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Abstract

Data valuation methods assign marginal utility to each data point that has con-1

tributed to the training of a machine learning model. If used directly as a payout2

mechanism, this creates a hidden cost of valuation, in which contributors with3

near-zero marginal value would receive nothing, even though their data had to be4

collected and assessed. To better formalize this cost, we introduce a conceptual and5

game-theoretic model—the Information Disclosure Game—between a Data Union6

(sometimes also called a data trust), a member-run agent representing contributors,7

and a Data Consumer (e.g., a platform). After first aggregating members’ data,8

the DU releases information progressively by adding Laplacian noise under a9

differentially-private mechanism. Through simulations with strategies guided by10

data Shapley values and multi-armed bandit exploration, we demonstrate on a Yelp11

review helpfulness prediction task that data valuation inherently incurs an explicit12

acquisition cost and that the DU’s collective disclosure policy changes how this13

cost is distributed across members.14

1 Introduction15

The idea of data dividends [Feygin et al., 2021]—distributing a share of value generated from data16

back to contributors—has drawn attention as a mechanism to make data economies more inclusive.17

A way to ground such dividends is through data valuation, in which each point’s contribution to18

predictive performance is quantified. Recent methods such as data Shapley value (DSV) [Jia et al.,19

2019b], which originated from cooperative game theory, have been applied to data summarization20

and efficient acquisition [Ghorbani and Zou, 2019]. These methods show that only a fraction of the21

data is needed for high utility, but nonetheless require access to the entire dataset to compute the22

marginal contributions—meaning that each individual must first contribute their data, even if their23

eventual payout is negligible. We refer to this as the hidden cost of data valuation.24

Following calls for data trusts and unions as institutional forms of collective governance [Delacroix25

and Lawrence, 2019], we frame our approach as a form of algorithmic collective action in which con-26

tributors act collectively through a Data Union (DU) that sets group data disclosure policies, shifting27

how value and costs are distributed. While recent work shows that differentially-private mechanisms28

Dwork [2006] can diminish the leverage of collective action in gradient-based training [Solanki et al.,29

2025], we instead use DP positively as a tool for disclosure and value control.30

More precisely, we introduce a conceptual model in which contributors coordinate through a DU.31

Rather than acting individually in a decentralized marketplace, members pool their data and empower32

the union to negotiate collectively. The DU aggregates the dataset and controls how information is33

released to a Data Consumer (DC) by progressively disclosing noisy versions of data points using a34

differentially-private mechanism. In this way, the DU operates as a collective agent: it sets disclosure35
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Figure 1: Illustration of the Information Disclosure Game. A Data Union (DU) holds a private
dataset and releases information to a Data Consumer (DC) by adding Laplacian noise to data points
under ϵ-differential privacy. The DC incrementally acquires these noisy version of the data points,
denoises them using an average and train a model to reach a utility target. In this work, we focus on
non-parametric k-Nearest Neighbors (kNN) and SBERT embeddings Reimers and Gurevych [2019].

policies that influence which points the DC must acquire to reach its utility target, and thus how36

dividends are distributed across members. See Figure 1 for an illustration of our approach.37

We formalize this interaction as an Information Disclosure Game (IDG), a form of Stackelberg38

game Simaan and Cruz Jr [1973], Fudenberg and Tirole [1991] in which the DU acts as leader by39

choosing disclosure rules, and the DC acts as follower by optimizing acquisitions given those rules40

(Figure 1). This framework allows to make explicit the acquisition cost that valuation imposes on the41

DC and how collective disclosure policies shape their distribution across members. We instantiate42

the model by a k-Nearest Neighbors (kNN), in which the relation between individual points and43

predictive utility is direct. Simulating the DC strategies guided by Shapley values and by multi-armed44

bandit exploration, we test it on a Yelp review helpfulness prediction task using text embeddings.45

Outline. First in Section 2, we review the related work on data valuation and differential privacy46

before detailing in Section 3 the IDG framework and the objectives of DU and DC. Afterwards in47

Section 4, we present our empirical evaluation followed by a discussion and conclusion.48

