (in the standard inner product) to
the solution of Equation (61) (Equation (62)).

The proofs are given in Appendix H.

F.1. Full Derivation of Equation (61).

Our goal is to transition from the equation,

L vec(PT
SXPI) = L vec(X ) (59)

to the form,

PI ⊗PS vec(L) = vec(L) (61)
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We introduce the following property of the Kronecker product,

vec(ABC) = (CT ⊗A)vec(B). (70)

Using Equation (70) on the left side of Equation (59), we obtain

LPT
I ⊗PT

S vec(X ) = L vec(X ), (71)

since this should be true for any X ∈ R2n×n, we derive

LPT
I ⊗PT

S = L. (72)

Applying the transpose operation on both sides, and noting that (PT
I ⊗PT

S )
T = PI ⊗PS ,

we obtain
PI ⊗PSL

T = LT . (73)

Recalling that L ∈ R1×2n·n, and thus LT ∈ R2n·n×1, we find that LT = vec(L). Substituting
this back into the previous equation we achieve Equation (61).

F.2. Full Derivation of Equation (62).

Our goal is to transition from the equation,

[L vec(PT
SXPI)] = PT

S [L vec(X )]PI (60)

to the form,
PI ⊗PS ⊗PI ⊗PS vec(L) = vec(L). (62)

Applying the property in Equation (70), after the reverse operation of the vectorization,
namely,

[vec(ABC)] = [(CT ⊗A)vec(B)] (74)

on the right hand side of Equation (60), for

A ≜ PT
S ; (75)

B ≜ [L vec(X )]; (76)

C ≜ PI , (77)

we obtain,
[L vec(PT

SXPI)] = [PT
I ⊗PT

SL vec(X )]. (78)

Thus, by omitting the revere-vectorization operation,

L vec(PT
SXPI) = PT

I ⊗PT
SL vec(X ). (79)

Noting that (PT
I ⊗PT

S )
−1 = PI ⊗PS , and multiplying by this inverse both sides (from the

left), we obtain,
PI ⊗PSL vec(PT

SXPI) = L vec(X ). (80)

Applying, again, the property in Equation (70), we obtain,

PI ⊗PSLP
T
I ⊗PT

S vec(X ) = L vec(X ). (81)
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Since this should be true for any X ∈ R2n×n, we derive,

PI ⊗PSLP
T
I ⊗PT

S = vec(L). (82)

Again, applying Equation (70) on the left side, where,

A ≜ PI ⊗PS ; (83)

B ≜ L; (84)

C ≜ PT
I ⊗PT

S , (85)

we get the following equality,

PI ⊗PSLP
T
I ⊗PT

S = PI ⊗PS ⊗PI ⊗PS vec(L). (86)

By substituting this to the left side of Equation (82) we obtain Equation (62).

F.3. Comparative Parameter Reduction in Linear Equivariant Layers
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Figure 4: Visualization via heatmaps (different colors correspond to different parameters)
of the parameter-sharing scheme determined by symmetries for a graph with n = 6 nodes,
zooming-in on the block which corresponds to sets of size two. Left: Visualization of the
weight matrix for the equivariant basis BΓ

S1,i1;S2,i2
(a total of 35 parameters in the block).

Right: Visualization of the bias vector for the invariant basis Bγ
S,i (a total of 2 parameters

in the block). Symmetry-based updates reduce parameters more effectively than previously
proposed linear equivariant layers by treating indices as unordered tuples (see Appendix F.3
for a discussion).

To demonstrate the effectiveness of our parameter-sharing scheme, which results from con-
sidering unordered tuples rather than ordered tuples, we present the following comparison.
3-IGNs Maron et al. (2018) are structurally similar to our approach, with the main dif-
ference being that they consider indices as ordered tuples, while we consider them as sets.
Both approaches use a total of six indices, as shown in the visualized block in Figure 4,
making 3-IGNs a natural comparator. By leveraging our scheme, we reduce the number of
parameters from 203 (the number of parameters in 3-IGNs) to just 35!
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Table 1: Overview of the graph learning datasets.

Dataset # Graphs Avg. # nodes Avg. # edges Directed Prediction task Metric

Zinc-12k Sterling and Irwin (2015) 12,000 23.2 24.9 No Regression Mean Abs. Error
Zinc-Full Sterling and Irwin (2015) 249,456 23.2 49.8 No Regression Mean Abs. Error
ogbg-molhiv Hu et al. (2020) 41,127 25.5 27.5 No Binary Classification AUROC
ogbg-molbace Hu et al. (2020) 1513 34.1 36.9 No Binary Classification AUROC
ogbg-molesol Hu et al. (2020) 1,128 13.3 13.7 No Regression Root Mean Squ. Error

Appendix G. Experimental Details and Further Results

G.1. Dataset Description

In this section we overview the five different datasets considered; this is summarized in
Table 1.

Zinc-12k and Zinc-Full Datasets Sterling and Irwin (2015); Gómez-Bombarelli et al.
(2018); Dwivedi et al. (2023). The Zinc-12k dataset includes 12,000 molecular graphs
sourced from the ZINC database, a compilation of commercially available chemical com-
pounds. These molecular graphs vary in size, ranging from 9 to 37 nodes, where each
node represents a heavy atom, covering 28 different atom types. Edges represent chemical
bonds and there are three types of bonds. The main goal when using this dataset is to per-
form regression analysis on the constrained solubility (logP) of the molecules. The dataset
is divided into training, validation, and test sets with 10,000, 1,000, and 1,000 molecular
graphs respectively. The full version, Zinc-Full, comprises approximately 250,000 molec-
ular graphs, ranging from 9 to 37 nodes and 16 to 84 edges per graph. These graphs also
represent heavy atoms, with 28 distinct atom types, and the edges indicate bonds between
these atoms, with four types of bonds present.

ogbg-molhiv, ogbg-molbace, ogbg-molesol Datasets Hu et al. (2020) These datasets
are used for molecular property prediction and have been adopted by the Open Graph
Benchmark (OGB, MIT License) from MoleculeNet. They use a standardized featurization
for nodes (atoms) and edges (bonds), capturing various chemophysical properties.

We note that for all datasets, we used the random splits provided by the public benchmarks.

G.2. Experimental Details

Implementation Details. Our implementation of Equation (1) is given by:

X (l+1) = MLP

(
3∑

i=1

MPNN(l+1,i) (X ,Ai)

)
, (87)

where A1 = AG, A2 = AT (G), and A3 = AEquiv.

We use a GINE Hu et al. (2019) base encoder. Given an adjacency matrix A, and defining
e(S′,v′),(S,v) to denote the edge features from node (S′, v′) to node (S, v), it takes the following
form:

X (S, v) = MLP

(
(1 + ϵ) · X (S, v) +

∑
(S′,v′)∼A(S,v)

ReLU
(
X (S′, v′) + e(S′,v′),(S,v)

))
. (88)
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We note that for the symmetry-based updates, we switch the ReLU to an MLP to align with the
theoretical analyses2 (Appendix C), stating that we can implement the equivariant update
developed in Section 3.2. A more thorough discussion regarding the implementation of the
symmetry-based updates is given in Appendix G.4.

Our experiments were conducted using the PyTorch Paszke et al. (2019) and PyTorch
Geometric Fey and Lenssen (2019) frameworks (resp. BSD and MIT Licenses), using a
single NVIDIA L40 GPU, and for every considered experiment, we show the mean ± std.
of 3 runs with different random seeds. Hyperparameter tuning was performed utilizing the
Weight and Biases framework Biewald (2020) – see Appendix G.3. All our MLPs feature a
single hidden layer equipped with a ReLU non-linearity function. For the encoding of atom
numbers and bonds, we utilized learnable embeddings indexed by their respective numbers.

In the case of the ogbg-molhiv, ogbg-molesol, ogbg-molbace datasets, we follow
Frasca et al. (2022), therefore adding a residual connection between different layers. Ad-
ditionally, for those datasets (except ogbg-molhiv), we used linear layers instead of MLPs
inside the GIN layers. Moreover, for these datasets, the following pooling mechanism was
employed

ρ(X ) = MLP

(∑
S

(
1

n

n∑
v=1

X (s, v)

))
. (89)

G.3. HyperParameters

In this section, we detail the hyperparameter search conducted for our experiments. Besides
standard hyperparameters such as learning rate and dropout, our specific hyperparameters
are:

1. Laplacian Dimension: This refers to the number of columns used in the matrix U ,
where L = UTλU , for the spectral clustering in the coarsening function.

2. SPD Dimension: This represents the number of indices used in the node marking
equation. To clarify, since |S| might be large, we opt for using the first k indices that
satisfy i ∈ S, sorted according to the SPD distance.

