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Abstract

Recently, contrastive multi-view clustering (MvC) has emerged as a promising
avenue for analyzing data from heterogeneous sources, typically leveraging the
off-the-shelf instances as positives and randomly sampled ones as negatives. In
practice, however, this paradigm would unavoidably suffer from the Dual Noisy
Correspondence (DNC) problem, where noise compromises the constructions
of both positive and negative pairs. Specifically, the complexity of data collec-
tion and transmission might mistake some unassociated pairs as positive (namely,
false positive correspondence), while the intrinsic one-to-many contrast nature of
contrastive MvC would sample some intra-cluster samples as negative (namely,
false negative correspondence). To handle this daunting problem, we propose
a novel method, dubbed Contextually-spectral based correspondence refinery
(CANDY). CANDY dexterously exploits inter-view similarities as context to
uncover false negatives. Furthermore, it employs a spectral-based module to
denoise correspondence, alleviating the negative influence of false positives. Ex-
tensive experiments on five widely-used multi-view benchmarks, in compari-
son with eight competitive multi-view clustering methods, verify the effective-
ness of our method in addressing the DNC problem. The code is available at
https://github.com/XLearning-SCU/2024-NeurIPS-CANDY.

1 Introduction

In real-world applications, data are often presented in various modalities or views, including but not
limited to visible images, thermal images, text, and audio [1, 2]. Multi-view Clustering (MvC), a
fundamental tool in multi-view data analysis, aimed at learning a common space in which data are
grouped into distinct clusters, attracts significant attention across various research communities [3–8].
In recent years, contrastive MvC methods have emerged as a central focus in multi-view clustering
researches [9, 10]. The typical implementation of these methods involves leveraging the off-the-shelf
data pairs as positives and randomly sampling cross-view pairs as negatives, followed by employing
contrastive learning upon them [11–13]. As a result, the cross-view discrepancy could be eliminated,
revealing the underlying cluster structure.

Although existing contrastive MvC methods have achieved promising performance, their success
heavily relies on the assumption of faultless cross-view correspondence. In practice, however, this
assumption is hard or even impossible to meet [14–18], leading to inevitable contamination of the
cross-view correspondence, as shown in Fig. 1a. More specifically, the complexity of data collection
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Figure 1: The motivation and key idea. (a) Dual noisy correspondence. The cross-view data pairs
are contaminated by both false positive and negative correspondences, and the clean and noisy
correspondence is mixed. (b) Top: Context-based Semantic Mining. The existing studies estimate
the data affinity based on the data representation and might neglect the out-of-neighborhood yet
semantically-associated false negatives. In contrast, we formulate the affinity from one data point to
all the others as the context and use them for similarity induction, thus benefiting the false negative
uncovering in a global manner; Bottom: Spectral-based Correspondence Denoising. Borrowing from
spectral decomposition for signal denoising, we employ spectral denoising on the contextual affinity
graph to prevent false positives from dominating the model optimization. In the figure, the thickness
of the black arrows represents the association strength between two data points.

and transmission might mistake certain unaligned cross-view pairs for positive pairs, leading to false
positive correspondence. Conversely, the inherent one-to-many contrast characteristic of contrastive
MvC would inevitably result in semantically-associated cross-view positives being wrongly treated
as negatives, thus producing false negative correspondence.

Based on the above observations, this paper reveals a novel problem for contrastive MvC called Dual
Noisy Correspondence (DNC). Formally, DNC refers to the noise present in both cross-view positive
and negative pairs. This problem is akin to the partially view-aligned problem (PVP), yet differs in
that PVP presupposes the availability of some correctly-associated instances for training, while DNC
breaks through this impractical assumption and remains agnostic to any clean correspondence [19, 20].
Thus, DNC could be regarded as a more practical yet challenging variant of PVP, resulting in the
infeasibility of PVP-oriented methods to address the DNC problem. Notably, our experimental
findings, detailed in Section 4, support this claim.

To tackle the DNC problem, we present a novel robust method, dubbed ContextuAlly-spectral
based correspoNDence refinerY (CANDY), for learning to cluster with noisy positive and negative
correspondences. As illustrated in Fig. 1b, CANDY consists of two core modules: i) the Context-
based Semantic Mining (CSM) module for recalling the false negatives, and ii) the Spectral-based
Correspondence Denoising (SCD) module for alleviating the adverse impact of false positives. To be
specific, CANDY first constructs a cross-view affinity graph from the multi-view data. Subsequently,
CANDY calculates the connection probabilities from each node to all others, forming the context,
and exploits CSM to induce a high-order contextual affinity graph. Thanks to the properties of
high-order affinity, CSM could facilitate the discovery of semantically-associated positives hidden
in the negatives. After that, inspired by singular value decomposition techniques used in image
denoising [21, 22], CANDY performs spectral decomposition on the contextual affinity graph and
employs SCD to filter noise in the graphical spectrum, thus mitigating overfitting to false positives.
Finally, CANDY employs the denoised contextual affinities to weight arbitrary contrastive losses to
achieve robust MvC against DNC.

