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Abstract
Traditionally, constrained policy optimization with Reinforcement Learning (RL) re-1
quires learning a new policy from scratch for any new environment, goal or cost func-2
tion, with limited generalization to new tasks and constraints. Given the sample ineffi-3
ciency of many common deep RL methods, this procedure can be impractical for many4
real-world scenarios, particularly when constraints or tasks are changing. As an alterna-5
tive, in the unconstrained setting, various works have sought to pre-train representations6
from offline datasets to accelerate policy optimization upon specification of a reward.7
Such methods can permit faster adaptation to new tasks in a given environment, dramat-8
ically improving sample efficiency. Recently, zero-shot policy optimization has been9
explored by leveraging a particular forward-backward decomposition of the successor10
measure to learn compact, task-agnostic representations of the environment dynamics.11
However, these methods have been primarily studied in the unconstrained setting. In12
this work, we introduce a method for performing zero-shot constrained policy optimiza-13
tion from forward-backward representations. We introduce a principled inference-time14
procedure for zero-shot constrained policy optimization and demonstrate its empirical15
performance on illustrative environments. Finally, we show that even in simple envi-16
ronments, there remains an optimality gap in zero-shot constrained policy optimization,17
inviting future developments in this area.18

1 Introduction19

Real-world autonomous systems must typically obey safety constraints, motivating a large body20
of work in constrained reinforcement learning (RL). However, existing methods for constrained21
RL have typically only been explored in the context of tabula rasa RL, i.e., learning an RL policy22
from scratch. These methods operate either in an online environment with cost feedback (Achiam23
et al., 2017; Zhang et al., 2020; Xu et al., 2021), or on an offline dataset with cost annotations24
(Lee et al., 2022; Xu et al., 2022; Liu et al., 2023). In such cases, the learned policy is valid only25
under the particular reward and cost function under which it was trained. However, comprehensive26
descriptions of a system’s rewards and constraints may not be available during training, and users27
may also introduce new tasks or constraints after training is complete. Ideally, our methods would28
support the zero-shot generation of policies for these new tasks and constraints without retraining.29

In this regard, much effort has gone towards developing methods for pretraining representations in30
RL, either online (Pathak et al., 2017; Liu & Abbeel, 2021) or offline (Stooke et al., 2021; Schwarzer31
et al., 2021), to instantiate faster learning once the task is specified. So-called forward-backward32
(FB) representations (Touati & Ollivier, 2021) are one such paradigm for representation learning33
that offers promise for zero-shot policy generalization across tasks. FB representations consist of34
a linear reward function encoder, which maps reward functions to finite-dimensional embeddings,35
and an embedding-conditioned policy that optimizes the embedded reward. For any unconstrained36
RL problem, one can thus leverage a pretrained FB representation to perform zero-shot policy op-37
timization by first using it to embed the relevant reward function, before deploying the policy that38
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results from conditioning on this embedding. While these methods have found considerable success39
in accelerating RL in the unconstrained setting , relatively little attention has been given to how these40
representations perform on constrained tasks.41

In principle, these same representations can be directly applied to perform constrained policy op-42
timization by supplying reward functions that penalize cost-incurring states. However, these naive43
adaptations do not necessarily yield satisfying solutions. Namely, the effect of scaling the cost44
penalty to ensure constraint satisfaction is not necessarily benign—as it increases, the resulting45
embeddings become out of distribution relative to the sampled embeddings that are seen over the46
course of FB pretraining, and consequently, the resulting embedding-conditioned policies are unre-47
liable. Instead, as we explore in this work, by leveraging the linearity of the reward encoder in the48
FB representation, an appropriate cost multiplier can be determined by a Lagrangian approach. By49
determining a multiplier for the cost embedding in this way, one can, in theory, assert that the policy50
conditioned on the difference between the reward embedding and the scaled cost embedding will be51
an optimal policy for the constrained MDP.52

The primary contributions of our work are as follows:53

1. We introduce a principled inference-time procedure for performing zero-shot constrained policy54
optimization, which does not require any online environment interactions, by extending zero-shot55
policy optimization with forward-backward representations.56

2. Empirically, we demonstrate that our proposed approach can select an appropriate cost multiplier57
which prevents most constraint violations without severely impacting task rewards.58

3. Finally, we demonstrate that there still remains a gap to the performance of a post-hoc proce-59
dure which uses privileged information from online evaluations to determine the cost multiplier,60
inviting further research in this important area.61