SPD Dimension. For the Laplacian dimension, we chose a fixed value of 10 for all bag sizes
for both Zinc-12k and Zinc-FULL datasets. For ogbg-molhiv, we used a fixed value of
1, since the value 10 did not perform well. For the ogbg-molesol and ogbg-molbace
datasets, we searched over the two values {1, 2}.

Laplacian Dimension. For the Laplacian dimension, we searched over the values {1, 2}
for all datasets.

Standard Hyperparameters. For Zinc-12k, we used a weight decay of 0.0003 for all
bag sizes, except for the full bag size, for which we used 0.0001.

All of the hyperparameter search configurations are presented in Table 2, and the selected
hyperparameters are presented in Table 3.

2. The theoretical analysis assumes the usage of an MLP for all three considered updates.
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Table 2: Hyperparameters search for CS-GNN.

Dataset Bag size Num. layers Learning rate Embedding size Epochs Batch size Dropout Laplacian dimension SPD dimension

Zinc-12k T = 2 6 0.0005 96 400 128 0 {1, 2} 10
Zinc-12k T ∈ {3, 4, 5, 8, 18} 6 0.0007 96 400 128 0 {1, 2} 10
Zinc-12k T = “full” 6 0.0007 96 500 128 0 {1, 2} 10

Zinc-FULL T = 4 6 0.0007 96 400 128 0 {1, 2} 10
Zinc-FULL T = “full” 6 {0.001, 0.0005} 96 500 128 0 {1, 2} 10

ogbg-molhiv T ∈ {2, 5, “full”} 2 0.01 60 100 32 0.5 {1, 2} 1
ogbg-molesol T ∈ {2, 5, “full”} 3 0.001 60 100 32 0.3 {1, 2} { 1, 2 }
ogbg-molbace T ∈ {2, 5, “full”} {2, 3} 0.01 60 100 32 0.3 {1, 2} { 1, 2 }

Table 3: Chosen Hyperparameters for CS-GNN.

Dataset Bag size Num. layers Learning rate Embedding size Epochs Batch size Dropout Laplacian dimension SPD dimension

Zinc-12k T = 2 6 0.0005 96 400 128 0 1 10
Zinc-12k T = 3 6 0.0007 96 400 128 0 2 10
Zinc-12k T = 4 6 0.0007 96 400 128 0 1 10
Zinc-12k T = 5 6 0.0007 96 400 128 0 1 10
Zinc-12k T = 8 6 0.0007 96 400 128 0 1 10
Zinc-12k T = 18 6 0.0007 96 400 128 0 1 10
Zinc-12k T = “full” 6 0.0007 96 500 128 0 N/A 10

Zinc-FULL T = 4 6 0.0007 96 400 128 0 1 10
Zinc-FULL T = “full” 6 0.0005 96 500 128 0 N/A N/A

ogbg-molhiv T = 2} 2 0.01 60 100 32 0.5 1 1
ogbg-molhiv T = 5 2 0.01 60 100 32 0.5 1 1
ogbg-molhiv T = “full” 2 0.01 60 100 32 0.5 N/A N/A

ogbg-molesol T = 2 3 0.001 60 100 32 0.3 1 2
ogbg-molesol T = 5 3 0.001 60 100 32 0.3 1 2
ogbg-molesol T = “full” 3 0.001 60 100 32 0.3 N/A N/A

ogbg-molbace T = 2 3 0.01 60 100 32 0.3 1 1
ogbg-molbace T = 5 3 0.01 60 100 32 0.3 1 2
ogbg-molbace T = “full” 3 0.01 60 100 32 0.3 N/A N/A

Optimizers and Schedulers. For the ZINC-12k and Zinc-FULL datasets, we employ
the Adam optimizer paired with a ReduceLROnPlateau scheduler,factor set to 0.5, patience
at 403, and a minimum learning rate of 0. For the ogbg-molhiv dataset, we utilized the
ASAM optimizer (Kwon et al., 2021) without a scheduler. For both ogbg-molesol and
ogbg-molbace, we employed a constant learning rate without any scheduler.

G.4. Implementation of Linear Equivariant and Invariant layers – Extended
Section

In this section, in a more formal discussion, we specify how to integrate those invariant and
equivariant layers to our proposed architecture. We start by drawing an analogy between
parameter sharing in linear layers and the operation of an MPNN on a fully connected
graph with edge features in the following lemma,

Lemma 24 (Parameter Sharing as MPNN) Let B1, . . . Bk : Rn×n be orthogonal ma-
trices with entries restricted to 0 or 1, and let W1, . . .Wk ∈ Rd×d′ denote a sequence of weight
matrices. Define B+ =

∑k
i=1Bi and choose z1, . . . zk ∈ Rd∗ to be a set of unique vectors

representing an encoding of the index set. The function, which represents an update via

3. For Zinc-12k, T ∈ {2, “full”}, we used a patience of 50.
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parameter sharing:

f(X) =
k∑

i=1

BiXWi, (90)

can be implemented by a stack of MPNN layers of the following form Gilmer et al. (2017),

ml
u =

∑
v∈NB+

(u)

M l(X l
v, eu,v), , (91)

X l+1
u = U l(X l

v,m
l
v), (92)

where U l,M l are multilayer preceptrons (MLPs). The inputs to this MPNN are the adja-
cency matrix B+, node feature vector X, and edge features – the feature of edge (u, v) is
given by:

eu,v =
k∑

i=1

zi ·Bi(u, v). (93)

Here, Bi(u, v) denotes the (u, v) entry to matrix Bi.

The proof is given in Appendix H.

Thus, our implementation for the global update is as follows,

X (S, i) = MLP

(1 + ϵ) · X (S, i) +
∑

(S′,i′)∼AEquiv
(S,i)

MLP

(
X (S′, i′) + e(S′,i′),(S,i)

) , (94)

where e(S′,i′),(S,i) =
∑

Γ zΓ·BΓ
S,i;S′,i′ and zΓ are orthogonal 1-hot vectors for different Γ’s. The

connectivity AEquiv is such that AEquiv(S, v, S
′, v′) contains the value one iff v ∈ S, v = v′.

This corresponds to choosing only several Γ’s in the partition, and since each Γ is invariant
to the permutation, this choice still maintains equivariance.

G.5. Additional Results

We experimented extensively over five different datasets to answer the following questions:
(Q1) Can CS-GNN outperform efficient Subgraph GNNs operating on small bags? (Q2) Does
the additional symmetry-based updates boost performance? (Q3) Does CS-GNN in the full-bag
setting validate its theory and match state-of-the-art full-bag Subgraph GNNs?

Baselines. For each task, we include several baselines. The Random baseline corresponds
to random subgraph selection. We report the best performing random baseline from all
prior work Bevilacqua et al. (2024); Kong et al. (2024); Qian et al. (2022); Bar-Shalom
et al. (2024). The other two (non-random) baselines are: (1) Learned Bevilacqua et al.
(2024); Kong et al. (2024); Qian et al. (2022), which represents methods that learn the
specific subgraphs to be used; and (2) Full Zhang et al. (2023); Bar-Shalom et al. (2024),
which corresponds to full-bag Subgraph GNNs.

ZINC and Zinc-FULL We experimented with both the ZINC-12k and Zinc-FULL
datasets (Sterling and Irwin, 2015; Gómez-Bombarelli et al., 2018; Dwivedi et al., 2023),
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Table 4: Test results on the Zinc-12k molecular dataset under 500k parameter budget.
The top two results are reported as First and Second.

