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Abstract

Federated learning is a distributed machine learning paradigm designed to protect
user data privacy, which has been successfully implemented across various scenar-
ios. In traditional federated learning, the entire parameter set of local models is
updated and averaged in each training round. Although this full network update
method maximizes knowledge acquisition and sharing for each model layer, it
prevents the layers of the global model from cooperating effectively to complete
the tasks of each client, a challenge we refer to as layer mismatch. This mismatch
problem recurs after every parameter averaging, consequently slowing down model
convergence and degrading overall performance. To address the layer mismatch
issue, we introduce the FedPart method, which restricts model updates to either
a single layer or a few layers during each communication round. Furthermore, to
maintain the efficiency of knowledge acquisition and sharing, we develop several
strategies to select trainable layers in each round, including sequential updating
and multi-round cycle training. Our theoretical analysis and experimental results
show that the FedPart method significantly outperforms traditional full-network
update strategies, achieving faster convergence, greater accuracy, and reduced
communication and computational overhead.

1 Introduction

Federated learning is a machine learning framework that protects data privacy, which has attracted
widespread attention from researchers in recent years [McMahan et al., 2017, Kairouz et al., 2019, Li
et al., 2019]. In traditional federated learning, after receiving the global model sent by the server,
each client uses their local data to update the entire model parameters set for several iterations; then,
the server averages the updated models to obtain a new global model and broadcasts it to all clients,
starting the next training round.

While this approach has proven effective in many applications [Hard et al., 2018, Rieke et al., 2020],
its convergence speed and ultimate performance are often lower than those of centralized schemes
[McMahan et al., 2017, Zou et al., 2023], even when data across clients are independently and
identically distributed (i.i.d.). This suggests that while full network updates and sharing enrich each
model layer with more knowledge, they may also introduce factors that negatively impact final
performance. To further investigate the underlying reason, we conduct an experiment to visualize
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the update step sizes during each iteration. Typically, in centralized learning, the update step sizes
of the model show a downward trend, indicating that the model is gradually converging. However,
in federated learning, as shown in Fig. 1a, the update step sizes significantly increase after each
parameter averaging. This suggests that after averaging, the gradients calculated by subsequent layers
become notably large, indicating inadequate cooperation among layers within the global model, a
phenomenon we term as layer mismatch. The cause of this issue is illustrated in Figure 2a. The
middle section of the figure depicts the local models of each client, which have undergone sufficient
local training. Within these local models, the layers cooperate effectively, demonstrating match.
However, upon aggregating the parameters of each layer, the averaged layers may struggle to maintain
this cooperation, resulting in mismatch. This layer mismatch can result in two key issues: first,
it may prevent the global model in federated learning from converging to the optimal point of the
global loss function, thereby compromising performance. Second, the persistent mismatch disrupts
the federated learning process at the server level, significantly reducing training efficiency.
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(a) Update step sizes of traditional federated
learning with full network updates.
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(b) Update step sizes comparison between full
network updates and partial network updates.

Figure 1: Update step sizes for each iteration. The experiment uses the ResNet-8 model with 20,000
CIFAR-100 images distributed in an i.i.d. manner across 40 clients.
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Figure 2: Mechanism for layer mismatch in FedAvg and FedPart.

To address the aforementioned problems, we propose FedPart, which employs partial network updates.
Our main motivation is illustrated in Fig. 2b. In this toy example, we assume that only the i-th layer
of the network is trainable in a given round. During local training on each client, this trainable layer
can naturally align with the fixed parameters of other layers, which serve as anchors that constrain
its update direction. This makes the averaged layers better align with other layers. To validate this
approach, we conduct experiments and visualize the results in Figure 1b. The curves demonstrate
that partial network updates significantly reduce the increase in update step sizes after averaging,
confirming their role in alleviating layer mismatch.
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However, as a trade-off, training and transmitting only a portion of the parameters at a time might
limit the efficiency of knowledge learning and sharing. Through thorough analysis, we identify a
solution to this challenge, which involves carefully selecting trainable parameters. This solution is
based on two key principles. The first principle is sequential updating. We train the network layers
sequentially, from shallow to deep, one layer at a time. This design is based on the observation that
the shallower layers of a neural network typically converge to their final parameters faster than the
deeper ones [Raghu et al., 2017]. To align with this natural order, we adopt a similar sequential
strategy for layer selection. The second principle is the multi-round cycle training strategy. Our
method emphasizes the importance of repeating the process of training from shallow layers to deep
layers multiple times. During the original full network updates, shallow layers often learn low-level
features, while deep layers learn high-level semantic features [Zeiler and Fergus, 2014, Erhan et al.,
2009]. To preserve this property, inspired by the idea of Block Coordinate Descent (BCD) [Poczos
and Tibshirani], we propose the multi-round cycling training method to retain this characteristic to
the greatest extent.

In addition, FedPart offers improved computation and communication efficiency, making it highly
suitable for edge computing scenarios [Wang et al., 2019a,b, Abreha et al., 2022]. This is because
FedPart only needs to train a part of the neural network at each training round, thereby significantly
reducing the computational overhead of each client in each iteration. At the same time, since clients
only need to upload and download the parts of the model that need updating, the amount of parameters
to be transmitted is also greatly reduced.

To validate the effectiveness of FedPart, we explore its performance from both theoretical and
experimental perspectives. Theoretically, we demonstrate that FedPart has a superior convergence rate
under non-convex settings compared to FedAvg. Experimentally, we perform extensive evaluations
on various datasets and model architectures. The results indicate that the FedPart method significantly
improves convergence speed and final performance (e.g., an improvement of 24.8% on Tiny-ImageNet
with ResNet-18), while also reducing both communication overhead (by 85%) and computational
overhead (by 27%) simultaneously. Furthermore, our ablation experiments demonstrate how each
of the proposed strategies contributes to enhancing the overall performance of FedPart. We also
conduct comprehensive visualization experiments to illustrate the underlying rationale of FedPart. In
summary, the contributions of this paper are as follows:

• We identify the issue of layer mismatch in federated learning, which arises from updating and
aggregating all parameters in each training round. This phenomenon can potentially impact the
model’s convergence speed and overall performance.

• To mitigate the effects of layer mismatch, we introduce FedPart, which implements partial
network updates. Additionally, we develop corresponding strategies for selecting trainable
parameters.

• We theoretically analyze the convergence rate of FedPart in a non-convex setting, demonstrating
its advantages over full network updates.

