

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VARIATIONAL LEARNING OF DISENTANGLED REPRESENTATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Disentangled representations allow models to separate factors shared across conditions from those that are condition-specific. This separation is crucial in domains such as biomedicine, where generalization to new treatments, patients, or species requires isolating stable biological signals from context-dependent effects. While several VAE-based extensions aim to achieve this, they often exhibit leakage between latent variables, limiting generalization. We introduce DisCoVR, a variational framework that explicitly separates invariant and condition-specific factors through: (i) a dual-latent architecture, (ii) parallel reconstructions to keep both representations informative, and (iii) a max–min objective that enforces separation without handcrafted priors. We show this objective maximizes data likelihood, promotes disentanglement, and admits a unique equilibrium. Empirically, DisCoVR achieves stronger disentanglement on synthetic data, natural images, and single-cell RNA-seq datasets, establishing it as a principled approach for multi-condition representation learning.

1 INTRODUCTION

Neural network-based models excel at learning rich representations of complex data and are increasingly applied in settings where each data point $x \in \mathcal{X} \subseteq \mathbb{R}^d$ is associated with a condition label $y \in 1, \dots, K$. In biology, for example, conditions may represent treatments, patients, or species. Such representations are valuable for tasks like domain adaptation and transfer learning (Pan et al., 2010), where models must generalize from observed to novel conditions. Achieving this requires disentangled representations that separate factors shared across conditions from those specific to each y .

Generative models provide a natural framework for uncovering latent structure, with prominent examples including Generative Adversarial Networks (GANs) (Goodfellow et al., 2020), Variational Autoencoders (VAEs) (Kingma & Welling, 2014), and diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020). Among these, VAEs and their extensions are particularly well-suited to transfer learning and domain adaptation (Akrami et al., 2020; Lovrić et al., 2021; Godinez et al., 2022; Zhang et al., 2023), thanks to their probabilistic foundation and ability to capture uncertainty.

Thus, several VAE-based methods have been proposed to integrate data across multiple conditions or sources (Xu et al., 2021; Lotfollahi et al., 2019; Boyeau et al., 2022), but only a few explicitly disentangle shared and condition-specific components (Sohn et al., 2015; Klys et al., 2018; Joy et al., 2020). While these approaches improve separation to some degree, they often depend on handcrafted priors that are difficult to design in high-dimensional domains like single-cell genomics, and they frequently exhibit residual leakage between latent variables, limiting generalization across conditions.

In this work, we introduce a framework for learning *disentangled representations in multi-condition datasets*. Our main contributions are: (i) a method combining two distinct reconstruction objectives with adversarial learning, reducing reliance on restrictive priors or handcrafted components; (ii) a max–min formulation of disentangled representation learning, along with a corresponding objective and theoretical guarantees for its equilibrium; and (iii) through experiments on synthetic benchmarks and real-world datasets, we show that our approach consistently improves upon existing methods disentanglement of shared and condition-specific structure.

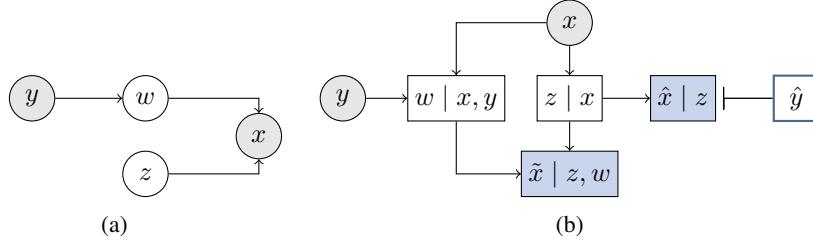
054 2 DISCoVR: DISENTANGLING COMMON AND VARIANT REPRESENTATIONS 055

056 For the task of learning disentangled representations from multi-condition data, we consider a
057 dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$ consisting of inputs $x_i \in \mathcal{X} \subseteq \mathbb{R}^d$ collected from associated condition
058 labels $y_i \in \{1, \dots, K\}$. For each class k (corresponding to a study or experimental condition),
059 the associated subset $\mathcal{D}_k := \{x_i : y_i = k\}$ consists of i.i.d. samples drawn from a class-conditional
060 distribution $p(x | y = k)$.
061

062 2.1 MODEL ASSUMPTIONS 063

064 We assume that the data is generated by latent variables z and w , such that the joint distribution
065 $p(x, y, z, w)$ factorizes according to the probabilistic graphical model illustrated in Figure 1a, i.e.,
066

$$067 p(x, y, z, w) = p(y) p(w | y) p(z) p(x | z, w). \quad (1)$$



077 Figure 1: Graphical overview of our model. (a) Probabilistic graphical model: gray circles denote
078 observed variables, white show latent variables. (b) Encoder-decoder architecture: the inhibition
079 arrow from \hat{y} to \hat{x} corresponds to the adversarial component.
080

081 This model encodes two key conditional independence assumptions:
082

1. *Latent variable conditional independence*: Given the condition y , the latent representations z and w are conditionally independent: $z \perp w | y$.
2. *Sufficiency of the shared latent representation*: The input x is conditionally independent of the condition y given w : $x \perp y | w$.

087 However, note that in this formulation, z and w are no longer independent if conditioned also on x ,
088 that is, $z \not\perp w | x, y$.
089

090 2.2 TARGET POSTERIOR STRUCTURE 091

092 In our model, each observation x is generated from two latent variables: z , which is *condition-invariant*, and w , which is *condition-aware* through its dependence on y . Our goal is to learn probabilistic representations where the marginals of z and w preserve this structure, yielding disentangled factors. Thus, we seek to approximate the posterior $p_{z,w|x,y}$.
093

094 However, approximating the full posterior with a variational distribution $q_{z,w|x,y}$ is intractable: even for simple variational families such as Gaussians, modeling the dependencies between z and w requires a full covariance structure, which is computationally prohibitive in high dimensions. To mitigate this, we employ a factorized approximation $q_{z|x} q_{w|x,y}$.
095

096 Our variational approximation is guided by two complementary objectives: (i) $q_{z|x}$ closely approximating the marginal posterior $p_{z|x}$; and (ii) the product $q_{z|x} q_{w|x,y}$ closely approximating the true posterior $p_{z,w|x,y}$. Formally, given variational families¹ \mathcal{Q}_z and \mathcal{Q}_w we seek to find $q_{z|x}^* \in \mathcal{Q}_z$ and $q_{w|x,y}^* \in \mathcal{Q}_w$ that minimize the following sum of Kullback-Leibler (KL) divergences:
097

$$098 q_{z|x}^*, q_{w|x,y}^* = \arg \min_{\substack{q_{z|x} \in \mathcal{Q}_z \\ q_{w|x,y} \in \mathcal{Q}_w}} D_{\text{KL}}(q_{z|x} \| p_{z|x}) + D_{\text{KL}}(q_{z|x} q_{w|x,y} \| p_{z,w|x,y}). \quad (2)$$

099 ¹Here we consider general families and specify our concrete choices in §2.4.

108 2.3 OPTIMIZATION OBJECTIVE
109110 Since direct evaluation of the KL divergences in Equation 2 is intractable, we optimize a surrogate
111 objective consisting of two ELBO terms.112 The corresponding ELBO objective to minimize $D_{\text{KL}}(q_{z|x} \parallel p_{z|x})$ is
113

114
$$\mathcal{L}_z(q_{z|x}, p; x) := \mathbb{E}_{q_{z|x}} [\log p(x | z)] - D_{\text{KL}}(q_{z|x} \parallel p_z), \quad (3)$$

115 and the ELBO objective for the second KL term, $D_{\text{KL}}(q_{z|x} q_{w|x,y} \parallel p_{z,w|x,y})$, is given by
116

117
$$\mathcal{L}_w(q_{w|x,y}, p; x, y) := \mathbb{E}_{q_{z|x}} [\mathbb{E}_{q_{w|x,y}} [\log p(x | z, w)]] - D_{\text{KL}}(q_{z|x} \parallel p_z) - D_{\text{KL}}(q_{w|x,y} \parallel p_{w|y}). \quad (4)$$

118

119 Note that $\mathcal{L}_w(q_{w|x,y}, p; x, y)$ is the ELBO objective that corresponds to a factorized posterior
120 $q_{z|x} q_{w|x,y}$. In Proposition 2.1 we examine the gap between this objective, and an ELBO term cor-
121 responding to a full variational posterior $q_{z,w|x,y}$. This can be interpreted as the cost of enforcing a
122 condition-invariant latent representation, specifically, constraining z to depend only on x . Proposi-
123 tion
124125 **Proposition 2.1.** *For random variables x, y, z, w following the graphical model in Figure 1a,*

126
$$\text{ELBO}(q, p; x, y) - \mathcal{L}_w(q_{w|x,y}, p; x, y) = \mathbb{E}_{q_{w|x,y}} [KL(q_{z|x} \parallel p_{z|w,x,y})].$$

127

128 where $\text{ELBO}(q, p; x, y) := \log p(x | y) - D_{\text{KL}}(q_{w|x,y} \parallel p_{w|x,y})$.129 The proof is provided in Appendix B.1.
130131 Note that a full definition of the objectives in Equations 3 and 4 requires the specification of corre-
132 sponding prior distributions, namely p_z and $p_{w|y}$. We defer their definitions to §2.4.133 Equation 4 provides an evidence lower bound on the conditional log-likelihood $\log p(x | y)$. By
134 adding $\log p(y)$, this bound extends to the joint log-marginal likelihood $\log p(x, y)$. Beyond opti-
135 mizing this objective, we aim to ensure that the marginal distribution over y implicitly induced by
136 the latent representations is consistent with the true $p(y)$.137 To this end, we introduce an auxiliary classifier $g(y | z)$ as a form of posterior regularization
138 (Ganchev et al., 2010). This classifier captures the residual predictive signal about y in z and is
139 trained by minimizing the expected negative log-likelihood $-\mathbb{E}_{q(z|x)} \log g(y | z)$. If z is truly inde-
140 pendent of y , then $g(y | z)$ will approximate the marginal distribution $p(y)$. By penalizing deviations
141 from this behavior, we enforce the structural constraint $z \perp y$ in the learned representation.
142143 Note that for this term to effectively encourage $q_{z|x}$ to discard condition-specific information, the
144 classifier $g_{y|z} \in \mathcal{G}$ must be trained adversarially, with its own update step. This prevents degenerate
145 solutions in which the loss is minimized without removing information about y from z , for example,
146 by collapsing g to a constant predictor that ignores its input.

147 Combining the three terms above, we define the objective

148
$$\mathcal{L}(q_{z|x}, q_{w|x,y}, g_{y|z}; x, y) = \mathcal{L}_z(q_{z|x}, p; x) + \mathcal{L}_w(q_{w|x,y}, p; x, y) - \mathbb{E}_{q_{z|x}} \log g(y | z), \quad (5)$$

149

150 which can be explicitly expressed as

151
$$\begin{aligned} \mathcal{L}(q_{z|x}, q_{w|x,y}, g_{y|z}; x, y) := & \mathbb{E}_{q_{z|x}} [\log p(x | z)] + \mathbb{E}_{q_{z|x}} [\mathbb{E}_{q_{w|x,y}} [\log p(x | z, w)]] \\ & - \mathbb{E}_{q_{z|x}} [\log g(y | z)] - 2D_{\text{KL}}(q_{z|x} \parallel p_z) - D_{\text{KL}}(q_{w|x,y} \parallel p_{w|y}). \end{aligned} \quad (6)$$

152

153 Finally, to enable flexible trade-offs between reconstruction expressiveness and disentanglement,
154 we introduce weighting terms $\alpha = (\alpha_1, \alpha_2)$ into the objective following the motivation of β -VAEs
155 (Higgins et al., 2017):

156
$$\begin{aligned} \mathcal{L}_\alpha(q_{z|x}, q_{w|x,y}, g_{y|z}; x, y) := & \mathbb{E}_{q_{z|x}} [\log p(x | z)] + \mathbb{E}_{q_{z|x}} [\mathbb{E}_{q_{w|x,y}} [\log p(x | z, w)]] \\ & - \mathbb{E}_{q_{z|x}} \log g(y | z) - \alpha_1 D_{\text{KL}}(q_{z|x} \parallel p_z) - \alpha_2 D_{\text{KL}}(q_{w|x,y} \parallel p_{w|y}). \end{aligned} \quad (7)$$

157

158 Accordingly, the mean weighted objective is suitable for max-min optimization of the form:
159

160
$$\max_{q_{z|x} \in \mathcal{Q}_z} \max_{q_{w|x,y} \in \mathcal{Q}_w} \min_{g_{y|z} \in \mathcal{G}} \mathbb{E}_{p_{x,y}} [\mathcal{L}_\alpha(q_{z|x}, q_{w|x,y}, g_{y|z}; x, y)]. \quad (8)$$

162
163

2.4 LATENT PRIOR MODELS AND VARIATIONAL APPROXIMATIONS

164
165

Prior specification We place a standard Normal prior over the condition-invariant latent variable, $p_z = \mathcal{N}(0, I)$, which reflects a non-informative prior belief over its values.

166
167
168

For the condition-aware latent variable w , we define a class-conditional Gaussian prior $p_{w|y}$. As a simple choice, we let w have the same dimensionality as z and specify

169

$$p(w | y = k) = \mathcal{N}(\mu_k, I), \quad \mu_k := \mathbb{E}_{p_{x|y=k}} [\mathbb{E}_{q_{z|x}} [z]]. \quad (9)$$

170
171

Here μ_k is the mean of the inferred latent representations z within the k -th class².

172
173
174
175

This specification induces a coupling between the two latent variables through the data distribution. Aligning $p_{w|y}$ with the class-wise expectations of the invariant variable, further encourages $q_{z|x}$ to encode informative representations, since capturing the shared structures will now not only increase $\mathcal{L}_z(q_{z|x}, p; x)$, but also decrease $D_{\text{KL}}(q_{w|x,y} \| p_{w|y})$, and thus increase $\mathcal{L}_w(q_{w|x,y}, p; x, y)$.

176
177
178

Importantly, for a truly condition-agnostic $q_{z|x}$, the conditional expectations μ_k will collapse to a shared mean $\mu := \mathbb{E}_{p_x} [\mathbb{E}_{q_{z|x}} [z]]$. In this case $p_{w|y}$ becomes a shared prior across classes, centered at a meaningful point in the latent space, rather than an uninformative one.

