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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) is a widely used technique
for aligning Large Language Models (LLMs) with human preferences, yet it often
suffers from sparse reward signals, making effective credit assignment challenging.
In typical setups, the reward model provides a single scalar score for an entire
generated sequence, offering little insight into which token or span-level decisions
were responsible for the outcome. To address this, we propose Shapley Credit
Assignment Rewards (SCAR), a novel method that leverages Shapley values in
cooperative game theory. SCAR distributes the total sequence-level reward among
constituent tokens or text spans based on their principled marginal contributions.
This creates dense reward signals, crucially, without necessitating the training
of auxiliary critique models or recourse to fine-grained human annotations at
intermediate generation stages. Unlike prior dense reward methods, SCAR offers a
game-theoretic foundation for fair credit attribution. Theoretically, we demonstrate
that SCAR preserves the original optimal policy, and empirically, across diverse
tasks including sentiment control, text summarization, and instruction tuning, we
show that SCAR converges significantly faster and achieves higher final reward
scores compared to standard RLHF and attention-based dense reward baselines.
Our findings suggest that SCAR provides a more effective and theoretically sound
method for credit assignment in RLHF, leading to more efficient alignment of
LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in diverse natural
language tasks, yet aligning their outputs with complex human instructions and preferences remains
a critical challenge Brown et al. (2020); Bai et al. (2022). Reinforcement Learning from Human
Feedback (RLHF) has emerged as a powerful paradigm for this alignment Christiano et al. (2017);
Stiennon et al. (2020); Ouyang et al. (2022), enabling models to generate more helpful, harmless,
and honest responses. The standard RLHF pipeline typically involves training a reward model (RM)
on human preference data and then using this RM to fine-tune the LLM via reinforcement learning
algorithms like PPO Schulman et al. (2017).

A fundamental challenge in this pipeline arises from the nature of reward delivery. LLMs generate
text auto-regressively, selecting one token at a time. Each token selection constitutes an action within
an RL framework. However, the RM typically provides only a single scalar reward signal upon the
completion of the entire sequence Stiennon et al. (2020); Bai et al. (2022). This results in a sparse
reward setting Hare (2019), which is notoriously difficult for RL algorithms to optimize efficiently Yu
(2018). The core difficulty lies in credit assignment Sutton (1984); Lansdell et al. (2019): determining
which specific token choices (actions) early in the generation process were responsible for the final
high or low reward. This sparsity can lead to slow convergence, high variance gradients, training
instability Henderson et al. (2018); Razin et al. (2024), and potentially suboptimal final policies.

Recognizing this limitation, recent work has focused on densifying the reward signal specifically for
RLHF. One approach involves training dense reward models using fine-grained human annotations at
intermediate generation steps Lightman et al. (2023); Wu et al. (2023b). While effective, this approach
incurs substantial annotation costs. To mitigate these costs, auxiliary LLMs have been proposed
as critics to generate intermediate feedback Klissarov et al. (2024); Cao et al. (2024); Yoon et al.
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(2024), though this relies on the critic’s inherent capabilities. An alternative strategy, most relevant to
our work, aims to derive dense rewards by redistributing the existing sequence-level reward from
the RM without new annotations or auxiliary models. A notable example is Attention-Based Credit
(ABC) Chan et al. (2024), which repurposes the RM’s final layer’s attention weights to proportionally
distribute the final reward across tokens. ABC provides a token-level signal at minimal computational
overhead while preserving optimality via potential-based reward shaping Ng et al. (1999b).

While ABC offers a practical heuristic, relying on attention weights for credit assignment presents
several limitations. Firstly, attention mechanisms are not explicitly designed for, nor do they offer
a theoretically grounded guarantee of, fair credit attribution; their interpretability for attribution is
debated Jain & Wallace (2019); Wiegreffe & Pinter (2019). Secondly, relying on the final layer’s
attention is insufficient, as significant amount of information extraction and reasoning processes that
influence the final reward prediction occur throughout the intermediate layers of the model Geva et al.
(2022); Meng et al. (2022). Lastly, standard attention scores are non-negative, making it inherently
difficult to assign explicit negative credit to tokens or spans that detract from the output quality.

In our pursuit of a more principled approach to dense credit assignment in RLHF, we turn to
cooperative game theory and propose Shapley Credit Assignment Rewards (SCAR). The core idea is
to model sequence generation as a cooperative game where individual text segments (e.g., tokens, or
larger spans like phrases or sentences) are the players. The value of any coalition of these players
(i.e., a subset of segments) is determined by querying the reward model with the partial sequence
formed by concatenating the segments in that coalition. We then employs the Shapley value (Shapley,
1953) to fairly distribute the total sequence-level reward among these segments. This distribution is
based on each segment’s average marginal contribution across all possible orderings of player arrivals,
offering a theoretically grounded method that uniquely satisfies desirable axioms such as efficiency,
symmetry, and linearity, thereby ensuring a fair and principled allocation of credit Shapley (1953).