• We perform extensive experiments, showing that FedPart achieves significant improvements
across multiple evaluation metrics compared to the full network updates scheme. Additionally,
ablation and visualization experiments enhance our understanding of the rationale behind
FedPart.

2 Related Work

Current research on partial parameter training or aggregation in federated learning has led to various
applications, broadly categorized into three types:

Train all parameters, aggregate partial parameters. Also known as personalized federated
learning, this approach involves each client training all parameters but only aggregating some of
them [Tan et al., 2022]. For example, FedPer [Arivazhagan et al., 2019] and FedBN [Li et al.,
2021b] personalizes classification and batch-normalization layers respectively, FedRoD [Chen and
Chao, 2021] applies both global and local classifier heads. Other works may only upload a low-rank
space of parameter matrices [Wang et al., 2023, Wu et al., 2024a]. Although these methods achieve
impressive results in data-heterogeneous scenarios, they usually exhibit performance degradation
when datasets across clients are distributed in an i.i.d. manner. Moreover, they do not effectively
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reduce computational overhead, and any reduction in communication overhead is minimal, as the
personalized components are typically small.

Train partial parameters, aggregate all parameters. This category refers to each client training a
different part of the model, with a global update to the entire model during aggregation. For example,
PVT [Yang et al., 2022] and FedPT [Sidahmed et al., 2021] strategically assigns specific model layers
to each client, Federated Dropout [Caldas et al., 2018] and FedPMT [Wu et al., 2023] randomly
assign a neurons in different layers to clients, HeteroFL [Diao et al., 2020] and FjORD [Horvath et al.,
2021] deterministically decide a trainable subnetwork based on client computational power, FedRolex
[Alam et al., 2022] further introduces a sliding window method, and CoCoFL [Pfeiffer et al., 2022]
introduces a quantization technique for overhead reduction. The primary objective of these methods is
to reduce client overhead by dynamically leveraging varying computational capacities among clients.
However, compared to full network updates, these methods often result in performance degradation
and slower convergence speed.

Progressive Training. This approach starts with a small model and gradually increases its size until
the entire network is trained [Rusu et al., 2016]. This training paradigm has gain attention in the
field of federated learning as its efficiency in reducing resource consumption (e.g., ProgFed [Wang
et al., 2022] and ProFL [Wu et al., 2024b]). However, because these methods eventually train a full
model, they are not able to solve the layer mismatch problem. Moreover, while these methods aim
to reduce resource consumption, they often lead to performance losses compared to full network
training. To the best of our knowledge, our FedPart is the first approach to simultaneously enhance
both convergence accuracy and efficiency.

3 Method

Generally speaking, FedPart is based on partial network updates, which trains and aggregates only a
few layers of the global network model for each training round. At the beginning of each training
round that requires partial network update, the server first determines which layers need to be trained
and sends this information to all clients. Subsequently, each client trains the corresponding layers,
transmitting them to the server for aggregation, and the server broadcasts the averaged results to
each client for next training round. We elaborate on two key components of FedPart in the following
subsections: partial network updates and the strategic selection of trainable layers.

3.1 Partial Network Updates

The partial network updates involve training and aggregating only a few layers of the global network
model in each later communication rounds. Specifically, we partition the layers of global model into
trainable ones and frozen ones. For each training iteration t and client i, the optimization objective is:
argminwt

i
Ex∼Di

[L(x|ŵt
i , w̃

t
i)], where ŵt

i and w̃t
i respectively denotes parameters of trainable and

non-trainable layers, wt
i ≜ {ŵt

i , w̃
t
i} represents the total parameter set, Di represents the local data

distribution of client i and L(·) refers to the loss function. To optimize this objective, we adopt the
following gradient descent formula:

wt+1
i = wt

i − γ ∗ St
i ⊙∇wt

i
L(x|wt

i), x ∼ Di. (1)

Here, γ is the learning rate, St
i is a binary mask that selectively enables updates only for trainable

parameters and ⊙ denotes element-wise product. After performing several local training iterations,
the parameters of these selected layers are sent to the server and globally averaged at iteration
t = T : w̄T = 1

N

∑N
i=1 w

T
i , where N represents the number of clients. For the sake of simplicity in

formulation, the above equation aggregates and calculates the gradient for all parameters. However,
in practical implementation, we only update and transmit the trainable components, significantly
reducing both computational and communication costs.

3.2 Selecting Trainable Layers

Although training only a subset of parameters can largely mitigate the layer-mismatch issue, it may
limit the efficiency of knowledge learning and sharing. Therefore, we propose to carefully select
trainable layers to address this limitation. As illustrated in Fig.3, following the initial full network
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updates, we train parameters layer by layer from the shallowest to the deepest. Subsequently, we
cycle back to the shallowest layer and periodically repeat this process. Generally, this strategy is
driven by two key principles:

Sequential updating. This principle refers to training model layers in sequence, from shallow to
deep layers one at a time. Our motivation is based on the fact that the convergence of neural networks
follows a natural intrinsic order, with shallower layers typically converging earlier than deeper ones
[Raghu et al., 2017]. By partially updating network in accordance with this inherent training order,
we can largely replicate the convergence process of full network updates while preserving training
efficiency simultaneously.

Multi-round cycle training. This principle refers to repeating the process of updating the neural
network layers from shallow to deep multiple times. To illustrate our motivation, consider a fully
trained neural network: shallow layers primarily focus on low-level semantic features (such as the
edges in images), while deeper layers focus on higher-level semantic features (such as the main
objects in images). However, during partial network updates, because the deeper layers are initially
non-trainable, shallow layers are forced to learn complex high-level semantic features, which disrupts
the original information hierarchy in the neural network. Through multi-round cycle training, we
return to the shallow layers after training the deep layers. This strategy can reduce the burden on the
shallow layers and helps approximate the final results of full network updates.

Sequential Training (1 cycle)

… … … …… … ……

Multi-round Cycle Training

Full Network Updatesoutput

…

Model

roundsinput

Trainable LayerUntrainable Layer

… …

Figure 3: Strategy for selecting trainable layers.

3.3 Convergence Analysis for FedPart

To analyze the convergence of FedPart, we first introduce some definitions and notations. Let each
client use a uniform loss function L(x|w) with parameters w, for the data x to calculate the loss
function value, fi(w) = Ex∼Di

[L(x|w)] which is the expected loss function of client i. In this
setting, the overall optimization goal of federated learning can be written as the sum of the expected
loss functions of each client, that is: f(w) = 1

N

∑N
i=1 fi(w). Additionally, for notational simplicity,

we denote the parameters of the i-th client at time t as wt
i , the computed stochastic gradient vector as

Gt
i, and the average of all client models at time t as w̄t.

