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Abstract

Reasoning is a fundamental component of lan-001
guage understanding. Recent prompting tech-002
niques, such as chain of thought, have consis-003
tently improved LLMs’ performance on vari-004
ous reasoning tasks. Nevertheless, there is still005
little understanding of what triggers reasoning006
abilities in LLMs in the inference stage. In007
this paper, we investigate the effect of the in-008
put representation on the reasoning abilities009
of LLMs. We hypothesize that representing010
natural language tasks as code can enhance spe-011
cific reasoning abilities such as entity tracking012
or logical reasoning. To study this, we pro-013
pose code prompting, a methodology we opera-014
tionalize as a chain of prompts that transforms015
a natural language problem into code and di-016
rectly prompts the LLM using the generated017
code without resorting to external code execu-018
tion. We find that code prompting exhibits a019
high-performance boost for multiple LLMs (up020
to 22.52 percentage points on GPT 3.5, 7.75 on021
Mixtral, and 16.78 on Mistral) across multiple022
conditional reasoning datasets. We then con-023
duct comprehensive experiments to understand024
how the code representation triggers reasoning025
abilities and which capabilities are elicited in026
the underlying models. Our analysis on GPT027
3.5 reveals that the code formatting of the input028
problem is essential for performance improve-029
ment. Furthermore, the code representation im-030
proves sample efficiency of in-context learning031
and facilitates state tracking of entities.1032

1 Introduction033

Reasoning is a fundamental component of both034

human and artificial intelligence (AI) and the back-035

bone of many NLP tasks. Recently, intensive stud-036

ies have been performed on different aspects or037

types of reasoning such as mathematical reason-038

ing (Patel et al., 2021; Chen et al., 2021b; Cobbe039

et al., 2021), various kinds of logical reasoning040

1Our code and prompts are available at this URL

Figure 1: Code prompting converts a natural language
problem into a code prompt and prompts a large lan-
guage model with such code to generate an answer.

(Liu et al., 2020, 2023a; Sinha et al., 2019), and 041

commonsense-focused reasoning (Madaan et al., 042

2022; Liu et al., 2022a,b; Wang et al., 2023). Condi- 043

tional reasoning, a primary yet complex reasoning 044

ability that draws alternative conclusions depend- 045

ing on the fulfillment of certain conditions, remains 046

understudied. These conditions are stated in the 047

text, making the problem self-contained, which 048

allows us to study the semantic inferencing capa- 049

bilities of the underlying model, i.e., identifying 050

relevant premises and ascertaining the presence 051

of total evidence (Nolt et al., 1988; Cabria and 052

Magnini, 2014) without the requirement for, and 053

confounding effects of external knowledge. Condi- 054

tional reasoning is also a fundamental form of rea- 055

soning useful in many practical scenarios, such as 056

answering real-world questions about the eligibility 057

for a visa or a loan. Despite the recent introduction 058

of some benchmarks (Saeidi et al., 2018; Sun et al., 059

2022; Kazemi et al., 2023), conditional reasoning 060

abilities of LLMs remain understudied. 061

Recently, researchers have analyzed the syner- 062

gies between LLMs and symbolic interpreters to 063

improve performance on reasoning tasks (Gao 064

et al., 2023; Chen et al., 2023; Lyu et al., 2023). 065

These works transform structured reasoning prob- 066

lems, such as mathematic or symbolic reasoning, 067

into code and run it on an external interpreter. In 068

such a setup, LLMs are mainly focused on natu- 069
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ral language representation aspects and planning070

how to solve the problem, while the actual logi-071

cal reasoning is offloaded to an external execution072

module, confounding our understanding of the rea-073

soning In particular, the fundamental questions of074

what contributes to the reasoning abilities and how075

reasoning abilities are triggered in LLMs remain076

open. Nevertheless, pretraining on code is con-077

sidered an important component that contributes078

to and explains the improved reasoning ability of079

LLMs. State-of-the-art LLMs such as GPT 3.5 (Ko-080

jima et al., 2022), GPT 4 (OpenAI, 2023), Mixtral081

(Jiang et al., 2024), and Mistral 7B (Jiang et al.,082

2023) have been pretrained on both text and code083

and have demonstrated considerable boosts in many084

reasoning benchmarks.085

In this work, we analyze whether one can elicit086

improved conditional reasoning abilities in LLMs087

by merely changing the input format, i.e., from text088

to code. We constrain our experiments to text+code089

LLMs to run text and code inputs on the same un-090

derlying model. In this way, we can avoid the091

confounding factor of different pretraining data of092

specialized text and code LLMs. To understand093

the benefit of code as an intermediate representa-094

tion, we devise a chain of prompts, code prompting,095

that transforms a natural language (NL) task into096

code and directly prompts the LLM with the gener-097

ated code. The code contains the logical structure098

needed to solve the problem, along with the orig-099

inal natural language text as code comments. An100

illustration is provided in Figure 1. Our contribu-101

tions are summarized as follows:102

• We propose a methodology to investigate how103

the input representation impacts the reasoning104

abilities of text+code LLMs.105

• We operationalize such methodology by intro-106

ducing a chain of prompts that transforms a107

NL task into code, which is then sent back to108

the LLM to generate NL answers.109

• We conduct a comprehensive study to com-110

pare code prompts with text prompts, show-111

ing (i) large performance gains on the three112

LLMs (up to 22.52 points for GPT3.5, up to113

7.75 for Mixtral, and up to 16.78 for Mistral),114

while (ii) being more efficient with regard to115

the number of demonstrations.116

• We conduct extensive analysis to understand117

why code prompts efficiently elicit conditional118

reasoning abilities, showing that prompting 119

with code yields largely improved variable 120

state tracking. 121

2 Background and Related Work 122

LLM Types. We categorize LLMs into three 123

types according to their intended use: i) LLMs for 124

natural language text (text LLMs), ii) LLMs for cod- 125

ing tasks (code LLMs), and iii) LLMs for natural 126

language and coding tasks (text+code LLMs). The 127

intended use of text LLMs (Zhang et al., 2022; Tou- 128

vron et al., 2023) is to process and generate natural 129

language text such as answers to questions. The in- 130

tended use of code LLMs (Li et al., 2023b; Roziere 131

et al., 2023) is to process and generate code. Lastly, 132

text+code LLMs are equally capable of solving nat- 133

ural language and coding tasks. Examples of this 134

are GPT 3.5 (Kojima et al., 2022), Mixtral (Jiang 135

et al., 2024), and Mistral (Jiang et al., 2023). In 136

this work, we focus on text+code LLMs because of 137

their ability to process two types of input represen- 138

tations interchangeably: natural language text and 139

code. Using such models eliminates the confound- 140

ing effect of fine-tuning between model variants 141

specialized for only text or code. 142

Augmenting text with code. Most works that 143

generate code to solve natural language tasks use 144

an external symbolic interpreter to run the result- 145

ing code. Chen et al. (2023) and Gao et al. (2023) 146

showed consistent gains on mathematical problems, 147

symbolic reasoning, and algorithmic problems by 148

using LLMs aided by external code interpreters. 149

Lyu et al. (2023) further report improvements in 150

boolean multi-hop QA, planning, and relational 151

inference. In contrast, Ye et al. (2023) used an ex- 152

ternal automated theorem prover with declarative 153

code and showed consistent gains w.r.t. imperative 154

code-interpreter-aided LLMs on arithmetic reason- 155

ing, logical reasoning, symbolic reasoning, and 156

regex synthesis tasks. Pan et al. (2023) did not 157

use any interpreter and instead created programs 158

composed of multiple subroutines and used smaller 159

specialized models to run them. In this way, they 160

outperform text prompts on text LLMs for fact- 161

checking tasks. Lastly, Li et al. (2023a) runs pieces 162

of code in an LLM to update the program state 163

when the Python interpreter fails due to a code 164

exception and shows performance gains on BIG- 165

Bench Hard (Suzgun et al., 2022). All these works 166

investigate how to best use an external symbolic in- 167

terpreter to aid an LLM in solving reasoning tasks, 168
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Figure 2: Code prompting converts natural language descriptions into code to be solved with a large language
model. The figure shows a transformed instance from the ConditionalQA dataset.

i.e., they run code and therefore have a program169

state with variables and its values. However, we170

do not employ any external symbolic reasoner, and171

we do not run code. We investigate the reasoning172

abilities of LLMs under different input representa-173

tions (i.e., text and code). Our code prompts are174

not executed; they are simply read by the LLM and175

used to generate a natural language answer.176

Some works suggest that code LLMs may pos-177

sess superior reasoning abilities than text LLMs.178

Madaan et al. (2022) investigate whether code179

LLMs are superior at structured reasoning than180

text LLMs. They observe that code LLMs can gen-181

erate graphs that link commonsense concepts better182

than text LLMs. Liu et al. (2023b) investigate code183

prompts in abductive and counterfactual reasoning184

tasks and report superior results than text prompts185

on code-davinci (Ouyang et al., 2022), a code186

LLM. However, code prompts exhibit mixed re-187

sults on text-davinci-002 (Ouyang et al., 2022),188

a text LLM. We attribute this to the fact that while189

this model includes some code in its pretraining cor-190

pus, it is not explicitly trained for code generation191

and, in general, performs poorly on code generation192

tasks (Chen et al., 2021a). Therefore, the effect of193

the input representation on the reasoning abilities of194

text+code LLMs remains unclear. Furthermore, the195

reasons behind the superior performance of code196

prompts in code LLMs also remain unclear. In our197

work, we aim to answer whether code prompts can198

elicit conditional reasoning abilities in text+code199

LLMs and the reasons behind this.200

To the best of our knowledge, only the work of201

Hussain et al. (2023) investigates the conditional202

reasoning abilities of LLMs. However, they only203

analyze the abilities of text LLMs after training 204

them on ConditionalQA (Sun et al., 2022). 205

3 Code Prompting 206

We posit that each LLM encodes a set of capabili- 207

ties, such as mathematical, logical, or conditional 208

reasoning. However, not all of them are used for 209

every input instance, even if they would be use- 210

ful. We hypothesize that the input representation 211

plays a pivotal role in eliciting such capabilities. 212

Prior works show that LLMs trained on a combi- 213

nation of text and code exhibit superior reasoning 214

abilities (Kojima et al., 2022; OpenAI, 2023; Jiang 215

et al., 2024, 2023). Therefore, we conjecture that 216

a code representation of a natural language (NL) 217

problem may trigger some of these reasoning abil- 218

ities encoded in text+code LLMs. More formally, 219

we wonder whether exists some space S2 with an 220

associated function f that transforms a natural lan- 221

guage problem p ∈ N into that space, such that, 222

when prompting an LLM with the representation 223

of p in such space yields better results according to 224

some evaluation function σ. 225

∃S, f : N → S, σ(LLM(f(p)) ≥ σ(LLM(p)) 226

We fix S to the programming language space and 227

define code prompts f(p) as prompts that model 228

a natural language problem with code. We also 229

define f as a prompt that transforms the NL text 230

into code. f(p) code follows the original NL text 231

as much as possible. We use a simple structured 232

code that contains the logical structure needed to 233

2Since the input of LLMs must be strings, S must be a set
of all possible sentences constructed using some alphabet and
grammar.
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solve the problem, along with the original NL text234

