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Abstract

Temporal graphs are widely used to model dynamic systems with time-varying
interactions. In real-world scenarios, the underlying mechanisms of generating
future interactions in dynamic systems are typically governed by a set of recurring
substructures within the graph, known as temporal motifs. Despite the success and
prevalence of current temporal graph neural networks (TGNN), it remains uncertain
which temporal motifs are recognized as the significant indications that trigger a
certain prediction from the model, which is a critical challenge for advancing the
explainability and trustworthiness of current TGNNs. To address this challenge,
we propose a novel approach, called Temporal Motifs Explainer (TempME),
which uncovers the most pivotal temporal motifs guiding the prediction of TGNNs.
Derived from the information bottleneck principle, TempME extracts the most
interaction-related motifs while minimizing the amount of contained information to
preserve the sparsity and succinctness of the explanation. Events in the explanations
generated by TempME are verified to be more spatiotemporally correlated than
those of existing approaches, providing more understandable insights. Extensive
experiments validate the superiority of TempME, with up to 8.21% increase in
terms of explanation accuracy across six real-world datasets and up to 22.96%
increase in boosting the prediction Average Precision of current TGNNs.1

1 Introduction

Temporal Graph Neural Networks (TGNN) are attracting a surge of interest in real-world applications,
such as social networks, financial prediction, etc. These models exhibit the ability to capture
both the topological properties of graphs and the evolving dependencies between interactions over
time [1, 2, 3, 4, 5, 6, 7, 8]. Despite their widespread success, these models often lack transparency,
functioning as black boxes. The provision of human-intelligible explanations for these models
becomes imperative, enabling a better understanding of their decision-making logic and justifying the
rationality behind their predictions. Therefore, improving explainability is fundamental in enhancing
the trustworthiness of current TGNNs, making them reliable for deployment in real-world scenarios,
particularly in high-stakes tasks like fraud detection and healthcare forecasting [9, 10, 11, 12].

The goal of explainability is to discover what patterns in data have been recognized that trigger certain
predictions from the model. Explanation approaches on static graph neural networks have been well-
studied recently [13, 14, 15, 16, 17, 18, 19]. These methods identify a small subset of important edges
or nodes that contribute the most to the model’s prediction. However, the success of these methods
on static graphs cannot be easily generalized to the field of temporal graphs, due to the complex
and volatile nature of dynamic networks [8, 4, 3]. Firstly, there can be duplicate events occurring
at the same timestamp and the same position in temporal graphs. The complicated dependencies
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between interactions were under-emphasized by existing explanation approaches [20, 21]. Moreover,
the important events should be temporally proximate and spatially adjacent to construct a human-
intelligible explanation [22]. We refer to explanations that satisfy these requirements as cohesive
explanations. As illustrated in Figure 1(a), a non-cohesive explanation typically consists of scattered
events (highlighted in purple). For instance, event 1 and event 10 in the disjointed explanation
are neither temporally proximate nor spatially adjacent to other explanatory events, leading to a
sub-optimal explanation and degrading the inspiration that explanations could bring us. There have
been some recent attempts at TGNN explainability [21, 23]. Unfortunately, they all face the critical
challenge of generating cohesive explanations and fall short of providing human-intelligible insights.
Moreover, they entail high computational costs, making them impractical for real-world deployment.
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Figure 1: (a) and (b): Non-cohesive explanation
and cohesive explanation (highlighted in colors).
(c) and (d): Temporal motifs govern the genera-
tion of future interactions (numbers denote event
orders).

To address the aforementioned challenges of
temporal explanations, we propose to utilize
temporal motifs in the explanation task. Tempo-
ral motifs refer to recurring substructures within
the graph. Recent studies [24, 25, 26, 27, 28, 29,
30, 31] demonstrate that these temporal motifs
are essential factors that control the generative
mechanisms of future events in real-world tem-
poral graphs and dynamic systems. For example,
preferential attachment (Figure 1(c)) elucidates
the influencer effect in e-commerce marketing
graphs [32, 33]. Triadic closure (Figure 1(d))
explains the common-friend rules in social net-
works [34, 6, 1, 25]. Therefore, they are plau-
sible and reliable composition units to explain
TGNN predictions. Moreover, the intrinsic self-
connectivity of temporal motifs guarantees the
cohesive property of the generated explanations
(Figure 1(b)).

Proposed work. In the present work, we propose TempME, a novel Temporal Motif-based Explainer
to identify the most determinant temporal motifs to explain the reasoning logic of temporal GNNs
and justify the rationality of the predictions. TempME leverages historical events to train a generative
model that captures the underlying distribution of explanatory motifs and thereby improves the
explanation efficiency. TempME is theoretically grounded by Information Bottleneck (IB), which
finds the best tradeoff between explanation accuracy and compression. To utilize Information
Bottleneck in the context of temporal graphs, we incorporate a null model (i.e., a randomized
reference) [22, 35, 36] into the model to better measure the information contained in the generated
explanations. Thereby, TempME is capable of telling for each motif how the occurrence frequency
difference in empirical networks and randomized reference reflects the importance to the model
predictions. Different from previous works that only focus on the effect of singular events [23, 21],
TempME is the first to bring additional knowledge about the effect of each temporal motif.

We evaluate TempME with three popular TGNN backbones, TGAT [3], TGN [4] and GraphMixer [5].
Extensive experiments demonstrate the superiority and efficiency of TempME in explaining the
prediction behavior of these TGNNs and the potential in enhancing the prediction performance of
TGNNs, achieving up to 8.21% increase in terms of explanation accuracy across six real-world
datasets and up to 22.96% increase in boosting the prediction Average Precision of TGNNs.

The contributions of this paper are: (1) We are the first to utilize temporal motifs in the field of
explanations for TGNNs to provide more insightful explanations; (2) We further consider the null
model in the information bottleneck principle for the temporal explanation task; (3) The discovered
temporal motifs not only explain the predictions of different TGNNs but also exhibit ability in
enhancing their link prediction performance.

2 Related Work

GNN Explainability Explainability methods for Graph Neural Networks can be broadly classified
into two categories: non-generative and generative methods. Given an input instance with its
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prediction, non-generative methods typically utilize gradients [15, 37], perturbations [38, 39], relevant
walks [40], mask optimization [13], surrogate models [41], and Monte Carlo Tree Search (MCTS) [16]
to search the explanation subgraph. These methods optimize the explanation one by one during
the explanation stage, leading to a longer inference time. On the contrary, generative methods
train a generative model across the entire dataset by learning the distribution of the underlying
explanatory subgraphs [19, 18, 14, 42, 43, 44, 45], which obtains holistic knowledge of the model
behavior over the whole dataset. Compared with static GNN, the explainability of temporal graph
neural networks (TGNNs) remain challenging and under-explored. TGNNExplainer [23] is the
first explainer tailored for temporal GNNs, which relies on the MCTS algorithm to search for a
combination of the explanatory events. Recent work [21] utilizes the probabilistic graphical model to
generate explanations for discrete time series on the graph, leaving the continuous-time setting under-
explored. However, these methods cannot guarantee cohesive explanations and require significant
computation costs. There are also some works that have considered intrinsic interpretation in temporal
graphs [26] and seek the self-interpretable models [46, 20]. As ignored by previous works on temporal
explanation, we aim for cohesive explanations that are human-understandable and insightful in a
generative manner for better efficiency during the explanation stage.

Network Motifs The concept of network motifs is defined as recurring and significant patterns of
interconnections [35], which are building blocks for complex networks [47, 24]. Kovanen et al. [22]
proposed the first notion of temporal network motifs with edge timestamps, followed by relaxed
versions to involve more diverse temporal motifs [48, 24, 49]. Early efforts developed efficient motif
discovery algorithms, e.g., MFinder [50], MAVisto [51], Kavosh [36], etc. The standard interpretation
of the motif counting is presented in terms of a null model, which is a randomized version of the
real-world network [35, 52, 22, 53]. Another research line of network motifs focuses on improving
network representation learning with local motifs [54, 55, 56]. These approaches emphasize the
advantages of incorporating motifs into representation learning, leading to improved performance
on downstream tasks. In this work, we constitute the first attempt to involve temporal motifs in the
explanation task and target to uncover the decision-making logic of temporal GNNs.

