© ® N O o A~ W N =

Measuring the Hidden Cost of Data Valuation through
Collective Disclosure

Anonymous Author(s)
Affiliation
Address

email

Abstract

Data valuation methods assign marginal utility to each data point that has con-
tributed to the training of a machine learning model. If used directly as a payout
mechanism, this creates a hidden cost of valuation, in which contributors with
near-zero marginal value would receive nothing, even though their data had to be
collected and assessed. To better formalize this cost, we introduce a conceptual and
game-theoretic model—the Information Disclosure Game—between a Data Union
(sometimes also called a data trust), a member-run agent representing contributors,
and a Data Consumer (e.g., a platform). After first aggregating members’ data,
the DU releases information progressively by adding Laplacian noise under a
differentially-private mechanism. Through simulations with strategies guided by
data Shapley values and multi-armed bandit exploration, we demonstrate on a Yelp
review helpfulness prediction task that data valuation inherently incurs an explicit
acquisition cost and that the DU’s collective disclosure policy changes how this
cost is distributed across members.

1 Introduction

The idea of data dividends [Feygin et al.,[2021]—distributing a share of value generated from data
back to contributors—has drawn attention as a mechanism to make data economies more inclusive.
A way to ground such dividends is through data valuation, in which each point’s contribution to
predictive performance is quantified. Recent methods such as data Shapley value (DSV) [Jia et al.}
2019b|], which originated from cooperative game theory, have been applied to data summarization
and efficient acquisition [|[Ghorbani and Zou, [2019]. These methods show that only a fraction of the
data is needed for high utility, but nonetheless require access to the entire dataset to compute the
marginal contributions—meaning that each individual must first contribute their data, even if their
eventual payout is negligible. We refer to this as the hidden cost of data valuation.

Following calls for data trusts and unions as institutional forms of collective governance [Delacroix
and Lawrence} 2019]], we frame our approach as a form of algorithmic collective action in which con-
tributors act collectively through a Data Union (DU) that sets group data disclosure policies, shifting
how value and costs are distributed. While recent work shows that differentially-private mechanisms
Dwork|[2006] can diminish the leverage of collective action in gradient-based training [Solanki et al.}
2025]], we instead use DP positively as a tool for disclosure and value control.

More precisely, we introduce a conceptual model in which contributors coordinate through a DU.
Rather than acting individually in a decentralized marketplace, members pool their data and empower
the union to negotiate collectively. The DU aggregates the dataset and controls how information is
released to a Data Consumer (DC) by progressively disclosing noisy versions of data points using a
differentially-private mechanism. In this way, the DU operates as a collective agent: it sets disclosure
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Figure 1: Illustration of the Information Disclosure Game. A Data Union (DU) holds a private
dataset and releases information to a Data Consumer (DC) by adding Laplacian noise to data points
under e-differential privacy. The DC incrementally acquires these noisy version of the data points,
denoises them using an average and train a model to reach a utility target. In this work, we focus on
non-parametric k-Nearest Neighbors (kNN) and SBERT embeddings Reimers and Gurevych|[2019].

policies that influence which points the DC must acquire to reach its utility target, and thus how
dividends are distributed across members. See Figure [I]for an illustration of our approach.

We formalize this interaction as an Information Disclosure Game (IDG), a form of Stackelberg
game Simaan and Cruz Jr [[1973]], [Fudenberg and Tirole| [[1991]] in which the DU acts as leader by
choosing disclosure rules, and the DC acts as follower by optimizing acquisitions given those rules
(Figure[I). This framework allows to make explicit the acquisition cost that valuation imposes on the
DC and how collective disclosure policies shape their distribution across members. We instantiate
the model by a k-Nearest Neighbors (kNN), in which the relation between individual points and
predictive utility is direct. Simulating the DC strategies guided by Shapley values and by multi-armed
bandit exploration, we test it on a Yelp review helpfulness prediction task using text embeddings.

Outline. First in Section [2} we review the related work on data valuation and differential privacy
before detailing in Section [3|the IDG framework and the objectives of DU and DC. Afterwards in
Section 4] we present our empirical evaluation followed by a discussion and conclusion.

