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ABSTRACT

Disentangled representations allow models to separate factors shared across con-
ditions from those that are condition-specific. This separation is crucial in domains
such as biomedicine, where generalization to new treatments, patients, or species
requires isolating stable biological signals from context-dependent effects. While
several VAE-based extensions aim to achieve this, they often exhibit leakage be-
tween latent variables, limiting generalization. We introduce DisCoVR, a varia-
tional framework that explicitly separates invariant and condition-specific factors
through: (i) a dual-latent architecture, (ii) parallel reconstructions to keep both
representations informative, and (iii) a max—min objective that enforces separation
without handcrafted priors. We show this objective maximizes data likelihood,
promotes disentanglement, and admits a unique equilibrium. Empirically, Dis-
CoVR achieves stronger disentanglement on synthetic data, natural images, and
single-cell RNA-seq datasets, establishing it as a principled approach for multi-
condition representation learning.

1 INTRODUCTION

Neural network—based models excel at learning rich representations of complex data and are increas-
ingly applied in settings where each data point z € X C R? is associated with a condition label
y € 1,..., K. In biology, for example, conditions may represent treatments, patients, or species.
Such representations are valuable for tasks like domain adaptation and transfer learning (Pan et al.,
2010), where models must generalize from observed to novel conditions. Achieving this requires
disentangled representations that separate factors shared across conditions from those specific to
each y.

Generative models provide a natural framework for uncovering latent structure, with prominent
examples including Generative Adversarial Networks (GANs) (Goodfellow et al.,|2020), Variational
Autoencoders (VAEs) (Kingma & Welling,[2014)), and diffusion models (Sohl-Dickstein et al., 2015;
Ho et al.,|2020). Among these, VAEs and their extensions are particularly well-suited to transfer
learning and domain adaptation (Akrami et al., [2020; [Lovri¢ et al. 2021} |Godinez et al., 2022}
Zhang et al.,|2023), thanks to their probabilistic foundation and ability to capture uncertainty.

Thus, several VAE-based methods have been proposed to integrate data across multiple conditions
or sources (Xu et al., 2021} |Lotfollahi et al., 2019; Boyeau et al., 2022), but only a few explicitly
disentangle shared and condition-specific components (Sohn et al., 2015} Klys et al., 2018} Joy
et al.l 2020). While these approaches improve separation to some degree, they often depend on
handcrafted priors that are difficult to design in high-dimensional domains like single-cell genomics,
and they frequently exhibit residual leakage between latent varaibles, limiting generalization across
conditions.

In this work, we introduce a framework for learning disentangled representations in multi-condition
datasets. Our main contributions are: (i) a method combining two distinct reconstruction objectives
with adversarial learning, reducing reliance on restrictive priors or handcrafted components; (ii) a
max—min formulation of disentangled representation learning, along with a corresponding objective
and theoretical guarantees for its equilibrium; and (iii) through experiments on synthetic benchmarks
and real-world datasets, we show that our approach consistently improves upon existing methods
disentanglement of shared and condition-specific structure.
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2 DISCOVR: DISENTANGLING COMMON AND VARIANT REPRESENTATIONS

For the task of learning disentangled representations from multi-condition data, we consider a
dataset D = {(z;,y;)}7", consisting of inputs z; € X C R? collected from associated condi-
tion labels y; € {1,..., K'}. For each class k (corresponding to a study or experimental condition),
the associated subset Dy, := {x; : y; = k} consists of i.i.d. samples drawn from a class-conditional
distribution p(z | y = k).

2.1 MODEL ASSUMPTIONS

We assume that the data is generated by latent variables z and w, such that the joint distribution
p(x,y, z, w) factorizes according to the probabilistic graphical model illustrated in Figure|la} i.e.,

p(@,y,z,w) = py) p(w [ y) p(z) p(z | 2, w). (1)

OOy ©®Fisl (-
O— i

(a) (b)

Figure 1: Graphical overview of our model. (a) Probabilistic graphical model: gray circles denote
observed variables, white show latent variables. (b) Encoder—decoder architecture: the inhibition
arrow from g to & corresponds to the adversarial component.

This model encodes two key conditional independence assumptions:

1. Latent variable conditional independence: Given the condition y, the latent representations
z and w are conditionally independent: z L w | y.

2. Sufficiency of the shared latent representation: The input x is conditionally independent of
the condition y given w: L y | w.

However, note that in this formulation, z and w are no longer independent if conditioned also on z,
thatis, z L w | z,y.

2.2 TARGET POSTERIOR STRUCTURE

In our model, each observation x is generated from two latent variables: z, which is condition-
invariant, and w, which is condition-aware through its dependence on y. Our goal is to learn proba-
bilistic representations where the marginals of z and w preserve this structure, yielding disentangled
factors. Thus, we seek to approximate the posterior p. |z, -

However, approximating the full posterior with a variational distribution g |,y is intractable: even
for simple variational families such as Gaussians, modeling the dependencies between z and w
requires a full covariance structure, which is computationally prohibitive in high dimensions. To
mitigate this, we employ a factorized approximation q|; Gu|a,y-

Our variational approximation is guided by two complementary objectives: (i) g, closely approx-
imating the marginal posterior p,|,; and (ii) the product q,|, Gu|s,y closely approximating the true

POSErior p,, .|, Formally, given variational families'| Q. and Q,, we seek to find qjlx € 9, and

qz)m y € Q,, that minimize the following sum of Kullback-Leibler (KL) divergences:
q:|93’ qz;lgj"[/ = arg q mglg DKL(qz\z || pz\z) + DKL(qz\IQw\z,y || pz,w|a:,y)~ (2)
z|x z
qw\w,yegw

"Here we consider general families and specify our concrete choices in
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2.3  OPTIMIZATION OBJECTIVE

Since direct evaluation of the KL divergences in Equation [2]is intractable, we optimize a surrogate
objective consisting of two ELBO terms.

The corresponding ELBO objective to minimize Dk (¢.|z || P2|z) 18

L.(qz, 05 %) = Eqy, , [logp( | 2)] — DxL(gz1e || P2), 3)
and the ELBO objective for the second KL term, Dx1,(qz|2Guw|z,y || Pz,w|z,y)» 1S given by

‘Cw(lezL’,y7p;‘r7 Y) ::qu‘m [Equ,‘m,y [log (p(z]2, w))]]_DKL (qux ||pZ)_DKL (lex,y prly) :
4)

Note that Eu,(qw‘z,y, p;x,y) is the ELBO objective that corresponds to a factorized posterior
z|2Gw|z,y- In Proposition @ we examine the gap between this objective, and an ELBO term cor-
responding to a full variational posterior q. ,,|,,- This can be interpreted as the cost of enforcing a
condition-invariant latent representation, specifically, constraining z to depend only on x. Proposi-
tion

Proposition 2.1. For random variables x,y, z, w following the graphical model in Figure[ld)
ELBO(q,p; 2,y) — Luw(duwle,y: P T,Y) = Eqy ., [KL (@210 | Do) -

where ELBO(q, p; z,) = log p(z | y) — DKL (qwie,y | Pulz.y)-

The proof is provided in Appendix [B.T]

Note that a full definition of the objectives in Equations [3] and [4] requires the specification of corre-
sponding prior distributions, namely p. and p,,|,. We defer their definitions to §2.4]

Equation [4| provides an evidence lower bound on the conditional log-likelihood log p(z | y). By
adding log p(y), this bound extends to the joint log-marginal likelihood log p(z,y). Beyond opti-
mizing this objective, we aim to ensure that the marginal distribution over y implicitly induced by
the latent representations is consistent with the true p(y).

To this end, we introduce an auxiliary classifier g(y | z) as a form of posterior regularization
(Ganchev et al), 2010). This classifier captures the residual predictive signal about y in 2z and is
trained by minimizing the expected negative log-likelihood —E . ,) log g(y | 2). If z is truly inde-
pendent of y, then g(y | z) will approximate the marginal distribution p(y). By penalizing deviations
from this behavior, we enforce the structural constraint z L y in the learned representation.

Note that for this term to effectively encourage ¢, to discard condition-specific information, the
classifier g,|. € G must be trained adversarially, with its own update step. This prevents degenerate
solutions in which the loss is minimized without removing information about y from z, for example,
by collapsing g to a constant predictor that ignores its input.

