
New Frontiers in Associative Memory workshop at ICLR 2025

DEEP CLUSTERING WITH ASSOCIATIVE MEMORIES

Bishwajit Saha
Department of CS
RPI
Troy, NY, USA
sahab@rpi.edu

Dmitry Krotov
MIT-IBM Watson AI Lab
IBM Research
Cambridge, MA, USA
krotov@ibm.com

Mohammed J. Zaki
Department of CS
RPI
Troy, NY, USA
zaki@cs.rpi.edu

Parikshit Ram
IBM Research
Yorktown Heights, NY, USA
Parikshit.Ram@ibm.com

ABSTRACT

Deep clustering – joint representation learning and latent space clustering – is a
well studied problem especially in computer vision and text processing under the
deep learning framework. While the representation learning is generally differ-
entiable, clustering is an inherently discrete optimization task, requiring various
approximations and regularizations to fit in a standard differentiable pipeline. This
leads to a somewhat disjointed representation learning and clustering. In this
work, we propose a novel loss function utilizing energy-based dynamics via Asso-
ciative Memories to formulate a new deep clustering method, DCAM, which ties
together the representation learning and clustering aspects more intricately in a
single objective. Our experiments showcase the advantage of DCAM, producing
improved clustering quality for various architecture choices (convolutional, residual
or fully-connected) and data modalities (images or text).

1 INTRODUCTION

The goal of clustering is to find coherent groups in a dataset. It is an important unsupervised learning
task, and given the generality of the task, many different methods have been proposed for effective
clustering (Xu & Tian, 2015; Zaki & Meira Jr, 2020). At a technical level, clustering critically
relies on a notion of (pairwise) distance (or similarity) to distinguish pairs of data samples as being
“similar” or “different”, and the insights from clustering can be unintuitive or misleading without
such a meaningful distance. When dealing with numerical data S ⊂ Rd with d dimensions, metrics
such as Euclidean distance are commonly used. Nevertheless, even with numerical data and an
appropriate notion of distance, increasing data dimensionality (that is, increasing d) makes clustering
computationally hard as well as conceptually difficult since the separation between similar pairs and
dissimilar ones can start to vanish (Verleysen & François, 2005; Steinbach et al., 2004; Assent, 2012).

In various domains, both these problems manifest – first, the raw representation of samples can be
extremely high dimensional (consider the number of pixels in an image, or the number of words in
a vocabulary for a bag-of-words representation of documents); second, while we have an ambient
representation, standard notions of vector distances (such as Euclidean) do not necessarily make
sense – for example, Euclidean distance based on pixels can be large between an image and a slightly
shifted version of it, which can be problematic if the content of an image is translation or rotation
invariant.

One effective approach to handle these challenges is through deep clustering (Zhou et al., 2024),
where the goal is to both learning a low dimensional latent space where standard distance metrics
are meaningful, and to cluster or group the points at the same time. For the latent representations to
be faithful to the original samples, deep clustering ensures that there is no significant information
loss in the latent space, leading to the common use of autoencoders (AEs) (Rumelhart et al., 1985;
Baldi, 2012; Bank et al., 2023) that learn latent representations (via an encoder) which can be
used to reconstruct the original samples (via a decoder). The goal of deep clustering is to discover
the cluster structure in the latent space while ensuring low reconstruction loss. This is a well

1

New Frontiers in Associative Memory workshop at ICLR 2025

studied problem, especially in image datasets (Caron et al., 2018; Chang et al., 2017). While an
autoencoder is usually differentiable, standard clustering schemes (such as k-means (MacQueen,
1967) or agglomerative (Johnson, 1967)) are inherently discrete methods, since hard clustering (where
each sample is only assigned to a single cluster) is a discrete optimization problem. To incorporate it
in a differentiable deep learning pipeline, clustering is often “softened” by allowing samples to be
partially assigned to multiple clusters, although various “regularizations” push the soft assignments to
match hard assignments approximately (Xie et al., 2016; Guo et al., 2017a). The recent ClAM (Saha
et al., 2023) algorithm handles the dichotomy between hard assignments and differentiability via the
use of associative memories, yielding an end-to-end differentiable clustering approach. Nevertheless,
ClAM works only in the ambient d-dimensional data space, and is not designed to learn effective
lower dimensional latent representations, which poses challenges when clustering high-dimensional
data.

As noted above, deep clustering tackles the joint objective of learning a good latent representation
where the points also cluster well. Whereas minimizing reconstruction loss is a prerequisite for deep
representation learning, one option for clustering in latent space is to first pretrain an autoencoder
to minimize the reconstruction loss, and then to freeze this latent space. Next, one can apply some
clustering scheme to group the points in that (frozen) space. Many AE based existing deep learning
methods adopt this scheme by either freezing both the encoder and decoder, or freezing only the
decoder (Xie et al., 2016; Guo et al., 2017b; 2021; Chazan et al., 2019; Huang et al., 2023).

We propose a new approach called DCAM that uses Associative Memories (AM) as an inductive bias
over the latent space that i) defines an (learnable) energy function over the latent space, and ii) utilizes
the AM attractor dynamics to pull similar latent representations closer together. This leads to latent
representations that are inherently well clustered without any explicit clustering objective, and the use
of AM makes the whole process (i.e., learning the encoder, decoder, and cluster prototypes) end-to-
end differentiable. Our key insight and contribution is that we seamlessly combine the clustering and
reconstruction loss objectives into one expression that tackles the task of clustering-guided latent
representations, whereas previous deep clustering methods considered these separately. Our work
makes the following contributions:

• We propose DCAM, which uses associative memories to formulate a novel joint loss function that
simultaneously learns effective representations and clusters in the latent space.

• We conduct a thorough evaluation on image and text datasets, demonstrating that DCAM significantly
improves the clustering quality over both traditional (in ambient space) and deep clustering (in
latent space) baselines.

• We show that DCAM retains superior representation quality as measured by the reconstruction loss;
it is also agnostic to the encoder/decoder architecture choice.