as code comments. In particular, it creates vari-235

ables for key entities in the question and documents236

and if blocks for each conditional statement in the237

documents. Figure 2 exemplifies this transforma-238

tion and Appendix C provides more details of the239

code features. Lastly, we define code prompting240

as LLM(f(p)), a chain of prompts that i) trans-241

form the NL text into code, and ii) use this code to242

prompt the LLM to generate the answer in natural243

language. Figure 1 illustrates this pipeline.244

It is important to note that the code is not ex-245

ecuted per se and therefore, there is no program246

state. We simply prompt the LLM with the code247

and ask the LLM to generate a natural language248

answer based on the content of such code. This249

setup allows us to investigate the effect of the input250

representation on text+code LLMs.251

4 Experimental Setup252

4.1 Datasets253

Throughout our experiments, we use three question-254

answering (QA) datasets for conditional reason-255

ing: ConditionalQA (CondQA; Sun et al., 2022), a256

scenario-based question answering (QA) dataset,257

BoardgameQA (BGQA; Kazemi et al., 2023), a258

boardgame-base QA dataset with conflicting rules,259

and ShARC (Saeidi et al., 2018), a conversational260

QA dataset with natural language rules. Solving261

these datasets requires advanced conditional and262

compositional reasoning capabilities.263

We focus on the QA task of CondQA. For BGQA,264

we focus on the main partition, which includes265

three subsets BGQA-1, BGQA-2, and BGQA-3, where266

the number indicates the reasoning hops needed to267

answer. Lastly, while ShARC encompasses dialogue268

generation, we aim to evaluate specific capabilities269

unrelated to conversational flow. Therefore, we270

isolated the QA pairs from the provided dialogues,271

resulting in a dataset where the model has to answer272

yes, no, or not enough information.3 We include273

more details about the datasets in Appendix A, a274

formal definition of the prompts in Appendix B,275

and examples in Appendix M.276

4.2 Models277

We perform our study using text+code LLMs be-278

cause of their ability to process text and code inter-279

changeably. We do not employ code-only LLMs280

3In the full task, not enough information would trigger
another step in a pipeline to generate a follow-up question.

because their intended use does not include solving 281

natural language tasks (Roziere et al., 2023), as 282

required in our case. Similarly, we do not employ 283

text-only LLMs because they cannot generate code. 284

Furthermore, using text+code LLMs also allow us 285

to eliminate the confouding effect of fine-tuning 286

between model variants specialized for only text or 287

code. To further argue our point, we conduct small 288

experiments on CodeLLaMA (Roziere et al., 2023), 289

the results of which we report in Appendix D. 290

We employ OpenAI’s gpt-35-turbo, Mixtral 291

8x7B (Jiang et al., 2024), and Mistral 7B (Jiang 292

et al., 2023). The use of these models allows us to 293

investigate whether our hypothesis holds across all 294

available sizes of text+code LLMs. We execute our 295

prompts with in-context learning and provide one 296

demonstration per class. More details on the LLM 297

setup are provided in Appendix E. 298

4.3 Evaluation 299

We follow the evaluation metrics used in the orig- 300

inal datasets. For CondQA, we report the F1 token 301

overlap between the predicted answer and the la- 302

bel, while for BGQA and ShARC, we report the macro 303

F1 score. We run the main experiments two times 304

with different random seeds (0 and 1). We report 305

the average and standard deviation performance 306

across these runs. For the subsequent analyses of 307

code prompts, we run each experiment once only 308

on GPT 3.5 due to the inference costs. 309

5 Experiments 310

We devise a set of experiments to analyze and quan- 311

tify whether the code representation of a natural 312

language prompt (i.e., code prompts) elicits condi- 313

tional reasoning abilities and why. We first com- 314

pare the performance of the two prompting meth- 315

ods — text prompts and code prompts on three 316

LLMs across three datasets (§5.1). We then con- 317

duct extensive ablation experiments on the dev set 318

of the datasets with GPT 3.5, the best-performing 319

and largest model, to understand the reason behind 320

the performance gain from code prompting. In 321

particular, we study whether code syntax or the im- 322

plicit text simplification from the code translation is 323

what improves performance (Section 5.2). We also 324

check if the improvement is caused by the mod- 325

els merely being exposed to code within prompts 326

and not necessarily the instances translated to code 327

(Section 5.3). Furthermore, we show that code 328

prompting is more sample efficient (Section 5.4) 329
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Model Prompt CondQA ShARC BGQA-1 BGQA-2 BGQA-3 ∆CP
Test Set

GPT 3.5 Text 58.70 62.95 51.15 37.42 27.77 8.42Code 60.60 54.98 58.67 55.56 50.29

Mixtral Text 48.17 53.77 56.38 39.64 30.15 4.22Code 44.73 59.06 53.33 47.39 44.72

Mistral Text 35.74 43.60 47.40 48.78 47.86 2.74Code 33.28 49.92 53.80 51.27 48.79

Dev Set

GPT 3.5 Text 56.54± 0.08 64.10± 0.10 53.16± 1.67 33.71± 10.37 31.5± 13.39 9.84Code 57.64± 1.42 58.54± 1.22 68.60± 1.09 55.85± 4.06 47.57± 2.68

Mixtral Text 46.60± 0.99 55.71± 2.51 58.31± 1.77 36.77± 0.09 32.06± 1.79 2.51Code 40.88± 1.84 58.96± 3.44 57.94± 5.52 45.32± 0.54 38.90± 7.33

Mistral Text 28.84± 0.02 37.56± 0.78 47.61± 0.92 47.29± 1.97 46.56± 2.92 5.10Code 28.26± 10.03 53.42± 0.93 52.21± 0.95 54.27± 1.42 45.22± 10.75

Table 1: Comparison (F1 score) of text prompt and code prompts. All results use one demonstration per class.
∆CP = Code Prompt - Text Prompt, i.e., the average performance gain from code prompts across all datasets.

when compared to text prompting and that models330

prompted with code exhibit superior state tracking331

capabilities (Section 5.5). Lastly, we conduct a332

human evaluation that confirms the faithfulness of333

the generated code in Appendix H.334

5.1 Code Prompting Improves over Text335

Prompting336

Table 1 shows the model performance on the de-337

velopment and test sets. Code prompts outperform338

text prompts in the majority of cases on the test339

set (11 out of 15). This trend holds true across340

models, with each achieving peak performance341

through code prompts for most datasets (i.e., GPT-342

3.5 in 4/5, Mixtral in 3/5, Mistral in 4/5). Notably,343

code prompts consistently surpass text prompts on344

BGQA-2 and BGQA-3, the most reasoning-intensive345

datasets (see Appendix A), for all models. This346

is particularly evident for GPT-3.5, where gains347

exceed 18 points. Conversely, the advantage is348

narrower on CondQA, where the linguistic dimen-349

sion plays the biggest role (see Appendix A). This350

suggests that code prompts elicit conditional rea-351

soning abilities and are most suited for reasoning-352

intensive tasks. Furthermore, in the cases where353

text prompts are superior, their average gains are354

only 4.23. In contrast, code prompts lead to signifi-355

cantly larger mean gains of 8.53 in the cases where356

they are superior. Additionally, an experiment with357

Phi-2, a small language model, reveals a substan-358

tial 15-point performance improvement using code359

prompts (see Appendix G).360

To shed light on the performance gains driven by361

code prompts, we delve into the confusion matri- 362

ces (attached in Appendix L) and discover that text 363

prompts in Mistral predict “not enough information” 364

much less than code prompts for BGQA. This is par- 365

ticularly noticeable in BGQA-1, where text prompts 366

do not predict a single “not enough information,” 367

while code prompts do. On the other hand, text 368

prompts in GPT 3.5 and Mixtral overpredict “not 369

enough information” on BGQA and ShARC, leading 370

to a low number of true positives for the conclusive 371

answers. We hypothesize that this model hesita- 372

tion could stem from the alignment tax (Ouyang 373

et al., 2022) of reinforcement learning from human 374

feedback models. This potential barrier may be 375

alleviated by code prompts because they indicate 376

to the model the variable that answers the question 377

and instruct the model to track the entailment status 378

of variables within the given code. 379

These consistent and substantial gains from code 380

prompts are obtained despite a straightforward 381

transformation of text prompts, which does not 382

incorporate new information, as shown in Figure 2. 383

This finding strongly suggests that code possesses 384

specific characteristics that effectively elicit condi- 385

tional reasoning abilities within text+code LLMs. 386

5.2 Code Syntax Elicits Reasoning Abilities 387

We now want to delve into the source of the perfor- 388

mance gains observed when using code prompting. 389

We investigate whether these improvements stem 390

from the simplification of text into premises fa- 391

cilitated by code, effectively reducing the task to 392

a form of semantic inference within the linguis- 393

5



tic dimension, or if there are inherent properties394

of code syntax that contribute to enhanced perfor-395

mance. To investigate this, we devise experiments396

with prompts that represent the intermediate states397

between natural language and code.398

I. Atomic Statements. Inspired by Min et al.399

(2023), we transform each NL sentence4 into a400

sequence of atomic statements, which we then ap-401

pend to the original sentence. In this way, the402

atomic statements can be seen as defining variables403

for each key entity in the text. Hence, this new404

prompt would resemble code but without control405

flow and in natural language form. The prompt406

retains access to the original instance text (i.e., no407

loss of information) but is also augmented by sim-408

plified sentences in the form of atomic statements.409

This setup allows us to investigate whether the sim-410

plicity of the input triggers improves reasoning abil-411

ities, regardless of the text and code syntax.412

II. Back-Translated Code. In our second experi-413

ment, we investigate whether the semantics of the414

code statements and not the code syntax are the rea-415

son behind the performance boost. For this purpose,416

we back-transform the code prompts into NL such417

that the reasoning statements (i.e., the if conditions)418

are clearly and concisely stated in natural language.419

Specifically, we map every variable into the for-420

mat Key entity: variable without snake case. For421

instance, the variable husband_pass_away from422

Figure 2 would be back-transformed as Key en-423

tity: husband pass away. To transform the if state-424

ments, we create a translation prompt by providing425

four demonstrations. These demonstrations sim-426

ply translate the conditional statements within the427

code-formatted instance back into natural language.428

We also translate the variables in the same manner.429

This makes the back-translated text as close as pos-430

sible to the code text. We provide examples of this431

in Table 11 from Appendix J.432

Results. The results5 in Table 2 show that (1)433

prompting with atomic statements does not reach434

the performance of code prompts, and (2) mapping435

back from code to NL results in a performance436

drop compared to code prompts. These findings437

suggest that code prompts enhance LLM perfor-438

mance beyond mere text simplification. This con-439

4We only transform the facts in BGQA since transforming
the rules into atomic statements as well yields worse results.