Recognizing that the exact computation of Shapley values is exponentially complex in the number
of players and thus prohibitive for long sequences, we incorporate adaptive text segmentation to
maintain a tractable number of players. We leverage constituency parsing to segment the generated
text into a hierarchical structure of syntactically coherent units (e.g., phrases or clauses), which then
serve as the players. This significantly reduces the computational burden by grouping semantically
related tokens. For longer responses, segmentation at the sentence level provides a further practical
alternative. We empirically validate SCAR across three NLP tasks with different response length,
demonstrating that it consistently leads to faster convergence and achieves higher final reward scores
compared to standard sparse RLHF and attention-based dense reward baselines.1

2 RELATED WORK

2.1 RL FOR TEXT GENERATION

Reinforcement Learning (RL) has been increasingly leveraged for fine-tuning LLMs in text generation
tasks Ryang & Abekawa (2012); Norouzi et al. (2016); Li et al. (2016); Buck et al. (2018); Bahdanau
et al. (2017). Unlike standard supervised fine-tuning which relies on maximizing the likelihood
of ground-truth sequences, RL enables optimization directly towards sequence-level objectives or
metrics that are not differentiable, such as ROUGE scores in summarization or human preferences for
dialogue quality (Stiennon et al., 2020; Ouyang et al., 2022). A particularly successful application of
this is Reinforcement Learning from Human Feedback (RLHF) Ouyang et al. (2022); Christiano et al.
(2017); Stiennon et al. (2020); Bai et al. (2022), which has become a widely adopted technique for
aligning LLMs with complex human values and instructions. The typical RLHF process involves
learning a reward model (RM) from a dataset of human comparisons between different model outputs,
followed by fine-tuning the LLM policy to maximize the scalar reward assigned by the RM to
the generated text sequences. However, a widely acknowledged challenge in this standard RLHF
framework is the inherent sparsity of the reward signal: the RM typically provides feedback only after
the entire sequence has been generated Stiennon et al. (2020); Bai et al. (2022). This terminal reward
makes the temporal credit assignment problem—identifying which specific token choices (actions)
contributed positively or negatively to the final outcome—particularly difficult Sutton (1984). This

1Code will be released upon acceptance.
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difficulty has spurred research into methods for creating denser, more informative reward signals,
which we discuss further in the following subsection.

2.2 DENSE REWARD STRATEGIES

Ng et al. (1999a) laid the groundwork for potential-based reward shaping in RL, demonstrating
that such shaping can effectively reduce training time without changing the optimal policy. This
concept has inspired subsequent research in augmenting learning processes through auxiliary rewards.
Bellemare et al. (2016); Gong & Wang (2020); Ostrovski et al. (2017); Tang et al. (2017) have
employed pseudo-count-based rewards to encourage exploration in environments where rewards are
sparse. Pathak et al. (2017) use the agent’s prediction errors as intrinsic reward signals to encourage
exploration. Zheng et al. (2018) proposed a method where a parameterized intrinsic reward model is
learned during training to generate dense reward signals. This approach, however, presents certain
optimization difficulties due to the necessity of calculating second-order gradients. Wu et al. (2023b);
Lightman et al. (2023) employ human annotators to provide detailed span-level reward signals,
demonstrating that these fine-grained rewards yield better performance compared to holistic rewards.
More recently, Attention Based Credit (ABC) (Chan et al., 2024) proposed using the reward model’s
internal attention weights to redistribute the terminal reward across tokens. ABC provides density
“for free” and preserves optimality via potential-based reward shaping (PBRS) (Ng et al., 1999a).
However, attention weights are a heuristic proxy for importance and may not reflect a principled
allocation of credit. Our method differs fundamentally by employing Shapley Values, a concept
grounded in cooperative game theory, to achieve a fair and principled distribution of the reward based
on the marginal contribution of text segments.

2.3 SHAPLEY VALUES IN LLMS

Several previous works have already proposed approaches to interpreting the behaviour of LLMs
using Shapley values. Goldshmidt & Horovicz (2024) enhanced LLM output interpretability by
calculating the Shapley values of sub-sequences. Mohammadi (2024) demonstrated how the Shapley
value can uncover that the LLM decisions are disproportionately influenced by tokens providing
minimal informative content. Liu et al. (2023) used Shapley values to quantify the value of prompts
equitably in multi-prompt learning methods. In addition to enhancing the interpretability of LLM
outputs, Shapley value methods are also used for model pruning/compression Sun et al. (2025) and
dataset refinement He et al. (2024). However, to the best of our knowledge, there’s limited work on
solving the sparse reward problem in RLHF using Shapley values. We note contemporaneous work
by Koo et al. (2025) which also explores Shapley values for reward distribution. Their approach
estimates per-token rewards using interpretability methods and then employs Bayesian Optimization
(BO) in a bilevel framework to learn parameters for a shaping function that combines these estimates.
Our work, SCAR, differs in two ways. First, to address the inefficiency of token-level Shapley
calculations for longer responses, SCAR allows for adaptive text segmentation, including grouping
tokens into larger syntactic spans (e.g., via constituency parsing) for more efficient credit assignment.
Secondly, unlike Koo et al. (2025) requiring an outer optimization loop (like BO) to learn shaping
parameters, SCAR directly uses the (approximated) Shapley values from these text units to construct
the dense reward signal (Equation 6).

