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Abstract

Traditionally, constrained policy optimization with Reinforcement Learning (RL) re-
quires learning a new policy from scratch for any new environment, goal or cost func-
tion, with limited generalization to new tasks and constraints. Given the sample ineffi-
ciency of many common deep RL methods, this procedure can be impractical for many
real-world scenarios, particularly when constraints or tasks are changing. As an alter-
native, in the unconstrained setting, various works have sought to pre-train representa-
tions from offline datasets to accelerate policy optimization upon reward specification.
Recently, zero-shot policy optimization has been explored by leveraging a particular
forward-backward decomposition of the successor measure to learn task-agnostic rep-
resentations of the environment dynamics. However, these methods have been primarily
studied in the unconstrained setting. In this work, we introduce a method for perform-
ing zero-shot constrained policy optimization from forward-backward representations.
We introduce a principled inference-time procedure for zero-shot constrained policy op-
timization and demonstrate its empirical performance on illustrative environments for
finding low-cost high-reward policies across a number of navigation tasks. Finally, we
show that even in simple environments, there remains an optimality gap in zero-shot
constrained policy optimization, inviting future developments in this area.

1 Introduction

Real-world autonomous systems must typically adhere to safety constraints, motivating a large body
of work in constrained reinforcement learning (RL). However, existing methods for constrained RL
have typically only been explored in the context of tabula rasa RL, i.e., learning an RL policy from
scratch. These methods operate either in an online environment with cost feedback (Achiam et al.,
2017; Zhang et al., 2020; Xu et al., 2021), or on an offline dataset with cost annotations (Lee et al.,
2022; Xu et al., 2022; Liu et al., 2023). In such cases, the learned policy is valid only under the
particular reward and cost function under which it was trained. However, comprehensive descrip-
tions of a system’s rewards and constraints may not be available during training, and users may also
introduce new tasks or constraints after training is complete. Ideally, practical RL algorithms would
support the zero-shot generation of policies for these new tasks and constraints without retraining.

In this regard, much effort has gone towards developing methods for pretraining representations in
RL, either online (Pathak et al., 2017; Liu & Abbeel, 2021) or offline (Stooke et al., 2021; Schwarzer
et al., 2021), to instantiate faster learning once a task is specified downstream. So-called forward-
backward (FB) representations (Touati & Ollivier, 2021) are one such paradigm for representation
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learning that offers promise for zero-shot policy generalization across tasks. FB representations
consist of a linear reward function encoder, which maps reward functions to finite-dimensional
embeddings, and an embedding-conditioned policy that optimizes the embedded reward. For any
unconstrained RL problem, one can thus leverage a pretrained FB representation to perform zero-
shot policy optimization by first using it to embed the relevant reward function, before deploying
the policy that results from conditioning on this embedding. While these methods have found con-
siderable success in accelerating RL in the unconstrained setting , relatively little attention has been
given to how these representations perform on constrained tasks.

In principle, these same representations can be directly applied to perform constrained policy op-
timization by supplying reward functions that penalize cost-incurring states. However, these naive
adaptations do not necessarily yield satisfying solutions. Namely, the effect of scaling the cost
penalty to ensure constraint satisfaction is not necessarily benign—as it increases, the resulting
embeddings become out of distribution relative to the sampled embeddings that are seen over the
course of FB pretraining, and consequently, the resulting embedding-conditioned policies are unre-
liable. Instead, as we explore in this work, by leveraging the linearity of the reward encoder in the
FB representation, an appropriate cost multiplier can be determined by a Lagrangian approach. By
determining a multiplier for the cost embedding in this way, one can, in theory, assert that the policy
conditioned on the difference between the reward embedding and the scaled cost embedding will be
an optimal policy for the constrained MDP.

The primary contributions of our work are as follows.

A method for zero-shot inference of constrained optimal policies We introduce a principled
inference-time procedure for performing zero-shot constrained policy optimization, given an exist-
ing pretrained FB representation, which does not require any online environment interactions.

Practical techniques for mitigating FB estimation errors Naively applying our approach with
an imperfect forward-backward representation can yield policies that cannot achieve high returns
due to overestimates of incurred costs. We provide robustness techniques which substantially boost
policy returns while maintaining strong constraint satisfaction.