To represent partial network updates, we add a binary matrix St
i as a mask for each update process of

each client. To keep consistency with the methods section, we assume that for each mask St
i , 1

M of
the elements are set to 1, and the rest are set to 0. Before proving the convergence of our FedPart
under non-convex conditions, we first introduce three assumptions:

Assumption 1: The expected loss function of any client is L-smooth, namely:

||∇fi(w)−∇fi(u)|| ≤ L||w − u||,∀i, w, u. (2)

Assumption 2: The variance and second-order moments of the gradients are bounded, that is:

Ex∼Di
[||∇L(x|w)−∇fi(w)||2] ≤ σ2,∀i, w, x ∈ Di,

Ex∼Di
[||∇L(x|w)||2] ≤ G2,∀i, w, x ∈ Di.

5



Assumption 3: The variance of the gradients is approximately equal under all permissible masks:

Ex∼Di
[||S1 ⊙ (∇L(x|w)−∇fi(w))||]

Ex∼Di
[||S2 ⊙ (∇L(x|w)−∇fi(w))||]

≤ k, ∀i, w, x ∈ Di, S1, S2. (3)

The first two assumptions are common in the literature, ensuring certain necessary characteristics of
the loss function. The third assumption ensures that the specific choice of the mask matrix does not
have too much impact on the final update variance, provided that the mask meets the required criteria.
A further discussion about the third assumption can be found in Appendix G.

Based on these assumptions, we can analyze the convergence of FedPart. In terms of the approximate
convergence rate, we align with related literature [Alistarh et al., 2017, Lian et al., 2017, Ghadimi
and Lan, 2013], using the average magnitude of the expected gradient over iterations, and finally
obtain the following theorem:

Theorem 1: Under assumptions 1-3, with the total number of clients as N , and all parameters divided
into M groups of trainable parameters, the convergence rate of FedPart satisfies:

1

T

T∑
t=1

E[||St
i ⊙∇f(w̄t−1)||2] = O(

1√
MNT

), (4)

where ⊙ denotes element-wise product. A detailed proof of this theorem is provided in Appendix B.
The results show that compared to the convergence rate of full network updates O( 1√

NT
) [Yu et al.,

2019], FedPart demonstrates significantly better convergence performance. This advantage becomes
more pronounced as the choice amount of partial parameters per instance is reduced, which aligns
with our original intention to reduce layer mismatch. However, it should be noted that convergence
analysis can only indicate the difficulty of converging to a stationary point, and cannot measure the
model’s performance after convergence. Therefore, it is not advisable to arbitrarily reduce the number
of parameters trained in each iteration.

3.4 Analysis for Communication and Computational Cost

Communication Cost. Suppose FedPart divides all layers into M groups, and only one group is
trained during each partial training session, with one communication round for each group. It is easy
to verify that the averaged communication costs of FedPart during the partial network update phase is
reduced to 1

M of the original costs.

Computational Cost. Assuming that computational costs are uniform across all layers, our method
can reduce the overall computational expense during the partial network update phase by 1

3 . The
primary reason for this reduction is that in FedPart, there is no need to compute gradients for the
layers preceding the trainable parameters. To analyze this quantitatively, suppose the total overhead
for both forward and backward propagation in a complete model satisfies Dtot = Dfor +Dbak. The
ratio of computational costs over a single training cycle can then be written as

CompPNU

CompFNU
=

M ∗Dfor +
∑M

i=1
i∗Dbak

M

M ∗Dfor +M ∗Dbak
=

M ∗Dfor +
∑M

i=1
(M+1)∗Dbak

2M

M ∗Dfor +M ∗Dbak
.

Moreover, it is widely accepted in the literature that the computational cost of backward propagation
is approximately twice that of forward propagation [Rasley et al., 2020, Hobbhahn and Sevilla, 2021].
Therefore, the above equation can be rewritten as:

CompPNU

CompFNU
≈ M ∗Dfor + (M + 1) ∗Dfor

M ∗Dfor + 2M ∗Dfor
≈ 2

3
(5)

4 Experiments
In the experimental setup, we primarily choose 40 clients, with local epochs to be 8. We test the global
model on a balanced set. Unless specifically stated otherwise, the training datasets across all clients
are independently and identically distributed (i.i.d.). We utilize the Adam optimizer [Kingma and
Ba, 2014] with a learning rate of 0.001, which is determined to be the optimal learning rate. In line
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with prior references [Li et al., 2021b, Chen et al., 2022], we refrain from uploading local statistical
information during model aggregation. Each experiment is conducted three times with different
random seeds to ensure robustness. The experimental results for additional scenarios, including
learning-rate tuning and client sampling, are presented in Appendix F.

When choosing experimental metrics, we employ three distinct measures to capture various aspects
of the benefits. These metrics include: Best Acc., which represents the ultimate accuracy achieved in
classification tasks; Comm., indicating the total upstream transmission volume required by each client
for a given training round (in GB); and Comp., which illustrates the total floating-point computation
required by each client (in TFLOPs). All experiments are conducted on a server equipped with
8×A100 GPUs, and we provide the complete source code in our supplementary material.

4.1 Main Properties

Comparison with full network updates. We apply the FedPart method to three classic federated
learning algorithms: FedAvg [McMahan et al., 2017], FedProx [Sahu et al., 2018], and FedMOON
[Li et al., 2021a], and compare the results with their full network updates (FNU) counterparts. We
utilize ResNet-8 [He et al., 2016] (detailed in Appendix A) and update only one layer in each two
consecutive training rounds (denoted as 2 R/L). Additionally, we insert five rounds of full network
training between each cycle in our FedPart. We conduct experiments on the CIFAR-10 [Krizhevsky
et al., 2010], CIFAR-100 [Krizhevsky et al., 2009], and TinyImageNet [Le and Yang, 2015] datasets.

Table 1: Performance of FL algorithms with full network and partial network updates.