179
180
181
182

As the following proposition establishes, this anchoring of the prior $p_{w|y}$ in the variational distribution $q_{z|x}$ preserves the convex-concave structure of the objective, ensuring that the resulting max-min problem has a unique optimal solution.

183
184
185
186
187

Proposition 2.2. *Let \mathcal{Q}_z and \mathcal{Q}_w be convex parametric families of variational distributions over z and w , respectively, and let \mathcal{G} denote a convex set of classifiers such that $g(x) \in [0, 1]$ for all $g \in \mathcal{G}$. Assume the latent priors are given by $z \sim p(z)$ and $p(w|y) = \mathcal{N}(\mu_y, I)$, where $p(z)$ is a continuous strictly positive distribution, and $\mu_y = \mathbb{E}_{p_{x|y}} [\mathbb{E}_{q_{z|x}} [z]]$. Then, under standard regularity conditions (see Appendix B.2.1), there exists a unique saddle point:*

188
189

$$\left(q_{z|x}^*, q_{w|x,y}^*, g_{y|z}^* \right) = \max_{q_{z|x} \in \mathcal{Q}_z} \max_{q_{w|x,y} \in \mathcal{Q}_w} \min_{g_{y|z} \in \mathcal{G}} \mathcal{L}(q_{z|x}, q_{w|x,y}, g_{y|z}).$$

190
191

The proof is provided in Appendix B.2.2.

192
193
194
195
196

Specification of variational families We set both variational families \mathcal{Q}_z and \mathcal{Q}_w as d -dimensional Gaussian distributions with diagonal covariance matrices. Accordingly, each variational distribution is parameterized by a mean vector $\mu \in \mathbb{R}^d$ and a vector of variances $\sigma^2 \in \mathbb{R}_+^d$ corresponding to the diagonal of the covariance matrix, yielding $\theta = (\mu, \sigma^2)$.

197
198

3 ENCODER-DECODER MODEL

199
200
201
202
203
204
205

In order to optimize the objective in Equation 8 with respect to $q_{z|x}$, $q_{w|x,y}$, and $g_{y|z}$ over the dataset \mathcal{D} , we introduce an encoder-decoder framework (illustrated in Figure 1b). In this framework, two separate reconstructions of x are generated: one, denoted $\hat{x} \sim p_{x|z}$, where z is sampled from the condition-invariant posterior $q_{z|x}$, and the other, denoted $\tilde{x} \sim p_{x|z,w}$, where in addition, w is sampled from the condition-aware posterior $q_{w|x,y}$. The corresponding algorithm is summarized in Algorithm 1.

206
207
208
209

Condition agnostic representation An input $x \in \mathcal{X}$ is mapped to the variational parameters $\theta_z = (\mu_z, \sigma_z^2)$ by an encoder neural network $f_\phi^z : \mathcal{X} \rightarrow \mathbb{R}^d \times \mathbb{R}_+^d$ parametrized by weights ϕ . A latent encoding $z \sim q_{\theta_z}$ is then sampled and mapped to a reconstruction \hat{x} via a decoder neural network $h_\psi^z : \mathbb{R}^d \rightarrow \mathcal{X}$ parametrized by weights ψ .

210
211
212
213
214
215

Adversarial classifier Rather than learning a complex classifier from z to y , we use the reconstruction \hat{x} from z , and predict y from \hat{x} via a simple multinomial logistic regression $g_\beta : \hat{\mathcal{X}} \rightarrow [0, 1]^K$, with class-specific weights $\beta = \beta_{k=1}^K$, or a shallow MLP. Since \hat{x} is a deterministic function of z , this is equivalent to applying a restricted classifier on z . By the data processing inequality, such

²Similarly, for different dimensions of z and w the mean aggregation can be replaced with a neural network that maps the inferred representations z for each class to the parameters of the Gaussian prior.

216 a classifier can only capture a subset of the information z contains about y ; thus, maximizing this
 217 lower bound on $I(z; y)$ also maximizes $I(z; y)$ itself. Although this substitution weakens the esti-
 218 mation of the cross-entropy term $-\mathbb{E} q_z | x \log g(y | z)$, from an information-theoretic stand-
 219 point, we observed this to be often advantageous in practice: predicting y from \hat{x} reduces the variance
 220 introduced by sampling $z \sim q_{\theta_z}$, providing a regularizing effect that prevents q_{θ_z} from overfitting to
 221 noisy classifier signals.

222 **Condition aware representation** A labeled input pair $(x, y) \in \mathcal{X} \times \{1, \dots, K\}$ is mapped to the
 223 parameters $\theta_w = (\mu_w, \sigma_w^2)$ using an encoder neural-network $f_\rho^w : \mathcal{X} \times \{1, \dots, K\} \rightarrow \mathbb{R}^d \times \mathbb{R}_+^d$
 224 parametrized by weights ρ . A sample $w \sim q_{\theta_w}$ is then drawn, and the pair (z, w) is mapped to
 225 a reconstruction \hat{x} via a decoder neural-network $h_\eta^{z,w} : \mathbb{R}^d \rightarrow \mathcal{X}$, parametrized by weights η . To
 226 compute the prior $p_{w|y}$, we estimate the class-specific mean as $\hat{\mu}_k := \frac{1}{n_k} \sum_{i:y_i=k} z_i$ where each
 227 $z_i \sim p(z | x_i)$ is sampled from the encoder given an input x_i with label $y_i = k$, and n_k is the
 228 number of training points with the label $y = k$.

Algorithm 1

230 1: **Input:** Data $\mathcal{D} = \{x_{1:n}, y_{1:n}\}$, number of training iterations J , initial parameters
 231 $\phi^{(0)}, \psi^{(0)}, \rho^{(0)}, \eta^{(0)}, \beta^{(0)}$, learning rates γ_1, γ_2 , weighting terms $\alpha = (\alpha_1, \alpha_2)$
 232 2: **for** $1 \leq j \leq J$ **do**
 233 3: Compute $\theta_z = f_{\phi^z}^z(x)$ and $\theta_w = f_{\rho^{(j-1)}}^w(x, y)$
 234 4: Sample condition invariant and aware latent variables $z \sim q_{\theta_z}$ and $w \sim w_{\theta_w}$
 235 5: Compute reconstructions $\hat{x} = h_{\psi^{(j-1)}}^z(z)$ and $\tilde{x} = h_{\eta^{(j-1)}}^{z,w}$
 236 6: Compute condition prediction $\hat{y} = g_{\beta^{(j-1)}}(\hat{x})$
 237 7: Update classifier parameters:
 238
$$\beta^{(j)} \leftarrow \beta^{(j-1)} - \gamma_1 \nabla_\beta \mathcal{L}_\alpha(q_{z|x}, q_{w|x,y}, g_{y|z}) \Big|_{\phi=\phi^{(j-1)}, \psi=\psi^{(j-1)}, \rho=\rho^{(j-1)}, \eta=\eta^{(j-1)}}$$
 239 8: Update encoder and decoder parameters, $\Omega^{(j)} = (\phi^{(j)}, \psi^{(j)}, \rho^{(j)}, \eta^{(j)})$,
 240
$$\Omega^{(j)} \leftarrow \Omega^{(j-1)} - \gamma_2 \nabla_{\phi, \psi, \rho, \eta} \mathcal{L}_\alpha(q_{z|x}, q_{w|x,y}, g_{y|z}) \Big|_{\beta=\beta^{(j)}}$$
 241 9: **end for**
 242 **Return:** $\phi^{(J)}, \psi^{(J)}, \rho^{(J)}, \eta^{(J)}, \beta^{(J)}$

243 In practice, following standard approaches in VAE-based models, (i) we use a single-sample Monte
 244 Carlo estimate to approximate the expectations in Equation 8, and (ii) instead of directly sampling
 245 from q_θ , we employ the reparameterization trick to enable differentiable sampling. Specifically, we
 246 sample $\epsilon \sim \mathcal{N}(0, I)$ and obtain a sample from q_θ by applying a deterministic transformation of ϵ
 247 based on the variational parameters θ .

248

249 4 COMPARISON TO PREVIOUS APPROACHES

250 Here we review VAE-based methods for disentangled representation learning, which form the pri-
 251 mary basis for comparison with our approach. Broader related literature is discussed in Appendix A.

252 VAEs (Kingma & Welling, 2014) are generative models that learn latent representations by maxi-
 253 mizing the evidence lower bound (ELBO) on the data log-likelihood:

$$254 \mathbb{E}_{q_{z|x}} [\log p(x | z)] - D_{\text{KL}}(q_{z|x} \| p_z) \leq \log p(x),$$

255 where $(x, z) \sim p$, and $z|x \sim q$ is a latent variable inferred from data. VAEs consist of an encoder
 256 $q_{z|x}$ that maps inputs to latent distributions, and a decoder $p_{x|z}$ that reconstructs inputs from latent
 257 representations. The learning process frames posterior inference as KL-regularized optimization
 258 over a variational family \mathcal{Q} aiming to approximate the posterior $p_{z|x}$ under a typically simple prior
 259 $p(z)$. Several VAE extensions were proposed to encourage disentanglement. These are discussed
 260 below.

270 **Conditional VAEs** (Sohn et al., 2015) incorporate supervision to the standard VAE model by
 271 conditioning both the encoder and decoder on an observed label y , yielding the following objective:
 272

$$273 \quad \mathbb{E}_{q_{z|x,y}} [\log p(x | z, y)] - D_{\text{KL}} (q(z | x, y) \| p(z)) \leq \log p(x | y).$$

274 While this allows controlled generation and partial disentanglement between z and y , the latent
 275 variable z is still inferred from both x and y and thus can encode condition-specific information.

276 **Conditional Subspace VAEs** (CSVAEs) (Klys et al., 2018), explicitly factorize the latent space into
 277 a shared component z and a label-specific component w (see Supplementary Figure 1a). Similarly,
 278 their hierarchical extension Beker et al. (2024) introduces an intermediate latent variable between
 279 x and (z, w) . As in our approach, to encourage disentanglement, CSVAEs introduce an adversarial
 280 regularization term that penalizes mutual information between z and y , thereby discouraging pre-
 281 dictability of y from z . They are learned by optimizing the following lower bound on $\log p(x | y)$:

$$282 \quad \mathbb{E}_{q_{z,w|x,y}} [\log p(x | w, y)] - \mathbb{E}_{q_{z|x}} [\int g(y | z) \log g(y | z) dy] - D_{\text{KL}} (q_{w|x,y} \| q_{w|y}) - D_{\text{KL}} (q_{z|x} \| p_z).$$

284 **Domain Invariant VAEs (DIVA) and Characteristic-capturing VAEs (CCVAE)** DIVA (Ilse
 285 et al., 2020) and CCVAE (Joy et al., 2020), shown in Supplementary Figure 1b, introduce two latent
 286 variables, z and w , where w captures label-related features by jointly optimizing a classifier $p(w | y)$
 287 jointly alongside the remaining objective. For fully supervised cases, the DIVA model optimizes

$$288 \quad \mathbb{E}_{q_{z,w|x}} [\log p(x | z, w)] + \mathbb{E}_{q_{w|x}} [\log q(y | w)] - D_{\text{KL}} (q_{z|x} \| p_z) - D_{\text{KL}} (q_{w|x} \| p_{w|y}) \leq \log p(x, y).$$

290 This objective corresponds to the assumptions $x \perp y | z, w$ and $z \perp w$. Similarly, CCVAEs optimize
 291 the following lower bound on $\log p(x | y)$:

$$292 \quad \mathbb{E}_{q_{z,w|x,y}} \left[\frac{q(y|w)}{q(y|x)} \log \frac{p(x|z,w)}{q(y|w)} \right] - D_{\text{KL}} (q_{z|x} \| p_{z|y}) - D_{\text{KL}} (q_{w|x} \| p_{w|y}) + \log q(y | x).$$

295 **Comparison:** In prior methods, reconstruction is performed jointly from both representations z
 296 and w , via $p(x | z, w)$. This design provides no incentive to distribute information meaningfully
 297 between z and w : the model can place all relevant information into w , leaving z either uninformative
 298 or entangled with w . Our method addresses this limitation through two key components:
 299 (i) a *separate reconstruction term from z alone*, which explicitly forces z to capture informative,
 300 condition-invariant structure. Theoretically, we show that the additional term $p(\hat{x} | z)$ is required to
 301 bound the gap between our approximate posterior and the full model ELBO under the factorization
 302 assumption; (ii) a *prior over w conditioned on the mean of z* , which, through label-specific aggre-
 303 gates, discourages leakage of class-invariant information into w and reduces redundancy between
 304 the two representations.

305 Another novelty of our approach is a *principled probabilistic objective* that enforces the correct
 306 conditional independence. Without an explicit probabilistic model, prior methods sought to enforce
 307 $z \perp w | x, y$. In contrast, our formulation shows that the proper requirement is the weaker condition
 308 $z \perp w | y$. As established in Section 2.1, our model satisfies $z \perp w | y$, but not $z \perp w | x, y$.

309 To enforce this criterion, we propose a *theoretically grounded variational objective* that uses a con-
 310 ditional ELBO for the dependent representation w , with the *prior over w conditioned on the mean*
 311 *of the independent representation z* .

312 5 EXPERIMENTS

315 **Datasets:** We evaluate DisCoVR against existing approaches on synthetic data, natural images, and
 316 biological data. These datasets were chosen to probe condition-invariant structure and to ensure
 317 comparability with prior work: for instance, Swiss rolls and CelebA were used in Klys et al. (2018),
 318 and CelebA also in Joy et al. (2020).

319 **Evaluation:** When applicable, we evaluate reconstruction quality using negative log-likelihood
 320 (NLL), root mean squared error (RMSE), and the absolute deviation from the optimal-Bayes clas-
 321 sifier on the reconstructed data, denoted as Δ -Bayes. Disentanglement is quantified via a neural
 322 estimator of the mutual information $I(z; w)$ (Belghazi et al., 2018). Full model architectures, hy-
 323 perparameters, and additional implementation details are provided in Appendix H. Our results show
 324 that DisCoVR achieves superior performance across all experiments.