2 Related Work

Constrained RL seeks to learn policies that are optimal under a reward function while respecting
constraints on one or more cost functions. Many methods for online constrained RL have been
proposed (Achiam et al., 2017; Zhang et al., 2020; Xu et al., 2021), though Lagrangian adaptations
of popular RL algorithms remain common (Stooke et al., 2020). Constrained RL has also been
explored in the offline setting, where the dataset is assumed to be annotated with both costs and
rewards (Lee et al., 2022; Xu et al., 2022; Liu et al., 2023). Relatively little work has explored zero-
shot or few-shot constrained RL. Yao et al. (2023) train a policy which can be adapted zero-shot at
inference time to different cost thresholds, however, this is limited only to varying thresholds and
not wholly different cost functions. Touati & Ollivier (2021) consider some simple constraints and
show zero-shot performance is possible given an appropriate cost multiplier, however they do not
offer a method for determining this multiplier offline to ensure constraint satisfaction.

Zero-shot reinforcement learning has been explored extensively in the unconstrained case. In the
tabular case, successor representations can be computed, permitting zero-shot value estimation for
a fixed policy (Dayan, 1993). This representation generalizes to the continuous MDP case via the
successor measure (Blier et al., 2021), which has been used for zero-shot value estimation (Janner
et al., 2020) and return distribution estimation (Wiltzer et al., 2024) via generative modelling. In the
continuous case, one body of work seeks to perform unsupervised (reward free) pre-training to learn
generally useful representations (Eysenbach et al., 2022). Such methods can be combined with suc-
cessor feature (SF) methods (Barreto et al., 2017), a generalization of the successor representation,
to perform zero-shot RL (Borsa et al., 2019; Touati et al., 2023). The zero-shot performance of SF
methods is limited by how well reward functions can be approximated within a finite-dimensional
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vector space spanned by certain base features, which either require specialized knowledge of the
reward functions of interest, or must be carefully learned from data. Notably, Touati & Ollivier
(2021) introduces the forward-backward representation as a particular decomposition of the succes-
sor measure into one component that acts as a reward function encoder, and another which induces
a reward-embedding-conditioned policy that is greedy with respect to its action-values. Particularly,
their approach implicitly learns features through a successor measure consistency loss, jointly with
task-conditioned optimal policies. Touati et al. (2023) show that this method outperforms explicit
feature learning methods at zero-shot policy optimization. However, to our knowledge, no work has
explicitly considered these representations in the constrained RL setting.

3 Background

Before delving into our approach for imbuing zero-shot policy optimization models with the ability
to satisfy constraints, we outline the formalisms of the (constrained) RL setting and the forward-
backward representation, which serve as the backbone of our work.

In the sequel, we operate in a Markov Decision Process (MDP) with state space S, action space
A, transition kernel P : S × A → P(S), a bounded reward function1 r : S → R, initial state
distribution ρ0 ∈ P(S), and discount factor γ ∈ [0, 1). A policy is a mapping π : S → P(A)
which maps state observations to (possibly random) actions. Nominally, the objective of RL is to
find a policy π⋆ that maximizes the expected discounted return,

π⋆ ∈ argmax
π

E
∑
t≥0

γtr(Sπ
t ), Sπ

t+1 ∼ P (· | Sπ
t , A

π
t ), A

π
t ∼ π(· | Sπ

t ), S
π
0 ∼ ρ0. (1)

For reasons that will be apparent in the next section, we will refer to the objective (1) as the uncon-
strained RL problem.

3.1 Constrained RL

In constrained RL, along with a reward function r, the agent is presented with an instantaneous
bounded cost function2 c : S → R, and must optimize

max
π

E

[ ∞∑
t=0

γtr(Sπ
t )

]
subject to E

[ ∞∑
t=0

γtc(Sπ
t )

]
≤ β, (2)

where β is a given budget. The Lagrangian dual of Equation 2 is given by the saddle-point problem

min
λ≥0

max
π

E

[ ∞∑
t=0

γtr(Sπ
t )

]
− λ

(
E

[ ∞∑
t=0

γtc(Sπ
t )

]
− β

)
. (3)

3.2 The Successor Measure and Forward-Backward Representations

The successor representation (Dayan, 1993), and more generally, the successor measure (Blier et al.,
2021) are objects that encode the value function for any reward function associated to a given policy
in an MDP. Let ρ ∈ P(S) denote a probability measure on the state space, generally interpreted
as, say, a dataset. For any policy π, its successor measure Mπ : S × A →P(S) is a (conditional)
measure expressed relative to the measure ρ, via

Mπ(s, a,ds′) = E

∑
t≥0

γtδs′(S
π
t )

∣∣∣∣S0 = s,A0 = a

 ρ(ds′),

1Generally, reward functions can also be action-dependent, e.g. r : S×A → R. We consider state-only reward functions
following Touati & Ollivier (2021), but note that state-action reward functions can be accommodated as well.