5We do not conduct ablation tests on ShARC because,
as explained in Section 5, these ablations aim to understand
why code prompts outperform text prompts using the highest
performing model.

Dataset ∆ Atomic St. ∆ Code → NL
CondQA −2.66 −4.72
BGQA-1 −4.37 −1.43
BGQA-2 −8.72 −5.39
BGQA-3 −19.26 −3.68

Table 2: Performance gap of atomic statements and
back-translated code when compared to code prompts
using GPT 3.5. Results from the dev set of each dataset.

clusion is supported by the observation that these 440

alternative text simplification approaches, despite 441

offering similar semantics to code prompts, fail 442

to replicate the performance gains observed with 443

code prompts. Therefore, these results imply that 444

specific syntactic features embedded within code 445

directly contribute to performance improvement. 446

Lastly, our evaluation on BGQA-3 reveals a sig- 447

nificantly larger performance decline when using 448

atomic statements compared to back-translated 449

code. This disparity likely stems from the dataset’s 450

inherent structure. The method we employ for gen- 451

erating atomic statements (Min et al., 2023) was 452

specifically designed for general text formats like 453

Wikipedia pages. However, BGQA is a logic-based 454

dataset where input "facts" are already presented as 455

minimally informative statements, deviating from 456

the typical structure of general documents. As a 457

result, generating atomic statements from these 458

sentences can unintentionally disrupt the sentence 459

structure, making it difficult to track the attributes 460

of subjects and objects within the text. This ob- 461

servation is further supported by our results on 462

CondQA, a dataset with longer documents, where 463

atomic statements achieve higher performance than 464

back-translated code. 465

5.3 Code Semantics are Important 466

Previously, we have shown that code syntax is nec- 467

essary to elicit the reasoning abilities of text+code 468

LLMs. Now, we aim to investigate which aspects 469

of code are pivotal. In particular, we evaluate the 470

impact of retaining the natural language text of the 471

original instance within the code comments and the 472

importance of the code semantics. To analyze the 473

former, we have (1) removed the code comments 474

that include the original natural language text from 475

the input and evaluated the performance of the new 476

prompts. To analyze the latter, we (2) perturbed 477

the code to anonymize the variables and functions, 478

as well as (3) added random code whose seman- 479

tics are completely irrelevant to the original natural 480
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Prompt CQA CQA-YN BG1 BG2 BG3

Anonym. −1.62 −2.90 −6.60 −4.80 −4.00
Random −3.40 −2.67 −7.40 −9.20 −9.80
- Comments N.A. −14.02 −16.70 −16.20 −5.20

Table 3: Performance gap to code prompts for each code
perturbation. cQA stands for CondQA, CQA-YN for
the partition of CondQA with yes-no answers, BG for
BGQA. Results reported on the dev set of each dataset.

language text. In the latter two cases, the code com-481

ments remain unmodified (examples illustrating482

them are provided in Table 12 from Appendix J).483

Since CondQA includes span answers and removing484

the NL text would make it impossible for the model485

to generate the span, we only report performance486

on the yes-no answers partition (CondQA-YN).487

Table 3 shows that removing the NL text in the488

code comments yields a performance drop of 14.02489

points on CondQA and a performance drop between490

16.7 and 5.2 on BGQA. This significant and consis-491

tent decrease in all datasets confirms that retaining492

NL text in comments is vital for the LLM to under-493

stand the input problem.494

Effect of Code Perturbations. Code perturba-495

tions (anonymous code and random code) confirm496

the importance of code semantics in eliciting rea-497

soning abilities. When we use anonymized code,498

we observe a performance reduction of almost 2499

points on CondQA and a decrease between 6.6 and 4500

in BGQA. The decrease is even larger when the code501

is randomized, with drops of more than 3 points502

on CondQA and between 7.4 and 9.8 on BGQA. This503

more pronounced drop is expected since the seman-504

tics and logic of the code mismatch the NL text,505

whereas anonymous code maintains the same logic506

on both NL and code. Furthermore, we also ob-507

serve that the performance drop of random code508

prompts is similar to that of text prompts (Table 1)509

on CondQA and BGQA-1. This can be interpreted as510

the model being able to identify the irrelevance of511

the code to the text. Hence, the model disregards512

the code to solely focus on the code comments (i.e.,513

the natural language text). This could be possible514

thanks to the provided demonstrations, which show515

answers that only refer to the natural language text.516

These results confirm that code alone does not517

trigger reasoning abilities, and instead, the combi-518

nation of code that represents the original natural519

language instance and the NL text is able to unlock520

the potential of LLMs.521

5.4 Code Prompts are More Sample-Efficient 522

at Eliciting Reasoning Abilities 523

Given our observations that code prompts trig- 524

ger conditional reasoning abilities better than text 525

prompts, it is natural to ask the follow-up question: 526

are code prompts also more sample-efficient than 527

text prompts? To answer this, we evaluate how the 528

overall performance of GPT 3.5 changes with re- 529

spect to the number of demonstrations for the two 530

prompting methods. 531

Figure 3 shows that when we only provide 532

one demonstration per class (i.e., answer type in 533

our datasets), the performance gap is the largest 534

across all datasets. As expected, this gap de- 535

creases when we provide more demonstrations. 536

Moreover, we also observe that code prompts with 537

only one demonstration per class even outperform 538

text prompts with three demonstrations per class, 539

which further shows the sample efficiency of code 540

prompts. These results indicate that code prompts 541

trigger conditional reasoning more efficiently than 542

text prompts on GPT 3.5, and this is one of the 543

reasons for its superior performance. 544

Figure 3: Performance comparison of GPT 3.5 between
text (green) and code prompts (blue) using 1, 2, and 3
demonstrations per class. Results reported on dev sets.

5.5 Code Prompts Improve Variable Tracking 545

in LLMs 546

We hypothesize that one of the reasons for the supe- 547

rior performance of code prompting is an improved 548

ability to identify and track the states of key vari- 549

ables or concepts. This hypothesis is based on the 550

intuition that, for natural language in general, lo- 551

cal context is the most important part to generate 552

the next token (Khandelwal et al., 2018; Sun et al., 553

2021). However, generating code is often more 554

challenging because code frequently refers to pre- 555

viously defined functions and variables, which can 556

be dozens or even hundreds of lines apart. This 557

resembles multi-hop reasoning, where the model 558

may need to reference a key entity dozens of lines 559
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Correct Ans. Incorrect Ans.
Dataset Text Code Text Code
CondQA 71.08 4.39 60.79 11.39
BGQA-1 39.33 8.84 51.65 22.12
BGQA-2 44.79 15.04 52.54 24.75
BGQA-3 54.01 14.21 52.13 16.98

Table 4: Comparison of the percentage of memory er-
rors made by GPT 3.5. For each dataset, we separately
compute memory errors for the instances where the
model gives the correct and incorrect answers. Lower is
better. Results from the dev set of each dataset.

before. Therefore, an improved ability to look for560

distant co-references caused by training on code561

can be beneficial for multi-hop reasoning, which is562

also needed to solve our datasets.563

To test our hypothesis, we devise the following564

experiment. Firstly, we define reasoning step as565

each output sentence split by “\n.” After generating566

each reasoning step, we stop the model generation567

and query about all key entities defined in the input568

prompt. In the case of text prompts, we query the569

model whether the given facts are true or not, and570

for code prompts, we query for the value of the571

(boolean) variables. In all cases, the model only572

has to generate True, False, a string, or unknown.573

Then, we compare the percentage of errors in text574

and code prompts. This number represents the575

memory errors committed by the model. The more576

memory errors there are, the more difficult it is for577

the model to track and remember entities/variables.578

We provide further details on how we extracted the579

key entities to ask for, how we identified the reason-580

ing steps in the chain of thought used to stop the581

model for conducting the probes, and examples of582

the prompt probes in Appendix K and its Table 13.583

Does Generated Text reflect Model Beliefs? As584

the generated text may not be faithful to the internal585

beliefs of the model (Lyu et al., 2023), we first test586

the validity of this experiment as a proxy metric587

of the internal belief of the model. To do this,588

we compare the memory error percentage of the589

prompting methods in instances where the model590

solves (i.e., correct instances) and does not solve591

(i.e., incorrect instances) the question. If incorrect592

instances yield a higher memory error, this would593

indicate that the model struggles more to remember594

the variable states on those instances, which in turn595

would make it more likely to fail when conducting596

the reasoning process. Therefore, our probes would597

be a proxy metric of the internal belief of the model.598

Table 4 shows the results of this comparison. We 599

observe that all prompting methods in all datasets 600

consistently make more memory mistakes on in- 601

correct instances than on correct instances, with 602

the exception of text prompts on CondQA. However, 603

the memory error in this case is significantly high, 604

which may suggest that the model is not able to 605

track entities correctly in either case. Therefore, 606

we can use this experiment as a proxy measure of 607

the memory of the model. 608

Code Prompting improves State Track- 609

ing. From Table 4, we further observe that Text 610

Prompts make significantly more memory errors 611

than code prompts on all datasets. Specifically, 612

the gap is consistently more than 30% with 613

peaks on CondQA (66.69%) and BGQA-3 (39.8%). 614

Therefore, this experiment empirically confirms 615

our hypothesis that code prompts improve state 616

tracking of the key entities and variables when 617

compared to text prompts. 618

6 Conclusions and Future Work 619

This work demonstrates that the code representa- 620

tion of a natural language task (i.e., code prompts) 621

can elicit reasoning abilities in large language mod- 622

els (LLMs) of text and code. These code prompts 623

contain the original natural language (NL) formu- 624

lation as a code comment and code that formulates 625

the logic of the text. To create these code prompts, 626

we use in-context learning to teach an LLM how 627

to conduct such a transformation automatically. 628

Through multiple experiments on three LLMs and 629

three datasets, we show that code prompts trigger 630

conditional reasoning abilities, with large perfor- 631

mance gains w.r.t. text prompts (up to 22.52 per- 632

centage points on GPT 3.5, 7.75 on Mixtral, and 633

16.78 Mistral). Our experiments reveal that even 634

simple code can be beneficial as long as it closely 635

follows the semantics of the NL text and is accom- 636

panied by the original NL text. We also show that 637

code prompts are more sample-efficient than text 638

prompts and that their performance boost stems 639

from their superior ability to identify and track the 640

state of key variables or entities, a central aspect of 641

the logical dimension of semantic inference. 642

In our future work, we plan to extend to a wider 643

range of reasoning abilities, such as multi-hop rea- 644

soning, to understand the capacity and generaliz- 645

ability of code prompting. We also plan to investi- 646

gate how pretraining on text, code, and text+code 647

affects the triggering of LLMs’ reasoning abilities. 648
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Limitations649