2 Background

Data Valuation. In cooperative game theory, an imputation is a way to distribute the total value of
a game among its players|Osborne and Rubinstein|[[1994]. In the context of data valuation, each data
point in a dataset D is treated as a player and a value function v : 2P — R is used to the utility (e.g.,
accuracy or loss reduction) of any subset D’ C D. The objective is to find an imputation that fairly
allocates the total value v(D) among individual data points based on their contributions. Several
approaches have been explored for data valuation—each with different fairness, computational and
interpretability trade-offs—including Data Shapley Ghorbani and Zou| [2019]], Jia et al.|[2019b], Data
Banzhaf |Wang and Jia, Beta Shapley Kwon and Zou|and the Core|Yan and Procaccial

Formally, the Shapley value of a data point z; € D is given by:
¢2,(v) = Eprp(p\ (=) [v(D" U {2i}) — v(D")],

in which D’ is a subset of D \ {z;} sampled uniformly at random and v(D") is the value function
evaluated on D’. The Shapley value thus quantifies the expecred incremental contribution of each
data point across all possible subsets. The uniqueness of the Shapley value can be derived from
satisfying four foundational axioms: Efficiency (i.e., the total value is distributed among all players),
Symmetry (i.e., identical contributions are rewarded equally), Dummy (i.e., players that contribute
nothing receive zero value) and Linearity (i.e., the Shapley values from two games can be combined
linearly). One application is data pricing in marketplaces [Jia et al., |Pe1, [Tian et al., Xia et al., in
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which Shapley-based frameworks assign higher prices to points that contribute across many subsets.
Shapley values can also inform the data selection task, by identifying examples most useful for
training smaller high-quality sets. Their effectiveness depends on the structure of the utility function
and faces the challenge of high computational cost, with approximations such as G-Shapley Ghorbani
and Zou| [2019]], Yoon et al.|[2020] proposed to improve scalability. However, for £-NN classifiers, an
exact Shapley formulation exists|Jia et al.[[2019a]] with complexity O(N log N), making valuation
tractable in this setting.

Differential privacy. Differential Privacy (DP)|Dwork|[2006] provides a mathematically rigorous
privacy framework by ensuring that the inclusion or exclusion of any individual in a dataset does not
significantly alter the probability distribution of outputs. For instance, the trade-off between privacy
and utility can be controlled through noise addition, thus reducing the re-identification risk and
providing provable privacy guarantees. Formally, let D = {z1, 22, . .., 2, } be a dataset consisting of
n individual data points. A randomized mechanism M satisfies (¢, ¢)-differential privacy if, for any
dataset D, any data point z; € D, and any subset of possible outputs O, the following holds:

Pr[M(D) € O] < e Pr[M(D\ {z;}) € O] + 6,

in which e represents the privacy loss and § allows for a small probability that strict e-differential
privacy does not hold. Beyond protection, privacy also concerns the incentives individuals face when
deciding whether to share their data truthfully. From a mechanism design perspective, the Revelation
Principle Myerson| [[1983]] states that outcomes achievable through indirect strategies can also be
implemented by truthful revelation. Differential privacy makes such mechanisms approximately
truthful: in McSherry and Talwar|[2007]], an e-DP mechanism bounds each agent’s influence on the
outcome, so the gain from lying is at most O(e).

3 Information Disclosure Game

We model the interaction between two agents: the DU and the DC. As a member-run collective, the
DU manages pooled data with the mission of ensuring fair valuation while accounting for concerns
such as privacy. Meanwhile, the DC seeks to optimize utility—often by acquiring data points at
minimal cost. These interactions are formalized as a two-phase Stackelberg game, in which the DU
acts as a leader by setting how to disclose information and at what cost, and the DC, as a follower,
responds through strategic data acquisition.

Complete information disclosure game. A typical formulation is to model the interaction as
a pricing game, in which the DU assigns a price p; to each data point z;. The DC then solves a
knapsack-like problem:

N
min i St U(X) > Urgets 1
(0N ;pz i ( ) = Utarget €))
in which U(x) denotes the utility obtained from the purchased subset. The DU anticipates this
behavior and sets p with the aim of maximizing the DC’s minimized total cost.

This approach provides a straightforward pricing mechanism but has significant limitations. Indeed,
because disclosure of a data point is binary—either withheld or complete—many contributors receive
no compensation. Incentivizing broader acquisition requires lowering the price of high-value points,
which penalizes those who contribute the most. Moreover, releasing data at fixed prices locks in
value at a single point in time and weakens privacy guarantees, limiting the DU’s ability to balance
inclusiveness and protection.

