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Abstract
Utilizing large language models (LLMs) for001
zero-shot document ranking is done in one of002
two ways: 1) prompt-based re-ranking meth-003
ods, which require no further training but are004
only feasible for re-ranking a handful of can-005
didate documents due to computational costs;006
and 2) unsupervised contrastive trained dense007
retrieval methods, which can retrieve relevant008
documents from the entire corpus but require a009
large amount of paired text data for contrastive010
training. In this paper, we propose PromptReps,011
which combines the advantages of both cate-012
gories: no need for training and the ability to013
retrieve from the whole corpus. Our method014
only requires prompts to guide an LLM to gen-015
erate query and document representations for016
effective document retrieval. Specifically, we017
prompt the LLMs to represent a given text us-018
ing a single word, and then use the last token’s019
hidden states and the corresponding logits asso-020
ciated with the prediction of the next token to021
construct a hybrid document retrieval system.022
The retrieval system harnesses both dense text023
embedding and sparse bag-of-words represen-024
tations given by the LLM. We further explore025
variations of this core idea that consider the gen-026
eration of multiple words, and representations027
that rely on multiple embeddings and sparse dis-028
tributions. Our experimental evaluation on the029
MSMARCO, TREC deep learning and BEIR030
zero-shot document retrieval datasets illustrates031
that this simple prompt-based LLM retrieval032
method can achieve a similar or higher re-033
trieval effectiveness than state-of-the-art LLM034
embedding methods that are trained with large035
amounts of unsupervised data, especially when036
using a larger LLM.1037

1 Introduction038

Large Language Models (LLMs) such as GPT4039

and LLaMA, which are pretrained on massive cor-040

1Code for fully reproducing the results is avail-
able at https://anonymous.4open.science/r/
PromptReps-anonymous-58DE.

Figure 1: Overview of PromptReps. LLMs are
prompted to simultaneously generate dense and sparse
representations, which are then used to build search in-
dices.

pora and finetuned to follow user instructions, have 041

strong zero-shot natural language understanding 042

capabilities (OpenAI, 2023; Touvron et al., 2023). 043

Via prompting, LLMs excel in various text gen- 044

eration tasks such as question answering, writing 045

assistance, and conversational agent (Hendrycks 046

et al., 2021; Liu et al., 2023). Inspired by the suc- 047

cess of LLMs on natural language understanding 048

tasks, research has explored the potential of using 049

LLMs to perform unsupervised document ranking. 050

One line of work focuses on directly prompt- 051

ing LLMs to infer document relevance to a given 052

query (Sachan et al., 2022; Zhuang et al., 2023a; 053

Ma et al., 2023b; Sun et al., 2023; Pradeep et al., 054

2023; Zhuang et al., 2023b; Qin et al., 2024). For 055

instance, RankGPT (Sun et al., 2023) casts docu- 056

ment re-ranking as a permutation generation task, 057

prompting LLMs to generate re-ordered document 058

identifiers according to the document’s relevance 059

to the query. These methods leverage LLMs for 060

document ranking in a complete zero-shot setting 061

where no further training is required. However, 062
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these methods can only serve as a second-stage re-063

