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ABSTRACT

Particle-based variational inference (VI) minimizes the KL divergence between
model samples and the target posterior with gradient flow estimates. With the
popularity of Stein variational gradient descent (SVGD), the focus of particle-
based VI algorithms has been on the properties of functions in Reproducing Kernel
Hilbert Space (RKHS) to approximate the gradient flow. However, the requirement
of RKHS restricts the function class and algorithmic flexibility. This paper offers
a general solution to this problem by introducing a functional regularization term
that encompasses the RKHS norm as a special case. This allows us to propose a
new particle-based VI algorithm called preconditioned functional gradient flow
(PFG). Compared to SVGD, PFG has several advantages. It has a larger function
class, improved scalability in large particle-size scenarios, better adaptation to
ill-conditioned distributions, and provable continuous-time convergence in KL
divergence. Additionally, non-linear function classes such as neural networks
can be incorporated to estimate the gradient flow. Our theory and experiments
demonstrate the effectiveness of the proposed framework.

1 INTRODUCTION

Sampling from unnormalized density is a fundamental problem in machine learning and statistics,
especially for posterior sampling. Markov Chain Monte Carlo (MCMC) (Welling & Tehl 2011}
Hoffman et al.,|2014; |Chen et al.,2014) and Variational inference (VI) (Ranganath et al.,2014; Jordan
et al., [1999; Blei et al., 2017) are two mainstream solutions: MCMC is asymptotically unbiased
but sample-exhausted; VI is computationally efficient but usually biased. Recently, particle-based
VI algorithms (Liu & Wang, |2016; [Detommaso et al., 2018 [Liu et al., |2019) tend to minimize
the Kullback-Leibler (KL) divergence between particle samples and the posterior, and absorb the
advantages of both MCMC and VI: (1) non-parametric flexibility and asymptotic unbiasedness;
(2) sample efficiency with the interaction between particles; (3) deterministic updates. Thus, these
algorithms are competitive in sampling tasks, such as Bayesian inference (Liu & Wang, [2016; [Feng
et al.| 2017; Detommaso et al.||2018)), probabilistic models (Wang & Liu} 2016} [Pu et al., 2017).

Given a target distribution p, (), particle-based VI aims to find ¢(, x), so that starting with Xy ~ po,
the distribution p(¢, ) of the following method: dX; = g(t, X;)dt, converges to p.(z) as t — oo.
By the continuity equation (Jordan et al., 1998), we can capture the evolution of p(t, x) by

Ip(t, r)

T ==V (p(t,x)g(t,x)) . (D

In order to measure the “closeness” between p(t, -) and p., we typically adopt the KL divergence,

p(t; )
Dy (t) = / t,x)In dzx. )
ku(t) = [ p(t2) =
Using chain rule and integration by parts, we have
dDx1,(t
%() == /p(t,w)[v g(t,x) + g(t,2) "V, Inp,(z)]de, 3)



Published as a conference paper at ICLR 2023

which captures the evolution of KL divergence.

To minimize the KL divergence, one needs to define a “gradient” to update the particles as our g(¢, x).
The most standard approach, Wasserstein gradient (Ambrosio et al.,|2005)), defines a gradient for
p(t, x) in the Wasserstein space, which contains probability measures with bounded second moments.
In particular, for any functional £ that maps probability density p(¢,x) to a non-negative scalar,
we say that the particle density p(t, z) follows the Wasserstein gradient flow of L if g(¢, x) is the
gradient field of L2 (Rd)—functional derivative of £ (Villani, [2009). For KL divergence, the solution

is Vin g Z‘ f(?) However, the computation of deterministic and time-inhomogeneous Wasserstein

gradient is non-trivial. It is necessary to restrict the function class of g(t, x) to obtain a tractable form.

Stein variational gradient descent (SVGD) is the most popular particle-based algorithm, which
provides a tractable form to update particles with the kernelized gradient flow (Chewi et al.|[2020; Liu|
2017). It updates particles by minimizing the KL divergence with a functional gradient measured in
RKHS. By restricting the functional gradient with bounded RKHS norm, it has an explicit formulation:
g(t, x) can be obtained by minimizing Eq. (3). Nonetheless, there are still some limitations due to the
restriction of RKHS: (1) the expressive power is limited because kernel method is known to suffer
from the curse of dimensionality (Geenens), [2011); (2) with n particles, the O(nz) computational
overhead of kernel matrix is required. Further, we identify another crucial limitation of SVGD:
the kernel design is highly non-trivial. Even in the simple Gaussian case, where particles start
with V'(0,7) and p. = N (4, X«), commonly used kernels such as linear and RBF kernel, have
fundamental drawbacks in SVGD algorithm (Example I)).

Our motivation originates from functional gradient boosting (Friedman) 2001 Nitanda & Suzukil
2018;|Johnson & Zhang| 2019). For each p(¢, x), we find a proper function as g(¢, ) in the function
class F to minimize Eq. (3). In this context, we design a regularizer for the functional gradient
to approximate variants of “gradient” explicitly. We propose a regularization family to penalize
the particle distribution’s functional gradient output. For well-conditioned —V? In p*[]_l we can
approximate the Wasserstein gradient directly; For ill-conditioned —V? In p,, we can adapt our
regularizer to approximate a preconditioned one. Thus, our functional gradient is an approximation
to the preconditioned Wasserstein gradient. Regarding the function space, we do not restrict the
function in RKHS. Instead, we can use non-linear function classes such as neural networks to obtain
a better approximation capacity. The flexibility of the function space can lead to a better sampling
algorithm, which is supported by our empirical results.

Contributions. We present a novel particle-based VI framework that incorporates functional gradient
flow with general regularizers. We leverage a special family of regularizers to approximate the
preconditioned Wasserstein gradient flow, which proves to be more effective than SVGD. The
functional gradient in our framework explicitly approximates the preconditioned Wasserstein gradient,
making it well-suited to handle ill-conditioned cases and delivering provable convergence rates.
Additionally, our proposed algorithm eliminates the need for the computationally expensive O(n?)
kernel matrix, resulting in increased computational efficiency for larger particle sizes. Both theoretical
and empirical results demonstrate the superior performance of our framework and proposed algorithm.

2 ANALYSIS

Notations. In this paper, we use x to denote particle samples in R?. The distributions are assumed
to be absolutely continuous w.r.t. the Lebesgue measure. The probability density function of the
posterior is denoted by p.. p(t, z) (or p;) refers to particle distribution at time ¢. For scalar function
p(t, z), Vup(t, z) denotes its gradient w.r.t. . For vector function g(¢, z), V,g(t,z), V. - g(t, z),

Op(t,z) 9g(t,x)
5 and o denotes the

V2g(t, ) denote its Jacobian matrix, divergence, Hessian w.r.t. z. ,
partial derivative w.r.t. . Without ambiguity, V stands for V,, for conciseness. Notation ||z||%; stands
for x T Hx and ||z| 1 is denoted by ||z||. Notation || - ||;;« denotes the RKHS norm on R.

We let g(¢, ) belong to a vector-valued function class F, and find the best functional gradient
direction. Inspired by the gradient boosting algorithm for regression and classification problems, we
approximate the gradient flow by a function g(¢, z) € F with a regularization term, which solves the

'For any positive-definite matrix, the condition number is the ratio of the maximal eigenvalue to the minimal
eigenvalue. A low condition number is well-conditioned, while a high condition number is ill-conditioned.
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Figure 1: Ilustration of the functional gradient ¢(t,z) compared with optimal transport. (a)-(d)
denotes the corresponding () of the regularized functional gradient. (a)-(b) are SVGD algorithms
with linear and RBF kernel. Optimal transport denotes the direction of the shortest path towards p..

