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ABSTRACT

Human mental processes allow for qualitative reasoning about causality in terms
of mechanistic relations of the variables of interest, which we argue are naturally
described by structural causal model (SCM). Since interpretations are being de-
rived from mental models, the same applies for SCM. By defining a metric space
on SCM, we provide a theoretical perspective on the comparison of mental models
and thereby conclude that interpretations can be used for guiding a learning system
towards true causality. To this effect, we present a theoretical analysis from first
principles that results in a human-readable interpretation scheme consistent with
the provided causality that we name structural causal interpretations (SCI). Going
further, we prove that any existing neural induction method (NIM) is in fact inter-
pretable. Our first experiment (E1) assesses the quality of such NIM-based SCI.
In (E2) we observe evidence for our conjecture on improved sample-efficiency for
SCI-based learning. After conducting a small user study, in (E3) we observe supe-
riority in human-based over NIM-based SCI in support of our initial hypothesis.

1 INTRODUCTION

There has been an exponential rise in the use of machine learning, especially deep learning
in several real-world applications such as medical image analysis (Ker et al., 2017), particle
physics (Bourilkov, 2019), drug discovery (Chen et al., 2018) and cybersecurity (Xin et al., 2018) to
name a few. While there have been several arguments that claim deep models are interpretable, the
practical reality is much to the contrary. The very reason for the extraordinary discriminatory power
of deep models (namely, their depth) is also the reason for their lack of interpretability. To allevi-
ate this shortcoming, interpretable machine learning (Chen et al., 2019; Molnar, 2020) has gained
traction to explain algorithm predictions and thereby increase the trust in these learned models.

In their seminal book, Pearl & Mackenzie (2018) argue that causal reasoning is the most important
factor for machines to achieve true human-level intelligence. The same has been pointed out recently
by Hofman et al. (2021) who argue that systems that are efficient in both causality and interpretations
are need of the hour. Questions of the form ”What if?” and ”Why?” have been shown to be used
by children to learn and explore their external environment (Gopnik, 2012; Buchsbaum et al., 2012)
and are essential for human survival (Byrne, 2016). This makes understanding and reasoning about
causality an inherently important problem.

While acknowledging the difficulty of the problem, we push in this direction pragmatically by pre-
senting the first work on causal interpretations—interpreting a (deep) causal induction method by
grounding it in its causal semantics, which we call structural causal interpretations (SCI). We show
how neural causal induction models due to their causal semantics are interpretable, but then go an-
other step, by also suggesting how these interpretations, if available, can be used in the first place
to improve on our models understanding, thereby also establishing their importance in the process.
The motivation behind this work is to move beyond black-box heat map based methods in explain-
able artificial intelligence. Although there exist some works such as explanatory interactive learning
(XIL) (Teso & Kersting, 2019) and Clever-Hans methods (Lapuschkin et al., 2019; Stammer et al.,
2021) that do move beyond such heat maps, we can go a step further and provide structured causal
interpretations. XIL methods can fix Clever-Hans like moments but are overly dependent on the
expert provided explanations. SCIs provide an elegant way to circumvent the Clever-Hans moments
while also avoiding external factors such as expert explanations. Thus, we set the foundation for
further research into making neural models, without initial causal semantics, possibly more causal.
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Overall, we make the following contributions: (1) Starting from first principles involving men-
tal models, causality and interpretations, we establish SCI theoretically to provide human-
understandable interpretations from causal models, (2) we prove that SCI are readily available and
that in fact any neural induction model (NIM) is SCI-interpretable, (3) we show empirically for three
example members of NIM (Zheng et al. (2018),Goudet et al. (2018),Yu et al. (2019)) multiple exam-
ple SCIs and assess their quality relative to the true underlying causality, (4) we show that existing
SCIs can help in improving the learning-based causal induction, (5) we conduct a small human study
to judge the qualitative causal structure for some graphs and show that human-based SCIs are close
to the ground truth interpretations. We make our code publicly available.1

2 BACKGROUND AND RELATED WORK

Let us briefly review the background on a recent stride in learning that proposes a continuous formu-
lation of data-driven estimation of (causal) graph structures, then the formalism of structural causal
models and how estimation of respective dependency terms is conducted, and finally consider estab-
lished works on the abstract high level ideas of explanations and interpretations.

Learning Directed Acyclic Graphs. Induction of inter-variable relationships based on available
data lies at the core of most scientific endeavour (Penn & Povinelli, 2007). The sub-class of relation
structures known as Directed Acyclic Graphs (DAG) is being focussed here due to its representa-
tional role in causality (Pearl, 2009; Peters et al., 2017). Unfortunately, due to the combinatoric
nature of the problem setting, learning DAGs from data is recognized to be an NP-hard problem
(Chickering et al., 2004). In their seminal work, Zheng et al. (2018) were able to re-formulate
the traditional view into a continuous shape such that any non-convex optimization module can be
applied to tackle the graph estimation problem. The authors propose the general formulation,

min
W∈Rd×d

f(W ) subject to h(W ) = 0, (1)

where f is a data-based score, e.g. in Zheng et al. (2018) a regularized least-squares loss is applied
assuming a sparse linear SCM i.e., f(W ) = ||X −XW ||2F + ||W ||1, and h is a smooth function
with a kernel (or null space) that only contains acyclic graphs, h(W ) = 0 ⇐⇒ W is acyclic. For
the acyclicity constraint, different variations of the same continuous counting mechanism have been
proposed, e.g., Zheng et al. (2020) proposed h(W ) = tr(eW ◦W )−d while Yu et al. (2019) proposed
h(W ) = tr[(I +W ◦W )m]−m, unfortunately, both suffer from cubic runtime-scalability in the
number of graph nodes O(d3). While the aforementioned works have focussed on data originating
from (non-linear transformation) of linear SCM, there exists yet another sub-class of DAG-learning
methodologies that focuses on more general causal inference. Ke et al. (2019) made use of data from
the first two levels of Pearl’s Causal Hierarchy (PCH) (Pearl, 2009; Bareinboim et al., 2020), namely
observational and interventional, to update their graph estimate W = G(C) while using masked
neural networks to mimic the structural equations fi = MLPθθθ(pa(Xi)) in order to maximize the
likelihood of the data under given parameterization. Brouillard et al. (2020) follows the same idea of
leveraging causal information, e.g. interventional data, for overcoming identifiability issues while
staying close to the continuous optimization formalism introduced in 1.

Causal Models and Effect Estimation. Following Peters et al. (2017), a Structural Causal Model
(SCM) is defined as C := (S, PN) where PN is a product distribution over noise variables and S is
defined to be a set of d structural equations

Xi := fi(pa(Xi), Ni), where i = 1, . . . , d (2)

with pa(Xi) representing the parents of Xi in graph G(C). An SCM C induces a DAG G with edges
(i, j) ∈ V × V meaning i causes j, induces an observational/associational distribution pC, it can
be intervened upon using the do-operator and thus generate interventional distributions pC;do(...) and
furthermore given some observations v can also be queried for interventions within a system with
fixed noise terms amounting to counterfactual distributions pC|V=v;do(...), that is, C =⇒ PCH.
To query for samples of a given SCM, the structural equations are being simulated sequentially
following the underlying causal structure starting from the independent, exogenous variables. The
dependency terms provided by the structural equations fi defines the translation between domains

1
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of the cause and the effect i.e., the causal effect g(X → Y ). In most settings, this causal effect, e.g.,
of a medical treatment onto the patient’s recovery, is the sought quantity of interest. If interventions
are admissible, then the average causal (or treatment) effect (ACE/ATE) within a binary system is
defined as a difference in interventional distributions: g(X → Y ) := ACE(X,Y ) = E[Y | do(X =
1)] − E[Y | do(X = 0)]. The ACE overcomes the fundamental problem of causal inference,
which states the restriction that individual-level causal effects cannot be estimated as we cannot
observe counterfactuals, but still suffers from the problem of identifiability i.e., that we usually don’t
even have access to interventions and thus need to resort to other causal knowledge (e.g. structural
knowledge on confounders).

Explanations and Interpretations in Deep Learning. A great body of work within deep learning
has provided visual means for explanations of how a neural model came up with its decision i.e.,
importance estimates for a model’s prediction are being mapped back to the original input space
e.g. raw pixels (Selvaraju et al., 2017; Sundararajan et al.; Schwab & Karlen, 2019; Schulz et al.,
2020). Stammer et al. (2021) argue that such explanations are insufficient for any task that requires
symbolic-level knowledge while comparing the existing state of explanations to children that are
only able to point fingers but lack articulation. While agreeing with the aspect that simple heat-
map explanations are indeed insufficient for reasoning tasks, we consider the higher order task of
understanding the meaning of a matter (why) to be akin to what is meant by the word interpretation,
while an explanation (invariant to its instantiation) refers to identifying the matter of interest (what).
Seen from this perspective, explanations are a crucial sub-process within interpretation. Thereby
what the authors in (Stammer et al., 2021) seek is in fact an interpretation i.e., the articulation by the
child which also takes into account the causal dynamics of the scene.