2Again, generally we may consider cost functions of the form c : S ×A → R, by symmetry with reward funtions.
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where δs′ is the Dirac measure which places all mass on the state s′. Crucially, denoting by Qπ
r the

action-value function for policy π on the reward function r : S → R, we have that

Qπ
r (s, a) = (Mπr)(s, a) :=

∫
r(s′)Mπ(s, a,ds′).

That is, Mπ is a linear operator from reward functions to value functions, permitting zero-shot pol-
icy evaluation (Dayan, 1993; Blier et al., 2021). To circumvent the policy-dependent nature of the
successor measure and permit zero shot policy optimization, Touati & Ollivier (2021) introduces
a factorization which identifies each reward function with a particular optimal policy. Under their
forward-backward (FB) representation, for policies πz parameterized by a latent z ∈ Rd, the suc-
cessor measure is expressed by

Mπz (s, a,ds′) = F (s0, a0, z)
⊤B(s′)ρ(ds′), and πz(a | s) := argmax

a
F (s, a, z)⊤z, (4)

where F : S × A × Rd → Rd and B : S → Rd. The cleverness of this representation lies in
the identity that for any policy π and reward function r, (Mπr)(s, a) ≡

∫
r(s′)Mπ(s, a,ds′) =

Qπ(s, a). As a consequence, taking zr := Br ≡
∫
B(s)r(s) dρ(s), we have that F (s, a, zr)⊤zr =

Qπzr (s, a), so that πzr is optimal for the reward r by (4), as it is greedy with respect to its action-
value function for r.

Underlying this idea is the following concept that we use throughout. The FB representation learns
a family of successor measures parameterized by z ∈ Rd. By the identity that πzr is optimal
for rewards satisfying zr = Br, the latents zr simultaneously describe both reward functions and
policies. More precisely, an embedding z describes a particular behaviour—it induces a policy
which is optimal for an equivalence class of rewards. Prompting an FB representation with z elicits
this behaviour.

4 Zero-Shot Constrained Policy Optimization

In order to treat zero-shot constrained policy optimization, we take the Lagrangian formulation of
performing bilevel optimization on the returns from a modified reward function of the form r − λc,
where r is the nominal reward, c is the cost function, and λ ≥ 0 is the dual variable to be optimized
along with the policy. The key insight is that for any given λ, a pretrained FB representation could, in
principle, compute the corresponding optimal πzr−λc directly—removing one layer of optimization.

Let us now illustrate this more precisely. Suppose β = 0. As discussed in Section 3.1, solving the
constrained RL problem consists of solving the following, where Sπ

t is the (random) state visited
under π at time t,

λ̂ = argmin
λ≥0

max
π

ES0∼p0

[
E
[∑

t≥0

γt (r(Sπ
t )− λc(Sπ

t ))︸ ︷︷ ︸
rλ(Sπ

t )

]]
. (5)

Notably, within the outer expectation, we simply have an expression for the value function for π
corresponding to the reward function rλ = r − λc. Given an FB representation satisfying (4), we
can simplify (5) by directly performing policy optimization,

λ̂ = argmin
λ≥0

ES0∼ρ0

[
max

a
F (S0, a, z

rλ)⊤zr
λ
]
. (6)

Our main result is a method for optimizing (6) at inference time. The following theorem certifies an
optimization scheme for efficiently learning λ̂ and the constrained optimal policy.

Theorem 1 Let (F,B) denote an FB representation satisfying Equation (4). Suppose for cost c
there exists a finite Λc such that V π −ΛcC

π is bounded for at least one constraint-satisfying policy
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π (i.e., with probability 1, π does not exceed the cost budget). For any λ0 ≥ 0 and Nsample ∈ N,
consider the iterates {λk}k≥0 given by

λk+1 = λk + ηk
1

Nsample

Nsample∑
i=1

F (Si, a
⋆
Si
, zr−λkc)⊤zc

where a⋆s := argmax
a

F (s, a, zr−λc)⊤zr−λc, Si
iid∼ ρ0,

(7)

where {ηk}k≥0 is a sequence of step sizes satisfying the Robbins-Munro conditions (Robbins, 1951).
Then λk → λ̂ with probability 1, such that πzr−λ̂c is optimal for the constrained RL problem with
cost c and budget 0. [Proof]

