
ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Parameters vs FLOPs: Scaling Laws for Op-
timal Sparsity for Mixture-of-Experts Lan-
guage Models

Samira Abnar∗
Apple

Harshay Shah∗†

MIT
Dan Busbridge
Apple

Alaaeldin Mohamed Elnouby Ali
Apple

Josh Susskind
Apple

Vimal Thilak∗

Apple

Abstract

Scaling the capacity of language models has consistently proven to be a re-
liable approach for improving performance and unlocking new capabilities.
Capacity can be primarily defined by two dimensions: the number of model
parameters and the compute per example. While scaling typically involves
increasing both, the precise interplay between these factors and their com-
bined contribution to overall capacity remains not fully understood. We
explore this relationship in the context of sparse Mixture-of-Expert models
(MoEs), which allow scaling the number of parameters without proportion-
ally increasing the FLOPs per example. We investigate how varying the
sparsity level, i.e., the fraction of inactive parameters, impacts model’s per-
formance during pretraining and downstream evaluation. We find that un-
der different constraints (e.g., parameter size and total training compute),
there is an optimal level of sparsity that improves both training efficiency
and model performance. These results provide a better understanding of
the impact of sparsity in scaling laws for MoEs and complement existing
works in this area, offering insights for designing more efficient architec-
tures.

1 Introduction

Empirical scaling laws for language model pretraining (Kaplan et al., 2020; Hoffmann et al.,
2022; OpenAI, 2023; 2024; Gemini Team et al., 2024; Henighan et al., 2020; Clark et al.,
2022; Yun et al., 2024; Ludziejewski et al., 2024) have demonstrated that proportionally
increasing model capacity, along with data and total compute budget, consistently decreases
pretraining loss (i.e., perplexity), improves downstream task performance (Devlin et al.,
2019; Brown et al., 2020; BIG-bench authors, 2023) and unlocks emergent capabilities (Wei
et al., 2022a). While these studies typically quantify model capacity via total parameter
count, compute per example (i.e., a fixed-sized input), measured in FLoating OPerations
(FLOPs), also plays a significant role (Clark et al., 2022). Several mechanisms (Shazeer
et al., 2017; Dehghani et al., 2019; Wei et al., 2022b; Goyal et al., 2024; Csord’as et al.,
2024) have been proposed that allow for independent variation of total parameter count or
FLOPs within a model. For instance, Sparse Mixture-of-Experts (MoE) models (Shazeer
et al., 2017) introduce “FLOP-free parameters” by leveraging sparsity, where only a subset
of expert modules is activated for each input. Given this scenario where the number of
parameters and FLOPs per example are not directly linked, we ask: “Can we draw scaling
laws for the optimal trade-off between parameter count and FLOPs per example?”

To address this question, we study sparse Mixture-of-Expert Transformers (MoEs) (Shazeer
et al., 2017; Lepikhin et al., 2021; Fedus et al., 2022; Zoph et al., 2022; Muennighoff et al.,

∗Core contributors. Send correspondence to {abnar, vthilak}@apple.com.
†Work done while interning at Apple.

1

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

294M
485M

800M1B2B4B6B10B16B26B

Total Parameters N

0%39%63%78%86%
92%

95%
97%

98%

MoE
 S

pa
rs

ity
 S

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Lo
ss

2.2 2.9

Loss

0% 50% 98%

Sparsity S

(a) IsoFLOP surface over sparsity and to-
tal parameters

66M
108M

178M
294M

485M
800M1B2B4B6B10B

Active Parameters Nactive

0%39%63%78%86%
92%

95%
97%

98%

MoE
 S

pa
rs

ity
 S

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Lo
ss

2.1 2.8

Loss

0% 50% 98%

Sparsity S

(b) IsoFLOP surface over sparsity and ac-
tive parameters

Figure 1: IsoFLOP surface over observed pretraining loss L, model size (in terms of
total N and active parameters Na), and sparsity S. We fit a polynomial function mapping
N (or Na), S, and their interaction to L, using empirical data. For both fits the MSE loss for
predicting loss on a held out set is 0.0001. These results indicate that for a fixed compute budget,
increasing model sparsity leads to a reduction in pretraining loss. When considering optimal model
size, we observe opposite trends for total parameters (N) (Figure a) versus active parameters (Na)
(Figure b). (See Figure 6 in Appendix F.3 for results with different total compute budgets C.)

2024) in the context of language modeling. Existing scaling law studies for MoEs, investi-
gate the role of variables like number and granularity (Ludziejewski et al., 2024)of experts,
underlying dense model size and inference compute in predicting the performance of the
models under different conditions such as training or inference compute optimality (Du
et al., 2021; Clark et al., 2022; Yun et al., 2024; Ludziejewski et al., 2024). In this paper, we
focus on the interaction between FLOPs per example and total parameter count, and their
impact on model performance in MoEs, through a large-scale empirical study. We define
sparsity as the ratio of inactive experts to the total number of experts, which controls the
ratio of the total number of parameters to FLOPs per example in MoEs. We evaluate loss
and downstream metrics for different sparsities, model sizes, and compute budgets. We find
that (1) During pretraining, increasing a model’s capacity by adding more parameters
yields greater benefits than increasing FLOPs per example. We observe that the size of
compute-optimal models increases as we increase the training budget (measured in terms
of total FLOPs) while the active number of parameters, hence FLOPs per example, de-
crease for compute-optimal models and 2) During inference, FLOPs per example seem
to play a more important role1. For many tasks, upstream performance is a good predic-
tor of downstream performance and the relationship between upstream and downstream
performance is not impacted by the sparsity level. However, on downstream tasks that pre-
sumably require more “reasoning”, we observe that for models with the same perplexity on
the pretraining data distribution, sparser models, i.e., models with fewer number of active
parameters, perform worse on specific types of downstream tasks that presumably require
more “reasoning”.

2 The Interplay between Model Parameters and Sparsity

Is there an optimal trade-off between parameter count and FLOPs per example in MoEs un-
der the setting where the training compute budget (i.e., total training FLOPs) is fixed?. Pre-
vious scaling law studies suggest that, conditioned on a training compute budget measured
in FLOPs denoted by C, the optimal number of parameters, N∗(C), exhibits a power-law

1A relevant discussion here is the recent trend of increasing test-time compute, e.g., OpenAI o1
model (OpenAI, 2024), achieved by generating more tokens as a way for introducing parameter-
free-FLOPs.

2

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

relationship with C (Hoffmann et al., 2022). Our goal is to study how to optimally trade-off
FLOPs per example and total parameters in MoEs. We use the sparsity level S that cap-
tures the balance between parameters and FLOPs per example in addition to N . Formally
using notation from Appendix B, the objective can be written as:

(N∗, S∗) = argmin
N,S

L(N,S;C) (1)

We empirically study the behavior of loss via training sparse MoEs language models ranging
from 50 million to 20 billion parameters, 3e19 to 1e21 FLOPs and sparsity from 0% - 98%
using the RedPajamaV1 (Together Computer, 2023) dataset 2. S can be varied either by
changing the number of active experts or total number of experts 3. As the first step, con-
sidering a fixed training compute budget C, we fit a 3D surface, referred to as the IsoFLOP
surface, in Figure 1a, using a polynomial function, following approach II of Hoffmann et al.
(2022). We observe from Figure 1a that the IsoFLOP surface plot is parabolic along model
size, suggesting that the findings of Hoffmann et al. (2022) extend to MoEs across different
sparsity levels, i.e., L(N ;C, S) is parabolic, with its optimal solution located at the inflec-
tion point. When considering the total number of parameters N , the optimal value increases
as the sparsity level increases, while for the active number of parameters Na the optimal
value decreases with the sparsity level. This indicates that by increasing the sparsity level
the training compute optimal models are larger but have fewer FLOPs per example, i.e.,
lower inference cost. Moreover, along sparsity, the pretraining loss decreases monotonically,
indicating that, for the same compute budget, sparser models achieve better pretraining
performance. We observe the same pattern across different training compute budgets (See
Appendix F.3). To better understand and explain these observations, we study slices of the
IsoFLOP surface along the axes of S and N separately as shown in Figure 5 and described
in detail Appendix F.1 and Appendix F.2.

0% 63% 86% 95% 98%
MoE Sparsity S

485M

1B

4B

10B

26B

O
pt

im
al

 T
ot

al
 P

ar
am

et
er

s
N

*

(a) Effect of Total FLOPs C on Optimal N(S)

0% 63% 86% 95% 98%
MoE Sparsity S

178M

294M

485M

800M

1B

2B

O
pt

im
al

 A
ct

iv
e

P
ar

am
et

er
s

N
* a

(b) Effect of Total FLOPs C on Optimal Na(S)

Compute Budget C (in FLOPs)
3e19 6e19 1e20 3e20 1e21

0% 63% 86% 95% 98%
MoE Sparsity S

2.0

2.2

2.4

2.6

2.8

O
pt

im
al

 P
re

tra
in

in
g

Lo
ss

*

(c) Effect of Total FLOPs C on Loss

Figure 2: Effect of compute budget on model size, number of active parameters and
loss with sparsity. Across all compute budgets, we observe that (a) the optimal model size N
increases with sparsity, (b) the optimal number of active parameters Na decreases with sparsity,
and (c) the loss L decreases with sparsity.

3 Impact of Training Compute Budget on the Interaction
between Model Parameters and Sparsity

Does the recipe for optimally increasing model capacity, i.e., optimal sparsity level for MoEs
change as we scale up the total training compute? Figure 2 illustrates the trends for chang-
ing the total number of parameters, N∗, the number of active parameters, N∗

a , and the loss,
L∗, with sparsity level across different compute budgets. Figure 2c shows that the optimal
sparsity level approaches 1 across all compute budgets used in our experiments. This obser-
vation suggests that there is no diminishing effect of sparsity on the pretraining loss as we
increase training compute budget, i.e., if there is no constraint on the model size, sparsity
improves the performance of the model across all training budgets. In Figures 2a and 2b,
, we see a consistent trend of increasing N and decreasing Na for compute optimal models
as sparsity level increases across all training compute budgets. Moreover, as can be seen in
Figure 8 in Appendix F.4, when model size in terms of total number of parameters is fixed,
optimal sparsity level increases with training compute budget as well as model size.

2A detailed description of experimental setup is provided in Appendix C
3See Appendix D for details.