In summary, the main contributions and novelties of this work could be summarized as follows.

• We reveal and study a new practical problem in contrastive multi-view clustering, namely,
dual noisy correspondence (DNC). Unlike prior PVP-oriented studies that rely on quite a
few correctly-associated pairs, DNC refers to noise inherent in both cross-view positive and
negative pairs. To the best of our knowledge, this could be one of the first investigations into
noisy correspondence within MvC, particularly the more practical and challenging DNC
problem.
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• We propose a novel robust method called CANDY for enhancing the robustness of contrastive
MvC against DNC, embracing the following novelties: i) The formulation of affinity
from one data point to others as context, facilitating the revelation of false negatives; and
ii) Spectral denoising upon the high-order affinity graph, preventing overfitting to false
positives.

• Extensive experiments verify the effectiveness and superiority of CANDY. Moreover, we
demonstrate the generalizability of CANDY, showing that it could serve as a plug-and-play
solution to enhance the robustness of most contrastive MvC methods against DNC.

2 Related Work

In this section, we present a brief review of two topics related to this work: multi-view clustering and
noisy correspondence learning.

2.1 Contrastive Multi-view Clustering

The inherent pairing characteristic of the multi-view data renders the contrastive learning paradigm
a natural fit for MvC, giving rise to the established paradigm of contrastive MvC. Existing MvC
methods could be roughly classified into the following three groups: i) Vanilla contrastive MvC
methods [23], which directly exploit contrastive learning to enhance the discrimination of learned
representations by maximizing the mutual information between distinct views. ii) Robust contrastive
MvC methods against incomplete instances [24–26], which employ contrastive learning to learn the
cross-view consistency, thereby facilitating the recovery of missing samples. iii) Robust contrastive
MvC methods against false negatives [17, 27], which redesign dedicated loss functions or similarity
estimation techniques to conquer false negatives inherent in contrastive learning, thus boosting
clustering performance.

Our CANDY, alongside the works of [17, 27], is devoted to addressing false negatives, while having
the following significant distinctions. Different from [17], which utilizes a false-negative-robust
loss, CANDY presents a Context-based Semantic Mining (CSM) module to induce a context-aware
and high-order affinity graph, benefiting the discovery of false negatives from a global perspective.
Moreover, [27] proposes modeling the probability of false negatives by resorting to random walks
while being susceptible to cross-view false positives. In contrast, thanks to the SCM module, CANDY
embraces a more robust performance in uncovering false negatives, as verified in our experimental
results.

2.2 Noisy Correspondence Learning

In the era of big data, millions of multimodal data are crawled from the Internet, often requiring
extensive curation, which is time-intensive and cost-prohibitive [14–16]. Nevertheless, it is almost
impossible to eliminate misalignment in a large quantity of multimodal data, leading to noisy
correspondence. To handle this problem, noisy correspondence learning is presented to alleviate
the negative influence of false positive and negative correspondences within data pairs, which has
achieved promising results across various applications, such as cross-modal retrieval [28–30], object
re-identification [31–33], multi-view learning [20, 34], graph matching [35], video reasoning [36],
image-text pre-training [37].

To the best of our knowledge, this work could be one of the first studies on learning to cluster with
noisy correspondence. Unlike most existing approaches focusing solely on either false positives or
negatives [29, 20], our CANDY addresses the more general challenge called Dual Noisy Correspon-
dence (DNC). Extensive experiments reveal the impracticality of applying the existing approaches to
DNC in MvC, highlighting the necessity of a tailored solution to MvC against the DNC problem.

3 Method

In this section, we elaborate on the proposed ContextuAlly-spectral based correspoNDence refinerY
(CANDY), which aims to enhance the robustness of contrastive MvC against the Dual Noisy Cor-
respondence (DNC) problem. As illustrated in Fig. 2, our CANDY consists of two novel modules:
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Figure 2: Overview of CANDY. First, each view is fed into a view-specific encoder to generate the
embeddings. These embeddings are adopted to construct both inter- and intra-view affinity graphs,
with edges weighted by Gaussian kernel similarity. The context-based semantic mining module
dexterously reformulates inter-view similarities as “context”, employing this context as a set of bases
to induce a new contextual affinity space. In this space, the rooted/dissimilar false negatives could be
brought to light. Second, the spectral-based correspondence denoising module steps in to alleviate
the adverse impacts of noisy correspondence on positive pairs, thus obtaining a low-noise pseudo
target. Finally, this pseudo target steers the contrastive learning process, enhancing robustness against
DNC in MvC. For the sake of brevity, this figure only presents a simplified depiction involving two
views, and the robust contrastive MvC from view 1 to view 2.

a context-based semantic mining module to uncover inherent false negatives, and a spectral-based
correspondence denoising module to prevent contrastive MvC from overfitting false positives. In the
following, we commence with the mathematical formulation of the DNC problem in Section 3.1,
proceed to the context-based semantic mining module in Section 3.2, and culminate with the spectral-
based correspondence denoising module in Section 3.3.