3 SHAPLEY CREDIT ASSIGNMENT REWARDS

This section details our proposed method, Shapley Credit Assignment Rewards (SCAR). We first
review the standard RLHF setup and the inherent reward sparsity problem. We then introduce a
game-theoretic perspective on text generation for credit assignment, define SCAR based on Shapley
values, and finally discuss efficient approximation techniques.

3.1 RLHF AND REWARD SPARSITY

We formulate the autoregressive text generation process using the standard Markov Decision Process
(MDP) formalism, denoted by M = (S,A, P,R, γ). The process begins in an initial state s0 ∈ S,
which corresponds to the input prompt x. At each discrete time step t ∈ {0, 1, . . . , T − 1}, the
agent (the language model) is in state st, representing the concatenation of the prompt and the
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sequence generated thus far: st = x ⊕ y1:t (where y1:0 denotes an empty sequence, so s0 = x,
and ⊕ denotes token concatenation). The agent selects an action at ∈ A, which corresponds to
choosing the next token yt+1 from the vocabulary V according to its policy πθ(at|st), parameterized
by θ. We identify the action space with the vocabulary, i.e., A = V . The state transition function
P (st+1|st, at) is deterministic in this context. Upon taking action at = yt+1 in state st, the system
transitions to next state st+1 = st ⊕ at = x ⊕ y1:t+1. This generation process continues until a
maximum sequence length T is reached or a designated end-of-sequence (EOS) token is generated.
For notational simplicity, we often assume a fixed horizon T . The discount factor γ is typically set to
1 in finite-horizon text generation tasks.

In standard RLHF pipeline (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022), a
reward model Rϕ, parameterized by ϕ, is trained beforehand on a dataset of human preferences
Dpref = {(yw, yl)i}, where yw is preferred over yl by human annotators. The reward model assigns
a scalar score rϕ(x, y) reflecting the quality or preference level of a completed sequence y given the
prompt x.

To stabilize training and prevent the policy πθ from drifting too far from a reference distribution
(often the initial pre-trained LLM, denoted πref), the reward signal used for optimization is typically
augmented with a penalty term at each step t. A common choice is the Kullback-Leibler (KL)
divergence between the current policy πθ and the reference policy πref. The standard objective is
often formulated as:

J (θ) = Ex∼D,y∼πθ

[
T∑

t=1

Rorig
t

]
(1)

where D is the dataset and the reward at each timestep t in the standard sparse setup is given by

Rorig
t = RKL

t + I(t = T ) · rϕ(x, y) (2)

Here, RKL
t = −β log(πθ(yt|x, y<t)/πref(yt|x, y<t)) is the KL penalty associated with timestep t, β

is the KL coefficient, and I(t = T ) is an indicator function ensuring the reward model score rϕ(x, y)
is assigned only at the final timestep T . This terminal assignment makes the reward signal inherently
sparse, posing a significant challenge for credit assignment during RL training. Such sparsity
directly undermines the efficiency of the learning process and frequently leads to the convergence to
suboptimal policies (Ng et al., 1999a; Bellemare et al., 2016; Wu et al., 2023a). To overcome this, a
principled approach to redistribute the terminal reward more densely across the generation steps is
desirable.

3.2 A GAME-THEORETIC FRAMEWORK FOR CREDIT ASSIGNMENT

We frame the generation of a sequence y for a given prompt x as a cooperative game. Let the
generated text y be segmented into N contiguous units, y = (u1, u2, . . . , uN ). These units could be
tokens, spans, sentences, or paragraphs depending on the task. The “players” in this game are these
N text units. Let P = {u1, . . . , uN} be the set of players.

Characteristic Function. The value of cooperation among a subset (coalition) S ⊆ P of players
is defined by a characteristic function v : 2P → R. This function should quantify the collective
contribution of the units in S towards the final reward objective. We define v(S) based on the reward
model’s evaluation of the partial text sequence formed by concatenating the units {ui | ui ∈ S} in
their original order. Let yS denote this concatenated partial sequence. Then, the value function is
defined as:

v(S) = rϕ(x, yS) (3)

For the empty set, v(∅) = 0. The value of the grand coalition v(P) corresponds to the original sparse
reward for the complete sequence, v(P) = rϕ(x, y). Note that evaluating rϕ on partial sequences
yS requires careful consideration, as yS represents an incomplete sequence. Ideally, v(S) could
represent the expected reward obtained by keeping the units in S fixed and sampling the remaining
units from the current policy πθ. In our implementation, we resort to a practical approximation. To
evaluate v(S), we construct a sequence in which the tokens belonging to units ui ∈ S are placed in
their original order. The positions corresponding to units uj /∈ S are filled using empty spaces.
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Shapley Value Calculation. The Shapley Value SVui
(v) for a player ui ∈ P (text unit ui)

quantifies its fair contribution to the grand coalition value v(P), calculated as the average marginal
contribution of player ui over all possible permutations of player arrivals:

SVui
(v) =

∑
S⊆P\{ui}

|S|! (N − |S| − 1)!