2 Related Work62

Constrained RL seeks to learn policies that are optimal under a reward function while respecting63
constraints on one or more cost functions. Many methods for online constrained RL have been64
proposed (Achiam et al., 2017; Zhang et al., 2020; Xu et al., 2021), though Lagrangian adaptations65
of popular RL algorithms remain common (Stooke et al., 2020). Constrained RL has also been66
explored in the offline setting, where the dataset is assumed to be annotated with both costs and67
rewards (Lee et al., 2022; Xu et al., 2022; Liu et al., 2023). Relatively little work has explored zero-68
shot or few-shot constrained RL. Yao et al. (2023) train a policy which can be adapted zero-shot at69
inference time to different cost thresholds, however, this is limited only to varying thresholds and70
not wholly different cost functions. Touati & Ollivier (2021) consider some simple constraints and71
show zero-shot performance is possible given an appropriate cost multiplier, however they do not72
offer a method for determining this multiplier offline for constraint satisfaction.73

Zero-shot reinforcement learning has been explored extensively in the unconstrained case. In the74
tabular case, successor representations can be computed, permitting zero-shot value estimation for75
a fixed policy (Dayan, 1993). This representation generalizes to the continuous MDP case via the76
successor measure (Blier et al., 2021), which has been used for zero-shot value estimation (Janner77
et al., 2020) and return distribution estimation (Wiltzer et al., 2024) via generative modelling. In78
the continuous case, one body of work seeks to perform unsupervised (reward free) pre-training79
to learn generally useful representations (Eysenbach et al., 2021). Such methods can be combined80
with successor feature (SF) methods (Barreto et al., 2017), a generalization of the successor repre-81
sentation, to perform zero-shot RL (Borsa et al., 2018; Touati et al., 2022), however, such methods82
require separately training a feature representation which can hinder zero-shot performance. No-83
tably, Touati & Ollivier (2021) introduces the forward-backward representation as a particular de-84
composition of the successor measure into one component that acts as a reward function encoder,85
and another which induces a reward-embedding-conditioned policy that is greedy with respect to86
its action-values. Particularly, their approach implicitly learns features through a successor measure87
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consistency loss, jointly with task-conditioned optimal policies. Touati et al. (2022) show that this88
method outperforms explicit feature learning methods at zero-shot policy optimization. However,89
to our knowledge, no work has explicitly considered these representations in the constrained RL90
setting.91

3 Background92

Before delving into our approach for imbuing zero-shot policy optimization models with the ability93
to satisfy constraints, we outline the formalisms of the (constrained) RL setting and the forward-94
backward representation, which serve as the backbone of our work.95

In the sequel, we operate in a Markov Decision Process (MDP) with state space S, action space A,96
transition kernel P : S × A → P(S), a bounded reward function r : S × A → R, initial state97
distribution ρ0 ∈ P(S), and discount factor γ ∈ [0, 1). A policy is a mapping π : S → P(A)98
which maps state observations to (possibly random) actions. Nominally, the objective of RL is to99
find a policy π⋆ that maximizes the expected discounted return,100

π⋆ ∈ argmax
π

E
∑
t≥0

γtr(St, At), St+1 ∼ P (· | St, At), At ∼ π(· | St), S0 ∼ ρ0. (1)

For reasons that will be apparent in the next section, we will refer to the objective (1) as the uncon-101
strained RL problem.102

3.1 Constrained RL103

In constrained RL, along with a reward function r, the agent is presented with an instantaneous104
bounded cost function c : S ×A → R, and must optimize105

max
π

E

[ ∞∑
t=0

γtr(st, at)

]
subject to E

[ ∞∑
t=0

γtc(st, at)

]
≤ β, (2)

where β is a given budget. The Lagrangian dual of Equation 2 is given by the saddle-point problem106

min
λ≥0

max
π

E

[ ∞∑
t=0

γtr(st, at)

]
− λ

(
E

[ ∞∑
t=0

γtc(st, at)

]
− β

)
. (3)

3.2 The Successor Measure and Forward-Backward Representations107

The successor representation (Dayan, 1993), and more generally, the successor measure (Blier et al.,108
2021) are objects that encode the value function for any reward function associated to a given policy109
in an MDP. Let ρ ∈ P(S) denote a probability measure on the state space, generally interpreted110
as, say, a dataset. For any policy π, its successor measure Mπ : S × A →P(S) is a (conditional)111
measure expressed relative to the measure ρ, via112

Mπ(s, a,ds′) = Eπ

∑
t≥0

γtδs′(St)

∣∣∣∣S0 = s,A0 = a

 ρ(ds′),

where δs′ is the Dirac measure which places all mass on the state s′. Crucially, denoting by Qπ
r the113

action-value function for policy π on the reward function r : S → R, we have that114

Qπ
r (s, a) = (Mπr)(s, a) :=

∫
r(s′)Mπ(s, a,ds′).