324 5.1 SIMULATED DATA
325326 We begin with controlled synthetic experiments to isolate and visualize disentanglement.
327328 5.1.1 PARAMETRIC MODEL
329330 **Data generating model:** Consider a model where the observed data x is generated as a function of
331 two latent variables z and w , and y are binary labels. Assume that the marginal distributions of the
332 latent variables are given by $z \sim \mathcal{N}(0, 1)$ and $w \sim \mathcal{N}(0, 1)$, and that the data x is generated as the
333 sum of the two latent variables: $x = z + w$. Since z and w are both drawn from $\mathcal{N}(0, 1)$, it follows
334 that $x \sim \mathcal{N}(0, 2)$. Finally, assume that the binary label is determined by the sign of w : $y = 1$ if
335 $w > 0$, and $y = 0$ otherwise.
336337 **Optimal disentanglement:** Given that z and w are independent and $x = z + w$, we have that
338 $p(z | x) = \mathcal{N}(z; \frac{x}{2}, \frac{1}{2})$. Hence, given x , the best estimate for z is $\frac{x}{2}$. Note that when ignoring the
339 label y , the conditional distribution $p(w | x)$ is $p(w | x) = \mathcal{N}(w; \frac{x}{2}, \frac{1}{2})$. However, the observation
340 of y (which indicates whether w is positive or negative) truncates this distribution:
341

342
$$p(w | x, y = 1) = \frac{\mathcal{N}(w; \frac{x}{2}, \frac{1}{2})}{\Phi\left(\frac{x}{\sqrt{2}}\right)}, \quad p(w | x, y = 0) = \frac{\mathcal{N}(w; \frac{x}{2}, \frac{1}{2})}{1 - \Phi\left(\frac{x}{\sqrt{2}}\right)}. \quad (10)$$

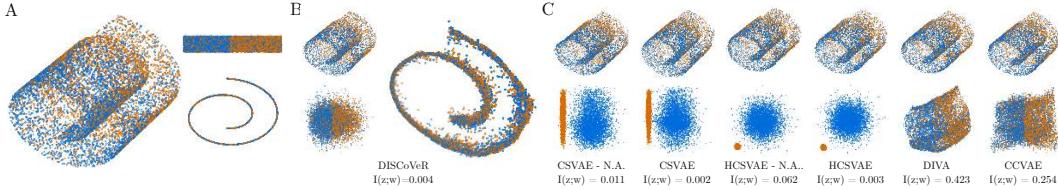
343 **Results:** Table 1 shows that DisCoVR (ours) best approximates the analytic posteriors, resulting in
344 the lowest deviation from the optimal Bayes classifier and the best reconstruction.
345346 Table 1: Parametric model results: DisCoVR (ours) outperforms all competitors across all metrics.
347

	NLL \downarrow	$D_{\text{KL}}(q_{z x} p_{z x}) \downarrow$	$D_{\text{KL}}(q_{w x,y} p_{w x,y}) \downarrow$	$\Delta - \text{Bayes} \downarrow$
CSVAE - N.A.	1.810 ± 0.016	6.65 ± 3.46	23.61 ± 0.36	24.83 ± 0.04
CSVAE	1.786 ± 0.022	2.85 ± 1.11	23.98 ± 4.36	24.33 ± 1.28
HCSVAE - N.A.	1.784 ± 0.010	4.01 ± 0.07	25.82 ± 0.38	24.99 ± 0.01
HCSVAE	1.770 ± 0.004	3.99 ± 0.09	26.25 ± 0.59	24.99 ± 0.01
DIVA	1.788 ± 0.008	3.21 ± 1.52	12.88 ± 3.31	3.51 ± 0.32
CCVAE	1.785 ± 0.006	1.77 ± 0.81	12.95 ± 3.35	3.57 ± 0.15
DisCoVR (ours)	1.769 ± 0.003	0.17 ± 0.01	10.10 ± 0.73	0.1 ± 0.28

357 5.1.2 NOISY SWISS ROLL
358359 **Dataset:** We use a noisy variant of the labeled Swiss Roll dataset (Marsland, 2014; Klys et al.,
360 2018), generating $n = 20,000$ and assigning binary labels based on a lengthwise split, with la-
361 bels flipped at rate ρ . The common geometry (its projection along the 2D plane) remains in-
362 tact, the conditional structure along the third axis becomes noisy. Figure 2A illustrates the setup.
363364 **Optimal disentanglement:** Since
365 the Swiss Roll is sliced at the cen-
366 ter and label noise is applied uni-
367 formly, marginalizing over labels yields
368 a symmetric spiral centered along the
369 roll—i.e., the marginal posterior $p(z |$
370 $x)$ is label-invariant. In contrast, the
371 conditional component retains a noisy
372 but informative signal, with a uniform
373 noise level of $\rho = 0.3$. As a result,
374 the Bayes optimal classifier trained on
375 any realistic representation is upper-
376 bounded at 70% accuracy. **Results:**
377 Figure 2 presents qualitative and quan-
378 titative results, showing that DisCoVR
379 both models the label noise accurately
380 and effectively disentangles shared and condition-specific structure. Notably, DisCoVR captures
381379 Table 2: Noisy Swiss roll results: DisCoVR (ours) yields
380 lowest deviation from optimal-Bayes, maintains low latent
381 leakage, and high reconstruction accuracy.
382

	$I(z; w) \downarrow$	NLL \downarrow	$\Delta - \text{Bayes} \downarrow$
CSVAE - N.A.	0.047 ± 0.023	3.303 ± 0.003	23.88 ± 12.02
CSVAE	0.031 ± 0.025	3.302 ± 0.003	17.99 ± 14.58
HCSVAE - N.A.	0.024 ± 0.012	3.302 ± 0.002	30.00 ± 0.00
HCSVAE	0.002 ± 0.001	3.302 ± 0.002	30.00 ± 0.00
DIVA	0.336 ± 0.083	3.302 ± 0.003	1.88 ± 1.05
CCVAE	0.502 ± 0.089	3.302 ± 0.002	2.21 ± 0.84
DisCoVR (Ours)	0.005 ± 0.002	3.302 ± 0.002	1.14 ± 0.21

378 the marginal data distribution, successfully recovering the expected spiral pattern, as shown in Figure 2B (right). Additionally, the results in Table 2 show that DisCoVR achieves the lowest deviation
 379 from the optimal Bayes classifier and minimal information leakage between latent variables, while
 380 preserving reconstruction quality.
 381



389
 390 Figure 2: A: Noisy labeled Swiss Roll dataset. B (left): Reconstruction and conditional embedding
 391 from DisCoVR. B (right): Marginal reconstruction from the shared embedding, recovering the spiral
 392 structure. C: Comparison of reconstruction and conditional embeddings across models.
 393

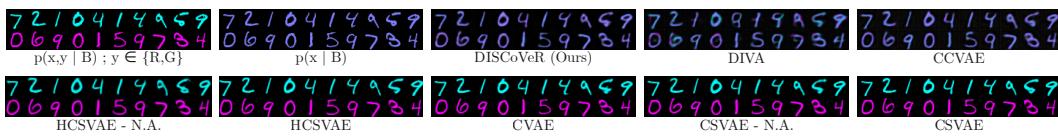
394 5.2 REAL DATA

395 5.2.1 NOISY COLORED MNIST

396 **Dataset:** We use a modified MNIST (Deng, 2012) dataset constructed from 60,000 duplicated
 397 images: in one copy we remove the red channel ($y = 0$) and in the other we remove the green channel
 398 ($y = 1$). The digit shape remains intact following the blue channel. Label noise is introduced by
 399 flipping labels with probability $\rho \in \{0, 0.1, 0.2, 0.3, 0.4\}$.
 400

401 **Optimal disentanglement:** Since the colored images are generated in equal proportions, the
 402 marginal reconstruction for retains a single color (see Figure 3).
 403

404 **Results:** We evaluate marginal coloring reconstruction by DisCoVR and previous methods. Under
 405 no label noise ($\rho = 0$), all methods perform similarly (Supplementary Figure 3). At all non-zero
 406 noise levels, DisCoVR consistently outperforms competitors, whose marginal reconstructions are
 407 averaged over class-conditioned outputs. Metrics for $\rho = 0.3$ are shown in Supplementary Table 2,
 408 with results for other noise levels in Supplementary Figure 4.
 409



410
 411 Figure 3: Colored MNIST reconstructions from the label-agnostic representation z for noise level
 412 $\rho = 0.3$. DisCoVR is the only model that consistently reconstructs mixed “semi-red/blue” tone
 413 (purple) indicating that color information has been removed and matching the true marginal $p(x|B)$.
 414

415 5.2.2 CELEBA-GLASSES

416 **Dataset:** We use all CelebA (Liu et al., 2015) images labeled with *eyeglasses* attribute ($y = 1$),
 417 and twice as many randomly sampled images without ($y = 0$), totaling $n = 35,712$ samples.
 418

419 **Results:** Figure 4 shows that DisCoVR accurately reconstructs input images while producing
 420 shared embeddings that marginalize over the *eyeglasses* attribute, consistently adding “pseudo-
 421 glasses” to all samples. Competing methods are shown in Supplementary Figure 5, with quanti-
 422 tative results in Supplementary Table 3. While reconstruction quality is comparable across methods,
 423 DisCoVR achieves significantly better disentanglement.
 424

425 Results for an *additional experiment* with the wearing-hat attribute are provided in Appendix G.
 426

427 5.2.3 SINGLE CELL RNA-SEQUENCING (scRNA-SEQ) DATA FROM LUPUS DATASET

428 **Dataset:** We analyze single-cell RNA sequencing from $n = 13,999$ peripheral blood mononuclear
 429 cells (PBMCs) collected from 8 lupus patients under two conditions: 7,451 cells control ($y = 0$),
 430

Figure 4: CelebA-Eyeglasses results. Top: Original images with/without eyeglasses. Middle: Full reconstructions by DisCoVR. Bottom: Reconstructions solely from common embeddings z . A shared representation needs to be invariant to y (presence or absence of glasses). Indeed, all reconstructed faces display an intermediate "semi-glasses" appearance, regardless of the original label.

and 6,548 IFN- β stimulation cells. IFN- β stimulation induces notable shifts in gene expression, visible in the UMAP embedding in Figure 5B (left).

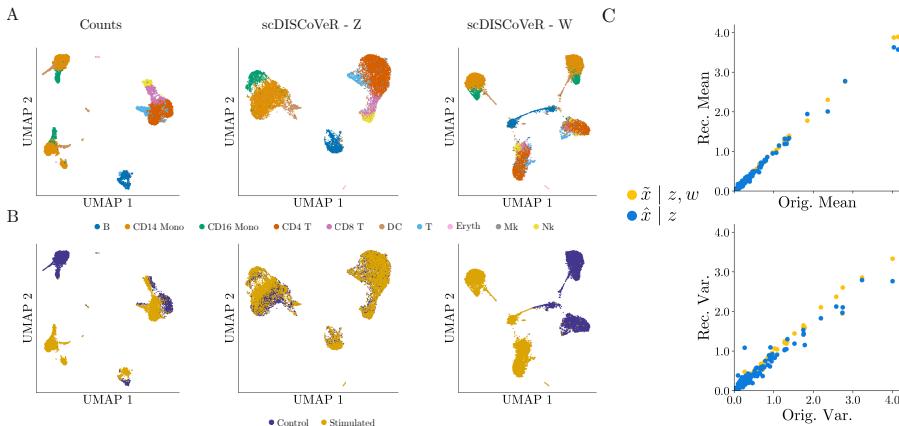


Figure 5: A–B (left): UMAPs of raw gene counts from the IFN- β dataset. A–B (middle): Shared embedding z aligns cells by type while removing stimulation effects. A–B (right): Condition-specific embedding w isolates the stimulation effect. C: Reconstructions from both z and w (yellow) recover empirical gene means and variances, while reconstructions from z alone (blue) miss the stimulation-induced variance, confirming that z discards y while preserving cell-type features.

Results: Supplementary Table 17 shows that DisCoVR effectively achieves the desired behavior with strong empirical performance, where only cell type information is captured in z (Figure 5A, middle) while the effects of IFN- β stimulation are wholly represented in w (Figure 5B, right). Other approaches either (1) achieve mixing in the z space, but compromise on keeping cell types separated or (2) leak information about stimulation into the z space (Supplementary Figure 6).

Facilitating interpretability: By enabling marginalized reconstructions, DisCoVR provides a direct link between shared embeddings and gene expression, offering clearer insight into the effects of IFN- β stimulation, unlike other methods. In Figure 5C, comparing variance across marginal and full reconstructions accurately recovers gene-level differences associated with IFN- β stimulation, including *ISG15*, *FTL*, *CCL8*, *CXCL10*, *CXCL11*, *APOBEC3A*, *IL1RN*, *IFITM3* and *RSAD2*.

6 CONCLUSION

In this work we introduced a variational framework for disentangled representation learning. Our formulation explicitly separates condition-invariant and condition-aware factors. Unlike prior work, DisCoVR incorporates two reconstruction paths, one based solely on the shared latent variable z , and the other on both latent variables z and w . Our model simultaneously learns informative shared representations, and captures structured variation across conditions. Experimental results demonstrate that DisCoVR achieves strong reconstruction, minimal information leakage, and accurate modeling of conditional effects, consistently outperforming existing methods.