3.1 Problem Formulation

Given the multi-view dataset D = {(x(1)
i , . . . ,x

(V )
i )}Ni=1 with N instances observed

from V views, the objective of contrastive MvC is to group these instances into
K clusters. To this end, contrastive MvC methods construct the sets of posi-
tive and negative pairs as

⋃N
i=1

{(
x
(v1)
i ,x

(v2)
i , ci

)
| ci = 1, 1 ≤ v1, v2 ≤ V, v1 ̸= v2

}
and⋃N

i=1
i ̸=j

⋃N
j=1

{(
x
(v1)
i ,x

(v2)
j , ci

)
| ci = 0, 1 ≤ v1, v2 ≤ V, v1 ̸= v2

}
by utilizing the off-the-shelf in-

stances and perform random sampling across views respectively, where c denotes the established
cross-view correspondence. Subsequently, the contrastive loss [38, 39] is applied to eliminate the
cross-view discrepancy and reveal the cluster structure. However, as elaborated in the Introduction,
cross-view correspondence could often be contaminated by both false positives and negatives. More
specifically, a certain amount of unassociated (ĉ = 0) and associated (ĉ = 1) pairs would be wrongly
treated as positives (c = 1) and negatives (c = 0) respectively, while the ground-truth correspondence
ĉ is unknown. In particular, the ratio of false negatives would reach up to 1/k when the categories of
the dataset D are uniformly distributed, where k is the number of classes.

To counter the DNC challenge, we introduce a soft contrastive loss:

L =

V∑
v1=1

V∑
v2=1
v2 ̸=v1

H
(
C(v1,v2), ρ

(
Z(v1)Z(v2)

⊤))
, (1)

where H denotes the row-wise cross-entropy function with mean reduction, C(v1,v2) ∈ Rn×n is
the pseudo target (Eq. 6), Z(v1)Z(v2)

⊤
represents the affinity matrix between views v1 and v2, and

ρ (·) signifies the softmax function. The batch-wise representation matrix Z(v) ∈ Rn×d encapsulates
features extracted by the view-specific encoder f (v), with n denoting the batch size. The softmax
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function (ρ (·)) is applied row-wise to ensure each row sums to one as follows:

[
ρ
(
Z(v1)Z(v2)

⊤)]
ij
=

exp
([

Z(v1)
]
i

[
Z(v2)

]⊤
j
/τ
)

∑n
t=1 exp

([
Z(v1)

]
i

[
Z(v2)

]⊤
t
/τ
) . (2)

In general, traditional contrastive MvC methods assume that the cross-view correspondence is
faultless, typically adopting an identity matrix I ∈ Rn×n as the target. As verified in our experiments,
such a vanilla target not only misleads the model to overfit false positives but also neglects numerous
semantically associated false negatives. Therefore, the goal of CANDY becomes generating a robust
pseudo target resilient against the DNC problem.

3.2 Context-based Semantic Mining

The crux of uncovering false negatives lies in accurately modeling the semantic association between
data points. Therefore, the widely-used strategy is based on the point-to-point similarity in the
affinity graph. Specifically, a fully-connected affinity graph A is first constructed using the feature
Z(v1) and Z(v2) as nodes in a mini-batch, with edge weights defined by Gaussian kernel similarity.
Mathematically,

A
(v1→v2)
ij = exp

(
−
∥∥∥∥[Z(v1)

]
i
−
[
Z(v2)

]
j

∥∥∥∥2 /σ
)
, (3)

where σ is a scale parameter and v1 is the anchor view. After that, a cross-view graph Â(v1→v2),
where each edge represents the probability of semantic association between the corresponding two
nodes, could be obtained by normalizing A in a row-wise manner. This strategy, however, tends to
be short-sighted, potentially neglecting the out-of-neighborhood yet semantically-associated false
negatives, as shown in Fig. 1b and supported by our experiments.

In contrast, a simple yet effective semantic modeling strategy is presented to formulate the connection
probability from one node to all others as a context, thereby redefining the context as a special
representation for semantic mining. Intuitively, the context Â(v1→v2)

i· =
[
Â

(v1→v2)
i1 , · · · , Â(v1→v2)

in

]
serves as a new embedding for the node i, facilitating the construction of a cross-view high-order
affinity graph G(v1→v2) as follows:

G(v1→v2) = A(v1→v2)A(v2→v2)
⊤ (4)

Thanks to context modeling, our CSM embraces two distinct advantages: i) it encapsulates the
structural information of nodes into the graph, enhancing the ability of global semantic mining, and ii)
it provides a novel basis for data representation to project nodes into a new affinity space, potentially
better uncovering semantically-associated false negatives.