@) =3 IIfHHd (inear) ® Q) = §Hf||Hd (RBF) ©Q(f) = %Ept HfII2 @Qf) = éEm Hf“z—l

Figure 2: Evolution of particle distribution from N ([0,0] ", I) to N'([20,20] ", diag(100, 1)) (first
row: evolution of particle mean p;; second row: particle distribution p(5, z) at t = 5)

following minimization formulation:
olt.a) = agmin | = [ o007 ) + 1@ Vg s+ Q] @

where )(+) is a regularization term that limit the output magnitude of f. This regularization term also
implicitly determines the underlymg “distance metric” used to define the gradient estimates g(¢, ) in

our framework. When Q(z) = % [ p(t,z)| f(z)|?dz, Eq. (@) is equivalent to
(@)
g(t,x) = arg min/p(t,m) ‘f(x) Vi H dzx. 5)
fer pi()

If F is well-specified, i.e., Vln p* € F, we have g(t,z) = Vin p*§$)), which is the direction
of Wasserstein gradient flow. Interestlngly, despite the computational intractability of Wasserstein

gradient, Eq. (@) provides a tractable variational approximation.

For RKHS, we will show that SVGD is a special case of Eq. (@), where Q(f) = £ || f[|%,4 (Sec. 3.2.1).
We point out that RKHS norm usually fails to regularize the functional gradient properly since it is
fixed for any p(t, ). Our next example shows that SVGD is a suboptimal solution for Gaussian case.

Example 1. Consider that p(t, ) is N (j1t, X¢), px is N (s, i ). We consider the SVGD algorithm
with lmear kernel, RBF kernel and regularized functional gmdtent Sformulation with Q(f) =
2B, | fII% and Q(f) = $E,, ||fH _1. Starting with N'(0, I), Fig. plots the g(0, x) with different
Q and the optimal transport dlrectlon the path of p, and p(5,x) are illustrated in Fig. IZl The
detailed mathematical derivations and analytical results are provided in Appendix[A.2)

Example [T] shows the comparison of different regularizations for the functional gradient. For RKHS
norm, we consider the most commonly used kernels: linear and RBF. Fig. |1| shows the ¢(0, z)
of different regularizers: only Q(f) = 1 E,, | f HQE,1 approximates the optimal transport direction,

while other ¢(0, «) deviates significantly. SVGD with linear kernel underestimates the gradient of
large-variance directions; SVGD with RBF kernel even suffers from gradient vanishing in low-density
area. Fig. 2] demonstrates the path of y, with different regularizers. For linear kernel, due to the
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curl component (1,42, term in linear SVGD is non-symmetric; See Appendix for details), p(5, )
is rotated with an angle. For RBF kernel, the functional gradient of SVGD is not linear, leading to
slow convergence. The Lo regularizer is suboptimal due to the ill-conditioned X,.. We can see that
Q(f) = 3E,|If ||2Z,1 produces the optimal path for y; (the line segment between 1o and g..).

2.1 GENERAL REGULARIZATION

Inspired by the Gaussian case, we consider the general form

Q@) =5 [ ot D)5 @)ds ©

where H is a symmetric positive definite matrix. Proposition [T|shows that with Eq. (€}, the resulting
functional gradient is the approximation of preconditioned Wasserstein gradient flow. It also implies
the well-definedness and existence of g(¢, ) when F is closed, since || - || i is lower bounded by 0.

Proposition 1. Consider the case that Q(f) = 3 [ p(t, )| f(z)|%dx, where H is a symmetric

positive definite matrix. Then the functional gradient defined by Eq. is equivalent as

1
g(t,z) = arg min§ /p(t,x)

feF

P« (T)

2
p(t, ) e @

‘ H

’f(m) —~H 'VIn

Remark. Our regularizer is similar to the Bregman divergence in mirror descent. We can further
extend Q)(+) with a convex function h(-) : R — [0, o), where the regularizer is defined by Q(f(x)) =
E,, h(f(x)). We can adapt more complex geometry in our framework with proper h(-).

2.2 CONVERGENCE ANALYSIS

Equilibrium condition. To provide the theoretical guarantees, we show that the stationary distribu-
tion of our g(t, z) update is p.. Meanwhile, the evolution of KL-divergence is well-defined (without
the explosion of functional gradient) and descending. We list the regularity conditions below.

[A1] (Regular function class) The discrepancy induced by function class F is positive-definite: for
any q # p, there exists f € F such that E,[V - f(z) + f(z)"VInp(x)] > 0. For f € Fand c € R,
cf € F,and F is closed. The tail of f is regular: lim ;oo f(6, 2)ps«(2) = O for f € F.

[A2] (L-Smoothness) For any = € R?, p«(z) > 0 and p(t,z) > 0 are L-smooth densities, i.e.,
[VInp(z) = Vinp(y)|| < Lz -y, with By[jz[|* < oco.

Particularly, [A 1] is similar to the positive definite kernel in RKHS, which guarantees the decrease of
KL divergence. [A2] is designed to make the gradient well-defined: RHS of Eq. (3) is finite.

Proposition 2. Under [A1], [A2], when we update X, as Eq. @), we have —oo < 4BKL < ( for all
p(t,z) # p«(). ie, g(t,z) = 0 if and only if p(t, v) = p. ().
Proposition shows that the continuous dynamics of our g(¢, ) is well-defined and the KL divergence

along the dynamics is descending. The only stationary distribution for p(¢, z) is p. ().

Convergence rate.  The convergence rate of our framework mainly depends on (1) the capacity of
function class F; (2) the complexity of p.. In this section, we analyze that when the approximation
error is small and the target p, is log-Sobolev, the KL divergence converges linearly.

[A 3] (e-approximation) For any ¢ > 0, there exists f;(z) € F and € < 1, such that

/ plt, ) de <e / )

[A 4] The target p. satisfies p-log-Sobolev inequality (1 > 0): For any differentiable function g, we
2 2
have E,, [g2 lng2] —E,, [92} InE,, [92} < ;Ep* [||Vg|| } .

) — —1 np(t7$)
Jl@) = HV1 p.(2)

L) |
p.(@) ’VI

’H*l

Specifically, [Ag] is the error control of gradient approximation. With universal approximation
theorem (Hornik et al.||1989), any continuous function can be estimated by neural networks, which
indicates the existence of such a function class. [A 4] is a common assumption in sampling literature.
It is more general than strongly concave assumption (Vempala & Wibisonol 2019).
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Theorem 1. Under [A1]-[A4)], for any t > 0, we assume that the largest eigenvalue, Ayax(H) = m.

2
Then we have dm;i;(t) < —15E,, |[VIn ;’i((?) o and Dk, (t) < exp(—(1 — €)ut/m)Dkr(0).

Theorem [I] shows that when p, is log-Sobolev, our algorithm achieves linear convergence rate
with a function class powerful enough to approximate the preconditioned Wasserstein gradient.
Moreover, considering the discrete algorithm, we have to make sure that the step size is proper, i.e.,
|H=*V2Inp.(x)| < c, for some constant ¢ > 0. Thus, the preconditioned H = —cV?Inp, is
better than plain one H = cLI, since (—V?Inp,)~! = L~!I. For better understanding, we have
provided a Gaussian case discretized proof in Appendix [A.6]to illustrate this phenomenon.

3 PFG: PRECONDITIONED FUNCTIONAL GRADIENT FLOW

Algorithm 1 PFG: Preconditioned Functional Gradient Flow

Input: Unnormalized target distribution p.(z) = e~V®), fo(z) : RY — RY, initial particles (parameters)
{xh}™1, B, iteration parameter T, T", step size 7, 1/, regularization function h(-).
fort=1,...,T do
Assign 02 =0;_1;
fort' =1,---,7" do
Compute L(0) = L S0 | (h(fo(a})) + fo(x}) - VU(2i) — V- fo(a}))
Update 6! = 6! ~' — 5/ VL(6! ~1);
end
Assign 0; = 0?1 and update particles =} = =} + 7 (fet (:vﬁ)) foralli=1,--- ,n;
end
Return: Optimized particles {z%}7,

3.1 ALGORITHM

We will realize our algorithm with parametric fy (such as neural networks) and discretize the update.

Parametric Function Class. We can let ' = {fy(x) : 6 € ©} and apply g(t,z) = f5 (), such that

6, = argmin [ / P2V - o) — fole) VInpa(a) + L fo() | . ®)
0O

where H is a symmetric positive definite matrix estimated at time ¢. Eq. (8) is a direct result from
Eq. @) and (6). The parametric function class allows fy to be optimized by iterative algorithms.