Transforming a natural language problem into code650

requires an intermediate step that raises the cost of651

the whole pipeline. However, this mapping is not a652

complicated task, as even the smallest models we653

considered were able to perform it successfully in654

an in-context learning setup. Therefore, we believe655

it would be possible to train a small generative656

model to do it instead of using a large language657

model. In this way, we could minimize the cost658

of using code prompts without affecting its perfor-659

mance.660

We only ran the experiments on the dev set with661

two different random seeds due to the costs of662

running large language models and because we663

prioritized experimenting on multiple models and664

datasets. Nevertheless, the results of all models665

exhibit similar patterns, which confirms the repre-666

sentativeness of our results. Also, we conduct the667

ablations only on GPT 3.5, the best-performing and668

largest model. However, confirming that the find-669

ings from these ablations also hold on the smaller670

models would be interesting.671

This work focuses only on analyzing the effects672

of code representations for natural language tasks.673

However, it could be possible that other input rep-674

resentation spaces also elicit reasoning abilities.675

We limit the scope of this work to only the space676

of simple structured languages (more details on677

Appendix C) because prior research suggests that678

pretraining on code improves the reasoning abili-679

ties of LLMs, but it might be possible that certain680

natural languages such as German or Chinese, or681

certain types of programming languages, such as682

declarative or logical, also elicit certain abilities.683

Similarly, we do not conduct experiments on mul-684

tiple code generation methods because our goal is685

to analyze whether the mere change of the repre-686

sentation can elicit reasoning abilities and not an687

analysis of the best coding style.688

Our tasks require instruction following abilities,689

so we do not conduct comparisons of base vs. chat690

models. Future work could investigate whether691

instruction tuning has an impact on the LLMs’ abil-692

ities to understand code.693

Lastly, we conduct our experiments on data in694

English. Analyzing whether our findings hold true695

in other languages would be interesting. However,696

the lack of conditional reasoning datasets in other697

languages would make this study difficult.698

Ethics and Broader Impact Statement 699

Our work aims to improve the reasoning abilities of 700

LLMs. The use of code prompts may alsosimplify 701

the explainability of the model responses since we 702

can inspect the entailment status of the variables. 703

We hope these results contribute to enhancing the 704

trustworthiness and safety of LLMs. Nevertheless, 705

every development may pose some risks. In our 706

case, the improvement of the reasoning abilities in 707

LLMs may utilized by malicious actors to propa- 708

gate more persuasive disinformation. 709

References 710

Elana Cabria and Bernardo Magnini. 2014. Decom- 711
posing semantic inference. Linguistic Issues in Lan- 712
guage Technology, 9. 713

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 714
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 715
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 716
Brockman, et al. 2021a. Evaluating large lan- 717
guage models trained on code. arXiv preprint 718
arXiv:2107.03374. 719

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 720
William W. Cohen. 2023. Program of thoughts 721
prompting: Disentangling computation from reason- 722
ing for numerical reasoning tasks. Transactions on 723
Machine Learning Research. 724

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena 725
Shah, Iana Borova, Dylan Langdon, Reema Moussa, 726
Matt Beane, Ting-Hao Huang, Bryan Routledge, and 727
William Yang Wang. 2021b. FinQA: A dataset of nu- 728
merical reasoning over financial data. In Proceedings 729
of the 2021 Conference on Empirical Methods in Nat- 730
ural Language Processing, pages 3697–3711, Online 731
and Punta Cana, Dominican Republic. Association 732
for Computational Linguistics. 733

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 734
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 735
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 736
Nakano, et al. 2021. Training verifiers to solve math 737
word problems. arXiv preprint arXiv:2110.14168. 738

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 739
Pengfei Liu, Yiming Yang, Jamie Callan, and 740
Graham Neubig. 2023. Pal: program-aided lan- 741
guage models. In Proceedings of the 40th Interna- 742
tional Conference on Machine Learning, ICML’23. 743
JMLR.org. 744

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 745
César Teodoro Mendes, Allie Del Giorno, Sivakanth 746
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 747
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all 748
you need. arXiv preprint arXiv:2306.11644. 749

9

https://aclanthology.org/2014.lilt-9.4
https://aclanthology.org/2014.lilt-9.4
https://aclanthology.org/2014.lilt-9.4
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://dl.acm.org/doi/10.5555/3618408.3618843
https://dl.acm.org/doi/10.5555/3618408.3618843
https://dl.acm.org/doi/10.5555/3618408.3618843


Syed-Amad Hussain, Parag Pravin Dakle, SaiKrishna750
Rallabandi, and Preethi Raghavan. 2023. Towards751
leveraging llms for conditional qa. arXiv preprint752
arXiv:2312.01143.753

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-754
sch, Chris Bamford, Devendra Singh Chaplot, Diego755
de las Casas, Florian Bressand, Gianna Lengyel, Guil-756
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,757
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,758
Thibaut Lavril, Thomas Wang, Timothée Lacroix,759
and William El Sayed. 2023. Mistral 7b. arXiv760
preprint arXiv:2310.06825.761

Albert Q Jiang, Alexandre Sablayrolles, Antoine762
Roux, Arthur Mensch, Blanche Savary, Chris Bam-763
ford, Devendra Singh Chaplot, Diego de las Casas,764
Emma Bou Hanna, Florian Bressand, et al. 2024.765
Mixtral of experts. arXiv preprint arXiv:2401.04088.766

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung767
Kim, Xin Xu, Vaiva Imbrasaite, and Deepak Ra-768
machandran. 2023. BoardgameQA: A dataset for769
natural language reasoning with contradictory infor-770
mation. In Thirty-seventh Conference on Neural In-771
formation Processing Systems Datasets and Bench-772
marks Track, pages 1–23.773

Urvashi Khandelwal, He He, Peng Qi, and Dan Jurafsky.774
2018. Sharp nearby, fuzzy far away: How neural lan-775
guage models use context. In Proceedings of the 56th776
Annual Meeting of the Association for Computational777
Linguistics (Volume 1: Long Papers), pages 284–294,778
Melbourne, Australia. Association for Computational779
Linguistics.780

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-781
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-782
guage models are zero-shot reasoners. In Advances in783
Neural Information Processing Systems, volume 35,784
pages 22199–22213. Curran Associates, Inc.785

Tamera Lanham, Anna Chen, Ansh Radhakrishnan,786
Benoit Steiner, Carson Denison, Danny Hernan-787
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jack-788
son Kernion, et al. 2023. Measuring faithful-789
ness in chain-of-thought reasoning. arXiv preprint790
arXiv:2307.13702.791

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen,792
Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-793
Fei, Fei Xia, and Brian Ichter. 2023a. Chain of code:794
Reasoning with a language model-augmented code795
emulator.796

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas797
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc798
Marone, Christopher Akiki, Jia LI, Jenny Chim,799
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,800
Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier,801
Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Lo-802
gesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muh-803
tasham Oblokulov, Zhiruo Wang, Rudra Murthy, Ja-804
son T Stillerman, Siva Sankalp Patel, Dmitry Ab-805
ulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,806

Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, 807
Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav 808
Timor, Jennifer Ding, Claire S Schlesinger, Hailey 809
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 810
Alex Gu, Carolyn Jane Anderson, Brendan Dolan- 811
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, 812
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz 813
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, 814
Leandro Von Werra, and Harm de Vries. 2023b. Star- 815
coder: may the source be with you! Transactions on 816
Machine Learning Research. Reproducibility Certifi- 817
cation. 818

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan 819
Duan, Ming Zhou, and Yue Zhang. 2023a. Logiqa 820
2.0—an improved dataset for logical reasoning in 821
natural language understanding. IEEE/ACM Trans- 822
actions on Audio, Speech, and Language Processing, 823
31:2947–2962. 824

Jiacheng Liu, Skyler Hallinan, Ximing Lu, Pengfei He, 825
Sean Welleck, Hannaneh Hajishirzi, and Yejin Choi. 826
2022a. Rainier: Reinforced knowledge introspector 827
for commonsense question answering. In Proceed- 828
ings of the 2022 Conference on Empirical Methods 829
in Natural Language Processing, pages 8938–8958, 830
Abu Dhabi, United Arab Emirates. Association for 831
Computational Linguistics. 832

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Pe- 833
ter West, Ronan Le Bras, Yejin Choi, and Hannaneh 834
Hajishirzi. 2022b. Generated knowledge prompting 835
for commonsense reasoning. In Proceedings of the 836
60th Annual Meeting of the Association for Compu- 837
tational Linguistics (Volume 1: Long Papers), pages 838
3154–3169, Dublin, Ireland. Association for Compu- 839
tational Linguistics. 840

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, 841
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal- 842
lenge dataset for machine reading comprehension 843
with logical reasoning. In Proceedings of the Twenty- 844
Ninth International Joint Conference on Artificial 845
Intelligence, IJCAI-20, pages 3622–3628. Interna- 846
tional Joint Conferences on Artificial Intelligence 847
Organization. Main track. 848

Xiao Liu, Da Yin, Chen Zhang, Yansong Feng, and 849
Dongyan Zhao. 2023b. The magic of IF: Investi- 850
gating causal reasoning abilities in large language 851
models of code. In Findings of the Association for 852
Computational Linguistics: ACL 2023, pages 9009– 853
9022, Toronto, Canada. Association for Computa- 854
tional Linguistics. 855

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, 856
Delip Rao, Eric Wong, Marianna Apidianaki, and 857
Chris Callison-Burch. 2023. Faithful chain-of- 858
thought reasoning. arXiv preprint arXiv:2301.13379. 859