2 DEEP CLUSTERING

Let S ⊂ Rd denote the input data in the ambient space, with an instance x ∈ S, and JnK a n-length
index set {1, . . . , n}. Deep clustering is an unsupervised task, where we have to learn (usually
lower dimensional) representations such that (i) no (critical) information is lost in the latent lower
dimensional representations, and (ii) the data in the latent space forms well-separated clusters. To
ensure that no information is lost in the latent space, we learn an encoder e : Rd → Rm (m < d) that
maps the input x ∈ Rd to a latent space (that is, e(x) ∈ Rm), along with a decoder d : Rm → Rd

that maps the latent representation back to the original ambient space. Encoder e and decoder d
together give us an autoencoder, and the loss of information is often measured as the reconstruction
loss:

Lr(e,d) =
∑
x∈S

ℓr(x, e,d) =
∑
x∈S

∥x− d(e(x))∥2

This loss term does not account for the cluster structure in the latent space. For that purpose, we
consider k cluster centers ρ = {ρ1, . . . , ρk} ⊂ Rm in the latent space, so that the corresponding
clustering loss is given by:

Lc(e,ρ) =
∑
x∈S

ℓc(x, e,ρ) =
∑
x∈S

min
i∈JkK

∥e(x)− ρi∥2

2

New Frontiers in Associative Memory workshop at ICLR 2025

which measures how close a sample is to its closest cluster center in the latent space with the mini∈JkK
performed on a per-sample basis to denote the discrete assignment. A small value of Lc(e,ρ) implies
that all points in the latent space are close to their respective cluster centers.

Unsupervised deep clustering is often considered in the following form (Guo et al., 2017a;b; Cai
et al., 2022)

min
e,d,ρ

Lr(e,d) + γLc(e,ρ) (1)

where γ ≥ 0 is a hyperparameter that balances the clustering loss Lc and the reconstruction loss Lr.
This γ plays a critical role in balancing the two terms in Eq. (1).

3 DCAM: DEEP CLUSTERING WITH AM DYNAMICS

Unlike existing deep clustering methods that minimize the objective in Eq. (1), which involves two
separate components, namely the reconstruction loss in ambient space and clustering loss in latent
space, in our novel DCAM formulation, we propose an AM-based approach that seamlessly combines
these two aspects in a joint loss objective. Our approach not only updates the encoder and decoder
models, but it also learns effective prototypes for clustering points in latent space.

3.1 NOVEL LOSS FUNCTION

Figure 1: DCAM: AM-enabled deep
clustering. The solid arrows −−→
denote the forward-pass to compute
the single loss term in Eq. (2). The
dashed arrows −→ denote the back-
ward pass showing the single loss driv-
ing all updates.

Fig. 1 shows the overall DCAM pipline. Given input data S ⊂
Rd in the ambient space, we first map input points x ∈ S
to the encoded point v in the latent space, using the encoder
model e : Rd → Rm (m < d), that is, v = e(x). Next,
assume that we are given k memories or cluster prototypes
(or centers) in latent space ρ = {ρ1, ρ2, . . . , ρk}, with ρi ∈
Rd, we employ AM dynamics to update the representation
of latent points v, using T recursive steps, which we denote
via the attractor dynamics operator AT

ρ (v), so that v′ =

AT
ρ (v). We discuss the details of the AM dynamics operator

in Section 3.2 below, but it essentially tries to move the
encoded point v closer to a prototype ρi. Finally, given
the updated latent representation v′, we employ the decoder
model d : Rm → Rd to map it back to the original ambient
space, i.e., x′ = d(v′).

A key feature of DCAM is that the whole pipeline is dif-
ferentiable, and all the components, namely the encoder
parameters, the latent cluster prototypes ρ, and the decoder
parameters are learnable. Our novel joint loss function that
combines both the clustering and reconstruction aspects into
a single expression is defined as:

min
e,d,ρ

L̄(e,d,ρ) =
∑
x∈S

∥∥∥x− d
(
AT

ρ (e (x))
)∥∥∥2

(2)

Here AM becomes the intricate part of the encoder that trans-
forms the embedding space (obtained by the encoder) into a
clustering-friendly new space to find clusters (as opposed to
the existing deep clustering schemes that use different additional loss functions, e.g., clustering loss
in Eq. (1) and/or regularizations to get a similar effect). This AM enabled novel deep clustering loss
L̄ is a single term that elegantly combines all the parameters in the deep learning pipeline – for the
encoder e, the cluster centers ρ and the decoder d.

3.2 ENERGY DYNAMICS IN LATENT SPACE

We now give details of how the attractor dynamics in latent space. Given the k cluster prototypes
ρ = {ρ1, . . . , ρk}, ρi ∈ Rd, and an encoded latent point v ∈ Rd, the energy function for v is defined
as (Saha et al, 2023):

E(v) = − 1

2β
log

(∑
i∈JkK

exp(−β ∥ρi − v∥2)
)

3

New Frontiers in Associative Memory workshop at ICLR 2025

where the scalar β > 0 denotes inverse temperature, so that as β increases the exp(·) function
emphasizes the leading term, suppressing the others. The attractor dynamics are then driven by
gradient descent on the energy landscape. That this, with v0 = v, the updated representation of vt is
given as

vt+1 = Aρ(v
t) = vt − τ ∇vE

where τ > 0 is the step size that determines how quickly the latent point moves on the energy
landscape, and

∇vE =
∂E(v)

∂v
=

∑
i∈JkK

(ρi − v) softmax(−β∥ρi − v∥2)

with softmax(−β∥ρi − v∥2) = exp(−β∥ρi−v∥2
2)∑

j∈[k] exp(−β∥ρj−v∥2
2)

.

Thus, the AM operator Aρ(v
t) denotes the new latent vector obtained by updating vt. Further, we

use the notation AT
ρ (v) to denote the dynamics for T steps, i.e., v′ = AT

ρ (v) = Aρ(Aρ(· · ·Aρ(v))),
where the operator Aρ is applied to v recursively for T steps to obtain the updated representation
v′. The attractor dynamics ensure that every memory or prototype ρi, i ∈ JkK, forms a “basin of
attraction”, and with enough recursions T , any latent point v will usually converge to exactly one of
these memories ρi, which thus act as cluster centers. Further, the recursive dynamics is differentiable,
with the memories learned via standard backpropagation.