3 STRUCTURAL CAUSAL INTERPRETATIONS

We first provide a big picture view on the way human mental models can be expressed in terms
of SCMs and how only the true underlying causality is of interest during optimization. Then we
provide intuition with our leading example on how causal semantics can be queried for answers that
interpret their response based on the underlying causality before formalizing our main results.

3.1 HUMAN MENTAL MODELS AND THE IMPORTANCE OF TRUE CAUSALITY

To illustrate one’s thought process about the understanding of the world dynamics is argued to lie
at the core of a human mental model (Simon, 1961; Nersessian, 1992; Chakraborti et al., 2017).
Although the concept of a mental model might contain circular and abstract terms like explanation
and interpretations of its own, assuming the world dynamics to be governed by causality2 we ob-
serve that humans are capable of modelling both causal relationships between system variables and
additionally information on the strength of said relationship. Consider the following real world ex-
ample, at any given time a human has a state of overall health (relating to fat-muscle ratio, allergies
and diseases, etc.) and mobility (relating to the general freedom and flexibility of movement, e.g.,
a gymnast is more mobile than the average person). Now, a human can argue the following (1)
that mobility is being (partially) directly caused by something, in this case for instance health, e.g.,
overweight will decrease the range of motion of any individual (2) that different events (even if me-
diated via the causal variable health) can have a different severity of impact e.g., that an average car
accident causes more harm to the mobility of an individual than does an average workout session at
the gym does good. A natural candidate for capturing such properties formally are Structural Causal
Model (SCM), thereby we hypothesize the following:

Hypothesis 1 (Causal Mental Model Conversion (CMMC)). The parts of the human mental
model that are being used for encoding the causal relationships of reality’s variables can be for-
mally captured by a corresponding Structural Causal Model (see Sec.2 [2]).

The CMMC hypothesis suggests that we can make use of SCM for expressing portions of human
understanding and intuition within a mathematical language. Given such a formulation with SCM,
the implications allow for some interesting observations to be made with the key observation being
that SCM live in a metric space:

2For an extended treatise on why this is a sensible assumption consider (Pearl, 2009; Peters et al., 2017).

3



Under review as a conference paper at ICLR 2022

Jonas KurtHans

Figure 1: Structural Causal Model Perspective onto Human Mental Models. The CMMC
hypothesis (see Hyp.1) states that human mental model, which are capable of both modelling causal
relations (overall health affects mobility, H → M ) and the strength of such a relation (an average
car accident has more negative impact, g(H → M), than an average workout has positive), can be
naturally formalized within corresponding SCM. Furthermore, SCM live on a metric space (C, d)
(see Thm.1) and can overlap (e.g. in pink, all humans agree on H → M ), therefore, most causal
estimates will in fact deviate from the underlying truth, Ĉ ̸= C∗. (Best viewed in color.)

Theorem 1 (n-SCM Metric Space). Let S be a set of structural equations Xj := fj(paj , Nj)
and PN a product distribution, then Cn = {(S, PN) : |S|=n} defines the set of all constructable
n-SCMs. Furthermore, define d : (C1

n,C
2
n) 7→

∑
i ̸=j |g(S1

i (j)) − g(S2
i (j))| + q(P 1

N, P 2
N) where

q :=
√

JSD is the Jensen-Shannon-Metric on the product distributions and g(j → i) ∈ R defines
the (expected) causal effect of j on i where Si(j) refers to the isolated dependency term within the
struct.eq. i.e., fi(pai, Ni) = fN (Ni) +

∑
j∈pai

fi,j(j). Then (Cn, d) defines a metric space.

Because of space restrictions we provide the proof to Thm.1 and all subsequent mathematical results
within the supplementary section. This metric space describes the set of all SCM, which themselves
are a set of functions in addition to a product distribution, and they can all be compared against each
other by the nature of their formulation. Under the CMMC hypothesis, it follows from Thm.1 that in
fact parts of the original human mental models can be compared against each other thereby capable
of dis-/agreeing. Interestingly, this comparability of SCM/human mental models allows for a trivial
but crucial insight: if we additionally make the sensible assumption that there exists an ’objective’
true SCM within the metric space, C∗ ∈ C, then most hypothesizable SCM will in fact be wrong.
This insight tells us that causality itself is not what will help in improving our models but being close
to the true causality will. Note that while we considered an ’objective true causality’, human mental
models are of subjective nature. We make the argument that having access to many SCM-encodings
of subjective human mental models can ultimately lead in their overlap-agreement to (parts of) the
objective true causality i.e., a higher quantity equates to a higher likelihood. All the established
key concepts thus far are being visually illustrated within Fig.1. For machine learning research,
observing that only a convergence towards true causality is beneficial might not be surprising, but
observing that a set of ’subjective’ SCM can provide information is indeed surprising if we consider
interpretations. Interpretations are derivable from mental models and thus implicitly contain partial
information on the latter’s world dynamics representation (Chakraborti et al., 2017). Subsequently,
if we can query humans for their interpretations, then we can make use the acquired data, which by
definition contain causal information, to improve existing ML models by providing them with (parts
of) the true causality. In the spirit of the motivation provided by Pearl that all ML models should be
aware of cause and effect. The benefits of an approach using interpretations derived from SCM are
two-fold (1) that by construction they are human understandable allowing for interpretable ML in
which models can reason about the learnt and (2) that the models themselves become better which
is beneficial to any downstream-task. After establishing the connection between the formalism of
causality and human mental models and using it for arguing that derived interpretations can be used
to improve ML models, we now move onto the question of how to derive such interpretations from
the causal semantics in the first place while alongside providing intuitive examples.

3.2 ANSWERING HUMAN UNDERSTANDABLE QUESTIONS ABOUT DATA USING CAUSALITY

Upon establishing that interpretations are derivable from SCM and should be used for improving
ML models, this section provides an intuitive understanding of how data, queries and causal seman-
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"Hans' Mobility (M) is bad

because of his bad Health (H) 

which is mostly due to his high Age (A),
 
although his Food Habits (F) are good."

high Age good F.H.

mostly
due

bad Health
Data

SCM
(unobserved Nature)

"Why is Hans's Mobility bad?" 

Hans

Query / Question

(A)ge
(F)ood Habits
(H)ealth
(M)obility

Graph + Causal Effects

Figure 2: Why Questions and Structural Causal Interpretations The unobserved nature depicted
by SCM C on the left. The why-question Q is an individual-level query derived from some pop-
ulation D originating in C. The graphical structure of C alongside its causal effect terms induces
the sub-structure S(C). Following Thm.2, we arrive at a human expressible answer: the Structural
Causal Interpretation I(S(C), Q,D). Our paper’s lead example concerning Hans’s mobility is be-
ing highlighted alongside the intuitive-level computation in the graph (right). (Best viewed in color.)

tics are being used in conjunction for generating interpretations both for explanatory and learning
purposes. Figure 2 is being used as lead illustration for the interpretability of causal models along-
side different real-world inspired examples. In the following, we consider (single) why-questions as
goal to model inference as they induce answers that reason e.g. ”. . . because . . . ” which are gener-
ally accepted as inferences about causal quantities (Pearl, 2009). To follow suit with the previously
established examples around personal health, we could pose a question like ”Why is Hans’s Mobility
bad?” after observing the state of causal variables for the individual named Hans, with the causal
attributes being age, nutrition/food habits, overall health and mobility respectively. Given a SCM
that represents age and nutrition as being causal for the health and subsequently mobility, while nu-
trition is generally also being affected by age, one can conclude the following human understandable
interpretation as an answer to the initial question about Hans’s rather immobile state:

Interpretation 1 (Hans’s Questioned State of Mobility). ”Hans’s Mobility is bad because of his
bad Health which is mostly due to his high Age although his Food Habits are good.”

This causal interpretation of Hans’s personal state captures both reasons and importances, as a con-
sequence of the CMMC hypothesis (see Hyp.1) established previously. More importantly, Int.1
has been constructed automatically from the available data and causal knowledge in response to
the query. As a first observation towards the interpretation construction, note that the why-query
contains a relative notion ”why . . . bad?” that implicitly compares the individual Hans to the ques-
tionee’s available data set i.e., remaining population. As a second key idea, note the trivial conclu-
sion that by definition there can only exist a causal effect from some variable to another if and only
if there is a causal directed path between the variables. As a third and final concept, consider the
difference in causal effect i.e., that some variables exert more influence than others. Unifying these
three building principles in a formal manner, to be discussed in the subsequent section, allows for
the generation of interpretations like Int.1. That is, our SCM tells us that mobility of any individual
will decrease with decreasing overall health and upon observing that Hans’s health has been ”bad”
in the first place, we can conclude that the questioned state of mobility is due to Hans’s health. We
can now increase the granularity and reason recursively that, yet again, Hans’s health is such due
to his age and nutrition but this time we can introduce two more detailed distinctions. One, that
Hans’s nutrition is actually above average and therefore not the reason for his immobility. Second,
that age’s causal effect wages in more than that of nutrition, as a general statement of the given
SCM, thus the asymmetry in attribution (”mostly due”). Conclusively, a Structural Causal Inter-
pretation (SCI) depends on a measure of relativeness on a given data population, as implied by the
given why-question, and on the structural equations provided by the assumed SCM3. It is worthwhile
noting that the natural language choice of words to express the interpretation is not implied by the
form of the SCI e.g., while Hans’s mobility is said to be ”bad”, a car’s mileage is considered to be
”low” rather than ”bad”. On another note, similar to how Pearl has argued that Bayesian Networks
(BN) are a suitable representation scheme for causality (Pearl, 2009; 2011) because of BNs being
direct representations of the world and not of reasoning processes, this work poses a parallel to the
’representation scheme’ of interpretability using causal semantics. Interpretability becomes a part
of the causal nature of the modelled. In the following, we mathematically formalize the established
intuition on SCI and then proceed with the theoretical analysis of SCI-implications.