486 REFERENCES
487

- 488 Haleh Akrami, Anand A Joshi, Jian Li, Sergul Aydore, and Richard M Leahy. Brain lesion detection
489 using a robust variational autoencoder and transfer learning. In *2020 IEEE 17th International*
490 *Symposium on Biomedical Imaging (ISBI)*, pp. 786–790. IEEE, 2020.
- 491 Kei Akuzawa, Yusuke Iwasawa, and Yutaka Matsuo. Adversarial invariant feature learning with
492 accuracy constraint for domain generalization. In *Machine Learning and Knowledge Discovery*
493 *in Databases: European Conference, ECML PKDD 2019, Würzburg, Germany, September 16–*
494 *20, 2019, Proceedings, Part II*, pp. 315–331. Springer, 2020.
- 495 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
496 *arXiv preprint arXiv:1907.02893*, 2019.
- 497 Ozgur Beker, Dreyton Amador, Jose Francisco Pomarino Nima, Simon Van Deursen, Yvon Woappi,
498 and Bianca Dumitrescu. Patches: A representation learning framework for decoding shared and
499 condition-specific transcriptional programs in wound healing. *bioRxiv*, pp. 2024–12, 2024.
- 500 Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
501 Courville, and Devon Hjelm. Mutual information neural estimation. In Jennifer Dy and Andreas
502 Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80
503 of *Proceedings of Machine Learning Research*, pp. 531–540. PMLR, 10–15 Jul 2018. URL
504 <https://proceedings.mlr.press/v80/belghazi18a.html>.
- 505 Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen.
506 Robust solutions of optimization problems affected by uncertain probabilities. *Management Sci-*
507 *ence*, 59(2):341–357, 2013.
- 508 Pierre Boyreau, Justin Hong, Adam Gayoso, Martin Kim, José L McFaline-Figueroa, Michael I
509 Jordan, Elham Azizi, Can Ergen, and Nir Yosef. Deep generative modeling of sample-level
510 heterogeneity in single-cell genomics. *bioRxiv*, pp. 2022–10, 2022.
- 511 Fabio Maria Carlucci, Paolo Russo, Tatiana Tommasi, and Barbara Caputo. Hallucinating agnostic
512 images to generalize across domains. In *2019 IEEE/CVF International Conference on Computer*
513 *Vision Workshop (ICCVW)*, pp. 3227–3234. IEEE, 2019.
- 514 Jianting Chen, Ling Ding, Yunxiao Yang, Zaiyuan Di, and Yang Xiang. Domain adversarial active
515 learning for domain generalization classification. *IEEE Transactions on Knowledge and Data*
516 *Engineering*, 2024.
- 517 Sheng Cheng, Tejas Gokhale, and Yezhou Yang. Adversarial bayesian augmentation for single-
518 source domain generalization. In *Proceedings of the IEEE/CVF International Conference on*
519 *Computer Vision*, pp. 11400–11410, 2023.
- 520 Aveen Dayal, Vimal KB, Linga Reddy Cenkeramaddi, C Mohan, Abhinav Kumar, and Vineeth
521 N Balasubramanian. Madg: Margin-based adversarial learning for domain generalization. *Ad-*
522 *vances in Neural Information Processing Systems*, 36:58938–58952, 2023.
- 523 Li Deng. The mnist database of handwritten digit images for machine learning research. *IEEE*
524 *Signal Processing Magazine*, 29(6):141–142, 2012.
- 525 Zhengming Ding and Yun Fu. Deep domain generalization with structured low-rank constraint.
526 *IEEE Transactions on Image Processing*, 27(1):304–313, 2017.
- 527 John C Duchi and Hongseok Namkoong. Learning models with uniform performance via distribu-
528 tionally robust optimization. *The Annals of Statistics*, 49(3):1378–1406, 2021.
- 529 John C Duchi, Peter W Glynn, and Hongseok Namkoong. Statistics of robust optimization: A
530 generalized empirical likelihood approach. *Mathematics of Operations Research*, 46(3):946–969,
531 2021.
- 532 Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. *IEEE Transac-*
533 *tions on Pattern Analysis and Machine Intelligence*, 28(4):594–611, 2006.

- 540 Kuzman Ganchev, Joao Graça, Jennifer Gillenwater, and Ben Taskar. Posterior regularization for
 541 structured latent variable models. *Journal of Machine Learning Research*, 11:2001–2049, 2010.
 542
- 543 Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Domain generaliza-
 544 tion for object recognition with multi-task autoencoders. In *Proceedings of the IEEE International*
 545 *Conference on Computer Vision*, pp. 2551–2559, 2015.
- 546 William J Godinez, Eric J Ma, Alexander T Chao, Luying Pei, Peter Skewes-Cox, Stephen M Can-
 547 ham, Jeremy L Jenkins, Joseph M Young, Eric J Martin, and W Armand Guiguemde. Design
 548 of potent antimalarials with generative chemistry. *Nature Machine Intelligence*, 4(2):180–186,
 549 2022.
- 550 Tejas Gokhale, Rushil Anirudh, Jayaraman J Thiagarajan, Bhavya Kailkhura, Chitta Baral, and
 551 Yezhou Yang. Improving diversity with adversarially learned transformations for domain gen-
 552 eralization. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer*
 553 *Vision*, pp. 434–443, 2023.
- 554 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 555 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*
 556 *ACM*, 63(11):139–144, 2020.
- 557 Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
 558 mapping. In *2006 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
 559 nition (CVPR'06)*, volume 2, pp. 1735–1742. IEEE, 2006.
- 560 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 561 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
 562 constrained variational framework. In *International Conference on Learning Representations*,
 563 2017.
- 564 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 565 *Neural Information Processing Systems*, 33:6840–6851, 2020.
- 566 Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In *International Workshop*
 567 *on Similarity-Based Pattern Recognition*, pp. 84–92. Springer, 2015.
- 568 Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple data
 569 balancing achieves competitive worst-group-accuracy. In *Conference on Causal Learning and*
 570 *Reasoning*, pp. 336–351. PMLR, 2022.
- 571 Maximilian Ilse, Jakub M Tomczak, Christos Louizos, and Max Welling. Diva: Domain invariant
 572 variational autoencoders. In *Medical Imaging with Deep Learning*, pp. 322–348. PMLR, 2020.
- 573 Tom Joy, Sebastian M Schmon, Philip HS Torr, N Siddharth, and Tom Rainforth. Capturing label
 574 characteristics in vaes. *arXiv preprint arXiv:2006.10102*, 2020.
- 575 Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee. Selfreg: Self-
 576 supervised contrastive regularization for domain generalization. In *Proceedings of the IEEE/CVF*
 577 *International Conference on Computer Vision*, pp. 9619–9628, 2021.
- 578 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *International Conference*
 579 *on Learning Representations*, 2014.
- 580 Jack Klys, Jake Snell, and Richard Zemel. Learning latent subspaces in variational autoencoders.
 581 *Advances in Neural Information Processing Systems*, 31, 2018.
- 582 Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for one-shot
 583 image recognition. In *International Conference on Machine Learning (ICML) Deep Learning*
 584 *Workshop*, volume 2, 2015.
- 585 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Erratum: Estimating mutual in-
 586 formation [phys. rev. e69, 066138 (2004)]. *Physical Review E*, 83(1), January 2011. ISSN
 587 1550-2376. doi: 10.1103/physreve.83.019903. URL <http://dx.doi.org/10.1103/PhysRevE.83.019903>.

- 594 David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 595 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
 596 lation (rex). In *International Conference on Machine Learning*, pp. 5815–5826. PMLR, 2021.
 597
- 598 Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new tasks. In *AAAI*,
 599 volume 1, pp. 3, 2008.
- 600 Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Au-
 601 toencoding beyond pixels using a learned similarity metric. In Maria Florina Balcan and Kil-
 602 ian Q. Weinberger (eds.), *Proceedings of The 33rd International Conference on Machine Learn-
 603 ing*, volume 48 of *Proceedings of Machine Learning Research*, pp. 1558–1566, New York, New
 604 York, USA, 20–22 Jun 2016. PMLR. URL <https://proceedings.mlr.press/v48/larsen16.html>.
- 605
- 606 Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain generalization
 607 via conditional invariant representations. In *Proceedings of the AAAI Conference on Artificial
 608 Intelligence*, volume 32, 2018.
- 609
- 610 Yunsheng Li and Nuno Vasconcelos. Efficient multi-domain learning by covariance normalization.
 611 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 612 5424–5433, 2019.
- 613
- 614 Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
 615 Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
 616 group information. In *International Conference on Machine Learning*, pp. 6781–6792. PMLR,
 617 2021.
- 618
- 619 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
 620 *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, December 2015.
- 621
- 622 Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep generative
 623 modeling for single-cell transcriptomics. *Nature Methods*, 15(12):1053–1058, 2018.
- 624
- 625 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 626 ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.
- 626
- 627 Mohammad Lotfollahi, F Alexander Wolf, and Fabian J Theis. scgen predicts single-cell perturba-
 628 tion responses. *Nature Methods*, 16(8):715–721, 2019.
- 629
- 630 Mario Lovrić, Tomislav Đurić, Han TN Tran, Hussain Hussain, Emanuel Lacić, Morten A Ras-
 631 mussen, and Roman Kern. Should we embed in chemistry? a comparison of unsupervised transfer
 632 learning with pca, umap, and vae on molecular fingerprints. *Pharmaceuticals*, 14(8):758, 2021.
- 633
- 634 Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo, and Elisa Ricci. Best sources forward:
 635 Domain generalization through source-specific nets. In *2018 25th IEEE International Conference
 636 on Image Processing (ICIP)*, pp. 1353–1357. IEEE, 2018.
- 637
- 638 Stephen Marsland. *Machine Learning: An Algorithmic Perspective, Second Edition*. Chapman &
 639 Hall/CRC, 2nd edition, 2014. ISBN 1466583282.
- 640
- 641 Saeid Motian, Marco Piccirilli, Donald A Adjeroh, and Gianfranco Doretto. Unified deep super-
 642 vised domain adaptation and generalization. In *Proceedings of the IEEE International Conference
 643 on Computer Vision*, pp. 5715–5725, 2017.
- 644
- 645 Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant
 646 feature representation. In *Proceedings of the International Conference on Machine Learning*, pp.
 647 10–18. PMLR, 2013.
- 648
- 649 Usman Muhammad, Jorma Laaksonen, Djamila Romaissa Beddiar, and Mourad Oussalah. Domain
 650 generalization via ensemble stacking for face presentation attack detection. *International Journal
 651 of Computer Vision*, 132(12):5759–5782, 2024.

- 648 Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
 649 structured feature embedding. In *Proceedings of the IEEE Conference on Computer Vision and*
 650 *Pattern Recognition*, pp. 4004–4012, 2016.
- 651 Kazuki Omi, Jun Kimata, and Toru Tamaki. Model-agnostic multi-domain learning with domain-
 652 specific adapters for action recognition. *IEICE Transactions on Information and Systems*, 105
 653 (12):2119–2126, 2022.
- 654 Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. *IEEE Transactions on Knowledge*
 655 *and Data Engineering*, 22(10):1345–1359, 2010.
- 656 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 657 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 658 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
 659 12:2825–2830, 2011.
- 660 Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant pre-
 661 diction: Identification and confidence intervals. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 78(5):947–1012, 2016.
- 662 Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. *Elements of causal inference: Foundations*
 663 *and learning algorithms*. The MIT Press, 2017.
- 664 Vihari Piratla, Praneeth Netrapalli, and Sunita Sarawagi. Focus on the common good: Group distri-
 665 butional robustness follows. In *International Conference on Learning Representations*, 2021.
- 666 Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
 667 residual adapters. *Advances in Neural Information Processing Systems*, 30, 2017.
- 668 Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
 669 domain deep neural networks. In *Proceedings of the IEEE Conference on Computer Vision and*
 670 *Pattern Recognition*, pp. 8119–8127, 2018.
- 671 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 672 neural networks. In *International Conference on Learning Representations*, 2019.
- 673 Yuli Slavutsky and Yuval Benjamini. Class distribution shifts in zero-shot learning: Learning robust
 674 representations. *Advances in Neural Information Processing Systems*, 37:89213–89248, 2024.
- 675 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 676 learning using nonequilibrium thermodynamics. In *Proceedings of the International Conference*
 677 *on Machine Learning*, pp. 2256–2265. PMLR, 2015.
- 678 Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. *Advances in*
 679 *Neural Information Processing Systems*, 29, 2016.
- 680 Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
 681 conditional generative models. *Advances in Neural Information Processing Systems*, 28, 2015.
- 682 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation.
 683 In *Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8–10 and*
 684 *15–16, 2016, Proceedings, Part III* 14, pp. 443–450. Springer, 2016.
- 685 Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit. On calibration and out-of-domain gener-
 686 alization. *Advances in Neural Information Processing Systems*, 34:2215–2227, 2021.
- 687 Haohan Wang, Aaksha Meghawat, Louis-Philippe Morency, and Eric P Xing. Select-additive learn-
 688 ing: Improving generalization in multimodal sentiment analysis. In *2017 IEEE International*
 689 *Conference on Multimedia and Expo (ICME)*, pp. 949–954. IEEE, 2017.
- 690 Haohan Wang, Eric P Xing, Zexue He, and Zachary C Lipton. Learning robust representations by
 691 projecting superficial statistics out. In *7th International Conference on Learning Representations*,
 692 2019.

702 Jiaheng Wei, Harikrishna Narasimhan, Ehsan Amid, Wen-Sheng Chu, Yang Liu, and Abhishek
703 Kumar. Distributionally robust post-hoc classifiers under prior shifts. In *International Conference*
704 *on Learning Representations*, 2023.

705 Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling matters in
706 deep embedding learning. In *Proceedings of the IEEE International Conference on Computer*
707 *Vision*, pp. 2840–2848, 2017.

709 Chenling Xu, Romain Lopez, Edouard Mehlman, Jeffrey Regier, Michael I Jordan, and Nir Yosef.
710 Probabilistic harmonization and annotation of single-cell transcriptomics data with deep genera-
711 tive models. *Molecular Systems Biology*, 17(1):e9620, 2021.

712 Tongtong Yuan, Weihong Deng, Jian Tang, Yinan Tang, and Binghui Chen. Signal-to-noise ratio: A
713 robust distance metric for deep metric learning. In *Proceedings of the IEEE/CVF Conference on*
714 *Computer Vision and Pattern Recognition*, pp. 4815–4824, 2019.

716 Jiusi Zhang, Xiang Li, Jilun Tian, Yuchen Jiang, Hao Luo, and Shen Yin. A variational local
717 weighted deep sub-domain adaptation network for remaining useful life prediction facing cross-
718 domain condition. *Reliability Engineering & System Safety*, 231:108986, 2023.

719 Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain adaptive ensemble learning. *IEEE*
720 *Transactions on Image Processing*, 30:8008–8018, 2021.

722 Wei Zhu, Le Lu, Jing Xiao, Mei Han, Jiebo Luo, and Adam P Harrison. Localized adversarial
723 domain generalization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
724 *Pattern Recognition*, pp. 7108–7118, 2022.

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A ADDITIONAL RELATED WORK
757758 A.1 DOMAIN GENERALIZATION
759

760 The task of representation disentanglement is closely related to the field of domain generalization
761 (Muandet et al., 2013), which assumes limited or no access to target domain samples and aims to
762 learn representations that can be readily adapted, often via transfer learning, to new, unseen domains.

763 As noted by Wang et al. (2019), existing methods in domain generalization can be broadly catego-
764 rized into two main approaches: (i) approaches for reducing the inter-domain differences, often by
765 using adversarial techniques (Ghifary et al., 2015; Wang et al., 2017; Motian et al., 2017; Li et al.,
766 2018; Carlucci et al., 2019; Li et al., 2018; Wang et al., 2019; Akuzawa et al., 2020; Zhu et al., 2022;
767 Gokhale et al., 2023; Dayal et al., 2023; Cheng et al., 2023; Chen et al., 2024), and (ii) Approaches
768 that construct an ensemble of domain-specific models, and then fuse their representations to form a
769 unified, domain-agnostic representation (Ding & Fu, 2017; Mancini et al., 2018; Zhou et al., 2021;
770 Muhammad et al., 2024).

