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ABSTRACT

Cross-silo Federated learning (FL) has become a promising tool in machine learning
applications for healthcare. It allows hospitals/institutions to train models with
sufficient data while the data is kept private. To make sure the FL model is
robust when facing heterogeneous data among FL clients, most efforts focus on
personalizing models for clients. However, the latent relationships between clients’
data are ignored. In this work, we focus on a special non-iid FL problem, called
Domain-mixed FL, where each client’s data distribution is assumed to be a mixture
of several predefined domains. Recognizing the diversity of domains and the
similarity within domains, we propose a novel method, FedDAR, which learns a
domain shared representation and domain-wise personalized prediction heads in a
decoupled manner. For simplified linear regression settings, we have theoretically
proved that FedDAR enjoys a linear convergence rate. For general settings, we have
performed intensive empirical studies on both synthetic and real-world medical
datasets which demonstrate its superiority over prior FL methods. Our code is
available at https://github.com/zlz0414/FedDAR.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017a) is a machine learning approach that allows many
clients(e.g. mobile devices or organizations) to collaboratively train a model without sharing the data.
It has great potential to resolve the dilemma in real-world machine learning applications, especially
in the domain of healthcare. A robust and generalizable model in medical application usually requires
a large amount of diverse data to train. However, collecting a large-scale centralized dataset could be
expensive or even impractical due to the constraints from regulatory, ethical and legal challenges,
data privacy and protection (Rieke et al., 2020).

While promising, applying FL to real-world problems has many technical challenges. One eminent
challenge is data heterogeneity. Data across the clients are assumed to be independently and identically
distributed (iid) by many FL algorithms. But this assumption rarely holds in the real world. It has
been shown that non-iid data distributions will cause the failure of standard FL strategies such as
FedAvg (Jiang et al., 2019; Sattler et al., 2020; Kairouz et al., 2019; Li et al., 2020). As an ideal
model that can perform well on all clients may not exist, it requires FL algorithms to personalize the
model for different data distributions.

Prior theoretical work (Marfoq et al., 2021) shows that it is impossible to improve performances on all
clients without making assumptions about the client’s data distributions. Past works on personalized
FL methods (Marfoq et al., 2021; Sattler et al., 2020; Ghosh et al., 2020; Mansour et al., 2020; Deng
et al., 2020) make their own assumptions and tailor their methods to those assumptions. In this paper,
we propose a new and more realistic assumption where each client’s data distribution is a mixture
of several predefined domains. We call our problem setting Domain-mixed FL. It is inspired by the
fact that the diversity of the medical data can be attributed to some known concept of domains, e.g.,
different demographic/ethnic groups of patients (Szczepura, 2005; Ranganathan & Bhopal, 2006;
NHS, 2004), different manufacturers or protocols/workflows of image scanners (Mårtensson et al.,
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2020; Ciompi et al., 2017) and so on. It is necessary to address the ubiquitous issue of domain shifts
among ethic groups (Szczepura, 2005; Ranganathan & Bhopal, 2006; NHS, 2004) or vendors (Yan
et al., 2019; Garrucho et al., 2022; Guan & Liu, 2021) in healthcare data. Despite of the domain
shifts, same domain at different clients are usually considered to have the same distribution. The data
heterogeneity between FL clients actually comes from the distinct mixtures of diverse domains at
clients. These factors motivate us to personalize model for each domain instead of client.

Although our method is inspired by healthcare applications where the domain shifts issue is well-
known and domain labels are very basic and accessible, we believe that it can be generally applied to
other domains like finance or recommendation systems where users/humans with different demogra-
phy are involved (Ding et al., 2021; Asuncion & Newman, 2007). However it would require a deep
understanding of the data and background knowledge to verify the data distribution assumption as
well as the accessibility of the domain label.

FedEM(Marfoq et al., 2021) and FedMinMax(Papadaki et al., 2021) makes similar assumption on
data distribution as ours. However, FedEM assumes the domains are unknown and tries to learn a
linear combination of several shared component models with personalized mixture weights through
an EM-like algorithm. FedMinMax doesn’t acknowledge the domain shift between domains and still
aims to learn one shared model across domains by adapting minmax optimization to FL setting .

Our Contributions. We formulate the proposed problem setting, Domain-mixed FL. Through
our analysis, we find prior FL methods, both generic FL methods like FedAvg (McMahan et al.,
2017a), and personalized FL methods like FedRep (Collins et al., 2021), are sub-optimal under our
setting. To address this issue, we propose a new algorithm, Federated Domain-Aware Representation
Learning (FedDAR). FedDAR learns a shared model for all the clients but embedded with domain-
wise personalized modules. The model contains two parts: an shared encoder across all domains and
a multi-headed predictor whose heads are associated with domains. For an input from one specific
domain, the model extracts representation via the shared encoder and then use the corresponding
head to make the prediction. FedDAR decouples the learning of the encoder and heads by alternating
between the updates of the encoder and the heads. It allows the clients to run many local updates
on the heads without overfitting on domains with limited data samples. This also leads to faster
convergence and better performed model. FedDAR also adapts different aggregation strategies for the
two parts. We use a weighted average operation to aggregate the local updates for the encoder. With
additional sample re-weighting, the overall training objective is equally weighted for each domain
to encourage the fairness among domains. While for the heads, we propose a novel second-order
aggregation algorithm to improve the optimality of aggregated heads.

We theoretically show our method enjoys nice properties like linear convergence and small sample
complexity in a linear case. Through extensive experiments on both synthetic and real-world
datasets, we demonstrate that FedDAR significantly improves performance over the state-of-the-art
personalized FL methods. To the best of our knowledge, our paper is among the first efforts in
domain-wise personalized federated learning that achieve such superior performance.

2 RELATED WORK

Besides the literature we have discussed above, other works on personalization and fairness in
federated learning are also closely related to our work.

Personalized Federated Learning. Personalized federated learning has been studied from a variety
of perspectives: i) local fine-tuning (Wang et al., 2019; Yu et al., 2020) ii) meta-learning (Chen
et al., 2018; Fallah et al., 2020; Jiang et al., 2019; Khodak et al., 2019) iii) local/global model
interpolation (Deng et al., 2020; Corinzia et al., 2019; Mansour et al., 2020). iv) clustered FL that
partition clients into clusters and learn optimal model for each cluster (Sattler et al., 2020; Mansour
et al., 2020; Ghosh et al., 2020)(Zhu et al., 2021). v) Multi-Task Learning(MTL) (Vanhaesebrouck
et al., 2017; Smith et al., 2017; Zantedeschi et al., 2020) (Hanzely & Richtárik, 2020; Hanzely et al.,
2020; T Dinh et al., 2020; Huang et al., 2021; Li et al., 2021a) vi) local representations or heads
for clients (Arivazhagan et al., 2019; Liang et al., 2020; Collins et al., 2021)(Luo et al., 2022). vii)
personalized model through hypernetwork or super model (Shamsian et al., 2021; Chen & Chao,
2021; Xu et al., 2022). The personalization module in our approach is similar to vi) and (Zhu et al.,
2021) with a multi-branch network. However, the targets we are personalizing the model for are the
domains instead of clients.
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Fairness in Federated Learning. There are two commonly used definitions of fairness in existing
FL works. One is client fairness, usually formulated as client parity (CP), which requires clients to
have similar performance. A few works (Li et al., 2021a; 2019; Mohri et al., 2019; Yue et al., 2021;
Zhang et al., 2020) have studied on this. Another is group fairness. In the centralized setting, the
fundamental tradeoff between group fairness and accuracy has been studied (Menon & Williamson,
2018; Wick et al., 2019; Zhao & Gordon, 2019), and various fair training algorithms have been
proposed(Roh et al., 2020; Jiang & Nachum, 2020; Zafar et al., 2017; Zemel et al., 2013; Hardt
et al., 2016). Since the notions of group fairness is the same in FL setting, most of existing FL works
adapt methods from centralized setting (Zeng et al., 2021; Du et al., 2021; Gálvez et al., 2021; Chu
et al., 2021; Cui et al., 2021). In this work, our method is not designed specifically for certain group
fairness notions like demographic parity. Instead, we aim to achieve the best possible performance
for each domain through personalization, admitting the difference between data domains. Moreover,
our concept of data domains is not limited as demographic groups. It can also be applied to any other
mixture of domain data, as long as our assumptions hold.

3 PROBLEM: DOMAIN-MIXED FEDERATED LEARNING

Notations. Federated learning involves multiple clients. We denote number of clients as n. We use
i ∈ [n] ≜ {1, 2, ..., n} to index each client. Client i has a local data distribution Di which induces a
local learning objective, i.e., the expected riskRi(f) = E(xi,yi)∼Di

[ℓ(f(xi), yi)], where f : X → Y
is the model mapping the input x ∈ X to the predicted label f(x) ∈ Y and ℓ : Y × Y → R is a
generic loss function. In real practice, client i ∈ [n] has a finite number, say Li, of data samples, i.e.,
Si = {(xj

i , y
j
i )}

Li
j=1. L =

∑n
i=1 Li denotes the total number of data samples.

Problem Formulation of Domain-mixed Federated Learning. We introduce a new formulation of
FL problem by assuming each clients’ local data distribution is a weighted mixture of M domain
specific distributions. Specifically, we use {D̃m}Mm=1 to denote data distributions from M predefined
domains. For client i, its local data distribution is Di =

∑
m πi,mD̃m where the mixing coefficients

πi,m stand for the probabilities of client i’s data sample coming from domain m. Take medical
application as an example, different hospitals are clients and different ethnic groups are domains.
Each ethnic group have different health data while each hospital’s data is a mix of ethnic group data.

Further, the domains of the data samples are assumed to be known. We use a triplet of variables
(x, y, z) to represent the input features, label and domain. The goal of our problem is to learn a model
f(x, z) that can perform well in every domain, as shown by the following learning objective,

min
f
R(f) := 1

M

M∑
m=1

Rm(f(·,m)) (1)

where Rm(f(·,m)) = E(x,m)∼D̃m
[ℓ(f(x,m), y)]. Our problem focuses on the setting that each

domain have a different conditioned label distribution, i.e., Pm(y|x) is different in each domain m.

3.1 COMPARISON WITH PRIOR DOMAIN-UNAWARE FL PROBLEM FORMULATIONS

Our FL problem introduces the concept of the domain and focuses on the model’s performance in each
domain. Many prior FL formulations does not recognize the existence of the domains. For example,
the original federated learning algorithms like FedAvg (McMahan et al., 2017a), FedProx (Li et al.,
2020) learn a globally shared model that via minimizing the averaged risk, i.e., minf

1
n

∑
iRi(f).

Some variants consider the fairness across the clients. To do so they optimize the worst client’s
performance, instead of the averaged performance, i.e., minf maxiRi(f). Further, personalized FL
algorithms, such as FedRep (Collins et al., 2021), customize the model’s prediction for each client
whose objective is minfi:i∈[n]

1
n

∑n
i=1Ri(fi).