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, 860
and Graham Neubig. 2022. Language models of code 861
are few-shot commonsense learners. In Proceedings 862
of the 2022 Conference on Empirical Methods in Nat- 863
ural Language Processing, pages 1384–1403, Abu 864

10

https://arxiv.org/abs/2312.01143
https://arxiv.org/abs/2312.01143
https://arxiv.org/abs/2312.01143
https://arxiv.org/abs/2310.06825
https://arxiv.org/pdf/2401.04088.pdf
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://openreview.net/forum?id=BR1m3JIoKm
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/P18-1027
https://doi.org/10.18653/v1/P18-1027
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2307.13702
http://arxiv.org/abs/2312.04474
http://arxiv.org/abs/2312.04474
http://arxiv.org/abs/2312.04474
http://arxiv.org/abs/2312.04474
http://arxiv.org/abs/2312.04474
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.18653/v1/2022.emnlp-main.611
https://doi.org/10.18653/v1/2022.emnlp-main.611
https://doi.org/10.18653/v1/2022.emnlp-main.611
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://doi.org/10.18653/v1/2023.findings-acl.574
https://arxiv.org/abs/2301.13379
https://arxiv.org/abs/2301.13379
https://arxiv.org/abs/2301.13379
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90
https://doi.org/10.18653/v1/2022.emnlp-main.90


Dhabi, United Arab Emirates. Association for Com-865
putational Linguistics.866

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,867
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-868
moyer, and Hannaneh Hajishirzi. 2023. FActScore:869
Fine-grained atomic evaluation of factual precision870
in long form text generation. In Proceedings of the871
2023 Conference on Empirical Methods in Natural872
Language Processing, pages 12076–12100, Singa-873
pore. Association for Computational Linguistics.874

John Eric Nolt, Dennis Rohatyn, and Achille Varzi.875
1988. Schaum’s outline of logic. McGraw Hill Pro-876
fessional.877

OpenAI. 2023. Gpt-4 technical report. arXiv preprint878
arXiv:2303.08774.879

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,880
Carroll Wainwright, Pamela Mishkin, Chong Zhang,881
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.882
2022. Training language models to follow instruc-883
tions with human feedback. Advances in Neural884
Information Processing Systems, 35:27730–27744.885

Liangming Pan, Xiaobao Wu, Xinyuan Lu, Anh Tuan886
Luu, William Yang Wang, Min-Yen Kan, and Preslav887
Nakov. 2023. Fact-checking complex claims with888
program-guided reasoning. In Proceedings of the889
61st Annual Meeting of the Association for Compu-890
tational Linguistics (Volume 1: Long Papers), pages891
6981–7004, Toronto, Canada. Association for Com-892
putational Linguistics.893

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.894
2021. Are NLP models really able to solve simple895
math word problems? In Proceedings of the 2021896
Conference of the North American Chapter of the897
Association for Computational Linguistics: Human898
Language Technologies, pages 2080–2094, Online.899
Association for Computational Linguistics.900

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten901
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,902
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.903
Code llama: Open foundation models for code. arXiv904
preprint arXiv:2308.12950.905

Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer906
Singh, Tim Rocktäschel, Mike Sheldon, Guillaume907
Bouchard, and Sebastian Riedel. 2018. Interpretation908
of natural language rules in conversational machine909
reading. In Proceedings of the 2018 Conference on910
Empirical Methods in Natural Language Processing,911
pages 2087–2097, Brussels, Belgium. Association912
for Computational Linguistics.913

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle914
Pineau, and William L. Hamilton. 2019. CLUTRR:915
A diagnostic benchmark for inductive reasoning from916
text. In Proceedings of the 2019 Conference on917
Empirical Methods in Natural Language Processing918
and the 9th International Joint Conference on Natu-919
ral Language Processing (EMNLP-IJCNLP), pages920
4506–4515, Hong Kong, China. Association for Com-921
putational Linguistics.922

Haitian Sun, William Cohen, and Ruslan Salakhutdinov. 923
2022. ConditionalQA: A complex reading compre- 924
hension dataset with conditional answers. In Pro- 925
ceedings of the 60th Annual Meeting of the Associa- 926
tion for Computational Linguistics (Volume 1: Long 927
Papers), pages 3627–3637, Dublin, Ireland. Associa- 928
tion for Computational Linguistics. 929

Simeng Sun, Kalpesh Krishna, Andrew Mattarella- 930
Micke, and Mohit Iyyer. 2021. Do long-range lan- 931
guage models actually use long-range context? In 932
Proceedings of the 2021 Conference on Empirical 933
Methods in Natural Language Processing, pages 807– 934
822, Online and Punta Cana, Dominican Republic. 935
Association for Computational Linguistics. 936

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 937
bastian Gehrmann, Yi Tay, Hyung Won Chung, 938
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, 939
Denny Zhou, and Jason Wei. 2022. Challenging 940
big-bench tasks and whether chain-of-thought can 941
solve them. 942

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 943
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 944
Baptiste Rozière, Naman Goyal, Eric Hambro, 945
Faisal Azhar, et al. 2023. Llama: Open and effi- 946
cient foundation language models. arXiv preprint 947
arXiv:2302.13971. 948

Wenya Wang, Vivek Srikumar, Hannaneh Hajishirzi, 949
and Noah A. Smith. 2023. Elaboration-generating 950
commonsense question answering at scale. In Pro- 951
ceedings of the 61st Annual Meeting of the Associa- 952
tion for Computational Linguistics (Volume 1: Long 953
Papers), pages 1619–1635, Toronto, Canada. Associ- 954
ation for Computational Linguistics. 955

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 956
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, 957
and Denny Zhou. 2022. Chain-of-thought prompt- 958
ing elicits reasoning in large language models. In 959
Advances in Neural Information Processing Systems, 960
volume 35, pages 24824–24837. Curran Associates, 961
Inc. 962

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2023. 963
Satlm: Satisfiability-aided language models using 964
declarative prompting. In Proceedings of NeurIPS, 965
pages 1–33. 966

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 967
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 968
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 969
Opt: Open pre-trained transformer language models. 970
arXiv preprint arXiv:2205.01068. 971

A Datasets 972

ConditionalQA is a QA dataset where the an- 973

swers are applicable under specific scenarios (i.e., 974

conditional answers). Therefore, along with each 975

question, the dataset provides a scenario that de- 976

scribes the background of the person posing such 977

11

https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://arxiv.org/pdf/2303.08774.pdf
https://doi.org/10.18653/v1/2023.acl-long.386
https://doi.org/10.18653/v1/2023.acl-long.386
https://doi.org/10.18653/v1/2023.acl-long.386
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://arxiv.org/pdf/2308.12950.pdf
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D18-1233
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/2022.acl-long.253
https://doi.org/10.18653/v1/2022.acl-long.253
https://doi.org/10.18653/v1/2022.acl-long.253
https://doi.org/10.18653/v1/2021.emnlp-main.62
https://doi.org/10.18653/v1/2021.emnlp-main.62
https://doi.org/10.18653/v1/2021.emnlp-main.62
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
http://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2023.acl-long.90
https://doi.org/10.18653/v1/2023.acl-long.90
https://doi.org/10.18653/v1/2023.acl-long.90
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/pdf?id=TqW5PL1Poi
https://openreview.net/pdf?id=TqW5PL1Poi
https://openreview.net/pdf?id=TqW5PL1Poi
https://arxiv.org/abs/2205.01068


a question. Questions require multi-hop, composi-978

tional, and conditional logic over documents about979

public policies (e.g., the eligibility for a subsidy).980

Answers can be a span of the document, yes, and981

no. We use an oracle retriever to select the relevant982

passages to the question so that we can isolate the983

analysis of conditional reasoning abilities in LLMs984

from the retrieval component. The expected out-985

put is a chain of thought (CoT; Wei et al. 2022)986

followed by the final answer. To create the CoT,987

we use the annotated evidence sentences. We use988

an oracle retriever to retrieve the relevant passages989

to the question. This retriever is based on the sen-990

tences annotated as evidence for the answer (i.e.,991

rationales). We concatenate all sections that in-992

clude one rationale and use the resulting passage993

as input document.994

BoardgameQA is a dataset that evaluates the abil-995

ity to reason with contradictory information guided996

by preferences. For example, given a question997

about traveling abroad, information found online998

about regulations can be contradictory because999

rules may change over time. Answering questions1000

in this dataset requires complex multi-hop reason-1001

ing with conditional, deductive, and compositional1002

abilities. The domain of the problems is board1003

games, which allows us to analyze the conditional1004

reasoning abilities in a completely different domain1005

from CondQA. BGQA is divided into multiple parti-1006

tions focusing on different characteristics, such as1007

the depth of the reasoning tree, the need for exter-1008

nal information, etc. We focus on the main par-1009

tition and its subpartitions (i.e., BGQA-1, BGQA-2,1010

BGQA-3), where the number refers to the number1011

of reasoning hops required to answer the ques-1012

tion. This dataset also includes annotated chain-of-1013

thoughts (CoT); therefore, we use their annotated1014

input (“example”) as the input prompt and their1015

annotated CoT (“proof ”) as the expected output.1016

ShARC is a conversational QA dataset with nat-1017

ural language rules where most questions are un-1018

derspecified. Therefore, the model may need to1019

ask a follow-up question to know more about the1020

background of the interlocutor to return an answer.1021

The documents are of legal domain retrieved from1022

the web pages of different governments and state1023

agencies. Since this is a conversational QA and we1024

are not interested in evaluating the conversational1025

abilities of LLMs, we transform the task into regu-1026

lar QA, instead of conversational QA. To do this,1027

the model must answer yes, no, or not enough infor-1028

mation for each question. In the original task, not 1029

enough information, would lead to the generation 1030

of a follow-up question. 1031

Complexity of the datasets. We analyze the 1032

complexity of the datasets by counting the percent- 1033

age of reasoning operations (i.e., if statements) in 1034

the code prompt generated by GPT 3.5. This analy- 1035

sis shows that the most difficult dataset is BGQA-3 1036

with 21.58% of reasoning operations, followed 1037

by BGQA-2 (16.99%), CondQA (14.66%), BGQA-1 1038

(10.55%), and lastly, ShARC (8.32%). 1039

We also analyze the length of the documents of 1040

each dataset and find that BGQA-3 has the longest 1041

documents with an average of 39 lines of code, fol- 1042

lowed by CondQA (38), BGQA-2 (25), ShARC (22), 1043

and lastly BGQA-1 (15). It is worth noting that 1044

the documents from CondQA are the short docu- 1045

ments extracted with the oracle retriever described 1046

above, instead of the full documents, which are 1047

much longer (up to 9k tokens). 1048

These two analyses suggest that BGQA-3 and 1049

BGQA-2 are the most reasoning-intensive datasets 1050

due to the high proportion of reasoning operations. 1051

In contrast, CondQA is the dataset where the lin- 1052

guistic dimension plays the biggest role because 1053

their documents are among the longest ones while 1054

it contains much less proportion of reasoning opera- 1055

tions than the other datasets with similar document 1056

lengths. 1057

Dataset sizes, licenses, and safety. The sizes 1058

and licenses of all the datasets used in this work 1059

are provided in Table 5. Our use of these datasets 1060

is consistent with their intended use, i.e., academic 1061

research to evaluate question-answering systems. 1062

As far as we know, these datasets do not contain 1063

any personal information or offensive content. Al- 1064

though we did not explicitly analyze this, the au- 1065

thors of these datasets did not mention including 1066

such content, and we did not observe such content 1067

during our use of the datasets. All these datasets 1068

are in English. 1069

Dataset Training Dev Test License
CondQA 2338 285 804 BSD 2
BGQA-1 1000 500 1000 CC BY
BGQA-2 1000 500 1000 CC BY
BGQA-3 1000 500 1000 CC BY
ShARC 21890 2270 8276 CC-BY-SA-3.0