3 Preliminaries and Problem Formulation

Temporal Graph Neural Network. We treat the temporal graph as a sequence of continuous
timestamped events, following the setting in TGNNExplainer [23]. Formally, a temporal graph can
be represented as a function of timestamp t by G(t) = {V(t), E(t)}, where V(t) and E(t) denote
the set of nodes and events that occur before timestamp t. Each element ek in E(t) is represented
as ek = (uk, vk, tk, ak), denoting that node uk and node vk have an interaction event at timestamp
tk < t with the event attribution ak. Without loss of generality, we assume that interaction is
undirected [5, 1]. Temporal Graph Neural Networks (TGNN) take as input a temporal graph G(t)
and learn a time-aware embedding for each node in V(t). TGNNs’ capability for representation
learning on temporal graphs is typically evaluated by their link prediction performance [57, 1, 25], i.e.,
predicting the future interaction based on historical events. In this work, we also focus on explaining
the link prediction behavior of TGNNs, which can be readily extended to node classification tasks.

Explanation for Temporal Graph Neural Network. Let f denote a well-trained TGNN (aka. base
model). To predict whether an interaction event e happens between u and v at timestamp t, the base
model f leverages the time-aware node representation xu(t) and xv(t) to output the logit/probability.
An explainer aims at identifying a subset of important historical events from E(t) that trigger the
future interaction prediction made by the base model f . The subset of important events is known as
an explanation. Formally, let Yf [e] denote the binary prediction of event e made by base model f , the
explanation task can be formulated as the following problem that optimizes the mutual information
between the explanation and the original model prediciton [13, 23]:

argmax
|Ge

exp|≤K

I(Yf [e];Geexp) ⇔ argmin
|Ge

exp|≤K

−
∑
c=0,1

1(Yf [e] = c) log(f(Geexp)[e]) (1)

where I(·, ·) denotes the mutual information function, e is the interaction event to be explained, Geexp
denotes the explanation constructed by important events from V(t) for e. f(Geexp)[e] is the probability
output on the event e predicted by the base model f . K is the explanation budget on the explanation
size (i.e., the number of events in Geexp).
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4 Proposed Method: TempME

A simple optimization of Eq. 1 easily results in disjointed explanations [23]. Therefore, we utilize
temporal motifs to ensure that the generated explanations are meaningful and understandable.
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Figure 2: Framework of TempME. Numbers
on the edge denote the event order.

The pipeline of TempME is shown in Figure 2.
Given a temporal graph and a future prediction be-
tween node u and node v to be explained, TempME
first samples surrounding temporal motif instances
(Sec. 4.1). Then a Motif Encoder creates expres-
sive Motif Embedding for each extracted motif in-
stance, which consists of three main steps: event
anonymization, message passing, and graph pooling
(Sec. 4.2). Based on Information-bottleneck (IB) prin-
ciple, TempME characterizes the importance scores
of these temporal motifs, under the constraints of
both explanation accuracy and information compres-
sion (Sec. 4.3). In the explanation stage, succinct and
cohesive explanations are constructed by sampling
from the Bernoulli distribution controlled by the im-
portance score p for the prediction behavior of the
base model.

4.1 Temporal Motif Extraction

We first extract a candidate set of motifs whose importance scores are to be derived. Intuitively, event
orders encode temporal causality and correlation. Therefore, we constrain events to reverse over the
direction of time in each motif and propose the following Retrospective Temporal Motif.
Definition 1. Given a temporal graph and node u0 at time t0, a sequence of l events, denotes
as I = {(u1, v1, t1), (u2, v2, t2), · · · , (ul, vl, tl)} is a n-node, l-length, δ-duration Retrospective
Temporal Motif of node u0 if the events are reversely time ordered within a δ duration, i.e., t0 >
t1 > t2 · · · > tl and t0 − tl ≤ δ, such that u1 = u0 and the induced subgraph is connected and
contains n nodes.
Temporal dependencies are typically revealed by the relative order of the event occurrences rather
than the absolute time difference. Consequently, we have the following definition of equivalence.
Definition 2. Two temporal motif instances I1 and I2 are equivalent if they have the same topology
and their events occur in the same order, denoted as I1 ≃ I2.
Temporal Motifs are regarded as important building blocks of complex dynamic systems [52, 35,
22, 50]. Due to the large computational complexity in searching high-order temporal motifs, recent
works show the great potential of utilizing lower-order temporal motifs, e.g., two-length motifs [52]
and three-node motifs [24, 55, 58], as units to analyze large-scale real-world temporal graphs. A
collection of temporal motifs with up to 3 nodes and 3 events is shown in Appendix B.

Algorithm 1: Temporal Motif Sampling
(E , n, l, u0, t0, C); l ≥ n

1 Node set: Sc ← {u0}, for 1 ≤ c ≤ C
2 Event sequence: Ic ← (), for 1 ≤ c ≤ C

for c = 1 to C do
for j = 1 to l do

3 Sample one event ej = (uj , vj , tj)
from E(Sc, tj−1)

if |Sc| < n then
4 Sc = Sc ∪ {uj , vj}

Ic = Ic ∥ ej

return {Ic | 1 ≤ c ≤ C}

Given a temporal graph with historical events E
and node u0 of interest at time t0, we sample C
retrospective temporal motifs with at most n nodes
and l events, starting from u0 (δ is usually set as
large for the comprehensiveness of motifs). Alg. 1
shows our Temporal Motif Sampling approach,
where E(S, t) denotes the set of historical events
that occur to any node in S before time t. At each
step, we sample one event from the set of historical
events related to the current node set. Alg. 1 adapts
Mfinder [50], a motif mining algorithm on static
graphs, to the scenario of temporal graphs. We
could also assign different sampling probabilities
to historical events in Step 3 in Alg. 1 to obtain
temporally biased samples. Since the purpose of
our sampling is to collect a candidate set of expressive temporal motifs for the explanation, we
implement uniform sampling in Step 3 for algorithmic efficiency.
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Relation to Previously Proposed Concepts. Recent works [1, 6] propose to utilize temporal
walks and recurrent neural networks (RNN) [59] to aggregate sequential information. Conceptually,
temporal walks construct a subset of temporal motif instances in this work. In contrast, temporal
motifs capture more graph patterns for a holistic view of the governing rules in dynamic systems. For
instance, the motif of preferential attachment (Fig. 1(c)) cannot be represented as temporal walks.

4.2 Temporal Motif Embedding

In the present work, we focus on explaining the link prediction of temporal graph neural networks.
Given an interaction prediction between node u and node v to be explained, we sample C surrounding
temporal motif instances starting from u and v, respectively, denoted as Mu and Mv. Note the
proposed framework is also flexible for explaining other graph-related problems. For instance, to
explain the node classification on dynamic graphs, we sample C temporal motif instances around
the node of interest. Each temporal motif is represented as (e1, e2, · · · , el) with ei = (ui, vi, ti)
satisfying Definition 1. We design a Motif Encoder to learn motif-level representations for each
surrounding motif in Mu and Mv .

Event Anonymization. The anonymization technique is at the core of many sequential feature
distillation algorithms [1, 6, 60, 61]. Previous works [6, 1] mainly focus on node anonymization, while
temporal motifs are constructed by sequences of temporal events. To bridge this gap, we consider the
following event anonymization to adapt to temporal motifs. To maintain the inductiveness, we create
structural features to anatomize event identities by counting the appearance at certain positions:

h(ei, u, v)[j] = |{I | I ∈Mu ∪Mv, I[j] = (ui, vi, t);∀t}| , for i ∈ {1, 2, · · · , l}. (2)

h(ei, u, v) (abbreviated as h(ei) for simplicity) is a l-dimensional structural feature of ei where the
j-th element denotes the number of interactions between ui and vi at the j-th sampling position in
Mu ∪Mv . h(ei) essentially encodes both spatial and temporal roles of event ei.

Temporal Motif Encoding. The extracted temporal motif is essentially a subgraph of the original
temporal graph. Instead of using sequential encoders, we utilize local message passing to distill
motif-level embedding. Given a motif instance I with node set VI and event set EI , let Xp denote
the associated feature of node p ∈ VI . Epq = (apq ∥ T (t − tpq) ∥ h(epq)) denotes the event
feature of event epq ∈ EI , where apq is the associated event attribute and h(epq) refers to the
structural feature of event epq (Eq. 2). Note that the impact of motifs varies depending on the time
intervals. For instance, motifs occurring within a single day differ from those occurring within a
year. Thus, we need a time encoder T (·) which maps the time interval into 2d-dimensional vectors
via T (∆t) =

√
1/d[cos(w1∆t), sin(w1∆t), · · · , cos(wd∆t), sin(wd∆t)] with learnable parameters

w1, · · · , wd [52, 1]. To derive the motif-level embedding, we initially perform message passing to
aggregate neighboring information and then apply the READOUT function to pool node features.