All the FL algorithms mentioned above will lead sub-optimal solutions to our problem since they do
not make domain specific predictions. We illustrate this point by the following toy example of linear
regression: We assume the data in m’th domain is generated via the following procedure: x ∈ Rd

is i.i.d sampled from a distribution p(x) with mean zero and covariance Id. The label y ∈ R obeys
y = x⊤B∗w∗

m where B∗ ∈ Rd×k is ground truth linear embedding shared by all domains, and
w∗

m ∈ Rk is the linear head specific to domain m. Under this setting, D̃m stands for data (x, y)
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Algorithm 1 FEDDAR
Input: Data S1:n; number of local updates τh for the heads, τϕ for representation; number of
communication rounds T ; learning rate η.
Initialize representation and heads ϕ0, h0

1, ..., h
0
M .

for t = 1, 2, ..., T do
Server sends ϕt−1, ht−1

1 , ..., ht−1
M to the n clients;

for client i = 1, 2, ..., n in parallel do
Client i initializes ht,0

i,m ← ht−1
m ,∀m ∈ [M ].

for s = 1 to τh do
ht,s
i,m ← GRD(R̂i,m(ht,s−1

i,m ◦ ϕt−1), ht,s−1
i,m , η), for all m ∈ [M ].

end for
Client i sends updated heads ht,τh

i,m and Hessians HRi,m(ht,τh
i,m ) to the server.

end for
Server aggregate the heads for each domain:
for m ∈ [M ] do
ht
m ← HEADAGG({ht,τh

1,m,HR1,m
(ht,τh

1,m)}ni=1) via Equation 8.
end for
Server sends ht

1, ..., h
t
M to the n clients;

for client i = 1, 2, ..., n in parallel do
for s = 1 to τϕ do

ϕt,s
i ← GRD(R̂i(ϕ

t,s−1
i , {ht

m}Mm=1), ϕ
t,s−1
i , η).

end for
Client i sends updated representation ϕt

i = ϕ
t,τϕ
i to server.

end for
Server computes the new representation via averaging ϕt ←

∑n
i=1

Li

L × ϕt
i.

end for

where x ∼ p(x) and y = x⊤B∗w∗
m. For each client, the local dataDi is a mix of data from different

domains with mixed coefficients, i.e., Di =
∑

m πi,mD̃m.

FedAvg: learns a single model B and w across the all clients via the following objective,

min
B,w

1

2n

∑
i∈[n]

E(x,y)∼Di
(y − x⊤Bw)2 =

∑
i∈[n],m∈[M ]

πi,m

2n
E(x,y)∼D̃m

(y − x⊤Bw)2 (2)

FedRep: learns shared representation B and separated heads wi for each clients i rather than for
each domain m,

min
B,w1,...,wn

1

2n

∑
i∈[n]

E(x,y)∼Di
(y − x⊤Bwi)

2 =
∑

i∈[n],m∈[M ]

πi,m

2n
E(x,y)∼D̃m

(y − x⊤Bwi)
2 (3)

FedDAR: In contrast, in the linear case, our proposed method, FedDAR, which will be introduced
next, learns a shared representation B and separate heads wm for each domain m,

min
B,w1,··· ,wm

1

2M

∑
i∈[n]

∑
m∈[M ]

πi,m∑
i′ πi′,m

E(x,y)∼D̃m
(y − x⊤Bwm)2 (4)

From the above formulations, we can see that FedAvd and FedRep are not able to achieve the zero
error in our domain-mixed FL problem.

4 PROPOSED METHOD: FEDDAR

To solve the Domain-mixed FL problem, we propose a new method called, Federated Domain-Aware
Representation Learning (FedDAR). In the following, we first introduce the model, learning objective
and the details of the federated optimization algorithm.
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4.1 ALGORITHM OVERVIEW

Our model is made of a shared encoder ϕ(·;θ) and M domain specific heads hm(·;wm) whose are
parameterized by neural networks with the weights θ and wm,∀m ∈ [M ]. According to our problem
formation in Equation 1, our algorithm aims to solve the following optimization,

min
ϕ,h1,...,hM

R(ϕ, h1, ..., hM ) :=
1

M

M∑
m=1

Rm(hm ◦ ϕ) (5)

We decouple the training between encoder and heads. Specifically, we alternates the learning between
the encoder and the heads. The learning is done federatedly and has two conventional steps: (1) local
updates; (2) aggregation at the server. Algorithm 1 shows the pseudocode code.

Empirical Objectives with Re-weighting. Empirically, the objectives are estimated via the finite
data samples at each client. We use Si,m to denote the set of samples from domain m in client i,
with Li,m := |Si,m| denoting the sample size. Further, Li :=

∑M
m=1 Li,m is the number of samples

in client i while Lm :=
∑n

i=1 Li,m is the total number of samples belonging to domain m across
all the clients. We denote the empirical risk at client i specific to domain m as R̂i,m(hm ◦ ϕ) :=

1
Li,m

∑
(x,y)∈Si,m

ℓ(hm ◦ ϕ(x), y). The empirical risk at client i is designed as R̂i(ϕ, h1, ..., hM ) =∑
m

Li,m

Li
umR̂i,m(hm ◦ ϕ), where um = L

LmM re-weights the risk for each domain. Combining
commonly used weighted average FL objective R̂(ϕ, h1, ..., hM ) =

∑n
i=1

Li

L R̂i(ϕ, h1, ..., hM ), the
overall empirical risk is derived as the following,

R̂(ϕ, h1, ..., hM ) :=

n∑
i=1

Li

L
R̂i(ϕ, h1, ..., hM ) =

1

M

M∑
m=1

R̂m(hm ◦ ϕ), (6)

where R̂m(hm ◦ ϕ) :=
∑n

i=1
Li,m

Lm
R̂i,m(hm ◦ ϕ). This is consistent with Equation 5.

4.2 LOCAL UPDATES AT CLIENTS

In each communication round, clients use gradient descent methods to optimize representation
ϕ(·;θ) and local heads hm(·;wm) for m ∈ [M ] alternately. We use t to denote the current round.
For a module f , f t−1 denotes its optimized version after t − 1 rounds. Each round has multiple
gradient descent iterations. We use f t,s to denote the module in round t after s iterations. Since the
updates are made locally, clients maintain their own copies of both modules, we use subscripts i to
index local copy at client i, e.g., f t,s

i . We use GRD to denote a generic gradient-base optimization
step which takes three inputs: objective function, variables, learning rate and maps them into
a new module with updated variables. For example, the vanilla gradient descent has the form
GRD(L(fw), fw, η) = fw−η∇wL(fw).

For the heads, client i performs τh local gradient-based updates to obtain optimal head given
the current shared encoder ϕt−1. For s ∈ [τh], client i updates via ht,s

i,m ← GRD(R̂i,m(ht,s−1
i,m ◦

ϕt−1), ht,s−1
i,m , η). For the shared encoder, the clients executes τϕ local updates. Specifically, for s ∈

[τϕ], client i updates the local copy of the encoder via ϕt,s
i ← GRD(R̂i(ϕ

t,s−1
i , {ht

m}Mm=1), ϕ
t,s−1
i , η).

The re-weighting mentioned in last section is implemented by re-weighting each sample with um

when calculating the loss function.

4.3 AGGREGATION AT SERVER

We introduce two strategies: (1) weighted average (WA); (2) second-order aggregation (SA).

Weighted average means the aggregated model parameters are the average of the local model’s
parameters weighted by the number of data samples. Specifically, for the shared encoder, we have
θt =

∑n
i=1

Li

L θt−1. Similarly for each head, we have wt
m =

∑n
i=1

Li,m

Lm
wt−1

m,i .

Second-order aggregation is a more complex strategy. Ideally, we want the head aggregation
generates the globally optimal model given a set of locally optimal model, as shown in the following,

w∗ ∈ argmin
w
J (w) ≜

n∑
i=1

αiJi(w), given w∗
i = argmin

w
Ri(w) ∀i ∈ [n]. (7)
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where Ji is i’th client’s virtual objective, αi := Li/L is the importance of the client, Li is the number
of data samples. We call Ji the virtual objective to distinguish it from the real learning objective
Ri. The virtual objective is defined as an objective that the local updates give the optimal solution
w.r.t it. It is introduced since the local updates during two aggregated are not guaranteed to optimize
the head to optimal w.r.t the real objective. For example, if each local update is single step gradient
descent with a learning rate η, i.e., wt+1

i = wt − η∇wRi(w
t). Then the virtual objective becomes

Ji(w) = Ri(w
t)+(w−wt)⊤∇wRi(w

t)+ 1
2η∥w−w

t∥22 which satisfies wt+1
i ∈ argminw Ji(w).

Such a virtual objective leads the solution of problem 7 to w∗ = 1
n

∑n
i=1 w

∗
i which is the simple

averaging strategy.

However, in real practice, the local updates are usually more complicated which makes the virtual
objective closer to the true objective. We consider the case that the virtual objective is the second-
order Taylor expansion of the true objective, i.e., J (w) = R(wt) + (w − wt)⊤∇wR(wt) +
1
2 (w − wt)⊤HR(wt)(w − wt) where HR is the Hessian matrix. Then each round of local
update equivalent to a Newton-like step, wt+1

i = wt −HRi(w
t)−1∇wRi(w

t). While wt+1 =
wt −HR(wt)−1∇wR(wt) is the desired globally optima. Leveraging the fact that, ∇wR(w) =∑

i∈[n] αi∇wRi(w) and HR(w) =
∑

i∈[n] αiHRi
(w), we can get wt+1 from wt+1

i via the
following equation, which we call second-order aggregation,

wt+1 = HR(wt)−1
∑
i∈[n]

αiHRi(w
t)wt+1

i (8)

Specifically, to implement second-order aggregation, in each round, the local clients first optimize
the model locally for several epochs. Then we compute the Hessian matrices for each local model
and send them to the server for aggregation. Note that sending the Hessian takes a communication
cost being quadratic to the size of the weight. In real practice, the predictive head is usually small,
e.g., a linear layer with hundreds of neurons. Thus it is acceptable to aggregate the Hessian matrix of
the head’s parameters.

In the following, we provide two instances of our second-order aggregation with a linear head.
1. Linear Regression whereRi(w) = 1

Li

∑Li

j=1(w
⊤xj

i − yj)2 is quadratic itself. Thus the second
order Taylor expansion of the objective itself, i.e., Ji(w) = Ri(w). In this case, HRi

(w) = X⊤
i Xi

where Xi = [x1
i , · · · ,x

Li
i ]⊤ is the data matrix of client i.

2. Binary Classification whereRi(w) = − 1
Li

∑Li

j=1 y
j
i log σ(w

⊤xj
i )+(1−yji ) log(1−σ(w⊤xj

i )).
σ is the sigmoid function. Let µj

i ≜ σ(w⊤xj
i ) denote model’s output. The gradient and the Hessian

are, ∇wRi(w) = 1
Li

∑
j(µ

j
i − yji )x

j
i = 1

Li
1⊤ diag(µi − yi)X

⊤
i and HRi(w) = 1

Li
X⊤

i SXi

where S ≜ diag(µ1
i (1−µ1

i ), · · · , µ
Li
i (1−µLi

i )). Similar formulas can be derived for the multiclass
classification. Please refer to the text book (Murphy, 2022) for the exact equations.

Remark. In practice, when the dimension of w is larger than the number of samples of a certain
domain, the Hessian may have small singular values which cause numerical instability. To mitigate
this issue, one can either directly set the representation dimension k to some smaller number or add a
(fully-connected) projection layer on top of a pretrained encoder to compress the representations to a
lower dimensional space.