Choice of H. Considering the posterior mean trajectory, it is equivalent to the conventional opti-
mization, so that —V?2 In p, is ideal (Newton’s method) to implement discrete algorithms. We use
diagonal Fisher information estimators for efficient computation as Adagrad (Duchi et al,2011). We
approximate the preconditioner H for all particles at each time step ¢ by moving averaging.

Discrete update. We can present our algorithm by discretizing Eq. @) and @8). Given X, ~ po, we
update X as X411 = X + 1 fék (Xk), where 0y, is obtained by Eq. (8) with (stochastic) gradient
descent. The integral over p(k, ) is estimated by particle samples. Full procedure is presented in
Alg. 1| where the regularizer h is 1|| - [|3, by default.

3.2 COMPARISON WITH SVGD

3.2.1 SVGD FROM A FUNCTIONAL GRADIENT VIEW

For simplicity, we prove the case under finite-dimensional feature ma;ﬂ, P(z) : R — RM We
assume that F = {W(z) : W € R™"} and letkernel k(z,y) = 1(z) "¢ (y), Q(f) = 2113, =
1||W||%., where RKHS norm is the Frobenius norm of . The solution is defined by

W, = arg min — /p(t, x) trace[WVi(z) + Wip(2)V Inp, () " |da + %HWH%, )
WeRdxh

*Infinite-dimensional version is provided in Appendix
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which gives W; = [ p(t,2")[Ve(2') T + VInp.(2')(2’) T ]da’. This implies that

olt,2) = Wo(e) = / p(t 1)V k(y, ) + VI p. (9)k(y, 2)]dy, (10)

which is equivalent to SVGD. For linear function classes, such as RKHS, () can be directly applied to
the parameters, such as W here. The regularization of SVGD is %H - ||% (the norm defined in RKHS).
For non-linear function classes, such as neural networks, the RKHS norm cannot be defined.

3.2.2 LIMITATIONS OF SVGD

Kernel function class. As in Section[3.2.1] RKHS only contains linear combination of the feature
map functions, which suffers from curse of dimensionality (Geenens,, 201 1). On the other hand, some
non-linear function classes, such as neural network, performs well on high dimensional data (LeCun
et al.l 2015). The extension to non-linear function classes is needed for better performance.

Gradient preconditioning in SVGD. In Example I, when —V?In p, is ill-conditioned, PFG al-
gorithm follows the shortest path from i to .. Although SVGD can implement preconditioning
matrices as (Wang et al.,2019)), due to the curl component and time-dependent Jacobian of dy, /dt,
any symmetric matrix cannot provide optimal preconditioning (detailed derivation in Appendix).

Suboptimal convergence rate. For log-Sobolev p.., SVGD with commonly used bounded smoothing
kernels (such as RBF kernel) cannot reach the linear convergence rate (Duncan et al.|[2019) and the
explicit KL convergence rate is unknown yet. Meanwhile, the Wasserstein gradient flow converges
linearly. When the function class is sufficiently large, PFG converges provably faster than SVGD.

Computational cost. For SVGD, main computation cost comes from the kernel matrix: with n
particles, we need O(n?) memory and computation. Our algorithm uses an iterative approximation to
optimize g(t, x), whose memory cost is independent of n and computational cost is O(n) (Bertsekas
et al., 2011). The repulsive force between particles is achieved by V - f operator on each particle.

4 EXPERIMENT

To validate the effectiveness of our algorithm, we have conducted experiments on both synthetic
and real datasets. Without special declarations, we use parametric two-layer neural networks with
Sigmoid activation as our function class. To approximate H in real datasets, we use the approximated
diagonal Hessian matrix H, and choose H = H®, where o € {0,0.1,0.2,0.5, 1}; the inner loop
T’ of PFG is chosen from {1, 2, 5, 10}, the hidden layer size is chosen from {32, 64, 128, 256, 512}.
The parameters are chosen by validation. More detailed settings are provided in the Appendix.

Gaussian Mixture. To demonstrate
the capacity of non-linear function
class, we have conducted the Gaus-
sian mixture experiments to show the
advantage over linear function class
(RBF kernel) with SVGD. We con-

sider to sample from a 10-cluster (a) True Density (b) SVGD Density v (c) PFG Density
Gaussian Mixture distribution. Both ~ * % A ; , £
SVGD and our algorithm are trained = § - I; IR R § O
with 1,000 particles. Fig. B|shows that | # % N e S

the estimated “score” by RBF kernel - L -

is usually unsatisfactory: (1) In low- (d) True Samples (¢) SVGD Samples (f) PFG Samples
density area, it suffers from gradient :

vanishing, which makes samples stuck
at these parts (similar to Fig. |1| (b));
(2) The score function cannot distin-
guish connected clusters. Specifically,

some clusters are isolated while oth-
ers might be connected. The choice

of bandwidth is hard. The fixed band-  Fijgyre 3: Particle-based VI for Gaussian mixture sampling.
width makes the SVGD algorithm un-

(g) Stein Score (h) SVGD Score (i) PFG Score
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Figure 4: Evolution of particle distribution from N (0, I) to N (., X.) (first row: mean squared
error of pu;: ||pes — 1+ ]|?; second row: KL divergence between p(t, ) and p.(x))

able to determine the gradient near connected clusters. It fails to capture the clusters near (—0.75, 0.5).
However, the non-linear function class is able to resolve the above difficulties. In PFG, we found that
the score function is well-estimated and the resulting samples mimic the true density properly.

IlI-conditioned Gaussian distribution. We show the effectiveness of our proposed regularizer. For
ill-conditioned Gaussian distribution, the condition number of X, is large, i.e., the ratio between
maximal and minimal eigenvalue is large. We follow Example|l|and compare different p, and X,.
When X, is well-conditioned (3, = I), Lo regularizer (equivalent to Wasserstein gradient) performs
well. However, it will be slowed down significantly with ill-conditioned ¥,.. For SVGD with linear
kernel, the convergence slows down with shifted ., or ill-conditioned X... For SVGD with RBF
kernel, the convergence is slow due to the improper function class. Interestingly, for ill-conditioned
case, 1; of SVGD (linear) converges faster than our method with H = I but KL divergence does
not always follow the trend. The reason is that 3; of SVGD is highly biased, making KL divergence
large. Our algorithm provides feasible Wasserstein gradient estimators and makes the particle-based
sampling algorithm compatible with ill-conditioned sampling case.

Logistic Regression. We conduct Bayesian lo-

gistic regression for binary classification task

on Sonar and Australian dataset (Dua & Gratff],
2017). In particular, the prior of weight samples =
are assigned N (0, 1); the step-size is fixed as T
0.01. We compared our algorithm with SVGD £
(200 particles), full batch gradient is used in 0 .
this part. To measure the quality of posterior
approximation, we use 3 metrics: (1) the dis- N -os{)
tance between sample mean p; and posterior 5
mean p,; (2) the Maximum Mean Discrep- S 20
ancy (MMD) distance (Gretton et al., |2012) 8

from particle samples to posterior samples; oy
(3) the evidence lower bound (ELBO) of cur- I [
rent particles, E,.,, [logp.(x) — logp(t, x)],
where p, () is the unnormalized density p(z, D)
with training data D, the entropy term log p(t, x)
is estimated by kernel density. The ground
truth samples of p, is estimated by NUTS - -
(Hoffman et al.l 2014). Fig. E] shows that " fterations () °lterations (K)
our method outperforms SVGD consistently.

SVGD Ours

-15

30 -30

240
230
160 220
210
200
190

Negative ELBO

Figure 5: Posterior sampling for Bayesian logistic
regression. (200 particles; dataset: sonar (first col-
umn) and Australian (second column). p;: particle
mean; (i, : posterior mean.)

Hierarchical Logistic Regression. For hier-
archical logistic regression, we consider a 2-
level hierarchical regression, where prior of
weight samples is A'(0, a~1). The prior of « is
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Gamma(0, 0.01). All step-sizes are chosen from {10~¢ : ¢ = 1,2, --- } by validation. We compare
the test accuracy and negative log-likelihood as|Liu & Wang|(2016). Mini-batch was used to estimate
the log-likelihood of training samples (batch size is 200). Tab. [I|shows that our algorithm performs
the best against SVGD and SGLD on hierarchical logistic regression.