3

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.75

(a) Language Understanding
Lambada-OpenAI (0-shot)

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.5

0.6

0.7

0.8

0.9

1.0

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.99

(b) Reading Comprehension
SQuAD (10-shot)

Sparsity: 0% (Dense) Sparsity: 25% Sparsity: 50% Sparsity: 75% Sparsity: 90% Sparsity: 95%

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.50

(c) Common Sense Reasoning
PIQA (10-shot)

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.75

(d) World Knowledge
BIG-bench QA-Wikidata (10-shot)

Figure 3: Effect of sparsity on downstream vs upstream performance. See Section 4 for
detailed description.

4 Effect of MoE Sparsity on Downstream Task Performance

In this section, we study how sparsity affects the relationship between upstream and down-
stream performance of MoEs. We use downstream tasks from llm-foundry4 evaluation
suite to benchmark our pretrained models. The downstream task are divided into four
pre-defined categories namely: language understanding, world knowledge, reading compre-
hension, and symbolic reasoning to systematically test how sparsity affects downstream
versus upstream performance. We observe from Figure 3a (language understanding), Fig-
ure 3c (commonsense reasoning), and Figure 3d (world knowledge) that there is a strong
correlation between upstream (pretraining) loss and downstream performance (error) across
all these tasks. For these tasks, downstream performance is predictable based on upstream
performance, regardless of the sparsity level. However, Figure 3b (reading comprehension)
shows a task where models with higher sparsity transfer more poorly compared to denser
models. This decrease in the transfer performance of sparser models on these tasks may
be due to the lower inference-time compute in sparser models compared to their denser
counterparts for a similar pretraining loss.

While our results may indicate that there may be no additional benefit obtained via spar-
sity in MoEs beyond the efficiency gains for pretraining, we caution the reader that this
suggestion may be an artifact of the scale of our experiments. In the end, since, as shown
in §2, sparser models are more efficient both in terms of training and inference cost (when
measured in terms of theoretical FLOPs), we can reach better pretraining performance with
higher sparsity levels at a lower cost, which can translate to better downstream performance.

5 Incorporating Sparsity into Scaling Laws

The scaling laws proposed by Kaplan et al. (2020) (see Appendix G.1) provide a framework
for predicting loss in dense models by establishing a power-law relationship between loss
L, number of parameters N and dataset size D, where N and D interact linearly. For
dense transformers with a fixed total training FLOPs, C, N and D are interrelated through
the equation C = 6ND. However, in MoEs, this relationship involves the active number
of parameters Na rather than the total parameter count N . Thus, D and Na define the
total training FLOPs rather than D and N . Furthermore, we observe from §2 that if N
is fixed, the optimal sparsity level, i.e., active number of parameters would depend on N .
Motivated by these observations, we suggest the following parametric form that includes a
multiplicative interaction between N and S or Na to predict the loss:

L(N,D, S) =
a

Nα
+

b

Dβ
+

c

(1− S)
λ
+

d

(1− S)
δ
Nγ

+ e (2)

The coefficients in Equation 2 are estimated using empirical data gathered from our exper-
iments using the approach described in Appendix G. Figure 12(b) shows that the fitted law
works with reasonable accuracy.

4Github repository: https://github.com/mosaicml/llm-foundry

4

https://github.com/mosaicml/llm-foundry

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

6 Conclusion

We investigate the optimal trade-off between parameters and compute per example for
maximizing model capacity. Our findings, discussed in detail in Appendix H, indicate that
sparsity, as a knob that controls FLOPs per example in MoEs, is a powerful mechanism for
optimizing model performance under constrained training compute budgets. By balancing
the total number of parameters, compute, and sparsity, MoEs can be scaled more effectively.

Acknowledgments

The authors would like to thank Vaishaal Shankar, Fartash Faghri, Skyler Seto, Mustafa
Shukor, Amitis Shidani, David Grangier, Etai Littwin, Alexander Toshev and Preetum
Nakkiran for their insightful discussions, feedback and technical support that significantly
contributed to the development of this paper.

References

BIG-bench authors. Beyond the imitation game: Quantifying and extrapolating the ca-
pabilities of language models. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=uyTL5Bvosj.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-
source autoregressive language model. arXiv preprint arXiv:2204.06745, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Aidan Clark, Diego de las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan
Hoffmann, Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, George
van den Driessche, Eliza Rutherford, Tom Hennigan, Matthew Johnson, Katie Millican,
Albin Cassirer, Chris Jones, Elena Buchatskaya, David Budden, Laurent Sifre, Simon
Osindero, Oriol Vinyals, Jack Rae, Erich Elsen, Koray Kavukcuoglu, and Karen Simonyan.
Unified scaling laws for routed language models. In Proceedings of the 39th International
Conference on Machine Learning. PMLR, 2022.

R’obert Csord’as, Kazuki Irie, Jürgen Schmidhuber, Christopher Potts, and Christopher D.
Manning. Moeut: Mixture-of-experts universal transformers. ArXiv, abs/2405.16039,
2024. URL https://api.semanticscholar.org/CorpusID:270063139.

DeepSeek-AI. Deepseek LLM: Scaling open-source language models with longtermism.
ArXiv, abs/2401.02954, 2024. URL https://api.semanticscholar.org/CorpusID:
266818336.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. https://github.com/deepseek-ai/DeepSeek-R1, January 2025. Accessed:
2025-01-21.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser.
Universal transformers. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=HyzdRiR9Y7.

5

https://openreview.net/forum?id=uyTL5Bvosj
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://api.semanticscholar.org/CorpusID:270063139
https://api.semanticscholar.org/CorpusID:266818336
https://api.semanticscholar.org/CorpusID:266818336
https://github.com/deepseek-ai/DeepSeek-R1
https://openreview.net/forum?id=HyzdRiR9Y7

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus,
Maarten Bosma, Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie
Pellat, Kevin Robinson, Kathleen S. Meier-Hellstern, Toju Duke, Lucas Dixon, Kun
Zhang, Quoc V. Le, Yonghui Wu, Z. Chen, and Claire Cui. Glam: Efficient scal-
ing of language models with mixture-of-experts. ArXiv, abs/2112.06905, 2021. URL
https://api.semanticscholar.org/CorpusID:245124124.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: scaling to trillion
parameter models with simple and efficient sparsity. J. Mach. Learn. Res., 23(1), jan
2022. ISSN 1532-4435.

Elias Frantar, Carlos Riquelme Ruiz, Neil Houlsby, Dan Alistarh, and Utku Evci. Scal-
ing laws for sparsely-connected foundation models. In The Twelfth International Con-
ference on Learning Representations, 2024. URL https://openreview.net/forum?id=
i9K2ZWkYIP.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell
Wortsman, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, Rui Xin, Mar-
ianna Nezhurina, Igor Vasiljevic, Jenia Jitsev, Alexandros G. Dimakis, Gabriel Ilharco,
Shuran Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muen-
nighoff, and Ludwig Schmidt. Language models scale reliably with over-training and on
downstream tasks. CoRR, abs/2403.08540, 2024. URL https://doi.org/10.48550/
arXiv.2403.08540.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. MegaBlocks: Efficient
Sparse Training with Mixture-of-Experts. Proceedings of Machine Learning and Systems,
5, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: A family
of highly capable multimodal models, 2024. URL https://arxiv.org/abs/2312.11805.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and
Vaishnavh Nagarajan. Think before you speak: Training language models with pause
tokens. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=ph04CRkPdC.

Xu Owen He. Mixture of a million experts. arXiv preprint arXiv:2407.04153, 2024.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson,
Heewoo Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin
Mann, Alec Radford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman,
Dario Amodei, and Sam McCandlish. Scaling laws for autoregressive generative modeling.
arXiv preprint arXiv: Arxiv-2010.14701, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai,
Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark,
Thomas Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack
Rae, and Laurent Sifre. An empirical analysis of compute-optimal large language model
training. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 30016–30030. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf.

6

https://aclanthology.org/N19-1423
https://api.semanticscholar.org/CorpusID:245124124
https://openreview.net/forum?id=i9K2ZWkYIP
https://openreview.net/forum?id=i9K2ZWkYIP
https://doi.org/10.48550/arXiv.2403.08540
https://doi.org/10.48550/arXiv.2403.08540
https://arxiv.org/abs/2312.11805
https://openreview.net/forum?id=ph04CRkPdC
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Samy Jelassi, Clara Mohri, David Brandfonbrener, Alex Gu, Nikhil Vyas, Nikhil Anand,
David Alvarez-Melis, Yuanzhi Li, Sham M Kakade, and Eran Malach. Mixture of parrots:
Experts improve memorization more than reasoning. arXiv preprint arXiv:2410.19034,
2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. CoRR, abs/2001.08361, 2020. URL https://arxiv.org/pdf/2001.
08361.pdf.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping
Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant
models with conditional computation and automatic sharding. In International Con-
ference on Learning Representations, 2021. URL https://openreview.net/forum?id=
qrwe7XHTmYb.

Jan Ludziejewski, Jakub Krajewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul,
Szymon Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski,
Marek Cygan, and Sebastian Jaszczur. Scaling laws for fine-grained mixture of experts.
In ICLR 2024 Workshop on Mathematical and Empirical Understanding of Foundation
Models, 2024. URL https://openreview.net/forum?id=Iizr8qwH7J.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min,
Weijia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora,
Akshita Bhagia, Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim
Dettmers, Douwe Kiela, Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh,
and Hannaneh Hajishirzi. Olmoe: Open mixture-of-experts language models, 2024. URL
https://arxiv.org/abs/2409.02060.

NeMo Authors. Nemo: a toolkit for conversational ai and large language models. https:
//github.com/NVIDIA/NeMo, 2025.

OpenAI. Gpt-4 technical report. PREPRINT, 2023.

OpenAI. Openai o1 system card. arXiv preprint arXiv: 2412.16720, 2024.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for SQuAD. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pp. 784–789, Melbourne, Australia, July 2018. Association for Computational
Linguistics. doi: 10.18653/v1/P18-2124. URL https://aclanthology.org/P18-2124.

Siva Reddy, Danqi Chen, and Christopher D. Manning. CoQA: A conversational question an-
swering challenge. Transactions of the Association for Computational Linguistics, 7:249–
266, 2019. doi: 10.1162/tacl_a_00266. URL https://aclanthology.org/Q19-1016.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=B1ckMDqlg.

Together Computer. Redpajama: An open source recipe to reproduce llama training
dataset. https://github.com/togethercomputer/RedPajama-Data, April 2023. Ac-
cessed: YYYY-MM-DD.

Siqi Wang, Zhengyu Chen, Bei Li, Keqing He, Min Zhang, and Jingang Wang. Scaling
laws across model architectures: A comparative analysis of dense and MoE models in
large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pp. 5583–5595, Miami, Florida, USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.emnlp-main.319. URL https://aclanthology.org/
2024.emnlp-main.319/.