N !
[v(S ∪ {ui})− v(S)]. (4)

The Shapley values uniquely satisfies axioms such as efficiency (
∑

ui∈P SVui
(v) = v(P)), symmetry

(equal reward for equal contribution), linearity, and the null player property (no contribution means
no credit), making it a principled choice for fair credit allocation (Shapley, 1953).

3.3 SHAPLEY VALUES AS DENSE REWARDS

We use the calculated Shapley values to define a dense reward signal for the RL agent. Let unit ui

consist of tokens generated from timestep ti−1 +1 up to and including timestep ti (with t0 = 0, so ti
marks the completion timestep of unit ui). We assign the Shapley value SVui

(v) associated with unit
ui as an additional reward component specifically at the timestep ti marking the completion of that
unit. Let Rshap

t denote this Shapley-based reward at timestep t. Then,

Rshap
t =

{
SVui(v) if t = ti for some unit ui

0 otherwise
(5)

This component distributes the total reward rϕ(x, y) across the episode based on the Shapley contri-
butions, since

∑T
t=1 R

shap
t =

∑N
i=1 SVui(v) = rϕ(x, y) (due to the efficiency property, where N is

the total number of units).

We then define the total reward Rt provided to the RL agent at timestep t as a convex combination of
the dense Shapley-based credit allocation and the original sparse terminal reward, while retaining the
per-step KL penalty. Using a hyperparameter α ∈ [0, 1], the total reward is:

Rt(α) = RKL
t + α ·Rshap

t + (1− α) · I(t = T ) · rϕ(x, y) (6)

Here, α controls the interpolation:

• If α = 0, Rt(0) = Rorig
t , recovering the standard sparse reward signal.

• If α = 1, Rt(1) = RKL
t + Rshap

t . The terminal reward rϕ(x, y) is entirely replaced by
an equivalent value distributed densely according to Shapley contributions throughout the
episode.

• If 0 < α < 1, the agent receives both the intermediate Shapley-based rewards and a residual
portion of the original terminal reward.

This formulation allows flexible control over the density of the reward signal, balancing immediate
feedback with the final outcome signal.
Theorem 3.1 (Policy Invariance under SCAR Reward Shaping). Consider a parameterized language
model πθ with a learned reward model Rϕ. Let M = (S,A, P,Rorig

t , γ) be the original MDP with
its reward from the reward model and M̂ = (S,A, P,Rt(α), γ) be the MDP with dense Shapley
reward. If πθ is optimal for M̂, then πθ is also optimal for M, and vice versa.

Proof. See Appendix B.

3.4 EFFICIENT APPROXIMATION OF SHAPLEY VALUES

The direct calculation of Shapley values using Equation equation 4 necessitates evaluating the
characteristic function v(S) (defined in Eq. equation 3) for all 2N possible coalitions S of the N
text units. This exponential complexity renders exact computation practically infeasible for typical
sequence lengths encountered in text generation Shapley (1953). To make SCAR practical, we
employ two key strategies: adaptive segmentation of text into units and efficient approximation of
their Shapley values.
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Adaptive Text Segmentation as Players. The definition of “players” (text units ui) in our coopera-
tive game is crucial for both interpretability and computational tractability. We adapt the granularity
of these units based on the task and the typical length of the generated responses, aiming to keep the
number of players N manageable. We experiment with three levels of segmentation:

• Token-level: For tasks producing very short responses, each token yt can be treated as an
individual player ui. This offers the finest granularity but results in a larger N .

• Span-level: For medium-length responses, we leverage constituency parsing (Marcus et al.,
1993) to establish a hierarchical grammatical structure over the generated sequence y. This
process yields a constituency tree where tokens (leaf nodes) are organized into hierarchically
nested constituents. Players are then defined as these syntactic constituents (e.g., noun
phrases, verb phrases), formed by grouping tokens that share a common parent or ancestor
node within this tree. This approach reduces N while preserving semantic coherence within
each player unit, as constituents are inherently meaningful linguistic units.2

• Sentence-level: For tasks generating longer, multi-sentence responses, each sentence in the
output y constitutes a player. Segmentation is achieved using standard sentence boundary
detection. This approach markedly reduces N , especially for verbose outputs.

The choice of segmentation strategy is a hyperparameter, allowing a trade-off between the granularity
of credit assignment and the computational cost of Shapley value estimation.

Approximation Using Owen Values. To ensure the practical applicability of SCAR, we employ an
approximation scheme based on Owen value (Owen, 1977), which is a coalitional extension of Shapley
values designed for games where players are grouped into a predefined coalition structure(Aumann &
Dreze, 1974). For our task, a hierarchical structure B is imposed on the sequence of N text units,
achieved by applying a heuristic parsing algorithm to the units. This partition B defines nested
groupings of the units. The Owen value is then computed with respect to this partition B. Marginal
contributions are evaluated by forming coalitions structurally: combinations involving subsets within
a unit’s own group are explored, while units belonging to other groups in the partition are treated as
indivisible blocks, as they are either entirely included or entirely excluded from a coalition, rather than
exploring all their individual subsets. By limiting the evaluation to coalitions dictated by the partition
structure B, the number of required characteristic function evaluations (reward model queries) is
substantially reduced compared to the exact Shapley computation. Consequently, the computational
complexity is reduced from exponential, O(2N ), to quadratic in N , rendering the approach tractable.
We use the SHAP package Lundberg & Lee (2017) for Shapley values and Owen values computation.