Bayesian Neural Networks. We compare our algo-
rithm with SGLD and SVGD variants on Bayesian Table 1: Hierarchical Logistic Regression on
neural networks. We use two-layer networks with UCI datasets (particle size = 200)

50 hidden units (100 for Year dataset, 128 for

MNIST) and ReL.U activation function; the batch- ‘ COVTYPE GERMAN

size is 100 (1000 for Year dataset), All step-sizes ACC.  NLL ~ ACC. NLL
are chosen from {10~% : ¢t = 1,2, --- } by valida- SVGD | 75.1 0.58 65.1 0.71
tion. For UCI datasets, we choose the precondi- SGLD | 749 0.57 64.8 0.65
tioned version for comparison: M-SVGD (Wang PFG | 75.7 0.51 67.6 0.64

et al., 2019) and pSGLD (L1 et al., [2016). Data

samples are randomly partitioned to two parts: 90% (training), 10% (testing) and 100 particles is
used. For MNIST, data split follows the default setting and we compare our algorithm with SVGD
for 5, 10, 50, 100 particles (SVGD with 100 particles exceeded the memory limit). In Tab. [2| PFG
outperforms SVGD and SGLD significantly. In Fig.[6] we found that the accuracy and NLL of PFG
is better than SVGD with all particle size. With more particle samples, PFG algorithm also improves.

Table 2: Averaged test root-mean-square error (RMSE) and test log-likelihood of Bayesian Neural
Networks on UCI datasets (100 particles). Results are computed by 10 trials.

AVERAGE TEST RMSE AVERAGE TEST LOG-LIKELIHOOD
DATASET M-SVGD PSGLD PFG M-SVGD PSGLD PFG
BosTON 2724017  2.70+0.16 2.47+0.11 | -2.8640.20 -2.8540.18 -2.35410.12
CONCRETE 4.8340.11 5.05+0.13 4.69+0.14 | -3.2140.06 -3.21+0.07 -2.8310.16
ENERGY 0.89i0,10 0-99i0408 0.48i0,04 -1.42i0,03 -1.31i0‘05 '1-22i0.06
PROTEIN 4.5540.14 4.5940.18 4.51+0.06 | -3.07+0.13 -3.2240.11 -2.8910.07
WINERED 0.63i0.04 0.64i0402 0-60i0,02 -1.77i0A05 '1480i0408 -1.61i0,03
WINEWHITE 0.65+0.05 0.67+0.07 0.59+002 | -1.754+0.04 -1.8240.07 -1.58+0.04
YEAR 8.6240.00 8.66+0.07 8.5640.04 | -3.59+0.08 -3.56+0.04 -3.51+0.03
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Figure 6: Test accuracy and NLL of Bayesian Neural Network (MNIST classification)

Time Comparison. As indicated, our algorithm is more scalable than SVGD in terms of particle
numbers. Tab. [3 shows that SVGD entails more computation cost with the increase of particle
numbers. Our functional gradient is obtained with iterative approximation without kernel matrix
computation. When 7 is large, our O(n) algorithm is much faster than O(n?) kernel-based method.
Interestingly, the introduction of particle interactions is a key merit of particle-based VI algorithms,
which intuitively needs O(n?) computation. The integration by parts technique draws the connection
between the particle interaction and V - fy which supports more efficient computational realizations.
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Table 3: Time Comparison on Bayesian logistic regression (sonar dataset, 1,000 iterations)

# OF PARTICLES | 5 10 100 1000 2000
SVGD 5204010 5.254013 5.714011 19.104¢950 81.5041g6
PFG 7.87:|:0_16 7.95:‘:0'15 8.15:‘:0,17 11.56:|:0,24 13'22:|:0.26

5 RELATED WORKS

Stein Discrepancy and SVGD. Stein discrepancy (Liu et al.,|2016; Chwialkowski et al., [2016; |[Liu &
‘Wang, 2016) is known as the foundation of the SVGD algorithm, which is defined on the bounded
function classes, such as functions with bounded RKHS norm. We provide another view to derive
SVGD: SVGD is a functional gradient method with RKHS norm regularizer. From this view, we
found that there are other variants of particle-based VI. We suggest that the our proposed framework
has many advantages over SVGD as the function class is more general and the kernel computation can
be saved. We use neural networks as our F in real practice, which is much more efficient than SVGD.
Moreover, the general regularizer in Eq. (6) improves the conditioning of functional gradient, which
is proven better than SVGD in both theory and experiments. The preconditioning of our algorithm is
more explainable than SVGD, without incorporating RKHS-dependent properties.

Learning Discrepancy with Neural Networks. Some recent works (Hu et al.| [2018};|Grathwohl et al.,
2020; di Langosco et al., 2021)) leverage neural networks to learn the Stein discrepancy, which are
related to our algorithm. They only implement Q(f(x)) = E,, || f()||? to estimate the discrepancy.
Grathwohl et al.| (2020) measure the similarity between distributions and train energy-based models
(EBM) with the discrepancy. However, they did not further validate the sampling performance of
their “learned discrepancy”, so it is a new version of KSD (Liu et al., [2016), rather than SVGD.
Hu et al.| (2018) train a neural “generator” for sampling tasks. They discussed the scaling of Lo
regularization to align with the step size. In contrast, we restrict our investigation in particle-based VI
and avoid learning a “generator”’, which may introduce more parameterization errors. [di Langosco
et al.| (2021)) is an empirical study to implement the Ly version of our algorithm with comparable
performance to SVGD. We extend the design of () to a general case, and emphasize the benefits of
our proposed regularizers corresponding to the preconditioned algorithm. We include the Example
and Fig. ]to demonstrate the necessity of preconditioning. Our theoretical and experimental results
have demonstrated the improvement of PFG algorithm against SVGD.

KL Wasserstein Gradient Flow. Wasserstein gradient flow (Ambrosio et al.,|2005)) is the continuous
dynamics to minimize functionals in Wasserstein space, which is crucial in sampling and optimal
transport tasks. However, the numerical computation of Wasserstein gradient is non-trivial. Previous
works (Peyrél 2015; Benamou et al., 2016; |Carlier et al., 2017) attempt to find tractable formulation
with spatial discretization, which suffers from curse of dimensionality. More recently, (Mokrov et al.}
2021} |Alvarez-Melis et al.,|2021) leverage neural networks to model the Wasserstein gradient and
aim to find the full transport path between pg and p,. The computation of full path is extremely large.
Salim et al.|(2020) defines proximal gradient in Wasserstein space by JKO operator. However, the
work mainly focus on theoretical properties and the efficient implementation remains open. |Wang
et al.|(2022) solves SDP to approximate Wasserstein gradient, which considers the dual form of the
variational problem. When the functional is KL divergence, Wasserstein gradient can also be realized
with Langevin dynamics (Welling & Teh, [2011} Bernton, |2018)) by adding Gaussian noise to particles,
which are also variants of MCMC. However, the deterministic algorithm to approximate Wasserstein
gradient flow is still challenging. Our framework provides a tractable approximation to fix this gap.

6 CONCLUSION

In particle-based VI, we consider that the particles can be updated with a preconditioned functional
gradient flow. Our theoretical results and Gaussian example led to an algorithm: PFG that can
approximate preconditioned Wasserstein gradient directly. Our theory indicates that when the
function class is large, PFG is provably faster than conventional particle-based VI, SVGD. The
empirical result showed that PFG performs better than conventional SVGD and SGLD variants.
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A PROOFS

A.1 PROOF OF EQ. (3)

From the continuity equation (or Fokker-Planck equation), we have

8pg; J}) =_V. [g(t,x)p(t’x)]

By chain rule and integration by parts,

dDxr) :/8p(t ,T) (1+1 (t,x)) da
+
)

dt ot Px()
/V tx t x 1+ 1In p )dm
= x 2)] TV In B2 p(t,
= [lstt.apte.2) VI EE S s
- / lg(t, 2)p(t, )TV Inp(t, z) — np.(x))de
- / ot 2)T[Vp(t,z) — p(t, 2)V I p, (2)]da

- / p(t2)[V - gt 2) + g(t, )V In p. ()] de.

