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Abstract

Shapley values provide model agnostic feature attributions for model outcome at a
particular instance by simulating feature absence under a global population distri-
bution. The use of a global population can lead to potentially misleading results
when local model behaviour is of interest. Hence we consider the formulation
of neighbourhood reference distributions that improve the local interpretability
of Shapley values. By doing so, we find that the Nadaraya-Watson estimator, a
well-studied kernel regressor, can be expressed as a self-normalised importance
sampling estimator. Empirically, we observe that Neighbourhood Shapley values
identify meaningful sparse feature relevance attributions that provide insight into
local model behaviour, complimenting conventional Shapley analysis. They also in-
crease on-manifold explainability and robustness to the construction of adversarial
classifiers.

1 Introduction

The ability to correctly interpret a prediction model is increasingly important as we move to
widespread adoption of machine learning methods, in particular within safety critical domains
such as health care [22, 17]. In this paper, we consider the task of attributing the features {1, . . . ,m}
of a complex machine learning model f : Rm → Rl, abstracted as a function that predicts a response
given a test instance x ∈ Rm, given only black-box access to the model. We especially focus on
two popular model-agnostic feature removal based local explanation models, namely LIME [32] and
SHAP [26]. However our findings are applicable to other local explanation models that we do not
consider in this paper. As these methods are often described as fitting a local surrogate model to the
black box [34], a natural question is: how ‘local’ are local explanation methods?

As a simple motivating example as to why this question matters, consider a black box model given by
f(x) = I(x1 > 0)2x22− I(x1 ≤ 0)x22 where I(·) denotes the indicator function. When attributing the
local feature importance at a test instance x = (x1, 2), with x2 fixed at 2, we would expect Feature-1
to receive a higher absolute attribution when x is closer to the decision boundary at x1 = 0. In
Figure 1 we report the results on this example from LIME and SHAP as well as for our proposed
‘Neighbourhood SHAP’ approach. We observe that Neighbourhood SHAP assigns Feature-1 a smaller
attribution, the higher the absolute value of x1 is. SHAP and LIME, however, assign Feature-1 an
attribution which is constant either side of x1 = 0 which illustrates that these methods capture global
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Figure 1: Attributions at x = (x1, 2) with x1
varying for a reference distribution of X ∼ Normal(0, 1)
and black box f(x) = I(x1 > 0)2x22 − I(x1 ≤ 0)x22.

model behaviour. The figure also shows that training a local linear approximation to the black box
[30, 8] is misleading since Feature-2 receives a significantly positive attribution for x1 ∈ [−0.4, 0],
even though Feature-2 contributes clearly negatively to the model outcome whenever x1 < 0.

This motivates the following contributions

1. We propose Neighbourhood SHAP (Section 3) which considers local reference populations
for prediction points as a complimentary approach to SHAP. By doing so, we show that the
Nadaraya-Watson estimator at x can be interpreted as an importance sampling estimator
where the expectation is taken over the proposed neighbourhood. Empirically, we find that
greater locality increases the number of model evaluations on the data manifold and with
this the robustness of the attributions against adversarial attacks.

2. We consider how smoothing can also be used to stabilise SHAP values (Section 4). We
quantify the loss in information incurred by our smoothing procedure and characterise its
Lipschitz continuity.

2 Background

We begin with a short introduction to Shapley values – the quantity of interest of the SHAP optimisa-
tion procedure. For a pre-defined value function v(T, x) that takes a set of features T ⊆ {1, ...,m}
as input, the Shapley value φv(j, x) of feature j measures the expected change in the value function
from including feature j into a random subset of features S ⊆ {1, ...,m} \ {j} (without j)

φv(j, x) = E
p(S)

[v(S ∪ {j}, x)− v(S, x)]

where the expectation is taken over the feature coalitions whose distribution is defined by P (S) =
|S|!(m−|S|−1)!

m! . This choice of probability distribution ensures that sampling a set of size k has
the same probability as sampling one of size l, P ({S | |S|= k}) = P ({S | |S|= l}) for k, l ∈
{0, ...,m− 1}.
The choice of value function for explanation-based modelling of feature attributions at an instance x
has been the subject of recent debates [1, 25, 27]. The consensus is to take the expectation of the
black box algorithm f at observation x over the not-included features S using a reference distribution
r(X∗