2 Background49

Data Valuation. In cooperative game theory, an imputation is a way to distribute the total value of50

a game among its players Osborne and Rubinstein [1994]. In the context of data valuation, each data51

point in a dataset D is treated as a player and a value function v : 2D → R is used to the utility (e.g.,52

accuracy or loss reduction) of any subset D′ ⊆ D. The objective is to find an imputation that fairly53

allocates the total value v(D) among individual data points based on their contributions. Several54

approaches have been explored for data valuation—each with different fairness, computational and55

interpretability trade-offs—including Data Shapley Ghorbani and Zou [2019], Jia et al. [2019b], Data56

Banzhaf Wang and Jia, Beta Shapley Kwon and Zou and the Core Yan and Procaccia.57

Formally, the Shapley value of a data point zi ∈ D is given by:58

ϕzi(v) = ED′∼P(D\{zi})
[
v(D′ ∪ {zi})− v(D′)

]
,

in which D′ is a subset of D \ {zi} sampled uniformly at random and v(D′) is the value function59

evaluated on D′. The Shapley value thus quantifies the expected incremental contribution of each60

data point across all possible subsets. The uniqueness of the Shapley value can be derived from61

satisfying four foundational axioms: Efficiency (i.e., the total value is distributed among all players),62

Symmetry (i.e., identical contributions are rewarded equally), Dummy (i.e., players that contribute63

nothing receive zero value) and Linearity (i.e., the Shapley values from two games can be combined64

linearly). One application is data pricing in marketplaces Jia et al., Pei, Tian et al., Xia et al., in65
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which Shapley-based frameworks assign higher prices to points that contribute across many subsets.66

Shapley values can also inform the data selection task, by identifying examples most useful for67

training smaller high-quality sets. Their effectiveness depends on the structure of the utility function68

and faces the challenge of high computational cost, with approximations such as G-Shapley Ghorbani69

and Zou [2019], Yoon et al. [2020] proposed to improve scalability. However, for k-NN classifiers, an70

exact Shapley formulation exists Jia et al. [2019a] with complexity O(N logN), making valuation71

tractable in this setting.72

Differential privacy. Differential Privacy (DP) Dwork [2006] provides a mathematically rigorous73

privacy framework by ensuring that the inclusion or exclusion of any individual in a dataset does not74

significantly alter the probability distribution of outputs. For instance, the trade-off between privacy75

and utility can be controlled through noise addition, thus reducing the re-identification risk and76

providing provable privacy guarantees. Formally, let D = {z1, z2, . . . , zn} be a dataset consisting of77

n individual data points. A randomized mechanism M satisfies (ϵ, δ)-differential privacy if, for any78

dataset D, any data point zi ∈ D, and any subset of possible outputs O, the following holds:79

Pr[M(D) ∈ O] ≤ eϵ Pr[M(D \ {zi}) ∈ O] + δ,

in which ϵ represents the privacy loss and δ allows for a small probability that strict ϵ-differential80

privacy does not hold. Beyond protection, privacy also concerns the incentives individuals face when81

deciding whether to share their data truthfully. From a mechanism design perspective, the Revelation82

Principle Myerson [1983] states that outcomes achievable through indirect strategies can also be83

implemented by truthful revelation. Differential privacy makes such mechanisms approximately84

truthful: in McSherry and Talwar [2007], an ε-DP mechanism bounds each agent’s influence on the85

outcome, so the gain from lying is at most O(ε).86

3 Information Disclosure Game87

We model the interaction between two agents: the DU and the DC. As a member-run collective, the88

DU manages pooled data with the mission of ensuring fair valuation while accounting for concerns89

such as privacy. Meanwhile, the DC seeks to optimize utility—often by acquiring data points at90

minimal cost. These interactions are formalized as a two-phase Stackelberg game, in which the DU91

acts as a leader by setting how to disclose information and at what cost, and the DC, as a follower,92

responds through strategic data acquisition.93

Complete information disclosure game. A typical formulation is to model the interaction as94

a pricing game, in which the DU assigns a price pi to each data point zi. The DC then solves a95

knapsack-like problem:96

min
x∈{0,1}N

N∑
i=1

pixi s.t. U(x) ≥ Utarget, (1)

in which U(x) denotes the utility obtained from the purchased subset. The DU anticipates this97

behavior and sets p with the aim of maximizing the DC’s minimized total cost.98

This approach provides a straightforward pricing mechanism but has significant limitations. Indeed,99

because disclosure of a data point is binary—either withheld or complete—many contributors receive100

no compensation. Incentivizing broader acquisition requires lowering the price of high-value points,101