Combining the three terms above, we define the objective
L(qz)s Gulays Gyl=3 T Y) = L2(@z)er D3 T) + Lo(Gule,y: P T,Y) — Eq,, logg(y | 2),  (5)
which can be explicitly expressed as
L(Gz)s Gl s Gy|=: T, Y) =Eq,, flogp(z | 2)] + By, [Eq,,, ,logp(z | 2, w)]]
—Ey,, [logg(y | 2)] = 2Dx1(gz12 || =) — Dxr. (Guley || Puly) - (6)

Finally, to enable flexible trade-offs between reconstruction expressiveness and disentanglement,
we introduce weighting terms o = (1, o) into the objective following the motivation of 3-VAEs
(Higgins et al., [2017):

‘Ca(q,z|x7 Qw\z,ya gy|za x, y) ::]qul.’lt [1ng(l‘ ‘ Z)] + qu|.7: [EL]w\x,y [1ng(x | 2, ’U))]] (7)
— Ky, logg(y | z) — 1 DkL(qz(a | P2) — a2 DKL (Gujay | Puly) -
Accordingly, the mean weighted objective is suitable for max-min optimization of the form:

max max_ min E L T . 8
0210 €Qx Qulnn€Quw gy1-€G Da,y [ a(qz|a:7Qw\w,yvgy|za 7y)] 3
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2.4 LATENT PRIOR MODELS AND VARIATIONAL APPROXIMATIONS

Prior specification We place a standard Normal prior over the condition-invariant latent variable,
p. = N(0, I), which reflects a non-informative prior belief over its values.

For the condition-aware latent variable w, we define a class-conditional Gaussian prior py,|,. As a
simple choice, we let w have the same dimensionality as z and specify

plwly=k) =N D), =By, [Bep,[4]. ©)
Here /1, is the mean of the inferred latent representations z within the k-th clas{’]

This specification induces a coupling between the two latent variables through the data distribution.
Aligning p,,,, with the class-wise expectations of the invariant variable, further encourages g/, to
encode informative representations, since capturing the shared structures will now not only increase
L.(4z)a, p; T), but also decrease Dk, (qwmy I pw|y), and thus increase L, (quw|z,ys P T, Y)-

Importantly, for a truly condition-agnostic q.,, the conditional expectations jx will collapse to a

shared mean y == E,_ [qu\z [zH . In this case p,,|, becomes a shared prior across classes, centered
at a meaningful point in the latent space, rather than an uninformative one.

As the following proposition establishes, this anchoring of the prior p,,, in the variational dis-
tribution ¢, preserves the convex—concave structure of the objective, ensuring that the resulting
max-min problem has a unique optimal solution.

Proposition 2.2. Let Q. and Q,, be convex parametric families of variational distributions over z
and w, respectively, and let G denote a convex set of classifiers such that g(x) € [0,1] forall g € G.
Assume the latent priors are given by z ~ p(z) and p(w|y) = N (py, I), where p(z) is a continuous
strictly positive distribution, and ji, = Ep, [quw [ZH Then, under standard regularity conditions
(see Appendix[B.2.1), there exists a unique saddle point:

* * * .
9z 4 9 ) = max max min ‘C(qz x5 Qw|z,yr Gy z)‘
( zle Rwlw,yr Ty|z 4212€9% Qu|a,y €ELw 9y|-€FG | ! |

The proof is provided in Appendix [B.2.2]

Specification of variational families We set both variational families Q, and Q, as d-
dimensional Gaussian distributions with diagonal covariance matrices. Accordingly, each varia-
tional distribution is parameterized by a mean vector 1 € R and a vector of variances o2 € Ri
corresponding to the diagonal of the covariance matrix, yielding 6 = (u, o).

3 ENCODER-DECODER MODEL

D, we introduce an encoder-decoder framework (illustrated in Figure . In this framework, two
separate reconstructions of x are generated: one, denoted & ~ p,|., where z is sampled from
the condition-invariant posterior q,|,, and the other, denoted & ~ p,|. .,, where in addition, w is
sampled from the condition-aware posterior g, . The corresponding algorithm is summarized in
Algorithm T

In order to optimize the objective in Equation8|with respect to q.,|4, G %, and g, over the dataset
[1b)

Condition agnostic representation An input z € A is mapped to the variational parameters
0. = (p,02) by an encoder neural network f I R? x Ri parametrized by weights ¢. A
latent encoding z ~ gg_ is then sampled and mapped to a reconstruction & via a decoder neural
network h7 : R? — X parametrized by weights ).

Adversarial classifier Rather than learning a complex classifier from z to y, we use the reconstruc-
tion & from z, and predict y from & via a simple multinomial logistic regression gg : X — [0, 1],
with class-specific weights § = ,521, or a shallow MLP. Since % is a deterministic function of
z, this is equivalent to applying a restricted classifier on z. By the data processing inequality, such

2Similarly, for different dimensions of z and w the mean aggregation can be replaced with a neural network
that maps the inferred representations z for each class to the parameters of the Gaussian prior.
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a classifier can only capture a subset of the information z contains about y; thus, maximizing this
lower bound on I(z;y) also maximizes I(z;y) itself. Although this substitution weakens the esti-
mation of the cross-entropy term —Eqz | zlog g(y | z), from an information-theoretic standpoint,
we observed this to be often advantageous in practice: predicting y from 2 reduces the variance
introduced by sampling z ~ gy_, providing a regularizing effect that prevents gy, from overfitting to
noisy classifier signals.

Condition aware representation A labeled input pair (z,y) € X x {1,..., K} is mapped to the
parameters 0, = (i, 02) using an encoder neural-network [ X x{l,...,K} — RY x Ri

parametrized by weights p. A sample w ~ gp,, is then drawn, and the pair (z,w) is mapped to
a reconstruction Z via a decoder neural-network h;" : R? — X, parametrized by weights 7. To
compute the prior p,,,, we estimate the class-specific mean as fiy = n—lk Ei.ylzk z; where each
z; ~ p(z | x;) is sampled from the encoder given an input x; with label y; = k, and ny, is the
number of training points with the label y = k.

Algorithm 1

1: Input: Data D = {21.,,Y1.n}, number of training iterations .J, initial parameters
0 0 pO) p©) 30) learning rates v1,7vo, weighting terms o = (o, a2)

2: for1 <j<Jdo

Compute 0, = f3.(x) and 6, = f;fj,m(:r,y)

Sample condition invariant and aware latent variables z ~ gy, and w ~ wy,,

. A1z ~ 1 zZw
Compute reconstructions & = h7 ; () and & = ho -

Compute condition prediction § = gz -1) ()
Update classifier parameters:

B(]) A ﬂ(jil) - ’Ylvﬂ La(Qz\w7 Qu|z,y> gu|z)

A O

=1 h=ap (=) p=p(i=1) = (i—1)

8:  Update encoder and decoder parameters, QU) = (¢(), 4@ p(0) p@))

Q(J) < Q(jil) - 72vd>,1,[1,p,n ‘CO/ (qz|xa Qw\:c,ya gylz)

)
9: end for p=p

Return: ¢(), () o) n(D) B

In practice, following standard approaches in VAE-based models, (i) we use a single-sample Monte
Carlo estimate to approximate the expectations in Equation [8| and (ii) instead of directly sampling
from gy, we employ the reparameterization trick to enable differentiable sampling. Specifically, we
sample € ~ N(0, ) and obtain a sample from gy by applying a deterministic transformation of €
based on the variational parameters 6.

4 COMPARISON TO PREVIOUS APPROACHES

Here we review VAE-based methods for disentangled representation learning, which form the pri-
mary basis for comparison with our approach. Broader related literature is discussed in Appendix [A]

VAEs (Kingma & Welling, [2014) are generative models that learn latent representations by maxi-
mizing the evidence lower bound (ELBO) on the data log-likelihood:

qu‘z[logp(x | Z)] — DkL (QZ\w || pz) < Ing('T)a

where (z, z) ~ p, and z|x ~ ¢ is a latent variable inferred from data. VAEs consist of an encoder
q.|, that maps inputs to latent distributions, and a decoder p,|. that reconstructs inputs from latent
representations. The learning process frames posterior inference as KL-regularized optimization
over a variational family Q aiming to approximate the posterior p.|, under a typically simple prior
p(z). Several VAE extensions were proposed to encourage disentanglement. These are discussed
below.
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Conditional VAEs (Sohn et al., 2015)) incorporate supervision to the standard VAE model by
conditioning both the encoder and decoder on an observed label y, yielding the following objective:

Eq..., logp(e | 2, y)] = Dxr (a(z | 2,y)[lp(2)) < logp(z[y).

While this allows controlled generation and partial disentanglement between z and y, the latent
variable z is still inferred from both = and y and thus can encode condition-specific information.

Conditional Subspace VAEs (CSVAEs) (Klys et al.||2018)), explicitly factorize the latent space into
a shared component z and a label-specific component w (see Supplementary Figure[Ta). Similarly,
their hierarchical extension |Beker et al.| (2024)) introduces an intermediate latent variable between
z and (z,w). As in our approach, to encourage disentanglement, CSVAEs introduce an adversarial
regularization term that penalizes mutual information between z and y, thereby discouraging pre-
dictability of y from z. They are learned by optimizing the following lower bound on log p(z | y):

qu,w\z,y[logp(m ‘ w, y)]_qu\z[f g(y | Z) lOgg(y | Z) dy]_DKL (qw|:z:,y || qw\y) — Dk (qz|:1: ||pz) .