A.2 DISCUSSION OF EXAMPLE[T]

(1) SVGD with linear kernel k(x,y) = " Ky + 1

gt x) = =S (Se + (e — pa)p) VK@ + iy — ] + K. (11)
(2) SVGD with RBF kernel k. (x,y) = \/% exp (— 55z lly — 2/?)
9(t,z) = O(z exp(~[|[|*)). (12)
(3) Linear function class with L regularization Q(f(z)) = 1E,, || f(z)]|*.
glt,x) = =37 (@ — ) + 37 (2 — ). (13)

(4) Linear function class with Mahalanobis regularization Q(f(z)) = 3E,, || f(z) ||22,1
glt,x) = =(z — pa) + B3 (@ — pe).- (14)

For optimal transport g(t,x) = —(x — p1.) + 2_1/2( i/22*2:/2)1/22t_1/2(x — [hg).

Note that p.p1] is not symmetric, which makes the distribution rotate. Figure [7|shows that we can
split the curl component by Helmholtz decomposition, which means that this part would rotate the
distribution and cannot be compromised by preconditioning method. Thus, we cannot find any K to
obtain a proper preconditioning.

Proof. We consider these 4 cases seperately.
(1) SVGD with linear kernel.
If k(z,y) = 2" Ky + 1, then V, k(x,y) = K,

olt, ) = / Pt 9)(—S (y — ) + Sy — ) (5 K + 1)dy

pl(t, Yy — pa)(y Kz + 1))dy

- [pews
+/p(t,y)(2t’1(ny —my"))dyKz
= =SS+ (e — ppd VK@ + py — ] + K
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Figure 7: Illustration of y,x, term by Helmholtz decomposition. (1 = [0, 10], . = [20, 20])

(2) SVGD with RBF kernel.

(MY — ) = 50y — ) dy
1 1~T _1~) 1 ( 1 ~ 2>
=[] ——exp|—zy X ——exp |~z ||lytpu—x
(S7NT + e — ) — S719) di

- V2l + 57 |

VIRl for|o2r 4 1)

exp (—;(37 —pte) " (0TI (5 - /J/ac)) :

1 - L i
exp (2(Nt — ) S (e — x)) (SN + e — ) = 2719) di

-/ yETY _ZH — i (30 =075 - )

(S + e — ) — S77'9) di
=Co (S0 = 207") po + 57 (e — 1))
where ) .
po =02 (0P I+37Y) (@ —w) = (I+0°S7Y) (2 — ),
1

\/ﬁ exp (_%ig(m — ) (I = (I + %27 )™ (- Mt))

Note that g(t, ) = O(z exp(—||z|?)). When & — oo, g(t, x) is vanishing.

(3) and (4) are special case of Proposition@

Considering the evolution of p;, we have

(1) % =y [(Et + (,ut — ) VK pig + pe — pi] + K g, which contains non-symmetric i, ;' -
(2) The transport is not linear.

(3) %t =S (e — ).

“) % = W — ft, which means that the evolution of (4) is equivalent with optimal transport.

14
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A.3 PROOF OF PROPOSITIONII]

Proof. Assume that Q(f) = [ p(t, z)| f(x)||3,dx, when we have Eq. (@) as

git.o) =arguin | [ p(t, )=V 1(0) = F&) Vinp.(a) + 51170 ]
feF

= arg min z)[—f(x)" np*(x) 1 x)||%;]dz
—argain | [ p(t2)=f(0) i 2o D7) ]

P« ()
p(t, @)

1
=argmin |E,,[= HH_1V1n
feF 2

| ‘H p(t,z)

[t

= argmin | - E,,
fer |2

-1 np*(x)
fl@)—H VI o 2)

]

A.4 PROOF OF PROPOSITION[2]

2
)TV 2 ;f«c)n%{]}

15)

(16)

a7

(18)

Lemma 1. (A Variant of Lemma. 11 in (Vempala & Wibisono| 2019)) Suppose that p(x) > 0 is

L-smooth. Then, we have

/ p() |V np(a)|> dz < Ld;

Proof. By [A1], there exists f such that
— /p(t,a;)[V fH TV Inp.(z))dz < 0.
Thus, consider f.(x) = cf(x),

L(c) = — /p(t,z)[v cef +cf TV, Inp,(x)de = —Cye

I(c) = / p(t, 2) [ef|Zdz =: 2 / p(t, 2)||f1|%da = Crre?
where Cr, Cr > 0.

_ Cs
When ¢ = 3G, We have

. c
By choosing ¢g = 55,

- [PtV - gltsx) + ot 0) Vinp. (@) + Glo(t. ) e
<= [PtV - cof +cof Vinpaa) + 5 lleof e
<0
Thus,

dDxk1,(t)

o _ /p(t,x)[V g(t,z) + g(t,z) " Vinp,(z)dr <0
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By Eq. @),
d%i;(t) . / (6, D)V - g(t,2) + g(t, 2) TV, Inp.(2)]de 25)
_ / p(t, 2)g(t, )V In 5(*tfz))]dx (26)
>3 [ st ]vm 2 rdx — 5 [ pea ot o) i @7
> (1 + Amax(H)AZ2 (H)) / p(t,z) ‘vm ;&E?) ‘Zdyc (28)
> (1 A (N (L [ (0,2 (V0. 0) + Lol ) )
> oo (30)

2
where [ p(t, x) HV In 2:@ 11" 4z can be controlled by Ld ([A2] and Lemma and E,, ||z

p(t,x)

O
A.5 PROOF OF THEOREM/I]
Proof. By p-log-Sobolev inequality in [A 4], suppose g? = p;/p«, then we have
1 p(t o) |
Dk, (t) < —/p t,x ‘Vln dzx. (3D
“ 2p (2 P+ ()
When we consider the H-induced norm, for any x, we have ||z|| -1 > m ||| Thus,
Ama (H) p(t,) |
Dxr(t) < 7/;0 t,x HVIn dx. (32)
() 2p (,2) p=(2) |l

Using Cauchy-Schwarz inequality and [A 3], we have

dDxr(t) _ —/p(t,x)Vln If*t(x)  g(t, x)dw

dt (t,z)
_ . np*(m) ' o) — g1 np*(x) . np*(x)
- /p(t, V1 o(t.2) (g(t,) H™'V1 (t7$)+[—[ val G ))d
__/ (t,2) || v 1n 2:2) U
- P p*(x) H-1
p*(x) . ) — 1 n p*(x) .
-l-/P(t,x)Vlnp(t’x) <g(t, y—H V1 p(t,a:))d
2
ps(2) o 2@ 4,
+/p(t,x) vin ol g(t,x) —H'V1 P(t’w)HHd
1 T np(t,x) ’ x 1 T 2 — H-1 np*(a?)
< 2/p(t, )‘w oo (2) Hild +2/p(t, )‘g(t, )—-H V1 2] ’H
< - ﬁfix_ I?) Dxkv(t)

Thus, by Gronwall’s inequality,

Dk (t) < exp (—)M) Dxr1,(0)

16



Published as a conference paper at ICLR 2023

Remark: Theorem [I]shows that PFG algorithm convergence with linear rate. Moreover, the choice
of preconditioning matrix affect the convergence rate with the largest eigenvalue. In real practice,
due to the discretized algorithm, one needs to normalize the scaling of H, which is equivalent to the

learning rate in practice. For any preconditioning I?' , we need to compute the corresponding learning
rate to get H = i~ ' H. One usually set that ||nH 'V Inp,(z)||;' < 1 to make the discretized

(first-order) algorithm feasible ( < ||[H~'V?In p,(z)||2), otherwise the second order error would
be too large. The construction is similar to condition number dependency in optimization literature.