ranker on a handful of candidate documents. This064

is because each prompt requires one full LLM infer-065

ence: for example, in the case of a corpus with 1M066

documents, a pointwise approach would require067

the construction of 1M prompts and thus the exe-068

cution of 1M (costly) LLM inferences – making it069

unfeasible for an online search engine.070

Another line of research leverages LLMs as071

a text embedding model for dense document re-072

trieval (Lee et al., 2024; Wang et al., 2024a,b;073

BehnamGhader et al., 2024). For example, E5-074

mistral (Wang et al., 2024b) employs LLMs to075

create synthetic datasets of query-document pairs.076

These paired text data are then used to perform un-077

supervised contrastive training for a Mistral LLM-078

based dense retriever. Since the queries and docu-079

ments are encoded with LLMs separately; i.e., us-080

ing a bi-encoder architecture, these methods could081

serve as a first-stage document retriever. However,082

all existing LLM-based retrievers require an un-083

supervised contrastive training step to transform084

a generative LLM into a text-embedding model.085

Even with parameter-efficient training techniques086

such as LoRA (Hu et al., 2022), this extra train-087

ing is still very expensive. For example, the con-088

trastive training of E5-mistral using a large batch089

size (2048) and LoRA took ≈ 18 hours on 32 V100090

GPUs (Wang et al., 2024b).091

In this work, we propose a new zero-shot092

LLM-based document retrieval method called093

PromptReps. We demonstrate that LLMs can be094

directly prompted to produce query and document095

embeddings, which can serve as effective text repre-096

sentations for neural retrieval systems. Specifically,097

we prompt an LLM by asking it to use a single word098

to represent a query or a document. Then, we ex-099

tract the last layer’s hidden state of the last token in100

the prompt as the dense representation of the input101

text. Simultaneously, we utilize the logits associ-102

ated with predicting the subsequent token to form103

a sparse representation. As illustrated in Figure 1,104

through a single forward pass, we generate text rep-105

resentations for a document that can be indexed for106

dense, sparse, or hybrid search architectures. We107

also explore alternative representations in addition108

to the core idea in this paper, where we generate109

multiple words, and use multiple embeddings to110

represent an item (Figures 3 and 4).111

Our empirical evaluation on multiple datasets112

show that PromptReps can achieve a similar or113

higher zero-shot retrieval effectiveness than previ-114

ous trained LLM-based embedding methods, es- 115

pecially when a large LLM is utilized. Of key 116

importance is that our method is the first LLM- 117

based method that can effectively perform full cor- 118

pus retrieval while at the same time not requiring 119

contrastive training, demonstrating that prompt en- 120

gineering for generative LLMs is capable of gener- 121

ating robust representations for retrieval. 122

2 Related Work 123

2.1 Supervised Neural Retrievers 124

Neural retrievers based on the bi-encoder archi- 125

tecture bring significant improvements over tradi- 126

tional best-match retrievers such as BM25. Dense 127

retrievers such as DPR (Karpukhin et al., 2020), 128

ANCE (Xiong et al., 2021), ColBERT (Khat- 129

tab and Zaharia, 2020), are based on encoder- 130

only language models and encode text into low- 131

dimensional dense vectors, conducting search with 132

(approximate) nearest neighbor search. On the 133

other hand, sparse neural retrievers such as Deep- 134

Impact (Mallia et al., 2021), uniCOIL (Lin and 135

Ma, 2021), TILDE (Zhuang and Zuccon, 2021c,b), 136

and SPLADE (Formal et al., 2021), also based on 137

encoder-only language models, encode text into 138

high-dimensional sparse vectors as bag-of-words 139

representations, conducting search in an inverted 140

index. Recent work has also explored fine-tuning 141

generative LLMs as dense retrievers such as Re- 142

pLLaMA (Ma et al., 2023a) and LLaRA (Liao et al., 143

2024). A hybrid neural retrieval system refers to 144

a system that combines the rankings provided by 145

both dense and sparse retrievers, often resulting 146

in an enhanced final ranking (Lin and Ma, 2021; 147

Wang et al., 2021a). 148

All these retrievers are trained with supervised 149

relevance judgment data (e.g., MS MARCO (Ba- 150

jaj et al., 2018)) using contrastive learning. Our 151

work instead focuses on building a hybrid neural 152

retrieval system with zero-shot dense and sparse 153

document representations without supervised con- 154

trastive learning and based on generative LLMs. 155

This capability has two implications: (1) no con- 156

trastive training is required, which is expensive 157

when applied to LLMs with several billions param- 158

eters, and (2) no human-labelled training data is 159

required, which may be laborious and expensive to 160

obtain. With regards to the first point, Wang et al. 161

(2024b) reported that the training of E5-mistrail 162

(7B parameters) took about 18 hours on 32 V100 163
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GPUs, for an approximate cost of USD $2,3002,164

emissions of ≈5.6 kgCO2e and consumption of165

≈37.7 L of water for the associated cooling ac-166

tivities3. Scaling this training to more and larger167

LLMs, and more data, will consequently further in-168

crease costs. Our proposed method does not incurr169

these additional contrastive pre-training costs. With170

regards to the second point, dense retrievers have171

shown to have poor generalisability when applied172

to data out-of-domain or out-of-task compared to173

the data used for contrastive training (Thakur et al.,174

2021; Zhuang and Zuccon, 2021a, 2022; Ren et al.,175

2023; Lin et al., 2023; Lupart et al., 2022). In pres-176

ence of shift in data between training and deploy-177

ment, retrieval losses can be significant: dense re-178

trieval effectiveness can plummet far below that of179

best-match models like BM25 (Khramtsova et al.,180

2023, 2024). The acquisition of in-domain/in-task181

training data can be costly, laborious and often im-182

practical/impossible especially in domain-specific183

applications and when dealing with sensitive, pri-184

vate data.185

2.2 Unsupervised Neural Retrievers186

There have also been attempts at training ef-187

fective neural retrievers without relying on hu-188

man relevance judgments. Methods such as Con-189

triever (Izacard et al., 2022) and E5 (Wang et al.,190

2024a), train a dense retriever with large-scale191

pseudo query-document pairs to build unsupervised192

(synthetic) training data. LLMs have also been193

adapted as unsupervised text embedding models194

for first-stage document retrieval. For instance,195

HyDE (Gao et al., 2023a) enhances query rep-196

resentations for an unsupervised retriever by re-197

placing the original query with LLM-generated198

hypothetical documents. More recent work has199

focused on directly converting generative LLMs200

into a text-embedding model with unsupervised201

contrastive pre-training. Methods like E5-Mistral-202

Inst (Wang et al., 2024b) and Gecko (Lee et al.,203

2024) use large-scale weakly supervised paired text204

data or LLM-generated query-document pair data205

to perform contrastive training on top of LLMs.206

LLM2Vec (BehnamGhader et al., 2024), on the207

other hand, conducts further masked next token208

prediction pre-training with bidirectional attention,209

and SimCSE (Gao et al., 2021) trains on raw text210

data to transform LLMs into text encoders. Al-211

2Based on 4 On-Demand p3dn.24xlarge instances, June 2024.
3Emissions and water consumption estimates obtained using
the frameworks of Scells et al. (2022); Zuccon et al. (2023).