Theorem 1 provides us with an inference-time (one-dimensional) stochastic gradient descent scheme
for recovering the optimal Lagrange multiplier, enabling zero-shot constrained policy optimization
via the FB representation. We refer to this as an “inference-time” scheme because, given a pre-
trained FB representation, no interaction is required for policy optimization: one must merely solve
a simple convex optimization problem in one dimension. The FB representation does the heavy lift-
ing, allowing us to substitute the inner policy optimization from (5), which would normally require
expensive RL training, with an exact expression for the optimal value and cost functions.

4.1 Mitigating FB estimation errors

In order to truly perform zero-shot offline constrained policy optimization, our method relies on pre-
dictions of the long-term cost from the FB representation under predicted optimal policies πzr−λc

across a wide range of λ. It is imperative that these predictions are accurate—overestimation of the
long-term cost can induce policies that are much too conservative, precluding any reward optimiza-
tion, and underestimation of the long-term cost can induce policies that simply exceed their cost
budget. A crucial challenge in our setting is that, since some r, c pairs may necessitate arbitrarily
large λ, the latents zr−λc can easily veer outside the distribution over latents seen during pretraining,
hindering prediction quality.

Henceforth, let Ĉr,c
λ denote the zero-shot unbiased (e.g., Monte Carlo) estimate of the expected cost

returns of policy zr−λc on cost function c,

E[Ĉr,c
λ ] := ES0∼p0

[
F (S0, a

⋆
S0
, zr−λc)⊤zc

]
where a⋆s := argmax

a
F (s, a, zr−λc)⊤zr−λc. (8)

In the remainder of this section, we present methods for overcoming both overestima-
tion and underestimation in Ĉr,c

λ , enabling reliable zero-shot constrained policy optimization.

Figure 1: Example of instance
where estimated cost does not
fall below zero as λ increases.

Overestimation From Equation (7), it is clear that for a budget
β = 0, the optimization will result in λ continually increasing un-
til the estimated costs under the FB representation are less than or
equal to zero, since the gradient with respec to λ will always be
negative as long as Ĉr,c

λ > 0.

If such a result is infeasible, or infeasible under the learnt F and
B representations (overestimation), this will result in λ continu-
ing to increase, potentially degrading reward performance without
significantly improving constraint satisfaction. Importantly, λ will
continue to increase even if Ĉr,c

λ is constant or even increasing, as
can be seen, for example, in Figure 1.
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Algorithm 1 Zero-Shot Constrained RL

Require: FB representation networks F , B, dataset D and the initial state distribution ρ0
3

Require: Initial λ0 ≥ 0, learning rate η, batch size Nbatch, number of steps Ngrad, cost threshold α

Sample minibatch (S1, . . . , Sn)
iid∼ D

zr ← 1
Nbatch

∑Nbatch

i=1 B(Si)r(Si)

zc ← 1
Nbatch

∑Nbatch

i=1 B(Si)c(Si)

for n ∈ {1, . . . , Ngrad} do
z ← zr − λnz

c

z ←
√
d z
∥z∥ ▷ Normalize embedding

Sample minibatch S = (S1, S2, . . . , SNbatch
)
iid∼ ρ0

a∗i ← argmaxa F (Si, a, z)
⊤z for each i ∈ {1, . . . , Nbatch}

L(λn,S) = −λn
1

Nbatch

∑Nbatch

i=1 ReLU
(
stop-grad(F (Si, a

∗
i , z))

⊤zc
)
+R(λn)

Cn ← 1
Nbatch

∑Nbatch

i=1 ReLU(F (Si, a
∗
i , z)

⊤zc)

λn+1 ← λn − η∇λL(λn,S)
end for
λ = minn λn : Cn ≤ α(Cmax−Cmin)+Cmin where Cmax = maxn Cn and Cmin = minn Cn

return λ (Relaxed Min-Cost), λN (Last Iterate)

We propose two modifications. First, we introduce a regularizer on λ to discourage unbounded
growth in λ when Ĉr,c

λ is no longer decreasing significantly. Particularly, we add a penalty R(λ) =
λ2 to (7) to help mitigate the issue.