Domain Invariant VAEs (DIVA) and Characteristic-capturing VAEs (CCVAE) DIVA (llse
et al.| [2020) and CCVAE (Joy et all[2020), shown in Supplementary Figure[Ib] introduce two latent
variables, z and w, where w captures label-related features by jointly optimizing a classifier p(w | y)
jointly alongside the remaining objective. For fully supervised cases, the DIVA model optimizes

Eq. .. logp(z | z,w)] + Eq, . [logq(y | w)] — Dxr (¢z12/lp2) — Dxr (quwle[Pwly) < logp(z,y).

This objective corresponds to the assumptions x L y | z,w and z L w. Similarly, CCVAEs optimize
the following lower bound on log p(z | y):

aylw) 1 plalzw)
Eq. ute [qcy\w) log =Ty

} — Dxkr, <QZ\mez|y) — D1, (Qw|I||pw|y) + IOg Q(y | .1‘)

Comparison: In prior methods, reconstruction is performed jointly from both representations z
and w, via p(x | z,w). This design provides no incentive to distribute information meaningfully
between z and w: the model can place all relevant information into w, leaving z either uninfor-
mative or entangled with w. Our method addresses this limitation through two key components:
(1) a separate reconstruction term from z alone, which explicitly forces z to capture informative,
condition-invariant structure. Theoretically, we show that the additional term p(Z | z) is required to
bound the gap between our approximate posterior and the full model ELBO under the factorization
assumption; (ii) a prior over w conditioned on the mean of z, which, through label-specific aggre-
gates, discourages leakage of class-invariant information into w and reduces redundancy between
the two representations.

Another novelty of our approach is a principled probabilistic objective that enforces the correct
conditional independence. Without an explicit probabilistic model, prior methods sought to enforce
z L w | &, y. In contrast, our formulation shows that the proper requirement is the weaker condition
z L w | y. As established in Section[2.1] our model satisfies z L w | y, butnot z L w | z,y.

To enforce this criterion, we propose a theoretically grounded variational objective that uses a con-
ditional ELBO for the dependent representation w, with the prior over w conditioned on the mean
of the independent representation z.

5 EXPERIMENTS

Datasets: We evaluate DisCoVR against existing approaches on synthetic data, natural images, and
biological data. These datasets were chosen to probe condition-invariant structure and to ensure
comparability with prior work: for instance, Swiss rolls and CelebA were used in Klys et al.[(2018),
and CelebA also inlJoy et al.| (2020).

Evaluation: When applicable, we evaluate reconstruction quality using negative log-likelihood
(NLL), root mean squared error (RMSE), and the absolute deviation from the optimal-Bayes clas-
sifier on the reconstructed data, denoted as A-Bayes. Disentanglement is quantified via a neural
estimator of the mutual information I(z;w) (Belghazi et al., |2018). Full model architectures, hy-
perparameters, and additional implementation details are provided in Appendix [H] Our results show
that DisCoVR achieves superior performance across all experiments.
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5.1 SIMULATED DATA

We begin with controlled synthetic experiments to isolate and visualize disentanglement.

5.1.1 PARAMETRIC MODEL

Data generating model: Consider a model where the observed data x is generated as a function of
two latent variables z and w, and y are binary labels. Assume that the marginal distributions of the
latent variables are given by z ~ A(0,1) and w ~ N(0, 1), and that the data z is generated as the
sum of the two latent variables: = z + w. Since z and w are both drawn from N(0, 1), it follows
that z ~ N(0,2). Finally, assume that the binary label is determined by the sign of w: y = 1 if
w > 0, and y = 0 otherwise.

Optimal disentanglement: Given that z and w are independent and x = z + w, we have that
p(z | ©) = N(2; %, 3). Hence, given z, the best estimate for z is Z. Note that when ignoring the
label y, the conditional distribution p(w | z) is p(w | #) = N'(w; %, 3). However, the observation
of y (which indicates whether w is positive or negative) truncates this distribution:
Lz 1 .z 1
plw|z,y=1)= Lw’f’f), p(w|z,y=0)= Lw@f)-
(%) 1-2(%)

(10)

Results: TableE] shows that DisCoVR (ours) best approximates the analytic posteriors, resulting in
the lowest deviation from the optimal Bayes classifier and the best reconstruction.

Table 1: Parametric model results: DisCoVR (ours) outperforms all competitors across all metrics.

NLLJr DKL(qz\T sz|T) i DKL(QUJ\m,y pr|x,y) i A—Ba)’esi
CSVAE - N.A. 1.810 £0.016 6.65 + 3.46 23.61 £ 0.36 24.83 £ 0.04
CSVAE 1.786 4+ 0.022 285+ 1.11 23.98 + 4.36 24.33 +£1.28
HCSVAE - N.A. 1.784 £ 0.010 4.01 +0.07 25.82 +0.38 24.99 £ 0.01
HCSVAE 1.770 £ 0.004 3.99 £0.09 26.25 + 0.59 24.99 + 0.01
DIVA 1.788 £ 0.008 3.21 £1.52 12.88 + 3.31 3.51 +0.32
CCVAE 1.785 4+ 0.006 1.77+0.81 12.95 £+ 3.35 3.57£0.15

DisCoVR (ours) 1.769 £ 0.003 0.17+0.01 10.10£0.73 0.1+0.28

5.1.2 NOISY SWISS ROLL

Dataset: We use a noisy variant of the labeled Swiss Roll dataset (Marsland, 2014} Klys et al.,
2018)), generating n = 20,000 and assigning binary labels based on a lengthwise split, with la-
bels flipped at rate p. The common geometry (its projection along the 2D plane) remains in-
tact, the conditional structure along the third axis becomes noisy. Figure [JA illustrates the setup.
Optimal disentanglement: Since

the Swiss Roll is sliced at the cen- Taple 2: Noisy Swiss roll results: DisCoVR (ours) yields
ter and label noise is applied uni- |owest deviation from optimal-Bayes, maintains low latent

formly, margina}izing over labels yields  jeakage, and high reconstruction accuracy.
a symmetric spiral centered along the

roll—i.e., the marginal posterior p(z |

x) is' 1abel—invariant. In cc?ntrast, Fhe I(zw) | NLL | A — Bayes |

conditional component retains a noisy

but informative signal, with a uniform  CSYAE-N.A. 0.047£0.023  3.30340.003 23.88 £ 12.02
’ CSVAE 0.031 £ 0.025 3.302 +0.003 17.99 + 14.58

noise level of p = 0.3. As a result,
the Baye.s thimal classiﬁer t?ained O HCOSVAE
any realistic representation is upper- DIVA
bounded at 70% accuracy. Results: ccvaR

HCSVAE - N.A. 0.024 +£0.012 3.302+£0.002 30.00 =+ 0.00
0.002 +0.001 3.302 £ 0.002 30.00 £ 0.00
0.336 £0.083 3.302+0.003 1.88+1.05
0.502 £0.089 3.302 +0.002 2.21+0.84

Figure [2| presents qualitative and quan-
titative results, showing that DisCoVR

DisCoVR (Ours) 0.005£0.002 3.302 £0.002 1.14+0.21

both models the label noise accurately
and effectively disentangles shared and condition-specific structure. Notably, DisCoVR captures
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the marginal data distribution, successfully recovering the expected spiral pattern, as shown in Fig-
ure[2B (right). Additionally, the results in Table[2]show that DisCoVR achieves the lowest deviation
from the optimal Bayes classifier and minimal information leakage between latent variables, while
preserving reconstruction quality.

A B

Figure 2: A: Noisy labeled Swiss Roll dataset. B (left): Reconstruction and conditional embedding
from DisCoVR. B (right): Marginal reconstruction from the shared embedding, recovering the spiral
structure. C: Comparison of reconstruction and conditional embeddings across models.

DISCoVeR CSVAE - N.A CSVAE HCSVAE - N.A HCSVAE DIVA
1(z;w)~0.004 [(ziw) = 0.011  I(zw) = 0002 I(zzw) = 0,062 T(zaw) = 0,003 I(zw) — 0423 I(zw)

5.2 REAL DATA

5.2.1 NOISY COLORED MNIST

Dataset: We use a modified MNIST (Deng} 2012) dataset constructed from 60,000 duplicated
images: in one copy we remove the red channel (y = 0) and in the other we remove the green channel
(y = 1). The digit shape remains intact following the blue channel. Label noise is introduced by
flipping labels with probability p € {0,0.1,0.2,0.3,0.4}.

Optimal disentanglement: Since the colored images are generated in equal proportions, the
marginal reconstruction for retains a single color (see Figure [3).