S
| x) such that

v(S, x) = E
r(X∗

S
| x)

[f(xS , X
∗
S

)]

for S := {1, . . . ,m}/S and the operation (xS , xS) denoting the concatenation of its two arguments.
Marginal Shapley values [26, 25] define r(X∗

S
| x) := p(X∗

S
) where p denotes the marginal data

distribution. Conditional Shapley values [1] set the reference distribution equal to the conditional
distribution given xS , r(X∗

S
| x) := p(X∗

S
|X∗S = xS). All in all, the Shapley value φ(j, x) is

characterised by the expected change in model output, comparing the output when we include j in
the model, i.e. integrate out some randomly sampled features S \ {j}, with the model output where
feature j is not included, i.e. we integrated out some randomly sampled features including j, S
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φ(j, x) = E
p(S)

[
E

r(X∗
S\{j}

| x)
[f(xS∪{j}, X

∗
S\{j})]− E

r(X∗
S
| x)

[f(xS , X
∗
S

)]

]
.

As we see, Shapley values are computed by estimating the change in model outcome when some
features are integrated out over the reference distribution r(X∗

S
| x), which has so far been defined as

either the marginal or conditional global population. For marginal Shapley values, the interpretation
simplifies: The Shapley value of feature j is the expected change in model outcome when we sample
a random individual x∗ from the global statistical population and set its feature j equal to xj (after we
already set a random set of features S ∈ {1, . . . ,m} \ {j} equal to xS). This motivates our proposal
in Section 3 of neighbourhood distributions where we instead sample a random individual from the
immediate neighbourhood of x, as outlined in the next section.

Computing Shapely values is challenging in high-dimensional feature spaces, which motivates the
widely adopted KernelSHAP approach [26] that estimates the Shapley values of all features by
empirical risk minimisation of

E
p(S)

[( E
r(X∗

S
| x)

[f(xS , X
∗
S

)]− g(S))2] ≈
L∑

l=1

C∑
i=1

wi(f(xSi , x
∗
l,Si

)− g(Si))
2 (1)

where g(S) = φ0 +
∑m

j=1 φ(j, x)I(j ∈ S) is a linear explanation model with the Shapley values
as its coefficients, {x∗

l,Si
}Ll=1 are i.i.d. L draws from the respective global reference distributions,

{Si}Ci=1 is a set of size C of sampled coalitions, and the weights wi are defined by the KernelSHAP
weights [26]. LIME optimises a similar generalised expectation – also sampling references from a
global distribution. To improve local fidelity of Tabular LIME, [32] propose to define the weights
as wi = exp(−(|Si|−m)2/σ2) for a bandwidth σ. While this weighting increases the importance
of f(xSi

, x∗
l,Si

) proportional to the size of S, it however does not ensure that higher weights are
assigned to model evaluations for observations closer to x.

A simple solution to the locality problem is to fit a local linear approximation in the form of a tangent
line that predicts the black box in a small neighbourhood around x, as in [30, 8, 41, 43]. Such an
approach has however several drawbacks compared to SHAP (and thus Neighbourhood SHAP) such
as higher instability, less interpretability, and assuming a fixed parametric form. While SHAP (and
Neighbourhood SHAP) does not make any assumptions on the form of f in the feature space, local
linear approximations assume linearity of the black box in a neighbourhood. As a consequence, this
may result in misleading attributions, as was demonstrated in Figure 1. See Supplement A for a
detailed discussion of local approximating models versus local reference populations.

3 Neighbourhood SHAP

Shapley values – similarly to other feature removal methods – employ a global reference distribution
when computing attributions. This can lead to surprising artefacts as illustrated in Figure 2. To
increase the local fidelity of Shapley values, we propose to sample from a well-defined local reference
population instead. Having selected a distance metric D, such as the Euclidean distance or the
more powerful Random Forests [7], we define a distance-based distribution d : Rm → R that is
centred around x, such as the exponential kernel d(x∗

S
| xS) = exp(−D(xS , x

∗
S

)2/σ2
nbrd). Further,

we define the local neighbourhood distribution as n(x∗
S
| x) = nc · d(x∗

S
| xS) · r(x∗

S
| x) where

r(x∗
S
| x) can be any marginal or conditional reference distribution and nc is the normalising constant.