Second, we propose a post-optimization procedure using this zero-shot estimate of the cost under
the policy induced by each λn obtained during the gradient descent scheme in Equation 7. In par-
ticular, we store the estimate Cn = Ĉr,c

λn
for each λn encountered during gradient descent. After

optimization has terminated, we select the minimum λn for which Cn is within a factor of α ∈ [0, 1]
from the minimum, relative to the range of costs across all iterates.

Underestimation On the other hand, when estimating the long-term cost of the policy induced
by zr−λc using (8), we find that the FB representation can also exploit negative cost predictions,
resulting in poor behaviour. In principle, given that c ≥ 0, a perfect FB representation would
not predict negative long-term costs, however, due to small training error, this cannot be avoided
conclusively. As such, when estimating the long-term cost of our policy, we instead follow (9), with
ReLU(x) := max(0, x),

Ĉ+,r,c
λ := ES∼p0

[
ReLU(F (S, a⋆s, z

r−λc)⊤zc)
]

where a⋆s := argmax
a

F (s, a, zr−λc). (9)

With the addition of these modifications, we arrive at the proposed Algorithm 1.

5 Experimental Results

In this section, we investigate the performance of our proposed approach on some illustrative con-
strained environments. Particularly, our experiments are designed to illustrate whether our approach
masterfully navigates the Pareto front between success rate with respect to the nominal reward r and
constraint violation with respect to c. We evaluate our method in two environments adapted from
(Touati & Ollivier, 2021), discrete and continuous state-space grid worlds, both with discrete action
spaces. While the original environments in (Touati & Ollivier, 2021) had internal walls, in our ex-
periments, we pretrain an FB representation in an empty grid and represent the walls via constrained
states. In a sense, constrained policy optimization can generalize across transition dynamics.

3Depending on the application, the initial state distribution may be known (for example, given a known single initial state,
the Dirac delta distribution may be used). If it is unknown, it is reasonable to use the FB training dataset as a proxy.
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FB Training We train FB representations across three seeds following the method from Touati &
Ollivier (2021), though we update the forward network architecture to match that from Touati et al.
(2023). As in Touati & Ollivier (2021), we replace the argmax in Equation (4) with a softmax in
the training updates, though we lower the temperature τ to 50 in the discrete environment and 100
in the continuous environment. All hyperparameters for FB training as well as training curves are
reported in Appendix B. As can be seen in Figure 5, all learned FB representations converge to near
100% success on unconstrained goal-reaching tasks.

Evaluation Setup We evaluate each pre-trained FB representation according to the following
setup. We first generate a random environment by sampling random constraints where a single
constraint consists of a contiguous rectangular section of the grid at which the agent receives a cost
of 1, and then sampling a random goal non-overlapping with the constraints, at which the agent
receives a reward of 1. We provide an example of such a generated environment in Figure 2a. Exact
details of environment generation can be found in Appendix C.1.

For each environment, we estimate zr and zc given by z• = ES∼ρ[•(S)B(S)] for • ∈ {r, c} via
Monte Carlo, and execute Algorithm 1 (see Appendix C.2 for hyperparameters) to approximate λ̂.
Finally, we test policy πzr−λc for 100 rollouts with random initial states and report the average
success and violation rate across all rollouts. We repeat this 50 times across each FB representation.

We evaluate our methods Relaxed Min-Cost, which uses the additional procedure in Algorithm 1 to
select a less conservative λ, and Last Iterate, which selects the final λ after iterating Equation 7 for
a fixed 10,000 steps. We compare against Privileged, a method that provides an upper bound on our
methods’ possible performance, by sweeping over λ and using online evaluations to select the best
value. To avoid being overly conservative in constraint satisfaction, the best λ for the Privileged
method is selected as the λ with the highest success rate with costs below a 5% quantile thresh-
old. We emphasize that unlike Privileged, our methods do not have access to online evaluations
when selecting λ; we use the Privileged method solely as an approximation of the best achievable
algorithm performance under a given pretrained FB representation.

5.1 Results

To qualitatively demonstrate the importance of selecting a good λ for constrained policy optimiza-
tion with FB, Figure 2 illustrates various value functions obtained by varying λ in an environment
with a fixed goal and constraint. As can be seen in Figure 2b, selecting a λ which is too low results
in a value function that does not reflect the constraint. However, selecting a λ that is too high is
also detrimental, as the value function loses distinction of the goal’s location (Figure 2d). Using
Algorithm 1 to the select λ (Figure 2c) results in a good balance between the constraint and the goal.