That is, Mπ is a linear operator from reward functions to value functions, permitting zero-shot pol-115
icy evaluation (Dayan, 1993; Blier et al., 2021). To circumvent the policy-dependent nature of the116
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successor measure and permit zero shot policy optimization, Touati & Ollivier (2021) introduces117
a factorization which identifies each reward function with a particular optimal policy. Under their118
forward-backward (FB) representation, for policies πz parameterized by a latent z ∈ Rd, the suc-119
cessor measure is expressed by120

Mπz (s, a,ds′) = F (s0, a0, z)
⊤B(s′)ρ(ds′), and πz(a | s) := argmax

a
F (s, a, z)⊤z, (4)

where F : S × A × Rd → Rd and B : S → Rd. The cleverness of this representation lies in121
the identity that for any policy π and reward function r, (Mπr)(s, a) ≡

∫
r(s′)Mπ(s, a,ds′) =122

Qπ(s, a). As a consequence, taking zr := Br ≡
∫
B(s)r(s) dρ(s), we have that F (s, a, zr)⊤zr =123

Qπzr (s, a), so that πzr is optimal for the reward r by (4), as it is greedy with respect to its action-124
value function for r.125

Underlying this idea is the following concept that we use throughout. The FB representation learns126
a family of successor measures parameterized by z ∈ Rd. By the identity that πzr is optimal127
for rewards satisfying zr = Br, the latents zr simultaneously describe both reward functions and128
policies. More precisely, an embedding z describes a particular behaviour—it induces a policy129
which is optimal for an equivalence class of rewards. Prompting an FB representation with z elicits130
this behaviour.131

4 Zero-Shot Constrained Policy Optimization132

In order to treat zero-shot constrained policy optimization, we take the Lagrangian formulation of133
performing bilevel optimization on the returns from a modified reward function of the form r − λc,134
where r is the nominal reward, c is the cost function, and λ ≥ 0 is the dual variable to be opti-135
mized along with the policy. The key insight is that for any given λ, a pretrained FB representation136
could, in principle, compute the corresponding optimal πzr−λc directly—this removes one layer of137
optimization.138

Let us now illustrate this more precisely. Suppose β = 0. As discussed in Section 3.1, solving the139
constrained RL problem consists of solving the following, where Sπ

t is the (random) state visited140
under π at time t,141

λ̂ = argmin
λ≥0

max
π

ES0∼p0

[
E
[∑

t≥0

γt (r(Sπ
t )− λc(Sπ

t ))︸ ︷︷ ︸
rλ(Sπ

t )

]]
. (5)

Notably, within the outer expectation, we simply have an expression for the value function for π142
corresponding to the reward function rλ. Given an FB representation satisfying (4), we can simplify143
(5) by directly performing policy optimization,144

λ̂ = argmin
λ≥0

ES0∼ρ0

[
max

a
F (S0, a, z

rλ)⊤zr
λ
]
. (6)

Our main result is a method for optimizing (6) at inference time. The following theorem certifies an145
optimization scheme for efficiently learning λ̂ and the constrained optimal policy.146

Theorem 1 Let (F,B) denote an FB representation satisfying Equation (4). Suppose for cost c147
there exists a finite Λc such that V π −ΛcC

π is bounded for at least one constraint-satisfying policy148
π (i.e., with probability 1, π does not exceed the cost budget). For any λ0 ≥ 0 and Nsample ∈ N,149
consider the iterates {λk}k≥0 given by150

λk+1 = λk + ηk
1

Nsample

Nsample∑
i=1

max
a

F (Si, a, z
r−λkc)⊤zc, Si

iid∼ ρ0, (7)
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where {ηk}k≥0 is a sequence of step sizes satisfying the Robbins-Munro conditions (Robbins, 1951).151
Then λk → λ̂ with probability 1, such that πzr−λ̂c is optimal for the constrained RL problem with152
cost c and budget 0. [Proof]153