4 EMPIRICAL EVALUATION

We evaluate the performance of DCAM on a diverse set of 8 datasets (6 images and 2 text sets), ranging
in size from 296 to 49152 (raw) features and containing 2007 to 60000 samples. The selection of
the number of clusters for each dataset is based on its intrinsic class count, with no reliance on class
information during clustering or hyperparameter selection (see dataset details in Appendix B.2).
We conduct a comparative analysis of DCAM against established clustering methods, including k-
means (Lloyd, 1982), agglomerative clustering (or Agglo.) (Müllner, 2011), ClAM (Saha et al., 2023),
DCEC (Guo et al., 2017b), DEKM (Guo et al., 2021) and EDCWRN (or EDC) Oskouei et al. (2023),
SCAN (Van Gansbeke et al., 2020) and NNM (Dang et al., 2021). Detailed parameter setting of the
networks are in Appendix B.4, while implementation details are in Appendix B.5.

Table 1: Per-method best SC across all architectures (while RRL is within 10% of the respective
pretrained AE loss), comparing DCAM to baselines. Best for each dataset is in bold. Higher SC is
better, but lower RRL is better. The top set of rows are vision datasets, and the bottom set are text
datasets. A ‘-’ indicates not applicable (NA); e.g., DCEC, DEKM, SCAN, NNM work only on image
datasets. Further, we report SCAN and NNM results only on C-10, C-100 and STL, since these are
the only datasets for which pretrained contrastive encoders are available. x▼ indicates negative RRL
which means the RL of the method is x% less than the pretrained AE loss.

Dataset SC RRL

k-means Agglo. ClAM DCEC DEKM EDC SCAN NNM DCAM DCEC DEKM EDC DCAM

FM 0.257 0.201 0.279 0.923 0.260 0.483 - - 0.970 9.8 13.9▼ 10 1.6▼

C-10 0.084 0.372 0.208 0.787 0.116 0.511 0.541 0.587 0.863 9.6 8.6 10 19.5▼

C-100 0.015 0.149 0.053 0.470 -0.007 0.311 0.321 0.358 0.598 7.5 34.3▼ 10 1.4▼

USPS 0.195 0.158 0.194 0.935 0.217 0.461 - - 0.891 5.3▼ 4.3 0.0 8.7
STL 0.079 0.270 0.108 0.259 0.082 0.411 0.552 0.540 0.891 9.2 0.6 4.9▼ 10
CBird -0.019 0.094 -0.026 0.311 -0.032 0.171 - - 0.448 10 0.0 10 9.1

R-10k -0.010 0.114 -0.002 - - 0.023 - - 0.564 - - 10 10
20NG -0.021 0.114 -0.008 - - 0.101 - - 0.197 - - 10 10

Comparison with Baselines: We present the best Silhouette Coefficient or SC achieved (while
constraining the reconstruction loss or RL to be within 10% of the pretrained AE loss) for DCAM
and the baselines for all 8 datasets in Table 1. As it is hard to compare the raw RL numbers if
the base AE is different for different methods, we consider relative RL (RRL) defined as (RL −
RL PAE)/RL PAE) where RL PAE is the pretrained/base RL. We report the best SC per method
with RRL <= 10%.

From Table 1, we see across both image and text datasets, DCAM consistently outperforms traditional
and deep clustering baselines in terms of SC while keeping RRL relatively low. To provide a

4

New Frontiers in Associative Memory workshop at ICLR 2025

comprehensive view alongside SC, we also present the best RRL results (while constraining the
SC to be within 10% of the best/peak SC of the method) in Table 3 in Appendix. Note that SCAN
and NNM do not have a reconstruction loss term as they work on the pretrained (pretext) model
by SimCLR (Chen et al., 2020) and utilize only the encoder (discarding the decoder) for clustering
purpose. We observe that DCAM has the best SC values across all datasets except for USPS where
DCEC performs the best. Its RL remains competitive. These results demonstrate that DCAM excels
not only in achieving the best SC but also in simultaneously minimizing RL compared to the baselines.
It is important to note that the ClAM, k-means and Agglomerative clustering results are the best from
either using no autoencoder, or those from applying them in latent space on the points obtained from
the pretrained autoencoder. In particular, we can see that DCAM vastly outperforms a straightforward
application of ClAM in latent space.

For additional insights, in Appendix C.2, we present the best SC (while keeping RL within 10% of
the pretrained AE loss) and its corresponding NMI, RL, cluster size and balance metrics obtained by
all schemes in Table 9, and in Table 10 we report the best RL (while keeping SC within 10% of the
best SC of the method) and its associated SC, NMI, and other metrics. Finally, in Table 11 we further
report the best NMI obtained along with the associated SC, RL, and other metrics. These results
clearly show that DCAM offers the best clustering performance in terms of SC, as well as having low
reconstruction loss. It also performs very well on the supervised NMI metric. In fact, for NMI, DCAM
has the best value in 5 out of the 8 datasets (see Table 11).

Effect of AE Architecture: Table 4 (in Appendix) shows that the performance improvement
achieved by DCAM is independent of the Autoencoder (AE) architecture choice. DCAM with all
three architectures – CAE, EAE, and RAE – consistently outperforms their respective baselines,
DCEC, DEKM and EDCWRN with similar architecture. That is, within each type of AE, DCAM
has better results than DCEC and DEKM, or EDC. This not only underscores the superiority of
the internal algorithm of DCAM over the corresponding baselines but also suggests the potential for
further improvement with some more advanced AE architecture.

Figure 2: Decoded images for the
cluster prototypes (leftmost column
in block) and the corresponding
closest (center column in block)
and farthest (right column in block)
members in each cluster for Fash-
ion MNIST (left block) and Caltech
Birds (right block).

Qualitative Evaluation: We qualitatively evaluate the latent
cluster prototypes found by DCAM in Fig. 2 for Fashion MNIST
(10 clusters) and Caltech Birds (10 out of 200 clusters). The
figure shows the decoded prototypes or cluster centers, i.e.,
d(ρi), as well as their corresponding decoded closest and far-
thest cluster members (as measured in the latent space) from
the centers. Generally, the prototypes ρi form an average im-
age that matches the closest images well. The farthest cluster
members still appear similar to their prototypes in most cases,
with some exceptions: (i) In the 7th row for FMNIST an image
that looks like a pant is grouped with dresses though the overall
image shape is still similar. (ii) In the 5th row for CBird, the
memory and the closest image are very similar but the farthest
image appears significantly different.

In addition to the above, we discuss our thorough empirical
evaluation in Appendix C, reporting various clustering metrics,
visualizing the evolution of the latent memories (cluster cen-
ters), studying the impact of latent dimensionality, and further
details of selecting the best results via Pareto analysis along the
SC and RL axes.