Data C FedAvg FedProx FedMoon Comm. Comp.
FNU FedPart FNU FedPart FNU FedPart FNU FedPart FNU FedPart

CIF
AR-
10

1 56.0 (±1.1) 57.7 (±0.5) 54.4 (±2.1) 57.5 (±0.6) 58.9 (±0.5) 57.8 (±0.4) 4.83 1.35 4.38 3.21
2 58.6 (±1.6) 60.2 (±0.4) 60.2 (±1.5) 59.9 (±0.5) 61.1 (±0.1) 59.4 (±0.2) 9.65 2.70 8.76 6.43
3 59.6 (±1.7) 61.7 (±0.3) 62.3 (±0.7) 61.3 (±0.1) 62.3 (±0.4) 59.8 (±0.1) 14.5 4.05 13.2 9.64
4 60.7 (±1.3) 62.8 (±0.2) 62.8 (±1.1) 62.3 (±0.1) 62.3 (±0.4) 60.5 (±0.6) 19.3 5.40 17.5 12.9

CIF
AR-
100

1 30.9 (±0.4) 31.0 (±0.5) 30.6 (±0.3) 30.9 (±0.5) 31.0 (±0.5) 30.9 (±0.4) 4.92 1.38 4.39 3.22
2 32.9 (±0.3) 34.8 (±0.5) 33.6 (±0.5) 34.7 (±0.4) 33.2 (±0.9) 35.1 (±0.4) 9.65 2.75 8.78 6.44
3 34.3 (±0.2) 36.1 (±0.5) 34.5 (±0.5) 36.7 (±0.4) 34.6 (±1.1) 36.5 (±0.6) 14.8 4.13 13.2 9.66
4 35.6 (±0.3) 37.0 (±0.6) 35.8 (±0.2) 37.1 (±0.4) 35.0 (±1.0) 37.2 (±0.6) 19.7 5.51 17.6 12.9
5 35.6 (±0.3) 37.2 (±0.7) 36.2 (±0.5) 37.5 (±0.2) 35.4 (±0.8) 37.6 (±0.5) 24.6 6.88 21.9 16.1

Tiny-
Imag
eNet

1 15.6 (±0.6) 17.1 (±0.2) 15.8 (±0.4) 16.8 (±0.2) 17.5 (±0.6) 17.3 (±0.3) 5.02 1.40 17.5 12.9
2 17.0 (±0.8) 20.3 (±0.1) 17.2 (±1.0) 20.1 (±0.2) 17.5 (±0.6) 20.5 (±0.0) 10.0 2.81 35.1 25.7
3 17.6 (±0.4) 20.8 (±0.2) 18.0 (±0.5) 20.7 (±0.1) 18.4 (±0.8) 21.1 (±0.1) 15.1 4.21 52.6 38.6
4 17.7 (±0.4) 21.1 (±0.1) 18.2 (±0.7) 21.2 (±0.1) 18.4 (±0.8) 21.5 (±0.1) 20.1 5.62 70.1 51.4
5 17.7 (±0.4) 21.4 (±0.2) 18.4 (±0.8) 21.5 (±0.2) 18.4 (±0.8) 21.7 (±0.1) 25.1 7.02 87.7 64.3

The results in Table 1 show that our FedPart method demonstrates rapid convergence and consistently
outperforms traditional FNU methods across all training cycles C, ultimately achieving significantly
higher accuracy (e.g., improving FedAvg on Tiny-ImageNet by 21%). At the same time, its commu-
nication and computational costs are only 28% and 73% of those required by FNU. Furthermore, we
observe that in some scenarios, the performance improvements of other federated learning algorithms
even surpass those observed with FedAvg. This highlights that the layer mismatch problem identified
in this paper is novel and cannot be addressed by any existing methods. However, our results on
CIFAR-10 are less impressive. This suggests that in simpler datasets, the primary issue might be the
client drift problem explored in previous studies, whereas the layer mismatch problem becomes more
prominent in complex datasets.

FedPart with deeper models. To evaluate the effectiveness of FedPart with deeper networks, we
conduct experiments on ResNet-18 (detailed in Appendix A). This presents a more challenging
scenario, as the proportion of trainable parameters significantly decreases in each round. Our
experimental setup also follows the 2 R/L pattern, with five additional full network updates inserted
between cycles. The results, displayed in Table 2, show that in deeper networks, FedPart not only
maintains its advantages in convergence speed and accuracy but also provides even greater reductions
in communication and computational costs (by 85% and 27% compared to full network updates).
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Table 2: Performance of FedPart for ResNet-18.

Data C FedAvg-FNU FedAvg-FedPart
Best Acc. Comm. Comp. Best Acc. Comm. Comp.

CIFAR-
10

1 59.4 (±1.5) 82.1 11.2 53.5 (±0.5) 12.2 8.19
2 61.4 (±0.1) 164 22.3 57.5 (±0.6) 24.5 16.4
3 61.7 (±0.2) 246 33.5 59.2 (±0.4) 36.7 24.6

CIFAR-
100

1 30.4 (±0.4) 82.5 11.2 27.8 (±0.5) 12.3 8.20
2 31.9 (±0.6) 165 22.4 31.6 (±0.4) 24.6 16.4
3 32.0 (±0.5) 247 33.5 33.4 (±0.4) 36.8 24.6

Tiny-
ImageNet

1 13.7 (±0.2) 82.8 44.7 12.0 (±0.2) 12.3 32.8
2 13.7 (±0.2) 166 89.4 15.1 (±0.3) 24.7 65.5
3 13.7 (±0.2) 248 134 17.1 (±0.2) 37.0 98.3

Table 3: Performance of FedPart on NLP datasets.

Data C FedAvg-FNU FedAvg-FedPart
Best Acc. Comm. Comp. Best Acc. Comm. Comp.

AG
News

1 91.4 (±0.3) 22.3 5.58 91.1 (±0.2) 7.43 4.16
3 92.0 (±0.2) 66.9 16.7 91.5 (±0.2) 22.3 12.5
5 92.1 (±0.3) 106 27.9 92.0 (±0.3) 37.2 20.8

Sogou
News

1 94.2 (±0.2) 51.8 5.58 93.8 (±0.2) 17.3 4.16
3 94.3 (±0.2) 155 16.7 94.3 (±0.2) 51.8 12.5
5 94.4 (±0.2) 259 27.9 94.4 (±0.2) 86.3 20.8

FedPart for language modality. We
also extend the FedPart method to the
field of natural language processing
and evaluate it on AGnews and So-
gouNews [Zhang et al., 2015] datasets.
We choose the transformer architec-
ture [Vaswani et al., 2017] for exper-
iments. As shown in Table 3, the re-
sults indicate that FedPart performs
well on language tasks, not only main-
taining comparable performance as
FNU, but also reducing communication and computational overhead by 66% and 25%, respec-
tively. This demonstrates the method’s scalability.