This choice ensures that we sample neighbourhood values not only considering the metric space
w.r.t. x but also the data distribution. This leads to a proposed change to the optimisation problem of
eq. (1) to the following Neighbourhood SHAP minimisation

E
p(S)

( E
ncd(X∗

S
| xS)r(X∗

S
| x)

[
f(xS , X

∗
S

)
]
− g(S)

)2
 .

3



𝑑𝑑 𝑋𝑋 ̅𝑠𝑠
∗ 𝑥𝑥 ̅𝑠𝑠

𝑓𝑓(𝑥𝑥𝑠𝑠,𝑋𝑋𝑠𝑠
∗)

𝐸𝐸𝑟𝑟(𝑋𝑋�𝑠𝑠
∗|𝑥𝑥)[𝑓𝑓(𝑥𝑥𝑠𝑠,𝑋𝑋𝑠𝑠

∗)]

𝑥𝑥

ϕ𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛

ϕϕ𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎

r(𝑋𝑋𝑠𝑠
∗ |𝑥𝑥)

𝑓𝑓(𝑥𝑥)

𝐸𝐸𝑛𝑛(𝑋𝑋�𝑠𝑠
∗|𝑥𝑥)[𝑓𝑓(𝑥𝑥𝑠𝑠|𝑋𝑋�̅�𝑠∗)]

Figure 2: When sampling {x∗i }Li=1 (black dots) from reference distribution r(X∗
S
| x) (here S = ∅),

the Shapley value φ at x is positive since f(x) is larger than Er(X∗
S
| x)[f(xS , X

∗
S

)]. In contrast,
Neighbourhood SHAP φnbrd is negative since En(X∗

S
| x)[f(xS , X

∗
S

)] is larger than f(x). This
difference results from the fact that, first, the model outcome has a local minimum at x, and second,
f(xS , X

∗
S

) takes its smallest values at the tails of the data distribution (right-skewed density of
f(xS , X

∗
S

) when X∗
S
∼ p(X∗

S
), black line on the left). SHAP only captures that f(x) is higher than

the average model outcome but not that f(·) is smaller at x than it is for any other close observation –
this is reflected by Neighbourhood SHAP.

Instead of estimating the neighbourhood distribution, we approximate the expectation of the model
outcome in the neighbourhood around x using self-normalised importance sampling [13] with
proposal distribution r(X∗

S
| x)

E
n(X∗

S
| x)

[f(xS , X
∗
S

)] = E
r(X∗

S
| x)

[
nc · d(X∗

S
| xS)f(xS , X

∗
S

)
]
≈

∑L
i=1 d(x∗

i,S
| xS)f(xS , x

∗
i,S

)∑L
i=1 d(x∗

i,S
| xS)

.

While our proposal, Neighbourhood SHAP, weights the f(xS , x
∗
i,S

) based on a distance metric
to x, KernelSHAP uses uniform weights, i.e. d(x∗

S
| xS) = 1. We note that the proposed local

neighbourhood sampling scheme has a convenient form which corresponds to the well-known
Nadaraya-Watson estimator [28, 42, 35] used for kernel regression. Kernel regression is a non-
parametric technique to model the non-linear relationship between a dependent variable Y (here,
f(xS , X

∗
S

)) and an independent variable Z (here, X∗
S

), by approximating the conditional expectation
E[Y | Z] (here, Er(X∗

S
| x)[f(xS , X

∗
S

) | X∗
S

]). While the form of the Nadaraya-Watson estimator
has so far been justified from a kernel theory perspective (Supplement F), we show that it can be
interpreted as an importance sampling estimator.

Proposition 1. The Nadaraya-Watson estimator EÊ[Y |Z = z∗] =
∑L

i=1 d(zi|z∗)yi∑L
j=1 d(zj |z∗)

, where d(z|z∗)
is a kernel function, is a consistent self-normalised importance sampling estimator of Y (Z) with
proposal distribution p(z) and desired distribution proportional to p(z)d(z|z∗).

As pointed out in Supplement B, all Shapley axioms [26, 39] still hold true for the Neighbourhood
SHAP. Now, by linearity, we can quantify the difference between SHAP and Neighbourhood SHAP
as ‘Anti-Neighbourhood SHAP’ (see Supplement D). Looking at this difference might be of value to
characterise the information loss when contrasting an instance to the global population instead of to a
local neighbourhood. Finally, we also derive a variance estimator of Shapley values computed with
the Shapley formula in Supplement J.