Method Bag size ZINC (MAE ↓)
GCN Kipf and Welling (2016) T = 1 0.321± 0.009
GIN Xu et al. (2018) T = 1 0.163± 0.004

OSAN Qian et al. (2022) T = 2 0.177± 0.016
Random Kong et al. (2024) T = 2 0.131± 0.005
PL Bevilacqua et al. (2024) T = 2 0.120± 0.003
Mag-GNN Kong et al. (2024) T = 2 0.106± 0.014
Ours T = 2 0.109± 0.005

Random Kong et al. (2024) T = 3 0.124±N/A
Mag-GNN Kong et al. (2024) T = 3 0.104±N/A
Ours T = 3 0.096± 0.005

Random Kong et al. (2024) T = 4 0.125±N/A
Mag-GNN Kong et al. (2024) T = 4 0.101±N/A
Ours T = 4 0.090± 0.003

Random Bevilacqua et al. (2024) T = 5 0.113± 0.006
PL Bevilacqua et al. (2024) T = 5 0.109± 0.005
Ours T = 5 0.095± 0.003

Random Bevilacqua et al. (2024) T = 8 0.102± 0.003
PL Bevilacqua et al. (2024) T = 8 0.097± 0.005
Ours T = 8 0.094± 0.006

Ours T = 18 0.082± 0.003

NGNN Zhang and Li (2021) Full 0.111±0.003

DS-GNN Bevilacqua et al. (2022) Full 0.116±0.009

DSS-GNN Bevilacqua et al. (2022) Full 0.102±0.003

GNN-AK Zhao et al. (2022) Full 0.105±0.010

GNN-AK+ Zhao et al. (2022) Full 0.091±0.002

SUN Frasca et al. (2022) Full 0.083±0.003

OSAN Qian et al. (2022) Full 0.154±0.008

GNN-SSWL+ Zhang et al. (2023) Full 0.070± 0.005
Subgraphormer Bar-Shalom et al. (2024) Full 0.067± 0.007
Subgraphormer+PE Bar-Shalom et al. (2024) Full 0.063± 0.001
Ours Full 0.062± 0.0007

adhering to a 500k parameter budget as prescribed. As shown in Table 4 (which corresponds
to Figure 2 in tabular form), CS-GNN outperforms all efficient baselines by a significant
margin, with at least a +0.008 MAE improvement for bag sizes T ∈ {3, 4, 5}. Additionally,
in the full-bag setting, our method recovers state-of-the-art results.

For the Zinc-FULL dataset, The results are summarized in Table 5.
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Table 5: Comparison over the Zinc-FULLmolecular dataset under 500k parameter budget.
The best performing method is highlighted in blue, while the second best is highlighted in
red.

Model ↓ / Dataset → Zinc-FULL
(MAE ↓)

MAG-GNN Kong et al. (2024) (T = 4) 0.030±0.002

Ours (T = 4) 0.027±0.002

GNN-SSWL Zhang et al. (2023) (T = “full”) 0.026±0.001

GNN-SSWL+ Zhang et al. (2023) (T = “full”) 0.022±0.001

Subgraphormer Bar-Shalom et al. (2024)(T = “full”) 0.020±0.002

Subgraphormer + PE Bar-Shalom et al. (2024) (T = “full”) 0.023±0.001

Ours (T = “full”) 0.021±0.001

OGB.We tested our framework on several datasets from the OGB benchmark collection Hu
et al. (2020). Table 7 shows the performance of our method compared to both efficient and
full-bag Subgraph GNNs. Our CS-GNN outperforms all baselines across all datasets for
bag sizes T ∈ {2, 5}, except for the molhiv dataset with T = 2, where PL achieves the
best results and our method ranks second. In the full-bag setting, CS-GNN is slightly
outperformed by the top-performing Subgraph GNNs but still offers comparable results.

Table 6: Ablation study.

Bag size w/ w/o

T=2 0.109±0.005 0.143±0.003

T=3 0.096±0.005 0.101±0.006

T=4 0.090±0.003 0.106±0.001

T=5 0.095±0.003 0.104±0.005

Ablation study – symmetry-based up-
dates. We assessed the impact of the symmetry-
based update on the performance of CS-GNN.
Specifically, we asked, do the symmetry-based
updates significantly contribute to the perfor-
mance of CS-GNN? To evaluate this, we con-
ducted several experiments using the Zinc-
12k dataset across various bag sizes, T ∈
{2, 3, 4, 5}, comparing CS-GNN with and with-
out the symmetry-based update. The results are summarized in Table 6. It is clear that
the symmetry-based updates play a key role in the performance of CS-GNN. For a bag
size of T = 2, the inclusion of the symmetry-based update improves the MAE by a sig-
nificant 0.034. For other bag sizes, the improvements range from 0.005 to 0.016, clearly
demonstrating the benefits of including the symmetry-based updates.

Discussion. In what follows, we address research questions Q1 to Q3.

1. Tables 4 and 7 clearly demonstrate that we outperform efficient Subgraph GNNs
(which operate on a small bag) in the vast majority of dataset and bag size combina-
tions.

2. Our ablation study on the Zinc-12k dataset, as shown in Table 6, clearly demon-
strates the benefits of the symmetry-based updates across all the considered bag sizes.
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Table 7: Results on OGB datasets. The top two results are reported as First and Second.

Model ↓ / Dataset → Bag size
molhiv molbace molesol

(ROC-AUC ↑) (ROC-AUC ↑) (RMSE ↓)

GIN Xu et al. (2018) T = 1 75.58±1.40 72.97±4.00 1.173±0.057

Random Bevilacqua et al. (2024) T = 2 77.55±1.24 75.36±4.28 0.951±0.039

PL Bevilacqua et al. (2024) T = 2 79.13±0.60 78.40±2.85 0.877±0.029

Mag-GNN Kong et al. (2024) T = 2 77.12±1.13 - -
Ours T = 2 77.72±0.76 80.58±1.04 0.850±0.024

OSAN Qian et al. (2022) T = 3 - - 0.959±0.184

OSAN Qian et al. (2022) T = 5 - 76.30±3.00 -
PL Bevilacqua et al. (2024) T = 5 78.49±1.01 78.39±2.28 0.883±0.032

Random Bevilacqua et al. (2024) T = 5 77.30±2.56 78.14±2.36 0.900±0.032

Ours T = 5 79.09±0.90 79.64±1.43 0.863±0.029

GNN-SSWL+ Zhang et al. (2023) Full 79.58±0.35 82.70±1.80 0.837±0.019

Subgraphormer Full 80.38±1.92 81.62±3.55 0.832±0.043

Subgraphormer + PE Full 79.48±1.28 84.35±0.65 0.826±0.010

Ours Full 79.44±0.87 80.71±1.76 0.814±0.021

Table 8: Run time comparison over the Zinc-12k dataset. Time taken at train for one
epoch and at inference on the test set. All values are in milliseconds.

Method Train time (for a single epoch; ms) Test time (ms) MAE ↓

GIN Xu et al. (2018) 1370.10± 10.97 84.81± 0.26 0.163± 0.004

OSAN Qian et al. (2022) (T = 2) 2964.46± 30.36 227.93± 0.21 0.177± 0.016
PL Bevilacqua et al. (2024) (T = 2) 2489.25± 9.42 150.38± 0.33 0.120± 0.003
Ours (T = 2) 2764.60± 234 383.14± 15.74 0.109± 0.005

3. On the Zinc-12k dataset (see Table 4), CS-GNN achieves state-of-the-art results
compared to Subgraph GNNs. On the OGB datasets (see Table 7), our performance
is comparable to these top-performing Subgraph GNNs.

Runtime comparison. We compare the training time and prediction performance on
the Zinc-12k dataset. For all methods, we report the training and inference times on the
entire training and test sets, respectively, using a batch size of 128. Our experiments were
conducted using an NVIDIA L40 GPU, while for the baselines, we used the timing reported
in Bevilacqua et al. (2024), which utilized an RTX A6000 GPU. The runtime comparison
is presented in Table 8.

G.6. Zinc12k Product Graph Visualization

In this subsection, we visualize the product graph derived from the first graph in the
Zinc12k dataset. Specifically, we present the right part of Figure 1, for the case of the
real-world graphs in the Zinc12k dataset. We perform this visualization for different clus-
ter sizes, T ∈ {2, 3, 4, 5, 8, 12}, which also define the bag size, hence the notation T . The
nodes in the product graph, T (G)□G, are (S, v), where S is the coarsened graph node (again
a tuple), and v is the node index (of a node from the original graph). For better clarity,
we color the nodes (S, v) with v ∈ S using different colors, while reserving the gray color
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exclusively for nodes (S, v) where v /∈ S. The product graphs are visualized in Figures 5
to 10 below.
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□ =

G"(G) "(G) □ G

Figure 5: T = 2.

□ =

G"(G) "(G) □ G

Figure 6: T = 3.

□ =

G"(G) "(G) □ G

Figure 7: T = 4.
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□ =

G"(G) "(G) □ G

Figure 8: T = 5.

□ =

G"(G) "(G) □ G

Figure 9: T = 8.

□ =

G"(G) "(G) □ G

Figure 10: T = 12.
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Appendix H. Proofs

H.1. Proofs of Appendix C

We first state the memorization theorem, proven in Yun et al. (2019) , which will be heavily
used in a lot of the proofs in this section.

Theorem 25 (Memorization Theorem) Consider a dataset {xj , yj}Nj=1 ∈ Rd × Rdy ,

with each xj being distinct and every yj ∈ {0, 1}dy . There exists a 4-layer fully connected
ReLU neural network fθ : Rd → Rdy that perfectly maps each xj to its corresponding yj,
i.e., fθ(xj) = yj for all j.

We now restate and prove the propositions and lemmas of Appendix C.