X̃p = MESSAGEPASSING(Xp; {Xq;Epq|q ∈ N (p)}) and mI = READOUT({X̃p, p ∈ VI}) (3)

Following Eq. 3, one may use GIN [62] or GAT [63] in MESSAGEPASSING step and simple mean-
pooling or learnable adaptive-pooling [64] as READOUT function to further capture powerful motif
representations. We refer to Appendix D.4 for more details about the Temporal Motif Encoder.

4.3 Information-Bottleneck-based Generator

Motivation. A standard analysis for temporal motif distribution is typically associated with the null
model, a randomized version of the empirical network [22, 50, 35]. The temporal motif that behaves
statistically differently in the occurrence frequency from that of the null model is considered to be
structurally significant. Therefore, we assume the information of temporal motifs can be disentangled
into interaction-related and interaction-irrelevant ones. The latter is natural result of the null model.
Based on this assumption, we resort to the information bottleneck technique to extract compressed
components that are the most interaction-related. We refer to Appendix C for theoretical proofs.

Sampling from Distribution. Given an explanation query and a motif embedding mI with I ∈M,
whereM denotes the set of extracted temporal motifs, we adopt an MLP for mapping mI to an
importance score pI ∈ [0, 1], which measures the significance of this temporal motif instance for the
explanation query. We sample a mask αI ∼ Bernoulli(pI) for each temporal motif instance and
then apply the masks to screen for a subset of important temporal motif instances viaMexp = A⊙M.

5



A is the mask vector constructed by αI for each motif I and ⊙ denotes element-wise product. The
explanation subgraph for the query can thus be induced by all events that occur inMexp.

To back-propagate the gradients w.r.t. the probability pI during the training stage, we use the Concrete
relaxation of the Bernoulli distribution [65] via Bernoulli(p) ≈ σ( 1λ (log p− log(1− p) + log u−
log(1 − u))), where u ∼ Uniform(0, 1), λ is a temperature for the Concrete distribution and σ is
the sigmoid function. In the inference stage, we randomly sample discrete masks from the Bernoulli
distribution without relaxation. Then we induce a temporal subgraph withMexp as the explanation.
One can also rank all temporal motifs by their importance scores and select the Top K important
motifs to induce more compact explanations if there is a certain explanation budget in practice.

Information Bottleneck Objective. Let Geexp and G(e) denote the explanation and the computational
graph of event e (i.e., historical events that the base model used to predict e). To distill the most
interaction-related while compressed explanation, the IB objective maximizes mutual information
with the target prediction while minimizing mutual information with the original temporal graph:

min−I(Geexp, Yf [e]) + βI(Geexp,G(e)), s.t. |Geexp| ≤ K (4)

where Yf [e] refers to the original prediction of event e, β is the regularization coefficient and K is a
constraint on the explanation size. We then adjust Eq. 4 to incorporate temporal motifs.

The first term in Eq. 4 can be estimated with the cross-entropy between the original prediction and
the output of base model f given Geexp as Eq. 1, where Geexp is induced byMexp. Since temporal
motifs are essential building blocks of the surrounding subgraph and we have access to the posterior
distribution ofMexp conditioned onM with importance scores, we propose to formulate the second
term in Eq. 4 as the mutual information between the original motif setM and the selected motif
subsetMexp. We utilize a variational approximation Q(Mexp) to replace its marginal distribution
P(Mexp) and obtain the upper bound of I(M,Mexp) with Kullback–Leibler divergence:

I(M,Mexp) ≤ EMDKL(Pϕ(Mexp|M);Q(Mexp)) (5)

where ϕ involve learnable parameters in Motif Encoder (Eq. 3) and the MLP for importance scores.

Choice of Prior Distribution. Different choices of Q(Mexp) in Eq. 5 may lead to different inductive
bias. We consider two practical prior distributions for Q(Mexp): uniform and empirical. In the
uniform setting [42, 66], Q(Mexp) is the product of Bernoulli distributions with probability p ∈ [0, 1],
that is, each motif shares the same probability p being in the explanation. The KL divergence thus
becomes DKL(Pϕ(Mexp|M);Q(Mexp)) =

∑
Ii∈M pIi log

pIi

p + (1 − pIi) log
1−pIi

1−p . Here p is a
hyperparameter that controls both the randomness level in the prior distribution and the prior belief
about the explanation volume (i.e., the proportion of motifs that are important for the prediction).

However, uniform distribution ignores the effect of the null model, which is a better indication of
randomness in the field of temporal graphs. To tackle this challenge, we further propose to leverage
the null model to define empirical prior distribution for Q(Mexp). A null model is essentially a
randomized version of the empirical network, generated by shuffling or randomizing certain properties
while preserving some structural aspects of the original graph. Following prior works on the null
model [67, 22], we utilize the common null model in this work, where the event order is randomly
shuffled. The null model shares the same degree spectrum and time-shuffled event orders with the
input graph [53] (see more details in Appendix D.1). We categorize the motif instances inM by
their equivalence relation defined in Definition B. Let (U1, · · · , UT ) denote T equivalence classes
of temporal motifs and (q1, · · · , qT ) is the sequence of normalized class probabilities occurring in
Mexp with qi =

∑
Ij∈Ui

pIj/
∑

Ij∈M pIj , where pIj is the importance score of the motif instance
Ij . Correspondingly, we have (m1, · · · ,mT ) denoting the sequence of normalized class probabilities
in the null model. The prior belief about the average probability of a motif being important for
prediction is fixed as p. Thus minimizing Eq. 5 is equivalent to the following equation.

min
ϕ

DKL(Pϕ(Mexp|M);Q(Mexp))⇔ min
ϕ

(1− s) log
1− s

1− p
+ s

T∑
i=1

qi log
sqi
pmi

, (6)

where s is computed by s =
∑

Ij∈M pIj/|M|, which measures the sparsity of the generated
explanation. Combing Eq. 1 and Eq. 6 leads to the following overall optimization objective:

min
ϕ

Ee∈E(t)
∑
c=0,1

−1(Yf [e] = c) log(f(Geexp)[e]) + β((1− s) log
1− s

1− p
+ s

T∑
i=1

qi log
sqi
pmi

). (7)
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Eq. 7 aims at optimizing the explanation accuracy with the least amount of information. It learns
to identify the most interaction-related temporal motifs and push their importance scores close to
1, leading to deterministic existences of certain motifs in the target explanation. Meanwhile, the
interaction-irrelevant components are assigned smaller importance scores to balance the trade-off in
Eq. 7. TempME shares spirits with perturbation-based explanations [68, 69], where "interpretable
components [68]" corresponds to temporal motifs and the "reference" is the null model.

Complexity. A brute-force implementation of the sampling algorithm (Alg. 1) has the time com-
plexity O(Cl). Following Liu et al. [52], we create a 2l-digit to represent a temporal motif with l
events, where each pair of digits is an event between the node represented by the first digit and the
node represented by the second digit. We utilize these 2l-digits to classify the temporal motifs by
their equivalence relations, thus resulting in a complexity of O(C). An acceleration strategy with the
tree-structured sampling and detailed complexity analysis are given in Appendix D.3.

5 Experiments

5.1 Experimental Setups

Dataset. We evaluate the effectiveness of TempME on six real-world temporal graph datasets,
Wikipedia, Reddit, Enron, UCI, Can.Parl., and US Legis [70, 71, 72] that cover a wide range of
domains. Wikipedia and Reddit are bipartite networks with rich interaction attributes. Enron and
UCI are social networks without any interaction attributes. Can.Parl. and US Legis are two political
networks with a single attribute. Detailed dataset statistics are given in Appendix E.1.

Base Model. The proposed TempME can be employed to explain any temporal graph neural network
(TGNN) that augments local message passing. We adopt three state-of-the-art temporal graph neural
networks as the base model: TGAT [3], TGN [4], and GraphMixer [5]. TGN and GraphMixer
achieve high performance with only one layer due to their powerful expressivity or memory module.
TGAT typically contains 2-3 layers to achieve the best performance. Following previous training
setting [23, 1, 6], we randomly sample an equal amount of negative links and consider event prediction
as a binary classification problem. All models are trained in an inductive setting [6, 1].

Baselines. Assuming the base model contains L layers and we aim at explaining the prediction on
the event e, we first extract L-hop neighboring historical events as the computational graph G(e). For
baselines, we first compare with two self-interpretable techniques, Attention (ATTN) and Gradient-
based Explanation (Grad-CAM [37]). For ATTN, we extract the attention weights in TGAT and TGN
and take the average across heads and layers as the importance scores for events. For Grad-CAM, we
calculate the gradient of the loss function w.r.t. event features and take the norms as the importance
scores. Explanation Geexp is generated by ranking events in G(e) and selecting a subset of explanatory
events with the highest importance scores. We further compare with learning-based approaches,
GNNExplainer [13], PGExplainer [14] and TGNNExplainer [23], following the baseline setting in
prior work [23]. The former two are proposed to explain static GNNs while TGNNExplainer is a
current state-of-the-art model specifically designed for temporal GNNs.