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of SCAR across three distinct tasks char-
acterized by varying response lengths. Our primary objective is to demonstrate that SCAR enables
more efficient and effective training compared to standard sparse RLHF and alternative dense reward
baselines.

4.1 EXPERIMENTAL SETUP

Evaluation Tasks and Models. We evaluate our proposed method across three diverse tasks
prevalent in RLHF research: sentiment control, text summarization, and instruction tuning (Chan
et al., 2024; Cao et al., 2024; Yoon et al., 2024). For sentiment control and instruction tuning, we
utilize the implementation from Chan et al. (2024). However, for summarization, due to difficulties
in reproducing the results, we switched to the implementation from Huang et al. (2024). The datasets,
policy models, and reward models used for each task are described in more detail below.

Sentiment Control: The objective is to generate positive reviews of movies. We use the IMDB
dataset (Maas et al., 2011). The policy model is GPT-2 small (Radford et al., 2019), initialized by
fine-tuning for one epoch on the IMDB training set. During RLHF training, prompts are generated by

2https://www.nltk.org/howto/parse.html

6

https://www.nltk.org/howto/parse.html


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Prompt: “While some scenes were”
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.
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0.0

Figure 1: Comparison of reward distribution strategies for an example generated sequence. Sparse
RLHF assigns the total reward at the end. SCAR and ABC distribute this reward across tokens/spans
based on their respective methodologies, shown with background highlights (color hue for sign,
intensity for magnitude; more intense/saturated means higher absolute contribution) and numerical
scores.

randomly selecting the first 4 to 8 tokens from reviews in the training data. The reward signals are
provided using a pre-trained sentiment classifier, same as (Chan et al., 2024).

Text Summarization: We evaluate our method on the automatic text summarization task, following
prior work (Stiennon et al., 2020; Chan et al., 2024; Lee et al., 2023). For this evaluation, we use the
Reddit TL;DR dataset (V"olske et al., 2017), specifically the filtered version provided by Stiennon
et al. (2020), which includes approximately 116K training examples, 6K validation examples, and
6K test examples. Our policy model is Pythia-1B (Biderman et al., 2023), which we initialize via
supervised fine-tuning on the training set for 2,000 steps with a batch size of 64. Additionally, we
train a 1B-parameter reward model (initialized using the SFT model) on 92K human preference pairs,
achieving approximately 74% accuracy on the validation set.

Instruction Turning: We evaluate models on the task of following user instructions. To do this, we
fine-tune language models using the helpfulness subset of the Anthropic Helpful and Harmless (HH)
dataset (Bai et al., 2022), which contains 43K human-written prompts paired with model responses
that have been ranked by human annotators for helpfulness. Preference is based on which response is
more informative and helpful for the task. The policy model is initialized using the OpenLLaMA-7B
model (Geng & Liu, 2023), an open-source reproduction of Meta’s LLaMA collection (Touvron
et al., 2023) trained on fully open-source dataset. For the reward model, we use the 3B reward model
provided by Dong et al. (2023). This reward model was trained using the same HH dataset, where it
learns to assign a scores to candidate completions based on their predicted usefulness.

Baselines. We compare our proposed method against three key baselines. RLHF represents
the standard approach using the sparse terminal reward (Eq. 2) with KL regularization. ABC
(Attention Based Credit) (Chan et al., 2024) uses reward model attention scores for dense rewards
distribution. Uniform is a baseline that distributes the terminal reward evenly across all tokens. For
fair comparison, all methods are optimized using the PPO objective (Schulman et al., 2017) with
consistent hyperparameters, detailed in Appendix D. All methods initialize their policy models using
the same SFT checkpoint to ensure a common starting point. All experiments were conducted on a
single A100 GPU (80GB VRAM), and results are averaged over 5 random seeds.

Evaluation Metrics. We track the average reward rϕ(x, y) per episode during training to evaluate
learning speed and the level of convergence. The final performance is reported as the mean reward on
the test set after convergence. For the summarization task, we additionally employ LLM-as-a-judge
(Zheng et al., 2023) evaluation to compare the quality (e.g., accuracy, coverage, conciseness, clarity,
and coherence) of summaries generated by models trained with different methods. We randomly
sampled 1K summaries from the TL;DR test set for LLM evaluation. To mitigate potential positional
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Figure 2: Average reward per timestep during RLHF training for sentiment control (left), text summa-
rization (center), and instruction tuning (right). Curves show the mean reward across five random
seeds, with shaded regions representing the standard deviation. SCAR consistently demonstrates
faster convergence and achieves higher or comparable final reward levels compared to sparse RLHF,
Uniform reward distribution, and Attention-Based Credit (ABC) baselines.

bias in these pairwise comparisons, we randomize the presentation order of summaries. For the
instruction-tuning task, we use AlpacaEval (Li et al., 2023) to compare the quality of 1K model’s
response. AlpacaEval is designed to better handle potential issues such as length bias, thereby
providing a more reliable assessment of response quality. The prompt used for evaluation can be
found in the Appendix E.