Results: We evaluate marginal coloring reconstruction by DisCoVR and previous methods. Under
no label noise (p = 0), all methods perform similarly (Supplementary Figure [3). At all non-zero
noise levels, DisCoVR consistently outperforms competitors, whose marginal reconstructions are
averaged over class-conditioned outputs. Metrics for p = 0.3 are shown in Supplementary Table 2]
with results for other noise levels in Supplementary Figure [

p(xy | B) ;v € {R,G} p(x | B) T)[S(‘()’OR (Ours) DIVA CCVAE

721041 92<9§72 /0641 90as 9972 /064 140772/ 04199272 /04 /4S9

HCSVAE - N.A. HCSVAE CVAE CSVAE - N.A. CSVAE

Figure 3: Colored MNIST reconstructions from the label-agnostic representation z for noise level
p = 0.3. DisCoVR is the only model that consistently reconstructs mixed “semi-red/blue” tone
(purple) indicating that color information has been removed and matching the true marginal p(z|B).

5.2.2 CELEBA-GLASSES

Dataset: We use all CelebA (Liu et al., |2015) images labeled with eyeglasses attribute (y = 1),
and twice as many randomly sampled images without (y = 0), totaling n = 35, 712 samples.

Results:  Figure ] shows that DisCoVR accurately reconstructs input images while producing
shared embeddings that marginalize over the eyeglasses attribute, consistently adding pseudo-
glasses” to all samples. Competing methods are shown in Supplementary Figure [5] with quanti-
tative results in Supplementary Table[3] While reconstruction quality is comparable across methods,
DisCoVR achieves significantly better disentanglement.

Results for an additional experiment with the wearing-hat attribute are provided in Appendix

5.2.3 SINGLE CELL RNA-SEQUENCING (SCRNA-SEQ) DATA FROM LUPUS DATASET

Dataset: We analyze single-cell RNA sequencing from n = 13, 999 peripheral blood mononuclear
cells (PBMCs) collected from 8 lupus patients under two conditions: 7,451 cells control (y = 0),
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Figure 4: CelebA-Eyeglasses results. Top: Original images with/without eyeglasses. Middle: Full
reconstructions by DisCoVR. Bottom: Reconstructions solely from common embeddings z. A
shared representation needs to be invariant to y (presence or absence of glasses). Indeed, all recon-
structed faces display an intermediate ”’semi-glasses” appearance, regardless of the original label.

and 6,548 IFN-$ stimulation cells. IFN-/ stimulation induces notable shifts in gene expression,
visible in the UMAP embedding in Figure[5B (left).
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Figure 5: A-B (left): UMAPs of raw gene counts from the IFN-/3 dataset. A-B (middle): Shared
embedding z aligns cells by type while removing stimulation effects. A-B (right): Condition-
specific embedding w isolates the stimulation effect. C: Reconstructions from both z and w (yellow)
recover empirical gene means and variances, while reconstructions from z alone (blue) miss the
stimulation-induced variance, confirming that z discards y while preserving cell-type features.

Results:  Supplementary Table [T7] shows that DisCoVR effectively achieves the desired behavior
with strong empirical performance, where only cell type information is captured in z (Figure [SA,
middle) while the effects of IFN-/3 stimulation are wholly represented in w (Figure[5B, right). Other
approaches either (1) achieve mixing in the z space, but compromise on keeping cell types separated
or (2) leak information about stimulation into the z space (Supplementary Figure|[6).

Facilitating interpretability: By enabling marginalized reconstructions, DisCoVR provides a
direct link between shared embeddings and gene expression, offering clearer insight into the effects
of IFN-4 stimulation, unlike other methods. In Figure [5[C, comparing variance across marginal and
full reconstructions accurately recovers gene-level differences associated with IFN-3 stimulation,
including ISG15, FTL, CCLS, CXCL10, CXCL11, APOBEC3A, ILIRN, IFITM3 and RSAD?2.

6 CONCLUSION

In this work we introduced a variational framework for disentangled representation learning. Our
formulation explicitly separates condition-invariant and condition-aware factors. Unlike prior work,
DisCoVR incorporates two reconstruction paths, one based solely on the shared latent variable z, and
the other on both latent variables z and w. Our model simultaneously learns informative shared rep-
resentations, and captures structured variation across conditions. Experimental results demonstrate
that DisCoVR achieves strong reconstruction, minimal information leakage, and accurate modeling
of conditional effects, consistently outperforming existing methods.
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A ADDITIONAL RELATED WORK

A.1 DOMAIN GENERALIZATION

The task of representation disentanglement is closely related to the field of domain generalization
(Muandet et al., 2013)), which assumes limited or no access to target domain samples and aims to
learn representations that can be readily adapted, often via transfer learning, to new, unseen domains.

As noted by [Wang et al.|(2019), existing methods in domain generalization can be broadly catego-
rized into two main approaches: (i) approaches for reducing the inter-domain differences, often by
using adversarial techniques (Ghifary et al.l 2015} |Wang et al.l 2017 Motiian et al.,|2017; Li et al.,
2018} Carlucci et al., 20195 [Li et al.L 2018 'Wang et al.,|2019;|Akuzawa et al.,|2020; |Zhu et al., 2022;
Gokhale et al.} 2023} Dayal et al., [2023} |Cheng et al., [2023; |Chen et al.,|[2024), and (ii) Approaches
that construct an ensemble of domain-specific models, and then fuse their representations to form a
unified, domain-agnostic representation (Ding & Ful 2017 [Mancini et al.,|2018; Zhou et al.| 2021}
Muhammad et al., [2024).

Additional strategies for domain generalization include contrastive learning approaches (Kim et al.,
2021), methods based on distribution alignment via metrics (Muandet et al., 2013 [Sun & Saenko,
2016), and techniques utilizing custom network architectures, for instance by incorporating domain-
specific adapters between shared layers (Rebuffi et al., 2017} 2018} [Li & Vasconcelos, 2019 |Omi
et al., [2022).

The primary distinction between these methods and ours lies in the explicit probabilistic modeling
and disentanglement of domain-invariant and domain-specific factors. Whereas prior approaches
typically focus on aligning domains through adversarial training or fusing multiple domain-specific
predictors, our method constructs a structured latent space, decomposed into a shared representation
z, capturing domain-invariant information, and a conditional component w, which encodes domain-
specific variability. This factorization is learned through a tailored variational objective involving an
adversarial penalty and two reconstructions —one based on z alone, and another on the full latent
pair (z,w), thereby promoting both interpretability and a clean separation of shared and domain-
aware features.

A.2 OUT OF DISTRIBUTION GENERALIZATION
A.2.1 ENVIROMENT BALANCING METHODS

The field of out-of-distribution (OOD) generalization emerged from foundational work on causality
and invariance across training environments (Peters et al., 2016} 2017). The central assumption is
that each environment exhibits distinct spurious correlations between features and labels; therefore,
robust generalization requires models to focus on invariant relationships that hold across environ-
ments. To address this distribution shift, many recent approaches adopt a regularized empirical risk

minimization framework:

min Y ¢4(fo) + AR(fo, Fuain). (1n)

€€ Eyain

where the regularizer R encourages representations that are stable across environments. Among
these, Invariant Risk Minimization (IRM) (Arjovsky et al.,[2019) enforces that a single classifier re-
mains optimal across all environments, Variance Risk Extrapolation (VarREx) (Krueger et al.,[2021)
promotes robustness by minimizing the variance of losses across environments, and CLOVE (Wald
et al.l 2021)) takes a calibration-theoretic perspective, penalizing discrepancies between predicted
confidence and correctness across environments.

While these methods focus on enforcing predictive invariance across environments through regular-
ization, our approach instead explicitly enforces conditional independence between the shared latent
variable z and an environment-aware variable w.

A.2.2 DISTRIBUTIONALLY ROBUST METHODS

An alternative line of work for handling distribution shifts is Distributionally Robust Optimization
(DRO) (Ben-Tal et al., 2013 |Duchi et al.,|2021; |[Duchi & Namkoong} [2021};/Wei et al.,[2023)), which
avoids assuming a fixed data-generating distribution. Instead, DRO methods optimize performance
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under the worst-case scenario over a family of plausible distributions. A prominent variant, known
as group DRO (Sagawa et al., 2019; |Piratla et al., [2021)), introduces group-level structure that may
correlate with spurious features, potentially leading to biased predictions. In settings where group
labels are not directly observed, several strategies have been proposed, including reweighting high-
loss examples (Liu et al.,|2021)) and balancing class-group combinations through data sub-sampling
(Idrissi et al.} [2022).

However, these approaches assume that the label space remains fixed between training and test time,
limiting their applicability in adaptation to new domains, environments or conditions.