Configuration. Standard fixed splits [73, 72] are applied on each datasets. Following previous studies
on network motifs [52, 22, 35, 56], we have empirically found that temporal motifs with at most 3
nodes and 3 events are sufficiently expressive for the explanation task (Fig. 4). We use GINE [74],
a modified version of GIN [62] that incorporates edge features in the aggregation function, as the
MESSAGEPASSING function and mean-pooling as the READOUT function by default.

5.2 Explanation Performance

Evaluation Metrics. To evaluate the explanation performance, we report Fidelity and Sparsity
following TGNNExplainer [23]. Let Geexp and G denote the explanation for event e and the original
temporal graph, respectively. Fidelity measures how valid and faithful the explanations are to the
model’s original prediction. If the original prediction is positive, then an explanation leading to
an increase in the model’s prediction logit is considered to be more faithful and valid and vice
versa. Fidelity is defined as Fid(G,Geexp) = 1(Yf [e] = 1)(f(Geexp)[e] − f(G)[e]) + 1(Yf [e] =

0)(f(G)[e]− f(Geexp)[e]). Sparsity is defined as Sparsity = |Geexp|/|G(e)|, where G(e) denotes the
computational graph of event e. An ideal explanation should be compact and succinct, therefore,
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Table 1: ACC-AUC of TempME and baselines over six datasets and three base models. The AUC
values are computed over 16 sparsity levels between 0 and 0.3 at the interval of 0.02. The best result
is in bold and second best is underlined.

Wikipedia Reddit UCI Enron USLegis Can.Parl.
T

G
AT

Random 70.91±1.03 81.97±0.92 54.51±0.52 48.94±1.28 54.24±1.34 51.66±2.26
ATTN 77.31±0.01 86.80±0.01 27.25±0.01 68.28±0.01 62.24±0.00 79.92±0.01
Grad-CAM 83.11±0.01 90.29±0.01 26.06±0.01 19.93±0.01 78.98±0.01 50.42±0.01
GNNExplainer 84.34±0.16 89.44±0.56 62.38±0.46 77.82±0.88 89.42±0.50 80.59±0.58
PGExplainer 84.26±0.78 92.31±0.92 59.47±1.68 62.37±3.82 91.42±0.94 75.92±1.12
TGNNExplainer 85.74±0.56 95.73±0.36 68.26±2.62 82.02±1.94 90.37±0.84 80.67±1.49
TempME 85.81±0.53 96.69±0.38 76.47±0.80 81.85±0.26 96.10±0.20 84.48±0.97

T
G

N

Random 91.90±1.42 91.42±1.94 87.15±2.23 82.72±2.24 72.31±2.64 76.43±1.65
ATTN 93.28±0.01 93.81±0.01 83.24±0.01 83.57±0.01 75.62±0.01 79.38±0.01
Grad-CAM 93.46±0.01 92.60±0.01 87.51±0.01 81.12±0.01 81.46±0.01 77.19±0.01
GNNExplainer 95.62±0.53 95.50±0.35 94.68±0.42 88.61±0.50 82.91±0.46 83.32±0.64
PGExplainer 94.28±0.84 94.42±0.36 92.39±0.85 88.34±1.24 90.62±0.75 88.46±1.42
TGNNExplainer 93.51±0.98 96.21±0.47 94.24±0.52 90.32±0.82 90.40±0.83 84.70±1.19
TempME 95.80±0.42 98.66±0.80 96.34±0.30 92.64±0.27 94.37±0.88 90.63±0.72

G
ra

ph
M

ix
er

Random 77.31±2.37 85.08±0.72 53.56±1.27 64.07±0.86 85.54±0.93 87.79±0.51
Grad-CAM 76.63±0.01 84.44±0.41 82.64±0.01 72.50±0.01 88.98±0.01 85.80±0.01
GNNExplainer 89.21±0.63 95.10±0.36 61.02±0.37 74.23±0.13 89.67±0.35 92.28±0.10
PGExplainer 85.19±1.24 92.46±0.42 63.76±1.06 75.39±0.43 92.37±0.10 90.63±0.32
TGNNExplainer 87.69±0.86 95.82±0.73 80.47±0.87 81.87±0.45 93.04±0.45 93.78±0.74
TempME 90.15±0.30 95.05±0.19 87.06±0.12 79.69±0.33 95.00±0.16 95.98±0.21

higher fidelity with lower Sparsity denotes a better explanation performance. Besides, we further
adopt the ACC-AUC metric, which is the AUC value of the proportion of generated explanations that
have the same predicted label by the base model over sparsity levels from 0 to 0.3.
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Figure 3: Fidelity-Sparsity Curves on Wikipedia dataset with different base models

Results. Table 1 shows the explanation performance of TempME and other baselines w.r.t. ACC-AUC.
TempME outperforms baselines on different datasets and base models in general. Notably, TempME
achieves state-of-the-art performance in explaining TGN with strong ACC-AUC results (≥ 90%)
over all six datasets. Specifically, the effectiveness of TempME is consistent across datasets with
and without attributes, whereas the performance of baseline models exhibits considerable variation.
For example, ATTN and Grad-CAM work well on datasets with rich attributes, e.g., Wikipedia and
Reddit, while may yield poor performances on unattributed datasets. Therefore, events with large
gradients or attention values are not sufficient to explain the decision-making logic of the base model.

Figure 3 demonstrates the Fidelity-Sparsity curves of TempME and compared baselines on Wikipedia
with different base models. From Figure 3, we observe that TempME surpasses the baselines in terms
of explanation fidelity, especially with a low sparsity level. In addition, it reveals that the optimal
sparsity level varies among different base models. For TGAT, increasing sparsity initially diminishes
and later enhances the general fidelity. Conversely, for TGN and GraphMixer, increasing sparsity
consistently improves fidelity. These findings indicate that TGAT gives priority to a narrow subset
(e.g., 1%) of historical events, while TGN and GraphMixer rely on a wider range of historical events.

Cohesiveness. To evaluate the cohesive level of the explanations, we propose the following metric:

Cohesiveness =
1

|Geexp|2 − |Geexp|
∑

ei∈Ge
exp

∑
ej∈Ge

exp;ei ̸=ej

cos(
|ti − tj |
∆T

)1(ei ∼ ej), (8)
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where ∆T means the time duration in the computational graph G(e), 1(ei ∼ ej) in-
dicates whether ei is spatially adjacent to ej . Meanwhile, temporally proximate event
pairs are assigned with larger weights of cos(|ti − tj |/∆T ). A higher level of cohesive-
ness indicates a more cohesive explanation. From Table 2, we observe that ATTN and
Grad-CAM excel in generating cohesive explanations compared to learning-based explainers,
e.g., GNNExplainer, TGNNExplainer. However, TempME still surpasses all baselines and
achieves the highest cohesiveness levels, primarily due to its ability to extract and utilize self-
connected motifs, allowing it to generate explanations that are both coherent and cohesive.

Table 2: Cohesiveness evaluation on
Reddit and UCI with TGAT.

Reddit UCI
ATTN 0.0502 0.0708
Grad-CAM 0.0422 0.0722
GNNExplainer 0.0270 0.0337
PGExplainer 0.0233 0.0332
TGNNExplainer 0.0397 0.0538
TempME 0.0574 0.0749

Efficiency Evaluation. We empirically investigate the effi-
ciency of TempME in terms of the inference time for gener-
ating one explanation and report the results for Wikipedia
and Reddit on TGAT in Table 3, where the averages are
calculated across all test events. GNNExplainer and TGN-
NExplainer optimize explanations individually for each
instance, making them less efficient. Notably, TGNNEx-
plainer is particularly time-consuming due to its reliance
on the MCTS algorithm. In contrast, TempME trains a
generative model using historical events, which allows for
generalization to future unseen events. As a result, TempME demonstrates high efficiency and fast
inference.

Table 3: Inference time (seconds) of
one explanation for TGAT

Wikipedia Reddit

Random 0.02±0.06 0.03±0.09
ATTN 0.02±0.00 0.04±0.00
Grad-CAM 0.03±0.00 0.04±0.00
GNNExplainer 8.24±0.26 10.44±0.67
PGExplainer 0.08±0.01 0.08±0.01
TGNNExplainer 26.87±3.71 83.70±16.24
TempME 0.13±0.02 0.15±0.02

Table 4: Link prediction results (Average Precision) of
base models with Motif Embedding (ME)

UCI Enron USLegis Can.Parl.