On-Manifold Explainability. A major disadvantage of marginal Shapley values and LIME is that
the concatenated data vectors (xS , x

∗
i,S

) for a sampled reference x∗i do not necessarily lie on the
data manifold [15, 10]. This has two serious ramifications: 1) the model is evaluated in regions that
lie off the data manifold where it might behave unexpectedly, and be unrepresentative for the data
population; a similar problem was described by [24] who note that removal based methods induce
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bias in model explanations if removal is modelled by imputing with observations that are far from
the actual test instance; and 2) adversaries can use an out-of-distribution (OOD) classifier trained to
distinguish real-data from simulated concatenated data and, through this, construct a model whose
Shapley values look fair even though the model is demonstrably unfair on the real-data domain [37].
To circumvent this problem, [16, 1, 11] propose the use of conditional instead of marginal reference
distributions. However, using conditional reference distributions changes the interpretability of
Shapley values – i.e. unrelated features get a non-zero attribution – and thus, their use is controversial
[25]. A marginal Neighbourhood SHAP approach in contrast can achieve on-manifold explainability
while keeping the properties of marginal Shapley values for small enough σnbrd if the data manifold
is to some extent coherent (see Figure 3).

Figure 3: Concatenated data (pink dots) used for model evaluations for the computation of Ker-
nelSHAP (left) and Neighbourhood SHAP (σnbrd = 0.1, right) at a randomly sampled instance
(maroon dots) where the data manifold is a ring in R2. Even though the background references (blue
dots) lie on the data manifold, marginal Shapley values are evaluated at instances that lie off the data
manifold.

Choice of Bandwidth. For σnbrd →∞, Neighbourhood SHAP will be equal to KernelSHAP, while
it converges to 0 for σnbrd → 0. Small neighbourhoods thus induce regularisation in the predictions
which we also observe empirically in Section 5. While SHAP values add up to

∑m
j=1 φ

nbrd(j, x) =

f(x)− Er(X∗ | x)[f(X∗)], Neighbourhood SHAP attributions add up to f(x)− En(X∗ | x)[f(X∗)].
Hence, care needs to be taken when comparing SHAP and Neighbourhood SHAP, since the scales
might differ. In this case, both SHAP values (standard and neighbourhood) can be divided by either
the sum of their absolute values or by their standard deviation, to represent relative attribution
measures. As commonly observed with kernel regression approaches, there are some drawbacks, such
as the additional hyperparameters (distance function, bandwidth) and increased variability especially
in data sparse regions for small bandwidths. These problems can be tackled by choosing adaptive
bandwidth methods. For instance, σnbrd could be chosen such that the 25% closest observations to x
are not assigned more than 75% of the weight mass. We propose to plot the Neighbourhood SHAP
values of the normalised features over a range of bandwidths, from σnbrd = [0, 3m]. This provides a
powerful diagnostic and information tool.

The computational burden of changing σnbrd is not as large as it might first appear. Our importance
sampling approach has the desirable property that En(X∗

S
| x)[f(xS , X

∗
S

)] is estimated on the same set
of references {x∗l }Ll=1 for each σnbrd, and that only the importance weights vary with the bandwidth.
As a result, there are no additional model evaluations required when Neighbourhood SHAP is
computed for a different σnbrd. This stands in contrast to other neighbourhood schemes proposed in
the XAI literature such as KDEs [9], GANs [36] or Gaussian perturbations [33] where the black box
must be evaluated an additional C · L times for each new bandwidth where C denotes the number of
sampled coalitions. Please refer to Supplement C for a theoretical and empirical complexity analysis.