7

https://arxiv.org/pdf/2001.08361.pdf
https://arxiv.org/pdf/2001.08361.pdf
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=Iizr8qwH7J
https://arxiv.org/abs/2409.02060
https://github.com/NVIDIA/NeMo
https://github.com/NVIDIA/NeMo
https://aclanthology.org/P18-2124
https://aclanthology.org/Q19-1016
https://openreview.net/forum?id=B1ckMDqlg
https://github.com/togethercomputer/RedPajama-Data
https://aclanthology.org/2024.emnlp-main.319/
https://aclanthology.org/2024.emnlp-main.319/

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,
Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori
Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities
of large language models. Transactions on Machine Learning Research, 2022a. ISSN 2835-
8856. URL https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H.
Chi, Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large
language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022b. URL https:
//openreview.net/forum?id=_VjQlMeSB_J.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam,
John D Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale
proxies for large-scale transformer training instabilities. arXiv preprint arXiv:2309.14322,
2023.

Longfei Yun, Yonghao Zhuang, Yao Fu, Eric P Xing, and Hao Zhang. Toward inference-
optimal mixture-of-expert large language models. arXiv preprint arXiv:2404.02852, 2024.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam
Shazeer, and William Fedus. ST-MoE: designing stable and transferable sparse expert
models. arXiv preprint arXiv:2202.08906, 2022.

8

https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Appendices
A Related Work 10

A.1 Scaling Laws for Language Models . 10
A.2 Scaling Laws for MoEs . 10

B Preliminaries 12
B.1 Mixture-of-Expert (MoE) Transformers 12

C Experimental Setup 13

D Estimating Mixture-of-Expert (MoE) FLOPs 15

E Related Work 17
E.1 Scaling Laws for Language Models . 17
E.2 Scaling Laws for MoEs . 17

F Additional Analysis 19
F.1 Optimal Model Size for Fixed Sparsity Level 19
F.2 Optimal Sparsity Level for Fixed Model Size 19
F.3 Interplay between parameters and FLOPs per example 20
F.4 Effect of training budget and model size on optimal MoE sparsity 20
F.5 Effect of sparsity on downstream task performance 22
F.6 Comparing IsoFLOP Surface Analysis with Independent 2d IsoFLOPs . 23

G Incorporating Sparsity into Scaling Laws 26
G.1 Scaling Law for Dense Models . 26
G.2 Fitting Coefficients to Scaling Laws for Sparsity 26
G.3 Hyperparameters and Estimated Coefficients 26

H Discussion 28

I Conclusion 29

J Limitations 30

9

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

A Related Work

MoEs (Shazeer et al., 2017; Lepikhin et al., 2021; Fedus et al., 2022; DeepSeek-AI, 2025)
have become a prominent architecture in language modeling due to their ability to decouple
computational cost from parameter count. This characteristic necessitates scaling laws that
accurately account for both parameters and FLOPs per token. In the following, we discuss
scaling laws studies for language models followed followed by existing scaling law studies for
MoEs.

A.1 Scaling Laws for Language Models

Scaling laws have proven to be a powerful framework for understanding and predicting
the performance of language models. Existing studies, such as Kaplan et al. (2020) and
Hoffmann et al. (2022), reveal that power-law relationships govern model performance as
a function of factors like model size, data size, and compute budget, offering predictable
performance improvements with increased resources.

Hoffmann et al. (2022) emphasizes the critical balance between model size and the number of
training tokens when the training compute budget is fixed, showing that scaling the model
without corresponding data increases can lead to suboptimal performance. Additionally,
DeepSeek-AI (2024) explores more nuanced scaling behaviors by incorporating data quality,
demonstrating that higher-quality data allows for more efficient scaling, and thus, a larger
portion of the compute budget should be allocated to increasing model size.

Recent work extends scaling law analysis to specialized contexts, including over-
training (Gadre et al., 2024), downstream task performance, and multilingual or multi-
modal settings, where scaling laws provide valuable insights and can be adapted to address
specific challenges.

A.2 Scaling Laws for MoEs

Mixture-of-Experts (MoE) models (Shazeer et al., 2017; Lepikhin et al., 2021; Fedus et al.,
2022; DeepSeek-AI, 2025) have emerged as a powerful architecture for language modeling,
primarily because they decouple computational cost from parameter count. This separation
between parameters and FLOPs per token in MoE architectures calls for scaling laws that
can accurately factor in the contributions of both.

Previous research on the scaling behavior of MoE models has established foundational scaling
laws, incorporating factors such as total parameter count, the number of experts, and the
granularity of these experts (Clark et al., 2022; Ludziejewski et al., 2024; Wang et al., 2024).
However, these studies typically assume a fixed configuration for other critical variables
influencing FLOPs per token, such as the number of active experts per input. In contrast,
we propose a generalized scaling law that considers variables like active parameter count
and sparsity level, thereby expanding the applicability of MoE scaling laws.

A common theme in the literature suggests that training sparser models—achieved by in-
creasing the number of smaller experts—offers significant gains in efficiency for both pre-
training and inference phases. Through a comprehensive large-scale study, we provide em-
pirical evidence for this, analyzing the impact of sparsity level on efficiency and defining
optimal configurations.

Supporting this, Du et al. (2021) demonstrates GLaM’s superior efficiency and performance
compared to GPT-3, showing that MoE architectures can achieve high performance with sig-
nificantly lower computational and energy costs. Further insights are offered by Clark et al.
(2022), who analyze scaling behaviors across various MoE routing techniques. While their
study finds that MoEs generally outperform dense models, it also notes diminishing benefits
as base model sizes grow. Ludziejewski et al. (2024) challenge this conclusion, attributing
the diminished returns partly to the fixed number of training tokens across models and
constant expert sizes. By introducing "granularity" and adjusting training durations, they
demonstrate that MoEs can outperform dense models across any compute budget, debunk-
ing the notion of diminishing returns for MoEs with adaptive expert configurations. More

10

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

recently, Jelassi et al. (2024) finds that, on downstream tasks, MoEs scale efficiently with
the number of experts (i.e., increasing sparsity) on memorization tasks, but their reason-
ing capabilities saturate and lag behind dense models on tasks requiring complex reasoning
when compared based on total number of parameters.

Another approach by He (2024) explores the benefits of training MoEs with larger numbers of
smaller experts rather than the conventional setup of fewer, larger experts. They introduce
Parameter Efficient Expert Retrieval (PEER), a novel routing mechanism designed to tackle
the computational and optimization challenges that arise when handling a high number of
experts, thus enabling efficient scaling of MoE models.

Lastly, Yun et al. (2024) draws attention to the increased inference costs associated with
scaling MoEs by adding experts. While additional experts may not substantially affect
training costs, they can inflate inference costs, thereby diminishing deployment efficiency.
To address this, the study proposes an over-trained budget allocation strategy, optimizing
MoE models for both performance and efficiency in deployment.

11

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

B Preliminaries

In this section, we provide a brief overview of Mixture-of-Expert (MoE) Transformers.

B.1 Mixture-of-Expert (MoE) Transformers

Mixture-of-Experts Transformers modify the standard transformer architecture by intro-
ducing in the MLP layer. In this design, the experts are MLP (Multi-Layer Perceptron)
modules that follow the attention mechanism and are selectively activated for each token. A
gating mechanism determines which MLP experts are most relevant for each token, ensuring
that only a subset of experts (top-k) is active at any given time, while the rest remain inac-
tive. Below, we provide the notations used throughout the paper for various terms related
to training MoEs.

Total and Active Parameters: In MoEs, we distinguish between total and active pa-
rameters, denoted by N and Na, respectively. The total parameter count, N , includes all
parameters of the network, encompassing both the experts and the rest of the architecture.
The active parameter count, Na, refers to the parameters associated with the active portion
of the experts, along with the rest of the network that is always utilized.

Top-k Expert Selection: In MoEs, the gating mechanism assigns tokens to a subset of
experts using a top-k selection process, where k denotes the number of experts activated
for each token. The gate computes a relevance score for each expert, and the top k experts
with the highest scores are selected and activated. This selective activation limits the
computational overhead by ensuring that only a fraction of the experts are used per token.

Expansion Factor and Granularity: The expansion factor, typically denoted by E,
represents the increase in model capacity due to the inclusion of multiple experts, measured
as a multiplicative factor relative to the base dense model. The granularity, G, determines
the size of each expert relative to the size of the MLP module in the base dense model. The
total number of experts in the model is given by E ×G, where E scales the capacity and G
controls the level of granularity.

Sparsity (S): In general, sparsity is defined as the ratio of inactive to total parameters.
However, in the context of MoEs, we focus on the sparsity of the MLP modules specifically.
Therefore, we define the sparsity level as the ratio of inactive to total experts, given by:

S =
number of non-active experts

number of total experts
. (3)

This definition provides an interpretable measure of sparsity but cannot be directly used to
calculate the active parameter count Na due to the contribution of other parameters in the
model that remain unsparsified.

12

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

C Experimental Setup

We train and evaluate auto-regressive sparse Mixture-of-Experts (MoE) language models of
varying sizes and configurations on subsets of the RedPajamaV1 dataset Together Computer
(2023). The key variables we explore in our experiments are total model parameters N ,
training compute budget C, and the MoE sparsity S.

Pre-training data. Our models are pre-trained on subsets of the RedPajamaV1
dataset5 Together Computer (2023), which attempts to replicate the LLaMA pre-training
data recipe and comprises 1.2 trillion tokens from sources such as Common Crawl, C4,
GitHub, and Wikipedia. In all our experiments, the effective dataset size is adjusted based
on the training compute budget C and the model size N . We tokenize the data using the
GPT-NeoX tokenizer Black et al. (2022), which has a vocabulary size of 50, 432 tokens.

Model and tokenizer. We use auto-regressive transformer-based MoE language mod-
els in order to study compute-parameter trade-offs by varying MoE sparsity. We use the
Megablocks library Gale et al. (2023) to train dropless MoEs in which the routing mech-
anism ensures that all tokens are efficiently routed without being dropped due to routing
capacity constraints.

Optimizer and scheduler. We optimize our models using the scale-free Adam optimizer6
with variable learning rate, a weight decay of 1× 10−5, and fixed Adam-specific parameters
β = (0.9, 0.95) and ε = 1 × 10−8. We use a learning rate scheduler consisting of a linear
warm-up phase followed by a cosine decay. The warm-up phase increases the learning rate
from 0 to the base learning rate over a fraction of the total training steps (selected from
{0.1, 0.05, 0.02}). After warm-up, the learning rate decays following a cosine schedule for
the remaining training steps.