TGAT 76.28 65.68 72.35 65.18
TGAT+ME 83.65(↑7.37) 68.37 (↑2.69) 95.31 (↑22.96) 76.35(↑11.17)

TGN 75.82 76.40 77.28 64.23
TGN+ME 77.46(↑1.64) 75.62(↓0.78) 83.90(↑6.62) 79.46(↑15.23)

GraphMixer 89.13 69.42 66.71 76.98
GraphMixer+ME 90.11(↑0.98) 70.13(↑0.71) 81.42(↑14.71) 79.33(↑2.35)

Motif-enhanced Link Prediction. The extracted motifs can not only be used to generate explanations
but also boost the performance of TGNNs. Let mI denote the motif embedding generated by the
Temporal Motif Encoder (Eq. 3) and M is the temporal motif set around the node of interest.
We aggregate all these motif embeddings using

∑
I∈M mI/|M| and concatenate it with the node

representations before the final MLP layer in the base model. The performance of base models on
link prediction with and without Motif Embeddings (ME) is shown in Table 4. Motif Embedding
provides augmenting information for link prediction and generally improves the performance of
base models. Notably, TGAT achieves a substantial boost, with an Average Precision of 95.31% on
USLegis, surpassing the performance of state-of-the-art models on USLegis [72, 73]. More results
are given in Appendix E.3.

Ablation Studies. We analyze the hyperparameter sensitivity and the effect of prior distributions
used in TempME, including the number of temporal motifs C, the number of events in the motifs l,
and the prior belief about the explanation volume p. The results are illustrated in Figure 4.
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Figure 4: (a) Hyperparameter sensitivity of number of temporal
motifs C and motif length l. (b) Comparison between uniform and
empirical prior distribution in terms of ACC-AUC over sparsity
levels from 0 to 0.3.

Firstly, when using smaller mo-
tifs (e.g., l = 2), TempME
achieves comparable explanation
accuracy when a sufficient num-
ber of motifs are sampled. How-
ever, the accuracy plateaus with
fewer temporal motifs when l =
3 or l = 4. Unfortunately,
there are only three equivalence
classes for temporal motifs with
only two events, limiting the di-
versity of perspectives in expla-
nations. Following previous anal-
ysis on temporal motifs [52, 22,
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24], we suggest considering temporal motifs with up to 3 events in the explanation task for the sake of
algorithmic efficiency. Secondly, TempME achieves the highest ACC-AUC when the prior belief of
the explanation volume is in the range of [0.3, 0.5]. Notably, TempME performs better with empirical
prior distribution when p is relatively small, resulting in sparser and more compact explanations. This
improvement can be attributed to the incorporation of the null model, which highlights temporal
motifs that differ significantly in frequency from the null model. Figure 4 (b) verifies the rationality
and effectiveness of the empirical prior distribution in TempME. Additional insight into the role of the
null model in explanation generation can be found in the explanation visualizations in Appendix E.5.

Table 5: Ablation studies on the main components of TempME
in terms of the explanation ACC-AUC on Wikipedia.

TGAT TGN GraphMixer
TempME 85.81±0.53 95.80±0.42 90.15±0.30
Temporal Motif Encoder

w/ GCN 83.26±0.70 94.62±0.34 88.62±0.95
w/ GAT 84.37±0.63 95.46±0.73 88.59±0.84
w/ Adaptive Pooling 85.24±0.46 95.73±0.27 90.15±0.27
w/o Event Anonymization 81.47±1.14 93.77±0.52 88.32±0.93
w/o Time Encoding 79.42±0.82 92.64±0.70 87.90±0.86

Loss function
w/ uniform 85.60±0.75 94.60±0.38 87.46±0.71

It is worth noting that when p is
close to 1, uniform prior distri-
bution leads to deterministic ex-
istences of all temporal motifs
while empirical prior distribution
pushes the generated explanations
towards the null model, which
forms the reason for the ACC-
AUC difference of empirical and
uniform as p approaches 1.

We further conduct ablation stud-
ies on the main components of
TempME. We report the explanation ACC-AUC on Wikipedia in Table 5. Specifically, we first
replace the GINE convolution with GCN and GAT and replace the mean-pooling with adaptive
pooling in the Temporal Motif Encoder. Then we iteratively remove event anonymization and time
encoding in the creation of event features before they are fed into the Temporal Motif Encoder
(Eq. 3). Results in Table 5 demonstrate that all the above variants lead to performance degradation.
Moreover, the Time Encoding results in a more severe performance drop across three base models.
We further evaluate the effectiveness of empirical prior distribution by comparing it with uniform
prior distribution. In both prior distributions, the prior belief on the explanation size p is set to 0.3.
We report the best results in Table 5. We can observe that the empirical prior distribution gains a
performance boost across three base models, demonstrating the importance of the null model in
identifying the most significant motifs.

6 Conclusion and Broader Impacts

In this work, we present TempME, a novel explanation framework for temporal graph neural networks.
Utilizing the power tool of temporal motifs and the information bottleneck principle, TempME is
capable of identifying the historical events that are the most contributing to the predictions made by
TGNNs. The success of TempME bridges the gap in explainability research on temporal GNNs and
points out worth-exploring directions for future research. For instance, TempME can be deployed to
analyze the predictive behavior of different models, screen effective models that can capture important
patterns, and online services to improve the reliability of temporal predictions.

By enabling the generation of explainable predictions and insights, temporal GNNs can enhance
decision-making processes in critical domains such as healthcare, finance, and social networks.
Improved interpretability can foster trust and accountability, making temporal GNNs more accessible
to end-users and policymakers. However, it is crucial to ensure that the explanations provided by
the models are fair, unbiased, and transparent. Moreover, ethical considerations, such as privacy
preservation, should be addressed to protect individuals’ sensitive information during the analysis of
temporal graphs.
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A Notation Table

The main notations used throughout this paper are summarized in Table 6.

Table 6: Summary of the notations

Notation Description
G(t) Continuous-time dynamic graphs
V(t) Set of nodes that occur before timestamp t
E(t) Set of events (interactions) that occur before timestamp t

ek = (uk, vk, tk, ak) Interaction event ek between node uk and vk at time tk with attribute ak
f Temporal Graph Neural Network to be explained (base model)

Yf [e] Binary prediction of event e made by the base model f
G(e) Computational graph of event e
Geexp Explanation graph for the prediction of event e
I(·, ·) Mutual information function
f(·)[e] Probability output of the model f on the event e
K Explanation budget on the size
I A temporal motif instance
n Maximum number of nodes in temporal motif instances
l Number of events in each temporal motif instance

h(e) l-dimensional structural feature of the event e
Mu Set of temporal motif instances starting from the node u
C Number of temporal motif instances sampled for each node of interest
Xp Associated feature of node p
apq Associated feature of event epq that happens between node p and node q
T (·) Time encoder
mI Motif-level embedding of I

pI ∈ [0, 1] Importance score of I
αI ∼ Bernoulli(pI) Mask for I sampled from Bernoulli(pI)

M Set of the extracted temporal motifs
Mexp Set of explanatory temporal motifs

Pϕ(Mexp|M) Posterior distribution ofMexp givenM with learnable parameters ϕ
Q(Mexp) Prior distribution ofMexp

p Prior belief about the explanation volume

B Temporal Motif

Given an explanation query of the future link prediction between node i and node j at time t0, we
consider the temporal motifs around node i and node j to explain which motifs contribute to the
model’s prediction. We first extract two sets of temporal motifs starting from node i and from node
j at time t0, respectively. Since we consider the effect of historical events, we constrain events to
reverse over time direction in each temporal motif.

Definition. Given a temporal graph and node u0 at time t0, a sequence of l events, denotes as I =
{(u1, v1, t1), (u2, v2, t2), · · · , (ul, vl, tl)} is a n-node, l-length, δ-duration Retrospective Temporal
Motif of node u0 if the events are reversely time ordered within a δ duration, i.e., t0 > t1 > t2 · · · > tl
and t0 − tl ≤ δ, such that u1 = u0 and the induced subgraph is connected and contains n nodes.

There can be a collection of event sequences that satisfy the above definition. Intuitively, two motif
instances are equivalent if the order of the events is the same, despite the absolute time difference.

Definition. Two temporal motif instances I1 and I2 are equivalent if they have the same topology
and their events occur in the same order, denoted as I1 ≃ I2.