771 Additional strategies for domain generalization include contrastive learning approaches (Kim et al.,
772 2021), methods based on distribution alignment via metrics (Muandet et al., 2013; Sun & Saenko,
773 2016), and techniques utilizing custom network architectures, for instance by incorporating domain-
774 specific adapters between shared layers (Rebuffi et al., 2017; 2018; Li & Vasconcelos, 2019; Omi
775 et al., 2022).

776 The primary distinction between these methods and ours lies in the explicit probabilistic modeling
777 and disentanglement of domain-invariant and domain-specific factors. Whereas prior approaches
778 typically focus on aligning domains through adversarial training or fusing multiple domain-specific
779 predictors, our method constructs a structured latent space, decomposed into a shared representation
780 z , capturing domain-invariant information, and a conditional component w , which encodes domain-
781 specific variability. This factorization is learned through a tailored variational objective involving an
782 adversarial penalty and two reconstructions —one based on z alone, and another on the full latent
783 pair (z, w) , thereby promoting both interpretability and a clean separation of shared and domain-
784 aware features.

785 A.2 OUT OF DISTRIBUTION GENERALIZATION
786787 A.2.1 ENVIROMENT BALANCING METHODS
788

789 The field of out-of-distribution (OOD) generalization emerged from foundational work on causality
790 and invariance across training environments (Peters et al., 2016; 2017). The central assumption is
791 that each environment exhibits distinct spurious correlations between features and labels; therefore,
792 robust generalization requires models to focus on invariant relationships that hold across environ-
793 ments. To address this distribution shift, many recent approaches adopt a regularized empirical risk
794 minimization framework:

$$\min_{\theta} \sum_{e \in E_{\text{train}}} \ell^e(f_{\theta}) + \lambda R(f_{\theta}, E_{\text{train}}), \quad (11)$$

795 where the regularizer R encourages representations that are stable across environments. Among
796 these, Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) enforces that a single classifier re-
797 mains optimal across all environments, Variance Risk Extrapolation (VarREx) (Krueger et al., 2021)
798 promotes robustness by minimizing the variance of losses across environments, and CLOvE (Wald
799 et al., 2021) takes a calibration-theoretic perspective, penalizing discrepancies between predicted
800 confidence and correctness across environments.

801 While these methods focus on enforcing predictive invariance across environments through regular-
802 ization, our approach instead explicitly enforces conditional independence between the shared latent
803 variable z and an environment-aware variable w .

804 A.2.2 DISTRIBUTIONALLY ROBUST METHODS
805

806 An alternative line of work for handling distribution shifts is Distributionally Robust Optimization
807 (DRO) (Ben-Tal et al., 2013; Duchi et al., 2021; Duchi & Namkoong, 2021; Wei et al., 2023), which
808 avoids assuming a fixed data-generating distribution. Instead, DRO methods optimize performance

under the worst-case scenario over a family of plausible distributions. A prominent variant, known as group DRO (Sagawa et al., 2019; Piratla et al., 2021), introduces group-level structure that may correlate with spurious features, potentially leading to biased predictions. In settings where group labels are not directly observed, several strategies have been proposed, including reweighting high-loss examples (Liu et al., 2021) and balancing class-group combinations through data sub-sampling (Idrissi et al., 2022).

However, these approaches assume that the label space remains fixed between training and test time, limiting their applicability in adaptation to new domains, environments or conditions.

A.3 ZERO-SHOT LEARNING

Zero-shot learning systems (Fei-Fei et al., 2006; Larochelle et al., 2008) aim to classify instances from novel, previously unseen classes at test time. In contrast to the out-of-distribution (OOD) generalization setting, these approaches typically do not assume the presence or structure of a distribution shift. Instead, a common strategy is to learn data representations that capture class-agnostic similarity, enabling the model to determine whether two instances belong to the same class without requiring knowledge of the class identity itself. Such methods include contrastive-learning (Hadsell et al., 2006), siamese neural networks (Koch et al., 2015), triplet networks (Hoffer & Ailon, 2015), and other more recent variations (Oh Song et al., 2016; Sohn, 2016; Wu et al., 2017; Yuan et al., 2019). Recent work has begun to address the impact of class distribution shifts in zero-shot settings. For instance, Slavutsky & Benjamini (2024) integrate environment-based regularization—motivated by OOD generalization—with zero-shot learning by simulating distribution shifts through hierarchical sampling, enabling the model to learn representations that are robust to shifts in class distributions.

While this line of work shares our motivation of improving robustness under unseen conditions, it primarily addresses the problem of class-level generalization through similarity-based learning, rather than explicitly modeling and disentangling the latent factors—such as domain or environment—that drive distributional variation across tasks.

B PROOFS

B.1 PROOF OF PROPOSITION 2.1

Proof.

$$\text{ELBO}(q, p; x, y) - \mathcal{L}_w(q_{w|x,y}, p; x, y) \quad (12)$$

$$= [\log p(x | y) - D_{\text{KL}}(q_{w|x,y} \| p_{w|x,y})] - [\log p(x | y) - D_{\text{KL}}(q_{z|x} q_{w|x,y} \| p_{z,w|x,y})] \quad (13)$$

$$= D_{\text{KL}}(q_{z|x} q_{w|x,y} \| p_{z,w|x,y}) - D_{\text{KL}}(q_{w|x,y} \| p_{w|x,y}) \quad (14)$$

$$= \mathbb{E}_{q_{w|x,y}} [\mathbb{E}_{q_{z|x}} [\log q(z | x) + \log q(w|x, y) - \log p(z, w | x, y)]] \quad (15)$$

$$- \mathbb{E}_{q_{w|x,y}} [\log q(w|x, y) - \log p(w|x, y)] \quad (16)$$

$$= \mathbb{E}_{q_{w|x,y}} [\mathbb{E}_{q_{z|x}} [\log q(z | x) - \log p(z, w | x, y) + \log p(w|x, y)]] \quad (17)$$

$$= \mathbb{E}_{q_{w|x,y}} [\mathbb{E}_{q_{z|x}} [\log q(z | x) - \log p(z | w | x, y)]] \quad (18)$$

$$= \mathbb{E}_{q_{w|x,y}} [\text{KL}(q_{z|x} \| p_{z|w,x,y})]. \quad (19)$$

□

B.2 GAME EQUILIBRIUM

B.2.1 REGULARITY CONDITIONS

To ensure that expectations and KL-terms in the game objective $\mathcal{L}(q_{z|x}, q_{w|x,y}, g_{y|z})$ render the functionals strictly concave in $q_{z|x}$, strictly concave in $q_{w|x,y}$, and strictly convex in g , the following regularity conditions are required:

1. The likelihoods $p(x|z), p(x|z, w), p(y|x)$ are strictly positive, continuous densities.

- 864 2. The variational families Q_z and Q_w , and the set of achievable classifiers \mathcal{G} are non-empty,
 865 convex and compact.
 866 3. $\log p(x|z, w)$ and $\log g(y|x)$ are integrable.
 867

868 B.2.2 PROOF OF PROPOSITION 2.2
 869

870 *Proof.* Since $\mathcal{L}_z(q_{z|x}, p; x)$ is the standard ELBO objective, we have that
 871

$$872 \quad \mathcal{L}_z(q_{z|x}, p; x) = \log p(x) - D_{\text{KL}}(q_{z|x} \| p_{z|x}). \quad (20)$$

873 Similarly, we have that
 874

$$875 \quad \mathcal{L}_w(q_{w|x,y}, p; x, y) = \log p(x|y) - D_{\text{KL}}(q_{z|x}q_{w|x,y} \| p_{z,w|x,y}). \quad (21)$$

876 Thus,

$$877 \quad \mathcal{L}(q_{z|x}, q_{w|x,y}, g_{y|z}) = \mathbb{E}_{p_{x,y}} [\log p(x) - D_{\text{KL}}(q_{z|x} \| p_{z|x})] \quad (22)$$

$$878 \quad + \log p(x|y) - D_{\text{KL}}(q_{z|x}q_{w|x,y} \| p_{z,w|x,y}) \quad (23)$$

$$880 \quad - \mathbb{E}_{q_{z|x}} \log g(y|z). \quad (24)$$

882 For fixed $q_{z|x}$, the adversarial classifier minimizes:

$$883 \quad - \mathbb{E}_{p_{x,y}} \mathbb{E}_{q_{z|x}} \log g(y|z), \quad (25)$$

885 which is the population cross-entropy and is strictly convex in $g(y|z)$, and thus has a unique solution.

886 It remains to show that the terms in the objective function that depend on $q_{z|x}$ and $q_{w|x,y}$, are strictly
 887 concave in each argument when the others are held fixed.

888 Focusing on the terms dependent on $q_{w|x,y}$ first, define

$$889 \quad \ell_w := -D_{\text{KL}}(q_{z|x}q_{w|x,y} \| p_{z,w|x,y}) \quad (26)$$

$$890 \quad = - \iint q(z|x) q(w|x,y) [\log q(z|x) + \log q(w|x,y) - \log p(z,w|x,y)] dz dw$$

$$891 \quad = - \int q(z|x) \log q(z|x) dz + \int q(w|x,y) \log q(w|x,y) dw \quad (27)$$

$$892 \quad - \iint q(z|x) q(w|x,y) \log p(z,w|x,y) dz dw \quad (28)$$

$$893 \quad = H(q_{z|x}) + H(q_{w|x,y}) + \mathbb{E}_{q_{z|x}} \mathbb{E}_{q_{w|x,y}} \log p(z,w|x,y). \quad (29)$$

894 Note that

$$895 \quad \mathbb{E}_{q_{z|x}} \mathbb{E}_{q_{w|x,y}} \log p(z,w|x,y) \quad (30)$$

896 is linear in $q_{w|x,y}$, and since $H(q_{w|x,y})$ is strictly concave in $q_{w|x,y}$, we have that $\mathbb{E}_{p_{x,y}}[\ell_w]$ is strictly
 897 concave in $q_{w|x,y}$.

898 Similarly, define

$$899 \quad \ell_z := -D_{\text{KL}}(q_{z|x} \| p_{z|x}) - D_{\text{KL}}(q_{z|x}q_{w|x,y} \| p_{z,w|x,y}). \quad (31)$$

900 By convexity of KL divergence in its first argument, $-D_{\text{KL}}(q_{z|x} \| p_{z|x})$ is strictly concave in $q_{z|x}$.

901 Focusing on the second KL term, from Equation 29 we have that

$$902 \quad -D_{\text{KL}}(q_{z|x}q_{w|x,y} \| p_{z,w|x,y}) = H(q_{z|x}) + H(q_{w|x,y}) + \mathbb{E}_{q_{z|x}} \mathbb{E}_{q_{w|x,y}} \log p(z,w|x,y), \quad (32)$$

903 where $H(q_{z|x})$ is strictly concave in $q_{z|x}$.

904 Recall that we assumed that $p(w|y)$ depends on $q(z|x)$. Under our model

$$905 \quad p(x, y, z, w) = p(y)p(w|y)p(z)p(x|z, w), \quad (33)$$

906 yielding

$$907 \quad p(z, w|x, y) = p(w|y) \frac{p(z)p(x|z, w)}{p(x|y)}. \quad (34)$$

918 Hence,
919

920
$$\mathbb{E}_{q_{z|x}} \mathbb{E}_{q_{w|x,y}} \log p(z, w | x, y) = \mathbb{E}_{q_{z|x}} \mathbb{E}_{q_{w|x,y}} \left[\log p(w | y) + \log \frac{p(z)p(x | z, w)}{p(x | y)} \right],$$

921

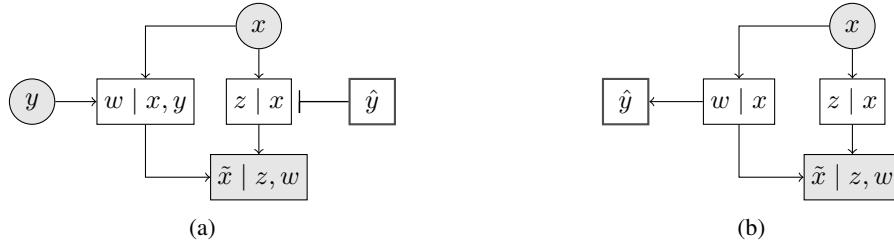
923 where $p(w | y) = \mathcal{N}(w; \mu_y, I)$ with $\mu_y = \mathbb{E}_{p_{x|y}} [\mathbb{E}_{q_{z|x}} [z]]$. Therefore,
924

925
$$\mathbb{E}_{q_{z|x}} \mathbb{E}_{q_{w|x,y}} [\log p(w | y)] = -\frac{1}{2} \left[d \log(2\pi) + \mathbb{E}_{q_{z|x}} \mathbb{E}_{q_{w|x,y}} \|w - \mu_y\|^2 \right] \quad (35)$$

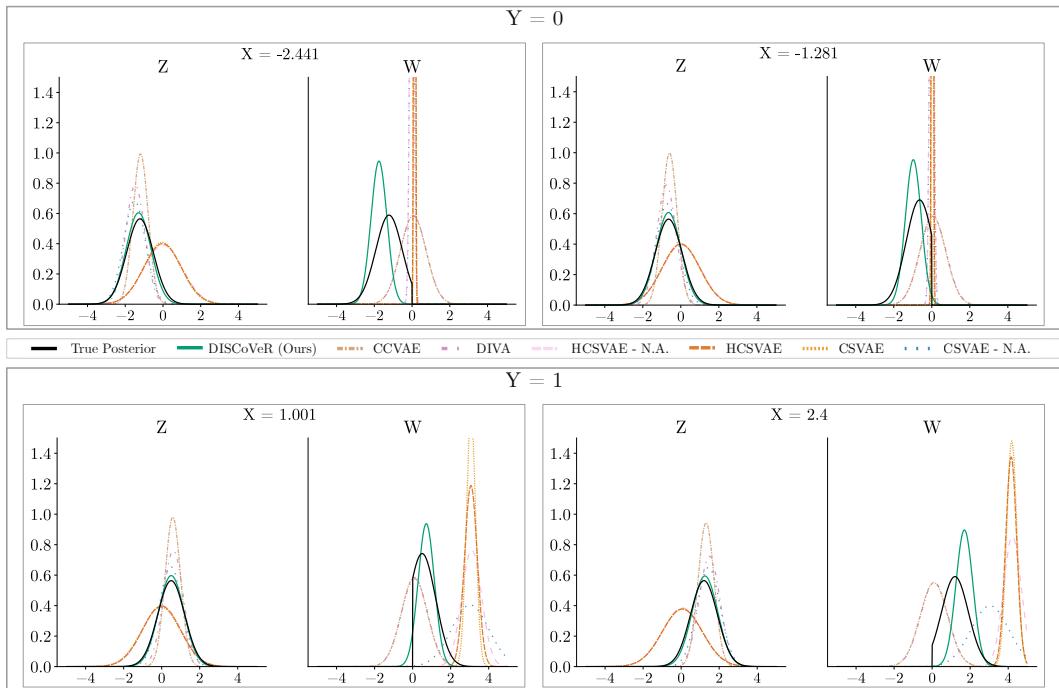
926

927 where $-\|w - \mu_y\|^2$ is a quadratic form in μ_y , which is linear in $q_{z|x}$, and thus
928 $\mathbb{E}_{q_{z|x}} \mathbb{E}_{q_{w|x,y}} [\log p(w | y)]$ is strictly concave in $q_{z|x}$. Hence, $-D_{\text{KL}}(q_{z|x} q_{w|x,y} \| p_{z,w|x,y})$ is
929 strictly concave in $q_{z|x}$, and thus so is $\mathbb{E}_{p_{x,y}} [\ell_z]$. \square
930