5 DISCUSSION

We introduce a fresh integration of associative memories within
an innovative deep clustering algorithm DCAM that leverages
the energy-based attractor dynamics in latent space. Our find-
ings demonstrate that DCAM significantly surpasses standard
prototype-based and existing deep clustering methods. Our future work aims to extend it to mul-
timodal deep clustering. Leveraging its flexibility to add other encoder/decoder frameworks with
DCAM, we aim to explore transformer-based AE approaches. Additionally, we plan to explore how
the energy landscape may help estimate the number of clusters directly from the data.

5

New Frontiers in Associative Memory workshop at ICLR 2025

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: a system for
{Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and
implementation (OSDI 16), pp. 265–283, 2016.

Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, Maximilian Strobel, and Daniel Cremers. Clustering
with deep learning: Taxonomy and new methods. arXiv preprint arXiv:1801.07648, 2018.

Daniel J Amit, Hanoch Gutfreund, and Haim Sompolinsky. Storing infinite numbers of patterns in a
spin-glass model of neural networks. Physical Review Letters, 55(14):1530, 1985.

Ira Assent. Clustering high dimensional data. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 2(4):340–350, 2012.

Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of ICML
workshop on unsupervised and transfer learning, pp. 37–49. JMLR Workshop and Conference
Proceedings, 2012.

Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. Machine learning for data science
handbook: data mining and knowledge discovery handbook, pp. 353–374, 2023.

Berthold Bein. Entropy. Best Practice & Research Clinical Anaesthesiology, 20(1):101–109, 2006.

Jinyu Cai, Shiping Wang, Chaoyang Xu, and Wenzhong Guo. Unsupervised deep clustering via
contractive feature representation and focal loss. Pattern Recognition, 123:108386, 2022.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsuper-
vised learning of visual features. In Proceedings of the European conference on computer vision
(ECCV), pp. 132–149, 2018.

Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. Deep adaptive
image clustering. In Proceedings of the IEEE international conference on computer vision, pp.
5879–5887, 2017.

Shlomo E Chazan, Sharon Gannot, and Jacob Goldberger. Deep clustering based on a mixture
of autoencoders. In 2019 IEEE 29th International Workshop on Machine Learning for Signal
Processing (MLSP), pp. 1–6. IEEE, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Zhiyuan Dang, Cheng Deng, Xu Yang, Kun Wei, and Heng Huang. Nearest neighbor matching for
deep clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13693–13702, 2021.

Mete Demircigil, Judith Heusel, Matthias Löwe, Sven Upgang, and Franck Vermet. On a model of
associative memory with huge storage capacity. Journal of Statistical Physics, 168(2):288–299,
2017.

Wengang Guo, Kaiyan Lin, and Wei Ye. Deep embedded k-means clustering. In 2021 International
Conference on Data Mining Workshops (ICDMW), pp. 686–694. IEEE, 2021.

Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep embedded clustering with
local structure preservation. In Ijcai, pp. 1753–1759, 2017a.

Xifeng Guo, Xinwang Liu, En Zhu, and Jianping Yin. Deep clustering with convolutional autoen-
coders. In International conference on neural information processing, pp. 373–382. Springer,
2017b.

6

New Frontiers in Associative Memory workshop at ICLR 2025

Benjamin Hoover, Yuchen Liang, Bao Pham, Rameswar Panda, Hendrik Strobelt, Duen Horng Chau,
Mohammed Zaki, and Dmitry Krotov. Energy transformer. Advances in Neural Information
Processing Systems, 36, 2024.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Xuan Huang, Zhenlong Hu, and Lin Lin. Deep clustering based on embedded auto-encoder. Soft
Computing, 27(2):1075–1090, 2023.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on pattern
analysis and machine intelligence, 16(5):550–554, 1994.

Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.

Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster analysis.
John Wiley & Sons, 2009.

Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning: A survey. Symmetry, 11(9):1066, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, ON, Canada, 2009.

Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. Advances in
neural information processing systems, 29, 2016.

Dmitry Krotov and John J Hopfield. Large associative memory problem in neurobiology and machine
learning. In International Conference on Learning Representations, 2021.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Carlo Lucibello and Marc Mézard. The exponential capacity of dense associative memories. arXiv
preprint arXiv:2304.14964, 2023.

J MacQueen. Classification and analysis of multivariate observations. In 5th Berkeley Symp. Math.
Statist. Probability, pp. 281–297, 1967.

ROBERTJ McEliece, Edwardc Posner, EUGENER Rodemich, and SANTOSHS Venkatesh. The
capacity of the hopfield associative memory. IEEE transactions on Information Theory, 33(4):
461–482, 1987.

Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint
arXiv:1109.2378, 2011.

Amin G. Oskouei, Mohammad A. Balafar, and Cina Motamed. Edcwrn: efficient deep clustering with
the weight of representations and the help of neighbors. Applied Intelligence, 53(5):5845–5867,
2023.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,
Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield networks
is all you need. arXiv preprint arXiv:2008.02217, 2020.

Yazhou Ren, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu, S Yu Philip, and Lifang
He. Deep clustering: A comprehensive survey. IEEE Transactions on Neural Networks and Learn-
ing Systems, 2024. URL https://ieeexplore.ieee.org/abstract/document/
10585323.

7

https://ieeexplore.ieee.org/abstract/document/10585323
https://ieeexplore.ieee.org/abstract/document/10585323

New Frontiers in Associative Memory workshop at ICLR 2025

Meitar Ronen, Shahaf E Finder, and Oren Freifeld. Deepdpm: Deep clustering with an unknown
number of clusters. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9861–9870, 2022.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics, 20:53–65, 1987.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal representations
by error propagation, 1985.

Bishwajit Saha, Dmitry Krotov, Mohammed J Zaki, and Parikshit Ram. End-to-end differentiable
clustering with associative memories. arXiv preprint arXiv:2306.03209, 2023.

Claude Sammut and Geoffrey I. Webb (eds.). TF–IDF, pp. 986–987. Springer US, Boston, MA,
2010. ISBN 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8 832. URL https://doi.
org/10.1007/978-0-387-30164-8_832.