though no labeled data is used, these methods re- 212

quire synthetic or unsupervised paired text data to 213

perform contrastive pre-training (thus still expe- 214

riencing training costs in terms of computations; 215

and further computational costs may be associated 216

with the generation of synthetic training data). Our 217

method instead relies solely on prompt engineering 218

to transform LLM into a robust text encoder for 219

document retrieval without any extra training. 220

2.3 Prompting LLMs for document ranking 221

Inspired by the prompt-following capacity of 222

LLMs, recent studies have explored prompting 223

LLMs for document re-ranking. For instance, 224

UPR (Sachan et al., 2022) ranks documents point- 225

wise by prompting the LLM to generate a rele- 226

vant query for a given document and rank docu- 227

ments based on the likelihood of generating the 228

query. RankGPT (Sun et al., 2023) and LRL (Ma 229

et al., 2023b) propose to re-rank a list of docu- 230

ments at once and generate permutations for the 231

reordered list. Pairwise (Qin et al., 2024) and 232

Setwise (Zhuang et al., 2023b) prompting meth- 233

ods have also been explored to improve effective- 234

ness and efficiency in the LLM re-ranking pipeline. 235

These methods are only feasible for re-ranking a 236

handful of candidate documents, thus limited to 237

second-stage document re-ranking. In contrast, 238

our approach utilizes prompts to construct the first- 239

stage retrievers. 240

2.4 Prompting LLM for sentence embeddings 241

The methods most similar to ours prompt LLMs to 242

generate sentence embeddings for semantic textual 243

similarity (STS) tasks (Jiang et al., 2023b; Lei et al., 244

2024; Zhang et al., 2024). These previous methods 245

also used an Explicit One-word Limitation (EOL) 246

prompt, which also instructs LLMs to represent a 247

sentence with one word. However, these methods 248

only evaluate such prompts on STS datasets, and 249

their effectiveness on information retrieval datasets 250

with large document corpora is unknown. Addition- 251

ally, these methods only represent text with dense 252

embeddings from the hidden states; our method 253

instead generates dense and sparse representations 254

simultaneously to build a hybrid retrieval system. 255

Our empirical results show that dense embeddings 256

alone perform poorly for document retrieval tasks 257

with some LLMs, but sparse representations are 258

much more robust, and the best retrieval effective- 259

ness is achieved with the hybrid retrieval system 260

with scaled model size. 261
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3 PromptReps262

Previous work that leverages LLMs for document263

ranking are limited to document re-ranking tasks264

with prompts or rely on contrastive learning to265

transform a generative LLM into an embedding266

model for document retrieval. Unlike these previ-267

ous works, here we aim to directly prompt LLMs268

to generate both dense embedding representations269

and sparse bag-of-words representations for docu-270

ment retrieval without any form of extra training ef-271

fort. To achieve this, we devise the prompt as illus-272

trated in Figure 1 as the input text for LLMs, where273

<System> <User> and <Assistant> are LLM pre-274

defined conversational prefix tokens and [text] is275

the placeholder for passage text.276

When using this prompt for text generation, the277

language model needs to find a single word in its278

token vocabulary that can best represent the given279

passage to generate. However, since there could280

be multiple words to represent the passage, there281

might be multiple tokens in the vocabulary that282

have a high probability of being sampled by the283

language model. Such a distribution over the vo-284

cabulary, which is often refers to as “logits”, could285

provide a good representation of the given passage.286

In addition, since the logits are computed by the287

last layer hidden state4 of the last input token (‘ “288

’), which is a dense vector embedding, it could also289

serve as a dense representation of the passage.290

Based on the above intuition, we develop a291

sparse + dense hybrid document retrieval system292

by utilizing both the next token logits and the last293

layer hidden states outputted by the LLM with our294

designed prompt.295

Specifically, during the document indexing296

phase, we pass all the documents (one at the time)297

with our prompt into the LLM to get output hid-298

den states and logits. To build a sparse retrieval299

pipeline with logits, we first need to sparsify the300

logits representation to be able to perform efficient301

sparse retrieval. This is because logits originally302

had values for all tokens in the vocabulary, essen-303

tially forming dense vectors with dimensions equal304

to the vocabulary size. To sparsify the logit rep-305

resentations for sparse retrieval, we perform the306

following steps:307

1. Lowercase the input document text to align with308

the phrase "Make sure your word is in lower-309

case." in the prompt since this phrase skewed310

4Often through dot product between the last hidden state with
all token embeddings.