3.3 Spectral-based Correspondence Denoising

The false positive correspondence would emerge in both the off-the-shelf positive pairs, as elaborated
in Section 1, and the wrongly associated negatives during the construction of G(v1→v2). To address
this, we propose a correspondence-denoising mechanism for the high-order affinity graph G(v1→v2)

based on the spectral denoising theorems [21, 22]. In brief, it is widely acknowledged that the
eigenvectors of signals corresponding to larger eigenvalues represent principal components, while
smaller ones are apt to be noise. By selectively discarding the information tied to the minor eigen-
values, one could filter out the noise, thereby revealing the underlying structures. Inspired by these
preliminary insights, we propose refining G(v1→v2) by resorting to singular value decomposition.
Mathematically,

G(v1→v2) = UΣV⊤, (5)
where Σ denotes a diagonal matrix consisting of the singular values, U and V is the left singular
matrix and the right singular matrix, respectively.

After that, the denoised pseudo target could be obtained via

G̃(v1→v2) = UΣ̃V⊤, (6)
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where Σ̃ = diag(λ1, · · · , λL) is a diagonal matrix consisting of the retained singular values (λ1 >
· · · > λL ≥ η), with η being a denoising hyper-parameter fixed as 0.2 in our experiments.

By combining the denoised pseudo target with the vanilla target (I), we obtain the noise-resisted
pseudo target (C(v1,v2)) for the proposed soft contrastive loss (Eq. 1) via

C(v1,v2) = λI+ G̃(v1→v2), (7)

where λ is fixed as 0.2 in our experiments.

4 Experiments

In this section, we verify the effectiveness of our CANDY against the DNC problem through extensive
experiments by addressing the following questions:

1. Performance Superiority: Does CANDY outperform the existing state-of-the-art (SOTA)
MvC methods, including those designed for PVP?

2. Component Indispensability: Are all components crucial for maintaining robustness
against DNC?

3. Working Mechanism: How does CANDY achieve robustness against DNC?

4. Approach Necessity: Why is it necessary to design an approach for the DNC problem
instead of using existing noisy correspondence learning methods?

5. Approach Generalizability: Can CANDY be used in a plug-and-play manner to endow
other contrastive MvC methods with robustness against DNC?

4.1 Configurations and Implementation Details

CANDY is designed as a plug-and-play solution to endow most existing contrastive MvC methods
with robustness against the DNC problem. Therefore, we choose the SOTA contrastive MvC method,
namely, DIVIDE [27], as our baseline. Specifically, we retain the architecture and pipeline of
DIVIDE, modifying only the loss function. Following DIVIDE, to obtain a good initialization for
the neural networks, we use the vanilla contrastive loss by setting the target C(v1,v2) in Eq. 1 as the
identity matrix I for the first 20 epochs of training. To endow DIVIDE with robustness against DNC,
we incorporate context-based semantic mining and spectral-based correspondence denoising modules,
alongside the soft contrastive loss (Eq. 1). Since MvC requires training and clustering on the same
dataset, we conduct the view realignment strategy on the learned representation by following the
PVP studies [19, 20]. For achieving clustering, we concatenate the realigned representations across
views to form a common representation of the MvC data and then apply the k-means algorithm by
following [24].

In the experiment, CANDY is implemented with PyTorch 2.1.2, and the model is optimized with
the Adam [40] optimizer with a learning rate of 0.002 across all experiments, with a batch size fixed
to 1024. All evaluations are conducted on Ubuntu 20.04 OS with NVIDIA 3090 GPUs. The scale
parameter σ in Eq. 3 is fixed as 0.07 across all experiments. The experiments are carried out on the
following five widely-used multi-view learning datasets.

• Scene-15 [41] includes 4,485 images across 15 categories. We employ PHOG and GIST as
two distinct views following [17].

• Caltech-101 [42] consists 8,677 images collected from 101 classes. We use two kinds
of deep features extracted by the DECAF and VGG19 neural networks as two views
following [43].

• LandUse-21 [44] contains 2,100 satellite imagery samples in 21 categories. We employ the
PHOG and LBP features as two views following Lin et al. [45].

• Reuters [46] is a repository of news content in multiple languages with 18,758 samples.
Following [47], we transform the texts into a 10-dimensional latent space with a conventional
autoencoder and use English and French as two different views.
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Table 1: The statistics of false positive and false negative ratios (%) with respective to different
datasets and η in the experiments.

η
Caltech101 LandUse21 NUSWIDE Reuters Scene15
FP FN FP FN FP FN FP FN FP FN

0.0 0.00 2.84 0.00 4.73 0.00 9.99 0.00 21.40 0.00 6.91
0.2 19.34 2.84 19.10 4.73 17.98 9.99 15.67 21.40 18.68 6.91
0.5 48.45 2.84 47.33 4.73 45.07 9.99 39.64 21.40 46.42 6.91
0.8 77.48 2.84 76.24 4.73 72.03 9.99 62.57 21.40 73.98 6.91

• NUS-WIDE [48] includes 9,000 images paired with their respective captions from 10
classes. We adopt a VGG19 neural network for the extraction of visual features, and a
Sentence CNN to extract the text features by following [49].