FedPart under data heterogeneity. We also evaluate the performance of FedPart under scenarios
involving data heterogeneity. The results in Table 4 show that our FedPart consistently improve final
performance (e.g., an improvement of 3.4% on Tiny-ImageNet) in the presence of data heterogeneity.
However, the extent of performance improvement is relatively smaller. This suggests that client drift
[Karimireddy et al., 2020] may have a more pronounced negative impact on our method. We conduct
experiments with extreme data heterogeneity (α = 0.1) in Appendix F.3.

Table 4: Performance of FedPart under data
heterogeneity (Dirichlet, α = 1).

Dataset C FedAvg-FNU FedPart

CIFAR-
10

2 57.7 (± 0.7) 57.8 (± 0.4)
3 59.2 (± 0.7) 59.2 (± 0.4)
4 60.4 (± 1.1) 60.7 (± 0.4)
5 60.4 (± 1.1) 61.4 (± 0.4)

CIFAR-
100

2 33.1 (± 0.4) 34.4 (± 0.1)
3 34.3 (± 0.6) 35.8 (± 0.2)
4 34.9 (± 0.6) 36.8 (± 0.1)
5 35.2 (± 0.5) 37.4 (± 0.1)

Tiny-
ImageNet

2 16.9 (± 0.3) 19.8 (± 0.4)
3 17.4 (± 0.1) 20.3 (± 0.1)
4 17.4 (± 0.1) 20.4 (± 0.1)
5 17.4 (± 0.1) 20.8 (± 0.3)

Table 5: Performance of FedPart with different
training rounds per layer.

Dataset R/L r=15 r=25 r=35 r=45 r=55 r=65

CIFAR-
10

1 58.06 59.35 60.06 60.56 61.12 61.21
2 56.85 58.80 58.80 60.46 60.46 61.25
4 56.17 58.76 59.60 59.60 59.60 59.60

10 48.22 54.65 57.40 57.40 59.03 59.03

CIFAR-
100

1 28.10 29.86 31.25 32.17 32.60 33.09
2 24.47 30.07 30.07 32.53 32.53 33.59
4 23.56 26.26 28.19 32.01 32.01 32.01

10 22.83 23.51 26.04 26.43 29.21 30.94

Tiny-
ImageNet

1 14.37 16.33 18.02 19.27 19.88 20.18
2 11.32 16.00 16.00 19.25 19.25 20.69
4 9.09 11.44 15.21 17.89 17.89 17.89

10 11.33 12.03 12.03 12.03 12.03 16.16

4.2 Ablation Study

Training rounds per layer. In our FedPart, the training rounds per layer (denoted as R/L) is an
important hyperparameter. A larger R/L value means more thorough training in each cycle, but
it also results in a decrease in the number of cycles within the same number of training rounds.
We explore the performance of FedPart under different R/L. From the results in Table 5, when
R/L=1, the outcome shows limited final performance due to insufficient training for each layer.
However, further increasing the R/L value not only fails to improve the final performance but also
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reduces the convergence speed. In extreme cases, when R/L=10, only one cycle is conducted overall,
which significantly affects both convergence speed and final accuracy. This indicates that generally,
increasing the number of cycles is more effective than extending their duration. This aligns with the
motivation behind our proposal of multi-cycling training.

Table 6: Impact of the warm-up rounds.

Dataset State 0 init. 5 init. 60 init.

CIFAR-
10

bef. 0 41.56 58.92
aft. 58.48 61.25 66.18

CIFAR-
100

bef. 0 20.38 34.16
aft. 29.53 33.59 36.65

Tiny-
ImageNet

bef. 0 9.11 16.25
aft. 16.81 20.69 19.99

Table 7: Impact of training sequences.

Dataset C Seq. Rev. Ran.

CIFAR-
10

1 58.80 58.53 59.62
2 60.46 59.76 59.97
3 61.25 60.19 60.23

CIFAR-
100

1 30.07 27.84 29.58
2 32.53 29.41 30.92
3 33.59 31.79 31.44

Tiny-
ImageNet

1 16.00 13.15 15.91
2 19.25 15.62 17.71
3 20.69 18.33 18.99

Rounds of initial warm-up updates. To explore the im-
pact of the duration of the initial full network updates
phase (i.e. warm-up stage), we conduct experiments with
this stage set to lengths of 0, 5, and 60. In Table 6, the term
state refers to the period before or after partial network
updates, which follow the warm-up phase. The experimen-
tal results clearly show that initial full network updates is
crucial to the final model’s accuracy. Notably, extending
the full network update phase yields diminishing returns.
However, even when the model is trained with FNU until
no further accuracy improvement is observed (60 init.),
utilizing FedPart still enhances the model’s accuracy. This
confirms FedPart’s capability to improve the convergence
of the final global model and reduce layer mismatch.

Different orders for selecting trainable layers. We ex-
periment with three different orders for selecting trainable
parameters: sequential, reverse, and random. Sequential is
the default configuration of FedPart, selecting layers from
shallow to deep. In contrast, the reverse sequence selects
layers from deep to shallow, while the random sequence
selects layers randomly in each round. The results of the
experiments are depicted in Table 7, demonstrating that
the effectiveness of the three methods ranks as follows:
sequential > reverse > random. This aligns with the intrinsic convergence order of neural networks
and meets our experimental expectations.

4.3 Visualization Results

In this section, we conduct experiments to demonstrate why our proposed parameter selection strategy
can enhance final performance, and what the impact of layer-wise information exchange has on
privacy leakage. Our experiments are based on ResNet-8 and the CIFAR-100 dataset. We analyze
the models obtained from four different methods: 1) FedAvg-100, which represents training with
full network for 100 rounds; 2) FedPart(No Init. 1C), which represents using FedPart for one cycle
without initial full network updates; 3) FedPart(1C), which involves initial full network updates
followed by one cycle of FedPart training; 4) FedPart(5C), which involves initial full network updates
followed by five cycles of FedPart training. The visualization results are as follows.

Activation maximization visualization. Activation maximization [Erhan et al., 2009] involves
finding an input that maximizes a specific activation value within a neural network, reflecting the
feature patterns the neuron focuses on. We use this method to explore the visual patterns captured
by different models and measure their similarity using SSIM (Structural Similarity Index Measure)
[Hore and Ziou, 2010]. The results in Table 8 show that, without initial full network updates and
multiple cycles, the features captured by the FedPart model significantly differ from those of the
FedAvg model. However, this discrepancy decreases after applying our layer-selection strategy,
suggesting that the model better recognizes the hierarchical nature of different semantic information,
thus enhancing its performance. Additional visual results are provided in Appendix C.