We use {0, 1, · · · , n− 1} to denote the nodes in the motif and use l digit pairs to construct a 2l-digit
to represent each temporal motif with l events. Each pair of digits denotes an event between the node
represented by the first digit and the other node represented by the second digit. The first digit pair
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is always 01, denoting that the first event occurred between node 0 and node 1. The sequence of
digit pairs and the digit number of each node follow the chronological order in each temporal motif.
Consider the undirected setting, the examples of temporal motifs with at most 3 nodes and 3 events
and their associated digital representations are shown in Figure 5 (a).
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Figure 5: (a) Visualization of temporal motifs with up to 3 nodes and 3 events and the associated
2l-digits. (b) The proportion of sampled temporal motif equivalence classes in Wikipedia, Reddit,
UCI and their corresponding null models (only a subset of the most frequent motifs are displayed)

C Theoretical Proof

The information bottleneck is a technique to find the best tradeoff between accuracy and compression.
Given a temporal graph G and a prediction Yf [e] over the future event e made by model f . The goal
of the explanation is to extract a compressed but explanatory subgraph Geexp from the original graph
G, such that Geexp plays a pivotal role in leading to the target prediction Yf [e]. It can be formulated as
an information bottleneck problem as follows.

min−I(Geexp, Yf [e]) + βI(Geexp,G(e)), s.t. |Geexp| ≤ K, (9)

where G(e) denotes the computational graph of event e, and K is a constraint on the explanation size
(i.e., number of historical events selected into Geexp).

C.1 Accuracy Term: Cross Entropy

The first term in Eq. 9 can be approximated by the cross entropy between the model’s prediction
given Geexp and the target prediction Yf [e].

min−I(Geexp, Yf [e]) = minH(Yf [e] | Geexp)−H(Yf [e])

⇔ minH(Yf [e] | Geexp) = min−
∑
c=0,1

−1(Yf [e] = c) log(f(Geexp)[e]) (10)

where H(·) is the entropy function and H(Yf [e]) is constant during the explanation stage.

C.2 Variational Bounds for Information Bottleneck

Let Mu and Mv denote the sets of sampled temporal motif instances surrounding the node u and
node v. We propose to formulate the second term in Eq. 9 as the mutual information betweenM
andMexp, whereM = Mu ∪Mv denotes the set of all extracted motifs andMexp is the set of
explanatory temporal motifs, since they are the essential building blocks of G(e) and Gexp. We
introduce Q(Mexp) as a variational approximation for the marginal distribution P(Mexp) and derive
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the variational bounds for the second term in Eq. 9.

I(M;Mexp) = EP(M,Mexp)

[
log

P(Mexp | M)

P(Mexp)

]
= EP(M,Mexp)

[
log

P(Mexp | M)Q(Mexp)

Q(Mexp)P(Mexp)

]
= EP(M,Mexp)

[
log

P(Mexp | M)

Q(Mexp)

]
−DKL(P(Mexp);Q(Mexp))

≤ EP(M)[DKL(P(Mexp | M);Q(Mexp))].

(11)

Let pIj denote the importance score of the motif instance Ij ∈M, which measures the probability of
motif instance Ij being sampled as explanatory temporal motifs inMexp. On average, the proportion

of temporal motif instances being selected intoMexp is s =
∑

Ij∈M pIj

|M| . Let {U1, · · · , UT } denote

T equivalence classes that occur inM. Thus, qi =
∑

Ij∈Ui
pIj∑

Ij∈M pIj
denotes the proportion of the temporal

motifs that belong to equivalence class Ui inMexp. The prior belief about the average probability of
a motif being explanatory is p. Assume that in the null model, the proportion of the temporal motifs
belonging to Uj is mj . Then we have

I(M;Mexp) ≤ EP(M)[DKL(P(Mexp | M);Q(Mexp))]

= EP(M)

∑
Uj ,j=1,···T

P(Uj | M) log(
P(Uj | M)

Q(Uj)
) + (1− s) log(

1− s

1− p
)

= EP(M)(1− s) log
1− s

1− p
+ s

T∑
i=1

qi log
sqi
pmi

(12)

Combining Eq. 10 and Eq. 12, we obtain the following optimization objective:

min
ϕ

Ee∈E(t)
∑
c=0,1

−1(Yf [e] = c) log(f(Geexp)[e]) + β((1− s) log
1− s

1− p
+ s

T∑
i=1

qi log
sqi
pmi

), (13)

where ϕ denotes learnable parameters in TempME, β is a regularization coefficient.

D Proposed Approach

D.1 Null Model

The analysis of temporal motif distribution is typically presented in terms of a null model [53, 22]. A
null model is essentially a randomized version of the empirical network, generated by shuffling or
randomizing certain properties while preserving some structural aspects of the original graph. The null
model serves as a baseline against which the observed motif distribution can be compared, allowing
us to evaluate the presence of meaningful patterns and deviations from randomness. By comparing
the motif distribution of the empirical network with that of the null model, we can distinguish
between motifs that arise due to non-random structural or temporal features of the network from
those that are simply a result of random processes. Following prior works on the null model [67, 22],
we utilize the most obvious null model in this work, where the event order is randomly shuffled.
Formally, a temporal graph G = {V(t), E(t)} can be defined as a sequence of interaction events,
i.e., G = {(ui, vi, ti)}Ni=1, where ui and vi are two nodes interacting at time ti. We generate a
permutation σ ∈ SN , where N refers to the number of interaction events within the temporal graph G.
Random-ordered graph Gσ is then constructed by Gσ = {ui, vi, tσ(i)}Ni=1. In this way, the topological
structure and degree spectrum of the temporal network are kept, while the temporal correlations are
lost.

D.2 Equivalence Class

Two temporal motifs with the same digital representations are equivalent according to Definition B.
With the 2l-digit representations, we can easily classify all temporal motif instances according to
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their equivalence class relations. For example, with up to 3 nodes and 3 events, there are twelve
equivalence classes as shown in Figure 5 (a). In essence, the digital representation provides an
efficient way to grow a motif. For instance, in Figure 5 (a), the last three columns of each row can be
considered as the results of generating a new interaction event based on the motif in the first column.
When it comes to motifs with 4 events, we attach new digit pairs to motifs with 3 events. For example,
the next digit pair is one in {01, 02, 03, 12, 13, 23} for the temporal motif assigned with 010201.

Marginal distributions of temporal motifs reveal the governing patterns and provide insights into
a better understanding of the dynamics in temporal graphs. To obtain comprehensive knowledge
about the distribution of these temporal motifs, we sample a fixed number of temporal motifs
around each node in a temporal graph and the corresponding null model. We compute the average
probability of each equivalence class across all nodes and visualize the results in Figure 5 (b). We
can observe that the difference between the empirical distribution of the temporal motifs and that of
its randomized version varies significantly across different datasets. For example, the proportion of
motif 010101, which corresponds to repeated interactions between two nodes, deviates significantly
from randomness in Wikipedia, indicating its importance to the underlying dynamics. Moreover,
results on the null model reveal that the motif 0112 is mostly a natural result of random processes.

D.3 Efficient Sampling and Complexity Anlaysis

Algorithm 2: Temporal Motif Sampling
(E , n, l, u0, t0, C)

1 Node set: Sc ← {u0}, for 1 ≤ c ≤ C
2 Event sequence: Ic ← (), for 1 ≤ c ≤ C

for c = 1 to C do
for j = 1 to l do

3 Sample one event ej = (uj , vj , tj)
from E(Sc, tj−1)

if |Sc| < n then
4 Sc = Sc ∪ {uj , vj}

Ic = Ic ∥ ej

return {Ic | 1 ≤ c ≤ C}

The temporal motif sampling algorithm is given in
Alg. 2. The brute-force implementation of Alg. 2
results in the time complexity of O(Cl), which
can be further decreased with tree-structured sam-
pling. We discuss two cases. Firstly, when
n ≥ l + 1, there is actually no constraint on the
number of nodes within each temporal motif. We
create a sampling configuration [k1, k2, · · · , kl]
satisfying

∑l
i=1 ki = C. It indicates that we sam-

ple k1 events starting from u0 at the first step and
then sample k2 neighboring events for each of the
k1 motifs sampled in the previous step. Repeat
the step for l times and we obtain

∑l
i=1 ki = C

temporal motifs in total. Secondly, if n ≤ l
(i.e., Alg. 1), we create a sampling configuration
[k1, k2, · · · , kn−1] satisfying

∑n−1
i=1 ki = C. Similarly, we sample ki neighboring events at the i-th

step. We repeat the process for n− 1 times and obtain C temporal motifs with n− 1 events in total.
For each of the C temporal motifs, we sample a neighboring event for l − n+ 1 times and ensure
the number of nodes in each temporal motif is no more than n, which completes the n− 1-length
temporal motif to involve l events in total. The upper bound time complexity of the tree-structured
sampling is O(C(l− n+2)). Specifically, when n ≥ l+1, the time complexity is reduced to O(C).
We use the 2l-digit to represent the temporal motifs. Two temporal motifs that have the same 2l-digit
are equivalent. The equivalence classification results in the time complexity of O(C). For event
anonymization, we first identify unique node pairs (ui, vi) that occur in C temporal motifs and count
their occurrence times at each position j, where j = 1, · · · , l. Then we utilize the position-aware
counts to create the structural features for each event in the temporal motifs. This process results in
the time complexity of O(Cl).