3The naming resembles that of SCM because of the importance of the structural causal information for
generating any specific interpretation.
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3.3 MATHEMATICAL FOUNDATIONS OF STRUCTURAL CAUSAL INTERPRETATIONS

Interpretations as established in the previous section (see Int.1) act in response to a query. The
queries or questions we pose are single-attribute assertions relative to a population that correspond
to the causal inquiry ”why?”, formally:
Definition 1 (Single-Why Question). Let xi ∈ D(X) be a scalar instance of X , let µX be some
population score (e.g. the mean of a sample µX := 1

n

∑n
j xj) and let R be a binary ordering relation

(e.g. R ∈ {<,>}), then a single-why question concerning X is a true assertion QX = R(xi, µX).

Using Def.1, the query concerning our lead example from the previous section used for Int.1 is
expressed as QHans := mHans < µM where µM is the average mobility of an individual. The
unification of the previously established three guiding ideas for generating interpretations (causal
connection, strength and relativeness to population) can be formalized in a set of logic rules:
Proposition 1 (First-Order Logic Rules for Interpretations). Let g(X→Y ) ∈ R be a causal
effect estimator, let s(x) ∈ {−1, 1} be the sign of a scalar, let ZX = {|g(Z→X)| : Z∈ paX}
be the set of absolute parental causal effects onto X , and µX , R as in Def.1. Furthermore, a rule
indicator is defined as 1j(X)=(−)1 signalling with which relation (if) rule j applies to input X
and 0 otherwise. Then for any pair X ∈ V, Y ∈ pa(X) and some individual-scalar y ∈ D(Y ),

(R1) Excitation: R1 ̸=R2 =⇒ [R1(s(g(Y→X)), 0) ∧ [R2(y, µY ) ∨R1(x, µX)]],

(R2) Inhibition: R1 ̸=R2 =⇒ [R1(s(g(Y→X)), 0) ∧R1(y, µY ) ∧R2(x, µX)],

(R3) Preference: |ZX | > 1 =⇒ [Y ⇐⇒ argmaxZ∈ZX
Z],

define a rule-set function R(Y→X)∈{−1, 0, 1}3 indicating for each rule j if and how the causal
relation Y→X satisfies that rule (e.g. for R1 either over- or under-excitation). For any causal sce-
nario CXY :=(g(Y→X), y, x, µX , µX) excitation (R1) and inhibition (R2) are mutually exclusive.

The three rules in Prop.1 are naturally derived from the principles established in the previous section.
The rule-set function R forms the core of the interpretation process which we finally formalize after
introducing one last mathematical concept to provide for the causal semantics of the interpretation:
Definition 2 (Causal Effect Matrix (CEM)). Let C be a SCM and g : |V | × |V | → R the causal
effect function, we refer to S(C) := (g(i→ j))ij ∈ R|V |×|V | as the causal effect matrix of SCM C.
As a special case, if S(C) ∈ [0, 1]|V |×|V |, then we call the resulting matrix the sign of the SCM.

It is important to note that the CEM in Def.2 is a sub-structure to the SCM i.e., it contains less
information. The CEM eventually enables the unification of existing approaches from DAG-learning
into a family of interpretable models. These very interpretations that pose one of our theoretical main
results, Structural Causal Interpretations, we finally formalize and prove as a recursion:
Theorem 2 (Structural Causal Interpretations). Let QX , S(C), and D ∈ Rn×d be a single-
why question on variable X , a CEM, and a data matrix respectively. Furthermore, let ⊕ni=1 vi =
(v1, . . . , vn) denote concatenation and R be the rule-set function from Prop.1. Then a Structural
Causal Interpretation is being defined recursively as

I(QX ,S(C),D) = (
⊕

Z∈pa(X)

R(Z → X),
⊕

Z∈pa(X)

I(QZ ,S(C),D)) (3)

with the base case being evaluated at the roots of the causal path to X , that is,

∃Z ∈ V : (Z → · · · → X ∧ pa(Z) = ∅ ⇐⇒ I(QZ ,S(C),D) = ∅). (4)

The recursive algorithm for computing I(QX ,S(C),D) in Eq.3 terminates on any input.

Intuitively, the construction of SCI in Thm.2 considers maximum depth interpretations i.e., the re-
cursion is being rolled out along the possible causal paths that converge into the query-variable until
the exogenous root variables are being reached. Thereby, SCI implicitly define a notion of detail
to the interpretation based on the rollout-depth of the recursion. Considering again our lead ex-
ample in Int.1 from the previous section, the maximum-depth interpretation would also contain an
argument on Hans’s Age and Food Habits relation e.g. ’[...] good Food Habits because of his high
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''''

(Left)
Ground Truth

(Right)
Learned

1 2 3 4
1: (A) Altitude, (T) Temperature; 2: (A) Age, (F) Nutrition, (H) Health, (M) Mobility
3: (C) Tank Size, (S) Driving Style, (M) Fuel Savings; 4: (T) Treatment, (Z) Pre-Condition, (R) Recovery

1 ”The temperature at the Matterhorn is low because of the high altitude.” (Ground Truth)
”The temperature at the Matterhorn is low because of the high altitude.” (Learned)

2 ”Hans’s mobility is bad because of his bad health which is mostly due to his high age, although his nutrition is good.”
”Hans’s mobility, in spite his high age, is bad mostly because of his bad health which is bad mostly due to his good nutrition.”

3 ”Your left mileage is low because of your small car and your bad driving style.”
”Your left mileage is low because of your small car and your bad driving style.”

4 ”Kurt did not recover because of his bad pre-conditions, although he got treatment.”
”Kurt did not recover because of his bad pre-cond., which were bad although he got treatment.”

Table 1: Quality of Learned Interpretations. Ground Truth SCM (left;normal) versus NOTEARS
from Zheng et al. (2018) (right;italics). The considered Why-questions can be found pronounced as
well as formal within Fig.2 respectively. Subtle differences between interpretations exist e.g., the
last interpretation is right on the top-level but for the wrong reasons (T → Z instead of T → R).

Age (life-time experience)’. At each recursion step, the satisfaction of the rule-set function is being
examined which ultimately dictates the reading of the interpretation. In a nutshell, the why-question
determines the starting point for the SCI recursion while the given causal semantics and data provide
for the interpretation specific to the model and the available information. In the following, we make
the leap towards connecting interpretability with existing methodologies from the DAG learning
literature by first introducing formally the family of data-driven CEM estimators:

Definition 3 (Family of CEM Estimators). Let L : D(C) × H → R be a scalar function on the
data D ∈ D(C) generated from some underlying SCM C = (S, PN ) and on some DAG-structured
hypothesis spaceH whose elements are defined as

→ X1 . . . Xj . . . Xn( )X1 0 . . . f1j . . . f1n
...

...
...

...
⇐⇒ X1 Xj Xn

f1j

. . .

f1n

. . . (5)

with n = |S| and functions fij describing i → j with a scalar f(xi) ∈ R. The family of Causal
Effect Matrix (CEM) estimators encompasses any learner that solves H∗ = argminH∈H L(D, H).

Def.3 provides a big picture view on methods that perform causal induction and more importantly it
argues that any induction performed on the restricted hypothesis space of DAGs is in fact a causal
induction because any resulting hypothesis respects the structure of a SCM and will thus, by con-
struction, resemble some SCM C ∈ C even if this SCM does not resemble the sought SCM C which
generated the available data D ∈ D(C∗) i.e., C∗ ̸= C. This big picture view is inline with (Pearl
& Mackenzie, 2018) where a next generation of learning systems capable of reasoning about cause-
effect relations opposed to simple correlations is being endorsed. With Def.3 we make two key
observations, firstly, that methods that estimate an SCM are more powerful than CEM-estimator:

Proposition 2 (SCM- and CEM-Estimators). Any SCM estimator is a CEM estimator.

Thereby, additional structural/causal information will only benefit the modelling procedure. The
second consequence of Def.3 poses our third and final main result in that a host of available (neural)
models from the DAG-learning literature are all interpretable:

Theorem 3 (Neural Induction Models are Interpretable). Algorithms for (causal) DAG-induction
from data (e.g. NT (Zheng et al., 2018), CGNN (Goudet et al., 2018), DAG-GNN (Yu et al., 2019),
NCM (Ke et al., 2019)) can generate Structural Causal Interpretations.