4.4 THEORETICAL RESULT OF FEDDAR

For a simplified linear regression setting as discussed in domain-mixed FL (4) (cf. details in
Appendix A), we give below the sample complexity required for an adapted version of our algorithm
(Algorithm 2 in the appendix) to enjoy linear convergence. Due to the space limit, we only provide
an informal statement to highlight the result. The formal statement and the proof are deferred in the
appendix.

Theorem 4.1 (Sample complexity of FedDAR convergence in linear case (informal)). Consider the
linear setting for domain-mixed FL in (4). At each iteration, suppose that the number of samples
used by each of n clients to update the encoder, is Ω̃(dk

2

n ), and that the aggregate number of samples
used in the update for the domain-specific heads, is Ω̃(k). Then, for a suitably chosen step size, the
distance between the encoder Bt Algorithm 2 outputs and the true encoder B∗ converges at a linear
rate.
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Remark. As our algorithm converges linearly to the true encoder, the per-iteration sample com-
plexity of our algorithm gives a good estimate of the overall sample complexity. Since we expect
the output of the encoder to be significantly lower-dimensional than the input (i.e. k ≪ d), our
result indicates that Algorithm 2’s sample complexity is dominated by Ω̃( dn ), implying that the
complexity reduces significantly as the number of clients n increases. Moreover, a key implication of
our result is the capacity for our algorithm to accommodate data imbalance across domains. We note
that our approach requires Ω(dk2) samples per iteration for the update of the shared representation
B ∈ Rd×k, whilst needing only Ω(k) samples per iteration for the update of each domain head. In
particular, domains with more data can contribute disproportionately to the Ω̃(dk2) samples required
to learn the common representation, whilst domains with fewer data need only provide Ω̃(k) samples
to update its domain head during the course of the algorithm. Whenever k ≪ d, which we believe is
a reasonable assumption for many practical applications (e.g. medical imaging), the requirement of
Ω̃(k) samples per domain is relatively mild. Conversely, forgoing the shared representation structure
would require each domain to learn a separate d-dimensional classifier, requiring Ω̃(d) samples per
domain, which can pose a challenge in problems with domain data imbalance.

5 EXPERIMENTS

We validate our method’s effectiveness on both synthetic and real datasets. We first experiment
on the exact synthetic dataset described in our theoretical analysis to verify our theory. We then
conduct experiments on a real dataset, FairFace (Kärkkäinen & Joo, 2019), with controlled domain
distributions to investigate the robustness of our algorithm under different levels of heterogeneity.
Finally, we compare our method with various baselines on a real federated learning benchmark,
EXAM (Dayan et al., 2021) with real-world domain distributions. We also conduct extensive ablation
studies on it to discern the contribution of each component of our method. Full details of experimental
settings can be found in Appendix B.

5.1 SYNTHETIC DATA

We first run experiments on the linear regression problem analyzed in Appendix A. We generate (do-
main, data, label) samples as the following, zi ∼M(πi), xi ∼ N (0, Id), yi ∼ N (w∗

zi
⊤B∗⊤xi, σ)

where σ = 10−3 controls label observation errors,M(πi) is a multinomial domain distribution with
parameter πi = [πi,1, ..., πi,M ] ∈ ∆M . The hyper-parameters of domain distributions πi are drawn
from a Dirichlet distribution, i.e., πi ∼ Dir(αp), where p ∈ ∆M is a prior domain distribution
over M domains, and α > 0 is a concentration parameter controlling the heterogeneity of domain
distributions among clients. The largest domain distribution heterogeneity is achieved as α → 0
where each client contains data only from a single randomly selected domain. On the other hand,
when α→∞, all clients have identical domain distributions that are equal to the prior p. We generate
ground-truth representation B∗ ∈ Rd×k and domain specific heads w∗

m,∀m ∈ [M ] by sampling and
normalizing Gaussian matrices.

Figure 5.2 shows result of our experiments where we set n = 100 clients, M = 5 domains, feature
dimension k = 2. We vary the number of training samples per client from 5 to 20. The result
shows that FedDAR-SA, achieves four orders of magnitude smaller errors than all the baselines: (1)
Local-Only where each client train a model using its own data; (2) FedAvg which learns a single
shared model; (3) FedRep which learns shared representation and client-specific heads. (4)Separate
FedAvg which trains separate models for each domain using FedAvg. The results demonstrate that
our method overcomes the heterogeneity of domain distributions across clients. FedDAR-WA fails to
converge under this setting, confirming the effectiveness of the proposed second-order aggregation.

5.2 REAL DATA WITH CONTROLLED DISTRIBUTION

Dataset and Model. We use FairFace (Kärkkäinen & Joo, 2019), a public face image dataset
containing 7 race groups which are considered as the domains. Each image is labeled with one of 9
age groups and gender. We use the age label as the target to build a multi-class age classifier. We
created an FL setting by dividing training data into n clients without duplication. Each client has
a domain distribution πi ∼ Dir(αp) sampled from a Dirichlet distribution. The total number of
samples at each client Li = 500 is set to be the same in all experiments. We control the heterogeneity
of domain distributions by altering α. The label distributions are uniform for all the clients.
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Figure 1: Performance under a different number of
training samples per client, the error bars show the
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Figure 2: Age classification accuracy as a
function of representation dimension k.

Table 1: Min, max and average test accuracy of age classification across 7 domains (race groups) on
FairFace with number of clients n = 5, number of samples at each client Li = 500

Method α = 0.1 α = 0.5 α = 1 α = 100
Max Min Avg Max Min Avg Max Min Avg Max Min Avg

Seperate FedAvg 41.8±2.2 4.1±1.3 19.3±0.5 42.4±0.6 9.7±0.6 23.5±1.2 41.4±0.7 9.3±0.8 23.4±0.8 41.4±0.4 8.5±1.6 22.9±1.0
FedAvg (w/o reweighting) 43.4±1.7 37.1±1.1 40.0±0.6 45.7±0.5 38.8±0.2 41.6±0.3 45.2±0.8 38.4±0.8 41.1±0.4 44.0±0.7 38.6±0.7 40.8±0.7
FedAvg(w/ reweighting) 42.8±0.6 37.7±0.8 39.9±0.2 45.8±0.8 39.2±0.2 41.6±0.3 44.9±0.5 38.3±0.5 40.9±0.3 43.3±1.3 38.4±1.5 40.5±1.3
FedAvg + Multi-head 46.8±0.9 32.4±2.8 39.8±1.0 49.1±0.1 34.9±1.4 40.0±1.0 51.1±0.4 34.7±0.2 40.3±0.6 49.6±0.3 36.4±0.9 39.8±0.7
FedDAR-WA 46.5±1.9 34.0±1.9 40.5±0.3 49.9±1.2 40.0±0.2 42.9±0.2 49.2±0.3 40.0±0.6 42.7±0.5 48.6±0.5 40.2±0.5 42.5±0.4
FedDAR-SA 48.2±1.0 39.3±0.8 42.4±0.4 50.0±0.3 40.6±0.4 43.4±0.1 49.0±0.5 41.2±0.3 43.7±0.5 49.0±0.3 41.2±0.4 43.6±0.5

Implementation and Evaluation. We use Imagenet(Deng et al., 2009) pre-trained ResNet-34 (He
et al., 2016) for all experiments on this dataset. All the methods are trained for T = 100 communi-
cation rounds. We use Adam optimizer with a learning rate of 1× 10−4 for the first 60 rounds and
1× 10−5 for the last 40 rounds.
Metrics and Results. Our evaluation metrics are the classification accuracy on the whole validation
set of FairFace for each race group. We don’t have extra local validation set for each client since we
assume the data distribution within each domain is consistent across the clients. In Table 5.2, we report
the accuracy averaged over the final 10 rounds of communication following the common practice
(Collins et al., 2021). The result shows our FedDAR achieved the best performance compared with
the baselines. Note that FedAvg + Multi-head also uses Equation 5 as objective for fair comparison.
Effect of k. The limitation of using FedDAR-SA instead of FedDAR-WA is the need of tuning the
dimension of representation k. Figure 5.2 shows results of the average domain test accuracy with
different k. We can see that FedDAR-SA can achieve better accuracy with a properly chosen k. We
use k = 8 for all results with FedDAR-SA in Table 5.2.
Robustness to Varying Levels of Heterogeneity. From the result with various α, we can observe
that the performance of FedDAR-SA is very stable no matter how heterogeneous the domain mixtures
are. However, the baselines’ accuracy decrease when α becomes smaller.

5.3 REAL DATA WITH REAL-WORLD DATA DISTRIBUTION

Dataset and Model. We use the EXAM dataset (Dayan et al., 2021), a large-scale, real-world
healthcare FL study. We use part of the dataset including 6 clients with a total of 7,681 cases. We
use race groups as domains. The dataset is collected from suspected COVID-19 patients at the visit
of the emergency department (ED), including both Chest X-rays (CXR) and electronic medical
records (EMR). We adopt the same data preprocessing procedure and the model as (Dayan et al.,
2021). Our task is to predict whether the patient received oxygen therapy higher than high-flow
oxygen in 72 hours which indicates severe symptoms.

Baselines. (1) methods that learn one global model, FedAvg(McMahan et al., 2017a), FedProx(Li
et al., 2020), FedMinMax(Papadaki et al., 2021) along with their local fine-tuned variants; (2) train
M separate models with FedAvg; (3) train one global model with FedAvg first, then fine-tune on M
domains separately with FedAvg; (4) client-wise personalized FL approaches, FedRep(Collins et al.,
2021), FedPer(Arivazhagan et al., 2019), LG-Fedavg(Liang et al., 2020), FedBN(Li et al., 2021b).