which penalizes those who contribute the most. Moreover, releasing data at fixed prices locks in102

value at a single point in time and weakens privacy guarantees, limiting the DU’s ability to balance103

inclusiveness and protection.104

Partial information disclosure game. To address these challenges, we depart from per-point105

pricing and instead model an iterative disclosure process under DP. At each round t, the DC selects106

a subset St of data points to query. Each query consumes a fixed privacy budget ϵ and returns a107

noisy version of the data. The DU sets (ϵ, Tmax), the per-query budget and the per-point query cap,108

which together determine a maximum per-point spend Bmax = Tmaxϵ. The DC’s cumulative spend109

is B = ϵ
∑T

t=1 |St|, T ≤ Tmax.110
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The DC’s objective is to minimize its cumulative budget spent:111

min
{St}

ϵ

T∑
t=1

|St| s.t. U (T ) ≥ Utarget, T ≤ Tmax. (2)

Conversely, the DU’s objective is to maximize the minimum budget spent by the DC:112

max
(ϵ,Tmax)

min
{St}

ϵ

T∑
t=1

|St| (3)

with the goal of spreading spend more evenly across members while managing privacy–utility trade-113

offs. Compared to the pricing game in Equation 1, partial disclosure replaces per-point ownership114

costs with iterative access charges. This formulation makes the hidden acquisition cost of valuation115

explicit in the DC’s budget and allows the DU to shape acquisition behaviors without penalizing the116

most valuable contributors.117

4 Experiments on Review Helpfulness Prediction118

Review helpfulness prediction provides a natural testbed for data valuation as platforms such as Yelp119

collect reviews not only for sentiment analysis but also to assess their quality. Indeed, unhelpful120

reviews may ultimately be discarded, yet they are still necessary to identify and reward helpful ones.121

This creates a setting in which individual contributions to predictive performance are both explicit and122

uneven. We use the Yelp dataset Asghar [2016] following the setup of Bilal and Almazroi [2023], who123

report a k-NN accuracy of 59.6%. Using pretrained text embeddings and k-NN, our best configuration124

achieves 66.0% test accuracy and 65.2% F1-score, bringing non-parametric performance closer to125

fine-tuned transformer models while preserving point-level interpretability needed for valuation. As a126

sanity check, we replicated the acquisition experiment of Jia et al. [2019b] and verified that Shapley-127

based selection outperforms random sampling. The corresponding curve, along with additional details128

on the experimental setup, is reported in Appendix D.129

To implement a DP iterative release, we add Laplacian noise independently to each feature of every130

data point (1024-dimensional vectors). For feature xj , we first project it into a fixed interval [aj , bj ],131

in which aj and bj are min/max statistics for feature j. The release mechanism is then132

x̃j = min{max{xj , aj}, bj} + Laplace

(
∆j

ϵj

)
,

in which ∆j = bj−aj denotes the global sensitivity of feature j after bounding and ϵj is the allocated133

budget for that feature. This design is similar in spirit to a per-feature local DP mechanism Cormode134

et al. [2018], Wang et al. [2019], in that each coordinate is privatized independently, but here it is135

applied in a centralized setting by the DU. We assume the sensitivity interval [aj , bj ] is fixed in136

advance and does not vary significantly across releases, so the noise scale is determined by ∆j/ϵj . On137

the DC side, each noisy version of a point is averaged to form a denoised estimate. After observing t138

noisy versions of point i, its center is computed incrementally as x̂(t)
i = 1

t

∑t
k=1 x̃

(k)
i . The averaging139

strategy steadily improves fidelity as noisy samples accumulate, with error decreasing and correlation140

increasing non-linearly across iterations (see Appendix B for details).141

In the remainder of our analysis, we do not attempt to solve the full game between the DU and DC.142

Instead, we simulate the DC’s behavior by implementing and comparing different data selection143

strategies under the noisy iterative release mechanism. We define the utility target as the validation144

accuracy (69.6%). For all data selection strategies, we use a fixed privacy budget ϵ per point per query145

of 1 and assume a constant maximum budget per data point. The next two subsections explore these146

strategies, including one based on rankings (random and Shapley-based) and another using adaptive147

n-armed bandit algorithm.148

4.1 Data Selection Using Random and Shapley-based Strategies149

Random data selection. In this baseline, the DC commits to a random subset of data points for all150

iterations with the results displayed in Figure 2 being averaged over 10 random permutations. As151

shown in Figure 2, this approach fails to reach the target utility within 100 iterations unless nearly152