Thm.3 is important as it tells us that the causal reasoning, on at least the level of CEM, performed by
any model-type (includes neural network based models) can be queried for causal interpretations in
the sense of SCI (Thm.2). While the ability to provide answers to questions in an expressive manner
which captures what has been learned by the model is of high intrinsic value, in the following
we consider how existing interpretations can be exploited for use as a means to improve model
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Figure 3: Interpretations Improve Graph Induction. On the left a comparison of the error dis-
tributions when performing graph induction with and without existing interpretations. Alg.1 with
Mθθθ = NOTEARS is being applied. The number of falsely inferred graph links is being being re-
duced significantly as predicted by Conj.1. Technical details in Appendix. (Best viewed in color.)

learning in the first place. The following approach can be seen as an ’interpret to learn’-approach
as the interpretations provided by the model are being evaluated against existing interpretations
(possibly provided by humans) for improving the overall estimate of the underlying causality. It
can also be seen as a regularizer on the model since it can extend on any loss formulation as long
as the interpretation process I (usually I = I where I refers to Eq.3) can be incorporated into the
corresponding optimization routine (i.e., differentiability in the case of neural approximations).
Conjecture 1 (SCI Regularization). Let L be defined as in Def.3 and let H∗ be the true CEM.
Regularizing Lr := L + 1

n

∑
i ||I(QX , H,D) − Ii)||22 with existing and overlapping SCI I leads

to a more optimal solution | argminH∈H Lr(D, H)−H∗| < | argminH∈H L(D, H)−H∗|.

Algorithm 1 Dual Learning: Induct & Interpret
Input: Data D, InductorMθθθ, Interpret. I, Optimizer O
Output: CEM H , Causal Graph G

1: Let H ← 0
2: while i ≤ |I| do
3: H, l←Mθθθ(D) {induction from data}
4: QX , I∗ ← Ii
5: I ← I(QX , H,D) {estimate’s interpretation}
6: lI ← ||Î − I∗)||22 {compare}
7: θθθ ← O(l, θθθ) {parameter update}
8: end while
9: H ←Mθθθ(D), and G← | tanh(H)|

10: return H,G

The interpretations contain informa-
tion about their respective CEM.
While CEM are hard to estimate and
usually an integral part of the sought
quantity of interest, corresponding
(approximate) interpretations are of-
ten times readily available and can
thus be used. The regularization term
introduced in Conj.1 thereby penal-
izes CEM that would not be able to
account for certain explanations to
the posed single-why questions. Fur-
thermore, Conj.1 poses an interesting
direction of future research concern-
ing more general classes of causal
models that could enable a tighter in-
tegration between current practices in deep learning and causality, as in (Xia et al., 2021) for general
Neural Causal Models (NCM) and (Zečević et al., 2021b) for Graph Neural Networks based NCM.

4 EMPIRICAL ILLUSTRATION

To assist our theoretical results we provide an empirical illustration. Due to space constraints, we
choose NOTEARS (NT, Zheng et al. (2018)) as representative for NIM-based experiments and fur-
ther only highlight relevant key results while pointing to the extensive analysis in the Appendix.

Experiment 1: NIM-based SCI (Thm.3). Tab.1 considers four data sets and single-why queries
illustrated in Fig.2 i.e., Deutscher Wetterdienst (DW, Mooij et al. (2016)), Causal Health (CH,
Zečević et al. (2021a)), Mileage (M), and Recovery (R, Charig et al. (1986)). The algorithmic
interpretations are sensible but differ in terms of quality. The SCI (Thm.2) generated using the
learned causal semantics match the given ground truth interpretations for the DW and M data sets,
while differing only slightly for R and drastically for CH data sets. The violation of the linearity
assumption might offer an NT-specific explanation. An extensive study is provided in the Appendix.

Experiment 2: SCI-based Learning (Conj.1). We use Alg.1 where we set I = Iψψψ with latter
being a neural approximation to the SCI recursion from Eq.3 to assure differentiability. The graph
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within the human causal induction data: overlap (H1) and mode (H2). The H1-CEM structure is a
greedy aggregation that chooses the most-voted edge type for each edge. The H2-CEM is simply
the most frequently occuring CEM structure. (Best viewed in color.)
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4 H1 ”Hans’s mobility is bad because of his bad health which is mostly due to his high age, although his nutrition is good.”
H2 =H1
A ”Hans’s mobility, in spite his high age, is bad mostly because of his bad health which is bad mostly due to his good nutrition.”

2 H1 ”Kurt did not recover because of his bad pre-conditions, although he got treatment.”
H2 ”Kurt did not recover although his pre-condition and the fact he got treatment.”
A ”Kurt did not recover because of his bad pre-cond., which were bad although he got treatment.”

Table 2: ’Humans vs Algorithms’. Top: Edge plots per example where the bars denote the average
value of given relation and the errors confidence intervals. Bottom: The SCI generated for the two
human variants (H1, H2 from Fig.4) against an algorithm representative (NT, Zheng et al. (2018)).
Human interpretations are (near-)identical to the ground truth from Tab.1. (Best viewed in color.)

induction is being performed on Erdos–Renyi structures in a data-scarce setting with only 10 data
samples per graph induction. Fig.3 shows our empirical results on the error distributions for all the
graphs with the best improving optimization being highlighted. We observe an increase in sample-
efficiency. The interpretations contain valuable information about the underlying CEM that allow
reducing the search space, thereby favoring Conj.1. An extensive study is provided in the Appendix.

Experiment 3: Algorithmic vs. Human Interpretations. We let 22 human subjects judge the
qualitative causal structure for each of the four examples (questionnaire in Appendix). In Fig.4 we
consider two variants of measuring the structure that the humans agreed upon. In Tab.2 we show the
quantitative edge plots (top) which expose common ground in the human-based inferences and the
resulting SCI (bottom) which significantly outperform the algorithmic-based. The humans results
are in support of the CMMC hypothesis (Hyp.1). An extensive study is provided in the Appendix.

5 CONCLUSIONS AND FUTURE WORK

Starting from first principles, we discussed the connection between human mental/thinking modes
and SCMs (Hyp.1) which lead to the derivation of a metric space for SCMs (Thm.1). We then
derived three basic rules (Prop.1) that jointly with why-questions (Def.1) allow for establishing
Structural Causal Interpretations (SCI, Thm.2). We proved that any neural induction method (NIM)
is thus interpretable (Thm.3). Empirically, we showed that the NIM-SCI are sensible (E1), that SCIs
help in improving learning (E2; Conj.1), and finally a human case study that allows for comparing
NIM- and human-based SCI (E3). Following, an extension of the query type (Def.1) and accordingly
SCI-formalism (Thm.2) might allow for more complex interpretations aligned in spirit with the
intuition behind the PCH-levels Li (Pearl & Mackenzie, 2018; Bareinboim et al., 2020). Another
natural followup is to perform a large-scale user study for curating a rich human-based SCI data set.
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ETHICS STATEMENT

With our work, we have shown that we can seamlessly encapsulate several (deep) causal induction
methods inside a single interpretation framework that is consistent with the learned causal semantics.
The major impact that our work pursues is to provide human understandable answers to human
understandable questions while respecting the learned (or assumed) causality. This endeavour can
have several implications on producing causally interpretable signatures, which could be predictive
of the emergence and the success of new fields or discoveries.

Another concern can be the use of the human user study in our work. Although the questions asked
are very general and do not pose any threat to the privacy of the participating users, we anonymize
the responses before using them. To the best of our knowledge, our study does not raise any ethical,
privacy or conflict of interest concerns and obliges common practices and standards for experimental
setups in behavioral and social sciences.

REPRODUCIBILITY STATEMENT

We provide the code and data sets to reproduce the reported results through an anonymous online
repository. Lastly, details on the conducted user study along with the received and anonymized
responses are also provided in the appendix.
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A APPENDIX - STRUCTURAL CAUSAL INTERPRETATION THEOREM

We make use of this appendix following the main paper to provide the proofs to the main theo-
rems and propositions in addition to further assisting theoretical results, alongside details on the
regularization experiment and details on the execution of the human case study.

A.1 PROOF FOR THEOREM 1

We argue strongly for the view that adequate or ”true” causality is what learning systems should
seek to model opposed to simply any causality derivable from the given data. In fact, we believe this
misconception to be a strong oppressor of current research practices. An important consequence of
the fact that different causal modellings exist, is that they become comparable in terms of their SCM
specifications. The following theorem suggests that there exists always a well-defined metric space
for SCMs of same size, allowing for a feasible distance computation between any two SCMs within.

Theorem 1 (n-SCM Metric Space). Let S be a set of structural equations Xj := fj(paj , Nj)
and PN a product distribution, then Cn = {(S, PN) : |S|=n} defines the set of all constructable
n-SCMs. Furthermore, define d : (C1

n,C
2
n) 7→

∑
i ̸=j |g(S1

i (j)) − g(S2
i (j))| + q(P 1

N, P 2
N) where

q :=
√

JSD is the Jensen-Shannon-Metric on the product distributions and g(j → i) ∈ R defines
the (expected) causal effect of j on i where Si(j) refers to the isolated dependency term within the
struct.eq. i.e., fi(pai, Ni) = fN (Ni) +

∑
j∈pai

fi,j(j). Then (Cn, d) defines a metric space.