Implementation and Evaluation. We apply 5-fold cross-validation. All the models are trained for
T = 20 communication rounds with Adam optimizer and a learning rate of 10−4. The models are
evaluated by aggregating predictions on the local validation sets and then calculating the area under
curve (AUC) for each domain. We also report the AUCs averaged on clients’ local validation set.
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Table 3: AUCs result on EXAM dataset with the domain being race group. Numbers are the means
and standard deviations of metrics from 5-fold cross-validation.
Methods White Black Asian Latino Other Min Avg Client Avg

Local .761±.023 .815±.055 .838±.039 .889±.076 .840±.038 .759±.026 .829±.032 .795±.023

separate FedAvg .796±.022 .694±.015 .788±.047 .649±.133 .826±.046 .606±.080 .751±.026 .759±.027
FedAvg .830±.027 .854±.045 .887±.022 .834±.102 .900±.038 .773±.049 .861±.019 .856±.020
FedAvg + FT .783±.044 .835±.025 .892±.015 .817±.136 .892±.048 .727±.093 .844±.024 .845±.016
FedAvg + separate FT .832±.032 .846±.043 .903±.025 .869±.099 .911±.026 .784±.054 .872±.017 .863±.024
FedProx .834±.017 .864±.056 .903±.035 .880±.085 .912±.030 .808±.030 .879±.023 .868±.012
FedProx + FT .806±.023 .842±.049 .910±.025 .925±.085 .898±.031 .798±.025 .876±.010 .858±.014
FedMinMax .839±.027 .867±.054 .894±.039 .916±.053 .903±.034 .823±.032 .884±.020 .872±.016

FedBN .787±.027 .840±.063 .883±.039 .867±.090 .852±.043 .766±.013 .846±.020 .856±.010
FedRep .837±.020 .869±.050 .888±.042 .913±.083 .910±.028 .812±.028 .884±.025 .867±.013
FedPer .835±.025 .865±.073 .909±.037 .916±.036 .911±.031 .813±.047 .887±.021 .873±.011
LG-FedAvg .830±.029 .858±.052 .906±.032 .902±.050 .903±.033 .814±.034 .880±.019 .867±.017

FedDAR-WA .884±.007 .896±.017 .902±.034 .952±.041 .928±.022 .872±.015 .912±.004 .898±.006
FedDAR-SA .888±.004 .895±.038 .928±.032 .939±.046 .948±.016 .868±.020 .919±.014 .912±.001

Average Performance Across Domains and Clients. Table 3 shows the average of AUCs across
domains and clients. We can see that our methods, both FedDAR-WA and FedDAR-SA, achieve
significantly better performance than all the baselines under both domain-wise and client-wise metrics.
The gap between our domain-wise personalized approach and other client-wise personalized baselines
shows the validity of learning domain-wise personalized models facing diversity across domains.
The reason that fine-tuning methods induce worse results is mainly because of the imbalanced label
distribution. Each local training dataset doesn’t have enough positive cases to do proper fine-tuning.
Fairness Across Domains. The AUCs of each specific domain in Table 3, show that our proposed
FedDAR method uniformly increases the AUC for each domain. The column of the minimum AUC
among domains also verifies that our method indeed improves the fairness across the domains.

Table 2: Ablation results of different
components’ contribution in FedDAR.

RW MH DI Alter Proj AGG Domain
Avg / Min

Client
Avg

N/A .861 / .773 .856
✓ N/A .881 / .824 .873

✓ ✓ N/A .880 / .825 .866
✓ ✓ WA .885 / .834 .870
✓ ✓ ✓ WA .877 / .817 .870
✓ ✓ ✓ SA .878 / .826 .871

✓ ✓ ✓ N/A .867 / .806 .852
✓ ✓ ✓ WA .912 / .872 .898
✓ ✓ ✓ ✓ WA .918 / .863 .904
✓ ✓ ✓ ✓ SA .919 / .868 .912

Ablation Studies. i) re-weighting (RW): First two rows
in Table 2 shows adding sample re-weighting signifi-
cantly improves the fairness across the domains. The
minimum AUC among domains is improved by a large
margin (> 0.05); ii) multi-head (MH), domain as input
feautre (DI) and alternating update (Alter): Comparing
three blocks in Table 2, we see that adding multi-head
alone does not improve results. We conjecture that alter-
nating update prevents the overfitting of the heads with
limited samples. This is also shown by the result in Table
5.2, where FedAvg+MH tends to perform badly on certain
underrepresented domains especially when domain distri-
butions are highly heterogeneous (α is small). Meanwhile,
using domain labels directly as feature input is not as good
as multi-head, and not compatible with alternating update;
iii) projection (Proj) and aggregation method (AGG): Results in Table 2 shows that using second-order
aggregation with the projection of the features gives the best result.

6 CONCLUSIONS

We propose a novel personalized federated learning framework that assumes the mixture of domain
data distribution. Our approach, FedDAR, achieves a balanced performance across domains by
learning a global representation and domain-specific heads, despite the heterogeneity of domain
distributions across clients. Our method is effective, as supported by both theoretical and empirical
justifications. It has been tested on face recognition and medical imaging FL datasets and can be
easily extended to other complicated tasks. However, our method has some limitations: i) it requires
the domain information for all samples; ii) it does not consider heterogeneity of label distributions;
iii) it has a potentially expensive communication cost caused by sending Hessian matrices, especially
when the output dimension is big. We plan to address these limitations in future work, along with
other research directions such as improving fairness across domains and exploring the setting where
domains are structured, hierarchical, continuously indexed (Wang et al., 2020; Nasery et al., 2021) or
multi-dimensional (characterized by multiple factors).
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A FEDDAR FOR LINEAR REPRESENTATION

A.1 SETUP

We retain the setup for linear regression considered at the start of Section 3.1. We additionally define
W ∗ ≜ [w∗

1 , · · · ,w∗
M ]⊤ ∈ RM×k as the concatenation of domain specific heads. For notational

convenience, we let (xi,m, yi,m) denote an (input, output) sample coming from client i and the m-th
domain. To measure the distance between any two matrices A,B with the same dimensions, we use
the principal angle distance (Golub & Van Loan, 2013), given by dist(A,B) ≜ ∥A⊤

⊥B∥2, where
A⊥ denotes a matrix whose columns form a basis for the orthogonal complement of the range of A.
To simplify the analysis, we further make the following assumptions.
Assumption A.1 (Sub-Gaussianilty). For each m ∈ [M ] and i ∈ [n], the samples xi,m ∈ Rd are
independent, mean zero, have covariance Id, and has subgaussian norm 1, i.e. for every v ∈ Rd,
E[exp(v⊤xi,m)] ≤ exp(∥v∥2/2).
Assumption A.2 (Domain diversity). Let σmin,∗ ≜ σmin(

1√
M
W ∗), i.e., σmin,∗ is the minimum

singular value of the head matrix. Then σmin,∗ > 0.

Assumption A.3 (Ground truth normalization). The true domain parameters satisfy 1
2

√
k ≤ ∥w∗

m∥ ≤√
k for each m ∈ [M ], and B∗ has orthonormal columns.

All the above assumptions aim to simplify the theoretical analysis whilst only imposing mild con-
straints on the data distribution and the parameters of the target functions. Similar assumptions have
also been adapted in prior work (Collins et al., 2021).

A.2 FEDDAR ADAPTED TO LINEAR REGRESSION

We analyze an adapted version of our FedDAR algorithm. Since the linear regression problem has an
analytic solution, to ease analysis, we update the heads {wm}Mm=1 at the server in closed form using
local gradient information. Meanwhile, we update the representation B by taking a step using the
averaged local gradients. Algorithm 2 shows the procedure of this adapted version.

The local objective for i-th client in m-th domain at t-th iteration, f t
i,m(wm,Bt) is defined as the

following,

f t
i,m(wm,Bt) ≜

1

2

Lt
i,m∑

j=1

(yji,m −w⊤
mB⊤xj

i,m)2,

where Lt
i,m is the number of samples from domain m at client i. We assume in each iteration the data

points {xj
i,m, yji,m}j∈[Lt

i,m] are all newly sampled from the distribution. We denote L =
∑

m Lt
i,m.

Note that since the objective function has a quadratic form, thus its gradient w.r.t either wm or B
has a linear form of Ai,mwm − ai,n or Ci,mB − ci,m which we write down explicitly in Appendix
B. After every global update of the representation B, we apply an additional QR decomposition to
normalize it to be column-wise orthogonal.

A.3 CONVERGENCE ANALYSIS

We first provide a brief proof sketch. Overall, our approach largely follows that in Collins et al.
(2021), with a few differences needed to handle the spreading of a domain’s data across different
clients. We note that we also tightened the analysis compared with Collins et al. (2021), such that
each domain only needs O(k) samples as opposed to O(k2) samples as in Collins et al. (2021) (where
the requirement is for each client to have O(k2) samples since they considered the case where each
client has a separate head). This can yield a significant improvement when k is moderately large and
there is data imbalance.

1. First, in Lemma A.5, we show that our estimated weight matrix W t+1 ∈ RM×k (which is
our estimation at time t+1 of the true domain weights matrix W ∗) satisfies the relationship

W t+1 = W ∗(B∗)⊤Bt + Ft,
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Algorithm 2 FEDDAR for linear regression
Input: Step size η; number of rounds T
Client initialization: each agent i ∈ [n] collects L0 samples, and sends Zi :=∑L0

i=1(y
0,j
i )2x0,j

i (x0,j
i )⊤ to the server.

Server initialization: finds UDU⊤ ← rank-k SVD( 1
nL0

∑n
i Zi); sets B0 ← U .

for t = 0, 1, . . . , T do
Server sends current Bt to clients.
Client computation for W t+1:
for client i ∈ [n] do

Selects L new samples {(xj
i , y

j
i )}.

Computes ∇wm
f t
i,m(wm,Bt) = At

i,mwm − at
i,m for each domain m ∈ [M ].

Sends (At
i,m,at

i,m, Lt
i,m) back to server.

end for
Server update for W t+1:
Server chooses wt+1

m ∈
{
wm ∈ Rk : ∇wm

(
1∑

i L
t
i,m

∑n
i=1 f

t
i,m(wm,Bt)

)
= 0
}

, ∀m ∈
[M ], i.e., wt+1

m that satisfies (
∑

i A
t
i,m)wt+1

m =
∑

i a
t
i,m.

Sends W t+1 = [w1, · · · ,wM ]⊤ ∈ RM×k to clients.
Client computation for Bt+1:
for client i ∈ [n] do

Selects L new samples {xj
i , y

j
i }.

Computes ∇Bf t′

i,m(wt+1
m ,Bt) = Ct

i,mBt − cti,m for each m ∈ [M ].
Sends (∇Bf t′

i,m(wt+1
m ,Bt), Lt′

i,m) back to server.
end for
Server update for Bt+1:
Server computes B̃t+1 ← Bt − η 1

m

∑M
m=1

1∑
i L

t′
i,m

∑n
i=1∇Bf t′

i,m(wt+1
m , B).

Server performs QR decomposition B̂t+1,Rt+1 = QR(B̃t+1).
Server updates Bt+1 ← B̂t+1.

end for

where Bt is our estimation of the true (high to low dimensional) representation embedding
B∗ at time t, and Ft is an error term that we can show to be bounded (sufficiently small)
in terms of dist(Bt,B∗), with the scale of the error depending on the (random) number
of samples Lm seen at time t for each domain m ∈ [M ]. Bounding ∥Ft∥ in our setting
requires some care since the samples for each domain are spread over many clients. We
refer the reader to Section A.4.2 for the details.

2. Second, we show in Section A.4.3 that the update for Bt satisfies the relationship (see
equation 21)

Bt+1 = Bt − η

M

(
(Qt)⊤

)
W t+1 − η

M
HQ,

where Qt := W t+1(Bt)⊤−W ∗(B∗)⊤, and HQ denotes an error term which can be shown
to be bounded (sufficiently small) in terms of dist(Bt,B∗). Further simplifying, we have

dist(Bt+1,B∗) = (B∗
⊥)

⊤Bt+1 = (B∗
⊥)

⊤
(
Bt − η

M

(
Bt(W t+1)⊤ −B∗(W ∗)⊤

)
W t+1 − η

M
HQ

)
,

= dist(Bt,B∗)− η

M
(B∗

⊥)
⊤Bt(W t+1)⊤W t+1 − η

M
(B∗

⊥)
⊤HQ

≤ dist(Bt,B∗)− η

M
dist(Bt,B∗)σ2

min(W
t+1)− η

M
(B∗

⊥)
⊤HQ

By upper bounding ∥HQ∥ in terms of dist(Bt,B∗) and providing an appropriate lower
bound on σmin(W

⊤
t+1Wt+1), we can then show by picking η sufficiently small and under

other suitable assumptions, the quantity dist(Bt,B∗) decays at a linear rate (see Equa-
tion 29). Again, a difference from the analysis in Collins et al. (2021) is our handling of
bounding ∥HQ∥, since the samples for each sample are spread over different clients.
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3. An issue created by the spreading of samples for a domain across different clients is how to
pick an appropriate sample size such that the ∥Ft∥ and ∥HQ∥ terms can be suitably bounded.
In Lemma A.10, we prescribe a suitable sample size for each client such that each domain
gets sufficient samples (with high probability) for the purposes of our analysis.