Theorem 1 provides us with an inference-time (one-dimensional) stochastic gradient descent scheme154
for recovering the optimal Lagrange multiplier, enabling zero-shot constrained policy optimization155
via the FB representation. We refer to this as an “inference-time” scheme because, given a pre-156
trained FB representation, no interaction is required for policy optimization: one must merely solve157
a simple convex optimization problem in one dimension. The FB representation does the heavy lift-158
ing, allowing us to substitute the inner policy optimization from (5), which would normally require159
expensive RL training, with an exact expression for the optimal value and cost functions.160

4.1 Mitigating FB estimation errors161

In order to truly perform zero-shot offline constrained policy optimization, our method relies on pre-162
dictions of the long-term cost from the FB representation under predicted optimal policies πzr−λc163
across a wide range of λ. It is imperative that these predictions are accurate—overestimation of the164
long-term cost can induce policies that are much too conservative, precluding any reward optimiza-165
tion, and underestimation of the long-term cost can induce policies that simply exceed their cost166
budget. A crucial challenge in our setting is that, since some r, c pairs may necessitate arbitrarily167
large λ, the latents zr−λc can easily veer outside the distribution over latents seen during pretraining,168
hindering prediction quality.169

Henceforth, let Ĉr,c
λ denote the zero-shot unbiased (e.g., Monte Carlo) estimate of the expected cost170

returns of policy zr−λc on cost function c,171

E[Ĉr,c
λ ] := Es0∼p0

[
F (s0, a

⋆
s, z

r−λc)⊤zc
]

where a⋆s := argmax
a

F (s, a, zr−λc)⊤zr−λc. (8)

In the remainder of this section, we present methods for overcoming both overestimation and under-172
estimation in Ĉr,c

λ , enabling reliable zero-shot constrained policy optimization.173

Overestimation From Equation (7), it is clear that for a budget β = 0, the optimization will result174
in λ continually increasing until the estimated costs under the FB representation are less than or175
equal to zero, since the gradient of λ will always be negative as long as Ĉr,c

λ > 0. If such a result is176
infeasible, or infeasible under the learnt F and B representations (overestimation), this will result in177
λ continuing to increase, potentially degrading reward performance without significantly improving178
constraint satisfaction. Importantly, λ will continue to increase even if Ĉr,c

λ is constant or even179
increasing, as can be seen for example in Figure 1180

Figure 1: Example of instance
where estimated cost does not
fall below zero as λ continues
to increase.

We propose two modifications. First, we introduce a regularizer181
on λ to discourage unbounded growth in λ when Ĉr,c

λ is no longer182
decreasing significantly. Particularly, we add a penalty R(λ) = λ2183
to (7) to help mitigate the issue.184

Second, we propose a post-optimization procedure using this zero-185
shot estimate of the cost under the policy induced by each λn ob-186
tained during the gradient descent scheme in Equation 7. In par-187
ticular, we store the estimate Cn = Ĉr,c

λn
for each λn encountered188

during gradient descent. After optimization has terminated, we se-189
lect the minimum λn for which Cn is within a factor of α ∈ [0, 1]190
from the minimum, relative to the range of costs across all iterates.191

Underestimation On the other hand, when estimating the long-192
term cost of the policy induced by zr−λc using (8), we find that193

1Depending on the application, the initial state distribution may be known (for example, given a known single initial state,
the Dirac delta distribution may be used. If it is unknown, it is reasonable to use the FB training dataset as a proxy.
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Algorithm 1 Zero-Shot Constrained RL

Require: FB representation networks F , B, dataset D and the initial state distribution ρ0
1

Require: Initial λ0 ≥ 0, learning rate η, batch size Nbatch, number of steps Ngrad, cost threshold α

Sample minibatch (s1, . . . , sn)
iid∼ D

zr ← 1
Nbatch

∑Nbatch

i=1 B(si)r(si)

zc ← 1
Nbatch

∑Nbatch

i=1 B(si)c(si)

for n ∈ {1, . . . , Ngrad} do
z ← zr − λnz

c

z ←
√
d z
∥z∥ ▷ Normalize embedding

Sample minibatch S = (s1, s2, . . . , sNbatch
)
iid∼ ρ0

a∗i ← argmaxa F (si, a, z)
⊤z for each i ∈ {1, . . . , Nbatch}

L(λn,S) = −λn
1

Nbatch

∑Nbatch

i=1 ReLU
(
stop-grad(F (si, a

∗
i , z))