the sampling distribution towards lowercase to- 311

kens (a "sparser" distribution). We then utilize 312

the NLTK toolkit (Bird and Loper, 2004) to ex- 313

tract all words in the document, filtering out 314

standard English stopwords and punctuation. 315

2. Next, we use the LLM’s tokenizer to tokenize 316

each extracted word and obtain their token IDs5. 317

We retain only the values corresponding to the 318

obtained token IDs in the logits and set the rest 319

of the dimensions to zero, thereby considering 320

only tokens present in the documents, thus en- 321

abling exact term matching in retrieval. 322

3. Next, we follow the SPLADE recipe (Formal 323

et al., 2021), using the ReLU function to remove 324

dimensions with negative values and applying 325

log-saturation to the logits to prevent certain 326

tokens from dominating. To further enhance the 327

sparsity of logits, we only keep tokens within 328

the top 128 values if the logits had more than 329

128 non-zero values after the previous steps. 330

4. Finally, the logits are quantized by multiplying 331

the original values by 100 and taking the inte- 332

ger operation on that, and the obtained values 333

represent the weights of corresponding tokens. 334

With these adjustments, the logits representations 335

of documents are heavily sparsified, allowing for 336

efficient sparse retrieval with an inverted index. 337

For dense retrieval, we directly use the hidden 338

states as the embeddings of the documents. For in- 339

dexing these embeddings, we simply normalize all 340

the embeddings and add them into an Approximate 341

Nearest search (ANN) vector index. 342

At query time, we process the queries exactly 343

the same as the documents, with the only excep- 344

tion being that the term "passage" in the prompt is 345

replaced with "query". The dense representation 346

of the query is utilized for semantic search via the 347

ANN index, while the sparse representation of the 348

query is employed for exact term matching via the 349

inverted index. Following previous work (Wang 350

et al., 2021b), we compute the final document 351

scores by applying min-max normalization to both 352

dense and sparse document scores. These normal- 353

ized scores are then linearly interpolated with equal 354

weights to produce the final document scores. 355

5Note that many words may be split into sub-tokens, resulting
in multiple token IDs, all of which are considered in the logits
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Table 1: nDCG@10 scores of BEIR 13 publicly available datasets. The best scores of methods without interpolating
with BM25 are highlighted in bold.

Unsup Contrastive training PromptReps (ours)
LLM - BERT-330M Llama3-8B-I Llama3-8B-I Llama3-70B-I

Dataset BM25 E5-PTlarge LLM2Vec Dense Sparse Hybrid Dense Sparse Hybrid +BM25
arguana 39.70 44.4 51.73 29.70 22.85 32.98 31.65 24.66 35.27 39.53
climatefever 16.51 15.7 23.58 19.92 9.98 21.38 19.95 12.14 22.18 23.34
dbpedia 31.80 37.1 26.78 31.53 28.84 37.71 31.12 28.30 37.59 41.63
fever 65.13 68.6 53.42 56.28 52.35 71.11 42.06 51.75 63.97 74.06
fiqa 23.61 43.2 28.56 27.11 20.33 32.40 30.80 22.16 34.66 35.35
hotpotqa 63.30 52.2 52.37 19.64 44.75 47.05 24.32 42.12 48.51 65.29
nfcorpus 32.18 33.7 26.28 29.56 28.18 32.98 33.84 29.74 36.08 37.64
nq 30.55 41.7 37.65 34.43 29.55 43.14 38.25 30.37 46.97 48.30
quora 78.86 86.1 84.64 72.55 68.27 80.45 76.14 68.77 82.56 85.83
scidocs 14.90 21.8 10.39 18.51 11.57 17.59 20.59 13.25 19.10 18.82
scifact 67.89 72.3 66.36 52.68 58.48 65.71 63.12 61.53 70.34 73.58
trec-covid 59.47 61.8 63.34 59.52 54.59 69.25 67.64 63.00 76.85 80.29
touche 44.22 19.8 12.82 14.85 18.47 21.78 15.56 18.65 22.35 34.15
avg 43.70 44.61 41.38 35.87 34.48 44.13 38.08 35.88 45.88 50.60

4 Experimental setup356

Dataset and evaluation: We evaluate the docu-357

ment ranking effectiveness of both baseline meth-358

ods and our proposed PromptReps using MS-359

MARCO (Nguyen et al., 2016) passage retrieval,360

TREC deep learning (Craswell et al., 2020) and361

BEIR (Thakur et al., 2021). These datasets encom-362

pass various IR tasks, providing a heterogeneous363

evaluation environment. For MSMARCO we re-364

port MRR@10 and for TREC deep learning and365

BIER we report nDCG@10 scores, the commonly366

employed evaluation measures for these datasets.367

Baselines: We compare PromptReps with strong368

unsupervised first-stage retrievers including BM25,369

a classic term frequency-based sparse retrieval370

method, and E5-PTlarge (Wang et al., 2024a),371

a state-of-the-art BERT-based dense embedding372

method trained on 1.3B carefully crafted unsuper-373

vised text pairs. LLM2Vec (BehnamGhader et al.,374

2024), a Llama3-8B-Instruct LLM-based dense375

embedding method trained with bi-directional at-376

tention, masked next token prediction, and Sim-377

CSE (Gao et al., 2021) on the Wikipedia corpus.378

Implementation of PromptReps: PromptReps379

is implemented using four base LLMs: Mistral-380

7b-Instruct-v0.26 (Jiang et al., 2023a), Phi-3-mini-381

4k-instruct7 (Abdin et al., 2024), Llama3-8B-382

Instruct8, and Llama3-70B-Instruct9 (AI@Meta,383

2024). Dense and sparse document and query en-384

codings are implemented using the Huggingface385

6https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
7https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
8https://huggingface.co/meta-llama/Meta-Llama-3-8B-
Instruct