(a) Environment

360
410
460
510
560
610
660
710
760
810

(b) V ∗,r−λc : λ < λ̂

160
210
260
310
360
410
460
510
560
610

(c) V ∗,r−λc : λ = λ̂

30
0
30
60
90
120
150
180
210

(d) V ∗,r−λc : λ > λ̂

Figure 2: (a) Continuous grid-world environment with randomly generated constraint (grey) and
goal (star) (b-d) corresponding optimal value function V ∗,r−λc(s) = maxa F (s, a, zr−λc)T zr−λc

under various λ: (c) optimal λ obtained using Algorithm 1 (b) λ less than optimal and (d) λ larger
than optimal. Qualitatively, the scale of λ has a clear impact on the quality of the value function.
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(c) Continuous/One
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(d) Continuous/Two

Figure 3: Goal-reaching success (%) and violation rate (%) for our method Relaxed Min-Cost and
Last Iterate versus Privileged on {discrete, continuous} gridworlds with {one, two} constraints.

Quantitatively, we evaluate the average success and violation rates of our method across all seeds and
evaluation runs. Figure 3 compares the average performance of our methods Relaxed Min-Cost and
Last Iterate in each environment {discrete, continuous} with different number of constraints {one,
two} versus the Privileged performance. In all cases, we find that our method is able to achieve
very low constraint violations, particularly the Last Iterate variant. Additionally, in the single
constraint cases in both discrete and continuous environments, there is also very little degradation
in goal-reaching success versus the Privileged method. In the two constraint environments, there
is a more significant degradation, however, we still obtain reasonable goal reaching success in both
environments, particularly when using the Relaxed Min-Cost variant.

The Relaxed Min-Cost variant can be interpreted as a method for shifting the resulting policy along
a certain Pareto frontier between success rate and violation rate. To reason about this, we compute
a Pareto frontier by sweeping through a range of λ values and estimating the average success and
violation rates over the policies induced by all sampled environment configurations. This produces
a Pareto front for the given FB representation under a non-adaptive λ (i.e. λ held constant across
environments). In Figure 4, we test our hypothesis by examining the performance of our methods
against this Pareto frontier.

0.0 0.1 0.2 0.3 0.4
violation

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

Non-Adaptive 
Relaxed Min-Cost
Last Iterate (Mean)
Relaxed Min-Cost (Mean)
Privileged (Mean)

Figure 4: Pareto-optimality curve for non-
adaptive λ obtained by averaging success and vi-
olation rates across all evaluations and environ-
ments while sweeping over λ. Per-environment
performance of our method Relaxed Min-Cost is
compared against the curve as well as average per-
formance of all methods.

In Figure 4, we can see that both the Re-
laxed Min-Cost and Last Iterate methods lie
very close to non-adaptive λ Pareto-optimality
curve, but at different points on the curve. The
Last Iterate method selects a point on the
curve where near-zero constraint violations can
be obtained with a minimal amount of degra-
dation in goal-reaching success. The Relaxed
Min-Cost variant relaxes the threshold on con-
straint violations slightly in order to achieve
higher goal-reaching success, but remains on
the Pareto-optimality curve.

Notably, Privileged performance is able to
achieve a result above the Pareto-optimality
curve for non-adaptive λ. This is achievable
since the Privileged method is able to adapt λ
to the particularities of the environment. While
our method does achieve good results on aver-
age, it is not precise enough in individual envi-
ronments to match the Privileged performance,
suggesting areas for future work.
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6 Conclusions

Overall, we find that our proposed method is able to perform constrained policy optimization in a
zero-shot manner, effectively balancing reward and cost terms to produce a policy representation that
is adherent to constraints while remaining generally successful at the goal-reaching tasks. Neverthe-
less, given access to priveleged information, it is still possible to outperform the policies imputed by
our zero-shot method, inviting further research towards closing this gap.