Fitting IsoFLOP surfaces. Recall that in Section 2, we fit isoFLOP surfaces to predict
pretraining loss L as a polynomial function of model size N and MoE sparsity S for a fixed
training budget C. The polynomial function takes the form

L(N,S) =

α1∑
i=1

aiN̂
i +

α2∑
i=1

biŜ
i +

α3∑
i=1

ci(N̂ · Ŝ)i + d (4)

where N̂ = logN and Ŝ = − log(1−S)—we find that applying log transformations improves
the fit of the resulting IsoFLOP surface. Through a grid search over the polynomial coeffi-
cients α1, α2, α3 ∈ {0, 1, 2, 3, 4}, we found that the best fit was obtained for α = β = γ = 2,
i.e., a quadratic polynomial over N̂ and Ŝ. We evaluate the fitted IsoFLOP surfaces in Fig-
ure 1 by (a) re-running the fitting procedure k = 100 times on randomly subsampled data
and (b) evaluating the Pearson correlation between the true and predicted pretraining loss
values on a set of held-out data points.

Hyperparameters. We fix a subset of hyperparameters for which changing values in
preliminary experiments (a) did not significantly improve pre-training loss, (b) the optimal
value remained the same across several model configurations, or (c) in order to reduce the
search space (i.e., limited compute resources). Specifically, we first opted to use z-router
loss Zoph et al. (2022) and qk-normalization Wortsman et al. (2023) in order to stabilize
training for large MoEs. Second, we fixed MoE router jitter noise to 0, as it did not improve
performance. We also fixed our batch size to 1024 for all model sizes.

We swept over hyperparameters that, when adjusted, (a) significantly improved pre-training
loss and (b) the optimal values varied across different model configurations. We increase
the MoE sparsity by decreasing the number of active experts and/or increasing the number
of total experts. We also varied the MoE granularity Ludziejewski et al. (2024), MoE load

5GitHub repository: https://github.com/togethercomputer/RedPajama-Data
6Scale-free Adam: https://fabian-sp.github.io/posts/2024/02/decoupling/

13

https://github.com/togethercomputer/RedPajama-Data
https://fabian-sp.github.io/posts/2024/02/decoupling/

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

balancing regularizer, Adam learning rate, and linear warm-up steps (fraction) in order to
improve pre-training loss. The table below summarizes our hyperparameter sweeps:

Table 1: Hyperparameter configurations and search spaces

Hyperparameter Configuration Search Space

Sparsity Level Tuned {0, 25, 50, 75, 90, 95, 98}%
Number of Total Experts Tuned Adjusted depending on sparsity
Number of Active Experts Tuned Adjusted depending on sparsity
Granularity Tuned {1, 2}
Learning Rate Tuned [0.003, 0.002, 0.001]
Load Balancing Factor Tuned {0.02, 0.05}
Warm-up Steps Tuned {2, 5, 10}%
Batch Size Constant 1024
Jitter Noise Constant 0
z-Loss Constant 0
z-Router Loss Constant 0.001
QK Norm Constant Applied

It is also noteworthy that, in this paper, we have prioritized training compute-optimal
models, in contrast to many published results on large language models (LLMs), which
often rely on over-trained models. As a result, the performance of the models we use for
the analysis in this paper is not directly comparable to those of other studies, where they
overtrain smaller language models, to reduce the cost of inference relative to training.

14

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

D Estimating Mixture-of-Expert (MoE) FLOPs

Similar to prior work on scaling laws (e.g., Kaplan et al. (2020); Hoffmann et al. (2022);
Ludziejewski et al. (2024)), we use theoretical FLOP estimates as proxies for training and
inference costs of language models. In this section, we (a) outline our methodology for
estimating FLOPs for MoEs and (b) show that the proposed estimator closely approximates
empirical FLOPs of large-scale MoEs.

Setup and notation. Consider an MoE model with nlayers MoE layers, each with an
embedding dimension of dmodel. We denote the number of total experts and active experts
in each MoE layer by Etotal and Eactive respectively. Following Ludziejewski et al. (2024),
we let G denote the MoE granularity, which defaults to 1 and controls the size of each
expert relative to the size of a feed-forward layer in an equivalent dense transformer. In
order to change sparsity in a more granular manner, we treat the number of active experts
as an independent variable that does not scale with granularity G. In our experiments, we
use a vocabulary size nvocab = 50, 432, a context length nctx of 2048, and GLU modules
(Gated Linear Units) (Shazeer et al., 2017) over feed-forward modules as the architecture
of choice for MoE experts. We also set the (a) hidden dimension of each GLU expert dffn
to 4 · dmodel and (b) instantiate MoEs where the number of attention heads nheads times the
dimensionality for each head dhead equals dmodel, i.e., nheadsdhead = dmodel.

Estimating module-specific FLOPs. To estimate the FLOPs of a given MoE model,
we first individually estimate the FLOPs per token incurred by a forward and backward
pass through every module in MoEs. Then, we aggregate these estimates to obtain the final
estimator for the FLOPs per token incurred by a forward and backward pass through the
model.

Like in prior work on scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022), we take a
two-step approach to estimate module-specific FLOPs. Given a module, we first estimate
the number of parameters in the module and then scale this with an appropriate constant
corresponding to the number of add-multiply operations per parameter through a forward
and backward pass of the given module. We also omit non-leading terms such as non-
linearities, biases, and layer normalization in our estimation. We estimate the FLOPs per
token for attention modules, MoE routers, MoE experts, and the final un-embedding layer
as follows:

1. Attention module. We estimate the FLOPs incurred via the QKV (and final) pro-
jections, attention logits, and attention values of all heads in a multi-head attention
module as follows.

• QKV (and final) projections. These projections involve 4 · dmodelnheadsdheads =
4d2model parameters. Following Kaplan et al. (2020), we use the multiplicative
constant C = 6 to account for the add-multiply operations per parameter in a
forward and backward pass through linear modules, resulting in a FLOPs-per-
token estimate of 4 · C · d2model.

• Attention logits. The FLOPs required to compute the attention logits for all nctx
tokens equals C · n2

ctxdmodel FLOPs, making the FLOP-per-token estimate equal
to C · nctxdmodel.

• Attention values. The computation of attention values requires a per-token
weighted sum over nctx dmodel-dimensional vectors, making the estimate C ·
nctxdmodel.

2. MoE module. Given an MoE layer, we estimate the FLOPs incurred by its router
and all experts separately.

• Router. The MoE routing linearly maps a dmodel-dimensional token embedding to
a Etotal-dimensional logit vector, which is subsequently used to map the token to
Eactive active experts. Following Ludziejewski et al. (2024), we use a multiplicative
constant R = 14 that accounts for the add-multiply-route operations per router
parameter. The resulting FLOP estimate equals R · dmodelEtotal

15

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

• Experts. Each MoE experts corresponds to a GLU module (Shazeer et al., 2017)
with dffn = 4 · dmodel. Since there are Eactive active experts with granularity
G, each involving three linear projections, this results in a FLOP estimate of
1/G · 3 · Eactive · C · dmodeldffn = 12C/G · Eactive · d2model.

3. Un-embedding layer. The un-embedding linear layer maps the final dmodel-
dimensional embedding of a token to nvocab-dimensional logits, making the FLOPs-
per-token C · nvocabdmodel.

Estimating MoE FLOPs. We can aggregate the module-level FLOP estimates described
above to estimate the FLOPs per token required for a single forward and backward pass
through a given MoE model as follows:

nlayer
(
4Cd2model + 2Cdmodelnctx + 12C/GEactived

2
model +RdmodelEtotal

)
+ Cnvocabdmodel

When Etotal/dmodel is small, which is typically the case in practice, the FLOPs induced by
MoE routing can be ignored as they contribute negligibly to the estimator. This allows us
to simplify the estimator to:

MoE FLOPs per token := C · nlayersd
2
model

(
4 +

2nctx

dmodel
+

12Eactive

G
+

nvocab

dmodelnlayers

)
(5)

Evaluating 6NaD as a FLOPs-per-token estimator in MoE Models For standard
dense transformers, the FLOPs are often estimated as 6ND (Kaplan et al., 2020; Hoffmann
et al., 2022). Given that D is fixed and not adjusted dynamically, N can serve as a relative
estimator of FLOPs per token for dense transformer models.

To adapt the 6ND estimator for MoE models, we replace N with Na (the active number of
parameters)—the number of parameters used in every forward and backward pass. In Fig-
ure 4, we evaluate the accuracy of the 6NaD estimator by plotting the ratio between the
MoE FLOPs estimator described in Equation 5 and 6NaD as a function of model size N
and a fixed context length D = 2048. The results show that, across all sparsity levels, the
ratio remains close to one, and the gap between the two estimators decreases as model size
N increases.

100M 1B 10B 100B 1T
Total Number of Parameters (N)

1.02

1.04

1.06

1.08

1.10

1.12

1.14

M
oE

 F
LO

Ps
 /

6N
aD

Sparsity Level
S=0.0
S=0.25
S=0.5
S=0.75
S=0.9
S=0.95

Figure 4: Accuracy of 6NaD FLOPs Estimator for MoEs. Ratio of the MoE FLOPs estimator
(Equation 5) to the 6NaD estimator as a function of the total number of parameters, for a fixed
context length of D = 2048, used in our experiments.

16

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

E Related Work

MoEs (Shazeer et al., 2017; Lepikhin et al., 2021; Fedus et al., 2022; DeepSeek-AI, 2025)
have become a prominent architecture in language modeling due to their ability to decouple
computational cost from parameter count. This characteristic necessitates scaling laws that
accurately account for both parameters and FLOPs per token. In the following, we discuss
scaling laws studies for language models followed followed by existing scaling law studies for
MoEs.

E.1 Scaling Laws for Language Models

Scaling laws have proven to be a powerful framework for understanding and predicting
the performance of language models. Existing studies, such as Kaplan et al. (2020) and
Hoffmann et al. (2022), reveal that power-law relationships govern model performance as
a function of factors like model size, data size, and compute budget, offering predictable
performance improvements with increased resources.

Hoffmann et al. (2022) emphasizes the critical balance between model size and the number of
training tokens when the training compute budget is fixed, showing that scaling the model
without corresponding data increases can lead to suboptimal performance. Additionally,
DeepSeek-AI (2024) explores more nuanced scaling behaviors by incorporating data quality,
demonstrating that higher-quality data allows for more efficient scaling, and thus, a larger
portion of the compute budget should be allocated to increasing model size.

Recent work extends scaling law analysis to specialized contexts, including over-
training (Gadre et al., 2024), downstream task performance, and multilingual or multi-
modal settings, where scaling laws provide valuable insights and can be adapted to address
specific challenges.