Take the fixed largest learning rate for example in the continuous case:

When H = I, we have thatp = 1/L, H = LI,
’2

dDxy,(t) 1 pe()
1

<

- QLEpt

p«(z)

<—=—E,, [[VIn

dt - 2L

When H = —V2 Inp,, we have thatn =1, H = —V21np,,

dDxy,(t)
dt

Vin Pe(z)

n pe()
P« () v

>
() ‘ ’

1
< _ngt

‘—(V2 Inp,)~-1

A.6 ANALYSIS OF DISCRETE GAUSSIAN CASE

As is shown in Example 1, given that xy ~ N(0, I) and the target distribution is N (g, X ), we have
the following update for our PFG algorithm,

T = T+ nH (S0 (e — ) + 57 (20 — ) -
By taking the expectation, we have
preyr —pe = nH " (57 (1 — pur))
Spp1 —Se=nH ' (S-S0 S 0s (B -8 HY
+PH (S -2 s (B -2 ) HY
Since ¥y = I, the eigenvectors of >; will not change during the update. For notation simplicity, we

write the diagonal case in the following discussion.

Assume that ¥, = diag(o?,---,032), ¥; = diag(s3(t), - ,s3(t)), H = diag(h1,- - , ha), such
that o0; > 0,41 forany ¢ = 1,--- ,d — 1. Without loss of generality, we assume that o3 < 1,
otherwise we can still rescale the initialization to obtain the similar constraint.

Given the fact that x — In(1 4+ z) < “’ when = > 0, we have,

;<||ut pellgor + 5 Z( )2>
2>2>. (33)

Dy, (t

Ko

Thus, we define

Cp :=

(nuo—u*u . Z(

Considering the i-th dimension (with notation [-];),

l\D\»—l

[ter1)i = (1 - h%) [e)i + h;zr? [ (34)
2 _ 2 2ns3(t) 1 1 n%s2(t) 1 1\?
5¢(t+1)si(t)+m<si(t)2 U?)+ 2 (si(t)Q 02> : (35)
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To guarantee the convergence of the algorithm, we need to make sure that both p; and 3; converge.
By rearranging and (33), we have

[pas1li = [psali <1 _n ) [l — [pa]i

ag; hiaf ag;

2
Aern-ct () (RO-02\ P (20
o? hio? o? hio?s2(t) o? ’

(2 7

One needs to construct contraction sequences of both mean and variance gap, which are guided by
1 —mn/(h;o?) and 1 — 2n/(h;0?). Notice that s2(0) > o?. Assume that 7 < min; h;02 /2. Then we
have s?(t + 1) > o2.

Thus, we obtain

o?  $2(1)

n |1 1
hi

It is natural to obtain the contraction of both mean and variance gap,

2
n
s =l < s (1= 0 ) el
]

7
<(1-
_( hiff?)

2t
DKL(t) S max <1 — 77) C(),

s2(t+1) — o?
2

0;

w0
[\

—~

~
~—

|

Q

N

hiO'-2

K2

where Cj is defined in Eq. (33).

2
When h; = 1, we have n = %

When h; = o %, we have 1) = 1

This result is equivalent to the Remark in[A.5]

A.7 PROOF OF INFINITE-DIMENSIONAL CASE OF RKHS

Proof. Assume the feature map, 1(z) : R? — H and let kernel k(z, y) = (¥(2),¥(y))4, , Q(f) =
%H fl2¢¢- One can perform spectral decomposition to obtain that

k(z,y) = Z Aii ()i (y)

where 1); : R? — R are orthonormal basis and ); is the corresponding eigenvalue.

For any g € H, we have the decomposition,
o0
g9(x) = Z 9iV Aivi(z),
i=1
where g; € R% and Y 57, [|gi]|*> < oc.
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The solution is defined by

N . 1
§ = argmin — /p(t,x) (V g+ Vlnp*(x)'rg(x)) + 5”9”3—% (36)
geH

= arg min — /p(t,x) (V . Zgz\//\iﬂm(a:) + Z VAV hlp*(l”)—rgﬂ//i(x)> + Z llgil1?,

geH
(37)

which gives

b= / p(t, 1) [Vebi(y) + ¥ In p (y)e6s (v) ]y,

This implies that
g(t2) = > VNiti(a) = [ DIV ko) + Vinp @k oy, G
i=1

which is equivalent to SVGD.
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B MORE DISCUSSIONS

B.1 SCORE MATCHING

Score matching (SM) is related to our algorithm due to the integration by parts technique, which
uses parameterized models to estimate the stein score V Inp,.. We made some modifications to
the original techniques in SM: (1) We extend the score matching V In p, to Wasserstein gradient
approximation V In p, — V In p;; (2) We introduce the geometry-aware regularization to approximate
the preconditioned gradient. Thus, our proposed modifications make it suitable for sampling tasks.

In a word, both SM and PFG are derived from the integration by parts technique. SM is a very
promising framework in generative modeling and our PFG is more suitable for sampling tasks.

B.2 OTHER PRECONDITIONED SAMPLING ALGORITHMS

Preconditioning is a popular topic in SVGD literature. Stein variational Newton method (SVN)
(Detommaso et al.,[2018)) approximates the Hessian to accelerate SVGD. However, due to the gap
between SVGD and Wasserstein gradient flow, the theoretical interpretation is not clear. Matrix
SVGD (Wang et al.,[2019) leverages more general matrix-valued kernels in SVGD, which includes
SVN as a variant and is better than SVN. (Chen et al.,|2019) perform a parallel update of the parameter
samples projected into a low-dimensional subspace by an SVN method. It implements dimension
reduction to SVN algorithm. [Liu et al.| (2022) projects SVGD onto arbitrary dimensional subspaces
with Grassmann Stein kernel discrepancy, which implement Riemannian optimization technique to
find the proper projection space.

Note that all of these algorithms are based on RKHS norm regularization. As we mentioned in
Example(T] due to the introduction of RKHS, the preconditioning matrix is often hard to find. For
example, the preconditioning matrix of the linear kernel varies in time, while our algorithm only
needs a constant matrix. For RBF kernel, the previous works have demonstrated the improvement of
the Hessian inverse matrix, but the design is still heuristic due to the gap between the Wasserstein
gradient and SVGD. Our algorithm directly approximates the preconditioned Wasserstein gradient,
and further analysis is clear and conclusive. Also, the SVGD-based algorithms suffer from the
drawbacks of RKHS norm regularization, as discussed in Example [T}

Besides, there are some other interesting works (Li et al., [2019; |Garbuno-Inigo et al., 2020; [Wang
et al.,[2021} [Lin et al.} 2021; Wang & Li, [2020; 2022; [Li & Ying} 2019) also take the preconditioning
methods / local geometry / subspace properties into consideration, and they have also shown the
improvement over the plain versions, which have similar motivation to our algorithm. Although these
methods are out of the particle-based VI scope, we believe that these methods have great potentials in
our literature, which can be interesting future works.

B.3 OTHER WASSERSTEIN GRADIENT FLOW ALGORITHMS

There is another line of work to approximate Wasserstein gradient flow through JKO-discretization
(Mokrov et al.l [2021; |Alvarez-Melis et al.| 2021} [Fan et al.||2021)). The continuous versions of these
Wasserstein gradient flow algorithms are related to our algorithm when the functional is chosen as
KL divergence. These are promising alternative algorithms to PFG in transport tasks. From the
theoretical view, they solves the JKO operator with special neural networks (ICNN) and aims to
estimate the Wasserstein gradient of general functionals, including KL/JS divergence, etc. On the
other hand, our algorithm is motivated by the continuous case of KL. Wasserstein gradient flow and
we only consider the Euler discretization (rather than JKO), which is the setting of particle-based
variational inference.

When we consider the KL divergence and posterior sampling task, our proposed method is more
efficient than Wasserstein gradient flow based ones, due to the flexibility of the gradient estimation
function. We provide the empirical results on Bayesian logistic regression below (Covtype dataset).
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Table 4: Bayesian logistic regression (Covtype dataset)

METHOD | ACCURACY (%) NLL
OURS 75.7 0.58
JKO-ICNN 75.0 0.62
JKO-VARIATIONAL 75.3 0.59

According to the table, our algorithm outperforms JKO-type Wasserstein gradient methods. Moreover,
it is important to mention that JKO-type Wasserstein gradient is extremely computation-exhausted,
due to the computation of JKO operator. Thus, it would be more challenging to apply them to larger
tasks such as Bayesian neural networks.