On the other hand, the previous TGNNExplainer requires re-searching individually for each given
instance. To infer an explanation for a given instance, the time complexity of TGNNExplainer with
navigator acceleration is O(NDC), where N is the number of rollouts, D is the expansion depth of
each rollout and C is a constant including inference time of navigator and other operations.

D.4 Model Details

By default, we use GINE [74] as the MESSAGEPASSING function and Mean-pooling as the READOUT
function. GINE convolution adapts GIN convolution to involve edge features as follows,

x′
i = hθ1((1 + ϵ) · xi +

∑
j∈N (i)

ReLU(xj + hθ2(Eji))), (14)
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where hθ1 and hθ2 are neural networks. xi and Eji denote the features of node i and edge j ∼ i,
respectively. Eji = (aji ∥ T (t−tji) ∥ h(eji)) contains the associated event attributes, time encoding
and structural features. N (i) refers to the neighboring edges of node i. Mean-pooling takes the
average of the features of all nodes within the graph and outputs a motif-level embedding.

E Experiments

E.1 Dataset

We select six real-world temporal graph datasets to validate the effectiveness of TempME. These
six datasets cover a wide range of real-world applications and domains, including social networks,
political networks, communication networks, etc.The brief introduction of the six datasets is listed as
follows. Data statistics are given in Table 7.

• Wikipedia [75] includes edits made to Wikipedia pages within a one-month period. The
nodes represent editors and wiki pages, while the edges represent timestamped posting
requests. The edge features consist of LIWC-feature vectors [76] derived from the edit texts,
each with a length of 172.

• Reddit dataset [75] captures activity within subreddits over a span of one month. In this
dataset, the nodes represent users or posts, and the edges correspond to timestamped posting
requests. The edge features consist of LIWC-feature vectors [76] extracted from the edit
texts, with each vector having a length of 172.

• Enron [77] is an email correspondence network where the interaction events are emails
exchanged among employees of the ENRON energy company over a three-year period. This
dataset has no attributes.

• UCI [78] is an unattributed social network among students of UCI. The datasets record
online posts on the University forum with timestamps with the temporal granularity of
seconds.

• Can.Parl. [79] is a dynamic political network that tracks the interactions between Canadian
Members of Parliament (MPs) spanning the years 2006 to 2019. Each node in the network
represents an MP who represents an electoral district, while the edges are formed when two
MPs both vote "yes" on a bill. The weight assigned to each edge reflects the number of
times an MP has voted "yes" for another MP within a given year.

• US Legis [79] focuses on the social interactions among legislators in the US Senate through
a co-sponsorship graph. The edges in the graph correspond to the frequency with which
two congresspersons have jointly sponsored a bill during a specific congressional session.
The weight assigned to each edge indicates the number of times such co-sponsorship has
occurred. The dataset records the interactions within 12 congreessions.

Table 7: The dataset statistics. Average interaction intensity is defined as λ = 2|E|/(|V |T ), where E
and V denote the set of interactions and nodes, T is the dataset duration in the unit of seconds.

Datasets Domains #Nodes #Links #Node&Link Features Duration Interaction intensity

Wikipedia Social 9,227 157,474 0&172 1 month 1.27× 10−5

Reddit Social 10,984 672,447 0&172 1 month 4.57× 10−5

Enron Communication 184 125,235 0&0 1 month 1.20× 10−5

UCI Social 1,899 59,835 0&0 196 days 3.76× 10−6

Can.Parl. Politics 734 74,478 0&1 14 years 4.95× 10−7

US Legis Politics 225 60,396 0&1 12 congresses -

None of the used temporal graphs contains node attributes. Wikipedia and Reddit have rich edge
attributes. Can.Parl. and US Legis contain a single edge attribute, while Enron and UCI contain no
edge attribute. All datasets are publicly available at https://github.com/fpour/DGB.

E.2 Experimental Setup

Base Model. There are two main categories of Temporal GNNs [7]. One type utilizes local message
passing to update the time-aware node features (MP-TGNs). The other type aggregates temporal
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walks starting from the nodes of interest and leverages RNNs to learn the sequential information
(WA-TGNs). Since we aim at identifying the most explanatory historical events and their joint effects
in the form of a temporal motif, we focus on MP-TGNs in this work.

We adopt three popular state-of-the-art temporal GNNs that augment local message passing, TGAT [3],
TGN [4] and GraphMixer [5]. TGAT2 aggregates temporal-topological neighborhood features
and time-feature interactions with a modified self-attention mechanism. TGN3 incorporates a
memory module to better store long-term dependencies. Both TGAT and TGN leverage a time
encoding function to effectively capture the time-evolving information contained in the interactions.
GraphMixer4 is one of the newest frameworks that utilize an MLP-Mixer [80]. On the contrary,
GraphMixer uses a fixed time encoding function, showing great success and potential.

Configuration. We follow the standard dataset split for temporal graphs [1, 6]. We sort and divide
all interaction events by time into three separate sets, corresponding to the training set, validation
set and testing set. The split points for the validation set and testing set are 0.75T and 0.8T , where
T is the duration of the entire dataset. We keep the inductive setting for all three base models. We
mask 10% nodes and the interactions associated with the masked nodes during the training stage. For
evaluation, we remove all interactions not associated with the masked nodes, so as to evaluate the
inductiveness of temporal GNNs.

Results. Hyperparameters are sufficiently fine-tuned for each base model. The number of attention
heads is tuned in {1, 2, 3} and the number of layers in {1, 2, 3} for TGAT and TGN. The number of
MLPMixer layers is 2 for GraphMixer. The dimension of the time encoding is 100, and the output
dimension is 172. The maximum number of epochs is 50. An early stopping strategy is used to
mitigate overfitting. The link prediction results (Average Precision) in the inductive setting are shown
in Table 8.

Table 8: Link prediction results (Average Precision) of TGAT, TGN and GraphMixer

Wikipedia Reddit UCI Enron USLegis Can.Parl.
TGAT 93.53 96.87 76.28 65.68 72.35 65.18
TGN 97.68 97.52 75.82 76.40 77.28 64.23
GraphMixer 96.33 95.38 89.13 69.42 66.71 76.98

There exist some differences between Table 8 and the results in the original paper of GraphMixer.
We ascribe the difference to our inductive setting. In the original paper of GraphMixer, they conduct
experiments under the transductive learning setting. To keep consistent, we follow [73] to remove the
one-hot encoding of the node identities in GraphMixer to ensure the inductivenss, which potentially
results in performance degradation in some cases.

Baselines. We consider the following baselines:

• ATTN leverages the internal attention mechanism to characterize the importance of each
interaction event. The intuition is that events that are assigned with larger attention values
are more influential to the model’s prediction. We adopt ATTN to explain the predictions
made by TGAT and TGN, since they both involve attention layers as their building blocks.

• Grad-CAM was originally proposed in computer vision to identify the most significant
patches in an image. [37] proposes to generalize Grad-CAM to the discrete graph domain.
We compute the gradient of the model’s output w.r.t. event features and take the norm as the
importance score for the corresponding event.

• GNNExplainer [13] is a learning-based method that optimizes continuous masks for
neighboring events upon which a base model makes the prediction. We follow the same
setting as proposed in the original paper.

• PGExplainer [14] trains a deep neural network that generates continuous masks for the
input graph. Event feature is defined as Ei = (ai∥T (t − ti)∥h(ei)), the same as the one
used in our Temporal Motif Encoder (Eq. 3). PGExplainer takes as input the event features
and outputs a continuous mask for each neighboring event.

2https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs
3https://github.com/yule-BUAA/DyGLib
4https://github.com/yule-BUAA/DyGLib
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• TGNNExplainer [23] is a searching-based approach that leverages the Monte Carlo Tree
Search algorithm to explore effective combinations of explanatory events. We follow the
same training procedure as proposed in the original paper.

Implementation Details. The implementation and training are based on the NVIDIA Tesla V100
32GB GPU with 5,120 CUDA cores on an HPC cluster. The learning rate is initially set as 1e− 3
and batch size is set as 64. The maximum training epochs is 100. We summarize the search ranges of
other main hyperparameters used in TempME in Table 9.