Partial information disclosure game. To address these challenges, we depart from per-point
pricing and instead model an iterative disclosure process under DP. At each round ¢, the DC selects
a subset S; of data points to query. Each query consumes a fixed privacy budget ¢ and returns a
noisy version of the data. The DU sets (€, Ti,ax ), the per-query budget and the per-point query cap,
which together determine a maximum per-point spend Biax = Tmax€. The DC’s cumulative spend

is B 2623;1 |St‘7 TSTmaw



111

112

113
114
115
116
117

118

119
120
121
122
123
124
125
126
127
128
129

130
131
132

133
134
135

137
138

139
140
141

142
143
144
145
146
147
148

149

150
151
152
153
154

The DC’s objective is to minimize its camulative budget spent:

T
i Syl st UM > Upreet, T < o 2
?élﬁetzzll s > Uarget, T' < )

Conversely, the DU’s objective is to maximize the minimum budget spent by the DC:

(6,Tmax) {St}

with the goal of spreading spend more evenly across members while managing privacy—utility trade-
offs. Compared to the pricing game in Equation |1} partial disclosure replaces per-point ownership
costs with iterative access charges. This formulation makes the hidden acquisition cost of valuation
explicit in the DC’s budget and allows the DU to shape acquisition behaviors without penalizing the
most valuable contributors.

T
max mine Z [St| (3
t=1

4 Experiments on Review Helpfulness Prediction

Review helpfulness prediction provides a natural testbed for data valuation as platforms such as Yelp
collect reviews not only for sentiment analysis but also to assess their quality. Indeed, unhelpful
reviews may ultimately be discarded, yet they are still necessary to identify and reward helpful ones.
This creates a setting in which individual contributions to predictive performance are both explicit and
uneven. We use the Yelp dataset/Asghar|[2016] following the setup of Bilal and Almazroi|[2023], who
report a k-NN accuracy of 59.6%. Using pretrained text embeddings and k-NN, our best configuration
achieves 66.0% test accuracy and 65.2% F1-score, bringing non-parametric performance closer to
fine-tuned transformer models while preserving point-level interpretability needed for valuation. As a
sanity check, we replicated the acquisition experiment of Jia et al.|[2019b] and verified that Shapley-
based selection outperforms random sampling. The corresponding curve, along with additional details
on the experimental setup, is reported in Appendix

To implement a DP iterative release, we add Laplacian noise independently to each feature of every
data point (1024-dimensional vectors). For feature x;, we first project it into a fixed interval [a;, b;],
in which a; and b; are min/max statistics for feature j. The release mechanism is then

Z; = min{max{z;, a,}, b;} + Laplace (?) )
J

in which A; = b; —a; denotes the global sensitivity of feature j after bounding and ¢; is the allocated
budget for that feature. This design is similar in spirit to a per-feature local DP mechanism |Cormode
et al.|[2018]],[Wang et al.|[2019]], in that each coordinate is privatized independently, but here it is
applied in a centralized setting by the DU. We assume the sensitivity interval [a;, b;] is fixed in
advance and does not vary significantly across releases, so the noise scale is determined by A /¢;. On
the DC side, each noisy version of a point is averaged to form a denoised estimate. After observing ¢

noisy versions of point 4, its center is computed incrementally as ;%z(.t) = % 22:1 igk). The averaging
strategy steadily improves fidelity as noisy samples accumulate, with error decreasing and correlation

increasing non-linearly across iterations (see Appendix [B]for details).

In the remainder of our analysis, we do not attempt to solve the full game between the DU and DC.
Instead, we simulate the DC’s behavior by implementing and comparing different data selection
strategies under the noisy iterative release mechanism. We define the utility target as the validation
accuracy (69.6%). For all data selection strategies, we use a fixed privacy budget € per point per query
of 1 and assume a constant maximum budget per data point. The next two subsections explore these
strategies, including one based on rankings (random and Shapley-based) and another using adaptive
n-armed bandit algorithm.

4.1 Data Selection Using Random and Shapley-based Strategies

Random data selection. In this baseline, the DC commits to a random subset of data points for all
iterations with the results displayed in Figure 2] being averaged over 10 random permutations. As
shown in Figure|2] this approach fails to reach the target utility within 100 iterations unless nearly
100% of the dataset is acquired, which confirms that a purely random acquisition strategy from the
DU is not viable under budget constraints.
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Data Shapley selection. Afterwards, we assess whether Shapley valuation works over noisy data
by the DC selecting all data points for a number of iterations (i.e., bootstrap iterations) and estimating
DSVs based on the averaged center points. As illustrated in Figure 3] selecting the top-valued centers
based on noisy Shapley estimates allows the DC to reach the target utility. Successful acquisition starts
at 10% of the dataset but performance varies depending on the percentage of selected data and the
number of iterations. For instance, we observed that in the 60% selection case, data Shapley selection
achieves the utility target after roughly 25 bootstrap iterations. Testing other Shapley-based strategies
(Appendix D)), we found no consistent advantage in committing earlier. Although committing may
stabilize performance for a fixed subset, our findings suggest that for Shapley-based strategies, the
DC is better off continuing complete iterations to refine noisy point estimates.