9https://huggingface.co/meta-llama/Meta-Llama-3-70B-
Instruct

Transformers library (Wolf et al., 2020) and the 386

Tevatron toolkit (Gao et al., 2023b). The Faiss 387

library (Douze et al., 2024) is used to build the 388

ANN index with cosine similarity as the embed- 389

ding distance metric, and Pyserini (Lin et al., 2021) 390

is utilized to construct the inverted index for sparse 391

retrieval. For the dense and sparse ranking hybrid, 392

the Ranx library (Bassani and Romelli, 2022) is 393

employed. In our experiments, we report dense 394

only, sparse only, and the full hybrid results. 395

5 Results 396

We start by showing our overall results on the BEIR 397

dataset, which we treated as test set; we then anal- 398

yse choices in instantiation of PromptReps, includ- 399

ing different variations in the prompt using the 400

MS MARCO and TREC deep learning datasets, 401

which we used as development datasets to inform 402

the choices we made to run PromptReps on BEIR. 403

5.1 Zero-shot retrieval effectiveness on BEIR 404

We present our results on BEIR in Table 1. The 405

first observation highlights that BM25 is a very 406

strong zero-shot retrieval method, capable of out- 407

performing LLM2Vec, based on the Llama3-8B- 408

Instruct LLM, across numerous datasets, achiev- 409

ing a higher average nDCG@10 score. This out- 410

come implies that even with a large-size LLM, 411

bi-directional attention enabled, additional pre- 412

training, and SimCSE-based unsupervised con- 413

trastive training, there remains a gap in transform- 414

ing a decoder-only LLM into an effective retrieval 415

method. 416

On the other hand, E5-PTlarge, based on the 417

BERT-large model, is the first method that can 418
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Table 2: Investigated prompts. The systems prompt and any text string before the prompts in this table are the same
as Figure 1, thus omitted. <A> denotes the model-specific assistant special token.

ID Prompts
1 Use one word to represent the passage in a retrieval task.<A>The word is: "
2 Use one word to represent the passage.<A>The word is: "
3 Use one most important word to represent the passage in a retrieval task. Make sure your word is in lowercase.<A>The word is: "
4 Use one word to represent the passage in a retrieval task.<A>
5 Use one most important word to represent the passage in a retrieval task.<A>The word is: "
6 Use one word to represent the passage in a retrieval task. Make sure your word is in lowercase.<A>The word is: "

Figure 2: MRR@10 scores on MS MARCO of
PromptReps with different LLMs.

outperform BM25 without any supervised train-419

ing data. However, it has been trained on a massive,420

carefully mined text pair dataset with a large batch421

size, which may require more data-collecting ef-422

forts and computational resources than LLM2Vec.423

Our proposed PromptReps with Llama3-8B-424

Instruct LLM has lower nDCG@10 scores when425

only using dense or sparse retrieval. However,426

the hybrid system (combining dense and sparse)427

contributes notable retrieval effectiveness improve-428

ments, surpassing BM25 and approaching the state-429

of-the-art E5-PTlarge. Notably, this is achieved430

without any form of extra training but solely rely-431

ing on prompts.432

The scaling law of LLM (Kaplan et al., 2020)433

also applies here. When changing Llama3-434

8B-Instruction to Llama3-70B-Instruction, the435

dense and sparse retrieval effectiveness of our436

PromptReps further improves, with the hybrid ap-437

proach surpassing E5-PTlarge.438

We further note that when interpolating dense,439

sparse and BM25, the average nDCG@10 achieved440

a remarkable score of 50.60. These results demon-441

strate that it is possible to build a strong retrieval442

system with LLMs and BM25 without the need for443

any unsupervised or supervised training.444

5.2 Sensitivity to different prompts445

In the previous experiments, we always use the446

prompt illustrated in Figure 1. In this section, we447

Table 3: Retrieval effectiveness of different prompts on
TREC deep learning and MS MARCO. The ID corre-
spond to the prompt IDs list in Table 2.

ID Methods DL2019 DL2020 MSMARCO
- BM25 49.73 48.76 18.75
- LLM2Vec - - 13.61

PrompReps Llama3-8B-Instruct (ours)
1 Dense 49.26 40.28 16.26
2 Dense 43.32 31.60 12.52
3 Dense 49.20 43.90 17.49
4 Dense 0.00 0.00 0.00
5 Dense 47.19 40.17 16.02
6 Dense 50.62 43.81 17.54
1 Sparse 41.77 44.81 20.12
2 Sparse 39.90 43.10 19.13
3 Sparse 43.50 44.87 20.42
4 Sparse 21.77 20.49 7.22
5 Sparse 42.18 44.17 19.78
6 Sparse 42.25 45.60 20.85
1 Hybrid 53.67 54.35 23.68
2 Hybrid 50.65 49.25 21.76
3 Hybrid 55.64 53.83 23.86
4 Hybrid 13.47 11.81 5.06
5 Hybrid 54.16 52.06 23.25
6 Hybrid 55.58 56.66 24.62

study how different prompts impact the retrieval 448

effectiveness. Particularly, we design six differ- 449

ent prompts10, listed in Table 2, and conduct ex- 450

periments on TREC deep learning 2019 and 2020 451

datasets, and MS MARCO passage retrieval dev 452

sub-dataset. We use Llama3-8B-Instruction as the 453

base LLM for PromptReps. The results are listed 454

in Table 3. We also report results of Recall@1000 455

and other base LLMs in Appendix A. 456

The results demonstrate that PromptReps can 457

achieve a similar level of retrieval effectiveness 458

as BM25 and surpass LLM2Vec with most of the 459

prompts. The only prompt that does not work well 460

is prompt #4, which does not include the phrase 461

“The word is: “” to force the LLM to generate 462

the representative word as the next token. This 463

is expected because, without this phrase, the first 464

generated token would be a general token such as 465

10The prompt in Figure 1 is the prompt number 6 in Table 2.
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Figure 3: First-word single-representations or Multi-
token single-representation.