Proof. The absolute difference on the real numbers is a metric (i.e., positive-definiteness, symmetry,
and triangle-inequality hold) and g(j → i) ∈ R, furthermore, q is chosen as the Jensen-Shannon-
Metric by construction. Finally, a sum of two metrics is itself a metric.

A.2 PROOF FOR PROPOSITION 1

The logic defined in Prop.1 posed the key to defining the actual interpretation scheme later on in
Thm.2. It is sensibly defined to adhere to the causal semantics of the system and in the following
we prove that the logic rules are also consistent w.r.t. to the causal semantics i.e., for any possible
kind of causal scenario, expressed through CXY :=(g(Y→X), y, x, µX , µX), we prove that either
excitation (R1) or inhibition (R2) occur but never simultaneously, with preference (R3) optionally.

Proposition 1 (First-Order Logic Rules for Interpretations). Let g(X→Y ) ∈ R be a causal
effect estimator, let s(x) ∈ {−1, 1} be the sign of a scalar, let ZX = {|g(Z→X)| : Z∈paX}
be the set of absolute parental causal effects onto X , and µX , R as in Def.1. Furthermore, a rule
indicator is defined as 1j(X)=(−)1 signalling with which relation (if) rule j applies to input X
and 0 otherwise. Then for any pair X ∈ V, Y ∈ pa(X) and some individual-scalar y ∈ D(Y ),

(R1) Excitation: R1 ̸=R2 =⇒ [R1(s(g(Y→X)), 0) ∧ [R2(y, µY ) ∨R1(x, µX)]],

(R2) Inhibition: R1 ̸=R2 =⇒ [R1(s(g(Y→X)), 0) ∧R1(y, µY ) ∧R2(x, µX)],

(R3) Preference: |ZX | > 1 =⇒ [Y ⇐⇒ argmaxZ∈ZX
Z],

define a rule-set function R(Y→X)∈{−1, 0, 1}3 indicating for each rule j if and how the causal
relation Y→X satisfies that rule (e.g. for R1 either over- or under-excitation). For any causal sce-
nario CXY :=(g(Y→X), y, x, µX , µX) excitation (R1) and inhibition (R2) are mutually exclusive.

Proof. We have to prove that any CXY :=(g(Y→X), y, x, µX , µX) will trigger either R1 or R2
in any case but never simultaneously. For this, consider the encoding {< 7→ 0, >7→ 1} i.e., the
relations are mapped to the binary numbers. Given some causal scenario CXY , for both R1 and R2
we always have an evaluation of the triplet T = (R(s(g(Y→X)), 0), R(y, µY ), R(x, µX)). It is
easy to see that |T | = 23 = 8 is the total number of possible scenarios, where R1 covers codewords
(010, 011, 100, 101, 000, 111) and R2 covers the codewords (001, 110), and together they cover all
codewords |R1| + |R2| = |T |. Since any single scenario CXY is uniquely mapped to a codeword
through its triplet, it will either trigger R1 or R2 but never fall into both in parallel.
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A.3 PROOFS FOR THEOREM 2 AND PROPOSITION 2

Thm.2, being our second and main contribution, suggests a construction scheme based on the three
base logic rules of arguably axiomatic nature (Prop.1) for generating human-understandable answers
to single why-questions (Def.1). The rules are being recursively applied to the given causal effect
matrix estimation (Def.2), that is structure and parameterization, alongside data. The recursion for
computing the SCI I in Eq.6 terminates for any input tuple (QX ,S(C),D).

Theorem 2 (Structural Causal Interpretations). Let QX , S(C), and D ∈ Rn×d be a single-
why question on variable X , a CEM, and a data matrix respectively. Furthermore, let ⊕ni=1 vi =
(v1, . . . , vn) denote concatenation and R be the rule-set function from Prop.1. Then a Structural
Causal Interpretation is being defined recursively as

I(QX ,S(C),D) = (
⊕

Z∈pa(X)

R(Z → X),
⊕

Z∈pa(X)

I(QZ ,S(C),D)) (6)

with the base case being evaluated at the roots of the causal path to X , that is,

∃Z ∈ V : (Z → · · · → X ∧ pa(Z) = ∅ ⇐⇒ I(QZ ,S(C),D) = ∅). (7)

The recursive algorithm for computing I(QX ,S(C),D) in Eq.3 terminates on any input.

Proof. We have to show that the base case is being reached eventually for any input tuple
(QX ,S(C),D). The second tuple entry (right) in Eq.6 calls I with a query on the parents of a given
node X , that is, QZ , Z ∈ pa(X) and otherwise same arguments. Since any SCM C = (S, P (U))
is finite, i.e., the number of structural equations is an integer |S| = d ∈ N, and C implies a DAG G,
we are guaranteed to reach a root node K for which pa(K) = ∅ and since K is an ancestor to X , it
also holds that K → · · · → X . This in fact is the requirement for reaching the base case.

Since the CEM is a sub-structure of the SCM as it ”summarizes” the given structural equations to
their causal effects for each of the edges within the SCM’s induced graph, we can make the important
observation that methods that in fact model the actual SCM (e.g. NCMs as in (Xia et al., 2021) or
(Zečević et al., 2021b)) are more powerful than methods that model the sub-structure (CEM).

Proposition 2 (SCM- and CEM-Estimators). Any SCM estimator is a CEM estimator.

Proof. Let g : F ij 7→ R represent the (expected) causal effect from j to i described by a functional
form f ∈ F . A structural equation can be split into its dependency terms, fi(pai, Ni) = fN (Ni) +∑
j∈pai

fi,j(j), such that the matrix M = (g(fi,j(j)))ij is a CEM.

A.4 PROOF FOR THEOREM 3

Thm.3 is a key theoretical result that suggests that any of the existing neural causal induction meth-
ods, independent of their assumptions4 on the data-generating SCM, are in fact interpretable using
the SCI from Thm.2. Thereby, Thm.3 provides a completely new perspective on both what (neural)
causal induction methods are capable of simply due to the fact that they model causal relations and
also more importantly how a human inspector can investigate the model’s understanding of the given
data in a humanly understandable manner, since SCI imply a direct translation to natural language
(as is being detailled in below’s section) they also imply transparent communication.

Theorem 3 (Neural Induction Models are Interpretable). Algorithms for (causal) DAG-induction
from data (e.g. NT (Zheng et al., 2018), CGNN (Goudet et al., 2018), DAG-GNN (Yu et al., 2019),
NCM (Ke et al., 2019)) can generate Structural Causal Interpretations.

Proof. Causal semantics at the level of CEM or above (e.g. SCM, see Prop.2) allow by construction
for SCI (Thm.2), what is left to show is that the mentioned neural induction methods at least estimate
CEM. We start with our lead example method NT. We proceed with proving NT (Zheng et al., 2018)
to be interpretable, the other proofs will be analogous. NT estimates a linear SCM whose structural

4An example of such an assumption might be that the underlying SCM that generates the data to be inducted
from is linear (as in NOTEARS (Zheng et al., 2018))
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equations are of the form f(paX , NX) = wT paX +NX . For CGNN (Goudet et al., 2018), the
authors perform a score-based approach i.e., generative neural networks are being fit to the data for
each of the pausible DAG-structures that the SCM could take on and the best-performing one is
subsequently being selected. Again, since SCM can be converted into CEM (Prop.2,Def.2), CGNN
are interpretable via SCI. For DAG-GNN (Yu et al., 2019), the authors make the same assumption
of linear SCM as in (Zheng et al., 2018) and adapt them to graph neural networks, X = f2((I −
AT )−1f1(Z)) where X,A,Z are data, graph and normal noise respectively and fi the GNNs. For
our final example, the NCM (Ke et al., 2019; Xia et al., 2021), the proof is trivial since the NCM
model class is a subset of the space of all SCMs and therefore also CEM-estimator (Prop.2).

A.5 INTUITION ON CONJECTURE 1

While the establishment of SCI (Thm.2) and the consequential insight that any neural induction
method is thereby interpretable (Thm.3) stand as separate results, we further considered the ques-
tion of whether one could in fact make use of pre-existing SCI for learning. While we don’t provide
a proof, we generally observe empirically that, if a human modeller or any other type of a-priori
inductor provides some SCIs, then one can use these SCIs to improve learning. An explanation for
the observed improvement might lie in the required consistency of underlying CEM (sub-property
of the unobserved SCM). I.e., the model needs to infer a structure that can provide for consistent
interpretations to subsequent why-questions aligned with the answers provided by the existing in-
terpretations (be human or other). Therefore, we conjecture that this is generally the case as our
evidence supports our belief that the statement is true, even if not proven. Formally, we state:

Conjecture 1 (SCI Regularization). Let L be defined as in Def.3 and let H∗ be the true CEM.
Regularizing Lr := L + 1

n

∑
i ||I(QX , H,D) − Ii)||22 with existing and overlapping SCI I leads

to a more optimal solution | argminH∈H Lr(D, H)−H∗| < | argminH∈H L(D, H)−H∗|.