Improving estimates of the cost value functions would be particularly impactful. For example, incor-
porating methods for reducing noise in model-based RL, such as ensembling, could be a promising
avenue for improving inference-time performance. Recent advances in flow-based models for esti-
mating the successor measure (Farebrother et al., 2025) could also potentially be leveraged. Finally,
while our proposed method is restricted to inference-time adaptation, it is possible that adapting the
FB training procedure itself to specifically support the constrained policy optimization case could
enhance our performance.
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A Proof of Theorem 1

For any policy π and λ ∈ R+, define

f(π, λ) := E
S∼ρ0

[V π(S)− λCπ(S)] ,

where Cπ(s) := E
∑

t≥0 γ
tc(Sπ

t ), and where Sπ
t is the (random) state visited under the policy π

at time t. Crucially, we note that Cπ is simply the value function corresponding to the MDP with
reward function c, and more generally, V π−λCπ for any λ ∈ R is the value function corresponding
to the MDP with reward function r − λc.

Next, define f(λ) = maxπ f(π, λ). Recall that a solution π⋆ to the constrained RL problem satisfies

min
λ≥0

f(π⋆, λ) = min
λ≥0

f(λ), (10)

as discussed in Section 3.1, when the budget β = 0. Note that for any policy π, f(π, ·) is linear.
Thus, f , as a pointwise maximum of convex (linear) functions, is a convex function. Moreover,
by the stated assumptions, we have that minλ≥0 f(π, λ) ≥ M > −∞ (where M is an arbitrary
constant) for some constraint-satisfying policy π, so that minλ≥0 f(λ) = minλ≥0 f(π

r−λc, λ) is
bounded, and the minimum is achieved at some λ ≤ Λc <∞. As a consequence, for any λ0 ∈ R+,
and any unbiased estimator Ĉk of d

dλf(λ) bounded with probability 1, the iterates

λk+1 := λk − ηkĈk (11)

converge to some λ̂ ∈ R+ by the stochastic approximation theory of Robbins and Munro (Robbins,
1951). Moreover, by (4), we have that

d

dλ
f(λ) =

d

dλ

[
max
π

f(π, λ)
]

=
d

dλ

[
max
π

E
S∼ρ0

(V π(S)− λCπ(S))

]
=

d

dλ

[
E

S∼ρ0

(V π⋆

(S)− λCπ⋆

(S))

]
π⋆=π

zr−λc

By Equation (4)

= − d

dλ

[
E

S∼ρ0

λCπ⋆

(S)

]
π⋆=π

zr−λc

= − E
S∼ρ0

[
F (S, a⋆S , z

r−λc)⊤zc
]
, a⋆s := argmax

a
F (s, a, zr−λc)⊤zr−λc. By Equation (4)

Since πzr−λc is a constraint-satisfying policy, the Monte-Carlo estimates given by

Ĉk =
1

Nsample

Nsample∑
i=1

F (Si, a
⋆
Si
, zr−λkc)⊤zc,

where a⋆s := argmax
a

F (s, a, zr−λc)⊤zr−λc, Si
iid∼ ρ0

are unbiased and bounded with probability 1. Thus, substituting into the iterates of (11), we yield
the iterates shown in the statement of Theorem 1. Therefore, these iterates converge with probability
1 to λ̂ = minλ≥0 f(λ). Then, by the defining property of the FB representation (4), it holds that
πzr−λ̂c maximizes f(·, λ̂), so that πzr−λ̂c is optimal for the constrained RL problem with budget
β = 0 by (10).
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Hyperparameter Discrete Continuous
Epochs 200 200
Cycles per epoch 25 25
Episodes per cycle - 4
Timesteps per episode 100 100
Updates per cycle 40 40
Exploration ϵ - 1
Evaluation ϵ Boltzmann τ = 1 0.02
temperature τ 50 100
Learning Rate 0.0005 0.00001
Mini-batch size 128 128
Regularization coefficient 1 1
Polyak α 0.99 0.95
Discount γ 0.99 0.99
Replay buffer size - 106

z dimension 100 100

Table 1: Hyperparameters used for FB training in discrete and continuous environments.

B FB Training Details

For FB training, we generally follow the code provided by the authors of Touati & Ollivier (2021)
(https://github.com/ahmed-touati/controllable_agent), but we use the for-
ward network architecture from Touati et al. (2023) as well as the normalization of the output of
the backward network (scaled to have

√
d norm). For the discrete environment, we pre-collect a full

coverage dataset for training by sampling all state and action transitions in the MDP. For the contin-
uous environment, we use rollouts with a random policy, as is used in Touati & Ollivier (2021). We
use a random start state for rollouts which is at least 0.15 units from the wall.