Michael Steinbach, Levent Ertöz, and Vipin Kumar. The challenges of clustering high dimensional
data. In New directions in statistical physics: econophysics, bioinformatics, and pattern recognition,
pp. 273–309. Springer, 2004.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 6309–6318, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and Luc
Van Gool. Scan: Learning to classify images without labels. In European conference on computer
vision, pp. 268–285. Springer, 2020.

Michel Verleysen and Damien François. The curse of dimensionality in data mining and time series
prediction. In International work-conference on artificial neural networks, pp. 758–770. Springer,
2005.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures for clusterings
comparison: is a correction for chance necessary? In Proceedings of the 26th annual international
conference on machine learning, pp. 1073–1080, 2009.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

Chathurika S Wickramasinghe, Daniel L Marino, and Milos Manic. Resnet autoencoders for
unsupervised feature learning from high-dimensional data: Deep models resistant to performance
degradation. IEEE Access, 9:40511–40520, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International conference on machine learning, pp. 478–487. PMLR, 2016.

Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering algorithms. Annals of Data
Science, 2:165–193, 2015.

Mohammed J Zaki and Wagner Meira Jr. Data mining and machine learning: Fundamental concepts
and algorithms. Cambridge University Press, 2020.

Sheng Zhou, Hongjia Xu, Zhuonan Zheng, Jiawei Chen, Zhao Li, Jiajun Bu, Jia Wu, Xin Wang,
Wenwu Zhu, and Martin Ester. A comprehensive survey on deep clustering: Taxonomy, challenges,
and future directions. ACM Comput. Surv., 57(3), November 2024. ISSN 0360-0300. doi:
10.1145/3689036. URL https://doi.org/10.1145/3689036.

8

https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1145/3689036

New Frontiers in Associative Memory workshop at ICLR 2025

A RELATED WORK

Clustering is a long-studied and well-reviewed problem in computer science, with various formula-
tions and several applications (Kaufman & Rousseeuw, 2009; Zaki & Meira Jr, 2020). Given the
success of deep learning, deep clustering has also attracted attention over the past decade (Ren et al.,
2024; Aljalbout et al., 2018; Zhou et al., 2024). Inspired by t-SNE (Van der Maaten & Hinton, 2008),
Xie et al. (2016) introduced DEC, enhancing clustering and feature representation by minimizing
the Kullback-Leibler Divergence (KLD) to an auxiliary target distribution. However, a drawback
is abandoning the decoder layer after pre-training, impacting the embedded space and clustering
performance. Guo et al. (2017a) showed that keeping the decoder layer improves clustering (IDEC),
and Guo et al. (2017b) proposed DCEC using convolutional autoencoders (CAE). Chazan et al. (2019)
proposed DAMIC, a mixture of autoencoders for clustering, determined by minimizing the recon-
struction loss without needing a regularization term. However, they leverage multiple AEs in their
model, while we focus on schemes using a single AE. Huang et al. (2023) introduced an innovative
embedded autoencoder architecture by incorporating it into both the encoding and decoding units of
the outer autoencoder. Guo et al. (2021) proposed DEKM which works on the embedding space (after
pretraining) and transforms it to a new cluster-friendly space using an orthonormal transformation
matrix. However, discarding the decoder after pretraining for both of these methods may lead to the
distortion of the embedded space, consequently hurting clustering performance. In addressing the
automatic inference of the number of clusters in a dataset, Ronen et al. (2022) introduced DeepDPM.
They proposed a novel loss inspired by EM in the Bayesian Gaussian Mixture Model framework,
facilitating a new amortized inference in mixture models. It is worth noting that DeepDPM diverges
from the typical encoder-decoder architecture, opting instead for a multilayer perceptron model.

While many deep clustering methods utilize KLD as a clustering objective, it falls short in preserving
the global data structure (e.g., only within-cluster distances are prioritized, leaving uncertainties
regarding between-cluster similarities), leading Oskouei et al. (2023) (EDCWRN) to advocate for
cross-entropy over KLD. They incorporate feature weighting to emphasize essential features for
clustering and employ a neighborhood technique to encourage similar representations for samples
within the same cluster. Addressing another challenge with KLD regarding the presence of hard,
misclassified samples, Cai et al. (2022) introduced focal loss to enhance label assignment in deep
clustering methods and improved the representation learning module with a contractive penalty
term, capturing more discriminative representations. However, it could lead to unintentional bias
in the optimization focus between the representation learning and clustering modules. Dang et al.
(2021) introduce a novel deep clustering framework (NNM) based on a two-level nearest neighbors
matching approach. Distinguishing itself from prior methods (Van Gansbeke et al., 2020), NNM
incorporates matching at both local and global levels, resulting in a notable enhancement in clustering
performance. It also leverages SimCLR (Chen et al., 2020) to pretrain a representation learning model
using the state-of-the-art contrastive learning loss. Our DCAM approach can flexibly incorporate
various autoencoder architectures by leveraging the capabilities of associative memories, and can
benefit from various architectural and pretraining advancements.

Associative Memories store multidimensional vectors as fixed point attractor states in a recurrent
dynamical system. AMs form associations between the initial state and a final state (memory),
creating disjoint basins of attractions which are crucial for clustering. A prominent example of AM is
the classical Hopfield Network (Hopfield, 1982). It exhibits limited memory capacity, approximately
storing only ≈ 0.14d arbitrary memories in a d dimensional data domain (McEliece et al., 1987; Amit
et al., 1985). Subsequently, Krotov & Hopfield (2016) proposed Dense Associative Memory (Dense
AM) or Modern Hopfield Network introducing rapidly growing non-linearities (activation functions)
into the system. This innovation allows for a denser arrangement of memories and achieves super-
linear (in d) memory capacity (Demircigil et al., 2017; Lucibello & Mézard, 2023). With softmax
activation, Dense AMs are closely related to the attention mechanism used in transformers (Ramsauer
et al., 2020; Krotov & Hopfield, 2021; Hoover et al., 2024).