4.2 RESULTS

Figure 1 provides a qualitative illustration of how SCAR distributes rewards compared to sparse
RLHF and ABC for an example generated sequence. Sparse RLHF, by definition, assigns the entire
reward only at the end of the sequence. ABC, which uses attention scores from the reward model’s
final layer to distribute rewards, tends to concentrate rewards on tokens near the end of the sequence.
As seen in the example, significant credit is assigned to the final punctuation mark (“.”), while
earlier, crucial tokens receive almost zero attention scores. Furthermore, standard attention scores are
non-negative, making it difficult for ABC to assign explicit negative credit to tokens or spans that
detract from the output quality. For instance, a phrase like “disturbing to sit through” that negatively
impact the perceived sentiment, would not receive negative rewards from ABC. In contrast, SCAR
can assign both positive and negative rewards to tokens based on their game-theoretic marginal
contribution.

Task Sparse RLHF Uniform ABC SCAR (ours)

IMDB 6.86± 0.86 7.73 ± 0.02 8.48 ± 1.60 9.27 ± 0.00
TL;DR 1.60 ± 0.11 1.68 ± 0.02 2.85 ± 0.21 4.35 ± 0.11
HH-RLHF 6.93 ± 0.00 6.17 ± 0.00 6.59 ± 0.01 7.31 ± 0.01

Table 1: Average reward scores for the trained policy on the test sets for sentiment control (IMDB),
text summarization (TL;DR), and instruction tuning (Anthropic HH). Higher scores indicate better
performance. Results are averaged over 5 random seeds. Best performance per task is in bold.

Baselines Win (%)

Text Summarization (Reddit TL;DR)
vs. RLHF 61.2%
vs. ABC 60.3%

Instruction Tuning (Anthropic HH)
vs. RLHF 56.3%
vs. ABC 54.9%

Table 2: LLM-as-Judge pairwise win rates for
SCAR against baselines.

As depicted in Figure 2, SCAR consistently demon-
strated advantages over three baseline methods in
terms of learning speed and convergence across all
three tasks. This consistent pattern across diverse
tasks suggests that the principled, Shapley value-
based credit assignment offered by our method ef-
fectively improves learning efficiency and enhances
the final policy performance. Table 1 presents the
average reward scores achieved by each method on
the held-out test sets for the three tasks. As shown in
the table, SCAR-tuned policy consistently achieves
the highest performance compared to the baselines.
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For summarization, we use gemini-2.5-pro to
compare anonymized model outputs (SCAR vs. base-
lines) on coherence, relevance, conciseness, and overall quality (evaluation prompt in Appendix E).
As shown in Table 2, summaries generated by the SCAR-tuned model were preferred over those
from the ABC-tuned model in 60.3% and over the sparse RLHFC-tuned model in 61.2%. For the
instruction tuning task, we leveraged AlpacaEval (Li et al., 2023) and used gpt-4-turbo as an
LLM judge, to conduct robust pairwise evaluations. These evaluations assessed helpfulness, harm-
lessness, and adherence to instructions. SCAR-generated responses achieved a win rate of 54.9%
when compared against ABC, and a win rate of 56.3% against standard sparse RLHF. These results
provide further evidence that the improvements from SCAR translate to genuinely higher-quality
outputs according to human-like preferences.

4.3 ANALYSIS
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Figure 3: Reward-KL tradeoff on the sentiment
control (IMDB) task. The y-axis represents the
average per-batch reward during training and the
x-axis shows the square root of the KL divergence
between the learned policy (π) and the reference
policy (πref).

Reward-KL Tradeoff. A crucial aspect of
RLHF is managing the trade-off between max-
imizing the reward signal and maintaining prox-
imity to a reference policy (πref). This is
often controlled by a KL-divergence penalty
term in the reward function (Eq. 2), prevent-
ing the policy from drifting too far and gen-
erating undesirable or out-of-distribution text,
or “reward hacking”. Figure 3 illustrates this
trade-off by plotting the achieved reward against
the KL-divergence from the reference policy
DKL(π || πref). The plot demonstrates that our
method achieves a more favorable reward-KL
frontier compared to the standard sparse RLHF
baseline. This improved frontier suggests that
the principled credit assignment from SCAR en-
ables the improvements are genuine and do not come at the cost of generating out-of-distribution or
gibberish text.
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Figure 4: Rewards/GPU hours curves on the
TL;DR dataset. We sampled one run from each
method. The y-axis represents the reward and the
x-axis shows the GPU hours used for training.

Computational Efficiency. Calculating Shap-
ley values introduces computational overhead
compared to sparse RLHF or ABC. Figure 4
plots reward against GPU hours on the TL;DR
task. It shows that token-level SCAR, due to
its per-step cost, lag behind ABC in reward per
GPU hour. However, span-level SCAR demon-
strates a much better efficiency profile. De-
spite the inherent cost of Shapley calculations,
its superior sample efficiency allows span-level
SCAR to achieve higher reward levels than base-
lines within the same GPU time. This highlights
that by managing the per-step cost through ef-
fective segmentation, SCAR’s principled dense
rewards can lead to greater overall training effi-
ciency.