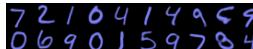
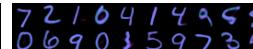
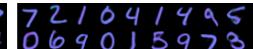
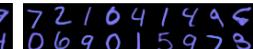
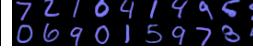
931 **C SUPPLEMENTARY FIGURES**
932



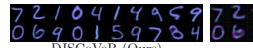
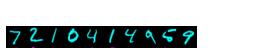
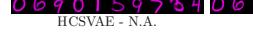
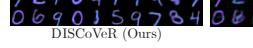
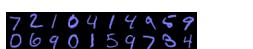
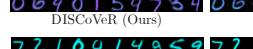
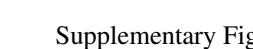
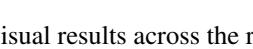
935 **Supplementary Figure 1: Encoder-decoder structures for previous approaches. (a) CSVAE. (b)**
936 **DIVA - CCVAE.**
937



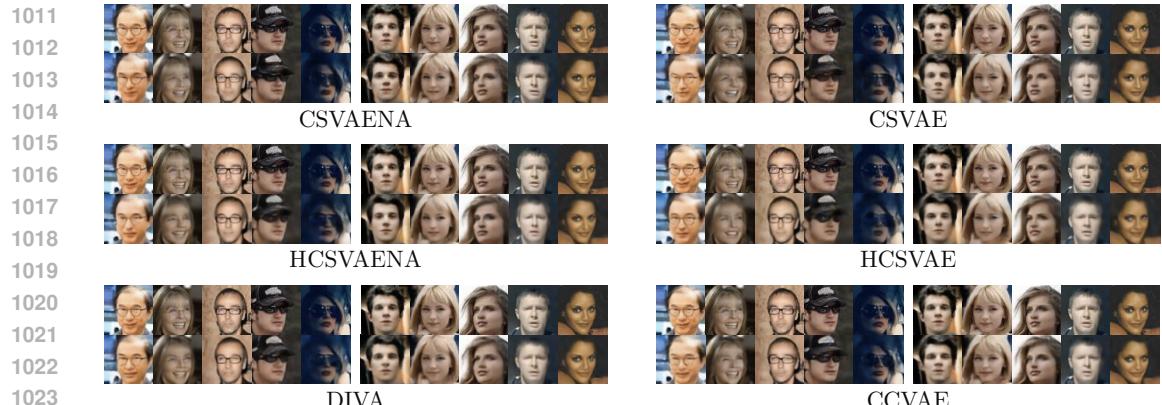
940 **Supplementary Figure 2: Comparison of approximate variational posteriors against the true posterior**
941 **for latent variables z, w for different values of x with $y = 0$ (top) and $y = 1$ (bottom).**
942

972				
973	DISCoVeR (Ours)	DIVA	CCVAE	CVAE
974				
975				
976	HCSVAE - N.A.	HCSVAE	CSVAE - N.A.	CSVAE
977				

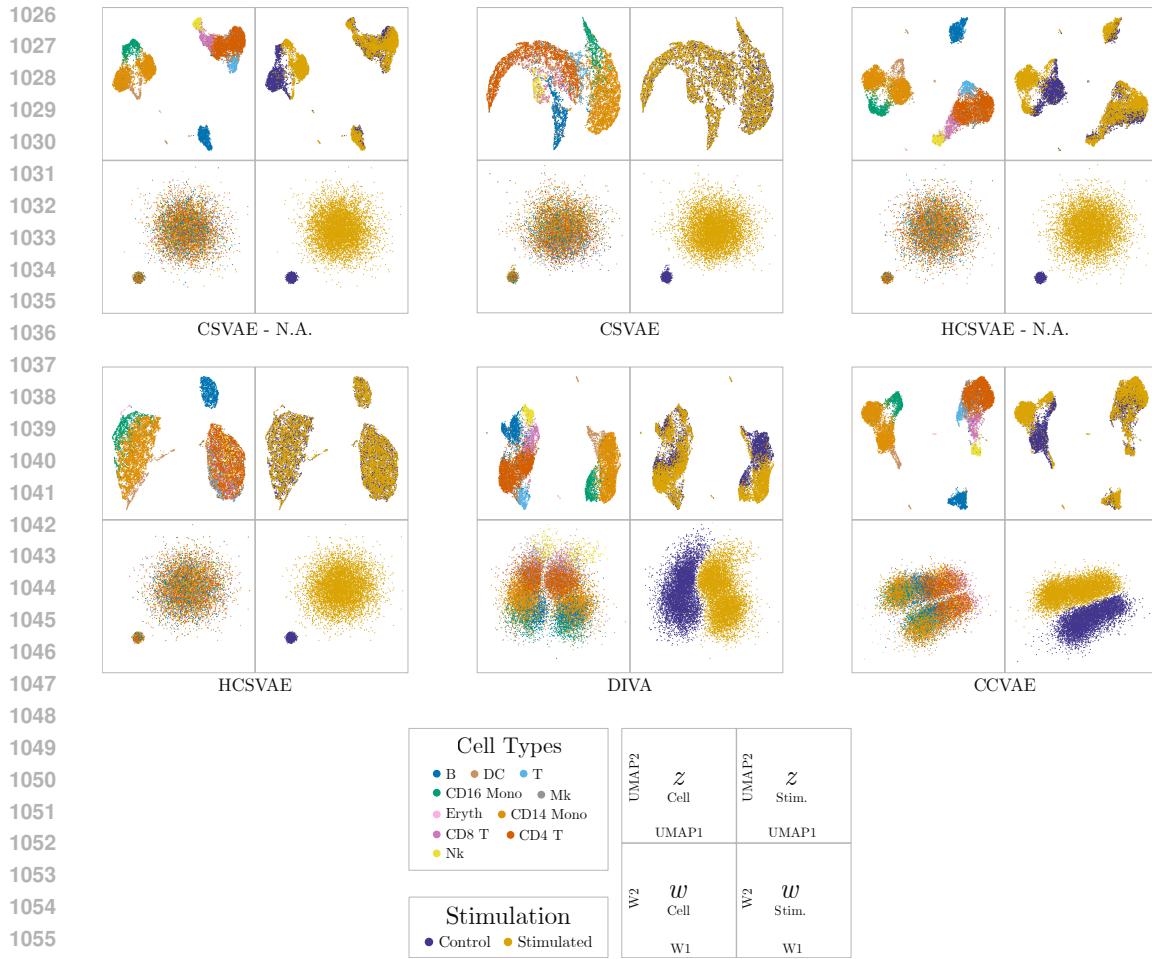
Supplementary Figure 3: Colored MNIST results for no noise.

978					
979	DISCoVeR (Ours)	DIVA	CCVAE	CVAE	
980					
981					
982	HCSVAE - N.A.	HCSVAE	CSVAE - N.A.	CSVAE	
983					
984					
985	$p(x, y B) ; y \in \{R, G\}$				
986					
987					
988	$p = 0.1$	DISCoVeR (Ours)	DIVA	CCVAE	CVAE
989					
990					
991	HCSVAE - N.A.	HCSVAE	CSVAE - N.A.	CSVAE	
992					
993					
994	$p = 0.2$	DISCoVeR (Ours)	DIVA	CCVAE	CVAE
995					
996					
997	$p(x B)$				
998					
999					
1000	$p = 0.4$	DISCoVeR (Ours)	DIVA	CCVAE	CVAE
1001					

Supplementary Figure 4: Colored MNIST visual results across the remaining noise levels.



Supplementary Figure 5: Reconstruction performance for other models on the CelebA-Glasses dataset. Top: Original samples from the data. Bottom: Reconstructions by the given model.



Supplementary Figure 6: Embeddings obtained by other models on the Kang dataset. For each block, top (resp. bottom) rows are z (resp. w) embeddings, while left (resp. right) columns are colored by cell type (resp. stimulation).

D SUPPLEMENTARY TABLES FOR EXPERIMENTAL RESULTS

Supplementary Table 1: RMSE for the Colored MNIST dataset without any label noise.

Marginal RMSE ($p = 0$) \downarrow	
CSVAE - No Adv.	0.064 \pm 0.002
CSVAE	0.079 \pm 0.008
HCSVAE - No Adv.	0.094 \pm 0.004
HCSVAE	0.079 \pm 0.030
DIVA	0.065 \pm 0.005
CCVAE	0.065 \pm 0.006
DisCoVR (Ours)	0.064 \pm 0.000

1080 Supplementary Table 2: RMSE calculated between the estimated and true marginal across different
 1081 levels of label noise on the Colored MNIST dataset. p defines label flip probability. Bold denotes
 1082 best performance.

1083

1084

	Marginal RMSE \downarrow			
	$p = 0.1$	$p = 0.2$	$p = 0.3$	$p = 0.4$
CSVAE - No Adv.	0.141 ± 0.002	0.141 ± 0.003	0.142 ± 0.002	0.143 ± 0.002
CSVAE	0.135 ± 0.022	0.152 ± 0.018	0.181 ± 0.007	0.173 ± 0.008
HCSVAE - No Adv.	0.150 ± 0.001	0.150 ± 0.000	0.151 ± 0.000	0.151 ± 0.001
HCSVAE	0.139 ± 0.003	0.141 ± 0.001	0.141 ± 0.001	0.141 ± 0.001
DIVA	0.115 ± 0.011	0.102 ± 0.013	0.106 ± 0.010	0.113 ± 0.014
CCVAE	0.092 ± 0.002	0.103 ± 0.014	0.099 ± 0.011	0.092 ± 0.005
DisCoVR (Ours)	0.073 ± 0.001	0.083 ± 0.004	0.087 ± 0.002	0.087 ± 0.001

1093

1094

1095

1096 Supplementary Table 3: Model performances on the CelebA-Glasses dataset. Bold denotes best
 1097 performance.

1098

1099

	$I(z; w) \downarrow$	NLL (\downarrow)
CSVAE - No Adv.	0.048 ± 0.014	137.522 ± 0.155
CSVAE	0.079 ± 0.029	145.989 ± 0.336
HCSVAE - No Adv.	0.055 ± 0.012	131.813 ± 0.21
HCSVAE	0.055 ± 0.014	137.319 ± 0.265
DIVA	0.188 ± 0.028	143.528 ± 0.02
CCVAE	0.083 ± 0.022	131.764 ± 0.006
DisCoVR (Ours)	0.030 ± 0.011	135.677 ± 0.007
DisCoVR - Common (Ours)	—	374.114 ± 0.05

1109

1110

E ADDITIONAL DISENTANGLEMENT METRICS

1112

1113 We provide an extended disentanglement assessment using multiple metrics. Because mutual in-
 1114 formation is difficult to estimate reliably, we report two estimators—MINE and kNN. Although
 1115 their absolute values differ, the relative rankings of the methods remain consistent as can be seen in
 1116 the ranking tables. In addition to these mutual-information estimates, we also report the following
 1117 metrics, which quantifying the level of label information captured by w compared to z :

1118

1119

Mutual Information Gap (MIG)

1120

1121

$$\text{MIG}(w; z) = \frac{I(y; w) - I(y; z)}{H(y)}$$

1122

1123

Mutual Information Completeness (MIC)

1124

1125

$$\text{MIC}(w; z) = \frac{I(y; w)}{I(y; w) + I(y; z)}$$

1126

1127

E.1 PARAMETRIC MODEL

1128

1129

1130

1131

1132

1133

CSVAE and its variants impose a fully separable prior, thereby forcing separability even when the true latent structure is not separable (see Table 1). In contrast, DisCoVR learns informative conditional embeddings that closely track the true posterior without requiring ground-truth knowledge of a truncated or fully separable prior, and it outperforms both DIVA and CCVAE.

Replacing the prior in DisCoVR with a fully separable predefined prior on w yields consistent embeddings with the ground-truth structure while retaining the benefits of separability.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 Supplementary Table 4: Additional disentanglement metrics calculated with kNN mutual information estimation for the parametric model dataset with $k = 20$. Bold indicates closest to true posterior within group.