Lemma 26 (Parameter Sharing as MPNN) Let B1, . . . Bk : Rn×n be orthogonal ma-
trices with entries restricted to 0 or 1, and let W1, . . .Wk ∈ Rd×d′ denote a sequence of
weight matrices. Define B+ =

∑k
i=1Bi and choose z1, . . . zk ∈ Rd∗ to be a set of unique

vectors representing an encoding of the index set. The function that represents an update
via parameter sharing:

f(X) =
k∑

i=1

BiXWi, (14)

can be implemented on any finite family of graphs G, by a stack of MPNN layers of the
following form Gilmer et al. (2017),

ml
v =

∑
u∈NB+

(v)

M l(X l
u, eu,v), (15)

X l+1
v = U l(X l

v,m
l
v), (16)

where U l,M l are multilayer perceptrons (MLPs). The inputs to this MPNN are the adja-
cency matrix B+, node feature vector X, and edge features – the feature of edge (u, v) is
given by:

eu,v =

k∑
i=1

zi ·Bi(u, v). (17)

Here, Bi(u, v) denotes the (u, v) entry to matrix Bi.

Proof Since we are concerned only with input graphs G from a finite family of graphs
(where ”finite” means that the maximal graph size is bounded and all possible node and
edge feature values come from a finite set), we assume that for any v ∈ [n], i ∈ [k], both the
input feature vectors Xv ∈ Rd and the encoding vectors zi ∈ Rd∗ are one-hot encoded. We
aim to show that under these assumptions, any function f(·) of the form 90 can be realized
through a single-layer update detailed in Equations 92 , 91, where M is a 4 layer MLP ,
and U is a single linear layer. The proof involves the following steps:

1. Compute [B1X, . . . , BkX] using the message function M .

2. Compute f(X) using the update function U .
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Step 1: We notice that for every i ∈ [k], v ∈ [n] we have:

(BiX)v =
∑

Bi(v,u)=1

Xu =
∑

u∈NB+
(v)

Xu · 1zi(eu,v). (95)

Here 1zi is the indicator function of the set {zi}. We notice that since Xu and zi are one-
hot encoded, there is a finite set of possible values for the pair (Xu, eu,v). In addition, the
function:

enc(Xu, eu,v) = [Xu · 1z1(eu,v), . . . , Xu · 1zk(eu,v)] (96)

outputs vectors in the set {0, 1}d×k. Thus, employing the memorization theorem 25, we
define a dataset {xj , yj}Nj=1 by taking the xjs to be all possible (distinct) values of (Xu, eu,v)
with each corresponding yi being the output enc(xi). We note that there are finitely many
such values as both Xu and eu,v are one-hot encoded. The theorem now tells us that there
exists a a 4-layer fully connected ReLU neural network M such that:

M(Xu, eu,v) = enc(Xu, eu,v). (97)

and so, equation 95 implies:

mv =
∑

u∈NB+
(v)

M(Xu, eu,v) = [(B1X)v, . . . , (BkX)v]. (98)

Step 2: Define Pi : Rk×d → Rd as the projection operator, extracting coordinates d · i+ 1
through d · (i+ 1) from its input vector:

Pi(V ) = V |d·i+1:d·(i+1). (99)

We define the update function to be the following linear map:

U(Xv,mv) =

k∑
i=1

Pi(mv)Wi. (100)

Combining equations 98 and 100 we get:

X̃v = U(Xv,mv) =

k∑
i=1

(BiX)v ·Wi = f(X)v. (101)

Proposition 27 (Equivalence of General Layer and Implemented Layer) Let T (·)
be a coarsening function, π be a generalized node marking policy, and G be a finite family
of graphs. Applying a stack of t general layer updates as defined in Equation 11 to the node
feature map X (S, v) induced by π(G, T ), can be effectively implemented by applying a stack
of t layer updates specified in Equations 25 and 26 to X (S, v). Additionally, the depths of
all MLPs that appear in 25 and 26 can be bounded by 4.

34



Extended Abstract Track
Short Title

Proof For convenience, let us first restate the general layer update:

X t+1(S, v) = f t

(
X t(S, v),

aggt1{{(X t(S, v′), ev,v′) | v′ ∼G v}},
aggt2{{(X t(S′, v), ẽS,S′) | S′ ∼GT S}},
aggt3{{(X t(S′, v), z(S, v, S′, v)) | S′ ∈ V T s.t. v ∈ S′}},

aggt4{{(X t(S, v′), z(S, v, S, v′)) | v′ ∈ V s.t. v′ ∈ S}}
)
,

(11)

as well as the two step implemented layer update:

X t
i (S, v) = U t

i

(1 + ϵti) · X t(S, v) +
∑

(S′,v′)∼Ai
(S,v)

M t(X t(S′, v′) + ei(S, v, S
′, v′))

 . (25)

X t+1(S, v) = Ut
fin

(
4∑

i=1

X t
i (S, v)

)
. (26)

We aim to demonstrate that any general layer, which updates the node feature map X t(S, v)
at layer t to node feature map X t+1(S, v) at layer t+ 1 as described in equation 11, can be
effectively implemented using the layer update processes outlined in equations 25 and 26.

As we are concerned only with input graphs belonging to the finite graph family G (where
”finite” indicates that the maximal graph size is bounded and all node and edge features have
a finite set of possible values), we assume that the values of the node feature map X t(S, v)
and the edge feature vectors ei(S, v, S

′, v′) are represented as one-hot vectors in Rk. We
also assume that the parameterized functions f t and aggt1, . . . agg

t
4, which are applied in

Equation 11 outputs one-hot vectors. Finally, we assume that there exists integers d, d∗,
such that the node feature map values are supported on coordinates 1, . . . d, the edge feature
vectors are supported on coordinates d+ 1, . . . d+ d∗, and coordinates d+ d∗ + 1, . . . k are
used as extra memory space, with:

k > d× d∗ + d+ d∗. (102)

We note that the last assumption can be easily achieved using padding. The proof involves
the following steps:

1. For i = 1, . . . , 4, Use the term:

mt
i =

∑
(S′,v′)∼Ai

(S,v)

M t(X t(S′, v′) + ei(S, v, S
′, v′)) (103)

to uniquely encode:

{{(X t(S′, v′), ei(S, v, S
′, v′)) | (S′, v′) ∼Ai (S, v)}}. (104)
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2. Use the term:

X t
∗ =

4∑
i=1

X t
i (S, v) (105)

to uniquely encode the input of f t as a whole.

3. Implement the parameterized function f t.

Step 1: Since we assume that node feature map values and edge feature vectors are sup-
ported on orthogonal sub-spaces of Rk, the term:

X t(S, v) + ei(S, v, S
′, v′) (106)

uniquely encodes the value of the tuple:

(X t(S, v), ei(S, v, S
′, v′)). (107)

Since X t(S, v) is a one-hot encoded vector with d possible values, while ei(S, v, S
′, v′) is a

one-hot encoded vector with d∗ possible values, their sum has d · d∗ possible values. Thus
there exists a function:

enc : Rk → Rk

which encodes each such possible value as a one-hot vector in Rk supported on the last
k − d− d∗ coordinates (this is possible because of equation 102). Now, employing theorem
25, we define the xjs as all possible (distinct) values of 106, with each corresponding yj being
the output enc(xj). The theorem now tells us that there exists a 4-layer fully connected
ReLU neural network capable of implementing the function enc(·). We choose M t to be
this network. Now since mt

i, defined in equation 103 is a sum of one-hot encoded vectors,
it effectively counts the number of each possible value in the set 104. This proves step 1.