“The” which is not representative of the input text.466

Interestingly, our results also show that LLMs467

have instruction-following ability in this represen-468

tation generation task. For instance, comparing469

prompts #1 and #2, the only difference is the phrase470

“in a retrieval task”, and the prompt with this471

phrase yields higher retrieval effectiveness across472

all datasets. Additionally, comparing prompts #1473

and #6, the difference is the phrase “Make sure your474

word is in lowercase”, which matches our sparse475

exact matching method where we first lowercase476

the input text. This phrase can further improve the477

retrieval effectiveness. Finally, using the adjective478

phrase “most important” in the prompt does not479

significantly impact the results.480

5.3 Impact of different LLMs481

In this section, we explore how different base482

LLMs impact PromptReps. For this study, we in-483

vestigate five state-of-the-art open-sourced decoder-484

only LLMs, covering different model sizes and485

models with or without instruction tuning. We use486

prompt #6 for all LLMs11 and report MRR@10487

scores on the MS MARCO datasets. The results488

are illustrated in Figure 2; more detailed results489

including on TREC deep learning datasets are re-490

ported in Appendix A.491

The results show that the hybrid retrieval effec-492

tiveness of our PromptReps consistently outper-493

forms BM25, regardless of which LLM is used,494

with the only exception of Mistral-7B-Instruct.495

When using the Mistral-7B-Instruct LLM, the496

dense-only retriever performs poorly. Surpris-497

ingly, implementing PromptReps with Phi-3-mini-498

4k-instruct achieved much higher retrieval effec-499

tiveness than that of Mistral-7B-Instruct, despite500

having far less parameters (3.8B).501

11Only the model specific conversational special tokens are
changed.

Figure 4: Multi-representations with ColBERT scoring.

Meta-Llama-3 models are generally very effec- 502

tive for our method. For 8B models, the instruction- 503

tuned model performs significantly better than the 504

pretrained-only model, indicating that the instruc- 505

tion fine-tuning is helpful to further improve our 506

method. The 70B instruction-tuned model achieved 507

the best hybrid retrieval results, but the dense-only 508

and sparse-only retrieval effectiveness are similar 509

to the 8B instruction-tuned model. These results 510

agree with the BEIR results presented in Table 1. 511

6 Alternative representations and scoring 512

In the previous sections, we only considered us- 513

ing the representations (dense and sparse) yielded 514

from the last token in the prompt for document 515

retrieval. These representations, in the context of 516

generative LLMs, are responsible for predicting 517

the first generated token. We define this setting as 518

First-token single-representation. We have demon- 519

strated that this simple way of generating represen- 520

tations is effective for document retrieval; however, 521

these representations might be sub-optimal. For 522

example, LLMs use sub-word tokenization algo- 523

rithms such as SentencePiece (Kudo and Richard- 524

son, 2018). This tokenization might split a word 525

into sub-words, meaning that the first generated 526

token might just be a sub-word. Using the rep- 527

resentation of the whole word might be a better 528

representation than the first token representation. 529

Additionally, previous works in multi-vector dense 530

retrieval such as ColBERT (Khattab and Zaharia, 531

2020) demonstrated that using multiple representa- 532

tions could be beneficial for document retrieval. 533

How can we use PromptReps to also generate 534

single-word representations or multiple represen- 535

tations that can potentially enhance the retrieval 536

effectiveness? In this section, we explore these 537

alternative representations. 538

First-word single-representation and Multi- 539

token single-representation. Instead of just using 540

7



Figure 5: Hybrid retrieval results of different representation methods on BEIR.

the representations for the first generated token,541

these two methods let the LLM finish the genera-542

tion12 of the whole word or multiple words, con-543

trolled by the given prompt (“Use one word” or544

“Use three words”), as illustrated in Figure 3. The545

end of generation is detected by the token ‘”’. We546

then pool all the representations of the generated547

tokens to form a single dense and sparse represen-548

tation to index the input text. For the dense repre-549

sentation we use mean pooling and for the sparse550

representation we use max pooling. Once repre-551

sentations are obtained, the scoring is the same as552

First-token single-representation.553

Multi-token multi-representation and Multi-554

word multi-representation. Instead of using a sin-555

gle representation for retrieval, these two meth-556

ods prompt the LLM to generate multiple words557

and then index each generated representation sep-558

arately. The difference between the two is that559

Multi-token multi-representation keeps all the to-560

ken representations in the index, while Multi-word561

multi-representation first groups tokens into words562

by using space, and then creates a single repre-563

sentation for each word by using max pooling564

for sparse representations and mean pooling for565

dense representations. During retrieval, we follow566

the ColBERT scoring method where the relevance567

score of a document is computed by the sum of the568

maximum similarity of each query representation569

against each document representation (Figure 4).570

Hybrid retrieval results are shown in Figure 5,571

and full dense and sparse retrieval results in Ap-572

pendix B. Results show that all the explored573

methods are able to perform document retrieval.574

The First-token single-representation and Multi-575

token single-representation generally perform the576

best. However, we note that Multi-token single-577

representation requires more token generation578

steps and thus has higher query latency. The First-579

word single-representation performs the worst,580

suggesting that sub-word representations hurt the581

12We simply use greedy generation.