We now proceed with a detailed analysis.

We first present a theorem that states our adapted FedDAR(Algorithm 2) enjoys linear convergence.
The theorem is followed by multiple remarks which highlight key detailed points of our convergence
result.
Theorem A.4 (Algorithm 2 convergence). Define E0 := 1 − dist2(B0,B∗), σ̄max,∗ :=

σmax

(
1√
M
W ∗

)
, σ̄min,∗ := σmin

(
1√
M
W ∗

)
. Let κ :=

σ̄max,∗
σ̄min,∗

. Suppose

L ≥ Ω̃

(
max

{
dk2κ4

nE2
0

,
k2κ4

E2
0 minm∈[M ](

∑m
i=1 πi,m)

})
. (9)

Then, for any T and any η ≤ 1/(4σ̄2
max,∗), with probability at least 1− Te−80,

dist(BT ,B∗) ≤ (1− ηE0σ̄
2
min,∗/2)

T/2dist(B0,B∗). (10)

Linear convergence speed: The convergence of BT to B∗ is linear, assuming that (1)
σmin(

1√
M
W ∗) > 0 and that (2) 1− ηE0σ̄

2
min ∈ (0, 1).

Initialization of B0: For our convergence result to be meaningful, we need dist(B0,B∗) to be
close to 0. We show in Appendix A that our algorithm’s choice of initial B0 ensures that dist(B0,B∗)
is close enough to 0 whilst preserving privacy. When the number of samples is uniform across the
domains, this comes only at the cost of a logarithmic increase in sample complexity.
Sample complexity: The per-iteration sample complexity per client is L. We note that in the
requirement for L (9), we need that L ≥ Ω(dk2κ4/n); this comes from the updates for Bt ∈ Rd×k.
While we expect that d could be large, a large number of clients n helps to mitigate the increase
in sample complexity arising from d. We also need L ≥ Ω(k2κ4

∑m
i=1 πi,m) for every domain

m ∈ [M ]; this requirement comes from the updates for wt
m for each of the M domains.

A.4 PROOF OF THEOREM A.4

A.4.1 ANALYSIS FOR UPDATE OF W t+1

Since we are analyzing the update step for any iteration t, unless necessary we drop all t superscripts.
Let Lm =

∑n
i=1 Li,m denote the number of samples from domain m ∈ [M ] across the n clients.

Then, we can express∇wm

∑n
i=1 fi,m(wm,B) as

∇wm

n∑
i=1

fi,m(wm,B) =

n∑
i=1

Li,m∑
j=1

(w⊤
mB⊤xj

i,m − yji,m)B⊤xj
i,m.

Since
yji,m = (w∗

m)⊤(B∗)⊤xj
i,m,

it follows that following Algorithm 2, 1

Lm

n∑
i=1

Li,m∑
j=1

(
B⊤xj

i,m(xj
i,m)⊤B

)
︸ ︷︷ ︸

Gm

wt+1
m =

1

Lm

n∑
i=1

Li,m∑
j=1

(
B⊤xj

i,m(xj
i,m)⊤B∗

)
w∗

m. (11)

Reexpressing, assuming Gm is invertible, we have

wt+1
m = B⊤B∗w∗

m +

G−1
m

 1

Lm

n∑
i=1

Li,m∑
j=1

(
B⊤xj

i,m(xj
i,m)⊤B∗

)
w∗

m

−B⊤B∗w∗
m


(12)
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Intuitively, assuming Lm is large enough,

1

Lm

n∑
i=1

Li,m∑
j=1

xj
i,m(xj

i,m)⊤ ≈ Id.

Hence,

G−1
m

 1

Lm

n∑
i=1

Li,m∑
j=1

(
B⊤xj

i,m(xj
i,m)⊤B∗

)
w∗

m

 ≈ B⊤B∗w∗
m.

This then implies that

W t+1 = W ∗(B∗)⊤B + F, (13)

where the m-th row of F is

F⊤
m :=

G−1
m

 1

Lm

n∑
i=1

Li,m∑
j=1

(
B⊤xj

i,m(xj
i,m)⊤B∗

)
w∗

m

−B⊤B∗w∗
m

⊤

.

Note the similarity of equation 18 to (17) in (Collins et al., 2021). Following a similar analysis
as (Collins et al., 2021), we should also be able to bound the Frobenius norm of F in terms of
dist(B,B∗).

Below, we formalize the argument. First, we have the following lemma.
Lemma A.5 (Update for W t+1). For each time t, let Lt

m :=
∑n

i=1 L
t
i,m denote the number of

samples from domain m ∈ [M ] across the n clients at time t. For convenience, we drop the time
index unless absolutely necessary. We define the terms

Xm :=
1

Lm

n∑
i=1

Li,m∑
j=1

xj
i,m(xj

i,m)⊤, Gm :=
1

Lm

n∑
i=1

Li,m∑
j=1

(
B⊤xj

i,m(xj
i,m)⊤B

)
.

Then, assuming that Gm is invertible, the update for W takes the form

W t+1 = W ∗(B∗)⊤B + F, (14)

where the m-th row of F is

F⊤
m :=

(
G−1

m

(
B⊤Xm(I −BB⊤)B∗)w∗

m

)⊤
. (15)

Proof. We can express∇wm

∑n
i=1 fi,m(wm,B) as

∇wm

n∑
i=1

fi,m(wm,B) =

n∑
i=1

Li,m∑
j=1

(w⊤
mB⊤xj

i,m − yji,m)B⊤xj
i,m.

Since
yji,m = (w∗

m)⊤(B∗)⊤xj
i,m,

it follows that following Algorithm 2, 1

Lm

n∑
i=1

Li,m∑
j=1

(
B⊤xj

i,m(xj
i,m)⊤B

)
︸ ︷︷ ︸

Gm

wt+1
m =

1

Lm

n∑
i=1

Li,m∑
j=1

(
B⊤xj

i,m(xj
i,m)⊤B∗

)
w∗

m. (16)

Reexpressing, assuming Gm is invertible, we have

wt+1
m = B⊤B∗w∗

m +

G−1
m

 1

Lm

n∑
i=1

Li,m∑
j=1

(
B⊤xj

i,m(xj
i,m)⊤B∗

)
w∗

m

−B⊤B∗w∗
m

 .

(17)
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This then implies that

W t+1 = W ∗(B∗)⊤B + F, (18)

where the m-th row of F is

F⊤
m :=

G−1
m

 1

Lm

n∑
i=1

Li,m∑
j=1

(
B⊤xj

i,m(xj
i,m)⊤B∗

)
w∗

m

−B⊤B∗w∗
m

⊤

=
(
G−1

m B⊤XmB∗w∗
m −G−1

m GmB⊤B∗w∗
m

)⊤
=
(
G−1

m B⊤XmB∗w∗
m −G−1

m B⊤XmBB⊤B∗w∗
m

)⊤
=
(
G−1

m

(
B⊤Xm(I −BB⊤)B∗)w∗

m

)⊤
.

A.4.2 BOUNDING ∥F∥F

We will proceed to bound the Frobenius norm of F . We begin by showing that G−1
m exists and (both

lower and upper) bounding its spectral norm.

Lemma A.6. Let Lmin := minm∈[M ] Lm. Let δk :=
10C

√
k
√

log(M)√
Lmin

for some absolute constant

C. Suppose that 0 ≤ δk < 1. Then, with probability at least 1− e−80k log(M), G−1
m exists for each

m ∈ [M ], and

∥G−1
m ∥2 ≤

1

1− δk
∀m ∈ [M ].

Proof. Note that

Gm :=
1

Lm

n∑
i=1

Li,m∑
j=1

(
B⊤xj

i,m(xj
i,m)⊤B

)
.

Let vji,m := B⊤xj
i,m. Since B⊤B = I , it follows that each vji,m is i.i.d 1-subgaussian. Then,

applying the same argument in Theorem 4.6.1 of Vershynin 2018, we have (cf. equation (4.22) in
Vershynin 2018)

σmin(Gm) ≥ 1− C

( √
k√
Lm

+
z√
Lm

)
︸ ︷︷ ︸

δk,m

(19)

with probability at least 1−e−z2

for z ≥ 0 and some absolute constant C, assuming that 0 ≤ δk,m ≤ 1.
Consider the choice z = 9

√
k
√
log(M). Then,

δk,m = C

( √
k√
Lm

+
9
√
k log(M)√
Lm

)
≤ 10C

√
k logM√
Lm

≤ 10C

√
k
√
logM√
Lmin

.

Suppose we choose Lmin ≥ 1 such that δk,m < 1. Then, taking a union bound, with probability at
least 1−Me−z2

= 1−M exp(−81k} log(M))=1− exp(−80k log(M)),

σmin(Gm) ≥ 1− δk,m ≥ 1− 10C
√
k
√
logM√

Lmin

> 0 ∀m ∈ [M ]. (20)

Therefore, with probability at least 1− exp(−80k log(M)), G−1
m exists for every m ∈ [M ], and in

addition,

∥G−1
m ∥2 ≤

1

1− δk
∀m ∈ [M ].
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We next bound the operator norm of term B⊤Xm(I −BB⊤)B∗.

Lemma A.7. Let Lmin := minm∈[M ] Lm. Let δk := 10C
√
k
√
logM√

Lmin
for some absolute constant C.

Suppose Lmin is such that 0 ≤ δk < 1. Then, with probability at least 1− e−50k logM ,

∥B⊤Xm(I −BB⊤)B∗∥2 ≤ dist(B∗, B)δk.

Proof. We will use an ϵ-net argument, similar to the proof of Theorem 4.6.1 in (Vershynin, 2018).

First, by Corollary 4.2.13 in (Vershynin, 2018), there exists an 1/4-net N of the unit sphere Sk−1

with cardinality N ≤ 9k. Using Lemma 4.4.1 in (Vershynin, 2018), we have that

∥B⊤Xm(I −BB⊤)B∗∥2 ≤ 2max
z∈N

∣∣〈(B⊤Xm(I −BB⊤)B∗) z, z〉∣∣.
To prove our result, by applying a union bound over m ∈ [M ], it suffices to show that with the
probability at least 1− e−100k2 logM ,

max
z∈N

∣∣〈(B⊤Xm(I −BB⊤)B∗) z, z〉∣∣ ≤ δkm

2
∀m ∈ [M ],

where we recall that

δk,m = C

( √
k√
Lm

+
9
√
k log(M)√
Lm

)
≤ δk.

We will assume that minm Lm := Lmin ≥ 1 is chosen large enough such that δk,m ≤ 1.