KNN Validation Accuracy Curves (K=67) Dynamic Shapley Only KNN Validation Accuracy Curves (K=67)
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Figure 2: Validation accuracy for random Figure 3: Validation accuracy using estimated
data selection across varying parameters. Un- data Shapley selection across dataset percent-
like Shapley-based methods, random selec- ages and iterations. The target accuracy is
tion fails to consistently reach the utility target achieved with as little as 10% of data.

(69.6%) within the budgeted iteration range.

4.2 Data Selection using n-Armed Bandits

As a final strategy, we model data selection as an n-armed bandit problem, in which each action
a € {1,...,n} corresponds to selecting a data point z,. The DC follows an Upper Confidence
Bound (UCB) policy under a fixed per-point privacy budget Byax. Each query incurs a privacy cost
e and yields a noisy sample that updates the point’s estimated value, measured as incremental utility
in a k-NN classifier. Unlike Shapley-based strategies, the DC may exploit the same point repeatedly
until its budget is exhausted. This formulation captures the exploration—exploitation trade-off and
makes the cost of valuation explicit as the exploration cost required to identify valuable points under
budget constraints. Formally, each point maintains its estimated value @Q;(a), query count N (a),
current averaged center center,, and remaining budget B;’. UCB scores are computed as

1 B .
. . f Bre
UCBy(a) = { @@+ e\ N5z puax 18>0
—00, otherwise.

The utility of a queried point is defined as the fraction of neighbors in k-NN that share its label. See
Algorithm[T]in Appendix for implementation details.

Hyperparameter search. Identifying an equilibrium can be seen as a hyperparameter search,
since the interaction between the DU’s release policy and the DC’s acquisition strategy does not
admit a closed-form solution. To realize this, we conducted a grid search over two key parameters:
the maximum budget per point (set by the DU) and the exploration coefficient ¢ (in UCB). These
jointly determine budget usage and the diversity of selected points. Results show that the bandit
reliably reaches the utility threshold except when the per-point budget is too small or exploration is
disabled; below a budget of 20, success is rare and often due to lucky point selection. Gini analysis
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of budget allocations confirms that exploration promotes more balanced spending across points and
increases the likelihood of success. The correlation between Q values and Shapley values grows with
budget but remains moderate overall (Appendix [E).Finally, evaluations based on denoised centers
yielded test accuracy comparable to or exceeding that obtained from the original data. For instance, a
configuration with a per-point budget of 50 reached 69.9% surpassing the 66% benchmark.
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Figure 4: 3D visualization of hyperparameter

combinations. Green dots represent success- Figure 5: Gini coefficient of budget usage by
ful runs in which the DC reached the utility hyperparameter setting. High values indicate
threshold while red crosses represent failures. budget concentrated on few data points, typi-
Success becomes unlikely with budget-per- cal in “lucky” early selections.

arm below 20 or when exploration is zero.

5 Discussion & Conclusion

We proposed a game-theoretic framework for data valuation that integrates privacy and inclusiveness
concerns through an information disclosure game between a Data Union (DU) and a data consumer
(DC). Rather than assuming direct access to data, our approach models acquisition as an iterative
process using a differential private mechanism to enforce a cost on data valuation. On Yelp review
helpfulness prediction, Shapley-based strategies remained effective under noise but required a minimal
budget—about 10 bootstrap iterations—to reliably identify high-value points. This demonstrates
that Shapley valuation entails an inherent cost of exploration in our setting. Similarly, a multi-armed
bandit strategy reached the utility target with comparable budgets, reinforcing that valuation itself
imposes exploration costs. Gini analysis further showed that as budgets grow, the DC allocates
resources more evenly across contributors, increasing inclusiveness.