B.4 VARIANCE COLLAPSE AND HIGH-DIMENSIONAL PERFORMANCE

Some recent works (Ba et al.} 2021} (Gong et al.| 2020; Zhuo et al.,|2018; [Liu et al., 2022} suggest
that SVGD suffers from curse of dimensionality and the variance of SVGD-trained particles tend
to diminish in high-dimensional spaces. We highlight that one of the key issues is that the SVGD
algorithm with RBF function space is improper. As shown in Tab. [5] when fitting a Gaussian
distribution, an ideal function class is the linear function class given the Gaussian initialization.
However, provided with RBF-based SVGD, the variance collapse phenomenon is extremely severe.
On the contrary, when using a proper function class (linear), both SVGD and PFG performs well.
More importantly, for some powerful non-linear function classes (neural networks), it still performs
well with PFG. The effectiveness of neural network function class and PFG algorithm would be
particularly important when the target distribution is more complex.

Table 5: Ilustration of Variance Collapse in RBF function classes (20-dim A/ (0, I))

METHOD | TARGET SVGD SVGD PFG PFG
(RBF) (LINEAR) (LINEAR) (NEURAL NETWORK)
VARIANCE | 1.00 0.35 1.01 1.00 0.99

To further justify the effectiveness of PFG algorithm in high dimensional cases, we evaluate our
model under different settings following|Liu et al| (2022). Tab. [6] shows that our PFG algorithm is
robust to high dimensional fitting problems, which is comparable to GSVGD (Liu et al., 2022) in
Gaussian case.

Table 6: Estimating the dimension-averaged marginal variance of A/(0, I)

DIMENSION | 20 40 60 80 100

SVGD 0.35 0.18 0.12 0.09 0.04
GSVGD 096 097 1.00 1.01 1.00
PFG 1.00 0.99 0.98 1.00 0.97

We also include a further justification in Tab. [/, which compute the energy distance between particle
the target distribution and the particle estimation on a 4-mode Gaussian mixture distribution. In this
case, the function class of gradient should be much larger than linear case. We can find that the
resulting performance improves the previous work (GSVGD).
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Table 7: Energy distance (x1072) between the target distribution and the particle estimation on
Multimodal Gaussian mixture distribution (4 modes)

DIMENSION | 20 40 60 80 100

SVGD 2.1 6.7 10.8 249 39.6
GSVGD 1.0 23 34 32 35
PFG 0.6 0.8 1.2 1.6 2.1

B.5 ESTIMATION OF PRECONDITIONING MATRIX

Ideally, one would leverage the exact Hessian inverse as the preconditioning matrix to make the algo-
rithm well-conditioned, which is also the target of other preconditioned SVGD algorithms. However,
the computation of exact Hessian is challenging. Thus, motivated by adaptive gradient optimization
algorithms, we leverage the moving average of Fisher information to obtain the preconditioning
matrix. We conduct hierarchical logistic regression to discuss the importance of preconditioning. We
compare 3 kinds of preconditioning strategies to estimate: (1) Full Hessian: compute the exact full
Hessian matrix; (2) K-FAC: Kronecker-factored Approximate Curvature to estimate Hessian; (3)
Diagonal: Diagonal moving average to estimate Hessian. According to the table, we can find that the
preconditioning indeed improves the performance of Bayesian inference, and the choice of estimation
strategies does not differ much. Thus, we choose the most efficient one: diagonal estimation.

Table 8: Average Performance on Hierarchical Logistic Regression (German dataset)

\FULLHESSIAN K-FAC DIAGONAL W/O PRECONDITIONING

ACCURACY 67.8 67.4 67.6 66.2
NLL 0.62 0.65 0.64 0.70

B.6 MORE COMPARISONS

We also include a more complete empirical results on Bayesian neural networks, including the
comparison with plain version of SVGD (Liu & Wangl 2016), SGLD (Welling & Teh, [2011]), and
Sliced SVGD (S-SVGD) (Gong et al., 2020). Our algorithm is still the most competitive one
according to the table. Besides, we also conduct an ablation study to further justify the importance of
preconditioning, which implies the value of Q(-) design. In Table we have shown that the full
algorithm with proper @) outperforms the plain version.

Table 9: Comparison with plain version of SVGD and SGLD. Averaged test root-mean-square
error (RMSE) and test log-likelihood of Bayesian Neural Networks on UCI datasets (100 particles).
Results are computed by 10 trials.

AVERAGE TEST RMSE AVERAGE TEST LOG-LIKELIHOOD
DATASET SVGD SGLD PFG SVGD SGLD PFG

BoOSTON 3.0440.12  2.79+0.16 2.4740.11 | -2.7640.15 -2.63+0.14 -2.3510.12
CONCRETE 5514017 4.97+012 4.69+0.14 | -3.074023 -3.0310.13 -2.83410.16
ENERGY 1.96+0.10 0.8410.07 0.48i0A04 -2.1540.11 -1.8210.16 '1~22i0A06
PROTEIN 48941011 4.611013 4.511006 | -3.1240.14 -2.9940.14 -2.8910.07
WINERED 0.68+0.03 0.67+0.05 O.GOivoz -1.9240.05 -1.8140.08 -1.61i0A03
WINEWHITE | 0.6910.04 0.71+0.06 0.591+002 | -1.85+0.04 -1.694+0.07 -1.5810.04
YEAR 8.6540.08 8.691+0.06 8.56410.04 | -3.5410.10 -3.641000 -3.5110.03
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Table 10: Comparison with Sliced SVGD (S-SVGD). Averaged test root-mean-square error (RMSE)
and test log-likelihood of Bayesian Neural Networks on UCI datasets (100 particles). Results are
computed by 10 trials.

AVERAGE TEST RMSE AVERAGE TEST LL

DATASET S-SVGD PFG S-SVGD PFG
BOSTON 2.87+0.16 2.47 10.11 -2.504+0.16 =2.3540.12
CONCRETE 4.883:0_08 4.69;‘:0.14 -3.00i0,02 -2.83i0,15
ENERGY 1.1310.05 0.48:004 | -1.544005 -1.2210.06
PROTEIN 4.583:0_07 4.51;‘:0,0(,‘ —2.99i0,12 -2.89i0,07
WINERED 0.6410.01 0.60+0.02 -1.8240.06 -1.6140.03
WINEWHITE 0.62:{:0,01 0.59i0,02 —1.7]i0,03 -1.58i0,04
YEAR 8.77+0.06  8.5640.04 | -3.6010.05 -3.5110.03

Table 11: Ablation Study. Averaged test root-mean-square error (RMSE) and test log-likelihood of
Bayesian Neural Networks on UCI datasets (100 particles). Results are computed by 10 trials.

AVERAGE TEST RMSE AVERAGE TEST LL

DATASET W/O PRECONDITION  PFG (FULL) | W/O PRECONDITION  PFG (FULL)
BOSTON 2.6940.13 2.4710.11 -2.5540.12 -2.3540.12
CONCRETE 4.90+0.06 4.69410.14 -2.9440.02 -2.83.10.16
ENERGY 1.1540.05 0.48i0A04 -1.5840.08 '1-22iOA06
PROTEIN 4.60+0.08 4.51+0.06 -3.0440.04 -2.89_ .07
WINERED 0.6640.02 0.60+0.02 -1.75+0.06 -1.6140.03
WINEWHITE 0.6410.02 0.59410.02 -1.80+0.03 -1.5810.04
YEAR 8.67+0.06 8.560.04 -3.59+0.06 -3.5140.03

B.7 PARTICLE-BASED VI vS LANGEVIN DYNAMICS

One may be interested in the reason why we choose particle-based VI rather than Langevin dynamics.
In the continuous case, Langevin dynamics solves Fokker-Planck equation. We have several reasons
to demonstrate the superiority of proposed framework rather than Langevin dynamics.