A.6 ADDITIONAL THEORETICAL RESULTS

The following statements are an addition to the theoretical results established in the main paper.
In Prop.3 we state that any induction method is in fact a causal method, since there exist infinitely
many possible SCMs that could act as the corresponding model. This view is inline with the SCM
metric space theorem (Thm.1), making an (approximately) right choice of SCM important.

Proposition 3 (Induction Methods). LetM be a DAG-induction method for data-based inference,
M(D) = G. Let C denote the space of all possible SCM. Then it holds that ∃C ∈ C : C =⇒ G.

Proof. A proof by construction is sufficient. Let G = {VG, EG} be a DAG (variables, edges) as
described in the proposition (M(D) = G). Then we can construct an SCM C where the structural
equations of C use nodes VG to mimic EG. Naturally, there will be infinitely many such C since
parametric form and parameterization can be arbitrary. However, the proposition suggests for the
existence of at least one such SCM for any graph, and we are done due to G being arbitrary.

Another important observation in Prop.4 follows from the SCI’s computation arguments (Thm.2)
being the CEM and not SCM (where we have shown that SCM are a more expressive model, Prop.2).
I.e., the function which converts any SCM to their corresponding CEM as defined in Def.2 will not
allow for two SCMs to coincide, that is, the function is injective (each mapping to CEM is unique).

Proposition 4 (Injective CEM Mapping). The function that maps SCM to CEM is injective.

Proof. We assume the general case where the fij components of the CEM are a causal effect from i
to j. Let F : C 7→ M denote said function that maps from the set of all possible SCMs to the set of
all CEMs. Since CEM is a sub-structure of an SCM by definition (Def.2), there is a restriction on F
that each edge i→ j of a given SCM is being bijectively mapped to a causal effect fij for the CEM.
Further, F is restricted to have model each of the structural equations. As Thm.1 suggests, one can
always find two SCMs of same size C1,C2 ∈ Cn for which will hold d(C1,C2)>0, where d1 is the
measure from Thm.1, and thereby imply that d2(F (C1), F (C2))>0 where d2 is a matrix norm.
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A.7 ELABORATION ON SCI PROPERTIES

The three basic logic rules (Prop.1) dictate how the SCI (2) will look like for some causal estimate of
the system and any given query and data. In our implementation, we additionally provide the actual
relation R as a return argument of each of the rules. This allows for a more fine-grained interpretation
that gives insights on the specific relation to the current explaining reason. In a nutshell, it allows to
extend a statement ’Y because of X’ to a more detailled one like ’Y because of X being low’. The
general pronunciation scheme for the the three rules (excitation, inhibition, and preference), that
allows for a human-understandable natural language version of the SCI, are as follows:

R1 Excitation ’Y because of X [being low/high]’
R2 Inhibition ’Y although X [is low/high]’
R3 Preference ’mostly’ + R1 or R2 pronunciation

Table 3: Pronunciation Scheme. Right shows the natural language reading of a rule’s activation.

The pronunciation of the details to the relation e.g. ’low’/’high’ is context-dependent in that these
words might need to replaced with adequate/corresponding words suitable for the context i.e., ’the
Matterhorn is cold because of the high altitude’ (’cold Temperature because of Altitude being high’)
is fine while ’the remaining car fuel is low because of the bad driving style’ (’low Fuel because
of Driving Style being bad’) requires the context-adaptation (’low’ 7→ ’bad’). Another noteworthy
detail to the SCI properties is the property of non-repeating causes within interpretations which
reduces redundancy. Consider for instance our lead example on Hans’s mobility (Int.1 or Fig.2), the
CEM suggests that F can also be explained by A, since A → F . However, the corresponding SCI
does not give this reason because of the aforementioned property which ensures that redundancy
is being avoided. I.e., in the interpretation step before we actually explain H using both A and
F , since {A,F} → H , therefore, making it irrelevant to the query for explaining the relation
between the parents (A,F ). While we provided intuition on the derivation of the basic rules (Prop.1)
while alongside also providing a lead example (1,Fig.2), we now additionally motivate the namings
’excitation’, ’inhibition’ and ’preference’ i.e., why we think they make sense. We took inspiration
from neuroscience, where the former two terms relate to the way neurons interface with each other
using their synaptic-dendric connections. The last term is a term to propose relativeness and thus a
preference for one cause of over the other. All terms thereby adequately describe any causal path in
qualitative terms while also providing an almost synonym-quality to the pronunciations (Tab.3).

A.8 EXP.1: ASKING NEURAL MODELS TO INTERPRET THE LEARNT (THM.3)

We select NOTEARS (Zheng et al., 2018) as a representative data-driven induction method for
the illustration in Tab.1 which considers the data sets and single-why queries illustrated in Fig.2
i.e., Deutscher Wetterdienst (DW, Mooij et al. (2016)), Causal Health (CH, Zečević et al. (2021a)),
Mileage (M), and Recovery (R, Charig et al. (1986)). Fig.5 additionally visualizes the generated SCI
that are in support of Thm.3 i.e., the interpretability of NIM. The SCI generated using the learned
causal semantics are identical for the DW and M data sets, while differing only subtle for R and
drastically for CH data sets. The former discrepancy occurs on the second-level of reasoning i.e., the
right top-level explaining answer is given to the question (i.e., ”Kurt did not recover because of the
problematic pre-conditions”) but was contrasted wrongly (i.e., the treatment countering the state of
condition and not affecting the condition). The latter discrepancy revolves around a totally different
structure e.g. the learned model expects a direct cause-effect relation between age and mobility while
also wrongly assuming that nutrition has a detrimental effect on health. An explanation in the case
of NOTEARS is clearly the violation of the linearity assumption for the CH data set.

While in Thm.3 we prove that NIM are generally interpretable in the sense of SCI (Thm.2), for
empirical illustration we also provide more examples of such NIM-based SCI, as we did with our
lead examples for NT, in this case additionally for CGNN (Goudet et al., 2018) and DAG-GNN
(Yu et al., 2019). Tab.4 shows an application of these methods to a superset of questions (that is,
same and more) and same data we used for NT. It is crucial to note that the presented results have
not been hyperparameter-optimized (HO). Take for example CGNN, where candidate selection is
exhaustive (brute force, and thus super-exponential in the number of nodes) and the model selection
heavily relies on the neural approximation, thereby, HO is likely to be important. In a nutshell, the
motivation behind Tab.4 is to present support for our theoretical proof on SCI-interpretability of NIM
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methods i.e., we also give empirical proof for several methods in practice (opposed to pure theory).
To assess the quality of the SCI, it is important to note the assumptions made by the original method.
E.g., NT and DAG-GNN assume linear SCM. Thereby, we have no guarantees for running such a
method in a non-linear data domain (which we do with the data sets DW and CHD). Interestingly,
these assumptions can in fact be exposed by SCI. Consider the DW data set (Tab.4, first example),
theory suggests that a linear model with Gaussian noise will exist in both directions X → Y and
Y → X , thus being non-identifiable (Peters et al., 2017). Methods like NT and DAG-GNN therefore
pose the assumption that the given data comes, in this case, from a linear model with Gaussian noise
i.e., the identifiability problem is being circumvented altogether. This is also the reason why different
random seeds can lead to both modellings (A → T and T → A) for the DW data set (see in Tab.4
how the SCI flips forM3=DAG-GNN for the two opposing DW queries). Another important note is
that the uninformed SCIs ”No causal interpretation ...” occur when the method’s CEM estimate does
not contain a causal path to the variable that is being queried i.e., the CEM will actually contain a
non-trivial estimate of the underlying causal structure, even though the SCI returns a trivial/empty
interpretation since the variable of interest can not be reached within the estimate’s structure with a
directed path (i.e., the base case in Thm.2 is trivially triggered). In fact, these negative ’no answer’-
type of cases are important since the model need also be able to know when there is nothing to be
known. For this case, we also pose why-questions to which the ground truth is already a ’no answer’
interpretation since there is no causal connection to the variable being queried by the why-question.
The empirics in Tab.4 suggest, as theoretically proven (Thm.3), that the NIM are interpretable and
also that all 3 rules (excitation, inhibition and preference) are being used for the NIM-based SCI.
As a positive example, consider example #3 for the CH data set where M1 captures the complex
interpretation correctly up to preference and falsely assuming that nutrition (F ) has a negative causal
effect on health (H). A more interesting example (#8 for the R data set) shows that the main reason
being bad pre-conditions (Z) is being captured but the model falsely assumes that those are because
of the received treatment (T ). To consider a negative example have a look at example #4 again for
CH where the actual answer is a ’no causal interpretation’ since age (A) is a root node. However,
M3 claims that the age is high because of the nutrition and mobility (M ), then again because of
health. While the statement is wrong and also feels exaggerated, inspecting closely one can detect
the correct existence of the causal edge between mobility and health (H → M ). I.e., the model
interprets wrongly, but its causal model is still partially valid.