4 Smoothed SHAP

In the previous section, we discussed neighbourhood sampling as a useful tool to understand feature
relevance through feature removal. We have also seen that the proposed neighbourhood sampling
approach relates to kernel smoothers such as the Nadaraya-Watson estimator. This result can give us
insights to consider a Smoothed SHAP that locally averages neighbouring SHAP values

φφ̂smtd(j, x) =
1∑N

i=1 d
smtd(x′i, x)

N∑
i=1

dsmtd(x′i, x)φφ̂(j, x′i) (2)
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where {x′i}Ni=1 are samples from the reference distribution and dsmtd is a kernel function. Such
smoothing procedures have been applied before in the explainability literature, e.g. for gradient-based
methods [38, 44], and can be of interest when the interpretability of SHAP values suffers under the
high instability of the black box [3, 19, 21]. The smoothing it induces can be captured by a Lipschitz
constant whose upper bound decreases with the bandwidth σsmtd.
Theorem 2. For every x0 ∈ Rm with ||x− x0||< δ, there exists a constant 0 < L ≤ maxy(f(y)−
Er(X∗ | x)[f(X∗)])h(σ2

S) such that ||φφ̂smtd(j, x)−φφ̂smtd(j, x0)||≤ L||x−x0|| for the smoothed
Shapley value estimator φφ̂smtd(j, x) (2) with d(x, xi) = exp(−||x− xi||2/σ2

S) if f(·) is bounded
on {xi}Ni=1 where h(σ2

smtd) is a function that decreases in σ2
smtd with h(σ2

smtd)→∞ as σ → 0.

Lipschitz continuity has been established as a favourable characteristic of explainability tools [3].
Introducing smoothness can indeed lead to feature attributions that do not correctly reflect the model’s
behaviour. In certain circumstances, this disadvantage can be outweighed by the advantage of more
"intuitive" explanations, i.e. when used to "explain to justify" [2].

With the tools from before, we can derive that Smoothed SHAP is an consistent importance sampling
estimator of the SHAP values from the neighbourhood around x

φsmtd(j, x) = E
n(X′ | x)

[φ(j,X ′)] = E
p(S)

[vsmtd(S ∪ {j}, x)− vsmtd(S, x)] (3)

where the new value function is defined by vsmtd(S, x) = En(X′ | x)[Er(XS | X′S)[f(X ′S , X
∗
S

)]]. This
smoothed value function relates to the explicit modelling of feature inclusion and gives an interesting
perspective on the meaning of smoothing, namely that x is a measurement of the test instance variable
X ′. Exploring a smoothed summary of the SHAP values in the local neighbourhood around x
highlights how local variability in f(x) drives changes in the SHAP feature attributions. This is
interesting in its own right but particularly so if features are susceptible to reporting error. As an
illustration, consider a black box algorithm that predicts the fitness level of an adult based on multiple
covariates, including weight. The reported weight may be subject to error if unreliable scales are used.
In addition, as weight varies constantly throughout the day, the individual might not be interested
in the attribution for one particular weight at a single point in time, but rather in the attribution that
a range of weights per day receives. The test instance is thus more appropriately described by a
test distribution of X ′ around x where X ′ is a random variable that describes the volatility in the
covariates of the test instance. If the test distribution is unknown, it can be estimated by setting
it, as earlier, equal to a neighbourhood distribution nsmtd(X ′ | x) ∝ rsmtd(X ′ | x)dsmtd(X ′ | x)
where dsmtd(X ′ | x) encapsulates the prior belief on the variability of X ′ and rsmtd(X ′ | x) cap-
tures the artefacts of the data distribution (i.e. skew, curtosis, high density regions). The kernel
dsmtd(x′i, x) = exp(−DT (x′i, x)Σ−1smtdD(x′i, x)) can now be defined with a multivariate bandwidth
Σsmtd = diag(σ2

smtd,1, ..., σ
2
smtd,m). We can observe empirically that such a choice can decrease

the MSE of the estimation of Shapley values (Supplement K). Building upon results from kernel
regression, we can quantify the squared distance of Smoothed SHAP to φ(j, x) (Supplement H).
Finally, we also derive a variance estimator for Smoothed SHAP in Supplement J.

Choice of Smoothing Bandwidth. Prior information on the variability of the covariates of the
test instance can be included in the definition of the bandwidth matrix. Fixed covariates, like age
or season, are not expected to change and thus receive a bandwidth σsmtd,j → 0, while volatile
features like weight, temperature or windspeed are assigned a positive bandwidth. For bandwidths
σsmtd,j → ∞, the feature is treated as inherently missing. If σsmtd,j → ∞ for all features j,
Smoothed SHAP equals the average of the Shapley values over all references which is often used as a
global explanation measure [15, 11, 6]. As Smoothed SHAP can be estimated efficiently once SHAP
values have been computed for the reference population, we propose, again, computing it for several
bandwidth choices, and using a plot with respect to the bandwidth as a visualisation technique to
help inform the choice of bandwidth. The bandwidth induces a bias-variance trade-off as derived in
Supplement H: the larger the bandwidth, the smoother the results, but also the less Smoothed SHAP
reflects the model behaviour at x, especially if f is highly non-linear.