A.3 ZERO-SHOT LEARNING

Zero-shot learning systems (Fei-Fei et al., 20065 Larochelle et al., 2008) aim to classify instances
from novel, previously unseen classes at test time. In contrast to the out-of-distribution (OOD)
generalization setting, these approaches typically do not assume the presence or structure of a distri-
bution shift. Instead, a common strategy is to learn data representations that capture class-agnostic
similarity, enabling the model to determine whether two instances belong to the same class without
requiring knowledge of the class identity itself. Such methods include contrastive-learning (Hadsell
et al.,|2006), siamese neural networks (Koch et al.| 2015), triplet networks (Hoffer & Ailon, |2015)),
and other more recent variations (Oh Song et al., 2016} Sohn, 20165 Wu et al.l 2017; |Yuan et al.,
2019). Recent work has begun to address the impact of class distribution shifts in zero-shot settings.
For instance, [Slavutsky & Benjamini|(2024)) integrate environment-based regularization—motivated
by OOD generalization—with zero-shot learning by simulating distribution shifts through hierarchi-
cal sampling, enabling the model to learn representations that are robust to shifts in class distribu-
tions.

While this line of work shares our motivation of improving robustness under unseen conditions,
it primarily addresses the problem of class-level generalization through similarity-based learning,
rather than explicitly modeling and disentangling the latent factors—such as domain or environ-
ment—that drive distributional variation across tasks.

B PROOFS

B.1 PROOF OF PROPOSITION[2.1]

Proof.
ELBO(q, p; 2, y) = Lo (Gw|a,y: Pi T, Y) (12)
= [logp(z | y) = DxL(Gu(z.y | Pwjey)] — [logp(z | y) = Dkt (d2(2Guwley | Pz ajey)]  (13)
= DKL (@212Gw|zy | P2 wley) — DKL (Qwlo,y | Pwlz,y) (14)
=Eq.., [Eq., [loga(z | ) +logg(wlz,y) —logp(z,w | z,y)]] (15)
- Eq,.., logq(w|z,y) — log p(w|z,y)] (16)
= Eqw\f ) [quh [logq(z | z) —logp(z,w | x,y) + logp(w\x,y)]] )

Eqg. ., llogq(z | z) —logp(z | w | z,y)]] (18)
KL (Gzz | Pfw,e,) ] - (19)

Euia |
[

Eqyey

B.2 GAME EQUILIBRIUM

B.2.1 REGULARITY CONDITIONS

To ensure that expectations and KL-terms in the game objective L(qz‘x, Qulz,ys gy‘z) render the
functionals strictly concave in g, , strictly concave in gy, and strictly convex in g, the following
regularity conditions are required:

1. The likelihoods p(z|z), p(x|z,w), p(y|x) are strictly positive, continuous densities.
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2. The variational families ), and @),,, and the set of achievable classifiers G are non-empty,
convex and compact.

3. log p(z|z,w) and log g(y|z) are integrable.

B.2.2 PROOF OF PROPOSITION 2.2

Proof. Since ﬁz(qm;, p; x) is the standard ELBO objective, we have that

L(qz1z,p; ) = log p(x) — Dk (2242 | P21e) - (20)
Similarly, we have that
Lw(Qw\m,yap; x,y) = logp(x | y) — Dk (q,z\waM,y |pz,w\z,y) . (21)
Thus,
K(QZ\za qw|m,y7gy|z) = Epm,y [logp(ff) — Dk, (QZ\m H pz\z) (22)
+ logp(x ‘ y) — DkL (qz\mqw\z,y ||pz,w|:r,y) (23)
—Eq.,. logg(y | 2)] 24)

For fixed ¢, the adversarial classifier minimizes:
_Epz,yqu‘, log g(y ‘ Z)» (25)
which is the population cross-entropy and is strictly convex in g(y|z), and thus has a unique solution.

It remains to show that the terms in the objective function that depend on g, and g, ,, are strictly
concave in each argument when the others are held fixed.

Focusing on the terms dependent on q,|;,, first, define
gw = DKL (qz|J;Qw|x,y || pz,w|.7;,y) (26)

:_//W|x>q<w|x,y>uogq(z|x)+bgq(w|x,y>_10gp(z,w|m7y>} dz dw

=—/q(z | z)logq (z | x) d2+/q(w | z,y)logq(w | z,y) dw (27)
—//q(ZIw) q(w | z,y)logp(z,w | x,y)dz dw (28)
:H(Qle) + H(qwlx,y) + qu‘mEqw‘z,y Ing(Za w ‘ X, y) (29)

Note that
quleqw‘z,y log p(z,w | x,y) (30)

is linear in q,y|4,, and since H (g, ) is strictly concave in |, ,,, we have that E,, [£,] is strictly
CONCAVe in Gyy|z,y-

Similarly, define
U= =Dk (@212 || Pojz) — DKL (@20 Guwlzy || Powlzy) - (3D
By convexity of KL divergence in its first argument, — Dk, (qz|x I pzlx) is strictly concave in g ;.
Focusing on the second KL term, from Equation @l we have that
— DKL (¢z12wlz.y | P2wjzy) = H(@2e) + H(Gujey) + Eq,  Eq, ., logp(z,w | z,y), (32)
where H (g, ) is strictly concave in g,
Recall that we assumed that p(w|y) depends on ¢(z|z). Under our model
p(@,y,z,w) = p(y)p(w | y)p(2)p( | 2z, w), (33)
yielding

Pl | 2 w) a

p(zw,|z,y) =pw|y) (x| y)

17
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Hence,

p(2)p(x | z,w
Eq. . Equpo, logp(z,w | 2,y) =By By, [logp(w ly) + log<)p(;||y))

|

(35)

where p(w | y) = N (w; py, I) with py, =B, [Eq__[2]]. Therefore,

1
Eg. .o, l0gp(w | 9)] = =3 |dlog(2m) + By By, .., w—py ]

where — ||lw — ,uyH2 is a quadratic form in p,, which is linear in gq.|,, and thus
E Eqw‘w [logp(w | y)] is strictly concave in qz|o- Hence, —Dxkr, (qz\xquc,y sz,w\xw) is

qz|x
strictly concave in .|, and thus so is E,,,  [£.].

C SUPPLEMENTARY FIGURES

Ol

(@ (b)
Supplementary Figure 1: Encoder-decoder structures for previous approaches. (a) CSVAE. (b)
DIVA - CCVAE.
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Supplementary Figure 2: Comparison of approximate variational posteriors against the true posterior
for latent variables z, w for different values of z with y = 0 (top) and y = 1 (bottom).
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DISCoVeR (Ours) DIVA CCVAE CVAE

HCSVAE - N.A.

HCSVAE CSVAE - N.A. CSVAE

Supplementary Figure 3: Colored MNIST results for no noise.
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Supplementary Figure 4: Colored MNIST visual results across the remaining noise levels.
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Supplementary Figure 5: Reconstruction performance for other models on the CelebA-Glasses
dataset. Top: Original samples from the data. Bottom: Reconstructions by the given model.
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Supplementary Figure 6: Embeddings obtained by other models on the Kang dataset. For each
block, top (resp. bottom) rows are z (resp. w) embeddings, while left (resp. right) columns are

colored by cell type (resp. stimulation).

D SUPPLEMENTARY TABLES FOR EXPERIMENTAL RESULTS

Supplementary Table 1: RMSE for the Colored MNIST dataset without any label noise.

Marginal RMSE (p = 0) |

CSVAE - No Adv. 0.064 + 0.002
CSVAE 0.079 £ 0.008
HCSVAE - No Adv. 0.094 + 0.004
HCSVAE 0.079 £+ 0.030
DIVA 0.065 £ 0.005
CCVAE 0.065 £ 0.006
DisCoVR (Ours) 0.064 + 0.000
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Supplementary Table 2: RMSE calculated between the estimated and true marginal across different
levels of label noise on the Colored MNIST dataset. p defines label flip probability. Bold denotes
best performance.

Marginal RMSE |
p=0.1 p=0.2 p=20.3 p=04
CSVAE - No Adv. 0.141 £ 0.002 0.141 £ 0.003 0.142 £ 0.002 0.143 £ 0.002
CSVAE 0.135 £ 0.022 0.152 £0.018 0.181 £ 0.007 0.173 £ 0.008
HCSVAE - No Adv.  0.150 £ 0.001 0.150 £ 0.000 0.151 £ 0.000 0.151 £ 0.001
HCSVAE 0.139 £ 0.003 0.141 £ 0.001 0.141 £ 0.001 0.141 £ 0.001
DIVA 0.115 £ 0.011 0.102 £0.013 0.106 £ 0.010 0.113 £0.014
CCVAE 0.092 £ 0.002 0.103 £0.014 0.099 £0.011 0.092 £ 0.005
DisCoVR (Ours) 0.073 £0.001 0.083 £0.004 0.087+0.002 0.087+0.001

Supplementary Table 3: Model performances on the CelebA-Glasses dataset. Bold denotes best
performance.