Step 2: First, we note that:

{{(X t(S, v′), ev,v′) | v′ ∼G v}}
= {{(X t(S′, v′), eG(S, v, S

′, v′)) | (S, v) ∼AG
(S′, v′)}}

(108)

{{(X t(S′, v), es′,s) | S′ ∼T (G) S}}
= {{(X t(S′, v′), eT (G)(S, v, S

′, v′)) | (S, v) ∼AT (G)
(S′, v′)}}

(109)

{{(X t(S′, v), z(S, v, S′, v′)) | v ∈ S′}}
= {{(X t(S′, v′), eP1(S, v, S

′, v′)) | (S, v) ∼AP1
(S′, v′)}}

(110)

{{(X t(S, v′), z(S, v, S′, v′)) | v′ ∈ S}}
= {{(X t(S′, v′), eP2(S, v, S

′, v′)) | (S, v) ∼AP2
(S′, v′)}}

(111)

Now, sincemt
i and X t(S, v) are supported on orthogonal sub-spaces of Rk, the sum X t(S, v)+

mt
i uniquely encodes the value of:(

X t(S, v), {{(X t(s, v), ei(S, v, S
′, v′)) | (S, v) ∼Ai (S,

′ v′)}}
)
. (112)
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Thus, we choose ϵt1, . . . , epsilon
t
4 to be all zeroes. To compute the aggregation functions

aggt1, . . . , agg
t
4 using these unique encodings, and to avoid repetition of the value X t(S, v),

we define auxiliary functions ˜aggti : Rk → Rki for i = 1, . . . , 4 as follows:

˜aggt1(X t(S, v) +mt
1) =

(
X t(S, v), aggt1{{(X t(S, v′), e1(S, v, S

′, v′)) | (S, v) ∼A1 (S,′ v′)}}
)

(113)
and for i > 1:

˜aggti(X t(S, v) +mt
i) = aggli{{(X t(s, v), ei(S, v, S

′, v′)) | (S, v) ∼Ai (S,
′ v′)}}. (114)

Here, since we avoided repeating the value of X t(S, v) by only adding it to the output of
˜aggt1(·), the expression:(

˜aggt1(X t(S, v) +mt
1), . . . , ˜aggt4(X t(S, v) +mt

4)
)

(115)

is exactly equal to the input of f t. In addition, since the function aggti outputs one-hot
encoded vectors, and the vector X t(S, v) is one-hot encoded, the output of ˜aggti is always
within the set {0, 1}ki . Now for any input vector X ∈ Rk define:

V t
1 (X) = ( ˜aggt1(X), 0k2 , 0k3 , 0k4). (116)

V t
2 (X) = (0k1 , ˜aggt2(X), 0k3 , 0k4). (117)

V t
3 (X) = (0k1 , 0k2 , ˜aggt3(X), 0k4). (118)

V t
4 (X) = (0k1 , 0k2 , 0k3 , ˜aggt4(X)). (119)

We note that since the output of aggti is always within the set {0, 1}ki , the outputs of V t
i

is always within {0, 1}k1+···+k4 . Now for i = 1, . . . 4, employing theorem 25 we define a
dataset {xj , yj}Nj=1 by taking the xjs as all possible (distinct) values of X t(S, v) +mt

i, with
each corresponding yj being the output V t

i (xj). We note that there are finitely many such
values as both X t(S, v) and mt

i are one-hot encoded vectors. The theorem now tells us that
there exists a a 4-layer fully connected ReLU neural network capable of implementing the
function V t

i (·). We choose U t
i to be this network. Equations 116 - 119 now give us:

4∑
i=1

X t
i (S, v) =

(
˜aggt1(X t(S, v) +mt

1), . . . , ˜aggt4(X t(S, v) +mt
4)
)
. (120)

which as stated before, is exactly the input to f t. This proves step 2.

Step 3: We employ theorem 25 for one final time, defining a dataset {xj , yj}Nj=1 by taking
the xjs as all possible(distinct) values of:

4∑
i=1

X t
i (S, v)

(which we showed is a unique encoding to the input of f t(·)), with each corresponding
yj being the output f t(xj). We note that Given the finite nature of our graph set, there
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are finitely many such values. Recalling that f t(·) outputs one-hot encoded vectors, The
theorem now tells us that there exists a a 4-layer fully connected ReLU neural network
capable of implementing the function f t(·). We choose U t

fin to be this network. This
completes the proof.

H.2. Proofs of Appendix D

Proposition 28 (Equal Expressivity of Node Marking Policies) For any coarsen-
ing function T (·) the following holds:

CS-GNN(T , πS) = CS-GNN(T , πSS) = CS-GNN(T , πMD). (32)

Proof Let Π = {πS, πSS, πMD} be the set of all relevant node initialization policies, and
assume for simplicity that our input graphs have no node features (the proof can be easily
adjusted to account for the general case). For each π ∈ Π, let X π(S, v) denote the node
feature map induced by general node marking policy π, as per Theorem 12. We notice it
is enough to prove for each π1, π2 ∈ Π that X π1(S, v) can be implemented by updating
X π2(S, v) using a stack of T layers of type 50. Thus, we prove the following four cases:

• Node + Size Marking ⇒ Simple Node Marking.

• Minimum Distance ⇒ Simple Node Marking.

• Simple Node Marking ⇒ Node + Size Marking.

• Simple Node Marking ⇒ Minimum Distance.

Node + Size Marking ⇒ Simple Node Marking:

In this case, we aim to update the node feature map:

X 0(S, v) = X πSS (S, v) =

{
(1, |S|) v ∈ S

(0, |S|) v /∈ S.
(121)

We notice that:
X 0(S, v) = ⟨(1, 0), X πS(S, v)⟩, (122)

where ⟨·, ·⟩ denotes the standard inner product in R2. Using a CS-GNN update as per
equation 11, with the update function:

f1(X 0(S, v), ·, ·, ·, ·) = ⟨(1, 0),X 0(S, v)⟩, (123)

where f(a, ·, ·, ·, ·) indicates that the function f depends solely on the parameter a, we
obtain:

X 1(S, v) = f1(X 0(S, v), ·, ·, ·, ·) = X πS (S, v). (124)

This implies that for any coarsening function T (·), the following holds:

CS-GNN(T , πS) ⊆ CS-GNN(T , πSS). (125)
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Minimum Distance ⇒ Simple Node Marking:

In this case, we aim to update the node feature map:

X 0(S, v) = X πMD(S, v) = min
v∈s

dG(u, v) (126)

We notice that:

X S(S, v) = g(X 0(S, v)) (127)

where g : R→ R is any continuous function such that:

1. g(x) = 1 ∀x > 1
2 ,

2. g(x) = 0 ∀x < 1
4 .

Using a CS-GNN update as per equation 11, with the update function:

f1(X 0(S, v), ·, ·, ·, ·) = g(X 0(S, v)), (128)

we obtain:

X 1(S, v) = f1(X 0(S, v), ·, ·, ·, ·) = X πS (S, v). (129)

This implies that for any coarsening function T (·) the following holds:

CS-GNN(T , πS) ⊆ CS-GNN(T , πMD). (130)

Simple Node Marking ⇒ Node + Size Marking: In this case, we aim to update the
node feature map:

X 0(S, v) = X πS (S, v) =

{
1 v ∈ S

0 v /∈ S.
(131)

We notice that: ∑
v′∈S
X 0(S, v′) = |S|. (132)

Using a CS-GNN update as per Equation (11), with aggregation function:

aggl4{{(X 0(S, v′), z(S, v, S, v′)) | v′ ∈ S}} =
∑
v′∈S
X 0(S, v′), (133)

and update function:

f1

(
X 0(S, v), ·, ·, ·,

∑
v′∈S
X 0(S, v′)

)
=

(
X 0(S, v),

∑
v′∈S
X 0(S, v′)

)
, (134)

we obtain:

X 1(S, v) = f1

(
X 0(S, v), ·, ·, ·,

∑
v′∈S
X 0(S, v′)

)
= X πSS (S, v). (135)
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This implies that for any coarsening function T (·) the following holds:

CS-GNN(T , πSS) ⊆ CS-GNN(T , πS). (136)

Simple Node Marking ⇒ Minimum Distance:

In this case, we aim to update the node feature map:

X 0(S, v) = X πS (S, v) =

{
1 v ∈ S

0 v /∈ S.
(137)

We shall prove that X πMD can be expressed by updating X 0(S, v) with a stack of CS-GNN
layers. We do this by inductively showing that this procedure can express the following
auxiliary node feature maps:

X t
∗(S, v) =

{
minv′∈S dG(v, v

′) + 1 minv′∈S dG(v, v
′) ≤ t

0 otherwise.
(138)

We notice first that:
X 0(S, v) = X 0

∗ (S, v). (139)

Now for the induction step, assume that there exists a stack of t CS-GNN layers such that:

X t(S, v) = X t
∗(S, v). (140)

We observe that equation:
min
v′∈S

dG(v, v
′) = t+ 1 (141)

holds if and only if the following two conditions are met:

min
v′∈S

dG(v, v
′) > t (142)

∃u ∈ NG(v) s.t. min
u′∈S

dG(u, u
′) = t. (143)

Equation 138 implies:
min
v′∈S

dG(v, v
′) > t⇔ X t(S, v) = 0. (144)

In addition, since the node feature map X t = X t
∗ is bounded by t + 1, Equation (138)

implies:

∃u ∈ NG(v) s.t. min
u′∈S

dG(u, u
′) = t⇔ max{X t(s, u) | v ∼G u} = t+ 1. (145)

Now, let gt : R2 → R be any continuous function such that for every pair of natural numbers
a, b ∈ N:

1. gt(a, b) = t+ 2 if a = 0, b = t+ 1,
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2. gt(a, b) = a otherwise.