Connection to LIME. Tabular LIME [32, 18] provides the same explanation for any two instances
falling into the same quantile along each dimension [18]. As such it is also an aggregated attribution
measure, similar to Smoothed SHAP. Key differences are the treatment of different dimensions and
no proven guarantees of Lipschitz continuity (see Supplement E).
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(a) AUC from OOD LightGBM and RF over
10 runs with 95% CIs. Concatenated data
was created by sampling as many coalition
vectors as data and masking with random
references. Where references are sampled
locally (smaller σnbrd), OOD classifiers per-
form significantly worse.

(b) Adversarial black box predicts recidivism using the COM-
PAS data. Absolute attributions obtained from Neighbourhood
SHAP and KernelSHAP are divided by the sum of attributions
for comparability. The adversarial attack affects Neighbourhood
SHAP (with σnbrd = 0.5) less than KernelSHAP when aver-
aged over 10 runs. Without adversarial attack, (Neighbourhood)
SHAP attributes only race (not shown).

Figure 4: Neighbourhood SHAP explains on-manifold and is robust to adversarial attacks.

5 Examples

We present comprehensive experiments on several standardised real-world tabular UCI data sets [5]
of different sizes predicted with ensemble classifiers or regressors, as well as an image classification
task on the MNIST dataset. The experiments demonstrate some key attributes of Neighbourhood
and Smoothed SHAP including: Neighbourhood SHAP increases on-manifold explainability and
robustness against adversarial attacks; Neighbourhood SHAP also leads to sparser attributions than
standard Shapley values; Smoothed SHAP tells us how Shapley values of neighbouring observations
differ from the attribution of the test instance.

Since Neighbourhood SHAP, Smoothed SHAP and SHAP operate on different scales, we divide all
attributions by their standard deviation (over features) unless otherwise specified. We present a subset
of our results in this Section and refer the interested reader to Supplement K for a thorough report of
all experimental results (including simulated experiments), details and hyper-parameter settings.

On-Manifold Explainability and Robustness against Adversarial Attacks. For adversarial
learning, we train a Random Forest and a LightGBM as OOD classifiers that distinguish true
data from concatenated vectors used for model evaluations. We find that for small bandwidths σnbrd,
the adversary is not able to distinguish between the test data and the concatenated test data (Figure
4a), leading to a deterioration in their ability to discriminate true from concatenated vectors. Under
the assumption that the classifiers are able to detect the true data manifold, we can thus claim that
Neighbourhood SHAP relies more on observations from the data manifold than SHAP and LIME.
Further, we mimicked the experimental setup of [37] on the COMPAS data set [4]: an adversarial
black box predicts recidivism based only on race if the data is predicted from the OOD classifier to
be from the data manifold, and returns an unrelated column if it is not. As presented in Figure 4b for
10 randomly sampled individuals, the unrelated column has no effect on Neighbourhood SHAP and
race has a higher relative attribution than it does for KernelSHAP.

Increased Local Prediction Performance. As SHAP learns a binary feature model g(S) = φ0 +∑m
j=1 φjI(j ∈ S), we can sample feature coalitions and reference values to perturb test data and

predict the model outcome at the perturbed data. To check local prediction performance, we weight
the MSE at each test instance and at each reference value with an exponential kernel of the distance
between test instance and reference value. Its bandwidth signifies the size of the neighbourhood.
Figure 5 presents the MSE corresponding to an XGBoost model, applied to four different datasets. As
expected, Neighbourhood SHAP with a smaller bandwidth predicts data within a small neighbourhood
significantly better than Neighbourhood SHAP with a larger bandwidth. Here we noticed that the
difference between the bandwidths is larger where there are fewer features in the data set (such as
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the iris dataset). We attribute the loss in performance to the difficulty of estimating meaningful
distances in high dimensions.
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Figure 5: MSE when predicting local model outcome of an XGBoost model averaged over 400 runs
displayed with 95% confidence intervals. Neighbourhood SHAP with smaller bandwidth predicts
neighbourhoods significantly better than with large bandwidths.