For a fixed z ∈ Sk−1, observe that

〈(
B⊤Xm(I −BB⊤)B∗) z, z〉 = 1

Lm

n∑
i=1

Li,m∑
j=1

〈(
B⊤xj

i,m(xj
i,m)⊤(I −BB⊤)B∗

)
z, z
〉

:=
1

Lm

n∑
i=1

Li,m∑
j=1

(z⊤uj
i,m)((vji,m)⊤z),

where we defined uj
i,m := B⊤xj

i,m, and vji,m = (B∗)⊤(I −BB⊤)xj
i,m.

Since each xj
i,m is 1-subgaussian, ∥B∥2 = 1, and ∥(I −BB⊤)B∗∥2 = dist(B∗,B), it follows

that z⊤uj
i,m is subgaussian with norm at most 1, and (vji,m)⊤z is subgaussian with norm at most

dist(B∗,B). Thus, the random variable αj
i,m := (z⊤uj

i,m)((vji,m)⊤z) (for a fixed unit z) is sub-
exponential with sub-exponential norm at most dist(B∗,B). Moreover, note that αj

i,m is mean-zero,
since

E[uj
i,m(vji,m)⊤] = E[B⊤xj

i,m(xj
i,m)⊤(I −BB⊤)B∗]

= B⊤(I −BB⊤)B∗ = 0,

as xj
i,m is assumed to have identity covariance. Thus, the αj

i,m’s are i.i.d mean-zero subexponential
variables each with subexponential norm at most dist(B∗,B). Hence, by Bernstein’s inequality (cf.
Corollary 2.8.3 in (Vershynin, 2018)),

P
(∣∣〈(B⊤Xm(I −BB⊤)B∗) z, z〉∣∣ ≥ δk,mdist(B∗,B)

2

)

= P

∣∣∣∣∣∣ 1

Lm

n∑
i=1

Li,m∑
j=1

αj
i,m

∣∣∣∣∣∣ ≥ δk,mdist(B∗,B)

2


≤ 2 exp

(
−cmin(

δk,mdist(B∗,B)

dist(B∗,B)
,

(
δk,mdist(B∗,B)

dist(B∗,B)

)2

)Lm

)
= 2 exp(−cδ2k,mLm)

≤ 2 exp(−cC2 (k + 81k log(M) log(M))).
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Above we used the assumption that δk,m ≤ 1 to simplify the minimum operator in the exponent.

Taking a union bound over each z ∈ N , it follows that

P
(
∥B⊤Xm(I −BB⊤)B∗∥2 ≥ δk,mdist(B∗,B)

)
≤ P

(
2max

z∈N

∣∣〈(B⊤Xm(I −BB⊤)B∗) z, z〉∣∣ ≥ δk,mdist(B∗,B)

)
≤ 2 · 9k exp(−cC2 (k + 81k log(M)))

≤ exp(−51k logM),

where the last inequality follows by picking C large enough (but still it is an absolute constant). (Here
the choice of 51 in the exponent is somewhat arbitrary; any choice smaller than 81 should work). By
applying a union bound over the domains m ∈ [M ], this then completes our proof.

We are now finally ready to bound ∥F∥F .

Lemma A.8. Let Lmin := minm∈[M ] Lm. Let δk :=
10C

√
k
√

log(M)√
Lmin

for some absolute constant C.

Suppose that 0 ≤ δk < 1. Then, with probability at least 1− 2e−50k log(M),

∥F∥F ≤
δk

1− δk
dist(B∗,B)∥W ∗∥F .

Proof. By Lemma A.6 and Lemma A.7, we have that with probability at least 1− 2e−50k logM ,∥∥G−1
m (B⊤Xm(I −BB⊤)B∗)

∥∥
2
≤
∥∥G−1

m

∥∥
2

∥∥B⊤Xm(I −BB⊤)B∗∥∥
2

≤ 1

1− δk
(δkdist(B

∗,B)) .

The proof then follows by recalling that the m-th row, F⊤
m , takes the form

F⊤
m =

(
G−1

m

(
B⊤Xm(I −BB⊤)B∗)w∗

m

)⊤
.

A.4.3 ANALYSIS OF UPDATE FOR Bt+1

Similarly to (Collins et al., 2021), we define

Qt = W t+1(Bt)⊤ − (W ∗)(B∗)⊤.

Below, we drop the time index and use B, Q,W to denote Bt, Qt, and W t+1 respectively. Based on
algorithm 2, we have that

B̃t+1 = B − η

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

(w⊤
mB⊤xj

i,m − yji,m)xj
i,mw⊤

m

= B − η

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

(〈
Aj

i,m,WB⊤
〉
−
〈
Aj

i,m,W ∗(B∗)⊤
〉)

(Aj
i,m)⊤W, Aj

i,m := em(xj
i,m)⊤

= B − η

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

(〈
Aj

i,m, Q
〉)

(Aj
i,m)⊤W

= B − η

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

xj
i,m(xj

i,m)⊤qmw⊤
m

= B − η

M
Q⊤W −

 η

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

xj
i,m(xj

i,m)⊤qmw⊤
m −

η

M
Q⊤W


︸ ︷︷ ︸

HQ

. (21)
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Above, we define qm ∈ Rd to denote the m-th row of Q (viewed as a column vector). Note again
that since

1

Lm

n∑
i=1

Li,m∑
j=1

xj
i,m(xj

i,m)⊤ ≈ Id,

the term HQ in equation 21 can be appropriately bounded. Note the resemblance of equation 21 to
(53) in (Collins et al., 2021); the crucial difference is that we will need to lower bound 1

mσ2
min(W

∗),
instead of 1

nσ
2
min(W

∗) as in (Collins et al., 2021). Thus we should be able to carry out the rest of
the analysis in a similar way to the outline in (Collins et al., 2021) and derive an analogous result to
Theorem 1 in (Collins et al., 2021).

We first bound the error term HQ.
Lemma A.9. Let

Ht
Q :=

η

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

xj
i,m(xj

i,m)⊤qm(wt+1
m )⊤ − η

M
(Qt)⊤W t+1.

Let γk := 20k
√
d

c
√
nL

for some absolute constant c. Suppose that 0 ≤ γk < k. Then, for any t, with

probability at least 1− exp(−90d)− 2e−50k logM ,

∥Ht
Q∥2 ≤ ηγkdist(B

∗,Bt).

Proof. As before, we may omit the time superscript t in cases where it is clear for notational
convenience. The proof is based on the argument in Lemma 5 in (Collins et al., 2021). Again, the
main tool is an ϵ-net argument. We first bound ∥qm∥2 and ∥wm∥2.

Bounding qm: With probability at least 1− 2e−50k logM , for each m ∈ [M ], we have that

∥qm∥2 =
∥∥Bt((Bt)⊤B∗w∗

m + Fm)−B∗w∗
m

∥∥
2

≤
∥∥(Bt(Bt)⊤ − I)B∗w∗

m

∥∥
2
+
∥∥BtFm

∥∥
2

≤ dist(Bt,B∗)∥w∗
m∥2 + ∥Fm∥2

≤
√
kdist(Bt,B∗) +

δk
1− δk

dist(Bt,B∗)∥w∗
m∥2

≤ 2
√
kdist(Bt,B∗).

Above, we utilized the assumption that ∥w∗
m∥2 ≤

√
k, the orthonormality of Bt (which was derived

as the orthogonal matrix from a Gram-Schmidt procedure), the assumption that 0 < δk ≤ 1/2, as
well Lemma A.8 which bounds ∥Fm∥2 (for all m) with probability at least 1− 2e−50k logM .

Bounding wm: Note that for notational convenience, we let wm denote wt+1
m . For each t and every

m ∈ [M ], we have that

∥wt+1
m ∥2 =

∥∥(Bt)⊤B∗w∗
m + Fm

∥∥
2

≤ ∥w∗
m∥2 + ∥Fm∥2

≤ ∥w∗
m∥2 +

δk
1− δk

dist(Bt,B∗)∥w∗
m∥2

≤ 3
√
k,

with probability at least 1− 2e−50k logM , where again we used Lemma A.8 to handle ∥Fm∥2, the
assumption that δk < 1/2, and the fact that dist(Bt,B∗) ≤ 2.

For the rest of the proof, we condition on the event

E :=
{
∥qm∥2 ≤ 2

√
kdist(Bt,B∗) and ∥wm∥2 ≤ 3

√
k ∀m ∈ [M ]

}
,

which holds with probability at least 1− 2e−50k logM .
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ϵ-net argument to bound HQ: Again, note that there exists an 1/4-net Nk of the unit sphere
Sk−1 and an 1/4-net Nd of the unit sphere Sd−1 with cardinalities less than or equal to 9k and 9d

respectively.

Note now that by Equation 4.13 in (Vershynin, 2018), we have

∥HQ∥2 =

∥∥∥∥∥∥ η

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

xj
i,m(xj

i,m)⊤qmw⊤
m −

η

M
Q⊤W

∥∥∥∥∥∥
2

≤ 2η max
u∈Nd,v∈Nk

1

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

〈(
xj
i,m(xj

i,m)⊤qmw⊤
m − qmw⊤

m

)
u, v
〉

= 2η max
u∈Nd,v∈Nk

1

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

[(
u⊤xj

i,m

)(
(xj

i,m)⊤qmw⊤
mv
)
−
〈
qmw⊤

mu, v
〉]
(22)

Fix now a u ∈ Nd and v ∈ Nk. Note now that
(
u⊤xj

i,m

)(
(xj

i,m)⊤qmw⊤
mv
)

is subexponential

with norm less than or equal to ∥qm∥2∥wm∥2 ≤ 6kdist(Bt,B∗), since it is the product of two
subgaussian variables u⊤xj

i,m and (xj
i,m)⊤qmw⊤

mv with subgaussian norms bounded by 1 and
∥qm∥2∥wm∥2 respectively. Note also that

E
[(

u⊤xj
i,m

)(
(xj

i,m)⊤qmw⊤
mv
)]

= E
[〈
qmw⊤

mu, v
〉]

.

Thus, by Bernstein’s inequality, carrying on from equation 22, we have that

P

 1

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

[(
u⊤xj

i,m

)(
(xj

i,m)⊤qmw⊤
mv
)
−
〈
qmw⊤

mu, v
〉]
≥ ρ


≤ exp

(
−cnLmin

(
ρ

6kdist(Bt,B∗)
,

(
ρ

kdist(Bt,B∗)

)2
))

≤ exp

(
−cnL

(
ρ

kdist(Bt,B∗)

)2
)
,

where we will choose ρ such that ρ
kdist(Bt,B∗) ≤ 1 to simplify the exponent in the way we did,

and c is an absolute constant that may change from line to line. Above, we also used the fact that∑M
m=1 Lm = nL (recall that L is the total number of samples per agent and there are n agents).

Consider the choice

ρ = 10
k
√
ddist(Bt,B∗)

c
√
nL

.