1. Motivation of particle-based variational inference: Deterministic update and repulsive interactions.

One of the key algorithmic differences between particle-based variational inference and Langevin
dynamics is the realization of V In p;, where particle-based variational inference explicitly estimates
the deterministic repulsive function and Langevin dynamics uses Brownian motion.

The deterministic version repulsive force introduces interactions between particles while the stochastic
version only maintain the variance with the randomness. Thus, for each particle, only the deterministic
algorithm leads to a convergence, which is more stable and efficient (wrt the number of particles).

Figure [§ has demonstrated the phenomenon: we use both particle-based variational inference and
Langevin dynamics to sample from Gaussian distribution. It is clear that although both algorithms
return reasonable particles, the Langevin-induced particles are fully random and highly unstable due
to the empirical randomness, but particle-based VI is robust against different random seeds. When
the number of particles is small, the sample efficiency of particle-based VI should be much better
than Langevin dynamics.

Besides, the deterministic update can induce a transport function, which can be used to map input
to the target distribution directly, which can be a great potential of our propose framework. For
example, we can maintain the composite function of all the particle updates. When ;41 = fi(xy) =
e +ng(t, ), t=1,--- T —1,thenzp = fr_1 0--- 0 fi(x1), then we can perform resampling
painlessly. For the Gaussian case, this composite function is just a linear transform without other
overheads. For neural networks, we may also use distillation to obtain a transport function. We
believe that the distillation of the transport function have great potential in the future.

2. Discretization of Fokker-Planck equation: Forward-Flow discretization vs Euler discretization.
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About the discretization of Fokker-Planck equation, Langevin dynamics is performing Forward-Flow
(FF1) discretization, which is not the same as conventional gradient desent (Euler discretization). In
a word, FFI only discretizes the In p, term, but solve In p; term with SDE, so that the discretized
gradient is biased in general (Wibisono| [2018)). The particle-based variational inference tend to
perform Euler discretization, which is unbiased by discretizing the full (Wasserstein) gradient (similar
to conventional gradient descent). Thus, from a theoretical perspective, Euler-type discretization is
simpler and more direct, which is worthwhile to be further explored as our paper.

Random seed = 1 Random seed = 2 Random seed = 3
| ] [ ———
| | |
e ————— e ———— e ——————

(a) (b) ©
e ———— e — R —
l\—— ] L— - —
L L o ]
| T b |
e —— e ——— B e —
@ (e) ®

Figure 8: Particle-based VI (a-c) vs Langevin dynamics (d-f). (Blue dots refer to particles obtained)

3. Function classes: non-linear function class (neural networks) vs linear function class (RKHS).
(Note that the linearity is wrt function bases rather than the plain linear function)

In our framework, both RKHS and neural networks (or other function class) are valid function classes
to estimate the Wasserstein gradient.

In particular, neural networks are proven to outperform conventional RKHS in many areas, because it
is a non-linear function class with learnable features, that can work with uneven subspaces. The RBF
kernel uses the same smoothing operator for all gradients. In Figure 3] we have shown that the RKHS
is incapable of capturing functional gradient near connected clusters, while neural networks can do
so. As aresult, the sampling quality can be improved.
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C IMPLEMENTATION DETAILS

All experiments are conducted on Python 3.7 with NVIDIA 2080 Ti. Particularly, we use PyTorch
1.9 to build models. Besides, Numpy, Scipy, Sklearn, Matplotlib, Pillow are used in the models.

C.1 SYNTHETIC EXPERIMENTS
C.1.1 ILL-CONDITIONED GAUSSIAN DISTRIBUTION

For ill-conditioned Gaussian distribution, we reproduce the continuous dynamics with Euler discretiza-
tion. We consider 4 cases: (a) . = [1, 1]T, ¥, = diag(1,1); (b) s = [1, I]T, ¥, = diag(100, 1);
(¢) e = [20,20]7, B, = diag(1,1); (d) u« = [20,20]7, ¥, = diag(100,1) to illustrate the
behavior of SVGD and our algorithm clearly.

Notably, for our algorithms and SVGD (linear kernel), we use step size 10~3 to approximate the
continuous dynamics and solve the mean and variance exactly (equivalent to infinite particles); for
SVGD with RBF kernel, we use step size 1072 with 1,000 particles to approximate mean and
variance. For the neural network function class, we assume that the function class of two-layer
neural network Fp = {fy : 6 € ©}. In practice, we may incorporate base shift f, as gradient
boosting to accelerate the convergence, we use F = {fo + fo : fo € Fp}, where fo(z) = 0
or fo(z) = ¢VInp.(x) with some constant ¢. In practice, we select ¢ from {0,0.1,0.2,0.5,1}
by validation. Empirically, high dimensional models (such as Bayesian neural networks) can be
accelerated significantly with the base function.

C.1.2 GAUSSIAN MIXTURE

For Gaussian Mixture, we sample a 2-d 10-cluster Gaussian Mixture, where cluster means are
sampled from standard Normal distribution, covariance matrix is 0.121, the marginal probability
of each cluster is 1/10. The function class is 2-layer network with 32 hidden neurons and Tanh
activation function. For inner loop, we choose T/ = 5 and SGD optimizer (Ir = 1e-3) with momentum
0.9. For particle optimization, we choose step-size = le-1. For SVGD, we choose RBF kernel with
median bandwidth, step-size is le-2.

C.2 APPROXIMATE POSTERIOR INFERENCE

To compute the trace, we use the randomized trace estimation (Hutchinson’s trace estimator) (Hutchin{
sonl [1989) to accelerate the computation .

« Sample {&;},, such that E€ = 0 and Cov¢ = I;

* Compute L(0) = - 31", (Q(fe(mi) + fo(@)) = folai) - VU(zi) — % 252, éTer(wi)&);
* Compute L(0) = 2 37 (Q(fo(}) + fo(x})) — fol@t) - VU(z1) — V - fo(})) ;

« Update 0! = 0! =" — o/ VL(0" 1)

where £ is chosen as Rademacher distribution.

C.2.1 LOGISTIC REGRESSION

For logistic regression, we compare our algorithm with SVGD in terms of the “goodness” of particle
distribution. The ground truth is computed by NUTS (Hoffman et al.l 2014)). The mean is computed
by 40,000 samples, the MMD is computed with 4,000 samples. The H in this part is chosen as
H=1TorH=H""

In the experiments, we select step-size from {1071, 1072, 1073, 10~*} for each algorithm by vali-
dation. And we use Adam optimizer without momentum. For SVGD, we choose RBF kernel with
median bandwidth. For PFG, we select inner loop from {1,2,5,10} by validation. The hidden
neuron is 32.
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C.2.2 HIERARCHICAL LOGISTIC REGRESSION

For hierarchical logistic regression, we use the test performance to measure the different algorithms,
including likelihood and accuracy. The H in this part is chosen as H = H?-%.

For all experiments, batch-size is 200 and we select step-size from {1071, 1072,1073,10~*} for
each algorithm by validation. And we use Adam optimizer without momentum. For SVGD, we
choose RBF kernel with median bandwidth. For PFG, we select inner loop from {1,2,5,10} by
validation. The hidden neuron is 32.

C.2.3 BAYESIAN NEURAL NETWORKS (BNN)

We have two experiments in this part: UCI datasets, MNIST classification. The metric includes
MSE/accuracy and likelihood. The hidden layer size is chosen from {32, 64, 128, 256, 512} To
approximate H, we use the approx1mated diagonal Hessian matrix H, and choose H = H®, where
a € {0,0.1,0.2,0.5,1}. The inner loop T” of PFG is chosen from {1,2,5,10} and with SGD
optimizer (lr = le-3, momentum=0.9).

For UCI datasets, we follow the setting of SVGD (Liu & Wang] 2016)). Data samples are randomly
partitioned to two parts: 90% (training), 10% (testing) and we use 100 particles for inference. We
conduct the two-layer BNN with 50 hidden units (100 for Year dataset) with ReLU activation function.
The batch-size is 100 (1000 for Year dataset). Step-size is 0.01.

For MNIST, we conduct the two-layer BNN with 128 neurons. We compared the experiments with
different particle size. Step-sizes are chosen from {10~%,1072,1073, 10~*}. The batch-size is 100.
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