Interpretation of Neighbourhood SHAP. Neighbourhood SHAP computed with small kernel
widths reflects feature attributions when contrasting with model behaviour at similar observations,
whereas Neighbourhood SHAP computed with large kernel widths renders model behaviour contrast-
ing at a population scale. Figure 6 shows the evolution of Neighbourhood SHAP across bandwidths
on randomly picked observations across different data sets. The test instance in the bike data set,
where a XGBoost regressor predicts daily bike rentals, has a high normalised temperature of 0.82. As
the median observation has a temperature of 0.50, the neighbourhood of our test instance is expected
to look considerably different to the global population. For small kernel widths, Neighbourhood
SHAP computes a negative attribution for temperature, whereas marginal SHAP is positive. This
sign ‘flip’ is coherent with descriptive statistics: for a subpopulation with temperatures +/-0.05
around 0.82, temperature is negatively correlated with outcome (correlation equal to -0.08) whereas
overall, bike rental tends to increase on warmer days (unconditional correlation equal to +0.47).
Neighbourhood SHAP thus shows that a warmer temperature has in general a positive impact on the
count of rental bikes, which reverses for very hot days. Standard Shapley values do not provide this
type of fine-grained interpretation. Similarly, in the Boston data set (Figure 6, third column), our test
instance is a dwelling with a high percentage of lower status population (LSTAT) equal to 18.76%.
LSTAT gets positive Neighbourhood SHAP values for small kernel widths, whereas its marginal
Shapley value is negative. This observation is consistent with the negative overall correlation, which
is equal to -0.76, whereas for a restricted population with LSTAT +/- 1% it is equal to +0.15. For
similar dwellings i.e. with a high pupil-teacher ratio and many rooms, lower status populations do
not decrease the value of the home as much as they do in general, and can even increase it.

Interpretation of Smoothed SHAP. In contrast, Smoothed SHAP summarises marginal Shapley
values (which contrast against the entire population) within a neighbourhood, instead of at a single
instance. For example, consider the adult data set (Figure 6, first column). We chose a test instance
for which the model performs poorly: its predicted probability of high income for this individual,
aged 42, is equal to 0.09, when in actual fact the person has a high income. It is interesting to
contrast the conventional Shapley value assigned to the person, which is obtained by Smoothed
SHAP with a σsmtd → 0, with the average Shapley values for individuals like them. We observe that
Smoothed SHAP quickly assigns a negative attribution to age and a positive attribution to education
for σsmtd > 1, whilst SHAP values were positive and negative, respectively for the individual. This
highlights local instability in the Shapley values, as the SHAP numbers for people similar to the
predicted person are positive for education, and negative for the age feature. For the Boston data
set we note that Smoothed SHAP of the Pupil/Teacher Ratio (PTRATIO) initially decreases for a
small σsmtd, as there are many dwellings with a high PTRATIO in the data neighbourhood of the test
instance, while it then increases as the global attribution of this feature is in general higher.

Image Classification. We applied our Neighbourhood SHAP approach on KernelSHAP and also
on DeepSHAP [26] which computes Shapley values for images based on gradients. After training a
convolutional neural network on the MNIST data set, we explain digits with the predicted label 8
given a background data set of 100 images with labels 3 and 8. As we see in Figure 7, Neighbourhood
DeepSHAP gives pixels close to the strokes attributions with the highest absolute values while
DeepSHAP assigns less sparse and more blurry attributions. This is expected: DeepSHAP compares
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Figure 6: Scaled attributions at three different test instances (see Supplements K) for varying kernel
widths computed with 2000 reference points in the adult, bike and Boston housing data sets. Bounds
for LIME have been computed over 2000 runs, while the Shapley bounds have been estimated with
their theoretical formula as outlined in Supplements J.