For comprehensive evaluations, we vary the noise ratio in the datasets by adopting the following
protocols. For the false positive correspondence, we select one view as the anchor and randomly
shuffle samples in other views according to the specified FP ratio η which is varied from 0%, 20%,
50%, to 80%. For the false negative correspondence, we adhere to the inherent FN ratio in each
dataset. For clarity, we present the statistics of FP and FN ratios for different datasets in Table 1.
Notably, as the samples within the same instance would be regarded as negative if they do not belong
to the same class, the practical FP ratios might be slightly lower than the specified η.

4.2 Comparison with State of the Arts (Performance Superiority)

In this section, we compare CANDY with eight SOTA MvC methods including the typical MvC
methods (DCCAE [50], BMVC [51]), the PVP-oriented MvC methods (MvCLN [20], PVC [19],
SURE [17], CGCN [52]), the false-negative-robust contrastive MvC (GCFAgg [53], and DI-
VIDE [27]). Following the widely-used evaluation protocols, we adopt “ACC", “NMI" and “ARI" as
the metrics.

Table 2 presents the comparison results for each dataset and the average results overall, where one
could have the following observations. First, our CANDY outperforms all baselines in terms of
the average ACC and ARI when the FP ratio is 0%, which could be attributed to the powerful
semantic mining capacity on the false negatives. Second, all baselines experience heavy performance
degradation when encountering false positives. In contrast, CANDY achieves significant robustness
and remarkably outperforms all baselines by a large margin. The above two observations could verify
the effectiveness of CANDY against the DNC problem.

Furthermore, we explore the capacity of CANDY on handling the other important problem in MvC,
namely, missing views. To this end, we follow DIVIDE [27] to recover the missing views. We
conduct experiments on four widely-used incomplete MvC benchmarks and compare CANDY with
other baseline methods [50, 51, 54–56, 17, 57–59, 27]. As demonstrated in Table 3, CANDY could
achieve competitive results comparable to SOTA methods, even though it is primarily designed for
handing DNC rather than missing modalities.

4.3 Ablation Studies and Parameter Analysis (Component Indispensability)

In this section, we conduct ablation studies and parameter analysis to investigate the indispensable
role and robustness of our modules.

As shown in Table 4, we design the following four method variants for the ablation studies: i)
Warmup Only: using the identity matrix I as the target for Eq. 1 throughout the training process; ii)
Re-alignment: adopting re-alignment strategy like the PVP studies; iii) SCD: performing the SCD
module to denoise the vanilla affinity graph Â(v1→v2) and using the resulting graph as the target for
Eq. 1. iv) CSM: the complete version of CANDY, adopting the CSM module to induce G(v1→v2) for
recalling the false negatives and performing Eq. 6 to obtain the final pseudo target. From the results,
one could observe that both the SCD and CSM modules play important roles in achieving robustness
against DNC.
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Table 2: Clustering performance comparisons on five widely-used multi-view datasets. The results
are the mean of five individual runs. The best and second best results are shown in bold and underline,
respectively.

FP Ratio Methods Scene15 Caltech-101 LandUse21 Reuters NUS-WIDE Average

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

0%

DCCAE (ICML’15) 34.6 39.0 19.7 45.8 68.6 37.7 15.6 24.4 4.4 42.0 20.3 8.5 47.5 17.1 37.6 37.1 33.9 21.6
BMVC (TPAMI’18) 40.5 41.2 24.1 50.1 72.4 33.9 25.3 28.6 11.4 42.4 21.9 15.1 36.0 21.0 16.5 38.9 37.0 20.2
PVC (NeurlPS’20) 38.0 39.8 21.1 20.5 51.4 15.7 16.8 25.2 5.6 44.1 27.1 27.1 19.3 7.7 3.8 27.7 30.2 14.7
MVCLN (CVPR’21) 37.9 42.3 25.6 39.6 65.3 32.8 26.1 30.7 12.5 38.8 42.1 25.2 54.1 38.3 35.7 39.3 43.7 26.4
SURE (TPAMI’23) 41.0 43.2 25.0 43.8 70.1 29.5 25.1 28.3 10.9 49.1 29.9 23.6 57.4 44.8 38.3 43.3 43.3 25.5
GCFAgg (CVPR’23) 42.2 42.5 24.4 56.6 80.7 37.9 27.5 31.3 14.0 34.4 23.8 10.5 41.1 32.1 18.6 40.4 42.1 21.1
CGCN (TCSVT’24) 42.9 43.4 25.0 49.1 75.2 33.8 28.8 36.0 15.0 45.8 27.0 22.3 61.2 48.1 41.2 45.6 45.9 27.5
DIVIDE (AAAI’24) 49.1 48.7 31.6 62.2 83.0 50.5 32.3 39.7 18.1 59.3 39.5 29.0 45.1 30.9 19.4 49.6 48.4 29.7
CANDY (Ours) 42.0 41.6 24.7 67.3 83.8 60.0 30.6 36.5 16.2 57.7 30.8 37.1 62.1 49.0 37.0 51.9 48.3 35.0