I(zw) | NLL (J)
CSVAE - No Adyv. 0.048 +0.014 137.522 £ 0.155
CSVAE 0.079 £ 0.029 145.989 + 0.336
HCSVAE - No Adv. 0.055 £ 0.012 131.813 £0.21
HCSVAE 0.055 +0.014 137.319 £ 0.265
DIVA 0.188 £0.028 143.528 + 0.02
CCVAE 0.083£0.022 131.764 £+ 0.006
DisCoVR (Ours) 0.030 £0.011  135.677 = 0.007

DisCoVR - Common (Ours) — 374.114 4+ 0.05

E ADDITIONAL DISENTANGLEMENT METRICS

We provide an extended disentanglement assessment using multiple metrics. Because mutual in-
formation is difficult to estimate reliably, we report two estimators—MINE and kNN. Although
their absolute values differ, the relative rankings of the methods remain consistent as can be seen in
the ranking tables. In addition to these mutual-information estimates, we also report the following
metrics, which quantifying the level of label information captured by w compared to z :

Mutual Information Gap (MIG)
I(y;w) — 1(y; 2)

MIG(w; z) = )

Mutual Information Completeness (MIC)
1(y; w)

MIC(w: 2) = I(y;w) + 1(y; 2)

E.1 PARAMETRIC MODEL

CSVAE and its variants impose a fully separable prior, thereby forcing separability even when the
true latent structure is not separable (see Table E]) In contrast, DisCoVR learns informative condi-
tional embeddings that closely track the true posterior without requiring ground-truth knowledge of
a truncated or fully separable prior, and it outperforms both DIVA and CCVAE.

Replacing the prior in DisCoVR with a fully separable predefined prior on w yields consistent em-
beddings with the ground-truth structure while retaining the benefits of separability.
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Supplementary Table 4: Additional disentanglement metrics calculated with KNN mutual informa-
tion estimation for the parametric model dataset with £ = 20. Bold indicates closest to true posterior
within group.

Assumption Model 1(y; 2) 1(y;w) I(w; 2) MIG(w; z) MIC(w; z) I(w;z | y)

CSVAE - N.A. 0.069 £0.034 0.634+0.002 0.098 +£0.034 0.063+£0.004 0.904+0.048 0.000 £ 0.002

Fully Separable CSVAE 0.024 £ 0.048 0.620 £ 0.044 0.047 £0.050 0.067+0.010 0.963 +0.073 0.013 £ 0.009
¥ >ep HCSVAE - N.A. 0.000+£0.000  0.643+0.000 0.000 £0.001  0.072£0.000  1.000 =+ 0.000  0.000 & 0.000
HCSVAE 0.000+0.000  0.643 +£0.001  0.001 £0.001  0.072£0.000  1.000 £ 0.000  0.000 & 0.001

DisCoVR (CSVAE prior)  0.000 £0.000 0.643 +0.000 0.051 £ 0.007 0.072 £ 0.000 1.000 £ 0.000  0.031 £ 0.005

DIVA 0.021 £ 0.042 0.091 + 0.046 0.000 £ 0.000 0.008 £ 0.010 0.800 =+ 0.400 0.000 £ 0.000

Flexible CCVAE 0.022 £0.043  0.090 £ 0.045 0.000 = 0.000 0.008 £ 0.010 0.800 +£ 0.400 0.000 £ 0.000
DisCoVR (our prior) 0.010 £0.006 0.1514+0.007 0.108+0.029 0.016+0.001 0.938+0.035 0.072+0.020

Fully Separable Posterior (no truncation) 0.057 £ 0.001 0.057 £ 0.000 0.144 £ 0.003 0.000 £ 0.000 0.499 £ 0.006 0.090 £ 0.002
¥ >ep True Posterior 0.058 £0.003  0.643+£0.000  0.144£0.005  0.066 =0.000  0.917+0.004  0.055 4 0.003

Supplementary Table 5: Additional disentanglement metrics calculated with MINE mutual infor-
mation estimation for the parametric model dataset. Bold indicates closest to true posterior within

group.

Assumption Model I(y; 2) I(y; w) I(w; 2) MIG(w; z) MIC(w; z) I(w;z | y)

CSVAE - N.A. 0.096 £0.037 0.5284+0.026 0.096 +0.034 0.048 £0.006 0.848 +0.057 0.001 +0.001

Fully Separable  CSVAE 0.033+0.055 0.526 £0.045 0.031£0.045  0.055+£0.010  0.945+0.091  0.009 & 0.005
¥ Sep HCSVAE - N.A. 0.000 £ 0.000 0.543 £0.018 0.000 £ 0.000 0.061 £ 0.002 1.000 £ 0.000 0.000 £ 0.000
HCSVAE 0.000+£0.000  0.543+0.022  0.000 £0.000  0.061+0.002  1.000 =+ 0.000  0.001 £ 0.000
DisCoVR (CSVAE prior)  0.020 £ 0.004 0.543 £0.018 0.033 £ 0.005 0.058 £ 0.002 0.964 £0.008  0.030 4 0.004

DIVA 0.027+0.053  0.113+£0.056  0.001 £0.001  0.010£0.012  0.798 £0.398  0.001 & 0.000

Flexible CCVAE 0.026+£0.052  0.115+£0.058  0.001 £0.001  0.010£0.012  0.799£0.399  0.001 & 0.000
DisCoVR (ours) 0.037 £0.006 0.176+0.008 0.109+0.025 0.016+0.001 0.825+0.026 0.073+0.018

Fully Separable Posterior (no truncation) 0.084 £ 0.003 0.083 £ 0.003 0.137 £ 0.004 0.000 £ 0.000 0.497 £ 0.009 0.088 £ 0.003
¥ Sep True Posterior 0.085 £ 0.005 0.493 £0.011 0.139 £ 0.005 0.046 £ 0.002 0.853 £ 0.009 0.057 £ 0.004

Supplementary Table 6: Rank (1 = closest to True Posterior) of each method with respect to the
true posterior for metrics calculated with kNN mutual information estimation with k& = 20. Colors
indicate rank within each block: red = worse (farther), green = better (closer).

Assumption Model I(

CSVAE - N.A.
CSVAE
Fully Separable HCSVAE - N.A.
HCSVAE
DisCoVR (CSVAE prior)

DIVA
Flexible CCVAE
DisCoVR (our prior)

I(y;w) I(w;z) MIG(w;z) MIC(w;z) I(w;z|y)

W wewwe—~ S
w
—_ W N ===

2
1
3
3
3
2
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Supplementary Table 7: Rank (1 = closest to True Posterior) of each method with respect to the
True Posterior for metrics calculated with MINE mutual information estimation. Colors indicate
rank within each block: red = worse (farther), green = better (closer).

Assumption  Model I(y;2) I(y;w) I(w;z) MIG(w;z) MIC(w;2) I(w;z|y)

CSVAE - N.A.
CSVAE
Fully Separable HCSVAE - N.A.
HCSVAE
DisCoVR (CSVAE prior)

DIVA
Flexible CCVAE
DisCoVR (ours)

—_— N WA RN =

1
2
4
4
3
2
2
1

— W W W W=
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E.2 NoIsy Swiss RoLL

When the observed labels are noisy, DisCoVR outperforms other methods, obtaining embeddings
close to the ground truth.

Supplementary Table 8: Additional disentanglement metrics calculated with KNN mutual informa-
tion estimation for the Noisy Swiss Roll (p = 0.3) dataset with £ = 20. Bold indicates closest to
ground truth within group.