Equations 141 - 145 imply:

X t+1
∗ (S, v) = gt(X t(S, v),max{X t(s, u) | v ∼G u}). (146)

Using a CS-GNN update as per Equation (11), with aggregation function:

aggt1{{(X t(S, v′), ev,v′) | v′ ∼G v}} = max
v′∼Gv

X t(S, v′). (147)

and update function:

f t(X t(S, v), max
v′∼Gv

X t(S, v′), ·, ·, ·) = gt(X t(S, v), max
v′∼Gv

X t(S, v′)) (148)

we obtain:
X t+1(S, v) = f t(X t(S, v), max

v′∼Gv
X t(S, v′), ·, ·, ·) = X t+1

∗ (S, v). (149)

This completes the induction step. Now, let G be a finite family of graphs, whose maximal
vertex size is n. We notice that:

X πMD(S, v) = X n
∗ (S, v)− 1, (150)

Which implies that there exists a stack of n CS-GNN layers such that:

X 0(S, v) = X πS(S, v) and X n(S, v) = X πMD(S, v). (151)

This implies:
CS-GNN(T , πMD) ⊆ CS-GNN(T , πS). (152)

This concludes the proof.

Proposition 29 (Expressivity of Learned Distance Policy) For any coarsening func-
tion T (·) the following holds:

CS-GNN(T , πS) ⊆ CS-GNN(T , πLD). (33)

In addition, for some choices of T (·) the containment is strict.

Proof First, since we are concerned with input graphs belonging to a finite graph family
G, the learned function ϕ(·) implemented by an MLP can express any continuous function
on G. This follows from Theorem 25 (see the proof of Theorem 11 for details). By choosing
ϕ = min(·) in equation 31, it is clear that for any coarsening function T (·) we have:

CS-GNN(T , πS) = CS-GNN(T , πMD) ⊆ CS-GNN(T , πLD). (153)

We now construct a coarsening function T (·) along with two graphs, G and H, and demon-
strate that there exists a function in CS-GNN(T , πLD) that can separate G andH. However,
every function in CS-GNN(T , πS) cannot separate the two.
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Figure 11: Graphs G and H defined in the proof of Theorem 14. In each graph, the circle
marks the single super-node induced by T , while the number next to each node u is the
maximal SPD between u and the nodes that compose the super-node.

For an input graph G = (V,E) define:

T (G) = {{u ∈ V | degG(u) = 3}}. (154)

i.e., T (·) returns a single super-node composed of all nodes with degree 3. Now, define
G = (VG, EG) as the graph obtained by connecting two cycles of size four by adding an
edge between a single node from each cycle. Additionally, define H = (VH , EH) as the
graph formed by joining two cycles of size five along one of their edges. See Figure 11 for
an illustration of the two graphs.

By choosing ϕ = max(·) in equation 31 a quick calculation shows that:∑
S∈VT (G)

∑
v∈VG

X πLD(S, v) = 16, (155)

while: ∑
S∈VT (H)

∑
v∈VH

X πLD(S, v) = 14. (156)

Refer to Figure 11 for more details. Observe that:

f(G) =
∑

s∈VT (H)

∑
u∈VH

X πLD(S, v) ∈ CS-GNN(T , πLD) (157)

Thus it is enough to show that:

f(G) = f(H), ∀f ∈ CS-GNN(T , πS). (158)

To achieve this, we use the layer update as per Theorem 10, which was demonstrated in
Theorem 11 to be equivalent to the general equivariant message passing update in The-
orem 5. First, we observe that the graphs G and H are WL-indistinguishable. We then
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observe that since |V T | = 1, the graphs induced by the adjacency matrices AG and AH

in Theorem 9 are isomorphic to the original graphs G and H, respectively, and therefore
they are also WL-indistinguishable. Additionally, we notice that the graphs induced by
the adjacency matrices AT (G) and AT (H) in Theorem 9 are both isomorphic to the fully
disconnected graph with 8 nodes, making them WL-indistinguishable as well. WWe also
observe that there exists a bijection σ : VG → VH that maps all nodes of degree 3 in G to
all nodes of degree 3 in H. The definition of T (·) implies that σ is an isomorphism between
the adjacency matrices APi corresponding to G and H, where i = 1, 2. Finally, we notice
that for both G, and H, the node feature map induced by πS satisfies:

X πS(S, v) = deg(v)− 2. (159)

This node feature map can be easily implemented by the layer update in definition 10 and so
it can be ignored. Since all four graphs corresponding toG that are induced by the adjacency
matrices in Theorem 9, are WL-indistinguishable from their counterpart corresponding to
H, and equation 25 in definition 10 is an MPNN update, which is incapable of distinguishing
graphs that are WL-indistinguishable, we see that equation 158 holds, concluding the proof.

Proposition 30 (Node + Size Marking as Invariant Marking) Given a graph G =
(V,E) with node feature vector X ∈ Rn×d, and a coarsening function T (·), let X πSS ,X πinv

be the node feature maps induced by πSS and πinv respectively. Recall that:

X πSS(S, v) = [Xv, bπSS(S, v)], (39)

X πinv(S, v) = [Xv, bπinv(S, v)]. (40)

The following now holds:

bπinv(S, v) = OHE(bπSS(S, v)) ∀S ∈ V T , ∀v ∈ V. (41)

Here, OHE denotes a one-hot encoder, independent of the choice of both G and T .

Proof Let G = (V,E) be a graph with V = [n], and let T (·) be a coarsening function.
Recall that the maps bπSS(·, ·) and bπinv(·, ·) are both independent of the connectivity of G
and are defined as follows:

bπSS(S, v) =

{
(1, |S|) v ∈ S,

(0, |S|) v /∈ S.
(160)

bπinv(S, v) = [1γ1(S, v), . . . ,1γk(S, v)]. (161)

Here, v ∈ [n], S ∈ T ([n]) ⊆ P([n]), γ1, . . . , γk is any enumeration of the set of all orbits
(P([n]) × [n])/Sn, and 1γi denotes the indicator function of orbit γi. Since any tuple
(S, v) ∈ P([n]) × [n] belongs to exactly one orbit γi, we note that the right hand side
of Equation (161) is a one-hot encoded vector. Thus, it suffices to show that for every
v, v′ ∈ [n] and S, S′ ∈ P([n]), we have:

bπSS(S, v) = bπSS(S,
′ v′)⇔ bπinv(S, v) = bπinv(S,

′ v′). (162)
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This is equivalent to:

(P([n])× [n])/Sn = {{(S, v) | |S| = i,1S(v) = j} | i ∈ [n], j ∈ {0, 1}} . (163)

Essentially, this means that each orbit corresponds to a choice of the size of s and whether
v ∈ S or not. To conclude the proof, it remains to show that for any two pairs (S, v), (S,′ v′) ∈
P([n])× [n], there exists a permutation σ ∈ Sn such that:

σ · (S, v) = (S,′ v′) (164)

if and only if

|S| = |S′| and 1S(v) = 1S′(v′). (165)

Assume first that σ · (S, v) = (S′, v′), then σ−1(S) = S′ and since σ is a bijection, |S| = |S′|.
In addition σ−1(v) = v′ thus:

v ∈ S ⇔ v′ = σ−1(v) ∈ σ−1(S) = S′. (166)

Assume now that:

|S| = |S′| (167)

1S(v) = 1S′(v′) (168)

It follows that for some r,m ∈ [n]:

|S \ {v}| = |S′ \ {v′}| = r and |[n] \ (S ∪ {v})| = |[n] \ (S′ ∪ {v′})| = m (169)

Write:

S \ {v} = {i1, . . . , ir}, S′ \ {v′} = {i′1, . . . , i′r},
[n] \ (S ∪ {v}) = {j1, . . . jm}, [n] \ (S′ ∪ {v′}) = {j′1, . . . j′m}

and define:

σ(x) =


v′ x = v

i′l x = il, l ∈ [r]

j′l x = jl, l ∈ [m]

(170)

We now have:

σ · (S, v) = (S′, v′). (171)

This concludes the proof.
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H.3. Proofs of Appendix E.1

Proposition 31 (CS-GNN Can Implement MSGNN) Let T (·) be the identity coars-
ening function defined by:

T (G) = {{v} | v ∈ V } ∀G = (V,E). (45)

The following holds:
CS-GNN(T , πS) = MSGNN(πNM). (46)

Proof Abusing notation, for a given graph G = (V,E) we write T (G) = G, V T = V . First,
we observe that:

v ∈ {u} ⇔ u = v, (172)

This implies that the initial node feature map X 0(u, v) induced by πS is equivalent to the
standard node marking described in equation 42. Additionally, we note that the pooling
procedures for both models, as described in equations 12 and 51, are identical. Therefore,
it is sufficient to show that the CS-GNN and MSGNN layer updates described in equations
11 and 43 respectively are also identical. For this purpose, let X t(v, u) be a node feature
map supported on the set V × V . The inputs to the MSGNN layer are the following:

1. X t(u, v).

2. X t(u, u).

3. X t(v, v).

4. aggt1{{(X t(u, v′), ev,v′) | v′ ∼ v}}.