retrieval performance for single-word generation 582

prompts. On the other hand, multi-representation 583

methods with ColBERT scoring methods do not 584

seem beneficial. Thus, we conclude that the sim- 585

plest First-token single-representation is sufficient 586

to represent the input text for document retrieval. 587

7 Conclusion 588

We introduced PromptReps, a simple yet effec- 589

tive method that prompts LLMs to generate dense 590

and sparse representations for zero-shot document 591

retrieval without any further unsupervised or su- 592

pervised training. Our work reveals that modern 593

LLMs are effective text encoders by themselves, 594

and prompt engineering is sufficient to stimulate 595

their text encoding ability. 596

For future works, techniques like few-shot in- 597

context learning (Brown et al., 2020), chain-of- 598

thought prompting (Wei et al., 2022), and auto- 599

prompt optimization methods (Yang et al., 2024; 600

Fernando et al., 2023), which have proven to be ef- 601

fective in text-generation tasks, could potentially be 602

leveraged here to enhance embedding generation. 603

Moreover, it has been shown that the instruction- 604

following ability of LLMs could be transferred 605

to embedding models with synthetic instruction 606

fine-tuning data (Wang et al., 2024b). In our 607

work, we always keep the instruction prompt con- 608

sistent across different IR tasks, which could be 609

sub-optimal. It is interesting to investigate how to 610

customize instructions for PromptReps to generate 611

embeddings specific to different domains, tasks, or 612

even to multi-lingual and cross-lingual IR settings. 613

Finally, our prompting method could be seen as a 614

simple approach to obtaining a better initialization 615

of LLM-based embedding models, which is much 616

more cost-effective than methods requiring further 617

pre-training (BehnamGhader et al., 2024; Li et al., 618

2023). All the previous contrastive pre-training 619

with paired text data and synthetically generated 620

data could be applied on top of our method and 621

could potentially yield improved LLM-based em- 622

bedding models. 623
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8 Limitations624

PromptReps has higher query latency than other625

LLM-based dense retrievers if no further optimiza-626

tion is implemented. This limitation comes from627

two aspects.628

First, although the computation of document rep-629

resentations happens offline thus will not affect630

query latency, the query representations are created631

online. PromptReps adds extra prompt texts on top632

of the query text thus has a longer input length –633

and LLM inference time is proportional to prompt634

length. However, we believe this limitation can be635

mitigated by leveraging recent works on prompt636

compression to compress the fixed prompt tokens637

into few or even a single latent token (Ge et al.,638

2024; Cheng et al., 2024).639

Secondly, the highest effectiveness for our640

PromptReps is achieved in the hybrid retrieval641

setting. Compared to previous works which use642

dense representations only, the hybrid setting re-643

quires both dense and sparse retrieval, thus the extra644

sparse retrieval introduces extra query latency (and645

requires additional disk/memory space for the in-646

verted index). However, PromptReps actually only647

requires a limited query latency overhead if dense648

and sparse retrieval are implemented in parallel. In649

our method, obtaining both dense and sparse rep-650

resentations only requires a single LLM forward651

inference; the only extra computation is the dot652

product of the dense vector with the token embed-653

dings, which is very fast on GPU. For document654

search, since we heavily sparsified the sparse repre-655

sentation, in our experiments, our sparse retriever656

is much faster than BM25, and the bottleneck is the657

dense retriever. Since the dense and sparse search658

could be run in parallel and the hybrid operation659

is a simple linear interpolation of both rankings660

(very fast on CPU), the query latency of the hybrid661

process only depends on the dense retrieval latency,662

and it is thus very close to previous methods.663

9 Ethical considerations664

In our experiments, we use PromptReps coupled665

with LLMs with a large number of parameters (up666

to 70B in our experiments) to encode the BEIR and667

MS MARCO datasets, which contain millions of668

documents. Although no LLM training was con-669

ducted, we are aware that our experiments might670

still have consumed significant energy, thus con-671

tributing to CO2 emissions (Scells et al., 2022) and672

water consumption (Zuccon et al., 2023).673

In addition, since we leverage LLMs in a black- 674

box manner and LLMs’ generation might contain 675

biases (Gallegos et al., 2024), the representations 676

generated by LLMs may be biased towards certain 677

contents or topics. Future work could consider 678

how to mitigate biases in PromptReps via prompt 679

engineering. 680
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A Full results on TREC deep learning1065

and MS MARCO1066

In Table 4 we present the full results we abstained1067

on TREC deep learning datasets and MS MARCO1068

passage retrieval dataset. The prompt ID is refer to1069

Table 2.1070

B Full results of different representation1071

methods1072

In Table 5 we present the full results of different1073

representation and scoring methods discussed in1074

Section 6.1075
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Table 4: TREC deep learning and MS MARCO performance of different prompts and LLMs.

Prompt DL2019 DL2020 MS MARCO Dev
ID Methods nDCG@10 Recall@1000 nDCG@10 Recall@1000 MRR@10 Recall@1000

- BM25 49.73 74.50 48.76 80.31 18.75 85.73
- LLM2Vec - - - - 13.61 94.70

Phi-3-mini-4k-instruct (3.8B)
1 Dense 46.78 70.10 42.84 67.60 15.45 82.68
2 Dense 34.64 55.15 30.62 50.47 10.85 66.04
3 Dense 49.62 75.79 43.21 71.87 15.78 86.24
4 Dense 39.12 60.77 28.33 57.20 9.26 72.31
5 Dense 43.94 72.51 39.00 70.57 13.50 83.08
6 Dense 40.77 62.05 37.20 58.39 14.64 79.29
1 Sparse 41.51 69.56 40.95 69.70 16.89 84.72
2 Sparse 40.67 60.59 39.36 61.58 16.38 75.43
3 Sparse 42.28 74.33 40.72 72.14 18.16 87.09
4 Sparse 38.05 65.15 34.33 64.13 14.75 78.59
5 Sparse 40.68 70.84 39.26 69.02 16.04 84.41
6 Sparse 41.98 71.20 41.99 69.66 18.19 86.55
1 Hybrid 53.04 79.99 52.76 77.64 21.61 92.21
2 Hybrid 50.51 69.75 43.92 66.47 19.22 81.35
3 Hybrid 55.53 81.68 51.35 79.49 21.76 93.53
4 Hybrid 48.53 76.29 40.37 73.64 18.23 87.18
5 Hybrid 52.08 80.16 50.52 79.30 20.30 92.37
6 Hybrid 51.10 75.84 49.24 73.98 22.06 91.41