20%

DCCAE (ICML’15) 32.9 17.1 29.6 36.9 39.2 60.1 15.0 3.8 17.4 41.6 13.1 19.3 41.6 11.6 26.9 33.6 17.0 30.7
BMVC (TPAMI’18) 20.0 10.2 4.7 42.7 58.2 24.6 16.1 13.0 4.3 36.4 11.9 8.1 27.7 10.7 7.7 28.6 20.8 9.9
PVC (NeurlPS’20) 31.2 25.5 13.6 8.3 30.2 3.8 22.8 28.0 8.4 32.4 15.4 15.3 34.3 22.2 13.6 25.8 24.3 10.9
MVCLN (CVPR’21) 39.3 36.7 21.7 43.3 64.0 52.8 24.4 26.1 10.8 37.9 35.9 20.3 42.5 29.3 21.3 37.5 38.4 25.4
SURE (TPAMI’23) 40.0 37.3 21.5 26.9 49.9 18.0 25.2 27.4 11.6 40.7 20.9 15.8 57.0 45.0 38.6 38.0 36.1 21.1
GCFAgg (CVPR’23) 40.9 38.6 22.7 50.1 70.6 30.1 25.7 27.8 11.9 35.2 19.0 10.8 38.6 23.3 15.6 38.1 35.9 18.2
CGCN (TCSVT’24) 40.7 38.0 22.1 40.8 64.9 27.2 27.0 31.4 13.3 43.5 23.0 19.4 58.0 41.7 35.9 42.0 39.8 23.6
DIVIDE (AAAI’24) 42.4 39.9 24.5 48.3 69.1 38.0 30.9 35.1 16.2 55.3 36.9 31.0 44.9 28.3 18.2 44.4 41.9 25.6
CANDY (Ours) 40.4 40.3 23.7 65.9 82.3 60.1 30.5 35.3 15.7 54.2 27.9 33.8 60.3 47.1 36.9 50.3 46.6 34.0

50%

DCCAE (ICML’15) 26.8 10.2 19.8 27.0 26.8 49.8 13.3 2.8 13.2 37.7 9.2 12.5 32.3 7.1 13.5 27.4 11.2 21.8
BMVC (TPAMI’18) 13.6 3.9 1.4 26.5 34.2 8.9 13.5 7.5 1.9 26.6 3.3 2.3 18.4 3.1 1.9 19.7 10.4 3.3
PVC (NeurlPS’20) 20.3 10.2 13.6 7.4 21.8 5.0 20.6 28.5 8.7 42.9 23.5 23.4 24.1 10.1 9.9 23.1 18.8 12.1
MVCLN (CVPR’21) 41.3 19.7 15.1 21.4 39.1 11.7 21.4 21.8 7.8 34.8 35.5 19.7 31.7 16.6 10.7 30.1 26.5 13.0
SURE (TPAMI’23) 37.1 35.7 20.3 19.9 41.7 13.2 23.1 22.8 8.9 38.0 18.5 14.3 35.0 17.4 12.0 30.6 27.2 13.7
GCFAgg (CVPR’23) 34.1 32.9 17.3 42.2 63.0 24.8 25.2 24.9 10.9 28.5 8.9 4.5 26.7 10.5 6.4 31.3 28.0 12.8
CGCN (TCSVT’24) 32.5 29.5 15.7 33.4 59.3 21.6 25.8 28.2 11.9 40.5 16.1 14.1 50.1 33.8 27.4 36.5 33.4 18.1
DIVIDE (AAAI’24) 37.4 34.0 20.3 39.1 58.7 32.5 28.1 30.4 13.5 41.2 19.4 14.8 44.0 23.9 16.6 38.0 33.3 19.5
CANDY (Ours) 41.3 39.4 24.0 60.7 79.0 56.6 29.9 33.1 15.2 47.4 21.7 27.3 58.1 43.2 34.5 47.5 43.3 31.5