E.2 Scaling Laws for MoEs

Mixture-of-Experts (MoE) models (Shazeer et al., 2017; Lepikhin et al., 2021; Fedus et al.,
2022; DeepSeek-AI, 2025) have emerged as a powerful architecture for language modeling,
primarily because they decouple computational cost from parameter count. This separation
between parameters and FLOPs per token in MoE architectures calls for scaling laws that
can accurately factor in the contributions of both.

Previous research on the scaling behavior of MoE models has established foundational scaling
laws, incorporating factors such as total parameter count, the number of experts, and the
granularity of these experts (Clark et al., 2022; Ludziejewski et al., 2024; Wang et al., 2024).
However, these studies typically assume a fixed configuration for other critical variables
influencing FLOPs per token, such as the number of active experts per input. In contrast,
we propose a generalized scaling law that considers variables like active parameter count
and sparsity level, thereby expanding the applicability of MoE scaling laws.

A common theme in the literature suggests that training sparser models—achieved by in-
creasing the number of smaller experts—offers significant gains in efficiency for both pre-
training and inference phases. Through a comprehensive large-scale study, we provide em-
pirical evidence for this, analyzing the impact of sparsity level on efficiency and defining
optimal configurations.

Supporting this, Du et al. (2021) demonstrates GLaM’s superior efficiency and performance
compared to GPT-3, showing that MoE architectures can achieve high performance with sig-
nificantly lower computational and energy costs. Further insights are offered by Clark et al.
(2022), who analyze scaling behaviors across various MoE routing techniques. While their
study finds that MoEs generally outperform dense models, it also notes diminishing benefits
as base model sizes grow. Ludziejewski et al. (2024) challenge this conclusion, attributing
the diminished returns partly to the fixed number of training tokens across models and
constant expert sizes. By introducing "granularity" and adjusting training durations, they
demonstrate that MoEs can outperform dense models across any compute budget, debunk-
ing the notion of diminishing returns for MoEs with adaptive expert configurations. More

17

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

recently, Jelassi et al. (2024) finds that, on downstream tasks, MoEs scale efficiently with
the number of experts (i.e., increasing sparsity) on memorization tasks, but their reason-
ing capabilities saturate and lag behind dense models on tasks requiring complex reasoning
when compared based on total number of parameters.

Another approach by He (2024) explores the benefits of training MoEs with larger numbers of
smaller experts rather than the conventional setup of fewer, larger experts. They introduce
Parameter Efficient Expert Retrieval (PEER), a novel routing mechanism designed to tackle
the computational and optimization challenges that arise when handling a high number of
experts, thus enabling efficient scaling of MoE models.

Lastly, Yun et al. (2024) draws attention to the increased inference costs associated with
scaling MoEs by adding experts. While additional experts may not substantially affect
training costs, they can inflate inference costs, thereby diminishing deployment efficiency.
To address this, the study proposes an over-trained budget allocation strategy, optimizing
MoE models for both performance and efficiency in deployment.

18

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

F Additional Analysis

F.1 Optimal Model Size for Fixed Sparsity Level

0% 63% 86% 95% 98% 99%
MoE Sparsity S

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9
Pr

et
ra

in
in

g
Lo

ss
 L

(a) Optimal MoE Sparsity S *

Optimal MoE Sparsity

178M 485M 1B 4B 10B 26B
Total Parameters N

2.2

2.4

2.6

2.8

3.0

Pr
et

ra
in

in
g

Lo
ss

 L

(b) Optimal Total Parameters N *

Optimal total parameters

178M 294M 485M 800M 1B 2B 4B
Active Parameters Na

2.2

2.3

2.4

2.5

2.6

2.7

Pr
et

ra
in

in
g

Lo
ss

 L

(c) Optimal Active Parameters N *
a

Optimal active parameters

500M 2B 8B 30B
Total Parameters N

0% 24% 48% 71% 95%
MoE Sparsity S

0% 24% 48% 71% 95%
MoE Sparsity S

Figure 5: IsoFLOP slices along Sparsity and Model Size (C = 1e20). We use fitted isoFLOP
surfaces (Section 2) to analyze how sparsity S and model size N impact the loss L for a fixed compute
budget. We identify optimal points by (a) fixing N and varying S, (b) fixing S and varying N and
(c) fixing S and varying active parameters Na. Observe that (a) the optimal sparsity S increases
with increasing model size N and converges to 1 while (b) and (c) show that the optimal model
size N and active parameter count Na increase and decrease respectively with increasing sparsity
levels. (see Figure 7 in Appendix F.3 for other total training compute budgets.)

To simplify the problem of understanding the joint role of N and S in predicting the loss
L, we break the problem, Equation 1, into two parts. In this appendix we examine the
following question:

• "How does el impact the scaling laws of the relationship between N and C for training-
compute optimal models?" To address this question in §F.1, we fix S and vary N , studying
how optimal N and Na change for different values of S:

N∗ = argmin
N

L(N ;C, S) (6)

Here we examine how sparsity influences scaling laws governing the relationship between
N , Na and C for training-compute optimal models, i.e. how does N∗ and N∗

a , for a given
C, S (Equation 6), change as we increase S? Looking at slices of the IsoFLOP surface along
the model size dimension, in Figure 5b and Figure 5c, we observe how the IsoFLOP curves
shift along loss and model size. Considering the training-compute optimal model, for a
fixed compute budget, loss decreases as we increase sparsity. Furthermore, while sparser
models have larger N compared to denser models, as seen in Figure 5b, they have a smaller
active parameter count Na; hence, fewer FLOPs per example. Intuitively, more parameters
in total increase the capacity of the sparser models to fit the data, while fewer number of
active parametes, hence fewer FLOPs per example, allow the model to be trained with more
tokens, i.e., higher D, for the same training compute budget.

F.2 Optimal Sparsity Level for Fixed Model Size

In this section we aim to understand the dynamics between the total number of parameters
and FLOPs per example in MoEs. Specifically, we consider the following question:

• "Is there an optimal balance between total number of parameters and the sparsity level
under fixed training-compute budget?" To address this question in §F.2, we fix N and
vary S, studying how optimal S changes across different values of N :

S∗ = argmin
S

L(S;C,N) (7)

In Appendix F.1 we are considering the case where there is no bound on the total number
of parameters. In this case, we observe that under fixed training compute budget in terms
of FLOPs, it is better to train sparser models with higher total number of parameters.

19

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

However in practical scenarios it is reasonable to assume that there would be some bounds
on the memory and hence the total number of parameters of a model. This leads us to a
fundamental question: Is there an optimal balance between the total number of parameters
and and FLOPs per example under a fixed training-compute budget? Thus, we investigate
the optimal sparsity level when total number of parameters is fixed. Specifically, we ask:
Given N and C, How does S∗ change as we vary N?

To address this, we look into slices of the IsoFLOP surface along the sparsity dimension.
As we see in Figure 5a, for a fixed training compute budget and fixed model size L(S;N,C)
exhibits a parabolic profile, reaching its optimum value at the vertex where S = S∗. It is
noteworthy that for a given total training compute, there is threshold value Nth for the total
number of parameters, where for larger models, models with N > Nth, increasing sparsity
always has a positive impact, i.e., optimal sparsity level approaches 1.0. More accurately, for
a fixed compute budget the optimal sparsity level increases with model size and converges to
1 as the model size grows (see Figure 8 in §F.4 in the Appendix for more details). Note that
the optimal model, here is not the largest model, i.e., there is a compute optimal model size
in terms of total parameters even after sparsity is introduced, and increasing total number
of parameters leads to under-training if training compute budget is fixed.

These results highlight the importance of balancing the number of parameters with FLOPs
per example in MoEs. Intuitively, when the total number of parameters is small, higher
sparsity results in fewer active parameters, and thus fewer FLOPs per example. This reduc-
tion in FLOPs per example may lead to inefficiencies during both training and inference.
Conversely, when the total number of parameters is large, for a reasonable amount of FLOPs
per example, a fixed compute budget may not allow sufficient training on enough tokens to
make use of the model’s additional capacity.

F.3 Interplay between parameters and FLOPs per example

IsoFLOP surface: Compared to Hoffmann et al. (2022) we include the sparsity variable
and fit a single 3d IsoFLOP surface across all data points, rather than fitting separate 2d
IsoFLOP curves for fixed sparsity levels or model sizes. We conducted a grid search to
determine the optimal polynomial degree for N , S, and the interaction term N ×S, finding
that a degree of (2, 2, 2) resulted in the lowest cross-validation error. Both N and S are in
log space.

Recall that in Section 2, we showed that isoFLOP curves were predictive of pretraining loss
for different parameter counts and sparsity levels. In this section, we show similar results
with additional training compute budgets.

1. In Figure 6, we first show that IsoFLOP surfaces mapping model size N and sparsity
level S to pre-training loss L are predictive in a similar way for all training compute
budgets that we consider, ranging from 3e19 to 1e21 FLOPs.

2. In Figure 7, we analyze the fitted IsoFLOP surfaces (one for each training budget) and
find that the (a) effect of model size N on optimal MoE sparsity S∗ and (b) the effect of
MoE sparsity S on the optimal total and active parameters, N∗ and N∗

a , is similar for
all training budgets.

F.4 Effect of training budget and model size on optimal MoE sparsity

Recall that in Section 3, we demonstrated how the relationship between optimal total
parameters N∗, optimal active parameters N∗a, and optimal pretraining loss L predictably
changes as a function of sparsity S and training budget C. In this section, we use the fitted
isoFLOP surfaces to analyze how the optimal MoE sparsity S∗ changes as a function of
total parameters N and training budget C, as shown in Figure 8. Our main findings are:

• Across all training budgets (ranging from 3e19 to 1e21 FLOPs), increasing the total
parameters N leads to an increase in the optimal sparsity level S∗.

• For a fixed model size (i.e., total parameters N), increasing the training budget C generally
reduces the optimal sparsity level S∗.