Assumption	Model	$I(y; z)$	$I(y; w)$	$I(w; z)$	$MIG(w; z)$	$MIC(w; z)$	$I(w; z y)$
Fully Separable	CSVAE - N.A.	0.069 ± 0.034	0.634 ± 0.002	0.098 ± 0.034	0.063 ± 0.004	0.904 ± 0.048	0.000 ± 0.002
	CSVAE	0.024 ± 0.048	0.620 ± 0.044	0.047 ± 0.050	0.067 ± 0.010	0.963 ± 0.073	0.013 ± 0.009
	HCSVAE - N.A.	0.000 ± 0.000	0.643 ± 0.000	0.000 ± 0.001	0.072 ± 0.000	1.000 ± 0.000	0.000 ± 0.000
	HCSVAE	0.000 ± 0.000	0.643 ± 0.001	0.001 ± 0.001	0.072 ± 0.000	1.000 ± 0.000	0.000 ± 0.001
	DisCoVR (CSVAE prior)	0.000 ± 0.000	0.643 ± 0.000	0.051 ± 0.007	0.072 ± 0.000	1.000 ± 0.000	0.031 ± 0.005
Flexible	DIVA	0.021 ± 0.042	0.091 ± 0.046	0.000 ± 0.000	0.008 ± 0.010	0.800 ± 0.400	0.000 ± 0.000
	CCVAE	0.022 ± 0.043	0.090 ± 0.045	0.000 ± 0.000	0.008 ± 0.010	0.800 ± 0.400	0.000 ± 0.000
	DisCoVR (our prior)	0.010 ± 0.006	0.151 ± 0.007	0.108 ± 0.029	0.016 ± 0.001	0.938 ± 0.035	0.072 ± 0.020
Fully Separable	Posterior (no truncation)	0.057 ± 0.001	0.057 ± 0.000	0.144 ± 0.003	0.000 ± 0.000	0.499 ± 0.006	0.090 ± 0.002
	True Posterior	0.058 ± 0.003	0.643 ± 0.000	0.144 ± 0.005	0.066 ± 0.000	0.917 ± 0.004	0.055 ± 0.003

1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 Supplementary Table 5: Additional disentanglement metrics calculated with MINE mutual information estimation for the parametric model dataset. Bold indicates closest to true posterior within group.

Assumption	Model	$I(y; z)$	$I(y; w)$	$I(w; z)$	$MIG(w; z)$	$MIC(w; z)$	$I(w; z y)$
Fully Separable	CSVAE - N.A.	0.096 ± 0.037	0.528 ± 0.026	0.096 ± 0.034	0.048 ± 0.006	0.848 ± 0.057	0.001 ± 0.001
	CSVAE	0.033 ± 0.055	0.526 ± 0.045	0.031 ± 0.045	0.055 ± 0.010	0.945 ± 0.091	0.009 ± 0.005
	HCSVAE - N.A.	0.000 ± 0.000	0.543 ± 0.018	0.000 ± 0.000	0.061 ± 0.002	1.000 ± 0.000	0.000 ± 0.000
	HCSVAE	0.000 ± 0.000	0.543 ± 0.022	0.000 ± 0.000	0.061 ± 0.002	1.000 ± 0.000	0.001 ± 0.000
	DisCoVR (CSVAE prior)	0.020 ± 0.004	0.543 ± 0.018	0.033 ± 0.005	0.058 ± 0.002	0.964 ± 0.008	0.030 ± 0.004
Flexible	DIVA	0.027 ± 0.053	0.113 ± 0.056	0.001 ± 0.001	0.010 ± 0.012	0.798 ± 0.398	0.001 ± 0.000
	CCVAE	0.026 ± 0.052	0.115 ± 0.058	0.001 ± 0.001	0.010 ± 0.012	0.799 ± 0.399	0.001 ± 0.000
	DisCoVR (ours)	0.037 ± 0.006	0.176 ± 0.008	0.109 ± 0.025	0.016 ± 0.001	0.825 ± 0.026	0.073 ± 0.018
Fully Separable	Posterior (no truncation)	0.084 ± 0.003	0.083 ± 0.003	0.137 ± 0.004	0.000 ± 0.000	0.497 ± 0.009	0.088 ± 0.003
	True Posterior	0.085 ± 0.005	0.493 ± 0.011	0.139 ± 0.005	0.046 ± 0.002	0.853 ± 0.009	0.057 ± 0.004

1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 Supplementary Table 6: Rank (1 = closest to True Posterior) of each method with respect to the true posterior for metrics calculated with kNN mutual information estimation with $k = 20$. Colors indicate rank within each block: red = worse (farther), green = better (closer).

Assumption	Model	$I(y; z)$	$I(y; w)$	$I(w; z)$	$MIG(w; z)$	$MIC(w; z)$	$I(w; z y)$
Fully Separable	CSVAE - N.A.	1	4	1	2	1	3
	CSVAE	2	5	3	1	2	2
	HCSVAE - N.A.	3	1	5	3	3	3
	HCSVAE	3	1	4	3	3	3
	DisCoVR (CSVAE prior)	3	1	2	3	3	1
Flexible	DIVA	2	2	2	2	2	2
	CCVAE	1	3	2	2	2	2
	DisCoVR (ours)	3	1	1	1	1	1

1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 Supplementary Table 7: Rank (1 = closest to True Posterior) of each method with respect to the True Posterior for metrics calculated with MINE mutual information estimation. Colors indicate rank within each block: red = worse (farther), green = better (closer).

Assumption	Model	$I(y; z)$	$I(y; w)$	$I(w; z)$	$MIG(w; z)$	$MIC(w; z)$	$I(w; z y)$
Fully Separable	CSVAE - N.A.	1	2	1	1	1	3
	CSVAE	2	1	3	2	2	2
	HCSVAE - N.A.	4	3	4	4	4	5
	HCSVAE	4	3	4	4	4	3
	DisCoVR (CSVAE prior)	3	3	2	3	3	1
Flexible	DIVA	2	3	2	2	3	2
	CCVAE	3	2	2	2	2	2
	DisCoVR (ours)	1	1	1	1	1	1

1188 E.2 NOISY SWISS ROLL
11891190
1191 When the observed labels are noisy, DisCoVR outperforms other methods, obtaining embeddings
1192 close to the ground truth.
1193
11941195 Supplementary Table 8: Additional disentanglement metrics calculated with kNN mutual informa-
1196 tion estimation for the Noisy Swiss Roll ($p = 0.3$) dataset with $k = 20$. Bold indicates closest to
1197 ground truth within group.
1198

1200 Assumption	1201 Model	1202 $I(y; z)$	1203 $I(y; w)$	1204 $I(w; z)$	1205 $MIG(w; z)$	1206 $MIC(w; z)$	1207 $I(w; z y)$
1201 Fully Separable	CSVAE - N.A.	0.041 \pm 0.007	0.525 \pm 0.221	0.362 \pm 0.180	0.057 \pm 0.026	0.888 \pm 0.098	0.266 \pm 0.152
	CSVAE	0.018 \pm 0.026	0.429 \pm 0.254	0.240 \pm 0.181	0.048 \pm 0.032	0.912 \pm 0.129	0.186 \pm 0.146
	HCSVAE - N.A.	0.029 \pm 0.007	0.642 \pm 0.000	0.065 \pm 0.013	0.072 \pm 0.001	0.957 \pm 0.010	0.009 \pm 0.019
	HCSVAE	0.001 \pm 0.002	0.641 \pm 0.001	0.005 \pm 0.004	0.075 \pm 0.000	0.999 \pm 0.003	0.000 \pm 0.000
1204 Flexible	DIVA	0.034 \pm 0.013	0.036 \pm 0.011	2.633 \pm 0.360	0.000 \pm 0.003	0.515 \pm 0.159	2.185 \pm 0.332
	CCVAE	0.040 \pm 0.015	0.030 \pm 0.007	2.952 \pm 0.124	-0.001 \pm 0.003	0.447 \pm 0.153	2.462 \pm 0.118
	DisCoVR (ours)	0.000 \pm 0.000	0.049 \pm 0.002	0.029 \pm 0.011	0.006 \pm 0.000	1.000 \pm 0.000	0.014 \pm 0.008
Noisy	Ground Truth	0.000 \pm 0.000	0.055 \pm 0.002	0.000 \pm 0.000	0.007 \pm 0.000	1.000 \pm 0.000	0.000 \pm 0.000

1208
1209
1210
1211
1212
1213 Supplementary Table 9: Additional disentanglement metrics calculated with MINE mutual informa-
1214 tion estimation for the Noisy Swiss Roll ($p = 0.3$) dataset. Bold indicates closest to ground truth
1215 within group.
1216

1217 Assumption	1218 Model	1219 $I(y; z)$	1220 $I(y; w)$	1221 $I(w; z)$	1222 $MIG(w; z)$	1223 $MIC(w; z)$	1224 $I(w; z y)$
1219 Fully Separable	CSVAE - N.A.	0.046 \pm 0.022	0.422 \pm 0.186	0.050 \pm 0.020	0.044 \pm 0.023	0.834 \pm 0.184	0.029 \pm 0.017
	CSVAE	0.023 \pm 0.027	0.373 \pm 0.232	0.027 \pm 0.020	0.041 \pm 0.028	0.877 \pm 0.198	0.024 \pm 0.017
	HCSVAE - N.A.	0.023 \pm 0.014	0.585 \pm 0.011	0.026 \pm 0.012	0.066 \pm 0.002	0.963 \pm 0.021	0.006 \pm 0.002
	HCSVAE	0.002 \pm 0.000	0.570 \pm 0.011	0.002 \pm 0.001	0.067 \pm 0.001	0.997 \pm 0.001	0.003 \pm 0.001
1222 Flexible	DIVA	0.041 \pm 0.024	0.043 \pm 0.026	0.313 \pm 0.084	0.000 \pm 0.006	0.507 \pm 0.296	0.345 \pm 0.065
	CCVAE	0.056 \pm 0.020	0.036 \pm 0.020	0.507 \pm 0.114	-0.002 \pm 0.004	0.390 \pm 0.226	0.494 \pm 0.099
	DisCoVR (ours)	0.001 \pm 0.000	0.069 \pm 0.002	0.004 \pm 0.002	0.008 \pm 0.000	0.983 \pm 0.004	0.006 \pm 0.002
Noisy	Ground Truth	0.000 \pm 0.000	0.024 \pm 0.018	0.000 \pm 0.001	0.003 \pm 0.002	0.985 \pm 0.048	0.002 \pm 0.001

1225
1226
1227
1228
1229
1230
1231 Supplementary Table 10: Rank (1 = closest to Ground Truth) of each method with respect to the
1232 Ground Truth for metrics calculated with kNN mutual information estimation with $k = 20$ on the
1233 Noisy Swiss Roll ($p = 0.3$) dataset. Colors indicate rank within each block: red = worse (farther),
1234 green = better (closer).
1235

1236 Assumption	1237 Method	1238 $I(y; z)$	1239 $I(y; w)$	1240 $I(w; z)$	1241 $MIG(w; z)$	1242 $MIC(w; z)$	1243 $I(w; z y)$
1237 Fully Separable	CSVAE - N.A.	4	2	4	2	4	4
	CSVAE	2	1	3	1	3	3
	HCSVAE - N.A.	3	4	2	3	2	2
	HCSVAE	1	3	1	4	1	1
1240 Flexible	DIVA	2	2	2	2	2	2
	CCVAE	3	3	3	3	3	3
	DisCoVR (ours)	1	1	1	1	1	1

1242 Supplementary Table 11: Rank (1 = closest to Ground Truth) of each method with respect to the
 1243 Ground Truth for metrics calculated with MINE mutual information estimation on the Noisy Swiss
 1244 Roll ($p = 0.3$) dataset. Colors indicate rank within each block: red = worse (farther), green = better
 1245 (closer).

1246

1247

Assumption	Model	$I(y; z)$	$I(y; w)$	$I(w; z)$	$MIG(w; z)$	$MIC(w; z)$	$I(w; z y)$
Fully Separable	CSVAE - N.A.	4	2	4	2	4	4
	CSVAE	2	1	3	1	3	3
	HCSVAE - N.A.	2	4	2	3	2	2
	HCSVAE	1	3	1	4	1	1
Flexible	DIVA	2	2	2	1	2	2
	CCVAE	3	1	3	2	3	3
	DisCoVR (ours)	1	3	1	2	1	1

1254

1255

F ABLATIONS ON MODEL COMPONENTS

1258

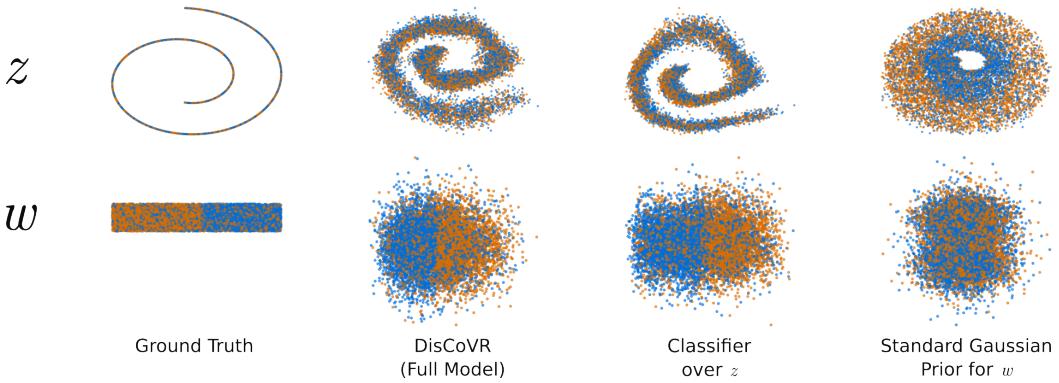
We evaluate the contribution of each model component by examining two variations: (1) applying
 1259 the classifier directly to z , and (2) replacing the conditional prior on w with a standard Gaussian.

1260

When training the classifier directly on z we were able achieve results qualitatively similar to those
 1261 obtained using the reconstruction \hat{x} , but doing so requires substantially more parameter tuning.

1262

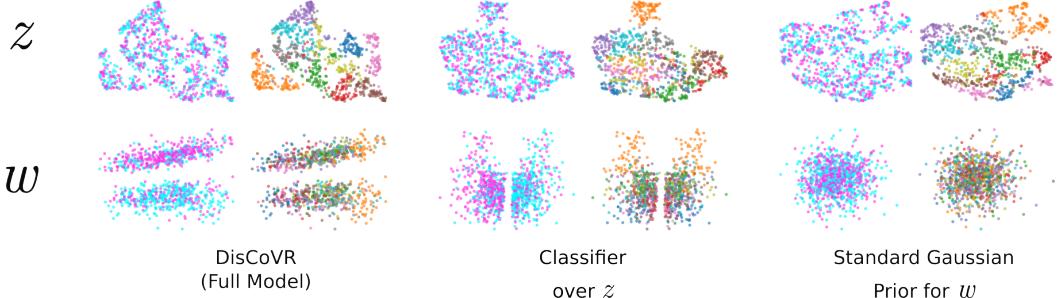
An unconditional standard Gaussian prior for w , causes w to collapse into a representation redundant
 1263 with z , removing meaningful separation.



1279 Supplementary Figure 7: Ablation study on the Noisy Swiss Roll ($p = 0.3$) dataset.

1280

1281



1293

1294

Supplementary Figure 8: Ablation study on the Noisy Colored MNIST ($p = 0.3$) dataset. For each
 1295 setting: left column denotes coloring by noisy labels, right column denotes coloring by digit (shape,
 not included in the label).