80%

DCCAE (ICML’15) 20.9 6.7 14.4 18.4 15.8 41.8 14.5 3.2 13.4 35.3 7.6 10.0 36.2 14.9 21.9 25.1 9.6 20.3
BMVC (TPAMI’18) 10.5 1.5 0.3 11.9 18.3 1.5 10.1 4.2 0.4 21.3 0.5 0.1 13.1 0.6 0.2 13.4 5.0 0.5
PVC (NeurlPS’20) 20.3 10.2 4.6 7.5 20.8 4.2 22.5 29.3 9.3 35.7 13.2 13.1 19.3 7.7 3.8 21.1 16.2 7.0
MVCLN (CVPR’21) 35.7 16.2 13.9 13.9 34.2 10.9 17.0 15.7 4.4 24.3 28.1 12.4 24.3 10.0 5.7 23.0 20.8 9.5
SURE (TPAMI’23) 27.4 30.7 14.2 16.2 38.3 9.0 18.0 17.6 5.5 34.6 15.5 13.0 23.7 9.4 5.4 24.0 22.3 9.4
GCFAgg (CVPR’23) 26.5 24.8 11.4 26.7 45.5 12.6 22.4 23.0 8.7 25.6 4.6 2.7 17.0 3.0 1.5 23.6 20.2 7.4
CGCN (TCSVT’24) 28.7 24.0 12.5 21.3 46.6 13.2 25.2 27.7 11.4 29.0 7.9 6.5 50.1 34.6 28.0 30.9 28.2 14.3
DIVIDE (AAAI’24) 34.4 30.4 18.3 27.8 50.8 21.1 27.1 28.1 12.8 41.1 24.7 19.5 45.8 28.3 19.1 35.2 32.5 18.2
CANDY (Ours) 38.8 36.6 20.7 52.6 76.8 52.9 28.1 31.3 13.5 37.0 12.4 15.6 55.6 39.1 32.6 42.4 39.2 27.1

Table 3: Clustering performance on incomplete multi-view datasets, in which 50% of samples are
with missing views. The results are the mean of five individual runs. The best and second best results
are shown in bold and underline, respectively.

Methods Scene15 Caltech101 Reuters LandUse21 Average

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

DCCAE (ICML’15) 29.0 29.1 12.9 29.1 58.8 23.4 47.0 28.0 14.5 14.9 20.9 3.7 30.0 34.2 13.6
BMVC (TPAMI’18) 32.5 30.9 11.6 40.0 58.5 10.2 32.1 7.0 2.9 18.8 18.7 3.7 30.9 28.8 7.1
PMVC (AAAI’14) 25.5 25.4 11.3 50.3 74.5 41.5 29.3 7.4 4.4 20.0 23.6 8.0 31.3 32.7 16.3
DAIMC (IJCAI’18) 27.0 23.5 10.6 56.2 78.0 41.8 40.9 18.7 15.0 19.3 19.5 5.8 35.9 34.9 18.3
EERIMVC (TPAMI’20) 28.9 27.0 8.4 43.6 69.0 26.4 29.8 12.0 4.2 22.1 25.2 9.1 31.1 33.3 12.0
SURE (TPAMI’22) 39.6 41.6 23.5 34.6 57.8 19.9 47.2 30.9 23.3 23.1 28.6 10.6 36.1 39.7 19.3
DSIMVC (ICML’22) 30.6 35.5 17.2 16.4 24.8 9.2 39.9 19.6 17.1 18.6 18.8 5.7 26.4 24.7 12.3
DCP (TPAMI’22) 39.5 42.4 23.5 44.3 71.0 45.3 34.6 17.5 2.9 22.2 27.0 10.4 35.2 39.5 20.5
ProImp (IJCAI’23) 41.6 42.9 25.3 36.3 65.4 25.4 51.9 35.5 28.5 22.4 26.6 9.9 38.1 42.6 22.3
DIVIDE (AAAI’24) 46.8 45.7 29.1 63.4 82.5 52.4 54.7 37.3 28.6 30.0 35.8 16.0 48.7 50.3 31.5
CANDY (Ours) 40.0 40.2 24.1 69.5 83.9 65.5 54.2 34.8 27.2 28.8 31.1 14.4 48.1 47.5 32.8
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Table 4: Ablation studies on the Caltech-101 and NUS-WIDE datasets with FP ratio of 20% and
50%. ✓ represents using this component.

FP Ratio Warmup Only Re-alignment SCD CSM Caltech-101 NUS-WIDE

ACC NMI ARI ACC NMI ARI

20%

✓ 46.9 67.5 29.5 57.5 37.9 33.1
✓ ✓ 49.9 70.9 32.3 58.6 39.8 34.7
✓ ✓ ✓ 56.5 78.4 38.4 58.1 43.6 37.0
✓ ✓ ✓ ✓ 65.0 82.3 60.1 60.3 47.1 36.9

50%

✓ 35.6 54.2 22.5 44.2 21.0 17.2
✓ ✓ 41.1 60.3 26.3 46.6 23.8 19.8
✓ ✓ ✓ 54.0 76.6 36.2 55.6 40.9 35.0
✓ ✓ ✓ ✓ 60.7 79.0 56.6 58.1 43.2 34.5
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Figure 3: The normalized similarity distribution of true positive and false positive pairs.

Figures 5a and 5b demonstrate that our method is robust to the selection of the denoising hyper-
parameter η. Notably, setting η too high would destroy the structural information of the high-order
graph G(v1→v2). Therefore, we fix η at 0.2 for all experiments without elaborated tuning.