Table 5: Sizes of the datasets.
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B Prompt Formulation1070

CONDQA. Firstly, we define the different compo-1071

nents of a data point: scenario (S), question (Q),1072

document (D), rationales (R), and answer (A).1073

Then, the text prompt tp is defined as follows:1074

tp = "Question:" + S +Q+ "Document:" +D

+"Let’s think step by step"
(1)

1075

where + represents the string concatenation op-1076

erator. Then, the output format, to is:1077

to = R+ "Answer:" +A (2)1078

For code prompts, we first define a function1079

C : NL → C that maps a natural language text into1080

code as shown in Figure 2. Then, we define code1081

prompt cp as follows:1082

cp = "#Question:" + C(S) + C(Q)+

"#Document:" + C(D)

+"#Let’s think step by step"

(3)1083

Similarly, we define the output format, co, as:1084

co = R+ "#Answer:" +A (4)1085

BGQA. Firstly, we define the components of a data1086

point in this dataset: facts (F ), rules (R), and ques-1087

tions (Q). Therefore, our text prompt is defined as1088

follows6:1089

tp = F +R+Q (5)1090

This dataset also provides the CoT that leads to the1091

answer. Therefore, we use that CoT as the expected1092

output.1093

For code prompts, we follow the same approach1094

as with the previous dataset. We define code1095

prompts, cp, as follows:1096

tp = C(F ) + C(R) + C(Q) (6)1097

with the output format (co) being:1098

co = C(cot) (7)1099

6BGQA provides a field example with all the variables of
the dataset concatenated with descriptions. We use this field
as text prompt.

ShARC. Firstly, we define the components of a 1100

data point in this dataset: question (Q), scenario 1101

(S), document (D), and conversation history (H). 1102

Then, the text prompt tp is defined as follows: 1103

tp = "Question:" + S +Q+ "Document:" +D

+"Conversation history:" +H

+"What is the answer to the question:" +Q

(8)

1104

the output format is the answer label directly, which 1105

can be yes, no, or not enough information. 1106

Similarly to the other datasets, we defined code 1107

prompts cp as follows: 1108

tp = "#Question:" + C(S) + C(Q)+

+"#Document:" + C(D)

+"#Conversation history:" + C(H)

+"#What is the answer to the question:" + C(Q)

(9)

1109

Lastly, the output format is the answer label di- 1110

rectly, which in this case are True, False, or None. 1111

C Coding Features 1112

To generate code as close as possible to the NL text, 1113

we use a programming language based on a simpli- 1114

fication of Python. We only use boolean variables 1115

or variables that contain lists of strings. Variables 1116

follow the snake case naming convention. We also 1117

employ if statements to model conditional reason- 1118

ing, but we do not use loops, functions, or classes. 1119

We create a code comment with the original NL 1120

text for each input sentence, and right after the code 1121

comment, we generate the code that represents the 1122

semantics of that sentence. However, we do not 1123

enforce the generated code to be a runnable script. 1124

D Code-only LLMs 1125

Although our work focuses on text+code LLMs 1126

because they are the only type of LLMs whose 1127

intended use includes natural language and cod- 1128

ing tasks, we conduct a small experiment on Code 1129

Llama (Roziere et al., 2023), a code-only LLM. It 1130

is important to note that their authors advise against 1131

using this model on natural language tasks because 1132

their intended use is in code generation tasks only. 1133

Table 6 shows the results of Code Llama on our 1134

datasets. Firstly, we can observe that code prompts 1135

perform significantly worse than text prompts on 1136

CondQA and ShARC despite being a code LLM. We 1137
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can attribute this to the nature of these datasets and1138

the intended use of the model. These datasets re-1139

quire a strong comprehension of natural language1140

documents and dialogues and answering natural1141

language questions about them. This is far from the1142

intended use of the model (i.e., generating code).1143

Furthermore, CondQA requires generating a natu-1144

ral language answer that is a span of the document.1145

The use of code to generate a natural language span1146

of a document is also far from the fine-tuning tasks1147

of this model. This would explain why the code1148

representation is worse than the text representation.1149

It is particularly interesting to see the results on1150

ShARC. After manually inspecting the outputs, we1151

observe that Code Llama can successfully generate1152

the code corresponding to the natural language in-1153

put. However, when it is prompted with such code1154

and the question variable, the model does not gen-1155

erate the value of the variable (i.e., true, false,1156

or none). Instead, it generates \n. The reasons1157

behind this remain unclear and would require fur-1158

ther investigation, which is out of the scope of this1159

paper.1160

However, we observe a different behavior on1161

BGQA. In this dataset, code prompts outperform1162

text prompts. We attribute this to the high align-1163

ment with the first-order logic of this dataset, which1164

makes it closer to the intended use of the model.1165

Nevertheless, it is important to note that these re-1166

sults are not intended to be comprehensive enough1167

to conclude that code LLMs or Code Llama can1168

or cannot solve natural language tasks, which is1169

out of the scope of this work. Instead, they sim-1170

ply seem to confirm the warnings of the authors1171

of Code Llama, i.e., this model is not intended for1172

natural language tasks.1173

Model Text Prompt Code Prompt

CondQA 31.58 26.34
ShARC 58.33 18.62
BGQA1 44.38 44.78
BGQA2 44.59 49.41
BGQA3 40.88 46.44

Table 6: Text and code prompts results in Code Llama
7B - Instruct with one demonstration.

E LLM Setup1174

The exact models we used are the following: gpt-1175

3.5-16k-0613 for CondQA and BGQA. For ShARC,1176

since the documents are shorter, we used GPT-3.5- 1177

0301 due to the lower costs. In both cases, we 1178

run the models through the Azure AI service. We 1179

also use Mixtral 8x7B with 4-bit quantization for 1180

all the datasets using one Nvidia A100 in our own 1181

server. Lastly, we use Mistral 7B v0.1 for CondQA 1182

and BGQA. However, this model yields very poor 1183

results on ShARC, so we use the instruct-v0.2 vari- 1184

ant to be able to make a fair comparison between 1185

text and code prompts on this dataset using Mistral 1186

7B. We use fp16 quantization for the Mistral 7B 1187

experiments and run them on our own server with 1188

one Nvidia A100. 1189

All of our prompting methods are implemented 1190

using the Langchain library.7 We set the decoding 1191

temperature to zero and use greedy sampling to 1192

make the outputs deterministic. For each experi- 1193

ment, we use a random sample from the training 1194

set as demonstrations. The LLM generating the 1195

code for code prompts is the same one as the one 1196

running the code to generate the final answer. We 1197

evaluate each model and prompt in the dev set of 1198

each dataset with two random seeds. Since the 1199

demonstrations are selected randomly, the seed de- 1200

termines them. The seed that yields the best per- 1201

formance on the dev set is then used for the final 1202

evaluation on the test set. 1203

The number of demonstrations used to translate 1204

the documents into code is specified in Table 7. 1205

Note that this number differs from the number of 1206

demonstrations used to generate the answer, which 1207

is always three. 1208

We use chain of thoughts (CoT) based on the pro- 1209

vided annotations of the datasets. We do not use 1210

advanced CoT methods for text prompts because 1211

our aim is to quantify how much improvement we 1212

can get by transforming the natural language CoT 1213

into code syntax, and therefore, the natural lan- 1214

guage text and code must be as close as possible. 1215

The use of advanced CoT methods would also be 1216

reflected in the code syntax, making the experi- 1217

mental setup more complicated without providing 1218

better insights. 1219

The best random seeds found (and consequently 1220

used for the test set evaluation) are described in 1221

Table 8 and Table 9. 1222

F Costs 1223

Running a data instance from ConditionalQA with 1224

gpt-3.5-16k-0613 using code prompts costs $0.04 1225

7https://github.com/langchain-ai/langchain
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Dataset GPT Mixtral Mistral

CondQA 4 4 4
ShARC 5 4 4
BGQA-1 4 3 3
BGQA-2 4 3 4
BGQA-3 4 3 4

Table 7: Number of demonstrations for code transla-
tions. Note this is not the number of demonstrations to
generate the answer.

Dataset GPT Mixtral Mistral

CondQA 0 0 0
ShARC 0 1 1
BGQA-1 1 0 1
BGQA-2 1 0 0
BGQA-3 0 1 0

Table 8: Best seeds for code prompts

while with text prompts $0.01. On BoardgameQA-1226

depth 3 (i.e., the partition with the most expensive1227

prompts), with the same model, the costs per ques-1228

tion are $0.02 and $0.03 for text and code prompts,1229

respectively. Lastly, on ShaRC, using gpt-3.5-0301,1230

the costs per question are $0.0006 and $0.005 for1231

text and code prompts, respectively.1232

G Results on Small LMs with Short1233

Context Window1234

We have shown the effectiveness of code prompting1235

in the most popular sizes of LLMs in table 1 from1236

section 5.1. However, it is becoming increasingly1237

popular the development of small language mod-1238

els (sLMs) due to their cheaper inferece cost and1239

higher token thoughput (Gunasekar et al., 2023).1240

Therefore, we have conducted a preliminary ex-1241

periment with Phi-28, a text+code model of 2.7B1242

parameters on BGQA-1 to show that our prompting1243

methodology also holds in sLMs. As we can show1244

on table 10, code prompting yields a remarkable1245

performance boost of 15 points. However, due1246

to the limited context window of Phi-2, it is not1247

straightforward to conduct in-context learning on1248

our other datasets.1249

8https://huggingface.co/microsoft/phi-2

Dataset GPT Mixtral Mistral

CondQA 0 1 0
ShARC 0 0 0
BGQA-1 1 0 1
BGQA-2 0 1 1
BGQA-3 0 1 0

Table 9: Best seeds for text prompts

Prompt BGQA-1

Text 33.20± 1.42
Code 48.32 ± 1.65

Table 10: Comparison of text prompt and code prompts
with Phi-2 on the validation set. Metric: F1 score. One
demonstration per class is provided.