Convolutional kernel visualization. We also analyze how different models extract semantic informa-
tion by visualizing the convolutional kernels. We find that in the full network updates represented by
FedAvg-100, the shallow convolutional kernels primarily function as edge/corner detectors. However,
direct training of partial networks disrupts this property. Further, by initially employing full network
updates and adding multiple training cycles, we gradually restore this characteristic. This effectively
explains the impact of the parameter selection strategy on the final model formation. For specific
visualization results of the convolutional kernels, please refer to Appendix D.
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4.4 Impact on Privacy Protection

We next demonstrate that FedPart offers enhanced privacy protection, as it transmits less information
in each communication round. Formally, we can abstract the model training process (for both full
and partial parameter training) as a mapping: (∆w1,∆w2, ...,∆wn) = f(x), where the left hand
side denotes the updates to each model parameter, and x is the training data. From a privacy attack
perspective, the goal is to find the best x such that the updates to w are as close as possible to the
actual updates in each dimension. This resembles solving a system of equations, where x are the
unknowns, and each dimension of w update represents an equation. With partial network training, the
unknowns x remain unchanged compared with full parameter training, but the number of equations
decreases (i.e., less information for the attacker to leverage). Therefore, we believe that partial
network training generally leaks less information.

To verify this experimentally, we conduct several rounds of federated learning using both full network
and partial network updates. We employ DLG (Deep Leakage from Gradients) [Zhu et al., 2019] to
attempt the recovery of original images and use PSNR (Peak Signal-to-Noise Ratio) [Hore and Ziou,
2010] to measure the extent of privacy leakage. DLG is a classic privacy leakage scheme, which
aims at finding an input that produces gradients most similar to the gradients calculated from a given
sample. In this way, DLG can approximately recover the input sample. Let the original model input
be x, then the specific formula for recovering the input x̂ is as:

min
x̂

||∇x̂L(x̂|w)−∇xL(x|w)||2 (6)

We use PSNR to measure the quality of the reconstructed image. Given that x denotes the original
image and x̂ denotes the reconstructed image, the PSNR is calculated as follows:

PSNR = −10 · log10(MSE(x, x̂)) (7)

where MSE(x, x̂) denotes the mean square error between m× n matrices x and x̂, given by:

MSE(x, x̂) =
1

m · n

m∑
i=1

n∑
j=1

(x(i, j)− x̂(i, j))2 (8)

A larger PSNR value means a better quality of the reconstructed image, which further implies a
higher risk of privacy leakage.

The results in Table 9 show that, for different trainable layers, our method consistently exhibits
better privacy protection in both average and worst-case scenarios compared to full network updates.
Attacking examples are provided in Appendix E.

Table 8: SSIM of activation maximization
images between FedAvg and FedPart.

#1 (Conv) #10 (FC)

FedPart(No Init. 1C) 0.680 0.896
FedPart(1C) 0.863 0.955
FedPart(5C) 0.865 0.980

Table 9: Average and Max PSNRs of recon-
structed images for FedAvg and FedPart models.

Model Param. Avg. PSNR Max PSNR

FedAvg-100 All 17.07 25.57

FedPart(5C) #1 (conv) 12.53 15.02
#10 (fc) 13.84 16.88

5 Conclusion and Limitation

We observe that the model averaged in federated learning is not directly applicable to the specific
tasks of each client, a situation we refer to as layer mismatch. To address this issue, we propose the
FedPart method, which introduces a strategy for selecting and training partial networks. We validate
the effectiveness of FedPart both theoretically and experimentally. In future work, we plan to evaluate
our method on a wider range of model architectures and apply it to larger-scale datasets to further
investigate its effectiveness and scalability.

#i represents the i-th layer of the model, with detailed partitioning method is presented in Appendix A.
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A Implementation Details

In Section 4, we primarily adopt ResNet and language transformer for experiments, whose architec-
tures are illustrated in Fig. 4 and Fig. 5, respectively.

We also demonstrate the detailed partitioning method in our FedPart. Taking ResNet-8 (on the left in
Fig. 4) as an example, we divide the trainable parameters of the model into 10 layers, corresponding
to the numbers #1-#10. Among these, the trainable parameters of #1-#9 include not only the
weights of the convolutional layers but also the weights and biases of the accompanying BN layers
after the convolutional layers. The other models follow the same representation method of layer
partitioning. During the sequential training phase of the FedPart method, we select one single layer
to train in the order of their numbering #i.

7×7 conv, 64, /2  +  BN

3×3 conv, 64  +  BN

3×3 conv, 64  +  BN

3×3 conv, 128, /2  +  BN

3×3 conv, 128  +  BN

1×1 conv, 128, /2  +  BN

fc, CLASS NUM 

3×3 conv, 64  +  BN

3×3 conv, 64  +  BN
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3×3 conv, 256, /2  +  BN#7

3×3 conv, 256  +  BN#8

1×1 conv, 256, /2  +  BN #9

fc, CLASS NUM#10

input

pool, /2pool, /2

avg poolavg pool

Figure 4: Model architecture and layer partitioning about our ResNet-8 and ResNet-18 model.
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Figure 5: Model architecture and layer partitioning for language transformer.

B Proof for Convergence Rate of FedPart

Before beginning the proof, we need to analyze the upper bound of the gradient variance after
parameter selection. According to Assumption 3, we know that for any mask matrices S1, S2, it holds
that:

Ex∼Di
[||S1 ⊙ (∇L(x|w)−∇fi(w))||]

Ex∼Di
[||S2 ⊙ (∇L(x|w)−∇fi(w))||]

≤ k, ∀i, w, x ∈ Di, S1, S2 (9)

Constructively, we set a series of mask matrices S1, · · · , SM that have no overlapping ’1’ elements
at the same positions and their sum exactly forms an all-one matrix. Clearly, each of these mask
matrices meets our requirements. Therefore, we can derive:

Ex∼Di
[||Sj ⊙ (∇L(x|w)−∇fi(w))||2] ≥

1

k2
∗ Ex∼Di

[||S1 ⊙ (∇L(x|w)−∇fi(w))||2] (10)

Summing over j from 1 to M , the left-hand side of the inequality is exactly the variance of the
gradient without any mask matrices. Therefore:

M∑
j=1

Ex∼Di
[||Sj ⊙ (∇L(x|w)−∇fi(w))||2] = Ex∼Di

[||∇L(x|w)−∇fi(w)||2]

≥ M

k2
∗ Ex∼Di

[||S1 ⊙ (∇L(x|w)−∇fi(w))||2]