5. aggt2{{(X t(u′, v), eu,u′) | u′ ∼ u}}.

The inputs to the CS-GNN layer are the following:

1. X t(S, v)⇒ X t(u, v).

2. aggt1{{(X t(S, v′), ev,v′) | v′ ∼G v}} ⇒ aggt1{{(X t(u, v′), ev,v′) | v′ ∼ v}}.

3. aggt2{{(X t(S′, v), ẽS,S′) | S′ ∼GT S}} ⇒ aggt2{{(X t(u, u′), eu,v′) | v′ ∼ v}}.

4. aggt3{{(X t(S′, v), z(S, v, S′, v)) | ∀s′ ∈ V T s.t. v ∈ S′}} ⇒ {{(Xt(v, v), z(u, v, v, v))}}.

5. aggt4{{(X t(S, v′), z(S, v, S, v′)) | ∀u′ ∈ V s.t. v′ ∈ S}} ⇒ {{(Xt(u, u), z(u, v, u, u))}}.

The terms z(u, v, v, v) and z(u, v, u, u) appearing in the last two input terms of the CS-GNN
layer uniquely encode the orbit tuples (u, v, v, v) and (u, v, u, u) belong to respectively. Since
these orbits depend solely on whether u = v, these values are equivalent to the node marking
feature map X 0(u, v). Therefore, these terms can be ignored. Observing the two lists above,
we see that the inputs to both update layers are identical (ignoring the z(·) terms), Thus,
as both updates act on these inputs in the same way, the updates themselves are identical.
and so

MSGNN(πNM) = CS-GNN(T , πS). (173)
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Proposition 32 (CS-GNN Is at Least as Expressive as Coarse MPNN ) For any
coarsening function T (·) the following holds:

MPNN ⊆ MPNN+(T ) ⊆ CS-GNN(T , πS) (54)

Proof For convenience, let us first restate the CS-GNN layer update:

X t+1(S, v) = f t

(
X t(S, v),

aggt1{{(X t(S, v′), ev,v′) | v′ ∼G v}},
aggt2{{(X t(S′, v), ẽS,S′) | S′ ∼GT S}},
aggt3{{(X t(S′, v), z(S, v, S′, v)) | s′ ∈ V T s.t. v ∈ S′}},

aggt4{{(X t(S, v′), z(S, v, S, v′)) | u′ ∈ V s.t. v′ ∈ S}}
)
,

(11)

as well as the MPNN+ layer update:

For v ∈ V : X t+1(v) = f t
V

(
X t(v), aggt1{{(X t(v′), ev,v′) | v ∼G v′}},

aggt2{{X t(S) | S ∈ V T , v ∈ S}}
)
,

For S ∈ V T : X t+1(S) = f t
V T
(
X t(S), aggt1{{(X t(S′), eS,S′) | S ∼GT S′}},

aggt2{{X t(v) | v ∈ V, v ∈ S
}
}}).

(50)

We note that by setting f t
V T to be a constant zero and choosing f t

V to be any continuous
function that depends only on its first two arguments, the update in equation 50 becomes
a standard MPNN layer. This proves:

MPNN ⊆ MPNN+(T ). (174)

Next, we prove the following 2 Lemmas:

Lemma 33 Given a graph G = (V,E) such that V = [n] with node feature vector X ∈
Rn×d, and a coarsening function T (·), there exists a CS-GNN(T , πS) layer such that:

X 1(S, v) = [0d+1, Xv, 1] = [X̃ 0(S), X̃ 0(v)]. (175)

Here [·, ·] denotes concatenation and X̃ 0(·) denotes the initial node feature map of the coars-
ened sum graph GT

+.

Lemma 34 Let X̃ t(·) denote the node feature maps of GT
+ at layers t of a stack of

MPNN+(T ) layers. There exists a stack of t+ 1 CS-GNN(T , πS) layers such that:

X t+1(S, v) = [X̃ t(S), X̃ t(v)]. (176)
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Proof [proof of Lemma 33] Recall that the initial node feature map of CS-GNN(T , πS) is
given by:

X 0(S, v) =

{
[Xv, 1] v ∈ S

[Xv, 0] v /∈ S.
(177)

In addition, the initial node feature map of MPNN+(T ) is given by:

X̃0(v) =

{
[Xv, 1] v ∈ V

0d+1 v ∈ V T .
(178)

Thus, we choose a layer update as described in equation 11 with:

X 1(S, v) = f0(X 0(S, v), ·, ·, ·, ·) = [0d+1,X 0(S, v)1:d, 1] (179)

Here, f(a, ·, ·, ·) denotes that the function depends only on the parameter a, and Xa:b indi-
cates that only the coordinates a through b of the vector X are taken. This gives us:

X 1(S, v) = [X̃ 0(S), X̃ 0(v)]. (180)

Proof [proof of Lemma 34] We prove this Lemma by induction on t. We note that Lemma
33 provides the base case t = 0. Assume now that for a given stack of t + 1 MPNN+(T )
layer updates, with corresponding node feature maps:

X̃ i : V T
+ → Rdi i = 1 . . . , t+ 1, (181)

there exists a stack of t+ 1 CS-GNN(T , πS) layers with node feature maps:

X i : V T × V → R2di i = 1, . . . , t+ 1, (182)

such that:
X t+1(S, v) = [X̃ t(S), X̃ t(v)]. (183)

We shall show that there exists a single additional CS-GNN(T , πS) layer update such that:

X t+2(S, v) = [X̃ t+1(S), X̃t+1(v)]. (184)

For that purpose we define the following CS-GNN(T , πS) update (abusing notation, the left
hand side refers to components of the CS-GNN(T , πS) update at layer t+1, while the right
hand side refers to components of the MPNN+(T ) update at layer t):

aggt+1
1 = aggt11:dt ,

aggt+1
2 = aggt1dt+1:2dt ,

aggt+1
3 = aggt21:dt ,

aggt+1
4 = aggt2dt+1:2dt ,

(185)
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f t+1(a, b, c, d, e) = [f t
V (a1:dt , b, d), f

t
V T (adt+1:2dt , c, e)]. (186)

Here the operation agga:b initially projects all vectors in the input multi-set onto coordi-
nates a through b, and subsequently passes them to the function agg. equations 185 , 186
guarantee that:

X t+2(S, v)1:dt+1 = f t
V

(
X t(S, v)1:dt ,

aggt1{{(S, v′)1:dt | v ∼G v′}},
aggt2{{(S′, v)1:dt | v ∈ S′}}

)
= X̃t+1(v),

X t+2(S, v)dt+1+1:2dt+1 = f t
V T
(
X t(S, v)dt+1:2dt ,

aggt1{{(S′, v)dt+1:2dt | S′ ∼T (G) S}},
aggt2{{(S, v′)dt+1:2dt | v′ ∈ S}}

)
= X̃t+1(S).

(187)

This proves the Lemma.

Now, for a given finite family of graphs G and a function f ∈ MPNN+(T ), there exists a
stack of T MPNN+(T ) layers such that:

f(G) = U

∑
v∈V T

+

X̃ T (v)

 ∀G ∈ G. (188)

Here, X̃ T : V T
+ → RdT denotes the final node feature map, and U is an MLP. Lemma 34

now tells us that there exists a stack of T + 1 CS-GNN(T , πS) layers such that:

X T+1(S, v) = [X̃ T (S), X̃ T (v)]. (189)

Similarly to Lemma 33, we use one additional layer to pad X T+1(S, v) as follows:

X T+2(S, v) = [X̃ T (S), X̃ T (v), 1]. (190)

We notice that:

∑
s∈V T

X T+2(S, v) =

 ∑
S∈V T

X̃T (S),
∑

S∈V T

X̃T (v),
∑

S∈V T

1


=

 ∑
S∈V T

X̃T (S), |V T | · X̃T (v), |V T |

 .

(191)
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Thus, in order to get rid of the |V T | term, We define:

MLP1(a, b, c) = [a,
1

c
· b, 1], a, b ∈ RdL , c > 0. (192)

We note that since we are restricted to a finite family of input graphs, the use of an MLP in
equation 195 can be justified using Theorem 25 (see the proof of Theorem 11 for a detailed
explanation).