20

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

66M178M485M1B4B10B26B

Total Parameters N

0%39%63%78%86%92%95%97%
98%

MoE Sparsity S

2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

Lo
ss

(a) IsoFlop Surface (Budget: 3e19 FLOPs)

2.6 2.8 3.0
Ground-truth Pre-training Loss

2.5

2.6

2.7

2.8

2.9

3.0

3.1

P
re

di
ct

ed
 P

re
-tr

ai
ni

ng
 L

os
s

MSE = 0.0004

(b) Ground-truth vs. Predicted Loss on Held-out Data

Sparsity level S
S = 0%
S = 25%
S = 50%
S = 75%

S = 90%
S = 95%
S = 98%
x = y

2.5 4.0

Loss

0% 50% 98%

Sparsity S

66M178M485M1B4B10B26B

Total Parameters N

0%39%63%78%86%92%95%97%
98%

MoE Sparsity S

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Lo
ss

(a) IsoFlop Surface (Budget: 6e19 FLOPs)

2.4 2.6 2.8 3.0 3.2
Ground-truth Pre-training Loss

2.4

2.6

2.8

3.0

3.2

P
re

di
ct

ed
 P

re
-tr

ai
ni

ng
 L

os
s

MSE = 0.0011

(b) Ground-truth vs. Predicted Loss on Held-out Data

Sparsity level S
S = 0%
S = 25%
S = 50%
S = 75%

S = 90%
S = 95%
S = 98%
x = y

2.4 3.8

Loss

0% 50% 98%

Sparsity S

66M178M485M1B4B10B26B

Total Parameters N

0%39%63%78%86%92%95%97%
98%

MoE Sparsity S

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Lo
ss

(a) IsoFlop Surface (Budget: 1e20 FLOPs)

2.4 2.6 2.8 3.0
Ground-truth Pre-training Loss

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

P
re

di
ct

ed
 P

re
-tr

ai
ni

ng
 L

os
s

MSE = 0.0007

(b) Ground-truth vs. Predicted Loss on Held-out Data

Sparsity level S
S = 0%
S = 25%
S = 50%
S = 75%

S = 90%
S = 95%
S = 98%
x = y

2.3 3.6

Loss

0% 50% 98%

Sparsity S

294M485M800M1B2B4B6B10B16B26B

Total Parameters N

0%39%63%78%86%92%95%97%
98%

MoE Sparsity S

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Lo
ss

(a) IsoFlop Surface (Budget: 3e20 FLOPs)

2.2 2.3 2.4 2.5 2.6
Ground-truth Pre-training Loss

2.2

2.3

2.4

2.5

2.6

P
re

di
ct

ed
 P

re
-tr

ai
ni

ng
 L

os
s

MSE = 0.0001

(b) Ground-truth vs. Predicted Loss on Held-out Data

Sparsity level S
S = 0%
S = 25%
S = 50%
S = 75%

S = 90%
S = 95%
S = 98%
x = y

2.2 2.9

Loss

0% 50% 98%

Sparsity S

485M800M1B2B4B6B10B16B26B

Total Parameters N

0%
39%

63%
78%

86%
92%

95%

MoE Sparsity S

2.1

2.2

2.3

2.4

2.5

Lo
ss

(a) IsoFlop Surface (Budget: 1e21 FLOPs)

2.1 2.2 2.3
Ground-truth Pre-training Loss

2.05

2.10

2.15

2.20

2.25

2.30

2.35

P
re

di
ct

ed
 P

re
-tr

ai
ni

ng
 L

os
s

MSE = 0.0000

(b) Ground-truth vs. Predicted Loss on Held-out Data

Sparsity level S
S = 0%
S = 25%
S = 50%
S = 75%

S = 90%
S = 95%
x = y

2.0 2.6

Loss

0% 50% 95%

Sparsity S

Figure 6: IsoFLOP surfaces over total parameters N , MoE sparsity S, and pretraining
loss L for different compute budgets. The rows correspond to IsoFLOP surface fitted using
models trained with a budget of 3e19, 6e19, 1e20, 3e20, and 1e21. The subplots on the left visualize
IsoFLOP surfaces mapping total parameters N and sparsity level S to pretraining loss L. The
subplots on the right correlate the ground-truth pretraining loss with the estimated pretraining loss
on held-out data. Taken together, these results show that isoFLOP surfaces are accurate proxies
for understanding how model size and MoE sparsity jointly impact pretraining loss.

21

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

0% 63% 86% 95% 98% 99%
MoE Sparsity S

2.5

3.0

3.5

4.0

4.5

P
re

tra
in

in
g

Lo
ss

(a) Compute Optimal MoE Sparsity S * (N)

Optimal MoE Sparsity

178M 485M 1B 4B 10B 26B
Total Parameters N

2.5

3.0

3.5

4.0

4.5

P
re

tra
in

in
g

Lo
ss

(b) Compute Optimal Total Parameters N * (S)

Optimal total parameters

178M 294M 485M 800M 1B 2B 4B
Active Parameters Na

2.6

2.8

3.0

3.2

3.4

3.6

P
re

tra
in

in
g

Lo
ss

(c) Compute Optimal Active Parameters N *
a (S)

Optimal active parameters

500M 2B 30B
Total Parameters N

0% 25% 49% 74% 98%

MoE Sparsity S
0% 25% 49% 74% 98%

MoE Sparsity S

0% 63% 86% 95% 98% 99%
MoE Sparsity S

2.50

2.75

3.00

3.25

3.50

3.75

4.00

P
re

tra
in

in
g

Lo
ss

(a) Compute Optimal MoE Sparsity S * (N)

Optimal MoE Sparsity

178M 485M 1B 4B 10B 26B
Total Parameters N

2.50

2.75

3.00

3.25

3.50

3.75

4.00

P
re

tra
in

in
g

Lo
ss

(b) Compute Optimal Total Parameters N * (S)

Optimal total parameters

178M 294M 485M 800M 1B 2B 4B
Active Parameters Na

2.4

2.6

2.8

3.0

3.2

P
re

tra
in

in
g

Lo
ss

(c) Compute Optimal Active Parameters N *
a (S)

Optimal active parameters

500M 2B 30B
Total Parameters N

0% 25% 49% 74% 98%

MoE Sparsity S
0% 25% 49% 74% 98%

MoE Sparsity S

0% 63% 86% 95% 98% 99%
MoE Sparsity S

2.4

2.6

2.8

3.0

3.2

3.4

3.6

P
re

tra
in

in
g

Lo
ss

(a) Compute Optimal MoE Sparsity S * (N)

Optimal MoE Sparsity

178M 485M 1B 4B 10B 26B
Total Parameters N

2.4

2.6

2.8

3.0

3.2

3.4

3.6

P
re

tra
in

in
g

Lo
ss

(b) Compute Optimal Total Parameters N * (S)

Optimal total parameters

178M 294M 485M 800M 1B 2B 4B
Active Parameters Na

2.3

2.4

2.5

2.6

2.7

2.8

2.9

P
re

tra
in

in
g

Lo
ss

(c) Compute Optimal Active Parameters N *
a (S)

Optimal active parameters

500M 2B 8B 30B
Total Parameters N

0% 25% 49% 74% 98%

MoE Sparsity S
0% 25% 49% 74% 98%

MoE Sparsity S

0% 63% 86% 95% 98% 99%
MoE Sparsity S

2.2

2.4

2.6

2.8

P
re

tra
in

in
g

Lo
ss

(a) Compute Optimal MoE Sparsity S * (N)

Optimal MoE Sparsity

178M 485M 1B 4B 10B 26B
Total Parameters N

2.2

2.4

2.6

2.8

3.0

3.2

3.4

P
re

tra
in

in
g

Lo
ss

(b) Compute Optimal Total Parameters N * (S)

Optimal total parameters

178M 294M 485M 800M 1B 2B 4B
Active Parameters Na

2.2

2.3

2.4

2.5

2.6

2.7

P
re

tra
in

in
g

Lo
ss

(c) Compute Optimal Active Parameters N *
a (S)

Optimal active parameters

500M 2B 8B
Total Parameters N

0% 25% 49% 74% 98%

MoE Sparsity S
0% 25% 49% 74% 98%

MoE Sparsity S

0% 63% 86% 95% 98% 99%
MoE Sparsity S

2.0

2.2

2.4

2.6

2.8

3.0

P
re

tra
in

in
g

Lo
ss

(a) Compute Optimal MoE Sparsity S * (N)

Optimal MoE Sparsity

178M 485M 1B 4B 10B 26B
Total Parameters N

2.00

2.25

2.50

2.75

3.00

3.25

3.50

P
re

tra
in

in
g

Lo
ss

(b) Compute Optimal Total Parameters N * (S)

Optimal total parameters

178M 294M 485M 800M 1B 2B 4B
Active Parameters Na

2.0

2.2

2.4

2.6

P
re

tra
in

in
g

Lo
ss

(c) Compute Optimal Active Parameters N *
a (S)

Optimal active parameters

500M 2B 8B
Total Parameters N

0% 25% 49% 74% 98%

MoE Sparsity S
0% 25% 49% 74% 98%

MoE Sparsity S

Figure 7: Optimal MoE configurations predictably change with training compute bud-
get. Each row corresponds to an analysis of how optimal MoE sparsity S∗, total parameters N∗,
and active parameters N∗

a change for a given training budget. The subplots on the left show that
(a) increasing the training budget increases the model size N (denoted with black dots) with the
minimum pretraining loss and (b) for models smaller than a threshold (which increases with training
budget), dense models (i.e., 0% sparsity) fare better than sparse MoEs. The subplots in the second
and third panel show that (a) increasing MoE sparsity increases the optimal total parameters N∗

and decreases the optimal active parameters N∗
a . In both cases, for a fixed sparsity level, increasing

the budget shifts increases the optimal total and active parameters.

50M 98M 190M 369M 718M 1B 3B 5B 10B 20B

Total Parameters N

0%

63%

86%

95%

98%

99%

O
pt

im
al

 M
oE

 S
pa

rs
ity

 S
* (

N
,C

)

Effect of Total FLOPs C on S * (N)

Compute Budget C
3e19 FLOPs 6e19 FLOPs 1e20 FLOPs 3e20 FLOPs 1e21 FLOPs

Figure 8: Effect of training budget C and total parameters N on sparsity. Optimal sparsity
S∗ changes with respect to the total number of parameters N and the training budget C. The x-
axis represents the total parameters N on a logarithmic scale, and the y-axis shows the optimal
sparsity S∗.

• The relationship between model size N and optimal S∗ is not linear. For smaller models
(up to about 500 ·106 parameters), the optimal sparsity remains at 0 (i.e., dense) for most
compute budgets.

F.5 Effect of sparsity on downstream task performance

In Section 4, we analyzed the relationship between upstream pre-training loss and down-
stream task performance across different MoE sparsity levels. We found that language
understanding and world knowledge tasks generally showed a strong correlation between
upstream and downstream performance, while reading comprehension tasks seemed to favor
denser models to some extent.