Then,

P

 1

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

[(
u⊤xj

i,m

)(
(xj

i,m)⊤qmw⊤
mv
)
−
〈
qmw⊤

mu, v
〉]
≥ ρ


≤ exp

(
−cnL

(
ρ

kdist(Bt,B∗)

)2
)

≤ exp(−100d).
Taking a union bound over all u ∈ Nd and v ∈ Nk, it follows then that

P
(
∥HQ∥2

η
≥ 2ρ

)
≤ 9d+k exp(−100d) ≤ exp(−90d),

where above we used the fact that d ≥ k.
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A.4.4 COMBINING EARLIER ARGUMENT: CONVERGENCE OF FEDDAR

As seen in Lemma A.8, we require that Lmin := minm∈[M ] Lm to be lower bounded. However, since
Lm is a stochastic variable, we are unable to directly lower bound it. Below, we provide a result that
converts a lower bound on each client’s sample size L (a deterministic quantity we can control) to a
high-probability lower bound on Lmin.
Lemma A.10. Let Lmin := minm∈[M ] Lm. For any α > 0, suppose that for each m ∈ [M ],

L ≥ max

{
182 logM∑n

i=1 πi,m
,

16∑n
i=1 πi,m

,
2α∑n

i=1 πi,m

}
.

Then, with probability at least 1− exp(−90),

Lmin ≥ α.

Proof. Note that

Lm =

n∑
i=1

L∑
j=1

1(domain(xj
i ) = m),

which is a sum of nL independent random variables bounded between 0 and 1. Moreover,

E[Lm] =

n∑
i=1

πi,mL,

where πi,m is the probability that a datapoint comes from domain m for client i. Note finally that

E[
(
1(domain(xj

i ) = m)
)2

] = πi,m.

Hence, by Bernstein’s inequality, it follows that for any s > 0,

P

(
Li,m ≤

n∑
i=1

πi,mL− s

)
≤ exp

(
− s2/2∑n

i=1

∑L
j=1 πi,m + s/3

)
.

Since we wish to perform union bound over the M domains, we seek to choose s and L such that

exp

(
− s2/2∑n

i=1

∑L
j=1 πi,m + s/3

)
≤ exp (−91 logM) ,

so that

M exp

(
− s2/2∑n

i=1

∑L
j=1 πi,m + s/3

)
≤M exp (−91 logM) ≤ exp (−90 logM) .

To this end, note that we need

s2/2∑n
i=1

∑L
j=1 πi,m + s/3

≥ 91 logM

⇐⇒ s2 ≥ 2 · 91 logM

 n∑
i=1

L∑
j=1

πi,m + s/3


⇐⇒ s ≥

√√√√182 logM

n∑
i=1

πi,mL+

(
182 logM

3

)2

+
182 logM

3

Suppose we pick L such that
n∑

i=1

πi,mL ≥ 182 logM,
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so that √√√√182 logM

n∑
i=1

πi,mL+

(
182 logM

3

)2

+
182 logM

3
≤ 2

√√√√ n∑
i=1

πi,mL.

Then, by picking s = 2
√∑n

i=1 πi,mL, it follows that

exp

(
− s2/2∑n

i=1

∑L
j=1 πi,m + s/3

)
≤ exp (−91 logM) ,

such that for each m ∈ [M ],

P

Li,m ≤
n∑

i=1

πi,mL− 2

√√√√ n∑
i=1

πi,mL

 ≤ exp(−91 logM).

By choosing L such that √√√√ n∑
i=1

πi,mL ≥ 4,

it follows that

P
(
Li,m ≤

∑n
i=1 πi,mL

2

)
≤ exp(−91 logM).

The result now follows by choosing L such that it also satisfies∑n
i=1 πi,mL

2
≥ α

for each m.

Lemma A.11 (Descent lemma). Define E0 := 1− dist2(B0,B∗) and σ̄max,∗ := σmax

(
1√
M
W ∗
)

and σ̄min,∗ := σmin

(
1√
M
W ∗
)

. Let κ :=
σ̄max,∗
σ̄min,∗

. Consider any iteration t.

Suppose that

L ≥
(
400dk2

nc

)
1(

min
{

1
2 , 8E0/(25 · 5κ2)

})2 , (23)

where c > 0 is absolute constant. Suppose also that

L ≥ max

 182 logM∑n
i=1 πi,m

,
16∑n

i=1 πi,m
,

2 (100Ck logM) 1

(min{ 1
2 ,8E0/(25·5κ2)})2∑n

i=1 πi,m

 ,

which by Lemma A.10, ensures that with probability at least 1− e−90,

Lt
min ≥ (100Ck logM)

1(
min

{
1
2 , 8E0/(25 · 5κ2)

})2 , (24)

where Lt
min = minm∈[M ] L

t
m denotes the minimum number of samples from any domain at iteration

t, and C > 0 is an absolute constant.

Then, for any η ≤ 1/(4σ̄2
max,∗), we have

dist(Bt+1,B∗) ≤ (1− ηE0σ̄min,∗/2)
1/2dist(Bt,B∗),

with probability at least 1− e−80.
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Proof. We begin with the observation that

W t+1 = W ∗(B∗)⊤Bt + F t

B̄t+1 = Bt − η

M
(Qt)⊤W t+1 −Ht

Q,

where
Qt = W t+1(Bt)⊤ − (W ∗)(B∗)⊤,

and

Ht
Q :=

η

M

M∑
m=1

1

Lm

n∑
i=1

Li,m∑
j=1

xj
i,m(xj

i,m)⊤qm(wt+1
m )⊤ − η

M
(Qt)⊤W t+1.

Above B̄t+1 denotes the estimate of B before we perform the QR decomposition. We note that
the updates for W and B are exactly analogous to the updates for W and B as seen in the proof of
Lemma 6 in (Collins et al., 2021). The only two differences are

1. The definitions of F in our paper and (Collins et al., 2021) are slightly different. However,
in both cases,

∥F∥F ≤
δk

1− δk
dist(B∗,B)∥W ∗∥F

for some term δk ≤ 1/2 with high probabilities. In our case, this event holds with probability
at least 1− 2e−50k logM , whilst in (Collins et al., 2021), the event holds with probability at
least 1− exp(−110k2 log n).

2. The update for B̄t+1 in (Collins et al., 2021) takes the form

B̄t+1 = Bt − η

rn
(Qt)⊤W t+1 − η

rn

(
1

m
A†A(Qt)−Qt

)⊤

W t+1,

where 0 ≤ r ≤ 1 is a ratio term used in (Collins et al., 2021), and m above represents the
number of samples used by each learner in (Collins et al., 2021) (which is different from our
use of m as an index over the domains). However, we note that with high probabilities,∥∥Ht

Q

∥∥
2
≤ ηγkdist(B

t,B∗),∥∥∥∥∥ η

rn

(
1

m
A†A(Qt)−Qt

)⊤

W t+1

∥∥∥∥∥
2

≤ ηγkdist(B
t,B∗),

where the definition of γk in both papers differ but both satisfy the assumption that γk ≤ k.

Due to these similarities in the updates for W t+1 and Bt+1 with the update in (Collins et al., 2021),
the proof of this lemma follows naturally from the proof of Lemma 6 in (Collins et al., 2021), by
plugging in η

M (Qt)⊤W t+1 in the update for B̄t+1 in place of η
rn (Q

t)⊤W t+1 as in (Collins et al.,
2021). In particular, following the same analysis as in (Collins et al., 2021), we see that on the events
in Lemma A.8 and Lemma A.9, following the equation immediately after Equation (84) in (Collins
et al., 2021), we have

dist(Bt,B∗) ≤ 1√
1− 4η δ̄k

(1−δ̄k)2
σ̄max,∗2

(
1− ησ̄2

min,∗E0 + 2η
δ̄k

(1− δ̄k)2
σ̄2
max,∗

)
dist(Bt,B∗),

where in our case δ̄k = δk + γk. Then, by choosing

δ̄k < 16E0/(25 · 5κ2), (25)

it follows that δ̄k < 1/5, and so

1− ησ̄2
min,∗E0 + 2η

δ̄k
(1− δ̄k)2

σ̄2
max,∗ ≤ 1− 4η

δ̄k
(1− δ̄2k)

σ̄2
max,∗ ≤ 1− ηE0σ̄

2
min,∗/2,

26



Published as a conference paper at ICLR 2023

as in equation (85) in (Collins et al., 2021), such that

dist(Bt+1,B∗) ≤ (1− ηE0σ̄
2
min,∗/2)

1/2dist(Bt,B∗).

It remains for us to understand what the constraint on δ̄k spelt out in equation 25, and the constraints
on δk and γk (in Lemmas A.8 and A.9 respectively) mean in our choice of the sample size L for each
agent, and the domain size Lm at each iteration. Observe that we need

δk =
10C
√
k
√
logM√

Lmin

≤ 1

2
, (26)

γk =
20k
√
d

c
√
nL
≤ 1

2
, (27)

δ̄k = δk + γk =
10C
√
k
√
logM√

Lmin

+
20k
√
d

c
√
nL
≤ 16E0/(25 · 5κ2), (28)

where c, C > 0 are absolute constants. By choosing

Lmin ≥ (100Ck logM)
1(

min
{

1
2 , 8E0/(25 · 5κ2)

})2
L ≥

(
400dk2

nc

)
1(

min
{

1
2 , 8E0/(25 · 5κ2)

})2 ,
we ensure that the requirements in equation 26, equation 27 and equation 28 are all satisfied.

The final result then follows by applying Lemma A.10.

This then yields the following convergence result, which is a more complete statement of A.4.

Theorem A.12 (Convergence result for Algorithm 2). Define E0 := 1 − dist2(B0,B∗) and

σ̄max,∗ := σmax

(
1√
M
W ∗
)

and σ̄min,∗ := σmin

(
1√
M
W ∗
)

. Let κ :=
σ̄max,∗
σ̄min,∗

.

Suppose that

L ≥
(
400dk2

nc

)
1

min
{

1
2 , 8E0/(25 · 5κ2)

} ,
where c > 0 is absolute constant. Suppose also that

L ≥ max

{
182 logM∑n

i=1 πi,m
,

16∑n
i=1 πi,m

,
2 (100Ck logM) 1

min{1/2,8E0/(25·5κ2)}∑n
i=1 πi,m

}
.

Then, for any η ≤ 1/(4σ̄2
max,∗), we have

dist(Bt+1,B∗) ≤ (1− ηE0σ̄min,∗/2)
1/2dist(Bt,B∗),

with probability at least 1− e−80. Then for any T and any η ≤ 1/(4σ2
max,∗), we have

dist(Bt,B∗) ≤ (1− ηE0σ̄
2
min,∗/2)

T/2dist(B0,B∗), (29)

with probability at least 1− Te−80.

By assuming that σ2
min,∗ > 0, the bound in Theorem 1 decays exponentially. We note that the total

number of samples required per client scales with L log(1/ϵ). In addition, in order for the result to
be meaningful, we implicitly assume that E0 is close to 1 such that

0 < 1− ηE0σ̄
2
min < 1.