⊤zc
)
+R(λn)

Cn ← 1
Nbatch

∑Nbatch

i=1 ReLU(F (si, a
∗
i , z)

⊤zc)

λn+1 ← λn − η∇λL(λn,S)
end for
λ = minn λn : Cn ≤ α(Cmax−Cmin)+Cmin where Cmax = maxn Cn and Cmin = minn Cn

return λ (Relaxed Min-Cost), λN (Last Iterate)

the FB representation can also exploit negative cost predictions, resulting in poor behaviour. In194
principle, given that c ≥ 0, a perfect FB representation would not predict negative long-term costs,195
however, due to small training error, this cannot be avoided conclusively. As such, when estimating196
the long-term cost of our policy, we instead follow (9), with ReLU(x) := max(0, x),197

Ĉ+,r,c
λ := Es∼p0

[
ReLU(F (s, a⋆s, z

r−λc)⊤zc)
]

where a⋆s := argmax
a

F (s, a, zr−λc). (9)

With the addition of these modifications, we arrive at the proposed Algorithm 1.198

5 Experimental Results199

In this section, we investigate the performance of our proposed approach on some illustrative con-200
strained environments. Particularly, our experiments are designed to illustrate whether our approach201
masterfully navigates the Pareto front between success rate with respect to the nominal reward r and202
constraint violation with respect to c. We evaluate our method in two environments adapted from203
(Touati & Ollivier, 2021), discrete and a continuous state-space grid worlds, both with discrete action204
spaces. While the original environments in (Touati & Ollivier, 2021) had internal walls, in our ex-205
periments, we pretrain an FB representation in an empty grid and represent the walls via constrained206
states. In a sense, constrained policy optimization can generalize across transition dynamics.207

FB Training We train FB representations across three seeds following the method from Touati &208
Ollivier (2021), though we update the forward network architecture to match that from Touati et al.209
(2022). As in Touati & Ollivier (2021), we replace the argmax in Equation (4) with a softmax in210
the training updates, though we lower the temperature τ to 50 in the discrete environment and 100211
in the continuous environment. All hyperparameters for FB training as well as training curves are212
reported in Appendix B. As can be seen in Figure 5, all learned FB representations converge to near213
100% success on unconstrained goal-reaching tasks.214

Evaluation Setup We evaluate each pre-trained FB representation according to the following215
setup. We first generate a random environment by sampling random constraints where a single216
constraint consists of a contiguous rectangular section of the grid at which the agent receives a cost217
of 1, and then sampling a random goal non-overlapping with the constraints, at which the agent218
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receives a reward of 1. We provide an example of such a generated environment in Figure 2a. Exact219
details of environment generation can be found in Appendix C.1.220

For each environment, we estimate zr and zc given by z• = ES∼ρ[•(s)B(s)] for • ∈ {r, c} via221
Monte Carlo, and execute Algorithm 1 (see Appendix C.2 for hyperparameters) to approximate λ̂.222
Finally, we test policy πzr−λc for 100 rollouts with random initial states and report the average223
success and violation rate across all rollouts. We repeat this 50 times across each FB representation.224

We evaluate our methods Relaxed Min-Cost, which uses the additional procedure in Algorithm 1225
to select a less conservative λ, and Last Iterate, which selects the final λ after iterating Equation226
7 for a fixed 10,000 steps. We compare against Privileged, a method that provides an upper bound227
on our methods’ possible performance, by sweeping over λ and using online evaluations to select228
the best value. To select the best λ for the Privileged method, we use a 5% quantile threshold on229
the cost and select the λ with the highest success rate with costs below the threshold. We emphasize230
that unlike Privileged, our methods do not have access to online evaluations when selecting λ; we231
use the Privileged method solely as an approximation of the best achievable algorithm performance232
under a given pretrained FB representation.233

5.1 Results234

To qualitatively demonstrate the importance of selecting a good λ for constrained policy optimiza-235
tion with FB, Figure 2 illustrates various value functions obtained by varying λ in an environment236
with a fixed goal and constraint. As can be seen in Figure 2b, selecting a λ which is too low results237
in a value function that does not reflect the constraint. However, selecting a λ that is too high is238
also detrimental, as the value function loses distinction of the goal’s location (Figure 2d). Using239
Algorithm 1 to the select λ (Figure 2c) results in a good balance between the constraint and the goal.240