22

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

In this section, we provide additional plots for a broader range of tasks within each category
to further support our findings. We consider the following tasks:

• Common Sense Reasoning: PIQA, CommonSenseQA, OpenBookQA, COPA

• Language Understanding: LAMBADA, HellaSwag, Winograd, Winogrande

• Reading Comprehension: SQuAD, CoQA, BoolQ

• World Knowledge: TruthfulQA, ARC-Easy, ARC-Challenge

Figure 9 shows the relationship between upstream pre-training loss and downstream task
performance for these additional tasks. Each row corresponds to a task category and each
subplot represents a different task, with points colored according to MoE sparsity S. The
x-axis represents the upstream pre-training loss, while the y-axis shows the downstream
task performance metric (usually accuracy or error rate). These results supplement our
main findings from Section 4:

• We observe consistent trends across tasks within each category, with language under-
standing and world knowledge tasks showing strong correlations between upstream and
downstream performance regardless of sparsity.

• Reading comprehension tasks continue to show a slight advantage for denser models, while
common sense reasoning tasks (which can be considered part of the symbolic problem-
solving category) show more varied relationships between upstream and downstream per-
formance.

F.6 Comparing IsoFLOP Surface Analysis with Independent 2d IsoFLOPs

Recall that in Section 2, we used IsoFLOP surfaces that predict pre-training loss across
varying parameter counts and sparsity levels to understand how optimal sparsity and optimal
model size depend on each other.

In this section, we evaluate whether these findings remain consistent when we do not rely
on fitted IsoFLOP surfaces. Specifically, similar to Approach II in Hoffmann et al. (2022),
we directly fit univariate quadratic functions that map model size N to pre-training loss L,
independently for each sparsity level and training compute budget. We then assess these
univariate fits to determine whether our findings in Section 2 hold.

• In Figure 11, each row shows how the optimal total and active parameters change as a
function of MoE sparsity for fixed training budgets. As in our findings from Section 2
(Figure 5), increasing sparsity increases the optimal total parameters while decreasing
the optimal active parameters. Moreover, larger compute budgets still result in higher
optimal total and active parameters, regardless of the sparsity level.

• Furthermore, in Figure 10, we observe that across all training compute budgets, increasing
sparsity reduces the optimal pre-training loss. This is consistent with the trends identified
in Section 3 (Figure 2), thereby validating our earlier results.

23

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425
Do

wn
st

re
am

 Ta
sk

 E
rro

r

Random chance: 0.50

(a) PIQA (10-shot)

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.60

0.65

0.70

0.75

0.80

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.80

(b) CommonSense QA (10-shot)

Sparsity: 0% (Dense) Sparsity: 25% Sparsity: 50% Sparsity: 75% Sparsity: 90% Sparsity: 95%

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.75

(c) OpenBook QA (0-shot)

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.25

0.30

0.35

0.40

0.45

0.50

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.50

(d) COPA (0-shot)

Common Sense Reasoning

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.4

0.5

0.6

0.7

0.8

0.9

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 1.00

(a) LAMBADA (0-shot)

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.75

(b) HellaSwag (10-shot)

Sparsity: 0% (Dense) Sparsity: 25% Sparsity: 50% Sparsity: 75% Sparsity: 90% Sparsity: 95%

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.20

0.25

0.30

0.35

0.40

0.45

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.50

(c) Winograd (0-shot)

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.50

(d) Winogrande (0-shot)

Language Understanding

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.5

0.6

0.7

0.8

0.9

1.0

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.99

(a) SQuAD (10-shot)

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.99

(b) COQA (0-shot)

Sparsity: 0% (Dense) Sparsity: 25% Sparsity: 50% Sparsity: 75% Sparsity: 90% Sparsity: 95%

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.35

0.40

0.45

0.50

0.55

0.60

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.50

(c) BoolQ (10-shot)

Reading Comprehension

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.75

(a) BIG-Bench QA-Wikidata (10-shot)

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.75

(b) ARC-Easy (10-shot)

Sparsity: 0% (Dense) Sparsity: 25% Sparsity: 50% Sparsity: 75% Sparsity: 90% Sparsity: 95%

2.2 2.4 2.6 2.8 3.0 3.2
(Upstream) Pretraining Loss L

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Do
wn

st
re

am
 Ta

sk
 E

rro
r

Random chance: 0.75

(c) ARC-Challenge (10-shot)

World Knowledge

Figure 9: Downstream task performance vs. upstream pre-training loss. Each subplot
shows the relationship between upstream pre-training loss (x-axis) and downstream task perfor-
mance (y-axis) for a specific task. Similar to our results in Section 4, we find that the MoE sparsity
level does not change the relationship between upstream pre-training loss and downstream task
performance.

24

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

0% 39% 63% 78% 86% 92% 95% 97% 98%
MoE Sparsity S

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

O
pt

im
al

 P
re

tra
in

in
g

lo
ss

 L
*

Effect of MoE Sparsity on Pretraining Loss

Training Compute budget
(in FLOPs)

3e19
6e19
1e20
3e20
1e21

Figure 10: Effect of MoE sparsity on pretraining loss across different training compute
budgets. As sparsity increases, the validation loss decreases for all compute budgets, with larger
budgets (darker lines) achieving lower losses at each sparsity level. This trend is consistent with
the findings from Section 3, demonstrating that increasing sparsity reduces the optimal pretraining
loss across all compute budgets.

100.0M 1.4B 2.7B 4.0B
Active Parameters

2.6

2.8

3.0

3.2

3.4

3.6

Lo
ss

 (v
al

id
at

io
n)

Compute budget: 3e+19 | Active Parameters

MoE Sparsity (sparser=darker)
0% (N: 330.2M)
25% (N: 343.0M)
50% (N: 295.5M)
75% (N: 304.5M)

90% (N: 238.0M)
95% (N: 189.4M)
98% (N: 151.9M)

100.0M 1.4B 2.7B 4.0B
Total Parameters

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Lo
ss

 (v
al

id
at

io
n)

Compute budget: 3e+19 | Total Parameters

MoE Sparsity (sparser=darker)
0% (N: 329.1M)
25% (N: 418.6M)
50% (N: 512.2M)
75% (N: 624.6M)

90% (N: 1.7B)
95% (N: 2.7B)
98% (N: 5.1B)

100.0M 1.4B 2.7B 4.0B
Active Parameters

2.4

2.6

2.8

3.0

3.2

Lo
ss

 (v
al

id
at

io
n)

Compute budget: 6e+19 | Active Parameters

MoE Sparsity (sparser=darker)
0% (N: 509.2M)
25% (N: 463.3M)
50% (N: 452.5M)
75% (N: 408.6M)

90% (N: 315.2M)
95% (N: 262.9M)
98% (N: 203.2M)

100.0M 1.4B 2.7B 4.0B
Total Parameters

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Lo
ss

 (v
al

id
at

io
n)

Compute budget: 6e+19 | Total Parameters

MoE Sparsity (sparser=darker)
0% (N: 509.2M)
25% (N: 584.7M)
50% (N: 779.1M)
75% (N: 1.3B)

90% (N: 2.4B)
95% (N: 3.9B)
98% (N: 7.1B)

100.0M 2.7B 5.4B 8.0B
Active Parameters

2.4

2.6

2.8

3.0

3.2

3.4

Lo
ss

 (v
al

id
at

io
n)

Compute budget: 1e+20 | Active Parameters

MoE Sparsity (sparser=darker)
0% (N: 657.9M)
25% (N: 656.6M)
50% (N: 617.2M)
75% (N: 546.9M)

90% (N: 452.6M)
95% (N: 339.4M)
98% (N: 264.0M)

100.0M 2.7B 5.4B 8.0B
Total Parameters

2.4

2.6

2.8

3.0

3.2

3.4

Lo
ss

 (v
al

id
at

io
n)

Compute budget: 1e+20 | Total Parameters

MoE Sparsity (sparser=darker)
0% (N: 684.0M)
25% (N: 834.8M)
50% (N: 1.1B)
75% (N: 1.8B)

90% (N: 3.2B)
95% (N: 5.0B)
98% (N: 9.6B)

100.0M 2.7B 5.4B 8.0B
Active Parameters

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Lo
ss

 (v
al

id
at

io
n)

Compute budget: 3e+20 | Active Parameters

MoE Sparsity (sparser=darker)
0% (N: 1.3B)
25% (N: 1.4B)
50% (N: 1.3B)
75% (N: 1.0B)

90% (N: 811.4M)
95% (N: 608.2M)
98% (N: 453.7M)

100.0M 2.7B 5.4B 8.0B
Total Parameters

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Lo
ss

 (v
al

id
at

io
n)

Compute budget: 3e+20 | Total Parameters

MoE Sparsity (sparser=darker)
0% (N: 1.3B)
25% (N: 1.8B)
50% (N: 2.2B)
75% (N: 3.4B)

90% (N: 6.6B)
95% (N: 9.6B)
98% (N: 18.8B)

100.0M 16.7B 33.4B 50.0B
Active Parameters

2.2

2.4

2.6

2.8

3.0

Lo
ss

 (v
al

id
at

io
n)

Compute budget: 1e+21 | Active Parameters

MoE Sparsity (sparser=darker)
0% (N: 2.9B)
25% (N: 2.6B)
50% (N: 2.4B)

75% (N: 1.8B)
90% (N: 1.5B)
95% (N: 1.3B)

100.0M 16.7B 33.4B 50.0B
Total Parameters

2.2

2.4

2.6

2.8

3.0

3.2

Lo
ss

 (v
al

id
at

io
n)

Compute budget: 1e+21 | Total Parameters

MoE Sparsity (sparser=darker)
0% (N: 2.9B)
25% (N: 3.3B)
50% (N: 4.4B)

75% (N: 6.1B)
90% (N: 12.1B)
95% (N: 21.2B)

Figure 11: Effect of MoE sparsity on optimal total and active parameters across different
training compute budgets. Each row shows the change in total and active parameters as a
function of sparsity level for fixed training budgets. Increasing sparsity leads to an increase in the
optimal total parameters while reducing the optimal active parameters, consistent with our findings
in Section 2 (Figure 5). Larger training compute budgets result in higher optimal (total and active)
parameters across all sparsity levels.

25

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

G Incorporating Sparsity into Scaling Laws

2.0 2.2 2.4 2.6 2.8
Observed Loss

2.0

2.2

2.4

2.6

2.8

Pr
ed

ict
ed

 L
os

s

Params
4.00B 8.00B 12.00B 16.00B

Params
4.00B 8.00B 12.00B 16.00B

100.00B

200.00B

300.00B

400.00B

To
ke

ns

(a) Fit on data used to estimate co-
efficients.