Recently, Saha et al. (2023) introduced ClAM, an end-to-end differentiable clustering approach,
utilizing Dense AMs for clustering. However, there are other fundamental difference between how
DCAM uses AMs versus ClAM, which performs clustering only in the ambient space utilizing AMs
but there is no representation learning involved. In contrast, DCAM focuses on clustering in latent
space, utilizing AMs to find good clusters and yet retain good reconstruction (which reflects the
quality of the latent representations). In ClAM, AM is utilized to act as a differentiable argmin

9

New Frontiers in Associative Memory workshop at ICLR 2025

solver for the k-means objective. In contrast, in DCAM, which involves representation learning, AM
energy dynamics explicitly creates basins of attraction in the latent space, and moves/pushes the
latent representations of the points into these basins, thereby explicitly inducing a clustered data
distribution in the latent space. While the encoder is moving points into basins of attraction, the
DCAM loss tries to minimize the information loss in the latent representations by having the decoder
reconstruct these relocated latent representations. Finally, we show empirically that when ClAM is
directly applied in the latent space learned by a pretrained autoencoder, it does not yield competitive
clustering performance. Our novel DCAM approach, which is inherently a deep clustering method that
jointly clusters and learns effective latent representations, yields much better performance.

To our knowledge, the coupling of deep clustering with energy dynamics in latent space as done
in DCAM for cluster-guided latent space learning has not been considered in the literature before.
DCAM continuously refines both the encoder and decoder networks and at the same time integrate the
AM learning dynamics to cluster the points into k groups. This bears semblance to vector-quantized
variational AEs (van den Oord et al., 2017), where the task is to learn a discrete vector code for each
point. However, this assignment is non-differentiable, requiring gradient approximation, and there is
no clustering objective considered. Also related is the task of deep metric learning (Kaya & Bilge,
2019), where the task is to learn a distance function between samples in latent space. However, this
requires the use of labeled data for full or weak supervision.

A.1 DCAM ALGORITHM

Algorithm 1: DCAM Algorithm
Train(S, k,N, T, ϵe, ϵd, ϵρ, γ)

Pretrain (e,d) as autoencoder, minimizing Lr(e,d)
ρ← {e(x), x ∈M}, M are random k samples from S
for epoch n = 1, . . . , N do

for batch B ∈ S do
Batch loss L̄ ← 0
for example x ∈ B do

v ← e(x) //encode

v′ ← AT
ρ (v) //energy descent

ℓ̄← ∥x− d(v′)∥2 //loss
L̄ ← L̄+ ℓ̄

ρi ← ρi − ϵρ∇ρi L̄, ∀i ∈ JkK
e← e− ϵe∇eL̄
d← d− ϵd∇dL̄

return e,d,ρ

Infer(S, e,d,ρ)
Cluster assignments C ← ∅
for x ∈ S do

v′ ← AT
ρ (e(x))

C ← C ∪
{
argmini∈JkK ∥ρi − v′∥2

}
return Per-point cluster assignments C

Alg. 1 shows the pseudo-code for DCAM. It first pretrains encoder e and decoder d, and starts from k
random prototypes ρ. The cluster assignment is done with T recursion of the AM attractor dynamics
operator Aρ parameterized with the centers ρ = {ρi, i ∈ JkK}. The per-sample loss ℓ̄ of DCAM (line
10) is added to the batch loss. We optimize for N epochs via gradient descent, with learning rates
{ϵe, ϵd, ϵρ} for e,d,ρ respectively. Upon solving Eq. (2), we obtain a trained encoder and decoder,
and memories in the latent space, and we can utilize them to obtain the final partition the data (see
the Infer subroutine in Alg. 1). Fig. 3 shows an illustration of how DCAM evolves over the epochs by
minimizing our loss (Eq. (2)) while successively finding better clusters.

DCAM provides various advantages over previous deep clustering formulations: (i) Our novel per-
sample loss ℓ̄(x, e,d,ρ) does not involve a separate clustering loss thus obviating the need for the
balancing hyperparameter γ. (ii) The updates for all the parameters in DCAM are more explicitly

10

New Frontiers in Associative Memory workshop at ICLR 2025

(a) Pretrained (b) E=1, T=7 (c) E=200, T=8 (d) E=400, T=11 (e) E=800, T=15

Figure 3: Clustering with DCAM. Reconstruction loss (RL; refers to the loss L̄ in Eq. (2)) and
clustering quality (SC; refers to Silhouette Coefficient) for different epochs (E) and number of AM
steps (T) for Fashion-MNIST dataset with two clusters, where Fig. 3a represents the pretrained
latent representations. The light (faded) colors indicate the encoded points v before applying the
attractor dynamics, whereas dark colors indicate the points v′ = AT

ρ (v) after that step. The colored
stars represent the learned prototypes. DCAM discovers more compact and clustering-friendly latent
representations that simultaneously have higher clustering and reconstruction quality.

tied together with the d ◦AT
ρ ◦ e composition in the d(AT

ρ (e(x))) term. This ties the representation
learning and clustering objectives more intricately. (iii) DCAM continues to have all the advantages of
traditional deep clustering, being end-to-end differentiable since all operators in the above composition
are differentiable, and so is the discrete cluster center assignment via T recursions of the attractor
dynamics operator Aρ. (iv) It is architecture agnostic – we can select a problem dependent encoder
and decoder. For example, convolutional or residual networks for images or fully-connected feed-
forward networks for text or tabular data. In essence, DCAM introduces an inductive bias over the
latent space via AM, which defines an energy function and utilizes the attractor dynamics to help
cluster the points.

B EXPERIMENTAL DETAILS

B.1 EVALUATION METRICS:

A common metric to evaluate and benchmark deep clustering algorithms is by computing the overlap
between the clusters in the latent space and the partitions obtained from some ground-truth labels,
e.g., Normalized Mutual Information (NMI) (Vinh et al., 2009). Nevertheless, it is critical to ensure
that NMI (or any other label-dependent metric) is not utilized for hyperparameter selection since
that leaks supervision into the unsupervised task of deep clustering. Unfortunately, for many of
reported results, it is not clear how hyperparameters are selected without being influenced at NMI
(since they simply report results with the highest NMI). Furthermore, existing works typically report
NMI without explicitly discussing reconstruction loss, which may not align with the primary goals of
deep clustering.

Given the unsupervised nature of the deep clustering, hyperparameters should be selected based on
unsupervised metrics that do not utilize ground-truth labels to evaluate clustering quality. Thus, we
report results on optimizing for the unsupervised Silhouette Coefficient (SC) (Rousseeuw, 1987)
metric, while keeping the reconstruction loss (RL) below some user-defined threshold. We do also
report NMI results in Appendix C.2, along with other metrics.