For following proof, we mainly refer to Yu et al. [2019]. According to Assumption 2, the upper limit
of the left side of the inequality is σ2, so we finally obtain a general upper bound for the gradient
with masks:

Ex∼Di
[||S ⊙ (∇L(x|w)−∇fi(w))||2] ≤

σ2k2

M
,∀i, w, x ∈ Di, S (11)

With the groundwork laid, we are now ready to begin the formal proof process. First, based on
Assumption 1, as the loss function is L-smooth, we have:

E[f(w̄t)] ≤ E[f(w̄t−1] + E[
〈
St
i ⊙∇f(w̄t−1), w̄t − w̄t−1

〉
] +

L

2
E[||w̄t − w̄t−1||2] (12)

Next, we analyze the third term on the right-hand side of the inequality above to derive the following
inequality:

E[||w̄t − w̄t−1||2] = γ2E[|| 1
N

N∑
i=1

St
i ⊙Gt

i||2]

= γ2E[|| 1
N

N∑
i=1

St
i ⊙ (Gt

i −∇fi(w
t−1
i ))||2] + γ2E[|| 1

N

N∑
i=1

St
i ⊙∇fi(w

t−1
i )||2]

=
γ2

N2

N∑
i=1

E[||St
i ⊙ (Gt

i −∇fi(w
t−1
i ))||2] + γ2E[|| 1

N

N∑
i=1

St
i ⊙∇fi(w

t−1
i )||2]

≤ γ2σ2k2

MN
+ γ2E[|| 1

N
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The last inequality comes from the derived Eq. 11. Next, we analyze the second term on the right-hand
side of Eq. 12:

E[
〈
St
i ⊙∇f(w̄t−1), w̄t − w̄t−1

〉
] = −γE[

〈
St
i ⊙∇f(w̄t−1),

1

N

N∑
i=1

St
i ⊙Gt

i

〉
]

= −γE[

〈
St
i ⊙∇f(w̄t−1),

1

N

N∑
i=1

St
i ⊙∇fi(w

t−1
i )

〉
]

= −γ

2
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N
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Further expanding the right-hand side of the above inequality, we obtain:

E[||∇f(w̄t−1)− 1

N

N∑
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N
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In the above derivation, we have used the assumption of L-smoothness and Jensen’s inequality. Next,
we will continue to estimate the upper limit of this term. Assuming that the last parameter aggregation
occurred at time t = t0, and the next aggregation will take place at t = t0 + E, then:
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Substituting all the above inequalities into the right side of Eq. 12, we can finally obtain that when
using a learning rate 0 ≤ γ ≤ 1

L , it satisfies:

E[f(w̄t)] ≤ E[f(w̄t−1)]− γ − γ2L

2
E[|| 1

N

N∑
i=1

St
i ⊙∇fi(w

t−1
i )||2

− γ

2
E[||St

i ⊙∇f(w̄t−1)||2 + 2γ3E2G2L2 +
L

2NM
γ2σ2k2

≤ E[f(w̄t−1)]− γ

2
E[||St

i ⊙∇f(w̄t−1)||2 + 2γ3E2G2L2 +
L

2NM
γ2σ2k2

After rearranging the above inequalities, we obtain

E[||St
i ⊙∇f(w̄t−1)||2 ≤ 2

γ
(E[f(w̄t−1)]− E[f(w̄t)]) + 4γ2E2G2L2 +

L

NM
γσ2k2 (13)

Finally, summing the inequalities from t = 1, · · · , T , and multiplying both sides by 1
T , we obtain:

1

T

T∑
i=1

E[||St
i ⊙∇f(w̄t−1)||2 ≤ 2

γT
(f(w̄0)− f∗) + 4γ2E2G2L2 +

L

NM
γσ2k2 (14)

Selecting a learning rate γ =
√
NM

L
√
T

, we obtain: 1
T

∑T
i=1 E[||St

i ⊙∇f(w̄t−1)||2 ≤ 2L√
NMT

(f(w̄0)−

f∗) + 4NME2G2

T + σ2k2
√
NMT

. Furthermore, by choosing E ≤ T 1/4

(MN)3/4
, we can derive the following

corollary: 1
T

∑T
i=1 E[||St

i⊙∇f(w̄t−1)||2 ≤ 2L√
NMT

(f(w̄0)−f∗)+ 4G2
√
MNT

+ σ2k2
√
NMT

= O( 1√
NMT

).
This proves the convergence rate of FedPart.

C Visualizations for Activation Maximization

For better visualizing the semantic information recognized by each layer in the different models, in
Fig. 6, we present representative results from the first and last layers of models under four scenarios:
FedAvg-100, FedPart(No Init. 1C), FedPart(1C), and FedPart(5C).

From the visualization results, it can be observed that FedAvg-100, due to being a full network
update, captures low-level semantic features (such as clear boundaries) in shallow layers, while
deeper layers capture complex semantic information. However, the results of FedPart(No Init.
1C) exhibit noticeable differences in color and structural features compared to the full network
update. This confirms our belief that partial network updates are detrimental to establishing a
hierarchical information extraction approach, resulting in the model converging to possible local
minima. Additionally, we observe that by including the initial phase of full network updates and
multiple rounds of sequential training, the similarity of semantic information obtained by the model
gradually approaches that of FedAvg. Therefore, the results sufficiently demonstrate that although we
only train one layer of the network each time, by employing an appropriate layer selection scheme,
we ultimately achieve results comparable to those of full network updates.

D Visualizations for Convolutional Kernel

To visually depict the characteristics of the convolutional kernels in the first convolutional layer
of different models, we conduct kernel visualization. The four models we select come from the
following scenarios: FedAvg-100, FedPart(No Init. 1C), FedPart(1C), and FedPart(5C).

In Fig. 7, we present a comparison of results for planes in the first convolutional layer. It can be seen
that the kernels in the first convolutional layer of the FedAvg-100 model are mostly edge and corner
detectors. In contrast, the results of FedPart(No Init. 1C) and FedPart(1C) appear more random and
irregular. However, after training to convergence, the results of FedPart(5C) are noticeably more
similar to those of FedAvg-100, and start to exhibit characteristics of simple feature extractors. This
indicates that through partial network updates, the layers of the model gradually coordinate with each
other, yielding a cooperative effect.
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FedAvg-100 FedPart(No Init. 1C) FedPart(1C) FedPart(5C)

#1(conv)

#10(fc)

Channel-10

Channel-39

Channel-55

Channel-63

Channel-14

Channel-18

Channel-57

Channel-62

Figure 6: Activation maximization images of different channels within different layers.