100% of the dataset is acquired, which confirms that a purely random acquisition strategy from the153

DU is not viable under budget constraints.154
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Data Shapley selection. Afterwards, we assess whether Shapley valuation works over noisy data155

by the DC selecting all data points for a number of iterations (i.e., bootstrap iterations) and estimating156

DSVs based on the averaged center points. As illustrated in Figure 3, selecting the top-valued centers157

based on noisy Shapley estimates allows the DC to reach the target utility. Successful acquisition starts158

at 10% of the dataset but performance varies depending on the percentage of selected data and the159

number of iterations. For instance, we observed that in the 60% selection case, data Shapley selection160

achieves the utility target after roughly 25 bootstrap iterations. Testing other Shapley-based strategies161

(Appendix D), we found no consistent advantage in committing earlier. Although committing may162

stabilize performance for a fixed subset, our findings suggest that for Shapley-based strategies, the163

DC is better off continuing complete iterations to refine noisy point estimates.164

Figure 2: Validation accuracy for random
data selection across varying parameters. Un-
like Shapley-based methods, random selec-
tion fails to consistently reach the utility target
(69.6%) within the budgeted iteration range.

Figure 3: Validation accuracy using estimated
data Shapley selection across dataset percent-
ages and iterations. The target accuracy is
achieved with as little as 10% of data.

4.2 Data Selection using n-Armed Bandits165

As a final strategy, we model data selection as an n-armed bandit problem, in which each action166

a ∈ {1, . . . , n} corresponds to selecting a data point za. The DC follows an Upper Confidence167

Bound (UCB) policy under a fixed per-point privacy budget BMAX. Each query incurs a privacy cost168

ϵ and yields a noisy sample that updates the point’s estimated value, measured as incremental utility169

in a k-NN classifier. Unlike Shapley-based strategies, the DC may exploit the same point repeatedly170

until its budget is exhausted. This formulation captures the exploration–exploitation trade-off and171

makes the cost of valuation explicit as the exploration cost required to identify valuable points under172

budget constraints. Formally, each point maintains its estimated value Qt(a), query count Nt(a),173

current averaged center centera and remaining budget Bre
a . UCB scores are computed as174

UCBt(a) =

Qt(a) + c ·
√

1

Nt(a) + ε
· Bre

a

BMAX
a

, if Bre
a > 0

−∞, otherwise.

The utility of a queried point is defined as the fraction of neighbors in k-NN that share its label. See175

Algorithm 1 in Appendix for implementation details.176

Hyperparameter search. Identifying an equilibrium can be seen as a hyperparameter search,177

since the interaction between the DU’s release policy and the DC’s acquisition strategy does not178

admit a closed-form solution. To realize this, we conducted a grid search over two key parameters:179

the maximum budget per point (set by the DU) and the exploration coefficient c (in UCB). These180

jointly determine budget usage and the diversity of selected points. Results show that the bandit181

reliably reaches the utility threshold except when the per-point budget is too small or exploration is182

disabled; below a budget of 20, success is rare and often due to lucky point selection. Gini analysis183
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of budget allocations confirms that exploration promotes more balanced spending across points and184

increases the likelihood of success. The correlation between Q values and Shapley values grows with185

budget but remains moderate overall (Appendix E).Finally, evaluations based on denoised centers186

yielded test accuracy comparable to or exceeding that obtained from the original data. For instance, a187

configuration with a per-point budget of 50 reached 69.9% surpassing the 66% benchmark.188

Figure 4: 3D visualization of hyperparameter
combinations. Green dots represent success-
ful runs in which the DC reached the utility
threshold while red crosses represent failures.
Success becomes unlikely with budget-per-
arm below 20 or when exploration is zero.

Figure 5: Gini coefficient of budget usage by
hyperparameter setting. High values indicate
budget concentrated on few data points, typi-
cal in “lucky” early selections.