Meta-Llama-3-8B-Instruct
1 Dense 49.26 73.03 40.28 68.77 16.26 81.96
2 Dense 43.32 64.77 31.60 61.35 12.52 73.89
3 Dense 49.20 71.69 43.90 69.96 17.49 84.50
4 Dense 0.00 0.00 0.00 0.00 0.00 0.04
5 Dense 47.19 72.00 40.17 66.71 16.02 82.56
6 Dense 50.62 73.01 43.81 68.39 17.54 82.91
1 Sparse 41.77 67.28 44.81 71.36 20.12 85.71
2 Sparse 39.90 66.00 43.10 69.08 19.13 83.74
3 Sparse 43.50 66.74 44.87 72.93 20.42 85.14
4 Sparse 21.77 41.94 20.49 50.51 7.22 56.35
5 Sparse 42.18 67.18 44.17 71.94 19.78 85.37
6 Sparse 42.25 66.58 45.60 72.82 20.85 85.57
1 Hybrid 53.67 83.52 54.35 78.42 23.68 92.84
2 Hybrid 50.65 80.31 49.25 76.64 21.76 90.12
3 Hybrid 55.64 81.90 53.83 79.15 23.86 92.99
4 Hybrid 13.47 37.81 11.81 45.22 5.06 50.50
5 Hybrid 54.16 82.06 52.06 78.70 23.25 92.77
6 Hybrid 55.58 83.44 56.66 79.14 24.62 93.11

Meta-Llama-3-8B
6 Dense 43.90 67.38 35.50 63.34 14.67 79.61
6 Sparse 38.41 64.83 43.34 67.57 18.82 82.63
6 Hybrid 51.13 77.07 46.34 75.42 22.31 90.87

Mistral-7B-Instruct-v0.2
6 Dense 13.96 27.26 16.77 26.69 5.61 40.27
6 Sparse 39.84 58.05 37.29 63.53 15.62 77.55
6 Hybrid 32.58 57.00 32.95 63.12 13.18 77.98

Meta-Llama-3-70B-Instruct
6 Dense 51.95 77.30 45.01 73.66 17.76 85.65
6 Sparse 44.07 68.60 44.14 70.99 20.70 86.42
6 Hybrid 58.39 86.22 59.17 81.57 25.66 93.75
6 + BM25 63.18 88.56 62.55 86.28 27.63 95.83
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Table 5: Full results of different representation and scoring methods on BEIR.

Dataset First token single rep First-word single rep Multi token single rep Multi-token multi-rep Multi-word multi-rep
Dense Sparse Hybrid Dense Sparse Hybrid Dense Sparse Hybrid Dense Sparse Hybrid Dense Sparse Hybrid

arguana 29.70 22.85 33.32 20.54 24.59 23.80 41.78 24.46 42.61 36.69 23.03 35.19 36.47 24.13 34.96
climatefever 19.92 9.98 21.38 13.88 11.28 16.67 22.19 9.29 20.90 19.40 6.72 17.56 18.75 8.10 18.09
dbpedia 31.53 28.84 37.71 22.71 28.70 30.08 31.83 26.33 36.03 27.46 18.18 31.35 24.50 21.66 30.32
fever 56.28 52.35 71.11 40.97 57.10 61.20 50.49 51.36 64.13 44.53 30.31 54.04 38.81 37.95 52.97
fiqa 27.11 20.33 32.40 17.61 19.60 24.74 28.94 20.73 32.44 25.26 19.41 28.38 26.28 19.50 28.30
hotpotqa 19.64 44.75 47.05 10.35 46.25 37.79 29.94 46.50 51.50 23.80 39.39 46.38 21.93 40.25 43.68
nfcorpus 29.56 28.18 32.98 21.98 29.15 29.49 28.97 28.65 33.65 25.68 25.39 31.20 22.95 25.37 30.05
nq 34.43 29.55 43.14 22.83 29.25 33.18 35.09 25.88 39.36 31.36 23.28 35.38 30.55 22.78 35.95
quora 72.55 68.27 80.45 51.68 66.68 69.09 78.90 66.83 81.93 72.71 63.21 77.91 73.57 63.38 78.77
scidocs 18.51 11.57 17.59 12.73 12.05 14.97 18.12 11.83 17.39 16.13 11.08 15.68 15.85 11.40 15.44
scifact 52.68 58.48 65.71 26.66 58.75 51.59 52.55 59.32 63.75 45.53 54.23 58.53 47.05 53.21 61.18
trec-covid 59.52 54.59 69.25 51.00 55.04 63.53 63.28 51.73 69.16 60.97 49.88 63.54 61.17 46.24 65.10
touche2020 14.85 18.47 21.65 12.23 21.58 19.13 15.59 19.24 21.44 15.86 17.81 22.10 15.41 18.09 19.26
avg 35.87 34.48 44.13 25.01 35.39 36.56 38.28 34.01 44.18 34.26 29.38 39.79 33.33 30.16 39.54
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