A.9 EXP.2: USING INTERPRETATIONS TO IMPROVE LEARNING (CONJ.1)

We again make use of the NOTEARS (Zheng et al., 2018) method as representative of graph in-
duction methods for the subsequent experiment in which investigate Conj.1 i.e., whether existing
interpretations can be used as a supervision signal to improve the quality of induction. To circum-
vent the non-differentiable nature of our recursive interpreter from Thm.2 we train a neural network
on a set of legal interpretations to mimic the interpreter while being fully differentiable. Mathemati-
cally, we set I = Iψψψ in Alg.1 where Iψψψ is said neural approximation to the SCI recursion from Eq.3.
Following (Zheng et al., 2018), we generate 70 random linear causal models following Erdos–Renyi
structures. We use graph induction to infer 70 more graphs, making 140 in total. For each graph we
generate 50 random single-why questions to be answered, resulting in a data set of 7000 interpre-
tations. All the (discussed) details regarding the learning problem and the results are additionally
being illustrated within Fig.6. We extend the NOTEARS loss composition with this neural approxi-
mation to the regularization we proposed in Conj.1 and perform graph induction once with and once
without the regularization (where between 1 and 50 interpretations are being observed). The graph
induction is being performed in a data-scarce setting with only 10 data samples per graph induc-
tion. Thus to infer the true causal structure the method ideally needs to perform sample-efficient.
Fig.3 shows our empirical results on the error distributions for all the graphs while presenting the
qualitative difference in the estimated graphs for the most significantly improved example. It can
be observed that with the regularization the induction method can both identify more key struc-
tures while significantly reducing the number of false links, thereby appearing to be overall more
sample-efficient. An explanation would be that, as conjectured, the interpretations contain valuable
information about the underlying CEM if the interpretations themselves were generated by a similar
CEM, thereby striking structures that would lead to contradicting interpretations.

17



Under review as a conference paper at ICLR 2022

A.10 EXP.3: HUMAN CASE STUDY, ALGORITHMIC VERSUS HUMAN INTERPRETATIONS

We instructed N = 22 participants to answer our questionnaire (Fig.7). The questionnaire asked the
following questions: Given a pair of variables, does a causal relationship exist (existence)? If yes,
then which is the cause and which is the effect (direction)? If there are multiple causes for a single
variable, then how impactful is each of the causes (preference)? All of these questions, alongside
their responses, are of qualitative and subjective nature. It is important to note that the participants
do not perform the actual induction from specific, provided data like the algorithms do i.e., the hu-
man subjects are not given the variable names nor concrete data points that would allow them to
find the rules for the specific data sets. Instead, they were only given the variable names/depictions,
thereby having to induct from personal experience/understanding essentially. This approach to hu-
man induction is related to the experimental setups in (Griffiths & Tenenbaum, 2006; Hattori, 2016).

The motivating lead research questions we intended to answer, and in fact do answer successfully
with this experiment, are: What are CEM (Def.2) that (some) human could model? How does over-
lap for human-based CEM occur? How do subsequent SCI (Thm.2) between humans and algorithms
differ? In a nutshell, we wanted to investigate the similarity of CEMs between subjects in addition
to the similarity between subjects- and algorithm-based SCIs.

A caveat regarding the analysis and interpretation of human judgements is that sample bias may
distort conclusions. Sample bias has long been identified within the behavioral and social sciences
as limiting the generalization of results obtained in a specific sample to the population. A common
methodological fix to counteract such biases is to increase the sample size, see (Daniel, 2017) for a
recent application and discussion. Certainly, the observed sample will affect the way the difference
(to e.g. algorithm-based SCI) turns out to be, but then again our research question is not concerned
with all possible human interpretations, but any. Furthermore, we chose data sets that model very
general examples and thus offer accessibility to the general population since no single person might
be an expert. Ultimately, this way of designing our experiment, while not removing sample bias of
course, renders the bias’s qualitative effect onto our subsequent investigation negligible.

In the following we provide a discussion of several interesting and important insights discovered
through the human user study. Nonetheless, it is important to note that our results like most mod-
ern day interpretations of human behavior are of conjectural nature – sensible, educated guesses
essentially. During this discussion, we will point to specific aspects of the descriptive statistics
displayed in Fig.8. The actual human data is also being appended for the sake of completion
(Figs.9,10,11,12,13,14). The questionaire contains four examples with two, three, three, and four
variables (or concepts) respectively that are being visually depicted in addition to a concise textual
description. We randomized the textual description of up to three variables across all examples for
any randomly selected participant. Doing so, we allow for the randomized concept to reverse causal
influence directions, thus, diminishing the bias of chance-selecting said causal direction – in a nut-
shell, this randomization scheme helps us in controlling for interpretation variance (or leeway) of the
subjects. Nonetheless, we still observed that for any variable pair (X,Y ) the meanings of X and Y
themselves could be interpreted differently, which ultimately resulted in False Negatives regarding
agreement i.e., people will disagree technically although they actually agree. To give a concrete
example, consider the following: pre-condition in Example 2 can be interpreted as ”the length of
the medical history of a patient” (negative; increasing implies lower chance of recovery) opposed
to ”the state of well-being of a patient” (positive; increasing implies higher chance of recovery),
thereby some subjects might choose Z1 → R while others will choose Z2 ← R where Zi are the
different interpretations of the ”pre-condition” concept (and R denotes recovery), yet all subjects
agree on an existing relation between the two variables: Zi ↔ R. Also, some variables/concepts
were more stable in their interpretation variance. To give yet another specific example, altitude
and temperature in Example 1 (Fig.7) are stable concepts while the aforementioned pre-condition
in Example 2 is unstable (due to its interpretation variance/leeway). More importantly these differ-
ent interpretations due to the ambiguity inherent in language become visible within the statistics.
To stay inline with the previous example, consider the medical example (E2) within Fig.8 (second
row, middle) and specifically consider the edges T → R and Z → R. For the former relation the
agreement between subjects is evident i.e., the majority of human subjects will select this edge. For
the latter relation, we clearly see the two previously discussed interpretations that subjects employ
during edge decision. I.e., for some subjects the edge between Z and R is positive and for some
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others it is negative, while naturally all agree upon there being a relation between the variable pair
(Z ↔ R) opposed to there being no relation (Z ̸↔ R).

We observe a systematic approach and thereby non-random approach to edge-/structure-selection by
the human operators, see any of the subplots within Fig.8. Furthermore, there are only a few clusters
even with increasing hypothesis space. Both the systematic manner and the tendency to common
ground are evidence in support of the CMMC hypothesis (Hyp.1) and the argument on true causality
to be more likely within the overlap of SCMs (Thm.1).

Although we randomize the order of variables in addition to consistently presenting them in a simple
line with the intention of not inducing any specific sorting/structure to avoid bias, we still observed
apparent, unintended subject behavior. For instance, subject number 5 (Fig.10) only considered
pairs presented next to each other as being questioned although the other combinations are meant to
be queried as well. While additional research needs to corroborate these observations, our data sug-
gests that attention might have decreased over the course of the experiment for a subset of subjects
as suggested by e.g. subject number 7 (Fig.10) where overall agreement with the subject major-
ity is to be found but eventually at the very last example ’mistakes’ occur (specifically, the subject
highlighted that ’increasing age increases mobility’, in stark disagreement with the majority of par-
ticipants). We also observe that the increase in hypothesis/search space (i.e., more variables) comes
with an increase in variance. TThis variance increase can be argued to be due to the progressive
difficulty of inference problems as well as decreased levels of attention and potential fatigue across
the duration of the experiment (e.g. consider the duplicate plots, third column, in Fig.8 where the
number of unique structures that are being identified increases significantly). Yet another interesting
observation concerns the aspect of time, consider subject number 17 (Fig.13) where there is a cycle
between treatment and recovery where the subject likely thought in terms of ’increasing treatment
increases speed of recovery which subsequently feeds back into a decrease of treatment (since the
individual is better off than before)’ which seems like a valid inference but clearly considers the
arrow of time. Yet another observation, some subjects faced questions of variable scope e.g. if there
is a causal connection between nutrition and mobility, then some subjects considered energy as the
mediator and since energy is not part of the variable scope, confusion might arise whether to place
an edge between nutrition and mobility or not. In fact, for such a scenario the correct answer is to
place an edge, since there exists a causal path from nutrition to mobility, via energy, even if energy
is not displayed. I.e., in causality, an edge can/will talk implicitly about all the more fine-grained
variables that are part of the causal edge/path.

The second data set (E2) is an instance of the famous Kidney Stonde example (Peters et al., 2017),
where Z is a confounder that indicates the pre-conditions in terms of e.g. the size of the kidney
stone, and it also illustrates the famous Simpson paradox (Simpson, 1951; Pearl, 2009; Peters et al.,
2017) where the recovery will favor one treatment in the overall statistics while being better for all
of the non-consolidated views for the other treatment. We observe that not a single subject places the
edge pre-condition to treatment (Z → T ) which is arguably at the core of Simpson’s paradox. This
observation gives an additional cue on why the phenomenon is called paradox because no human
subject expects the existence of this connection and even actively neglect the existence.