5 Discussion & Conclusion189

We proposed a game-theoretic framework for data valuation that integrates privacy and inclusiveness190

concerns through an information disclosure game between a Data Union (DU) and a data consumer191

(DC). Rather than assuming direct access to data, our approach models acquisition as an iterative192

process using a differential private mechanism to enforce a cost on data valuation. On Yelp review193

helpfulness prediction, Shapley-based strategies remained effective under noise but required a minimal194

budget—about 10 bootstrap iterations—to reliably identify high-value points. This demonstrates195

that Shapley valuation entails an inherent cost of exploration in our setting. Similarly, a multi-armed196

bandit strategy reached the utility target with comparable budgets, reinforcing that valuation itself197

imposes exploration costs. Gini analysis further showed that as budgets grow, the DC allocates198

resources more evenly across contributors, increasing inclusiveness.199

While our experiments focused on k-NN for computation efficiency, an important direction for200

future work is extending the framework to differentiable models. Gradient-based methods such as201

G-Shapley Ghorbani and Zou [2019] already show that Shapley values can be approximated from202

changes in gradients, suggesting ways to scale valuation beyond non-parametric models. In parallel,203

approaches like DP-SGD Abadi et al. [2016] demonstrate that DP can be enforced by adding noise204

to gradients rather than directly to points. Bridging these lines of work would provide a better205

privacy-utility trade-off for both the DU and DC. Nonetheless, our results suggest that in a DU setting,206

reaching target utility requires a minimum level of budget spread. Thus, our framework implies that207

a minimum dividend should be guaranteed to all members, regardless of individual Shapley value.208

In the context of reviews, this means that every contributor would receive at least some share of209

value, even if their individual review is ultimately deemed unhelpful, aligning the incentives of all210

members with the collective outcome. Otherwise, excluding some contributors increases the incentive211

to form data unions that adopt adversarial disclosure strategies (e.g., prioritizing low-value reviews or212

injecting excess noise), which may in turn hinder the data consumer’s ability to reach its utility target.213
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A Appendix: MAB Algorithm278

Algorithm 1 Budget-Aware UCB for Data Selection
Require:
D = {x1, . . . , xn}: Dataset of n data points (arms)
ϵ: Differential privacy budget per query
Tmax: Maximum number of iterations
Utarget: Target utility (average positive vote ratio)
c: Exploration coefficient
α: Learning rate
ε: Small constant for numerical stability
BMAX(a): Maximum privacy budget per point
NOISYRELEASE(xa, ϵ): Returns a noisy version of xa

KNNUTILITY(Z; {centera}, k): Average positive votes ratio over validation set Z with current
centers

1: Initialize:
2: for a = 1 to n do
3: Q(a)← 0, N(a)← 0, Bre(a)← BMAX(a)
4: centera ← 0
5: end for
6: U ← KNNUTILITY(Z; {centera}, k)
7: t← 1
8: while t ≤ Tmax and U < Utarget do
9: for a = 1 to n do

10: if Bre(a) > 0 then
11: UCB(a)← Q(a) + c ·

√
1

N(a)+ε ·
Bre(a)

BMAX(a)

12: else
13: UCB(a)← −∞
14: end if
15: end for
16: At ← argmaxa UCB(a)
17: x̃At

← NOISYRELEASE(xAt
, ϵ)

18: centerAt ←
centerAt ·N(At)+x̃At

N(At)+1

19: Unew ← KNNUTILITY(Z; {centera}, k)
20: Rt ← Unew − U
21: U ← Unew
22: Q(At)← Q(At) + α · (Rt −Q(At))
23: N(At)← N(At) + 1
24: Bre(At)← Bre(At)− ϵ
25: t← t+ 1
26: end while
27: return {centera}, U

B Appendix: The effect of Laplacian noise279

We have allocated a privacy budget of ϵ = 1 per feature, resulting in a total budget of 1024 per point.280

To illustrate how fidelity evolves under iterative disclosure, we report two complementary measures.281

The first tracks how close denoised representations remain to the original data points, while the282

second measures the correlation between original Shapley values and those computed on denoised283

representations. Together, they provide evidence that averaging across noisy samples progressively284

restores signal.285
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Figure 6: Average ℓ2 distance between original points and their denoised centers as a function of
iterations. Error drops sharply early on with diminishing returns over time.

Figure 7: Spearman correlation between original Shapley values and those computed on denoised
centers over iterations.