5 CONCLUSION

We introduced Shapley Credit Assignment Rewards (SCAR), a novel method to address reward
sparsity in RLHF by generating dense rewards using Shapley values. Unlike heuristic approaches,
SCAR provides a principled, game-theoretic allocation of the reward model’s score to text segments.
It preserves the optimal policy via potential-based reward shaping and, empirically, demonstrated
significantly faster convergence and superior final performance across multiple tasks compared to
standard RLHF and other dense reward baselines.
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A LIMITATIONS

Despite its strengths, SCAR has limitations: the computational overhead of Shapley approximations,
even with optimizations like Owen values and adaptive segmentation; the assumption that the reward
model can meaningfully score partial sequences, which may not suit certain types like rule-based
models that only evaluate final answers (e.g., in mathematical reasoning). Future work will target
more efficient approximation techniques, robust and adaptive segmentation methods, and rigorous
evaluation on larger-scale language models and broader tasks.

B OPTIMALITY PRESERVATION

We demonstrate that optimizing with the dense reward signal Rt(α) (defined in Eq. 6) leads to the
same optimal policy as optimizing with the original sparse reward Rorig

t (defined in Eq. 2). We
leverage the principles of Potential-Based Reward Shaping (PBRS) (Ng et al., 1999a).

Proof of Theorem 3.1 According to the theory of potential-based reward shaping (Ng et al., 1999a),
if a shaped reward R′ differs from an original reward R by a potential-based shaping function
F (s, a, s′) = γΦ(s′)− Φ(s), where Φ is a real-valued function of the state s (the potential function)
and γ is the discount factor, then the optimal policies remain unchanged.

In our context, the state st corresponds to the history (x, y<t). The transition st → st+1 involves
selecting action yt. The discount factor γ = 1. We need to show that the difference between our
Shapley values-based reward and the original reward constitutes such a potential function difference.

Let Ft = Rt(α)−Rorig
t be the shaping term added at timestep t. Substituting the definitions from

Eq. 6 and Eq. 2:

Ft =
(
RKL

t + α ·Rshap
t + (1− α) · I(t = T ) · rϕ(x, y)

)
−
(
RKL

t + I(t = T ) · rϕ(x, y)
)

= αRshap
t + (1− α)I(t = T )rϕ(x, y)− I(t = T )rϕ(x, y)

= αRshap
t − αI(t = T )rϕ(x, y)

Let’s consider the total undiscounted return for an episode y = (y1, . . . , yT ). The total return
under the original reward is Gorig =

∑T
t=1 R

orig
t . The total return under the SCAR reward is

Gshap(α) =
∑T

t=1 Rt(α). We have:

Gshap(α) =

T∑
t=1

Rt(α) =

T∑
t=1

(Rorig
t + Ft)

=
T∑

t=1

Rorig
t +

T∑
t=1

Ft

= Gorig +

T∑
t=1

(
αRshap

t − αI(t = T )rϕ(x, y)
)

= Gorig + α

(
T∑

t=1

Rshap
t

)
− αrϕ(x, y)

By the efficiency property of Shapley Values,
∑M

i=1 SVi(v) = v(N) = rϕ(x, y). Since∑T
t=1 R

shap
t =

∑M
i=1 SVi(v), we have

∑T
t=1 R

shap
t = rϕ(x, y). Substituting this back:

Gshap(α) = Gorig + αrϕ(x, y)− αrϕ(x, y)

= Gorig

The total undiscounted reward accumulated over any complete episode is identical for both the
original reward Rorig

t and the SCAR reward Rt(α).
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Since the objective in RL is to maximize the expected total return, J(π) = Eτ∼π[G], and we have
shown that Gshap(α) = Gorig for any episode (trajectory) τ , it follows that the expected total returns
are identical for any policy π:

J shap(π) = Eτ∼π[G
shap(α)] = Eτ∼π[G

orig] = Jorig(π) (7)

Because the objectives J shap(π) and Jorig(π) are identical for all policies π, any policy π∗ that
maximizes J shap must also maximize Jorig, and vice versa.

Therefore, optimizing the policy πθ using the dense reward Rt(α) is equivalent to optimizing using
the original sparse reward Rorig

t in terms of the resulting optimal policy. This ensures that the benefits
of denser rewards provided by Shapley values reshaping (e.g., faster convergence, improved stability)
do not come at the cost of altering the fundamental goal of the optimization.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional experiments that could not be included in the main text due to
space limitations.

C.1 TOKEN-LEVEL VS SPAN-LEVEL SCAR

For the text summarization task, we implemented and compared token-level and span-level SCAR.
As illustrated by their reward curves in Figure 5, span-level SCAR achieved performance comparable
to that of token-level SCAR. However, span-level SCAR demonstrated significantly greater computa-
tional efficiency: on our training platform (one A100 GPU with 80GB VRAM) using the Pythia-1b
model, 1K training steps required 48 GPU hours for token-level SCAR versus only 7 GPU hours for
span-level SCAR. This makes span-level SCAR approximately seven times more efficient in this
specific task (a more detailed time consumption analysis is provided in Figure 4). Due to the high
computational cost of token-level SCAR, a statistical study involving multiple runs was infeasible
for this method. Consequently, Figure 5 presents a single representative run for each approach to
illustrate their comparative performance.