4.4 Visualization on the Robustness (Working Mechanism)

To shed light on the working mechanism behind CANDY, we visualize the achieved robustness
against the false positive and negative correspondences, respectively. Fig. 3 depicts the distribution
of true and false positive pairs, where one could observe that the SCD module could remarkably
distinguish the noisy correspondence from the clean one, thus supporting the robustness against false
positive correspondence. Meanwhile, Fig. 4 presents the false negative recalling effects of different
method variants, which demonstrate the significant semantic mining capacity of our CSM module
and the polishing ability of the SCD module.

MSE=0.1025

(a) Warmup Only

MSE=0.1394

(b) DIVIDE [27]

MSE=0.0915

(c) Ours w/o SCD

MSE=0.0890

(d) Ours

MSE = 0.0000

(e) Ground Truth

Figure 4: The visualization of the cross-view similarity matrix, where each block is ordered using the
ground-truth labels. For quantitative comparisons, we report the MSE between each result and the
ground truth.

4.5 Comparisons with Noisy Correspondence Learning Approach (Approach Necessity)

As claimed in Related Works, we argue that the existing noisy correspondence learning cannot
address the DNC problem well. In this section, we verify the necessity to devise a new approach
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Table 5: Performance comparisons between the SOTA noisy correspondence learning method (namely,
RCL) and CANDY on handling the DNC problem. For a fair comparison, we adopt the same backbone
(DIVIDE) for RCL as used in CANDY.

dataset Caltech-101 NUS-WIDE

method DIVIDE[27]+RCL[60] DIVIDE+Ours DIVIDE+RCL DIVIDE+Ours

FP ratio ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

0.0 44.9 70.5 28.0 67.3 83.8 60.0 61.0 45.4 40.6 62.1 49.0 37.0
0.2 38.4 59.8 21.0 65.9 82.3 60.1 53.2 35.8 29.9 60.3 47.1 36.9
0.5 27.6 44.5 12.0 60.7 79.0 56.6 36.4 19.8 13.9 58.1 43.2 34.5
0.8 16.7 32.1 8.2 52.6 76.8 52.9 22.0 6.5 3.6 55.6 39.1 32.6

to the DNC problem. To this end, we adopt the SOTA noisy correspondence learning method [60]
in the cross-modal retrieval area for the MvC task using the same architecture (namely, DIVIDE)
as CANDY. Table 5 summarizes the comparison results, highlighting the necessity of developing
DNC-robust methods for contrastive MvC.

4.6 Study on the Generalizability (Approach Generalizability)

CANDY aims at generating a DNC-robust pseudo target for the existing contrastive MvC methods.
To verify the generalizability of CANDY, in this section, we apply CANDY on another contrastive
MvC baseline, namely, AECoKM. The results of “AECoKM" and “AECoKM+Ours" are shown in
Fig. 5c, where the two methods are conducted with the false positive ratio varying from 0.0 to 0.9
with an interval of 0.1. As one can observe, our CANDY could remarkably enhance the robustness
and effectiveness of the baseline, demonstrating the plug-and-play role of our method.
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(a) Caltech-101
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(b) NUS-WIDE
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Figure 5: (a-b) Sensitivity studies of CANDY on the hyper-parameter η for spectral denoising.
(c) Investigation of the plug-and-play role and robustness of CANDY, where AECoKM is another
contrastive multi-view clustering (MvC) baseline to which we transferred CANDY.

5 Conclusion

In this paper, we reveal and study a novel and practical problem within the field of contrastive Multi-
view Clustering (MvC): Dual Noisy Correspondence (DNC). In brief, DNC involves both the false
positive correspondences that arise during data collection, and the false negative correspondences
that are inherent in the random sampling of contrastive MvC. To address this issue, we present
CANDY comprising two novel modules: Context-based Semantic Mining (CSM) and Spectral-
based Correspondence Denoising (SCD). On the one hand, CSM dexterously leverages contextual
information to transform distinct views into a common contextual affinity space, thereby uncovering
the semantically-associated false negatives. On the other hand, SCD refines the pseudo target to
mitigate the adverse impact of false positives by using the spectral denoising technique. By integrating
these models, our method provides a plug-and-play solution that could enhance the robustness of
the most contrastive MvC methods against DNC. Extensive experiments on a broad spectrum of
scenarios have validated the effectiveness of CANDY. In the future, we plan to extend CANDY to
address more practical scenarios, such as simultaneously handling both noisy correspondence and
missing modalities.
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limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper is experimental instead of theoretical. It includes no theorems or
proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper provides a detailed algorithm, instructions on dataset and prepro-
cessing procedures, hardware and software configurations for the reproducibility of the
proposed method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This study uses public datasets. The URL of the code repository is included in
the Abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper provide the details of data preprocessing steps, hyperparameters
and optimization in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Almost all compared baselines do not include the statistical significance in
experiments thus we do not report it.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources is stated in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The proposed algorithm have no societal impact. All datasets used in this
paper are publicly available, and the algorithm only produces clustering assignments.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: All datasets used in this paper are publicly available, and the algorithm only
produces clustering assignments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Original papers and datasets are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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