Assumption Model I(y; 2) I(y;w) I(w; 2) MIG(wj; z) MIC(w; z) I(w;z | y)

CSVAE-N.A.  0.041£0.007 0.525+0.221  0.362+£0.180  0.057+0.026  0.888+0.098  0.266 & 0.152

Fully Separable  CSVAE 0.0184+0.026  0.429+0.254 0.240+£0.181  0.048 £0.032  0.912+0.129  0.186+0.146

¥y >ep HCSVAE - N.A.  0.029 £ 0.007 0.642 £ 0.000 0.065 £+ 0.013 0.072 £ 0.001 0.957 +0.010 0.009 +0.019

HCSVAE 0.001 £0.002 0.641+0.001  0.005+0.004 0.075+0.000 0.999 +0.003 0.000 = 0.000

DIVA 0.034£0.013  0.036+0.011  2.633+£0.360  0.000+0.003  0.515+0.159  2.185 + 0.332

Flexible CCVAE 0.040 £0.015  0.0304+0.007  2.952+0.124 —0.001 £0.003  0.447 +£0.153  2.462+0.118

DisCoVR (ours)  0.000 & 0.000 0.049 +0.002 0.029 £0.011 0.006 + 0.000 1.000 + 0.000 0.014 + 0.008

Noisy Ground Truth 0.000£0.000  0.055+0.002  0.000+0.000  0.007£0.000  1.00040.000  0.000 = 0.000
Supplementary Table 9: Additional disentanglement metrics calculated with MINE mutual informa-
tion estimation for the Noisy Swiss Roll (p = 0.3) dataset. Bold indicates closest to ground truth

within group.
Assumption Model I(y; 2) I(y; w) I(w; 2) MIG (w; 2) MIC(w; z) I(w;z | y)

CSVAE-N.A.  0.046+£0.022 0422+0.186  0.050+£0.020  0.044+0.023  0.834+£0.184  0.029+0.017

Fully Separable CSVAE 0.023 £0.027 0.373£0.232 0.027+£0.020 0.041 £0.028 0.877 £0.198 0.024 +£0.017

¥y >ep HCSVAE-N.A.  0.023+0.014  0.585+0.011  0.026+0.012  0.066 +0.002  0.963+0.021  0.006 = 0.002

HCSVAE 0.002+0.000 0.570+0.011  0.002+0.001  0.067+0.001  0.997 +0.001 0.003 + 0.001

DIVA 0.041+0.024  0.0434£0.026  0.313+£0.084  0.000 £ 0.006  0.507 +0.296  0.345 + 0.065

Flexible CCVAE 0.056 £0.020 0.036+0.020 0.507+£0.114  —0.002+0.004  0.390 +£0.226  0.494 + 0.099

DisCoVR (ours) 0.001=+0.000 0.069+0.002 0.004+0.002 0.008+0.000 0.983 +0.004 0.006 + 0.002

Noisy Ground Truth 0.000 £ 0.000 0.024 +£0.018 0.000 £ 0.001 0.003 = 0.002 0.985 + 0.048 0.002 = 0.001

Supplementary Table 10: Rank (1 = closest to Ground Truth) of each method with respect to the
Ground Truth for metrics calculated with KNN mutual information estimation with & = 20 on the
Noisy Swiss Roll (p = 0.3) dataset. Colors indicate rank within each block: red = worse (farther),
green = better (closer).

Assumption Method I(y;2) I(y;w) I(w;z) MIG(w;z) MIC(w;z) I(w;z|y)
CSVAE - N.A. 4 2 4 2 4 4
Fully Separabl CSVAE 2 1 3 1 3 3
WY Separabie  HCSVAE-NA. | 3 4 2 3 2 2
HCSVAE 1 3 1 4 1 1
DIVA 2 2 2 2 2 2
Flexible CCVAE 3 3 3 3 3 3
DisCoVR (ours) 1 1 1 1 1 1

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Supplementary Table 11: Rank (1 = closest to Ground Truth) of each method with respect to the
Ground Truth for metrics calculated with MINE mutual information estimation on the Noisy Swiss
Roll (p = 0.3) dataset. Colors indicate rank within each block: red = worse (farther), green = better
(closer).

Assumption ~ Model I(y;2) I(y;w) I(w;z) MIG(w;z) MIC(w;z) I(w;z|y)
CSVAE - N.A.
CSVAE
HCSVAE - N.A.
HCSVAE
DIVA

Flexible CCVAE

DisCoVR (ours) _

F ABLATIONS ON MODEL COMPONENTS

Fully Separable

We evaluate the contribution of each model component by examining two variations: (1) applying
the classifier directly to z, and (2) replacing the conditional prior on w with a standard Gaussian.

When training the classifier directly on z we were able achieve results qualitatively similar to those
obtained using the reconstruction &, but doing so requires substantially more parameter tuning.

An unconditional standard Gaussian prior for w, causes w to collapse into a representation redundant
with z, removing meaningful separation.

Ground Truth DisCoVR Classifier Standard Gaussian
(Full Model) over z Prior for w

Supplementary Figure 7: Ablation study on the Noisy Swiss Roll (p = 0.3) dataset.

DisCoVR Classifier Standard Gaussian
(Full Model)

over 2 Prior for w

Supplementary Figure 8: Ablation study on the Noisy Colored MNIST (p = 0.3) dataset. For each
setting: left column denotes coloring by noisy labels, right column denotes coloring by digit (shape,
not included in the label).
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G ADDITIONAL EXPERIMENT ON CELEBA-HATS

We performed an additional experiment on the CelebA dataset, with the attribute Wearing_hat
denoting the y label. Supplementary Table 12| outlines the results of this experiment. DisCoVR is
the only method that exhibits high disentanglement for z, w without compromising reconstruction
quality.

Supplementary Table 12: Model performances of a single experiment on CelebA-Hats. Bold denotes
best performance.

I(zw)} NLL(})

CSVAE - N.A. 0.360 653.537
CSVAE 0.213 351.082
HCSVAE - N.A. 0.135 2608.442
HCSVAE 0.192 673.674
DIVA 0.553 356.090
CCVAE 0.856 347.940
DisCoVR (Ours) 0.059 353.271
DisCoVR (Ours) - Common - 437.144

H IMPLEMENTATION DETAILS

H.1 CONSIDERATIONS AND REPRODUCIBILITY

We run all experiments on a single H100 GPU. Reported means and standard deviations for tables are
conducted over 10 repetitions of the experiment with different random seeds. All models are trained
using the AdamW (Loshchilov & Hutter, [2019)) optimizer until validation loss stops decreasing for
50 epochs. Wherever provided, we use mutual information neural estimation (MINE, Belghazi
et al.[ (2018))) and k-Nearest Neighbor (kNN) mutual information estimation |Kraskov et al.| (2011}
to obtain mutual information estimates. For Naive Bayes classifiers, we use the implementation
provided by scikit-learn (Pedregosa et al., [2011)). To use ideal hyperparameters for each method,
we consult the original implementation whenever possible, and conduct a simple grid-search to
produce originally described model behavior. Implementations of all methods compared in this
study, including DisCoVR, as well as code to reproduce our results, is attached to this submission
and will be made public upon acceptance. Models compared in the study admit a weighting term
for each term in the loss function, of which most are shared across different approaches. We use the
following shorthands for each of the terms:

Rec. = By, [Ey,,, , logp(z | z,w)]]
Dx1(Z) = Dxr(qz« || p=)

DxL(W) = Dk (qw)ey | Puly)
Adv. — —E,, ,[log g(y | 2)]

Class. — Eqw‘w,y[IOg q(y | w)]

Rec. - (Z) = K, [logp(z | 2)]

Below, we provide additional details for the hyperparameters used in each experiment, and any other
external resources used to obtain the corresponding sections’ results. In addition, we include details
regarding runtime and memory footprint of running experiments with the models included in our
study.
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Supplementary Table 13: Time spent per epoch during training for each dataset.

PM. N.S.R CMNIST CelebA scRNA-seq

CSVAE - N.A. 1091s  8.02s 14s 54.43s 4.78s
CSVAE 12.71s  8.98s 14.41s 74.68s 4.99s
HCSVAE -N.A.  15.6s 10.92s 17s 44.3s 6.34s
HCSVAE 16.51s  11.8s 16.8s 68.53s 5.3s
DIVA 11.1s 8s 18.59s 48.96s 3.55s
CCVAE 12.1s  8.44s 17.9s 49.65s 5.25s

DisCoVR(Ours) 12.18s  8.73s 21.8s 109.86s 6.09s

Supplementary Table 14: Model inference time for a single batch for each dataset.

PM. N.S.R CMNIST CelebA scRNA-seq
CSVAE - N.A. 72ms  28ms 57ms 329ms 100ms

CSVAE 40ms  29ms 59ms 187ms 96ms
HCSVAE - N.A.  36ms 30ms 55ms 214ms 95ms
HCSVAE 37ms  39ms 52ms 191ms 119ms
DIVA 25ms  26ms 60ms 154ms 42ms
CCVAE 27ms  28ms 42ms 163ms 93ms

DisCoVR(Ours) 32ms 27ms 63ms 205ms 123ms

Supplementary Table 15: Memory footprint of running an experiment for each dataset.

PM. N.S.R CMNIST CelebA  scRNA-seq
CSVAE - N.A. 53MiB 255MiB 1988 MiB 4868 MiB 298 MiB
CSVAE 253 MiB 255MiB 2378 MiB 4812 MiB 300 MiB
HCSVAE-N.A. 254 MiB 255MiB 2558 MiB 4588 MiB 292 MiB
HCSVAE 253 MiB 256 MiB 2998 MiB 4466 MiB 294 MiB
DIVA 253 MiB 255MiB 2634 MiB 4996 MiB 300 MiB
CCVAE 253 MiB  255MiB 3066 MiB 4998 MiB 300MiB

DisCoVR (Ours) 254 MiB 257MiB 3612MiB 7078 MiB 308MiB

H.1.1 PARAMETRIC MODEL

for the parametric model, we consider z,w € R and use multi-layer perceptrons (MLPs) with
Nhidden = 2, Aridden, = S tO parameterize approximate posteriors, the generative model and classi-
fiers. For all models, we use learning rate v = 0.001. A more detailed table of model-specific loss
weights is provided in Supplementary Table
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Supplementary Table 16: Loss weights for the parametric model experiment.