B.2 DATASET DETAILS

To evaluate DCAM, we conducted our experiments on eight standard benchmark datasets, including
USPS (Hull, 1994), Fashion-MNIST (Xiao et al., 2017), CIFAR-10 and CIFAR-100 (Krizhevsky,
2009), STL-10 (Coates et al., 2011), Caltech birds2010 (Welinder et al., 2010), 20-NG from Sklearn
and Reuters-10k from TensorFlow datasets. The later two are text datasets, whereas the others are
image datasets. For both text datasets, we calculate TFIDF (Sammut & Webb, 2010) features based
on the 2000 most frequent words, following a similar approach as Oskouei et al. (2023). However, we
consider the original number of categories as the true number of clusters, which is 46 for Reuters-10k
and 20 for 20-NG. For Caltech birds2010, as there are images of various shapes, we resize all images

11

New Frontiers in Associative Memory workshop at ICLR 2025

to (128, 128, 3) for uniformity and ease of implementation. Table 2 provides the statistics for the
datasets used in our experiments.

Table 2: Descriptions of datasets

Dataset Short name # Points Shape # Classes # Type

Fashion MNIST FM 60000 (28, 28, 1) 10 Image
CIFAR-10 C-10 50000 (32, 32, 3) 10 Image
CIFAR-100 C-100 50000 (32, 32, 3) 100 Image
USPS USPS 2007 (16, 16, 1) 10 Image
STL-10 STL 5000 (96, 96, 3) 10 Image
Caltech birds2010 CBird 3000 (128, 128, 3) 200 Image

Reuters-10k R-10k 11228 2000 46 Text
20-NG 20NG 18846 2000 20 Text

B.3 METRICS USED

To assess the performance of DCAM, we utilize the Silhouette Coefficient (SC) (Rousseeuw, 1987)
as an unsupervised metric for measuring clustering quality. SC scores range from −1 to 1, where 1
indicates perfect clustering and −1 indicates completely incorrect labels. A score close to 0 suggests
the existence of overlapping clusters. We also employ Normalized Mutual Information (NMI) (Vinh
et al., 2009) to evaluate the alignment between the partition obtained by DCAM and the ground
truth clustering labels. NMI scores range from 0 (completely incorrect) to 1 (perfect clustering).
Additionally, we compute Reconstruction Loss (RL), representing the mean squared error between
original and reconstructed points, where lower is better. Entropy (ETP) (Bein, 2006) and Cluster
Size (CS) are computed to assess cluster balance. In clustering, higher entropy (the highest value is
log2(k) for each dataset, where k is the number of true clusters) indicates more balanced clusters,
while lower values suggest potential imbalance, possibly involving singleton or very small clusters.
Entropy (H(X)) is calculated based on the distribution of data points across clusters:

H(X) = −
k∑

i=1

P (Ci) log2 P (Ci)

where, P (Ci) is the proportion of data points in cluster Ci relative to the total number of data points.
Cluster Size (CS) indicates the largest and smallest clusters (in terms of the number of data points)
identified in the dataset (more balanced clustering is better).

B.4 PARAMETER SETTINGS

For Convolutional AE or CAE, for k-means, Agglomerative, ClAM, DCEC, DEKM, and DCAM, we
adopt an architecture identical to DCEC. The encoder network structure follows conv5

32 → conv5
64

→ conv3
128 → FCd, where convk

n represents a convolutional layer with n filters and a kernel size of
k× k, and FCd denotes a fully connected layer of dimension d. Here, d is the number of true clusters
in the dataset, and serves as the latent dimension. The decoder mirrors the encoder.

The ResNet AE or RAE approach draws inspiration from the standard ResNet block described
by Wickramasinghe et al. (2021). For DCEC, DEKM, and DCAM a streamlined configuration
is employed using two filters with sizes 32 and 64. The size of the embedded representation is
maintained at d, corresponding to the number of clusters in the dataset, as in the previous setup. In
this experiment, the number of repeating layers in the ResNet block is set to 2. To enhance model
performance, batch normalization and leakyReLU are incorporated. For a given number of repeats
(f), the total number of hidden layers is calculated as 2 + (f * number of filters), resulting in 6 layers
in our case.

The EDCWRN AE or EAE, is that from Oskouei et al. (2023), so for both EDC and DCAM, we
follow the proposed architecture, where the encoder network is configured as a fully connected
multilayer perceptron (MLP) with dimensions i-500-500-2000-d for all datasets, where i represents

12

New Frontiers in Associative Memory workshop at ICLR 2025

the dimension of the input space (features), and d is the number of clusters in the dataset. Similarly,
the decoder network mirrors the encoder, constituting an MLP with dimensions d-2000-500-500-i.
All internal layers, except for the input, output, and embedding layers, use the ReLU activation
function.

All three architectures described above are pretrained end-to-end for 100 epochs using Adam (Kingma
& Ba, 2014) with default parameters. The number of clusters k is not a hyperparameter, but rather
is taken as the true number of classes in each dataset. Also, as noted above, we set the latent
dimensionality d (or m) the same as the number of true classes k in the dataset, i.e., m = d = k.

B.5 IMPLEMENTATION DETAILS

We conduct a comparative analysis of DCAM against established clustering methods, including k-
means (Lloyd, 1982), agglomerative clustering (or Agglo.) (Müllner, 2011), ClAM (Saha et al.,
2023), DCEC (Guo et al., 2017b), DEKM (Guo et al., 2021) and EDCWRN (or EDC) Oskouei et al.
(2023). We evaluate k-means, agglomerative clustering, and ClAM in the ambient space (denoted
as NAE) and in the latent space obtained through a pretrained Convolutional Autoencoder (CAE)
as used in DCEC (Guo et al., 2017b). For DCEC amd DEKM, we consider a ResNet-based AE
(RAE) (Wickramasinghe et al., 2021) along with their original CAE. For DCAM, we extend our
exploration to include not only the CAE and RAE architectures but also EDCWRN-based (Oskouei
et al., 2023) Autoencoder (EAE) (originally proposed by Guo et al. (2017a)) to analyze its impact
on the algorithm. We also compare DCAM with state-of-the-art SimCLR (Chen et al., 2020) based
(contrastive learning) SCAN (Van Gansbeke et al., 2020) and NNM (Dang et al., 2021) deep clustering
schemes.