1296 **G ADDITIONAL EXPERIMENT ON CELEBA-HATS**
12971298
1299 We performed an additional experiment on the CelebA dataset, with the attribute *Wearing_hat*
1300 denoting the y label. Supplementary Table 12 outlines the results of this experiment. DisCoVR is
1301 the only method that exhibits high disentanglement for z, w without compromising reconstruction
1302 quality.1303
1304 Supplementary Table 12: Model performances of a single experiment on CelebA-Hats. Bold denotes
1305 best performance.

	$I(z; w) \downarrow$	NLL (\downarrow)
CSVAE - N.A.	0.360	653.537
CSVAE	0.213	351.082
HCSVAE - N.A.	0.135	2608.442
HCSVAE	0.192	673.674
DIVA	0.553	356.090
CCVAE	0.856	347.940
DisCoVR (Ours)	0.059	353.271
DisCoVR (Ours) - Common	-	437.144

1320 **H IMPLEMENTATION DETAILS**
13211322 **H.1 CONSIDERATIONS AND REPRODUCIBILITY**
13231324
1325 We run all experiments on a single H100 GPU. Reported means and standard deviations for tables are
1326 conducted over 10 repetitions of the experiment with different random seeds. All models are trained
1327 using the AdamW (Loshchilov & Hutter, 2019) optimizer until validation loss stops decreasing for
1328 50 epochs. Wherever provided, we use mutual information neural estimation (MINE, Belghazi
1329 et al. (2018)) and k-Nearest Neighbor (kNN) mutual information estimation Kraskov et al. (2011)
1330 to obtain mutual information estimates. For Naive Bayes classifiers, we use the implementation
1331 provided by *scikit-learn* (Pedregosa et al., 2011). To use ideal hyperparameters for each method,
1332 we consult the original implementation whenever possible, and conduct a simple grid-search to
1333 produce originally described model behavior. Implementations of all methods compared in this
1334 study, including DisCoVR, as well as code to reproduce our results, is attached to this submission
1335 and will be made public upon acceptance. Models compared in the study admit a weighting term
1336 for each term in the loss function, of which most are shared across different approaches. We use the
1337 following shorthands for each of the terms:

1338 $\text{Rec.} \rightarrow \mathbb{E}_{q_{z|x}} [\mathbb{E}_{q_{w|x,y}} [\log p(x | z, w)]]$
1339 $D_{\text{KL}}(Z) \rightarrow D_{\text{KL}}(q_{z|x} \| p_z)$
1340 $D_{\text{KL}}(W) \rightarrow D_{\text{KL}}(q_{w|x,y} \| p_{w|y})$
1341 $\text{Adv.} \rightarrow -\mathbb{E}_{q_{z|x}} [\log g(y | z)]$
1342 $\text{Class.} \rightarrow \mathbb{E}_{q_{w|x,y}} [\log q(y | w)]$
1343 $\text{Rec. - (Z)} \rightarrow \mathbb{E}_{q_{z|x}} [\log p(x | z)]$
1344

1345
1346 Below, we provide additional details for the hyperparameters used in each experiment, and any other
1347 external resources used to obtain the corresponding sections' results. In addition, we include details
1348 regarding runtime and memory footprint of running experiments with the models included in our
1349 study.

1350

Supplementary Table 13: Time spent per epoch during training for each dataset.

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

	P.M.	N.S.R	CMNIST	CelebA	scRNA-seq
CSVAE - N.A.	10.91s	8.02s	14s	54.43s	4.78s
CSVAE	12.71s	8.98s	14.41s	74.68s	4.99s
HCSVAE - N.A.	15.6s	10.92s	17s	44.3s	6.34s
HCSVAE	16.51s	11.8s	16.8s	68.53s	5.3s
DIVA	11.1s	8s	18.59s	48.96s	3.55s
CCVAE	12.1s	8.44s	17.9s	49.65s	5.25s
DisCoVR(Ours)	12.18s	8.73s	21.8s	109.86s	6.09s

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

Supplementary Table 14: Model inference time for a single batch for each dataset.

	P.M.	N.S.R	CMNIST	CelebA	scRNA-seq
CSVAE - N.A.	72ms	28ms	57ms	329ms	100ms
CSVAE	40ms	29ms	59ms	187ms	96ms
HCSVAE - N.A.	36ms	30ms	55ms	214ms	95ms
HCSVAE	37ms	39ms	52ms	191ms	119ms
DIVA	25ms	26ms	60ms	154ms	42ms
CCVAE	27ms	28ms	42ms	163ms	93ms
DisCoVR(Ours)	32ms	27ms	63ms	205ms	123ms

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

Supplementary Table 15: Memory footprint of running an experiment for each dataset.

	P.M.	N.S.R	CMNIST	CelebA	scRNA-seq
CSVAE - N.A.	53 MiB	255 MiB	1988 MiB	4868 MiB	298 MiB
CSVAE	253 MiB	255 MiB	2378 MiB	4812 MiB	300 MiB
HCSVAE - N.A.	254 MiB	255 MiB	2558 MiB	4588 MiB	292 MiB
HCSVAE	253 MiB	256 MiB	2998 MiB	4466 MiB	294 MiB
DIVA	253 MiB	255 MiB	2634 MiB	4996 MiB	300 MiB
CCVAE	253 MiB	255 MiB	3066 MiB	4998 MiB	300MiB
DisCoVR (Ours)	254 MiB	257 MiB	3612 MiB	7078 MiB	308MiB

H.1.1 PARAMETRIC MODEL

for the parametric model, we consider $z, w \in \mathbb{R}$ and use multi-layer perceptrons (MLPs) with $n_{hidden} = 2$, $d_{hidden} = 8$ to parameterize approximate posteriors, the generative model and classifiers. For all models, we use learning rate $\gamma = 0.001$. A more detailed table of model-specific loss weights is provided in Supplementary Table 16.

1404

Supplementary Table 16: Loss weights for the parametric model experiment.

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

Supplementary Table 17: K-Means NMI for embeddings across stimulation (y) and cell type (common structure).

	w - Stimulation (\uparrow)	z - Cell Type (\uparrow)	z - Stimulation (\downarrow)
CSVAE - No Adv.	0.949 ± 0.003	0.702 ± 0.015	0.187 ± 0.0
CSVAE	0.939 ± 0.002	0.406 ± 0.001	0.002 ± 0.0
HCSVAE - No Adv.	0.933 ± 0.006	0.628 ± 0.016	0.091 ± 0.002
HCSVAE	0.931 ± 0.005	0.433 ± 0.001	0.003 ± 0.0
DIVA	0.801 ± 0.0	0.628 ± 0.011	0.056 ± 0.0
CCVAE	0.604 ± 0.0	0.683 ± 0.016	0.103 ± 0.0
DisCoVR (Ours)	0.946 ± 0.002	0.688 ± 0.0	0.002 ± 0.0

H.1.2 NOISY SWISS ROLL

For this experiment, we consider $z, w \in \mathbb{R}^2$ and use MLPs with $n_{hidden} = 2, d_{hidden} = 128$ to parameterize approximate posteriors, the generative model and classifiers. For all models, we use learning rate $\gamma = 0.001$. A more detailed table of model-specific hyperparameters is provided in Supplementary Table 18.

1438

1439

Supplementary Table 18: Loss weights for the noisy Swiss roll experiment.

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

H.1.3 NOISY COLORED MNIST

1453

1454

1455

1456

1457

For this experiment, we consider $z \in \mathbb{R}^{20}, w \in \mathbb{R}^2$ and use convolutional neural networks (CNNs) to parameterize approximate posteriors and the generative model. For this example, DisCoVR can support z, w with different sizes, by parameterizing $p(w | y)$ through neural networks. For all models, we use learning rate $\gamma = 0.0001$. We detail the architectures and model-specific hyperparameters in Supplementary Tables 19 - 22. All other neural networks are formulated as MLPs with $n_{hidden} = 2, d_{hidden} = 4096$.

1458 Supplementary Table 19: Image encoder architecture for noisy colored MNIST. Parameters for
 1459 Conv2d are input / output channels. Parameters for MaxPool2D are kernel size and stride. Param-
 1460 eter for the linear layer is the output size. For variances, outputs are passed through an additional
 1461 Softplus layer to ensure non-negativity.

1462

1463

Block	Details
1	Conv2d(3,32) + BatchNorm2D + ReLU
2	Conv2d(32,32) + BatchNorm2D + ReLU + MaxPool2D(2,2)
3	Conv2d(32,64) + BatchNorm2D + ReLU + MaxPool2D(2,2)
4	Conv2d(64,128) + BatchNorm2D + ReLU + MaxPool2D(2,2)
5	Linear(4096) + BatchNorm1D + ReLu
6	Linear(4096) + BatchNorm1D + ReLu
7	Linear(d_{latent})

1472

1473

1474

1475 Supplementary Table 20: Image decoder architecture for noisy colored MNIST. Parameters for
 1476 Conv2d are input / output channels. Parameters for MaxPool2D are kernel size and stride. Pa-
 1477 rameter for the linear layer is the output size.

1478

1479

Block	Details
1	Linear(4096) + BatchNorm1D + ReLu
2	Linear(4096) + BatchNorm1D + ReLu
3	Linear(1152) + Unflatten
4	Upsample(2) + Conv2d(128, 64) + BatchNorm2D + ReLU
5	Upsample(2) + Conv2d(64, 32) + BatchNorm2D + ReLU
6	Upsample(2) + Conv2d(32, 32) + BatchNorm2D + ReLU
7	Conv2d(32, 3) + Sigmoid

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Supplementary Table 21: Latent classifier architecture for noisy colored MNIST. Outputs parame-
 terize logits of class probabilities.

Block	Details
1	Linear(4096) + BatchNorm1D + ReLu
2	Linear(4096) + BatchNorm1D + ReLu
3	Linear(2)

Supplementary Table 22: Loss weights for the noisy colored MNIST experiment.

	Rec.	$D_{KL}(Z)$	$D_{KL}(W)$	Adv.	Class.	Rec. - (Z)
CSVAE - No Adv.	1	0.0001	1	—	—	—
CSVAE	1	0.0001	1	1	—	—
HCSVAE - No Adv.	1000	0.0001	1	—	—	—
HCSVAE	10000	0.0001	1	1	—	—
DIVA	1	0.0001	0.0001	—	1	—
CCVAE	1	0.0001	0.0001	—	1	—
DisCoVR (Ours)	0.5	0.0001	0.0001	0.1	—	0.5

1512 H.1.4 CELEBA-GLASSES
15131514 Motivated by the previous application of Klys et al. (2018), our choices follow those outlined in
1515 Larsen et al. (2016). We provide a detailed table of model-specific hyperparameters in Supplemen-
1516 tary Table 23:1517
1518 Supplementary Table 23: Loss weights for the CelebA-Glasses experiment.
1519

	Rec.	$D_{\text{KL}}(Z)$	$D_{\text{KL}}(W)$	Adv.	Class.	Rec. - (Z)
CSVAE - No Adv.	1	0.0001	1	—	—	—
CSVAE	1000	0.0001	1	1	—	—
HCSVAE - No Adv.	1000	0.0001	1	—	—	—
HCSVAE	10000	0.0001	1	1	—	—
DIVA	100000	0.0001	0.0001	—	1	—
CCVAE	100000	0.0001	0.0001	—	1	—
DisCoVR (Ours)	1000000	0.0001	0.0001	2000	—	100000

1530 H.1.5 scRNA-SEQ
15311532 Following on the previous applications by Lopez et al. (2018), we use $z \in \mathbb{R}^{10}$, $w \in \mathbb{R}^2$. For
1533 DisCoVR we match the dimensions and use $w \in \mathbb{R}^{10}$ to avoid parameterizing the prior $p(w | z, y)$
1534 with an additional neural network. We use MLPs with $n_{\text{hidden}} = 1$, $d_{\text{hidden}} = 128$ to parameterize
1535 approximate posteriors, the generative model and classifiers. We calculate K-Means NMI through
1536 *scikit-learn* (Pedregosa et al., 2011) by calling the `normalized_mutual_info_score` function
1537 with the original labels and the clusterings obtained by running KMeans on (1) the entire latent
1538 embedding and (2) single dimensions of the embedding and report the highest score. A more detailed
1539 table of model-specific hyperparameters is provided in Supplementary Table 24:
15401541 Supplementary Table 24: Loss weights for the scRNA-seq experiment.
1542

	Rec.	$D_{\text{KL}}(Z)$	$D_{\text{KL}}(W)$	Adv.	Class.	Rec. - (Z)
CSVAE - No Adv.	1	0.0001	1	—	—	—
CSVAE	1	0.0001	1	100	—	—
HCSVAE - No Adv.	1	0.0001	1	—	—	—
HCSVAE	1	0.0001	1	100	—	—
DIVA	1	0.0001	0.0001	—	1	—
CCVAE	1	0.0001	0.0001	—	1	—
DisCoVR (Ours)	0.9	0.0001	0.0001	100	—	0.1

1553 H.2 SUMMARY OF THE scVI GENERATIVE MODEL FOR 5.2.3
15541555 Given batch key b and G genes, the generative model of scVI for a single cell $x_i \in \mathbb{N}^G$ is formulated
1556 as:

1557
$$z_i \sim \mathcal{N}(0, 1)$$

1558
$$\rho_i = f_{\theta}(z_i, b_i)$$

1559
$$\pi_{ig} = h_{\phi}^g(z_i, b_i)$$

1560
$$x_{ig} \sim \text{ZINB}(l_i \rho_i, \theta_g, \pi_{ig})$$

1561

1562 Here, g indexes genes, $l_i = \sum_g x_{ig}$ denotes the total number of counts for a single cell, z_i denotes
1563 the latent representation of the cell, and ρ_i denotes the normalized expression of the cell. f_{θ} is for-
1564 mulated as a neural network with a final softmax layer. h_{ϕ} is a neural network used to parameterize
1565 zero-inflation probabilities for the generative zero-inflated negative binomial (ZINB) distribution.
1566

1566 As such, for a single batch, the formulation of scVI is equivalent to the VAE with a ZINB likeli-
1567 hood. While all other models can be extended easily, DisCoVR requires reconstructions as a proxy
1568 for the adversarial loss. For this formulation, we directly treat the normalized expressions ρ_i as the
1569 adversarial reconstructions \hat{x} .
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619