H Human Analysis of the Generated 1250

Code 1251

We conduct a small human evaluation to confirm 1252

the faithfulness of the generated code to the source 1253

natural language text. We evaluate the code gen- 1254

erations of all our models on ten random samples 1255

from the dev set of CondQA, ShARC, and BGQA (in 1256

particular, we use BGQA-1 partition). We check for 1257

perfect translations, and for the failing cases, we 1258

analyze the errors. 1259

BGQA. We observe perfect translations in all mod- 1260

els for all the analyzed samples. We attribute this 1261

effectiveness to the close alignment between the 1262

natural language documents and first-order logic. 1263

ShARC. We observe that GPT 3.5 generates per- 1264

fect translations in all cases except one. However, 1265

this case is a corner case where the document is 1266

irrelevant to the question, and therefore, there is 1267

no answer. Furthermore, the document is only one 1268

line. Consequently, the model does not generate 1269

code and simply keeps the text as a code comment. 1270

In the case of Mixtral 8x7B, we observed perfect 1271

code translations for 70% of the samples. One of 1272

the failing cases assings as the question variable 1273

a variable that is actually from the conversation 1274

history, no the quesiton. Another error case ex- 1275

hibits wrong value assingments to some variables. 1276

They should be none, but they are assinged true 1277

and false. The last case is the corner case explain 1278

above. As for Mistral 7B, we find that 60% of 1279

the analyzed samples have a perfect translation. In 1280

the remaining 40%, we observe three cases with 1281
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no question variable and the same corner case as1282

before. However, the semantics of the natural lan-1283

guage text remain, thanks to the code comments.1284

CondQA. We observe that GPT 3.5 generates a1285

perfect translation in 8 out of the 10 cases. In these1286

two cases with errors, we observe that most of the1287

code is correct, but in both cases, one conditional1288

statement is missed. The model directly generates1289

the body of the if statement without the correspond-1290

ing if. It is also worth noting that the code is of1291

high quality, including data structures as ditionar-1292

ies, generating code that explains tables, and also1293

generates lists of strings. In the case of Mixtral1294

8x7B, we obtain perfect translations in 6 out of 101295

cases. All the failing cases exhibit the same type1296

of error: there is a variable statement without a1297

prior if condition. It is worth noting that the code,1298

in general, is of high quality, contains data struc-1299

tures such as dictionaries and even process tables.1300

Lastly, in the case of Mistral 7B, we observed a1301

bit worse results. Only 4 out of the 10 cases are1302

perfect translations. In two cases, there is no code,1303

and instead, the model only generated the original1304

natural language text in code comments. We also1305

observe one case where the first half of the text is1306

correctly translated into code but the second half1307

only contains the code comments representing the1308

natural language text. We also observe one case1309

where the code is correct, but the indentation is1310

wrong; all code blocks are under the first if state-1311

ment, which should not be like that. Lastly, we find1312

two cases where the if statements do not contain1313

an execution body. It is worth noting that even in1314

the cases where the code is not perfect, the orig-1315

inal semantics from the natural language remain1316

untouched because they are preserved through code1317

comments.1318

This analysis contributes to the analysis of the1319

quantitative results shown in Section 5.1 by con-1320

firming that, in general, the translated code faith-1321

fully represents the semantics of the source natural1322

language text.1323

I Atomic Statements1324

Original sentence: <p>Applying for the legal right1325

to deal with someone’s property, money and posses-1326

sions (their estate) when they die is called applying1327

for probate.</p> Atomic statements: Applying for1328

the legal right is a process. The process is called1329

’applying for probate’. The legal right is to deal1330

with someone’s property, money, and possessions.1331

The someone is a person who has died. The prop- 1332

erty, money, and possessions are collectively called 1333

the ’estate’. 1334

J Examples of Code Ablations 1335

An example of a back-translated code into natural 1336

language is provided in Table 11. We can observe 1337

in both examples that the resulting natural language 1338

(NL) text is extremely similar to the original code. 1339

In addition, in the second example (BGQA), Rule2 1340

is much simpler after the back-translation than its 1341

original description in NL. 1342

Table 12 shows examples of the multiple code 1343

ablations we conducted in Section 5.3. Random 1344

code replaces the code with a piece of code from 1345

another data point. In this way, the semantics of 1346

the text and code mismatch while we keep the code 1347

syntactically correct. 1348

K Variable Tracking Setup 1349

Extracting key entities in BoardgameQA. This 1350

dataset provides a list of “facts,” which are short 1351

and concise sentences describing the state of a key 1352

entity. Therefore, we use them without alterations 1353

as the key entities to ask for. 1354

Extracting key entities in ConditionalQA. This 1355

dataset provides a scenario describing the back- 1356

ground information of the person posing the answer. 1357

Since this scenario is a free-form text, we follow 1358

(Min et al., 2023) to extract atomic statements and 1359

use them as the key entities to ask for. 1360

Code Prompting variables . To probe the vari- 1361

able tracking abilities of code prompts, we use the 1362

variables defined in the “facts” and “scenario” of 1363

BoardgameQA and ConditionalQA, respectively. 1364

Probing memory at different steps in the Chain- 1365

of-Thought. Inspired by Lanham et al. (2023), 1366

we truncate the Chain-of-Thought (CoT) at differ- 1367

ent completion states and probe the memory of the 1368

model. To break down the CoT, we split it by the 1369

character “\n”, which usually represents the end of 1370

a reasoning step. This is possible because our in- 1371

context learning demonstrations follow this format. 1372

Number of probes. For each dataset instance, we 1373

run num_facts× num_steps_cot probes, which 1374

makes this experiment very costly. Thus, we aim 1375

to maximize the number of instances probed while 1376

keeping the costs down. To do so, we use a sam- 1377

ple of 50 instances for each dataset partition of 1378
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BoardgameQA, except for Board3, where we used1379

20 instances (≈ 700 probes) because of the cost of1380

the experiment. Due to the length of the demonstra-1381

tions of ConditionalQA and its impact on the costs,1382

we sample five facts and three partial CoTs for each1383

instance, yielding an upper-bound of 15 probes per1384

instance, and run the probes for 30 instances for1385

each dataset partition (i.e., correct and incorrect1386

instances).1387

Prompt Probes. In all cases, we follow the fol-1388

lowing format: Sys. Prompt; ICL Demonstrations;1389

Input Instance; Partial CoT; Probe.1390

The probe for text and code prompts in1391

BoardgameQA is: “Now, I want to ask you about1392

the value of some key entities you used. Your an-1393

swers must be ‘yes‘, ‘no‘, or ‘unknown‘. It is very1394

important that you only write one word. Is it true1395

that {fact}?”1396

The probe for text prompts in ConditionalQA1397

is: “Now, I want to ask you about the value of1398

some key entities you used. Your answers must be1399

“True”, “False”, “unknown”, or a string. It is very1400

important that you only write the exact value. From1401

the speaker perspective, is it true that {fact}?”1402

The probe for code prompts in ConditionalQA1403

is: “Now, I want to ask you about the value of1404

some key entities you used. Your answers must1405

be “True”, “False”, “unknown”, or a string. It is1406

very important that you only write the exact value.1407

What is the value of the variable {var}?” A real1408

example is provided in Table 13.1409

L Confusion Matrices1410

Figure 4 shows the confusion matrices of all our1411

models using text and code prompts for all the1412

datasets except CondQA. We cannot include this1413

one because it is a span-extraction task, not a clas-1414

sification task.1415

M Prompt Examples1416
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Type Text

Code # <p>You can apply to become the estate’s administrator if you are 18 or over and
you are the most ‘entitled’ inheritor of the deceased’s estate. This is usually the
deceased’s closest living relative.</p>
if applicant_age >= 18 and entitled_inheritor and closest_relative:
can_apply_estate_administrator = True

Code → NL <p>You can apply to become the estate’s administrator if you are 18 or over and
you are the most ‘entitled’ inheritor of the deceased’s estate. This is usually the
deceased’s closest living relative.</p>
if you are 18 or over and you are the most entitled inheritor of the deceased’s
estate and you are the closest living relative, you can apply to become the estate’s
administrator

Code # Rule2: Be careful when something removes from the board one of the pieces of
the dog and also becomes an enemy of the catfish because in this case it will surely
not burn the warehouse of the mosquito (this may or may not be problematic)
rule2(something) = remove(something, piece_of(dog)) & enemy(something, cat-
fish) => not burn(something, warehouse_of(mosquito))

Code → NL Rule2: If something removes from the board one of the pieces of the dog and
also becomes an enemy of the catfish, then it does not burn the warehouse of the
mosquito

Table 11: Example of a back-translation NL → C in ConditionalQA and BGQA-3. Text in bold represents the main
modification.

Type Text

Original
Code

# <p>To be eligible you must have left your country and be unable to go back because
you fear persecution.</p>
if left_country_and_fear_persecution:
eligible_for_asylum = True

Anonymous
Code

# <p>To be eligible you must have left your country and be unable to go back because
you fear persecution.</p>
if var_1
var_2 = True

Random
Code

# <p>To be eligible you must have left your country and be unable to go back because
you fear persecution.</p>
if value_of_property_gone_down_by_more_than_50:
eligible_to_claim = True
getting_housing_benefit = True

Table 12: Examples code ablations.
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Section Role Message

Problem
instance

Human Question: My brother and his wife are in prison for car-
rying out a large fraud scheme. Their 7 and 8 year old
children have been living with me for the last 4 years. I want to become
their Special Guardian to look after them permanently. How long will it be
before I hear back from the court?
Document: <h1>What is a special guardian</h1> <p>You can apply to be
a child’s special guardian when they cannot live with their birth parents and
adoption is not right for them.</p> ...
Answers can be "yes" or "no". Let’s think step by step:

Partial
CoT

AI <p>Within 10 days of receiving your application the court will send you a
case number and a date for a meeting to set out:</p>\n

Probe Human Now, I want to ask you about the value of some key entities you used. Your
answers must be ‘True‘, ‘False‘, ‘unknown‘, or a string. It is very important
that you only write the exact value. From the speaker perspective, is it true
that the children have been living with me for the last 4 years?