Equations 191 and 195 imply:

MLP1

∑
s∈V T

X T+2(S, v)

 =

 ∑
S∈V T

X̃T (S), X̃T (v), 1

 (193)

Thus, similarly to equation 191:

∑
v∈V

MLP1

 ∑
S∈V T

X T+2(S, v)

 =

|V | · ∑
S∈V T

X̃T (S),
∑
v∈V

X̃T (v), |V |

 (194)

And so, in order to get rid of the |V | term, We define:

MLP2(a, b, c) = U(a · 1
c
+ b, 1), a, b ∈ RdT , c > 0. (195)

Thus for all G ∈ G:

MLP2

∑
v∈V

MLP1

 ∑
S∈V T

X T+2(S, v)


= MLP2

|V | · ∑
S∈V T

X̃T (S),
∑
v∈V

X̃T (v), |V |


= U

∑
v∈V T

+

X̃T (v)


= f(G).

(196)

and so f ∈ CS-GNN(T , πS). This proves:

MPNN+(T ) ⊆ CS-GNN(T , πS). (197)
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Proposition 35 (CS-GNN Can Be More Expressive Than MPNN+) Let T (·) be
the identity coarsening function defined by:

T (G) = {{v} | v ∈ V } G = (V,E). (55)

The following holds:

MPNN = MPNN+(T ). (56)

Thus:
MPNN+(T ) ⊂ CS-GNN(T , πS), (57)

where this containment is strict.

Proof First, using the notation ṽ to mark the single element set {v} ∈ V T , We notice that
the MPNN+(T ) layer update described in equation 50, becomes:

For v ∈ V : X t+1(v) = f t
V

(
X t(v),X t(ṽ), aggt{{(X t(v′), ev,v′) | v′ ∼G v}},

)
,

For ṽ ∈ V T : X t+1(ṽ) = f t
V T

(
X t(ṽ),X t(v), aggt{{(X t(ṽ′), eṽ,ṽ′) | v ∼G v′}}

)
.

(198)

Now, for a given finite family of graphs G and a function f ∈ MPNN+(T ), there exists a
stack of T MPNN+(T ) layers such that:

f(G) = U

∑
v∈V T

+

X T (v)

 ∀G ∈ G. (199)

Here, X T : V T
+ → Rd denotes the final node feature map, and U is an MPL. We now prove

by induction on t that there exists a stack of t standard MPNN layers, with corresponding
node feature map Xt : V → R2dt such that :

Xt(v) = [X t(v),X t(ṽ)]. (200)

Here, [·, ·] stands for concatenation. We assume for simplicity that the input graph G does
not have node features, though the proof can be easily adapted for the more general case.
We notice that for the base case t = 0, equation 49 in definition 18 implies:

X 0(v) =

{
1 v ∈ V,

0 v ∈ V T .
(201)

Thus, we define:
X0(v) = (1, 0). (202)

This satisfies Equation (200), establishing the base case of the induction. Assume now that
Equation (200) holds for some t ∈ [T ]. Let aggt, f t

V , f
t
V T be the components of layer t, as

in equation 198. We define:
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˜aggt = [aggt|1:dt , aggt|dt+1:2dt ]. (203)

Here the operation agga:b initially projects all vectors in the input multi-set onto coordinates
a through b, and subsequently passes them to the function agg.

Additionally, let d∗ denote the dimension of the output of the function aggt. We define:

f̃ t(a, b) =
[
f t
V (a|1:dt , a|dt+1:2dt , b|1:d∗) , f t

V (a|dt+1:2dt , a|1:dt , b|d∗+1:2d∗)
]
. (204)

Finally, we update our node feature map Xt using a standard MPNN update according to:

Xt+1(v) = f̃ l
(
Xt(v), {{(Xt(v′), ev,v′) | v′ ∼G v}}

)
. (205)

equations 198, 200 and 205 now guarantee that:

Xt+1(v) = [X t(v),X t+1(ṽ)]. (206)

This concludes the inductive proof. We now define:

MLP(x) = U(x|1:dT ) + U(x|dT+1:2dT ). (207)

This gives us:

U

( ∑
v∈V T

+

X T (v)

)
= MLP

(∑
v∈V

XT (v)

)
= f(G). (208)

We have thus proven that f ∈ MPNN and so:

MPNN+(N ) ⊆ MPNN. (209)

Combining this result with Proposition 20, we obtain:

MPNN = MPNN+(T ). (210)

Finally, since Proposition 17 tells us that CS-GNN(T , πS) has the same implementation
power as the maximally expressive node policy subgraph architecture MSGNN, which is
proven to be strictly more expressive than the standard MPNN, we have:

MPNN+(T ) ⊂ CS-GNN(T , πS). (211)
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Lemma 36 (γ (Γ) are orbits) The sets {γk∗ : k = 1, . . . , n; ∗ ∈ {+,−}} and {Γ↔;k1;k2;k∩;δsame;δdiff}
are the orbits of Sn on the index space (P([n])× [n]) and (P([n])× [n]× (P([n])× [n]), re-
spectively.

Proof We will prove this lemma for γ. The proof for Γ follows similar reasoning; we also
refer the reader to Maron et al. (2018) for a general proof.

We will prove this lemma through the following three steps.

(1). Given indices (S, i) ∈ P([n])× [n], there exists γ ∈ (P([n])× [n])∼ such that (S, i) ∈ γ.

(2). Given indices (S, i) ∈ γ, for any σ ∈ Sn, it holds that (σ
−1(S), σ−1(i)) ∈ γ.

(3). Given (S, i) ∈ γ and (S′, i′) ∈ γ (the same γ), it holds that there exists a σ ∈ Sn such
that σ · (S, i) = (S′, i′).

We prove in what follows.

(1). Given indices (S, i) ∈ P([n]) × [n], w.l.o.g. we assume that |S| = k, thus if i ∈ S
(i /∈ S) it holds that (S, i) ∈ γk

− (
(S, i) ∈ γk

+)
, recall Equation (66).

(2). Given indices (S, i) ∈ γ, note that any permutation σ ∈ Sn does not change the
cardinality of S nor the inclusion (or exclusion) of i in S. Recalling Equation (66), we
complete this step.

(3). Given that (S, i) ∈ γ and (S′, i′) ∈ γ, and recalling Equation (66), we note that
|S| = |S′| and that either both i ∈ S and i′ ∈ S′, or both i /∈ S and i′ /∈ S′.

(3.1). In (3.1) we focus on the case where i /∈ S and i′ /∈ S′. Let S = {i1, . . . , ik} and
S′ = {i′1, . . . , i′k}. Then, we have ({i1, . . . , ik}, j) and ({i′1, . . . , i′k}, j′). Define σ ∈ Sn such
that σ(il) = i′l for l ∈ [k], and σ(j) = j′. Since ({i1, . . . , ik}, j) consists of k + 1 distinct
indices and ({i′1, . . . , i′k}, j′) also consists of k + 1 distinct indices, this is a valid σ ∈ Sn.

(3.2). Here, we focus on the case where i ∈ S and i′ ∈ S′. This proof is similar to (3.1),
but without considering the indices j and j′, as they are included in S and S′, respectively.

Proposition 37 (Basis of Invariant (Equivariant) Layer) The tensors Bγ (BΓ) in
Equation (67) (Equation (69)) form an orthogonal basis (in the standard inner product) to
the solution of Equation (61) (Equation (62)).

Proof

We prove this proposition for the invariant case. The equivariant case is proved similarly –
we also refer the reader for Maron et al. (2018) for a general proof. We will prove this in
three steps,

(1). For any γ ∈ (P([n])× [n])∼ it holds that Bγ
S,i solves Equation (61).

(2). Given a solution L to Equation (61), it is a linear combination of the basis elements.
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(3). We show that the basis vectors are orthogonal and thus linearly independent.

We prove in what follows.

(1). Given γ ∈ (P([n]) × [n])∼, we need to show that Bγ
S,i = Bγ

σ−1(S),σ−1(i)
. Since any

γ ∈ (P([n])× [n])∼ is an orbit in the index space (recall Theorem 22), and Bγ
S,i are indicator

vectors of the orbits this always holds.

(2). Given a solution L to Equation (61), it must hold that LS,i = Lσ−1(S),σ−1(i). Since

the set {γk∗ : k = 1, . . . , n; ∗ ∈ {+,−}} corresponds to the orbits in the index space with
respect to Sn, L should have the same values over the index space of these orbits. Let’s
define these values as αγ for each γ ∈ {γk∗ : k = 1, . . . , n; ∗ ∈ {+,−}}. Thus, we obtain
that L′ =

∑
γ∈(P([n])×[n])∼

αγ ·Bγ , since Bγ are simply indicator vectors of the orbits. This
completes this step.

(3). Once again, since the basis elements are indicator vectors of disjoint orbits we obtain
their orthogonality, and thus linearly independent.
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