2.1 2.2 2.3 2.4 2.5 2.6
Observed Loss

2.1

2.2

2.3

2.4

2.5

2.6

P
re

di
ct

ed
 L

os
s

Params
5.00B 7.50B 10.00B 12.50B 15.00B

Params
5.00B 7.50B 10.00B 12.50B 15.00B

50.00B

100.00B

150.00B

200.00B

250.00B

300.00B

350.00B

400.00B

To
ke

ns

(b) Validating scaling law on held-
out dataset.

Figure 12: Scaling law fit on data obtained from training compute-optimal models. Figure (a)
shows fit on data used to estimate coefficients for Equation 2 while (b) validates the estimated
coefficients on a held-out dataset. All S = 0.98 data points were excluded from the fitting process
to provide an out-of-sample validation. The dashed lines represent equal loss values.

G.1 Scaling Law for Dense Models

The scaling laws proposed by Kaplan et al. (2020) provide a framework for predicting loss in
dense models by establishing a power-law relationship between loss L, number of parameters
N and dataset size D, where N and D interact linearly. Formally, the relationship is given
by:

L(N,D) =
a

Nα
+

b

Dβ
+ e (8)

Here, the term Nα captures the inverse relationship between model size and loss, where an
increase in model size N leads to a reduction in loss. The exponent α quantifies the rate
of this decrease; a larger α suggests a steeper reduction in loss with increasing model size.
Similarly, the term Dβ indicates the impact of dataset size D on loss, with larger datasets
contributing to lower loss values. The exponent β measures this relationship, where a larger
β implies a greater benefit from increased data. The constant e represents an asymptotic
minimum for the loss, as both model size and dataset size approach infinity.

G.2 Fitting Coefficients to Scaling Laws for Sparsity

By incorporating sparsity into the scaling law equation, we can eliminate the need for
parameters specific to MoEs, such as the total and active number of experts. Indeed, as
Frantar et al. (2024) demonstrates, this same equation, Equation 2, continues to hold
under a different mechanism for introducing sparsity—weight sparsity—where individual
neural network connections are pruned.

We use the recipe described by Hoffmann et al. (2022) and use the L-BFGS algorithm to
fit the coefficients in Equation 2 using a Huber loss with δ = 10−3. The optimal coefficient
values are found via a grid search with values described in Table 2. The results of data
fitting and validation are shown in Figure 12. The estimated values are shown in Table 3
in Appendix G.

G.3 Hyperparameters and Estimated Coefficients

Table 2 shows the parameters used to initialize L-BFGS used to fit the proposed parametric
scaling law given in Equation 2. Table 3 shows the estimated parameters for the parameteric
model. We use a held out dataset that consists of data points for models with sparsity value
S = 0.98 to validate the performance of the estimated model coefficients. The mean squared
error and the Huber loss error on the dataset used to fit the model is 0.00056 and 0.0036
respectively and 0.0058 and 0.0011 respectively on the out-of-sample validation set.

26

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 2: Initial values used to estimate coefficients in Equation 2.

coefficients initial values

log(a), log(b), log(c), log(d) [0, 10, 20]
α, β, γ [0, 0.25, 0.5, 0.75, 1, 1.25]
λ, δ [−1,−0.5, 0, 0.5, 1]
log(e) 1.5

Table 3: Estimated values for coefficients in Equation 2.

coefficient estimate

α 0.5962
β 0.3954
λ -0.1666
δ 0.1603
γ 0.1595
a 16612.50
b 5455.67
c 0.4598
d 17.26
e 0.94

27

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

H Discussion

Our findings amplify the findings of Ludziejewski et al. (2024) and further justify the effort
to work toward MoEs with experts larger in number and smaller in size (He, 2024). For
downstream tasks which their performance is predictable given the pretraining loss (i.e., per-
plexity), sparsity potentially provides efficiency gains both during pretraining and inference.
Here is a summary of our observations as discussed in Sections 2 to 5 :

• Larger, Sparser Models Perform Better under a Fixed Compute Budget: When
memory and communication overheads are disregarded, increasing sparsity while propor-
tionally expanding the total number of parameters consistently leads to a lower pretraining
loss, even when constrained by a fixed training compute budget (see § 2).

• Optimal Sparsity for Fixed Model Size: For any given number of parameters and
under a fixed training compute budget, model performance as a function of sparsity
exhibits a parabolic pattern, reaching its peak at an optimal sparsity level (see §F.2).
Specifically, the optimal sparsity:

– Increases with the total number of parameters approaching 1.0 for larger models.
i.e., if a model is relatively small for a given training compute budget, sparsifying it
more than a threshold will hurt its performance. On the other hand, if a model is
relatively large for a given compute budget, further sparsifying it helps as it leads
to increase in the number of tokens the model is trained on under the given training
budget constraints (see §F.2).

– Increases across all model sizes as the training compute budget increases (see §F.3
and §F.4).

• Effect of Sparsity on Scaling Laws for Optimal Model Size: For any specific
sparsity level, performance of the models as a function of their size exhibits parabolic
behavior under a fixed training compute budget. i.e., the model reaches its optimal
performance at a vertex, that indicates optimal model size. Under these conditions:

– The optimal active number of parameters decreases as the sparsity level increases,
leading to smaller FLOPs per example and more efficient inference even though the
total number of parameters increases (see §F.1).

– While the trend of increasing active number of parameters is similar across all training
compute budgets; the optimal active number of parameters decrease more rapidly
with sparsity as the training compute budget increases (see §3).

• Effect of Sparsity on Downstream Performance: For most downstream tasks,
models with similar pretraining perplexity have similar downstream task performance
regardless of sparsity. For reading comprehension tasks (e.g., CoQA (Reddy et al., 2019),
SQuAD (Rajpurkar et al., 2018)), denser models perform better, potentially due to their
higher inference-time compute than a perplexity-matched sparse model. Strategies to
increase inference time compute dynamically (Wei et al., 2022b; Goyal et al., 2024) may
address this gap.

• Parametric Scaling Law: We propose a parametric form for scaling laws that accounts
for sparsity. The model coefficients are estimated using the empirical data obtained by
training compute-optimal models. An interesting observation from Appendix G is that
the exponent for sparsity term λ is negative which is consistent with our intuition that
sparser models lead to a lower perplexity.

28

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

I Conclusion

In this paper, we investigated the optimal trade-off between parameters and compute per
example for maximizing model capacity. Our findings indicate that sparsity, as a knob
that controls FLOPs per example in MoEs, is a powerful mechanism for optimizing model
performance under constrained training compute budgets. By balancing the total number
of parameters, compute, and sparsity, MoEs can be scaled more effectively. These insights
provide valuable guidance for scaling language models, especially for MoEs, where the trade-
offs between parameters and FLOPs must be carefully managed.

MoEs were originally introduced to allow increasing model capacity without a significant
increase in inference cost. Our experiments show that under fixed total training compute
budget increasing sparsity in MoEs leads to smaller FLOPs per example, higher number
of parameters, and lower pretraining loss simultaneously. In other words, in the context of
MoEs, if there are no constraints on the total number of parameters, increasing the capacity
of the model through parameter count seem to be the optimal strategy if lower pretraining
loss is the main goal. On the other hand, when comparing how well the pretraining per-
formance transfers to various downstream tasks, denser models seem exhibit better transfer
performance on certain types of task that potentially rely on deeper processing of the in-
put vs the knowledge stored in the parameters of the model. This potentially signals the
importance of the role of FLOPs per example in increasing the capacity of the model dur-
ing inference. This observation reveals an interesting direction to improve the performance
efficiency of MoEs at inference time.

Future work will focus on determining the optimal balance between FLOPs per example and
parameter count, with an emphasis on conducting in-depth analyses of model performance
across diverse downstream tasks. A key direction will involve exploring strategies to balance
parameter allocation and computational demands to minimize inference costs. Developing
scaling law studies to identify optimal approaches for achieving efficiency and performance
during inference represents a critical area for further investigation.

Another important avenue will be to examine how the findings on the role of sparsity in
MoEs generalize to architectures or approaches that employ different mechanisms for inde-
pendently adjusting FLOPs per example and the number of trainable parameters. Addi-
tionally, an intriguing direction for future exploration is the study of scaling behaviors in
models that enable negative sparsity values through parameter sharing.

29

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

J Limitations

In our analysis, similar to other scaling law studies (Kaplan et al., 2020; Hoffmann et al.,
2022), we have measured the costs for both training and inference exclusively in terms of
FLOPs. While there may be discrepancies between actual computational costs and theo-
retical FLOPs due to hardware specifications, infrastructure, and implementation details,
it is reasonable to abstract away from these factors when comparing similar models under
fixed conditions. However, an important aspect not accounted for in this study is the cost
associated with memory usage and communication overhead, which could potentially in-
crease as we raise the sparsity level. Incorporating these factors is challenging because they
are highly dependent on the hardware used. To address this limitation to some extent, in
Appendix F.2 we investigate the optimal sparsity level under the setting where total number
of parameters is fixed.

Despite the limitation with using an approximate method to quantify FLOPs, our find-
ings highlight the importance of investing in methods to enhance the efficiency of sparse
Mixture-of-Experts models. By increasing model capacity through additional parameters
while minimizing per-unit computation costs, these models have the potential to improve
both efficiency and performance. The availability of GPUs with larger memory, for e.g.,
the recently introduced H200 GPU chip with 141 GB of memory as well as improving the
efficiency of training and deployment pipelines (NeMo Authors, 2025) suggest that there is
significant interest in developing efficient implementations for MoEs.

30

	Introduction
	The Interplay between Model Parameters and Sparsity
	Impact of Training Compute Budget on the Interaction between Model Parameters and Sparsity
	Effect of MoE Sparsity on Downstream Task Performance
	Incorporating Sparsity into Scaling Laws
	Conclusion
	Appendix
	
	Related Work
	Scaling Laws for Language Models
	Scaling Laws for MoEs

	Preliminaries
	Mixture-of-Expert (MoE) Transformers

	Experimental Setup
	Estimating Mixture-of-Expert (MoE) FLOPs
	Related Work
	Scaling Laws for Language Models
	Scaling Laws for MoEs

	Additional Analysis
	Optimal Model Size for Fixed Sparsity Level
	Optimal Sparsity Level for Fixed Model Size
	Interplay between parameters and FLOPs per example
	Effect of training budget and model size on optimal MoE sparsity
	Effect of sparsity on downstream task performance
	Comparing IsoFLOP Surface Analysis with Independent 2d IsoFLOPs

	Incorporating Sparsity into Scaling Laws
	Scaling Law for Dense Models
	Fitting Coefficients to Scaling Laws for Sparsity
	Hyperparameters and Estimated Coefficients

	Discussion
	Conclusion
	Limitations