C Appendix: Experimental setup286

Dataset and embeddings. We used the Yelp dataset Asghar [2016], which con-287

tains text reviews with helpfulness votes. Reviews were encoded with two sen-288

tence embedding models: sentence-transformers/all-mpnet-base-v2 and289

intfloat/multilingual-e5-large-instruct. Both were chosen for their strong per-290

formance on semantic similarity tasks and because they were not trained on Yelp, avoiding leakage.291

A k-Nearest Neighbors classifier was trained with the number of neighbors k tuned on a validation292

set. The dataset was split into 8000 training, 1000 validation and 1000 test examples.293

Computing resources. All experiments were run locally on a MacBook Pro M4 with 24GB of294

unified memory. Each acquisition experiment completed within a few hours, with bandit simulations295

being the most computationally intensive.296

D Appendix: Data Shapley Selection strategies297

Figure 10 illustrates an alternative acquisition strategy in which the DC first estimates Shapley values298

through a fixed number of bootstrap iterations before committing to acquire the top-ranked points.299

This procedure is compared against the exact Shapley values provided by an oracle, which serves as a300

benchmark but is not available in practice. The results highlight that while estimating Shapley values301

incurs an additional cost, this cost diminishes as more budget is consumed. However, committing302

after a fixed iteration number does not reduce the total number of iterations required to reach the303

target utility, as shown in Figure 11, indicating that early commitment provides no fundamental304

shortcut in convergence.305
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Figure 8: Test accuracy as a function of acquired data points, comparing kNN Shapley-based selection
with random selection.

Figure 9: Validation accuracy over iterations for 60% data selection using random, esimated (noisy)
data Shapley strategies compared to exact Shapley values given by an oracle. Estimated data Shapley
selection reaches the utility target in 25 iterations, significantly outperforming random selection.

Figure 10: Performance of data Shapley+commitment selection strategy for different combinations
of bootstrap and commit parameters. No clear benefit is observed compared to no commitment.
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Figure 11: Shapley+commitment strategy on 60% of the data. While utility is eventually reached,
performance does not improve over dynamic Shapley.

E Appendix: Correlation between Q-values and Shapley values306

We examined the relationship between learned Q-values and Shapley values. In our framework,307

Q-values are estimates maintained by the multi-armed bandit policy, representing the expected308

incremental utility of querying a particular data point under the differential privacy budget. Figure 12309

shows that the Spearman correlation between these metrics increases with budget but remains310

moderate overall. This is expected and desired as the objective is for Q-values to be influenced by311

data utility but not perfectly mimic Shapley values, thereby offering a different valuation with more312

inclusiveness.313

Figure 12: Mean and standard deviation of Spearman correlation between learned Q-values and
Shapley values, grouped by maximum budget. Correlation rises with budget but remains modest
indicating partially aligned but distinct prioritization.
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NeurIPS Paper Checklist314

1. Claims315

Question: Do the main claims made in the abstract and introduction accurately reflect the316

paper’s contributions and scope?317

Answer: [Yes]318

Justification: The abstract and introduction state that the paper introduces the Information319

Disclosure Game, a Stackelberg game between a Data Union and Data Consumer, and320

empirically evaluate disclosure strategies on Yelp review helpfulness prediction. The results321

and discussion match these claims (see Sections 3 and 4).322

2. Limitations323

Question: Does the paper discuss the limitations of the work performed by the authors?324

Answer: [Yes]325

Justification: Section 5 explicitly mentions that experiments are limited to k-NN for com-326

putational efficiency and that extensions to differentiable models is a fundamental future327

work.328

3. Theory assumptions and proofs329

Question: For each theoretical result, does the paper provide the full set of assumptions and330

a complete (and correct) proof?331

Answer: [NA]332

Justification: The paper formalizes the framework (game definition, objectives) but does333

not present formal theorems or proofs beyond definitions. The contribution is primarily334

conceptual and empirical.335

Guidelines:336

• The answer NA means that the paper does not include theoretical results.337

• All the theorems, formulas, and proofs in the paper should be numbered and cross-338

referenced.339

• All assumptions should be clearly stated or referenced in the statement of any theorems.340

• The proofs can either appear in the main paper or the supplemental material, but if341

they appear in the supplemental material, the authors are encouraged to provide a short342

proof sketch to provide intuition.343

• Inversely, any informal proof provided in the core of the paper should be complemented344

by formal proofs provided in appendix or supplemental material.345

• Theorems and Lemmas that the proof relies upon should be properly referenced.346