each digit to a random digit in the population, while Neighbourhood DeepSHAP only looks at images
in the neighbourhood, i.e. to images which have a similar stroke. As we show in the Supplement, the
change in log odds of predicting a 3 after modifying the images depicting an 8 with the attributions
(setting blue pixels to 0) is (non-significantly) higher for Neighbourhood DeepSHAP than it is
for DeepSHAP. In contrast, Smoothed DeepSHAP leads to a smaller change in log-odds which is
expected since we lose information by smoothing. However we see that Smoothed DeepSHAP gives
additional insights compared to DeepSHAP and Global DeepSHAP: In all images the lower left
corner of the 8s is highlighted in blue only for Smoothed DeepSHAP. Thus, we know that there is at
least one observation in the neighbourhood of these 8s that has a strong negative attribution in that
image area. This image however loses importance when aggregating over the whole data set. Note
that LIME gives the sharpest results because we chose the hyperparameters such that the image is
split into the largest number of super pixels. We however see that LIME gives counter-intuitive results
(i.e. lower right corner of the third 8 gets the lowest attribution, lower contour of first 8 gets highest
attribution). Another popular explanation method called Integrated Gradients (IG) [40] was added
to Figure 7 for comparison purposes. This method consists in computing the gradients along a path
from the input of interest to a baseline input. Thus it resembles feature-removal based approaches in
so far as it requires baseline values to be specified. The baseline is typically defined to be just the
mean of the feature. If a fixed baseline value is chosen, IG suffers under the same globality problem
that was outlined for SHAP.

Figure 7: Randomly picked test images with explanations of the label 8. Red regions are pixels that
increase the predicted probability of label 8 while blue regions decrease the predicted probability
contrasted with the background data set.
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Evaluation of the proposed methods The two proposed methods were evaluated using a deletion
metric from the ROAR framework developed by Hooker et. al [23]. For each observation, 20% of the
most important features (measured by the magnitude of the absolute feature attributions) are imputed
by their mean and the model is retrained. Eventually, we compare the resulting changes in predictive
accuracy. We distinguish between two settings: imputation with the (global) mean of the features
and imputation with the local mean (i.e. the weighted mean of each feature where the weights were
computed based on a distance metric to the observation). Results are shown in the Supplementary
Material (see K.7). Overall, Neighbourhood and Smoothed SHAP result in a higher absolute change
in test performance than Marginal SHAP.

6 Discussion

In this paper, we first highlighted the limitations of using SHAP when the local model behaviour
is of interest. We then introduced Neighbourhood SHAP. While neighbourhood sampling has been
applied in other areas of model explainability, such as image perturbations by adding noise [14],
local linear approximations (see Supplements A), or rule-based models [20, 31, 29], it has not been
previously introduced for model agnostic additive feature models such as SHAP. Our contribution
is important as it provides a theoretical understanding of explanations of local model behaviour,
which is often lacking in the explainable AI literature [18]. A secondary contribution of this work
is the analyses of how smoothing Shapley values can identify unstable feature attributions. While
it is difficult to evaluate model explanations numerically, we provide an exhaustive comparison of
different metrics (adversarial robustness, prediction accuracy, and visual inspection). Neighbourhood
SHAP and Smoothed SHAP both merit consideration, as they have considerable advantages compared
to standard KernelSHAP. For comparability across experiments, we limited our analysis to the use of
the euclidean distance as a distance metric. In high dimensional spaces, this choice can be misleading
[12] and the use of more powerful distance metrics, such as one obtained by random forests, would
be appropriate. We thus caution against exclusively relying on mathematical metrics for explaining
models, and suggest comparing the un-weighted and weighted histograms before any judgement calls.
While it can be difficult to choose an adequate bandwidth, we see that having control over kernel
width allows the user to have a precise understanding of model predictions, both locally and at a
larger scale. LIME or KernelSHAP in their default implementation do not allow for such a detailed
analysis. Plots of Neighbourhood SHAP and Smoothed SHAP w.r.t. the bandwidths σnbrd and σsmtd

respectively are thus powerful tools that give additional insight into oblique dynamics of the black
box.

Limitations and Societal Impact Due to the increasing use of ML-based systems to assist or to
replace the human decision-maker, there is a need for transparency in algorithms. Developing robust
methods that provide end-users with insightful explanations on the decisions made is key for building
assurance in critical systems employing ML. However, we acknowledge that as all explainability
tools, our method requires good model fit. Finally, we caution against over-reliance on mathematical
metrics for explaining models, as is no consensus evaluation tool for explainability models.
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