Probe AI True

Table 13: Variable Tracking Example. Underlined text represents the variable to probe. Partial CoT is not the
complete answer. The generation was stopped, and only the first step was used in this probe.

System: You are a helpful assistant that answers questions given a document. Answers must be a short
span of the document. You have to extract the span from the document. Do not write anything else. I will
give you some examples first.
ICL Demonstrations...
Human: Question: My brother and his wife are in prison for carrying out a large fraud scheme. Their
7 and 8 year old children have been living with me for the last 4 years. I want to become their Special
Guardian to look after them permanently. How long will it be before I hear back from the court?
Document: <h1>What is a special guardian</h1>
<p>You can apply to be a child’s special guardian when they cannot live with their birth parents and
adoption is not right for them.</p>
<p>You’ll be responsible for looking after the child until they’re 18 (unless the court takes your responsi-
bility away earlier).</p>
<p>You’ll make all day to day decisions about the child, for example schooling and medical treatment.
You do not have to discuss these decisions with the birth parents.</p>
<p>You’ll need to get the consent of everyone who has parental responsibility for the child before you
make some important decisions, for example:</p>
<li>changing the child’s surname</li>
<li>putting the child up for adoption</li>
<li>taking the child abroad for more than 3 months</li>
<li>the child having surgery for reasons other than improving health, such as circumcision, sterilisation or
cosmetic surgery</li>
<p>If you cannot get consent, you can ask the court to decide. Use the form ‘Make an application in
existing court proceedings related to children’ (form C2).</p>
<h1>After you apply</h1>
<p>Within 10 days of receiving your application the court will send you a case number and a date for a
meeting to set out:</p>
<li>a timetable for your case</li>
<li>how it will be dealt with</li>
<p>This meeting is called a ‘first directions hearing’.</p>
<p>You must go to all hearings you’re told to unless the court excuses you. If you’re not able to go,
contact the court office.</p> Answers must be a short span of the document. You have to extract the span
from the document. Do not write anything else. Let’s think step by step:

Table 14: Text prompt Example for ConditionalQA
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System: You are a helpful assistant. Your task is to process a pseudo-code that describes a question and a
document. You need to reason using that document and the comments to return the answers. Answers
must be a short span of the document. You have to extract the span from the code comments. Do not write
anything else. I will give you some examples first.
ICL Demonstrations...
Human: # Question: My brother and his wife are in prison for carrying out a large fraud scheme. Their
7 and 8 year old children have been living with me for the last 4 years. I want to become their Special
Guardian to look after them permanently. How long will it be before I hear back from the court?
maximum_redundancy_pay = 16320
housing_standards_and_procedures_in_Northern_Ireland = True
ensure_vehicle_taxed_in_UK = True immigration_advisers_can_help_with_representation_at_tribunal =
True
supply_protective_clothing_and_equipment = True
CBT_required_for_moped_and_motorcycle = True
court_response_time = None # This is the variable that answers the question
# <h1>What is a special guardian</h1>
# <p>You can apply to be a child’s special guardian when they cannot live with their birth parents and
adoption is not right for them.</p>
if attorneys_appointed_jointly:
all_attorneys_must_agree_to_make_decision = True
disability_or_severe_disability_element_of_working_tax_credit = True
mugging_without_physical_harm_emergency = True
# <p>You’ll be responsible for looking after the child until they’re 18 (unless the court takes your
responsibility away earlier).</p>
work_temporarily_for_hirer = True
# <p>You’ll make all day to day decisions about the child, for example schooling and medical treatment.
You do not have to discuss these decisions with the birth parents.</p>
accounts_and_tax_returns_cover_financial_year = "1 June to 31 May"
employer_operating_PAYE = True
# <p>You’ll need to get the consent of everyone who has parental responsibility for the child before you
make some important decisions, for example:</p>
# <li>changing the child’s surname</li>
# <li>putting the child up for adoption</li>
# <li>taking the child abroad for more than 3 months</li>
# <li>the child having surgery for reasons other than improving health, such as circumcision, sterilisation
or cosmetic surgery</li>
managed_by_fit_and_proper_persons = True
check_court_order_for_authorization = True
considering_fostering = True
if not_connected_to_mains_sewer:
septic_tank_used = True
can_claim_tax_relief_if_taxed_twice = True
extra_support_for_disability = True
if operator_of_septic_tank_or_treatment_plant:
follow_general_binding_rules = True
# <p>If you cannot get consent, you can ask the court to decide. Use the form ‘Make an application in
existing court proceedings related to children’ (form C2).</p>
appeals_decision_time = "several months"
if worker and informal_resolution_not_satisfactory:
formal_grievance_complaint_possible = True
time_limit_for_backdating_claims_services = 6
# <h1>After you apply</h1>
# <p>Within 10 days of receiving your application the court will send you a case number and a date for a
meeting to set out:</p>
# <li>a timetable for your case</li>
# <li>how it will be dealt with</li>
# <p>This meeting is called a ‘first directions hearing’.</p>
committee_recommendations_go_to_Prime_Minister = True
check_adviser_registration = True
meet_manning_levels = True
recognised_as_charity_or_CASC = True
apply_for_visa_for_other_reasons = True
debt_paid_off = True
if special_educational_needs_and_disabilities:
affects_behaviour_or_socialisation = True
# <p>You must go to all hearings you’re told to unless the court excuses you. If you’re not able to go,
contact the court office.</p>
payslip_can_include_tax_code = True
VAT_zero_rate = 0
gas_equipment_installed_and_maintained_by_Gas_Safe_registered_engineer = True
# Question: My brother and his wife are in prison for carrying out a large fraud scheme. Their 7 and 8
year old children have been living with me for the last 4 years. I want to become their Special Guardian to
look after them permanently. How long will it be before I hear back from the court?
# Answers must be a short span of the document. You have to extract the span from the code comments.
Do not write anything else.
# Let’s think step by step:

Table 15: Code Prompt Example for ConditionalQA
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System: You are a question-answering system that solves the problem of reasoning with contradictory
information guided by preferences over sources of information. You must explain your answers step
by step.
ICL Demonstrations ...
Human: A few players are playing a boardgame
The current state of the game is as follows
The amberjack struggles to find food
And the rules of the game are as follows
Rule1: If the amberjack has difficulty to find food, then the amberjack removes from the board one
of the pieces of the carp
Based on the game state and the rules and preferences, does the amberjack remove from the board
one of the pieces of the carp?
AI:

Table 16: Text prompt Example for BGQA-1

System: You are a large language model of code that can interpret code. You are given a pseudo-code
that resembles to first-order logic that models some scenario. You will be given a question and you
have to answer it step by step. You can use a rule if and only if you know the antecedent of the rule.
ICL Demonstrations
Human: # A few players are playing a boardgame
# The rules of the game are as follows
# Rule1: If the amberjack has difficulty to find food, then the amberjack removes from the board one
of the pieces of the carp.
rule1() = difficulty_finding_food(amberjack) => remove_piece(amberjack, carp)
# The current state of the game is as follows
# The amberjack struggles to find food.
difficulty_finding_food(amberjack) = True
# Based on the game state and the rules and preferences, does the amberjack remove from the board
one of the pieces of the carp?
question = remove_piece(amberjack, carp)
AI:

Table 17: Code prompt Example for BGQA-1
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Figure 4: Confusion matrices of text and code prompts for each model on all datasets.

System: You are a question answering system that answers questions given a document and a conversation
history. The conversation history gives information about the background of the person posing the question.
You must answer ‘yes‘, ‘no‘, or ‘not enough information‘ to the question and nothing else.
ICL Demonstrations...
Human: Question: The item is not equipment for audio books or newspapers, and I’m not selling lifeboats
or anything related to that. It’s for medicine and medicinal ingredients. Can I apply zero VAT to this item?
Document:
## Items that qualify for the zero rate
You may be able to apply zero VAT when you sell the following to an eligible charity:
* equipment for making ‘talking’ books and newspapers
* lifeboats and associated equipment, including fuel
* medicine or ingredients for medicine
* resuscitation training models
Conversation history:
Q: Is it equipment for making ‘talking’ books and newspapers?
A: No
Q: Are you selling lifeboats and associated equipment, including fuel?
A: No
Q: Are you selling medicine or ingredients for medicine?
A: Yes
What is the answer to the question: Can I apply zero VAT to this item? You must answer ‘yes‘, ‘no‘, or
‘not enough information‘ to the question and nothing else.
AI:

Table 18: Text prompt Example for ShARC.
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System: You are a question-answering system that answers questions based on a document, and conversa-
tion history. The text is pseudo-code that models the document and conversation history. You must run
the code and update the value of the variable that answers the question. The values can be True, False, or
None.
ICL Demonstrations...
Human:
# Question: # The item is not equipment for audio books or newspapers, and I’m not selling lifeboats or
anything related to that. It’s for medicine and medicinal ingredients. Can I apply zero VAT to this item?
equipment_for_audio_books_or_newspapers = False
selling_lifeboats_or_related_equipment = False
selling_medicine_or_ingredients_for_medicine = True
can_apply_zero_VAT = None # This is the variable that answers the question.
# Other variables needed for the document:
# Document:
## Items that qualify for the zero rate
# You may be able to apply zero VAT when you sell the following to an eligible charity:
# * equipment for making ‘talking’ books and newspapers
if equipment_for_audio_books_or_newspapers:
can_apply_zero_VAT = False
# * lifeboats and associated equipment, including fuel
if selling_lifeboats_or_related_equipment:
can_apply_zero_VAT = False
# * medicine or ingredients for medicine
if selling_medicine_or_ingredients_for_medicine:
can_apply_zero_VAT = True
# * resuscitation training models
resuscitation_training_models = None
can_apply_zero_VAT =
AI:

Table 19: Code prompt Example for ShARC.

23


	Introduction
	Background and Related Work
	Code Prompting
	Experimental Setup
	Datasets
	Models
	Evaluation

	Experiments
	Code Prompting Improves over Text Prompting
	Code Syntax Elicits Reasoning Abilities
	Code Semantics are Important
	Code Prompts are More Sample-Efficient at Eliciting Reasoning Abilities
	Code Prompts Improve Variable Tracking in LLMs

	Conclusions and Future Work
	Datasets
	Prompt Formulation
	Coding Features
	Code-only LLMs
	LLM Setup
	Costs
	Results on Small LMs with Short Context Window
	Human Analysis of the Generated Code
	Atomic Statements
	Examples of Code Ablations
	Variable Tracking Setup
	Confusion Matrices
	Prompt Examples