Rec. Dxi(Z) Dxn(W) Adv. Class. Rec.-(2)
CSVAE - No Adv. 1 1 1 — — —
CSVAE 2.5 1 0.5 20 — —
HCSVAE - No Adv. 1 1 0.5 — — —
HCSVAE 2.5 1 0.5 20 — —
DIVA 1 1 1 — 1 —
CCVAE 1 1 1 — 1 —
DisCoVR (Ours) 0.75 0.9 0.2 0.8 — 0.25

Supplementary Table 17: K-Means NMI for embeddings across stimulation (y) and cell type (com-
mon structure).

w - Stimulation (1) 2z - Cell Type (1)  z - Stimulation ({)

CSVAE - No Adv. 0.949 £ 0.003 0.702 £ 0.015 0.187+0.0
CSVAE 0.939 £ 0.002 0.406 £ 0.001 0.002 +£0.0
HCSVAE - No Adv. 0.933 £ 0.006 0.628 + 0.016 0.091 £ 0.002
HCSVAE 0.931 £ 0.005 0.433 £ 0.001 0.003 £0.0
DIVA 0.801 £ 0.0 0.628 = 0.011 0.056 = 0.0
CCVAE 0.604 £0.0 0.683 £ 0.016 0.103£0.0
DisCoVR (Ours) 0.946 + 0.002 0.688 £ 0.0 0.002 +£0.0

H.1.2 NoOISY SWISS ROLL

For this experiment, we consider z,w € R? and use MLPs with nhigden = 2, dhidden = 128 to
parameterize approximate posteriors, the generative model and classifiers. For all models, we use
learning rate v = 0.001. A more detailed table of model-specific hyperparameters is provided in
Supplementary Table[T§]

Supplementary Table 18: Loss weights for the noisy Swiss roll experiment.

Rec. Dxr(Z) Dxrn(W) Adv. Class. Rec.-(2)

CSVAE - No Adv. 20 0.2 1 — — —
CSVAE 20 0.2 1 50 — —
HCSVAE - No Adv. 20 0.2 1 — — —
HCSVAE 20 0.5 1 50 — —
DIVA 20 0.2 0.2 — 1 —
CCVAE 20 0.2 0.2 — 1 —
DisCoVR (Ours) 0.9 0.2 0.2 8 — 0.1

H.1.3 NOISY COLORED MNIST

For this experiment, we consider z € R2°, w € R? and use convolutional neural networks (CNNs)
to parameterize approximate posteriors and the generative model. For this example, DisCoVR can
support z,w with different sizes, by parameterizing p(w | y) through neural networks. For all
models, we use learning rate v = 0.0001. We detail the architectures and model-specific hyperpa-
rameters in Supplementary Tables[T9]-[22] All other neural networks are formulated as MLPs with
Nhidden = 2 dhidden = 4096.
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Supplementary Table 19: Image encoder architecture for noisy colored MNIST. Parameters for
Conv2d are input / output channels. Parameters for MaxPool2D are kernel size and stride. Param-
eter for the linear layer is the output size. For variances, outputs are passed through an additional
Softplus layer to ensure non-negativity.

Block Details

1 Conv2d(3,32) + BatchNorm2D + ReLU

2 Conv2d(32,32) + BatchNorm2D + ReLLU + MaxPool2D(2,2)
3 Conv2d(32,64) + BatchNorm2D + ReLLU + MaxPool2D(2,2)
4 Conv2d(64,128) + BatchNorm2D + ReLLU + MaxPool2D(2,2)
5 Linear(4096) + BatchNorm1D + ReLu

6 Linear(4096) + BatchNorm1D + ReLu

7 Linear(d;qtent)

Supplementary Table 20: Image decoder architecture for noisy colored MNIST. Parameters for
Conv2d are input / output channels. Parameters for MaxPool2D are kernel size and stride. Pa-
rameter for the linear layer is the output size.

Block Details

Linear(4096) + BatchNorm1D + ReLu
Linear(4096) + BatchNorm1D + ReLu
Linear(1152) + Unflatten
Upsample(2) + Conv2d(128, 64) + BatchNorm2D + ReLU
Upsample(2) + Conv2d(64, 32) + BatchNorm2D + ReLU
Upsample(2) + Conv2d(32, 32) + BatchNorm2D + ReLU
Conv2d(32, 3) + Sigmoid

NN A W~

Supplementary Table 21: Latent classifier architecture for noisy colored MNIST. Outputs parame-
terize logits of class probabilities.

Block Details

1 Linear(4096) + BatchNorm1D + ReLu
2 Linear(4096) + BatchNorm1D + ReLu
3 Linear(2)

Supplementary Table 22: Loss weights for the noisy colored MNIST experiment.

Rec. Dkrn(Z) Dxn(W) Adv. Class. Rec.-(2)

CSVAE - No Adv. 1 0.0001 1 — — —
CSVAE 1 0.0001 1 1 — —
HCSVAE - No Adv. 1000 0.0001 1 — — —
HCSVAE 10000  0.0001 1 1 — —
DIVA 1 0.0001 0.0001 — 1 —
CCVAE 1 0.0001 0.0001 — 1 —
DisCoVR (Ours) 0.5 0.0001 0.0001 0.1 — 0.5
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H.1.4 CELEBA-GLASSES

Motivated by the previous application of Klys et al.| (2018), our choices follow those outlined in
Larsen et al.|(2016). We provide a detailed table of model-specific hyperparameters in Supplemen-

tary Table

Supplementary Table 23: Loss weights for the CelebA-Glasses experiment.

Rec. Dx1(Z) Dxn(W) Adv. Class. Rec.-(2)

CSVAE - No Adv. 1 0.0001 1 — — —
CSVAE 1000 0.0001 1 1 — —
HCSVAE - No Adv. 1000 0.0001 1 — — —
HCSVAE 10000 0.0001 1 1 — —
DIVA 100000 0.0001 0.0001 — 1 —
CCVAE 100000 0.0001 0.0001 — 1 —

DisCoVR (Ours) 1000000  0.0001 0.0001 2000 100000

H.1.5 ScRNA-SEQ

Following on the previous applications by [Lopez et al|(2018), we use z € R, w € R2. For
DisCoVR we match the dimensions and use w € R'" to avoid parameterizing the prior p(w | z,y)
with an additional neural network. We use MLPs with np;4den = 1, dpidden = 128 to parameterize
approximate posteriors, the generative model and classifiers. We calculate K-Means NMI through
scikit-learn (Pedregosa et al.,[2011)) by calling the normalized-mutual_info_score function
with the original labels and the clusterings obtained by running KMeans on (1) the entire latent
embedding and (2) single dimensions of the embedding and report the highest score. A more detailed
table of model-specific hyperparameters is provided in Supplementary Table 24}

Supplementary Table 24: Loss weights for the scRNA-seq experiment.

Rec. Dxi(Z) Dxrn(W) Adv. Class. Rec.-(2)

CSVAE - No Adv. 1 0.0001 1 — — —
CSVAE 1 0.0001 1 100 — —
HCSVAE - No Adv. 1 0.0001 1 — — —
HCSVAE 1 0.0001 1 100 — —
DIVA 1 0.0001 0.0001 — 1 —
CCVAE 1 0.0001 0.0001 — 1 —
DisCoVR (Ours) 0.9 0.0001 0.0001 100 — 0.1

H.2 SUMMARY OF THE SCVI GENERATIVE MODEL FOR [5.2.3|

Given batch key b and G genes, the generative model of scVI for a single cell z; € N¢ is formulated
as:

Zp N(O, 1)

pi = folzi,bi)

Tig = hg(zi, bz)

Tig ~ ZINB(l7pz, 0_(]7 7T7;g)
Here, g indexes genes, [; = > g Lig denotes the total number of counts for a single cell, z; denotes
the latent representation of the cell, and p; denotes the normalized expression of the cell. fy is for-

mulated as a neural network with a final softmax layer. h is a neural network used to parameterize
zero-inflation probabilities for the generative zero-inflated negative binomial (ZINB) distribution.
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As such, for a single batch, the formulation of scVI is equivalent to the VAE with a ZINB likeli-
hood. While all other models can be extended easily, DisCoVR requires reconstructions as a proxy
for the adversarial loss. For this formulation, we directly treat the normalized expressions p; as the
adversarial reconstructions 2.
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