(a) Environment

360
410
460
510
560
610
660
710
760
810

(b) V ∗,r−λc : λ < λ̂

160
210
260
310
360
410
460
510
560
610

(c) V ∗,r−λc : λ = λ̂

30
0
30
60
90
120
150
180
210

(d) V ∗,r−λc : λ > λ̂

Figure 2: (a) Continuous grid-world environment with randomly generated constraint (grey) and
goal (star) (b-d) corresponding optimal value function V ∗,r−λc(s) = maxa F (s, a, zr−λc)T zr−λc

under various λ: (c) optimal λ obtained using Algorithm 1 (b) λ less than optimal and (d) λ larger
than optimal. Qualitatively, the scale of λ has a clear impact on the quality of the value function.

241

Quantitatively, we evaluate the average performance of our method across all seeds and evaluation242
runs. Figure 3 compares the average performance of our methods Relaxed Min-Cost and Last It-243
erate in each environment {discrete, continuous} with different number of constraints {one, two}244
versus the Privileged performance. In all cases, we find that our method is able to achieve very245
low constraint violations, particularly the Last Iterate variant. Additionally, in the single constraint246
cases in both discrete and continuous environments, there is also very little degradation in goal-247
reaching success versus the Privileged method. In the two constraint environments, there is a more248
significant degradation, however, we still obtain reasonable goal reaching success in both environ-249
ments, particularly when using the Relaxed Min-Cost variant.250

The Relaxed Min-Cost variant can be interpreted as a method for shifting the solution along the251
Pareto-optimality curve. In Figure 4, we examine this hypothesis by considering the performance252
of our method against the Pareto-optimal curve for a fixed λ. We aggregate the performance in all253
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(b) Discrete/Two
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(c) Continuous/One
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(d) Continuous/Two

Figure 3: Goal-reaching success (%) and violation rate (%) for our method Relaxed Min-Cost and
Last Iterate versus Privileged on {discrete, continuous} gridworlds with {one, two} constraints.

environments and constraint settings while holding λ constant to produce the Pareto-optimal curve254
for performance that can be achieved without adjusting λ on a per-environment basis.255

In Figure 4, we can see that both the Relaxed Min-Cost and Last Iterate methods lie256
very close to fixed-λ Pareto-optimality curve, but at different points on the curve. The257
Last Iterate method selects a point on the curve where near-zero constraint violations258
can be obtained with a minimal amount of degradation in goal-reaching success. The259
Relaxed Min-Cost variant relaxes the threshold on constraint violations slightly in or-260
der to achieve higher goal-reaching success, but remains on the Pareto-optimality curve.261

0.0 0.1 0.2 0.3 0.4
violation

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

Fixed 
Relaxed Min-Cost
Last Iterate (Mean)
Relaxed Min-Cost (Mean)
Privileged (Mean)

Figure 4: Pareto-optimality curve for fixed-λ us-
ing average success and violation rates across all
evaluations (continuous and discrete, one and two
constraints) with a fixed λ. Per-environment per-
formance of our method Relaxed Min-Cost is
compared against the curve as well as average per-
formance of all methods Relaxed Min-Cost, Last
Iterate and Privileged.

262

Notably, Privileged performance is able to263
achieve a result above the Pareto-optimality264
curve for a fixed λ. This is achievable since265
the fixed-λ method is not able to vary λ across266
environments depending on various conditions,267
while the Privileged method is able to do so.268
While our method does achieve good results269
on average, it is not precise enough in individ-270
ual environments to match the Privileged per-271
formance, suggesting areas for future develop-272
ment.273

6 Conclusions274

Overall, we find that our proposed method is275
able to perform constrained policy optimiza-276
tion in a zero-shot manner, effectively balanc-277
ing reward and cost terms to produce a pol-278
icy representation that is adherent to constraints279
while remaining generally successful at the280
goal-reaching tasks.281

Our results also suggest many promising av-282
enues for future work. For one, we find that283
there is considerable variance in the perfor-284
mance of our method across different environ-285
ment configuration. Incorporating methods for reducing noise in model-based RL, such as ensem-286
bling, could be a promising avenue for improving inference-time performance. Moreover, while our287
proposed method is restricted to inference-time adaptation, it is possible that adapting the FB train-288
ing procedure itself to specifically support the constrained policy optimization case could enhance289
our performance.290
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A Proof of Theorem 1291