4. Experimental result reproducibility347

Question: Does the paper fully disclose all the information needed to reproduce the main ex-348

perimental results of the paper to the extent that it affects the main claims and/or conclusions349

of the paper (regardless of whether the code and data are provided or not)?350

Answer: [Yes]351

Justification: Appendix C details dataset splits, embedding models and values of k. Algo-352

rithm 1 specifies the bandit procedure. Finally, noise mechanisms and parameter settings are353

described in Section 4 and Appendix B.354

5. Open access to data and code355

Question: Does the paper provide open access to the data and code, with sufficient instruc-356

tions to faithfully reproduce the main experimental results, as described in supplemental357

material?358

Answer: [No]359

Justification: The paper uses publicly available Yelp data Asghar [2016], but code has not360

been released at submission time. Release is planned for the camera-ready version.361

6. Experimental setting/details362
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-363

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the364

results?365

Answer: [Yes]366

Justification: Dataset splits, embedding models, k-NN classifier details, noise addition and367

evaluation metrics are all specified (Section C, Section 4).368

7. Experiment statistical significance369

Question: Does the paper report error bars suitably and correctly defined or other appropriate370

information about the statistical significance of the experiments?371

Answer: [Yes]372

Justification: Figures such as 2, 3, and Appendix plots report averages over multiple runs373

and show standard deviations or shaded areas to indicate variability.374

8. Experiments compute resources375

Question: For each experiment, does the paper provide sufficient information on the com-376

puter resources (type of compute workers, memory, time of execution) needed to reproduce377

the experiments?378

Answer: [Yes]379

Justification: Appendix C specifies that experiments were run on a MacBook Pro M4 with380

24GB memory; runtime per experiment is on the order of a few hours.381

9. Code of ethics382

Question: Does the research conducted in the paper conform, in every respect, with the383

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?384

Answer: [Yes]385

Justification: The work uses a public dataset (Yelp reviews) with no sensitive personal386

identifiers, and experiments are consistent with ethical research standards.387

10. Broader impacts388

Question: Does the paper discuss both potential positive societal impacts and negative389

societal impacts of the work performed?390

Answer: [Yes]391

Justification: Section 5 discusses inclusiveness and fairer data dividends as positive impacts,392

while noting challenges in extending to more complex models.393

11. Safeguards394

Question: Does the paper describe safeguards that have been put in place for responsible395

release of data or models that have a high risk for misuse (e.g., pretrained language models,396

image generators, or scraped datasets)?397

Answer: [NA]398

Justification: The work does not release pretrained models or new datasets with misuse risk.399

It only uses Yelp reviews, which are already public and well studied.400

12. Licenses for existing assets401

Question: Are the creators or original owners of assets (e.g., code, data, models), used in402

the paper, properly credited and are the license and terms of use explicitly mentioned and403

properly respected?404

Answer: [Yes]405

Justification: The Yelp dataset is properly cited Asghar [2016], and pretrained embeddings406

(e.g., all-mpnet-base-v2, multilingual-e5-large-instruct) are credited in Appendix C.407

13. New assets408

Question: Are new assets introduced in the paper well documented and is the documentation409

provided alongside the assets?410

Answer: [NA]411
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Justification: No new datasets or models are released; only conceptual framework and412

experiments on existing data.413

14. Crowdsourcing and research with human subjects414

Question: For crowdsourcing experiments and research with human subjects, does the paper415

include the full text of instructions given to participants and screenshots, if applicable, as416

well as details about compensation (if any)?417

Answer: [NA]418

Justification: The work does not involve human subjects or crowdsourcing.419

15. Institutional review board (IRB) approvals or equivalent for research with human420

subjects421

Question: Does the paper describe potential risks incurred by study participants, whether422

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)423

approvals (or an equivalent approval/review based on the requirements of your country or424

institution) were obtained?425

Answer: [NA]426

Justification: The work does not involve human subjects.427

16. Declaration of LLM usage428

Question: Does the paper describe the usage of LLMs if it is an important, original, or429

non-standard component of the core methods in this research? Note that if the LLM is used430

only for writing, editing, or formatting purposes and does not impact the core methodology,431

scientific rigorousness, or originality of the research, declaration is not required.432

Answer: [NA]433

Justification: LLMs are not part of the core methodology. Only pretrained embeddings (not434

large models so to speak) are used.435
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