FedAvg-100 FedPart(No Init. 1C) FedPart(1C) FedPart(5C)

Figure 7: Convolutional kernel visualization results of 5 planes in the first convolutional layer. Each
plane include three color channels of image.
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E Robustness to Privacy Attack

In this section, we will examine the privacy leakage using the DLG method on full network updates
and partial network updates. We perform DLG attacks in four settings: transmiting all parameters
in FedAvg-100 model; and transmiting only the parameters of layers #1, #9, and #10 separately
in FedPart(5C) model. In Fig. 8, we select some representative reconstructed images. The leftmost
column represents the original images, while the four columns on the right show the reconstructed
images obtained through DLG attacks under different settings.

It can be observed that in the FedAvg-100 scenario, the reconstructed images have the highest quality,
exhibiting significant similarity to the original images. However, when adopting partial network
updates, the reconstruction quality is poor. Apart from minor color correlations, the reconstructed
images exhibit significant differences in structural features compared to the originals. This validates
our claim that under the FedPart method, transmitting only a subset of parameters can effectively
preserve data privacy.

FedAvg-100:
all

FedPart(5C):
#1(conv)

FedPart(5C):
#9(conv)

FedPart(5C):
#10(fc)

Image-1

Image-2

Image-3

Image-4

Image-5

Original Image

Figure 8: The reconstructed images from DLG attacks on full network of FedAvg-100 and different
partial network of FedPart(5C).

F Additional Experiments

F.1 Learning Rate Tuning

In this section, we explore the appropriate learning rate for our experimental configurations. We
conduct experiments on the CIFAR-100 dataset using ResNet-8 for both FNU and PNU methods.
The experimental results for Adam optimizer with different learning rates are shown in Table 10.

From the results, it can be seen that both FNU and PNU methods perform best with a learning rate
of 0.001. So in our experimental configurations, we ultimately select the Adam optimizer with a
learning rate of 0.001.
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Table 10: Performances (Best Acc.) for different learning rate in full network and partial network
updates.

Dataset Cycle FedAvg-FNU FedPart
lr=0.0001 lr=0.001 lr=0.01 lr=0.0001 lr=0.001 lr=0.01

CIFAR-
100

1 24.82 30.68 28.15 16.56 31.36 23.41
2 30.08 32.53 30.13 21.88 34.70 30.10
3 31.91 34.02 30.93 25.42 36.34 31.94
4 32.45 35.91 30.93 27.85 37.12 32.54
5 32.95 35.91 31.65 29.98 37.70 33.31

F.2 Evaluation of Client Sampling

In this section, we conduct experiments with 150 clients, randomly sampling 20% of the clients
for training and aggregation in each communication round. The experimental results are shown in
Table 11. Our method achieves final performance improvements of +2.1%, +1.6%, and +3.4% on
CIFAR-10, CIFAR-100, and Tiny-ImageNet, respectively, indicating that FedPart performs better
than FedAvg in this scenario.

Table 11: Performance of FedPart with client sampling.

Dataset C FedAvg-FNU FedPart

CIFAR-
10

2 60.82 63.22
3 61.50 63.22
4 64.34 66.08
5 65.00 67.08

CIFAR-
100

2 34.82 37.13
3 39,36 37.13
4 39.64 41.00
5 40.55 42.12

Tiny-
ImageNet

2 19.63 23.06
3 19.63 23.06
4 22.01 26.03
5 23.33 26.75

F.3 Analysis under Extreme Data Heterogeneity

In this section, we conduct experiments with an α = 0.1 setting as data heterogeneity is more severe.
The experimental results are shown in Table 12.

It can be seen that, in this extreme non-IID scenario (α = 0.1), the model accuracy of our method is
roughly on par with that of the full parameter method. However, this does not imply that FedPart
offers no performance advantages—the benefits primarily arise from reduced communication and
computation costs. The results indicate that FedPart can achieve similar accuracy to FedAvg while
significantly reducing communication and computation costs (these metrics are consistent with those
observed in the IID scenario). As shown in Table 1, when training on Tiny-ImageNet, FedPart reduces
communication overhead by 72% and computation overhead by 27%. Therefore, we believe that
even in such an extreme scenario of data heterogeneity, our method still holds practical value.

Table 12: Performance of FL algorithms with full network and partial network updates under extreme
data heterogeneity (Dirichlet, α = 0.1)

Data C FedAvg FedProx
FNU FedPart FNU FedPart

CIFAR-
10

1 33.79 44.02 39.64 43.85
2 44.08 44.41 46.88 45.42
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G Justification of Assumption 3

In Assumption 3 in Section 3.3, we assume that for any mask matrices S1, S2, it holds that:

Ex∼Di
[||S1 ⊙ (∇L(x|w)−∇fi(w))||]

Ex∼Di
[||S2 ⊙ (∇L(x|w)−∇fi(w))||]

≤ k, ∀i, w, x ∈ Di, S1, S2 (15)

Regarding the value of k on the right side of the equation above, recall Eq. 14 in Appendix B, the
convergence rate of FedPart satisfies:

1

T

T∑
i=1

E[||St
i ⊙∇f(w̄t−1)||2 ≤ 2

γT
(f(w̄0)− f∗) + 4γ2E2G2L2 +

L

NM
γσ2k2

Therefore, theoretically, the smaller the value of k, the smaller the value on the right side of this
inequality, leading to improved convergence of FedPart. Hence, it is important to carefully examine
the value range of k in practice.

We begin with analysing the lower bound of k. Since S1 and S2 are arbitrary, it is possible that
S1 = S2, indicating a lower bound of 1 for the value k. As for approximating the upper bound of the
k, we conduct Monte Carlo simulations on real-world nueral networks.

We test the k values in three neural networks at different training stages. For each neural network, we
conduct Monte Carlo simulations to collect 10,000 samples to accurately approximate the value of
k. The experimental results are shown in Table 13. We can see that k is close to 1 under different
settings, which proves that the effect of applying different masks to the variability of gradient is
similar, thus strongly supporting Assumption 3.

Table 13: Monte Carlo simulation experiments for the value of k.

ResNet-8 ResNet-18
0% Training (Random initialized) 1.09 1.08

50% Training (Intermediate) 1.13 1.18

100% Training (Fully trained) 1.13 1.17
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Owners of the assets used in this paper is properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code for this paper is well documented and is provided in the supplimentary
material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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