Technical Details and Code. All experiments are being performed on a MacBook Pro (13-
inch, 2020, Four Thunderbolt 3 ports) laptop running a 2,3 GHz Quad-Core Intel Core i7
CPU with a 16 GB 3733 MHz LPDDR4X RAM on time scales ranging from a few sec-
onds (e.g. evaluating SCI in Exp.1) up to approximately an hour (e.g. SCI-based learn-
ing in Exp.2). Our code is available at: https://anonymous.4open.science/r/
Structural-Causal-Interpretation-Theorem-D5C0.

Full-width Material. Following this page are the figures and tables (Fig.5,6,7,8,9...14,Tab.4) that
were referenced in the corresponding sections of the appendix.
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Structural Causal Interpretations

"Your car has low mileage left because of 
the little remaining fuel, 

although your car is otherwise efficient."

"Kurt did not recover because of 
the problematic kidney stone, 

although he had surgery."

"The Matterhorn is cold because of the high altitude."

"Hans' Mobility (M) is bad because of 
his bad Health (H) which is 

mostly due to his high Age (A), 
although his Food Habits (F) are good."
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"Why is it so cold on the Matterhorn?" 

"Why is my car's mileage low?"

"Why did Kurt not recover?" 

"Why is Hans's Mobility bad?" 

Hans

Query / Question

Structural Causal Model

Figure 5: Extension to Fig.2 In addition to the previous example, we add three more SCMs, both
continuous and discrete alongside their why-questions Q and resulting Structural Causal Interpreta-
tions I(S(C), Q,D). Our lead example concerning Hans’s mobility is being highlighted alongside
the intuitive-level computation. (Best viewed in color.)
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Structural Causal Interpretation (Thm.2)

#1 Dataset: DW, Query: ”Why is the temperature at the Matterhorn low?”
GT ”The temperature at the Matterhorn is low because of the high altitude.”
M1 ”The temperature at the Matterhorn is low because of the high altitude.”
M2 ”The temperature at the Matterhorn is low because of the high altitude.”
M3 ”No causal interpretation for Matterhorn’s temperature.”
#2 Dataset: DW, Query: ”Why is the Matterhorn so high?”
GT ”No causal interpretation for Matterhorn’s altitude.”
M1 ”No causal interpretation for Matterhorn’s altitude.”
M2 ”No causal interpretation for Matterhorn’s altitude.”
M3 ”The altitude of the Matterhorn is high because of the low temperature.
#3 Dataset: CH, Query: ”Why is Hans’s mobility bad?”
GT ”Hans’s mobility is bad because of his bad health which is mostly due to his high age,

although his nutrition is good.”
M1 ”Hans’s mobility is bad because of his bad health which is bad because of high age and

mostly due to his good nutrition.”
M2 ”Hans’s mobility is bad because of his good nutrition.”
M3 ”No causal interpretation for Hans’s bad mobility.”
#4 Dataset: CH, Query: ”Why is Hans old?”
GT ”No causal interpretation for Hans being old.”
M1 ”No causal interpretation for Hans being old.”
M2 ”No causal interpretation for Hans being old.”
M3 ”Hans is old because of his good nutrition and bad mobility, which is because of his bad health.”
#5 Dataset: CH, Query: ”Why is Hans’s nutrition good?”
GT ”Hans’s nutrition is good because of being older.”
M1 ”Hans’s nutrition is good because of being older.”
M2 ”No causal interpretation for Hans’s nutrition.”
M3 ”Hans’s nutrition is good because of his bad health and mobility.”
#6 Dataset: M, Query: ”Why is your personal car’s left mileage low?”
GT ”Your left mileage is low because of your small car and your bad driving style.”
M1 ”Your left mileage is low mostly because of your small car and because of your bad driving style.”
M2 ”No causal interpretation for the left mileage.”
M3 ”Your left mileage is low because of your small car and your bad driving style.”
#7 Dataset: M, Query: ”Why is your personal car small?”
GT ”No causal interpretation for the car size.”
M1 ”No causal interpretation for the car size.”
M2 ”Your personal car’s size is small because of your good driving style and fuel savings.”
M3 ”No causal interpretation for the car size.”
#8 Dataset: R, Query: ”Why did Kurt not recover?”
GT ”Kurt did mostly not recover because of his bad pre-conditions, although he got treatment.”
M1 ”Kurt did not recover because of his bad pre-conditions which is because of the treatment he got.”
M2 ”No causal interpretation for Kurt’s recovery.”
M3 ”No causal interpretation for Kurt’s recovery.”
#9 Dataset: R, Query: ”Why did Kurt get treatment?”
GT ”Kurt got treatment because of his bad pre-conditions.”
M1 ”No causal interpretation for Kurt’s received treatment.”
M2 ”Kurt got treatment because of his bad pre-conditions.”
M3 ”No causal interpretation for Kurt’s received treatment.”

Table 4: More NIM-based SCI. We prove Thm.3 for general NIM while pointing to some example
methods from the existing literature on NIM. Here we show the results of running the methods
Mi, 1:NT (Zheng et al., 2018), 2:CGNN (Goudet et al., 2018), 3:DAG-GNN (Yu et al., 2019) on
the four data sets Deutscher Wetterdienst (DW, Mooij et al. (2016)), Causal Health (CH, Zečević
et al. (2021a)), Mileage (M), and Recovery (R, Charig et al. (1986)) for the respective queries. As
suggested, the methods are interpretable and reveal insights onto the learned causal semantics, while
varying signficantly in quality in terms of accuracy relative to the ground truth (GT). Independent
of accuracy, ”No causal interpretation . . . ” occur when the CEM estimate ofMi contains no causal
path to the queried variable X i.e., paX = ∅ (supported through GT sparsity). We also show GT
interpretations that require a negative ’no answer’ response by Mi. The corresponding appendix
sections cover a detailed elaboration for these NIM-based SCI (Thm.2).
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Figure 6: Differentiable Interpreter. To cope with the probelm of non-differentiability of the SCI
Thm.2 we propose a learning problem in which we learn a MLP to mimic a set of existing legal
interpretations. The neural network thus approximates the construction of SCI while being fully
differentiable. (Best viewed in color.)

22



Under review as a conference paper at ICLR 2022

Altitude Temperature

Ground Truth:

*
*

*=stronger

To avoid bias in drawing relations, 
we don't provide any hints on a graph structure and
we randomize the sorting of the variables.

To provide more clarity we depict the names of the concepts
with additional illustrations.

The participants are asked to perform induction based
on personal data/experience i.e., they only see the orange and blue boxes.

Treatment Speed of Recovery Pre-Condition
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negative relation, B causes A

negative relation, A causes B
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...
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increasing B reduces A*
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increasing A increases B

*dependent on context
thereby the word "increasing"
might change to "improving"
and analogue for the negative

Figure 7: Experiment Setup for the Human Case Study. The participants are being asked two
questions: whether there is a directed relation between some variable pair A and B, and when there
are multiple causes how they behave relatively i.e., the order of strength in relations. We avoid bias
in drawing relations by randomizing the order and presenting the variables in a sequence. Induction
is being performed from personal ’data’/experience, rather than by looking at a matrix of data points.
(Best viewed in color.)
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Figure 8: Human Data Analysis: Qualitative, Quantitative, and Uniqueness. Statistics collected
from the human data (N = 22). The rows denote the four data sets: Deutscher Wetterdienst (DW,
Mooij et al. (2016)), Causal Health (CH, Zečević et al. (2021a)), Mileage (M), and Recovery (R,
Charig et al. (1986)). The columns: qualitative edge distributions that show for each of the different
edge type how often it was chosen respectively (left), quantitative edge distribution for each edge
where the error bars denote confidence intervals (middle), and the unique structure counts where
each bar depicts the frequency of a qualitative structure discovered by the human subjects (right).
Extensive elaboration on the setup, execution and results of this human study are to be found in the
corresponding appendix section. (Best viewed in color.)
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Data Human Subject #3 Data Human Subject #4

Data Human Subject #2Data Human Subject #1

Figure 9: Actual Human Data Anonymized. Subjects 1-4. Answers followed the questionnaire in
Fig.7. (Best viewed in color.)
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Data Human Subject #7 Data Human Subject #8

Data Human Subject #6Data Human Subject #5

Figure 10: Actual Human Data Anonymized. Subjects 5-8. Answers followed the questionnaire
in Fig.7. (Best viewed in color.)
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Data Human Subject #11 Data Human Subject #12

Data Human Subject #10Data Human Subject #9

Figure 11: Actual Human Data Anonymized. Subjects 9-12. Answers followed the questionnaire
in Fig.7. (Best viewed in color.)
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Data Human Subject #15 Data Human Subject #16

Data Human Subject #14Data Human Subject #13

Figure 12: Actual Human Data Anonymized. Subjects 13-16. Answers followed the questionnaire
in Fig.7. (Best viewed in color.)
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Data Human Subject #19 Data Human Subject #20

Data Human Subject #18Data Human Subject #17

Figure 13: Actual Human Data Anonymized. Subjects 17-20. Answers followed the questionnaire
in Fig.7. (Best viewed in color.)
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Data Human Subject #22Data Human Subject #21

Figure 14: Actual Human Data Anonymized. Subjects 21 and 22. Answers followed the ques-
tionnaire in Fig.7. (Best viewed in color.)
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