Table 9: Search ranges of hyperparameters used in TempME

# temporal motifs per node C Beta β Prior Belief p
Wikipedia {20, 30, 40, 50, 60} {0.2, 0.4, 0.6, 0.8, 1} {0.1, 0.2, 0.3, 0.4, 0.5}

Reddit {20, 40, 60, 80, 100} {0.2, 0.4, 0.6, 0.8, 1} {0.1, 0.2, 0.3, 0.4, 0.5}
UCI {20, 30, 40, 50, 60} {0.2, 0.4, 0.6, 0.8, 1} {0.2, 0.3, 0.4, 0.5, 0.6, 0.8}

Enron {20, 30, 40, 50, 60} {0.2, 0.4, 0.6, 0.8, 1} {0.1, 0.2, 0.3, 0.4, 0.5}
USLegis {20, 30, 40, 50, 60} {0.2, 0.4, 0.6, 0.8, 1} {0.2, 0.3, 0.4, 0.5, 0.6, 0.8}
Can.Parl. {20, 30, 40, 50, 60} {0.2, 0.4, 0.6, 0.8, 1} {0.2, 0.3, 0.4, 0.5, 0.6, 0.8}

E.3 Motif-enhanced Link Prediction

Table 10 shows the complete results on link prediction enhancement with motif embedding. The
performance boosts on Wikipedia and Reddit are relatively limited, due to the exceedingly high
performance achieved by base models. However, motif embedding demonstrates the ability to greatly
improve the link prediction performance on more challenging datasets, e.g., USLegis, Can.Parl. We

Table 10: Link prediction results (Average Precision) of base models with Motif Embedding (ME)

Wikipedia Reddit UCI Enron USLegis Can.Parl.
TGAT 93.53 96.87 76.28 65.68 72.35 65.18
TGAT+ME 95.12(↑1.59) 97.22(↑0.35) 83.65(↑7.37) 68.37 (↑2.69) 95.31 (↑22.96) 76.35(↑11.17)

TGN 97.68 97.52 75.82 76.40 77.28 64.23
TGN+ME 97.68(↑0.00) 98.35(↑0.83) 77.46(↑1.64) 75.62(↓0.78) 83.90(↑6.62) 79.46(↑15.23)

GraphMixer 96.33 95.38 89.13 69.42 66.71 76.98
GraphMixer+ME 96.51(↑0.18) 97.81(↑2.43) 90.11(↑0.98) 70.13(↑0.71) 81.42(↑14.71) 79.33(↑2.35)

can also notice that the performance improvement on Enron is not as significant as other datasets. The
reason is that there are multiple identical interactions in the Enron dataset. On average, each distinct
interaction is accompanied by 3.284 exactly identical interactions within this dataset, far more than
other datasets. While this phenomenon might be deemed reasonable within the context of email
networks (e.g., the Enron dataset), wherein multiple emails are dispatched to the same recipient at
identical timestamps, it is not a common phenomenon in other datasets and many real-world scenarios.
For consistency with existing literature [22, 24] we restrict the timestamp of the next sampled event
strictly earlier than the previous event, which is also a necessary condition of underlying causality
between interactions. Consequently, many identical interactions in the Enron dataset are not sampled
within a temporal motif, thereby potentially degrading the performance improvement of TempME
over this specific dataset. As a result, one limitation of TempME is analyzing temporal graphs
characterized by high interaction density between the same node pairs at the same timestamp.

E.4 Runtime Evaluation

To empirically verify the time complexity and efficiency of the proposed TempME, we test sampling
and encoding runtime w.r.t. number of temporal motifs and length of temporal motifs, as shown in
Figure 6. The base model is set as TGAT and the dataset is Reddit, which is a massive and large-scale
dataset. Encoding process includes the temporal motif encoding and the following MLP to generate
the importance scores. The averages and standard deviations are calculated across all target events.
The maximum number of nodes within each temporal motif is set to the length of the temporal motifs,
i.e., n = l. We can make the following observations from Figure 6. (1) The runtime of sampling is
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Figure 6: (a) Sampling and encoding runtime w.r.t. the number of temporal motifs around each node
(b) Sampling and encoding runtime w.r.t. length of temporal motifs

much longer than that of the encoding process under the same number of motifs and motif length,
especially with a larger number of temporal motifs. (2) The runtime of sampling and encoding is
approximately in proportion to the length of temporal motifs. The runtime comparison between
TempME and baselines is shown in Table 3.

E.5 Insights from Explanations
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Figure 7: Occurrence percentages of temporal motifs in empirical graph and its null model (only a
subset of the most frequent motifs are displayed). The lines represent the average importance score
across all instances of motifs within the respective motif class.

The use of an information bottleneck framework in a simplistic manner can introduce a bias that
favors specific motifs, potentially leading to the oversight of less frequent yet important temporal
patterns. Introducing the null model, on the other hand, has a primary impact of shifting the focus
from absolute proportions to relative proportions compared to the null model itself. This shift helps
alleviate attention toward motifs that offer limited information when evaluated solely based on their
frequency. Figure 7 illustrates the visualization of importance scores for temporal motifs and their
corresponding occurrence percentages. In both prior distributions, the prior belief p is set to 0.3.
The dashed gray line represents an importance score of 0.3. When employing the uniform prior
distribution, the model tends to assign all interaction-irrelevant motifs the prior belief p, regardless of
their varying occurrence percentages. Conversely, the empirical prior distribution takes the null model
into consideration and highlights motifs that convey more information based on their occurrence
percentages. Consequently, the empirical prior distribution leads to a higher deviation from the gray
horizontal line, while the average importance score remains close to the prior belief p. By considering
the null model, a more comprehensive analysis becomes possible, encompassing the significance
and uniqueness of the observed motifs beyond their raw occurrence probability. For instance, in
the Wikipedia dataset, the empirical prior distribution captures the second and fourth motifs with
high importance scores, as displayed in Figure 7(a). Both motifs exhibit a significant difference in
their occurrence probability compared to that in the null model. Conversely, in the UCI dataset, the
uniform prior distribution yields a relatively uniform distribution of importance scores across motifs,
thereby providing limited information regarding the distinct contributions of these temporal motifs.

23



(a) Original temporal graph (b) Explanation (TGNNExplainer)

(c) Explanation (Grad-CAM) (d) Explanation (TempME)

Figure 8: (a) Original temporal graph. (b) Explanation example generated by TGNNExplainer. (c)
Explanation example generated by Grad-CAM. (d) Explanation example generated by TempME. The
link between the two red nodes is to be explained. The explanations (i.e., explanatory edges) are
highlighted in colors.

Figure 8 shows the explanation examples generated by TGNNExplainer, Grad-CAM and TempME on
Wikipedia. The base model is TGAT with two layers. Red nodes indicate two ends of the event to be
explained. All graphs are constrained within the 2-hop neighbor of the two red nodes. In Figure 8(d),
different colors represent the different types of temporal motifs the corresponding event contributes
to. Compared with TGNNExplainer, TempME works better in generating a cohesive explanation.
Moreover, the explanation generated by TempME provides additional motif-level insights, thus being
more human-intelligible.

F Discussion

Limitation. While employing temporal motifs to generate explanations shows promise, several
limitations need to be acknowledged. First, the identification of influential motifs relies on the
assumption that motifs alone capture the essential temporal dynamics of the graph. However, in
complex real-world scenarios, additional factors such as external events, context, and user preferences
may also contribute significantly to the explanations. Second, the scalability of motif discovery
algorithms can pose challenges when dealing with large-scale temporal graphs. Finally, the selection
of a null model may also introduce inductive bias to the desired explanations. Further analysis of the
null model setting will be one of the future directions.

Broader Impacts. By enabling the generation of explainable predictions and insights, temporal
GNNs can enhance decision-making processes in critical domains such as healthcare, finance, and
social networks. Improved interpretability can foster trust and accountability, making temporal GNNs
more accessible to end-users and policymakers. However, it is crucial to ensure that the explanations
provided by the models are fair, unbiased, and transparent. Moreover, ethical considerations, such
as privacy preservation, should be addressed to protect individuals’ sensitive information during the
analysis of temporal graphs.

Future Works. In the future, several promising directions can advance the use of temporal motifs
proposed in this work. First, incorporating external context and domain-specific knowledge can
enhance the explanatory power of motif-based explanations. This can involve integrating external data
sources, leveraging domain expertise, or considering multi-modal information. Moreover, developing
scalable motif discovery algorithms capable of handling massive temporal graphs will facilitate the
applicability of motif-based explanations in real-world scenarios.
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