All hyperparameters used for FB training in the continuous and discrete environments are provided
in Table 1

FB training converges to very strong goal-reaching success across all seeds in both the discrete and
continuous environments, as can be seen in Figure 5.
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Figure 5: FB training curves where performance is evaluated by goal-reaching success for all (dis-
crete) or randomly sampled (continuous) goals. Following Touati & Ollivier (2021) we report goal-
reaching success, in the discrete environment, as the expert-normalized expected returns, computed
exactly using the known transition dynamics of the discrete MDP and, in the continuous environ-
ment, as average goal-reaching success over 10 test rollouts. Error bars display 95% confidence
intervals across three seeds.

https://github.com/ahmed-touati/controllable_agent
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C Experiment Details

C.1 Environment Generation

The discrete gridworld is a 10x10 grid surrounded by walls. States are one-hot vectors indicating
the position of the agent. In the continuous gridworld, the state consists of the (x, y) position of the
agent, where (x, y) ∈ [[0, 1], [0, 1]]. Generating an environment consists of first generating one or
two constraints and then generating a goal which does not overlap with the constraints. We constrain
this generation procedure according to the limits specified in Table 2.

Environment Discrete Continuous
Num Constraints One Two One Two
Constraint min width 1 1 0.1 0.1
Constraint max width 6 6 0.6 0.6
Constraint min height 1 1 0.1 0.1
Constraint max height 6 6 0.6 0.6
Constraint min area 10 1 0.1 0.01
Constraint max area 40 16 0.4 0.16
Min distance between wall and constraint 1 1 0.1 0.1
Min distance between constraints - 3 - 0.3
Min distance between goal and constraints 2 2 0.2 0.2
Min distance between start and constraints 0 0 0.05 0.05

Table 2: Parameters used for generating constrained environments for evaluation.

C.2 Hyperparameters

We use the following hyperparameters in the instantiation of Algorithm 1 in both the discrete and
continuous environments.

Hyperparameter
λ0 0.01
η 10−3

Ngrad 10000
Nbatch 528
α 0.05

Table 3: Hyperparameters used to instantiate Algorithm 1

References
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In

International Conference on Machine Learning (ICML), 2017.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.

Diana Borsa, André Barreto, John Quan, Daniel J. Mankowitz, Hado van Hasselt, Rémi Munos,
David Silver, and Tom Schaul. Universal successor features approximators. In International
Conference on Learning Representations (ICLR), 2019.



Zero-shot constraint satisfaction with FB representations

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural computation, 5(4):613–624, 1993.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. The information geometry of
unsupervised reinforcement learning. In International Conference on Learning Representations
(ICLR), 2022.

Jesse Farebrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, and Ahmed
Touati. Temporal difference flows. In International Conference on Machine Learning (ICML),
2025.

Michael Janner, Igor Mordatch, and Sergey Levine. Gamma-models: Generative temporal difference
learning for infinite-horizon prediction. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Jongmin Lee, Cosmin Paduraru, Daniel J. Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung
Kim, and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary dis-
tribution correction estimation. In International Conference on Learning Representations (ICLR),
2022.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning (ICML), 2021.

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constrained decision transformer for offline safe reinforcement learning. In International Con-
ference on Machine Learning (ICML), 2023.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning (ICML), 2017.

Herbert E. Robbins. A stochastic approximation method. Annals of Mathematical Statistics, 22:
400–407, 1951.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
reinforcement learning. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods. In International Conference on Machine Learning (ICML), 2020.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In International Conference on Machine Learning (ICML), 2021.

Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. In Advances
in Neural Information Processing Systems (NeurIPS), 2021.

Ahmed Touati, Jérémy Rapin, and Yann Ollivier. Does zero-shot reinforcement learning exist? In
International Conference on Learning Representations (ICLR), 2023.

Harley Wiltzer, Jesse Farebrother, Arthur Gretton, Yunhao Tang, André Barreto, Will Dabney,
Marc G Bellemare, and Mark Rowland. A distributional analogue to the successor representation.
In International Conference on Machine Learning (ICML), 2024.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement
learning with convergence guarantee. In International Conference on Machine Learning (ICML),
2021.



Workshop on Reinforcement Learning Beyond Rewards @ RLC 2025 2025

Yihang Yao, Zuxin Liu, Zhepeng Cen, Jiacheng Zhu, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constraint-conditioned policy optimization for versatile safe reinforcement learning. In Advances
in Neural Information Processing Systems (NeurIPS), 2023.

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.
In Advances in Neural Information Processing Systems (NeurIPS), 2020.