For any policy π and λ ∈ R+, define292

f(π, λ) := E
S∼ρ0

[V π(S)− λCπ(S)] ,

where Cπ(s) := E
∑

t≥0 γ
tc(Sπ

t ), and where Sπ
t is the (random) state visited under the policy π293

at time t. Crucially, we note that Cπ is simply the value function corresponding to the MDP with294
reward function c, and more generally, V π−λCπ for any λ ∈ R is the value function corresponding295
to the MDP with reward function r − λc.296

Next, define f(λ) = maxπ f(π, λ). Recall that a solution π⋆ to the constrained RL problem satisfies297

min
λ≥0

f(π⋆, λ) = min
λ≥0

f(λ), (10)

as discussed in Section 3.1, when the budget β = 0. Note that for any policy π, f(π, ·) is linear.298
Thus, f , as a pointwise maximum of convex (linear) functions, is a convex function. Moreover,299
by the stated assumptions, we have that minλ≥0 f(π, λ) ≥ M > −∞ (where M is an arbitrary300
constant) for some constraint-satisfying policy π, so that minλ≥0 f(λ) = minλ≥0 f(π

r−λc, λ) is301
bounded, and the minimum is achieved at some λ ≤ Λc <∞. As a consequence, for any λ0 ∈ R+,302
and any unbiased estimator Ĉk of d

dλf(λ) bounded with probability 1, the iterates303

λk+1 := λk − ηkĈk (11)

converge to some λ̂ ∈ R+ by the stochastic approximation theory of Robbins and Munro (Robbins,304
1951). Moreover, by (4), we have that305

d

dλ
f(λ) =

d

dλ

[
max
π

f(π, λ)
]

=
d

dλ

[
max
π

E
S∼ρ0

(V π(S)− λCπ(S))

]
=

d

dλ

[
E

S∼ρ0

(V π⋆

(S)− λCπ⋆

(S))

]
π⋆=π

zr−λc

By Equation (4)

= − d

dλ

[
E

S∼ρ0

λCπ⋆

(S)

]
π⋆=π

zr−λc

= − E
S∼ρ0

[
max

a
F (S, a, zr−λc)⊤zc

]
. By Equation (4)

Since πzr−λc is a constraint-satisfying policy, the Monte-Carlo estimates given by306

Ĉk =
1

Nsample

Nsample∑
i=1

max
a

F (Si, a, z
r−λkc)⊤zc, Si

iid∼ ρ0

are unbiased and bounded with probability 1. Thus, substituting into the iterates of (11), we yield307
the iterates shown in the statement of Theorem 1. Therefore, these iterates converge with probability308
1 to λ̂ = minλ≥0 f(λ). Then, by the defining property of the FB representation (4), it holds that309
πzr−λ̂c maximizes f(·, λ̂), so that πzr−λ̂c is optimal for the constrained RL problem with budget310
β = 0 by (10).311

B FB Training Details312

For FB training, we generally follow the code provided by the authors of Touati & Ollivier (2021)313
(https://github.com/ahmed-touati/controllable_agent), but we use the for-314
ward network architecture from Touati et al. (2022) as well as the normalization of the output of315
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Hyperparameter Discrete Continuous
Epochs 200 200
Cycles per epoch 25 25
Episodes per cycle - 4
Timesteps per episode 100 100
Updates per cycle 40 40
Exploration ϵ - 1
Evaluation ϵ Boltzmann τ = 1 0.02
temperature τ 50 100
Learning Rate 0.0005 0.00001
Mini-batch size 128 128
Regularization coefficient 1 1
Polyak α 0.99 0.95
Discount γ 0.99 0.99
Replay buffer size - 106

z dimension 100 100

Table 1: Hyperparameters used for FB training in discrete and continuous environments.

the backward network (scaled to have
√
d norm). For the discrete environment, we pre-collect a full316

coverage dataset for training by sampling all state and action transitions in the MDP. For the contin-317
uous environment, we use rollouts with a random policy, as is used in Touati & Ollivier (2021). We318
use a random start state for rollouts which is at least 0.15 units from the wall.319

All hyperparameters used for FB training in the continuous and discrete environments are provided320
in Table 1321

FB training converges to very strong goal-reaching success across all seeds in both the discrete and322
continuous environments, as can be seen in Figure 5.
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Figure 5: FB training curves where performance is evaluated by goal-reaching success for all (dis-
crete) or randomly sampled (continuous) goals. Following Touati & Ollivier (2021) we report goal-
reaching success, in the discrete environment, as the expert-normalized expected returns, computed
exactly using the known transition dynamics of the discrete MDP and, in the continuous environ-
ment, as average goal-reaching success over 10 test rollouts. Error bars display 95% confidence
intervals across three seeds.