0 200 400 600 800
Timestep

0

1

2

3

4

Re
wa

rd

Text Summarization--Token vs. Span

Token-level
Span-level

Figure 5: Comparison between token-level and span-level SCAR on the text summarization (TL;DR)
task. The y-axis represents the reward during training, and the x-axis shows the training timestep.
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D TABLE OF HYPERPARAMETERS

To ensure experimental reproducibility, this section details the hyperparameters employed. Our
Proximal Policy Optimization (PPO) implementation for sentiment control and instruction tuning
experiments is based on the Hugging Face TRL library3 and code from Chan et al. (2024). For
the text summarization task, our implementation is built upon the codebase available at https:
//github.com/vwxyzjn/summarize_from_feedback_details.

Hyperparameter Value
PPO Hyperparameters
Learning rate 1.41e-5
Batch size 128
Mini-batch size 128
Gradient accumulation steps 1
KL coefficient (β) 0.2
Shapley value coefficient (α) 0.8
Discount factor (γ) 1
Clip range 0.2

LLM Hyperparameters
Min generation length 16
Max generation length 24
Temperature 0.7
Top-p 1.0

Table 3: Hyperparameters used in the sentiment control task.

Hyperparameter Value
PPO Hyperparameters
Learning rate 3e-6
Batch size 64
Mini-batch size 16
Gradient accumulation step 4
KL coefficient (β) 0.05
Shapley value coefficient (α) 1.0
Over-length sequence reward penalty -1
Discount factor (γ) 1
Clip range 0.2

LLM Hyperparameters
Generation length 53
Temperature 0.7
Top-p 1.0

Table 4: Hyperparameters used in the text summarization task.

3https://huggingface.co/docs/trl/main/en/ppo_trainer
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Hyperparameter Value
PPO Hyperparameters
Learning rate 1.41e-5
Batch size 16
Mini-batch size 2
Gradient accumulation step 8
KL coefficient (β) 0.2
Shapley value coefficient (α) 0.8
Discount factor (γ) 1
Clip range 0.2
LoRA rank 32
LoRA α 32
LoRA dropout 0.0

LLM Hyperparameters
Min generation length 8
Max generation length 256
Temperature 1.0
Top-p 1.0

Table 5: Hyperparameters used in the instruction tuning task.

E EVALUATION PROMPT FOR TEXT SUMMARIZATION

This section presents the prompt used to query the LLM for summarization quality evaluation. To
mitigate potential position bias, the baseline summary and the summary generated by our method
were randomly assigned to the summary_A and summary_B placeholders within the prompt.

Human Evaluation Prompt for Text Summarization

You are an expert human evaluator specializing in text summarization. Your task is to
meticulously compare two summaries, “Summary A” and “Summary B,” generated from the
same “Original Document.” Your goal is to determine which summary is of higher quality
overall.
Please consider the following criteria in your evaluation:

1. Accuracy & Faithfulness:
• Does the summary accurately represent the main points of the original document?
• Does it avoid introducing new information or misinterpreting facts from the

document (hallucinations)?

2. Coverage & Comprehensiveness:
• Does the summary cover the most important information and key takeaways from

the original document?
• Are there any critical omissions of essential information?

3. Conciseness & Succinctness:
• Is the summary brief and to the point, avoiding unnecessary jargon, redundancy,

or overly verbose phrasing, while still capturing essential information?
• Is it significantly shorter than the original document, as a good summary should

be?

4. Clarity & Readability:
• Is the summary well-written, grammatically correct, easy to understand, and

fluent?
• Is the language clear and precise?

5. Coherence:
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• Do the sentences in the summary flow logically? Does it make sense as a stan-
dalone piece of text?

• Is there a logical structure to the summary?
Input:
Original Document:
{original_document}

Summary A:
{summary_A}

Summary B:
{summary_B}

Instructions for your response:
1. Reasoning:

• First, briefly state your understanding of the main purpose or key points of the
Original Document.

• Then, provide a step-by-step comparative analysis of Summary A and Summary
B based on the criteria listed above (Accuracy, Coverage, Conciseness, Clarity,
Coherence).

• For each criterion, explicitly compare A and B. For instance, “Regarding Accuracy,
Summary A does X well, while Summary B struggles with Y...”

• Point out specific strengths and weaknesses of each summary. You can reference
parts of the summaries or the original document if helpful (e.g., “Summary A
correctly captures the detail about X from paragraph 2 of the document, whereas
Summary B omits this.”).

2. Overall Decision:
• After your detailed reasoning, clearly state which summary you believe is better

overall and why, making a holistic judgment. If they are of very comparable
quality, or if one excels in some areas while the other excels in others making a
clear choice difficult, you can indicate that.

Output Format:
First, provide your detailed Reasoning as described above. Then, on a new line, write
“Overall Decision:” followed by your overall assessment. Finally, on a separate, new line,
output only one letter:
• ‘A’ if Summary A is better.
• ‘B’ if Summary B is better.
• ‘C’ if both summaries are of very similar quality (a tie), or if one is not definitively superior

to the other across the most important criteria.
Begin your evaluation now.
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