To do so, we note it is possible to choose B0 such that dist(B0,B
∗) is close enough to 0, with

only a logarithmic increase in sample complexity when the number of samples is uniform across the
domains. The argument follows the proof of Theorem 3 in (Tripuraneni et al., 2021).
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Theorem A.13. Suppose Assumptions A.1, A.2, A.3 all hold. Suppose also that x0,j
i ∼ N (0, Id)

independently for all i ∈ [n]. Suppose each client i sends the server Zi :=
∑L0

j=1(y
0,j
i )2xj

i (x
j
i )

⊤,
as well as the integer value of Li, such that the server can compute Z := 1

nL0

∑n
i=1 Zi. Then, the

server computes UDU⊤ ← rank-k SVD (Z), and sets B0 := U . Let

Λ̄ =
1

nL0

n∑
i=1

L0∑
j=1

w∗
m(i,j)(w

∗
m(i,j))

⊤,

where m(i, j) denotes the sample of the j-th sample from the i-th client. Let σmin,∗ := σmin(Λ̄),
and let σmax,∗ := σmax(Λ̄). Suppose that L0 ≥ cpolylog(d, nL0)σmax,∗dk

2/(nσ2
min,∗). Then, with

probability at least 1− (nL0)−100, we have that

dist(B0,B∗)2 ≤ Õ

(
σmax,∗k

2d

σ2
min,∗nL

0

)
.

In particular, when the number of samples is uniform across the domains, we have that

dist(B0,B∗)2 ≤ Õ

(
κ4k2d

nL0

)
,

where we recall that κ := σ̄max,∗/σ̄min,∗, and

σ̄max,∗ := σmax

(
1√
M

W ∗
)
, σ̄min,∗ := σmin

(
1√
M

W ∗
)
.

Proof. We omit the proof since it is a slight variant of Theorem 3 in (Tripuraneni et al., 2021). For
completeness, note that in the case when the number of samples is uniform across the domains, some
algebra shows that

dist(B0,B∗)2 ≤ Õ

(
κ2k2d

σ̄2
min,∗nL

0

)
.

However, since k/4M ≤ ∥W ∗∥2F ≤ kMσ̄2
max,∗, we have that

1

σ̄2
min,∗

= κ2 1

σ̄2
max,∗

≤ 4κ2,

which proves the last statement in the theorem.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 EXPERIMENTS ON FAIRFACE DATASET FOR GENDER CLASSIFICATION

Table 4: Min, max and average test accuracy of gender classification across 7 domains (race groups)
on FairFace with number of clients n = 5, number of samples at each client Li = 500.

Task Method α = 0.1 α = 0.5 α = 1 α = 100
Max Min Avg Max Min Avg Max Min Avg Max Min Avg

Gender

FedAvg 92.0 71.7 83.9 89.8 77.6 84.5 91.0 77.4 84.2 90.5 77.1 84.7
FedAvg + Multi-head 90.2 48.7 78.9 89.2 77.8 84.1 91.6 76.8 83.9 91.1 77.5 84.5
FedDAR-WA 89.8 53.4 80.9 91.5 76.7 84.3 91.2 76.1 84.3 90.0 76.8 84.1
FedDAR-SA 92.2 73.4 85.1 91.3 78.1 85.2 91.4 78.2 85.1 92.2 78.1 85.6

We also conduct experiments for gender classification on FairFace with the same settings. The best
representation dimension is k = 2 for this task, probably due to the smaller diversity across the
domains. We can see that the results shown in Table 4 have a similar trend as the results in Table 5.2.

B.2 EXPERIMENTS ON DIGITS DATASET

Table 5: Min, max and average test accuracy of digits classification across 5 domains with number of
clients n = 5, number of samples at each client Li = 500.

Method α = 0.1 α = 0.5 α = 1 α = 100
Max Min Avg Max Min Avg Max Min Avg Max Min Avg

FedAvg 97.1 60.7 80.6 97.2 64.3 81.7 96.1 74.8 85.2 96.8 71.0 85.1
FedAvg + Multi-head 94.3 26.5 55.9 94.3 44.8 68.3 94.1 56.7 74.6 95.0 52.3 74.5
FedDAR-WA 97.3 52.3 79.8 97.3 64.7 83.1 96.6 74.5 86.3 97.1 70.6 86.3

We perform additional experiments on the digits dataset with five data domains with feature shift (Li
et al., 2021b). Details are described in the following paragraphs. From Table 5, we can see that
FedDAR-WA outperforms FedAvg consistently except in the case where domain distributions are
extremely heterogeneous (α = 0.1). In this case, each client tends to have data from only one
domain. It is difficult for the proposed method to learn a good domain-specific head for the domain
with the most different data (more obvious feature shift) under this circumstance. For other levels
of heterogeneity, although the min and max domain accuracies are similar between FedAvg and
FedDAR-WA, the average accuracies are improved as a result of the domain-wise personalized model.
On the other hand, without an alternative update of the head and representation, FedAvg + Multi-head
will overfit quickly. We don’t include the results of FedDAR-SA here because using representation
dimension k ≥ 64 causes numerical instability during head aggregation and failure to converge.
While using representation dimension k ≤ 32 leads to lower accuracy.

Datasets. We use the same digits dataset containing five different data domains as (Li et al.,
2021b). Specifically, we use SVHN (Netzer et al., 2011), USPS (Hull, 1994), SynthDigits (Ganin &
Lempitsky, 2015), MNIST-M (Ganin & Lempitsky, 2015) and MNIST (LeCun et al., 1998) as five
data domains. Similarity to the experiments on FairFace datraset, the training data is divided into n
clients without duplication. Each client has a domain distribution πi ∼ Dir(αp) sampled from a
Dirichlet distribution.

Implementation Details. We adapt the codebase from (Li et al., 2021b). A 6-layer CNN with 3
convolutional layers and 3 fully-connected layers is used, with the last layer as domain-specific head.
We use SGD optimizer with learning rate 10−2 and cross-entropy loss. The batch size is set to 32,
and the total communication rounds is set to 100. For each method, we first train the model for 10
rounds with 1 local epoch using FedAvg as warmup. The accuracy shown is the average over the last
ten communication rounds. We repeat experiment for each setting three times with different random
seeds and report the averages.
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B.3 FURTHER EXPERIMENTAL DETAILS

B.3.1 SYNTHETIC DATA

For the synthetic data experiments, we adapt the code from (Collins et al., 2021) and follow a similar
protocol. The ground-truth matrices W ∗ ∈ RM×k and B∗ ∈ Rd×k are generated following the same
way as (Collins et al., 2021) by sampling each element from i.i.d. standard normal distribution and
taking the QR factorization. The same L samples are used for each client during the whole training
process. Test samples are generated in the same way as the traning samples but without noise. For all
the methods, models are initalized with ramdom Gaussian samples. We set α = 0.4 for experiments
in Figure 5.2.

B.3.2 REAL DATA WITH CONTROLLED DISTRIBUTION

Implementation details. We use Imagenet(Deng et al., 2009) pre-trained ResNet-34 (He et al.,
2016) for all experiments on this dataset. All the methods are trained for T = 100 communication
rounds, with 20 rounds of FedAvg as warmup. For FedDAR-WA and FedDAR-SA, 5 epochs of local
updates are executed for both heads and representation at each round. For the baselines, 5 epochs of
local updates are executed at each round for fair comparison. We use Adam optimizer with a learning
rate of 1× 10−4 for the first 60 rounds and 1× 10−5 for the last 40 rounds. The images are resized
to 224× 224 with only random horizontal flip for augmentation. The learning rate and the number of
local epochs is tuned by grid search with a fixed batch size of 64. We tuned the projection dimension
k for FedDAR-SA among {4,8,16,32,64} with α = 1.0 and used k = 8 for all other α.

Our evaluation metrics are the classification accuracy on the whole validation set of FairFace for
each race group. We don’t have extra local validation set to each client since we assume the data
distribution within each domain is consistent across the clients. The numbers reported are the average
over the final 10 rounds of communication following the standard practice in (Collins et al., 2021),
and the average of three independent runs with different random seeds.

B.3.3 REAL DATA WITH REAL-WORLD DATA DISTRIBUTION

Dataset details. The detailed statistics of the partial EXAM dataset is summarized in Table 6. The
"Other" category includes American Indian or Alaska native, native Hawaiian or other Pacific islander
and patients with more than one race or unknown race. ≥HFO % means the percentage of cases with
positive labels (receiving oxygen therapy higher or equal to high-flow oxygen with 72 hours).

Table 6: Data summary of the partial EXAM dataset used in our study.
Site White Black Asian Latino Other ≥HFO %

Site-1 59.6% 10.0% 3.4% 2.0% 24.9% 12.4%
Site-2 75.0% 11.1% 2.8% 0.6% 10.5% 9.1%
Site-3 46.5% 26.3% 4.2% 7.0% 16.0% 9.6%
Site-4 71.4% 6.3% 4.2% 0.8% 17.2% 11.4%
Site-5 44.0% 28.4% 1.6% 6.3% 19.8% 9.9%
Site-6 0.0% 0.0% 100.0% 0.0% 0.0% 18.8%

Implementation details. We apply 5-fold cross validation. The input of the model is one chest
x-ray image resized to 224x224 paired with a 22-dimensional electronic health record(EHR) data,
the representation dimension is 278 if it is not projected. All the models are trained for T = 20
communication rounds with Adam optimizer and a learning rate of 1 × 10−4. For each round we
do 1 local epoch for all the methods. For all the methods, the models are initialized with the same
pretrained model as in (Dayan et al., 2021) without any warmup. For FedDAR-SA and FedDAR-
WA, we execute 5 epochs of update for heads on each round, and set representation dimension
k = 16 for FedDAR-SA. Hyperparameters including learning rate, number of epochs for head
update and representation dimension are tuned through grid search with a fixed batch size of 36. For
FedRep,FedDARand FedPer. For LG-FedAvg, we treated the last fully-connected layer as the global
parameters and all other layers as local representation. For FedMinMax, multiple local iterations
are executed during each round instead of one step of GD for reasonable comparison. For FedProx
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we tuned µ among {0.05, 0.1, 0.25, 0.5} and used µ = 0.1. For the fine-tuning methods, we only
fine-tune the global trained model locally with Adam optimizer and learning rate of 5e − 5 for 1
epoch since more epochs of fine-tuning leads to worse results.

The models are evaluated by aggregating predictions on the local validation sets then calculating the
area under curve (AUC) for each domain. The average AUCs on local validation set of clients are
also reported. The AUC shown is first averaged over the last five communication rounds, and then
averaged over five runs of 5-fold cross validation.

C DISCUSSION ON COMMUNICATION AND PRIVACY

Communication For FedDAR-WA, the only communication overhead comes from the extra
parameters of multiple heads for different domains, which only slightly increase the communication
cost. For FedDAR-SA, we need to send a Hessian with k2 × N2 parameters from each client to
the server at each round. This might be costly when both representation dimension k and output
dimension N are large. However, compared to sending millions of parameters of neural network, the
extra communication cost is acceptable.

Privacy For the FedDAR-WA, there is no extra parameters shared compared to FedAvg. So there is
no additional privacy risk introduced. Privacy techniques like homomorphic encryption (Cheon et al.,
2017) or differential privacy (McMahan et al., 2017b; Kairouz et al., 2021) that apply to FedAvg
also works for FedDAR-WA. In fact, the multi-head design of different domains makes it harder to
perform gradient based attack(Zhu et al., 2019) targeting our method. Because the attacker need to
first figure out which domain the sample comes from. For FedDAR-SA, the only extra parameters
shared is the Hessian matrices, which are aggregated results from all the local data. Recovering the
information for a specific sample from Hessian is extremely difficult. Under the worst circumstance,
what the attacker can recover from the Hessian is the label and the features at last layer, which hardly
ease the difficulty of recovering original input.
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