323
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C Experiment Details324

C.1 Environment Generation325

The discrete gridworld is a 10x10 grid surrounded by walls. States are one-hot vectors indicating326
the position of the agent. In the continuous gridworld, the state consists of the (x, y) position of the327
agent, where (x, y) ∈ [[0, 1], [0, 1]]. Generating an environment consists of first generating one or328
two constraints and then generating a goal which does not overlap with the constraints. We constrain329
this generation procedure according to the limits specified in Table 2.330

Environment Discrete Continuous
Num Constraints One Two One Two
Constraint min width 1 1 0.1 0.1
Constraint max width 6 6 0.6 0.6
Constraint min height 1 1 0.1 0.1
Constraint max height 6 6 0.6 0.6
Constraint min area 10 1 0.1 0.01
Constraint max area 40 16 0.4 0.16
Min distance between wall and constraint 1 1 0.1 0.1
Min distance between constraints - 3 - 0.3
Min distance between goal and constraints 2 2 0.2 0.2
Min distance between start and constraints 0 0 0.05 0.05

Table 2: Parameters used for generating constrained environments for evaluation.

C.2 Hyperparameters331

We use the following hyperparameters in the instantiation of Algorithm 1 in both the discrete and332
continuous environments.333

Hyperparameter
λ0 0.01
η 10−3

Ngrad 10000
Nbatch 528
α 0.05

Table 3: Hyperparameters used to instantiate Algorithm 1

References334

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In335
International conference on machine learning, pp. 22–31. PMLR, 2017.336

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,337
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural338
information processing systems, 30, 2017.339

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent340
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.341

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado Van Hasselt,342
David Silver, and Tom Schaul. Universal successor features approximators. arXiv preprint343
arXiv:1812.07626, 2018.344

11



Under review for RLBrew Workshop @ RLC 2025

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-345
tion. Neural computation, 5(4):613–624, 1993.346

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. The information geometry of347
unsupervised reinforcement learning. arXiv preprint arXiv:2110.02719, 2021.348

Michael Janner, Igor Mordatch, and Sergey Levine. Gamma-models: Generative temporal difference349
learning for infinite-horizon prediction. Advances in neural information processing systems, 33:350
1724–1735, 2020.351

Jongmin Lee, Cosmin Paduraru, Daniel J Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim,352
and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary distribution353
correction estimation. arXiv preprint arXiv:2204.08957, 2022.354

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International355
Conference on Machine Learning, pp. 6736–6747. PMLR, 2021.356

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao.357
Constrained decision transformer for offline safe reinforcement learning. In International Con-358
ference on Machine Learning, pp. 21611–21630. PMLR, 2023.359

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration360
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.361
PMLR, 2017.362

Herbert E. Robbins. A stochastic approximation method. Annals of Mathematical Statistics, 22:363
400–407, 1951. URL https://api.semanticscholar.org/CorpusID:16945044.364

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-365
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient366
reinforcement learning. Advances in Neural Information Processing Systems, 34:12686–12699,367
2021.368

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning369
by pid lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143.370
PMLR, 2020.371

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning372
from reinforcement learning. In International conference on machine learning, pp. 9870–9879.373
PMLR, 2021.374

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. Advances in375
Neural Information Processing Systems, 34:13–23, 2021.376

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist?377
arXiv preprint arXiv:2209.14935, 2022.378

Harley Wiltzer, Jesse Farebrother, Arthur Gretton, Yunhao Tang, André Barreto, Will Dabney,379
Marc G Bellemare, and Mark Rowland. A distributional analogue to the successor representation.380
In International Conference on Machine Learning, 2024.381

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline rein-382
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,383
pp. 8753–8760, 2022.384

Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement385
learning with convergence guarantee. In International Conference on Machine Learning, pp.386
11480–11491. PMLR, 2021.387

12

https://api.semanticscholar.org/CorpusID:16945044


Zero-shot constraint satisfaction with FB representations

Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan Zhang, and Ding Zhao.388
Constraint-conditioned policy optimization for versatile safe reinforcement learning. Advances in389
Neural Information Processing Systems, 36:12555–12568, 2023.390

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.391
Advances in Neural Information Processing Systems, 33:15338–15349, 2020.392

13