While our experiments focused on k-NN for computation efficiency, an important direction for
future work is extending the framework to differentiable models. Gradient-based methods such as
G-Shapley | Ghorbani and Zou| [2019] already show that Shapley values can be approximated from
changes in gradients, suggesting ways to scale valuation beyond non-parametric models. In parallel,
approaches like DP-SGD[Abadi et al|[2016] demonstrate that DP can be enforced by adding noise
to gradients rather than directly to points. Bridging these lines of work would provide a better
privacy-utility trade-off for both the DU and DC. Nonetheless, our results suggest that in a DU setting,
reaching target utility requires a minimum level of budget spread. Thus, our framework implies that
a minimum dividend should be guaranteed to all members, regardless of individual Shapley value.
In the context of reviews, this means that every contributor would receive at least some share of
value, even if their individual review is ultimately deemed unhelpful, aligning the incentives of all
members with the collective outcome. Otherwise, excluding some contributors increases the incentive
to form data unions that adopt adversarial disclosure strategies (e.g., prioritizing low-value reviews or
injecting excess noise), which may in turn hinder the data consumer’s ability to reach its utility target.
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27z A Appendix: MAB Algorithm

Algorithm 1 Budget-Aware UCB for Data Selection
Require:
D = {x1,...,z,}: Dataset of n data points (arms)
e: Differential privacy budget per query
Tnax: Maximum number of iterations
Ularger: Target utility (average positive vote ratio)
c: Exploration coefficient
a: Learning rate
€: Small constant for numerical stability
BMAX(q): Maximum privacy budget per point
NOISYRELEASE(z,, €): Returns a noisy version of x,
KNNUTILITY(Z; {center, }, k): Average positive votes ratio over validation set Z with current
centers
Initialize:
fora =1tondo
Q(a) + 0, N(a) + 0, B™(a) + BMAX(q)
center, < 0
end for
U < KNNUTILITY(Z; {center, }, k)
t+1
while t < Ty, and U < Upyreer do
fora =1tondo
10: if B"(a) > 0 then

11: UCB(a)%Q(a)JrC'\/%'%’%

12: else

13: UCB(a) < —

14: end if

15: end for

16: Ay «+ arg max, UCB(a)

17: Za, « NOISYRELEASE(z 4,,¢€)

. centera, -N(A¢)+T a,
18: centera, <~ ——Nia, Er

19: Unew < KNNUTILITY (Z; {center, }, k)
20: R+ Upew — U

21: U + Upew

222 Q(A) «+ Q(Ay) +a- (R — Q(Ar))
23: N(Ay) « N(A) +1

24: B™(A;) + B™(A;) — ¢

25: t—t+1

26: end while

27: return {center, }, U
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279 B Appendix: The effect of Laplacian noise

280 We have allocated a privacy budget of € = 1 per feature, resulting in a total budget of 1024 per point.
281 To illustrate how fidelity evolves under iterative disclosure, we report two complementary measures.
282 The first tracks how close denoised representations remain to the original data points, while the
283 second measures the correlation between original Shapley values and those computed on denoised
284 representations. Together, they provide evidence that averaging across noisy samples progressively
285 restores signal.



286

287
288
289
290
291
292
293

294
295
296

297

298
299
300
301
302
303
304
305

Center Error over Laplace Releases (K=67)

Avg. ||center - originall|z

0 20 40 60 80 100
Iteration

Figure 6: Average (> distance between original points and their denoised centers as a function of
iterations. Error drops sharply early on with diminishing returns over time.

Spearman Correlation between Original and Noisy Shapley Values (K=67)
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Figure 7: Spearman correlation between original Shapley values and those computed on denoised
centers over iterations.

C Appendix: Experimental setup

Dataset and embeddings. We used the Yelp dataset |Asghar| [2016]], which con-
tains text reviews with helpfulness votes. Reviews were encoded with two sen-
tence  embedding  models: sentence-transformers/all-mpnet-base-v2  and
intfloat/multilingual-e5-large-instruct. Both were chosen for their strong per-
formance on semantic similarity tasks and because they were not trained on Yelp, avoiding leakage.
A k-Nearest Neighbors classifier was trained with the number of neighbors & tuned on a validation
set. The dataset was split into 8000 training, 1000 validation and 1000 test examples.

Computing resources. All experiments were run locally on a MacBook Pro M4 with 24GB of
unified memory. Each acquisition experiment completed within a few hours, with bandit simulations
being the most computationally intensive.

D Appendix: Data Shapley Selection strategies

Figure [I0]illustrates an alternative acquisition strategy in which the DC first estimates Shapley values
through a fixed number of bootstrap iterations before committing to acquire the top-ranked points.
This procedure is compared against the exact Shapley values provided by an oracle, which serves as a
benchmark but is not available in practice. The results highlight that while estimating Shapley values
incurs an additional cost, this cost diminishes as more budget is consumed. However, committing
after a fixed iteration number does not reduce the total number of iterations required to reach the
target utility, as shown in Figure [TT] indicating that early commitment provides no fundamental
shortcut in convergence.
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Figure 8: Test accuracy as a function of acquired data points, comparing kNN Shapley-based selection
with random selection.

Comparison of 60% Selection Methods (K=67)
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Figure 9: Validation accuracy over iterations for 60% data selection using random, esimated (noisy)
data Shapley strategies compared to exact Shapley values given by an oracle. Estimated data Shapley
selection reaches the utility target in 25 iterations, significantly outperforming random selection.
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Figure 10: Performance of data Shapley+commitment selection strategy for different combinations
of bootstrap and commit parameters. No clear benefit is observed compared to no commitment.
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Figure 11: Shapley+commitment strategy on 60% of the data. While utility is eventually reached,
performance does not improve over dynamic Shapley.

E Appendix: Correlation between Q-values and Shapley values

We examined the relationship between learned Q-values and Shapley values. In our framework,
Q-values are estimates maintained by the multi-armed bandit policy, representing the expected
incremental utility of querying a particular data point under the differential privacy budget. Figure[I2]
shows that the Spearman correlation between these metrics increases with budget but remains
moderate overall. This is expected and desired as the objective is for Q-values to be influenced by
data utility but not perfectly mimic Shapley values, thereby offering a different valuation with more
inclusiveness.

MebiPhng,$td Deviation of Shapley-Q Correlation by Max Budget
0=0.0420.085
o _ 6=0026

1=0.092
um0.002 40079
0=00d00rs
T 0=0.023
010 OO T 023
T —11=0.0850.062
6-0.0180.022 o 4=0.058
i=0.058 M= 0.057 9=0.0820.0680.059
-+ T = 0.048 =
i 9=0.0470.0980.9485037,gs7,_0=0.0240.017
14=0.054 09=0.013
=001 +

°
o
&

Spearman Correlation
°
°
3

0.04 4=0.020 +
0-0.009

0.02 :|V>

0.00 — 1

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 100
Max Budget per Arm

Figure 12: Mean and standard deviation of Spearman correlation between learned Q-values and
Shapley values, grouped by maximum budget. Correlation rises with budget but remains modest
indicating partially aligned but distinct prioritization.
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4 NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state that the paper introduces the Information
Disclosure Game, a Stackelberg game between a Data Union and Data Consumer, and
empirically evaluate disclosure strategies on Yelp review helpfulness prediction. The results
and discussion match these claims (see Sections 3] and [)).

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section[5]explicitly mentions that experiments are limited to k-NN for com-
putational efficiency and that extensions to differentiable models is a fundamental future
work.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper formalizes the framework (game definition, objectives) but does
not present formal theorems or proofs beyond definitions. The contribution is primarily
conceptual and empirical.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix [C|details dataset splits, embedding models and values of k. Algo-
rithm[T] specifies the bandit procedure. Finally, noise mechanisms and parameter settings are
described in Sectiond]and Appendix

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The paper uses publicly available Yelp data|Asghari [2016], but code has not
been released at submission time. Release is planned for the camera-ready version.

6. Experimental setting/details
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10.

11.

12.

13.

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Dataset splits, embedding models, k-NN classifier details, noise addition and
evaluation metrics are all specified (Section|C] Section ).

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figures such as[2] [3] and Appendix plots report averages over multiple runs
and show standard deviations or shaded areas to indicate variability.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix [C]specifies that experiments were run on a MacBook Pro M4 with
24GB memory; runtime per experiment is on the order of a few hours.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work uses a public dataset (Yelp reviews) with no sensitive personal
identifiers, and experiments are consistent with ethical research standards.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section[5]discusses inclusiveness and fairer data dividends as positive impacts,
while noting challenges in extending to more complex models.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work does not release pretrained models or new datasets with misuse risk.
It only uses Yelp reviews, which are already public and well studied.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The Yelp dataset is properly cited |Asghar [2016], and pretrained embeddings
(e.g., all-mpnet-base-v2, multilingual-e5-large-instruct) are credited in Appendix [C|

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

14


https://neurips.cc/public/EthicsGuidelines

412
413

414

415
416
417

418

419

420
421

422
423
424
425

426

427

428

429
430
431
432

433

434

14.

15.

16.

Justification: No new datasets or models are released; only conceptual framework and
experiments on existing data.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The work does not involve human subjects or crowdsourcing.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The work does not involve human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not part of the core methodology. Only pretrained embeddings (not
large models so to speak) are used.
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