We implement and evaluate DCAM using the Tensorflow (Abadi et al., 2016) library while employing
scikit-learn (Pedregosa et al., 2011) for clustering quality metrics. We train our models on
a single node with 1 NVIDIA RTX A6000 (48GB RAM) and a 16-core 2.4GHz Intel Xeon(R)
Silver 4314 CPU. Hyperparameters are tuned individually for each dataset to maximize the Silhou-
ette Coefficient (Rousseeuw, 1987). Table 5 lists the hyperparameters, their roles, and respective
values/ranges.

For baseline schemes like k-means and agglomerative, we use the scikit-learn library imple-
mentation, adjusting hyperparameters for optimal performance on each dataset. For DCEC (Guo
et al., 2017b) and DEKM (Guo et al., 2021), we leverage their Tensorflow implementation1 2, for
EDCWRN (Oskouei et al., 2023), we utilze their Python implementation3, and for ClAM (Saha et al.,
2023) we use their Tensorflow implementation4. Likewise we use the author provide implementations
for SCAN (Van Gansbeke et al., 2020) 5 and NNM (Dang et al., 2021)6.

Table 3: Per-method best RRL across all architectures (while SC is within 10% of the best SC of the
method).

Dataset SC RRL

k-means Agglo. ClAM DCEC DEKM EDC SCAN NNM DCAM DCEC DEKM EDC DCAM

FM 0.257 0.201 0.279 0.898 0.785 0.521 - - 0.922 9.8▼ 321 143 42.2
C-10 0.084 0.372 0.208 0.786 0.622 0.541 0.541 0.587 0.809 0.9▼ 180 74.3 20.4▼

C-100 0.015 0.149 0.053 0.572 0.047 0.337 0.321 0.358 0.921 18.6 870 33.3 27.5
USPS 0.195 0.158 0.194 0.929 0.843 0.491 - - 0.914 26.3▼ 2326 40 8.7
STL 0.079 0.270 0.108 0.812 0.804 0.431 0.552 0.540 0.923 79.2 234 155 27.7
CBird -0.019 0.094 -0.026 0.282 0.018 0.188 - - 0.413 286 1036 102 1.8

R-10k -0.010 0.114 -0.002 - - 0.035 - - 0.673 - - 60 120
20NG -0.021 0.114 -0.008 - - 0.099 - - 0.287 - - 25▼ 50

1https://github.com/XifengGuo/DCEC
2https://github.com/spdj2271/DEKM/blob/main/DEKM.py
3https://github.com/Amin-Golzari-Oskouei/EDICWRN
4https://github.com/bsaha205/clam
5https://github.com/wvangansbeke/Unsupervised-Classification
6https://github.com/ZhiyuanDang/NNM

13

New Frontiers in Associative Memory workshop at ICLR 2025

Table 4: SC for image datasets, comparing DCAM to baselines with different encoder/decoder
architectures. Best for each dataset is in bold. See text for details. Higher is better.

Dataset Convolutional AE ResNet AE EAE

DCEC DEKM DCAM DCEC DEKM DCAM EDC DCAM

FM 0.923 0.785 0.970 0.824 0.742 0.922 0.521 0.715
C-10 0.787 0.622 0.863 0.667 0.461 0.697 0.541 0.731
C-100 0.572 0.047 0.598 0.557 0.036 0.921 0.337 0.636
USPS 0.935 0.882 0.914 0.909 0.843 0.914 0.491 0.911
STL 0.766 0.745 0.919 0.812 0.804 0.865 0.431 0.923
CBird 0.386 0.018 0.448 0.282 0.035 0.377 0.188 0.446

B.6 HYPERPARAMETERS FOR DCAM

Table 5: Hyperparameters, their roles and range of values for DCAM.

Hyperparameter Used Values

Inverse temperature, β [10−5, ..., 5]

Batch size [16, 32, 64, 128, 256]
Initial learning rate (AM), ϵam [10−4, 10−3, 10−2, 10−1]
Initial learning rate (AE), ϵae [10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1]
Reduce LR patience (epochs) [5, 10, 15]

We extensively tune all hyperparameters (Table 5) for the optimal results in DCAM. We found that
the inverse temperature β serves as the most critical hyperparameter, which we explore in the range
of [10−5, ..., 5] for tuning. We employ curriculum learning for the number of AM steps T from the
data, where T starts with a small value (e.g., 1) and increases up to 20 based on the reconstruction
loss. Fig. 4 visualizes this curriculum learning for T for FMNIST dataset where T starts with 7 and
ends at 18. We employ the Adam optimizer while keeping separate initial learning rates for the AM
and AE networks. If the training loss does not improve for a certain number of epochs, we decrease
the learning rate by a factor of 0.8. We do this for a certain patience value (curriculum patience)
after that we increase T by 1. This process continues until the training loss reaches a minimum
threshold (10−9) or T reaches its maximum value (20). In Fig. 4, the red point indicates the lowest
training loss (reconstruction error) and orange points indicate the reconstruction losses within 10% of
the lowest reconstruction loss. We can see that T = 14 has reconstruction loss within 10% of the
lowest reconstruction loss and a high value of silhouette coefficient (> 0.9). In this case, we select
14 as the optimal value of T as it has a good trade-off between the reconstruction loss and silhouette
coefficient. By doing curriculum learning, we avoid treating T as a separate hyperparameter. The
best hyperparameter values for various datasets for DCAM are detailed in Table 6.

Table 6: Best hyperparameters for different datasets for DCAM. ‘-’ denotes NA.

Dataset Inverse temperature, β Layers, T Batch size Learning rate(AM) Learning rate (e) Learning rate (d)

CAE RAE EAE CAE RAE EAE CAE RAE EAE CAE RAE EAE CAE RAE EAE CAE RAE EAE

FM 0.5 0.09 0.7 15 15 10 64 64 64 0.001 0.001 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001
C-10 2 0.02 0.5 15 15 12 64 64 64 0.001 0.001 0.01 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001
C-100 1 0.005 5 10 10 10 64 64 64 0.001 0.001 0.001 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001
USPS 0.5 1 1 15 10 15 64 64 32 0.01 0.01 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.01
STL 0.5 0.003 0.1 15 10 12 64 64 128 0.001 0.01 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.0001
CBird 0.05 0.00015 0.005 15 10 15 64 64 64 0.01 0.001 0.1 0.0000001 0.0000001 0.0000001 0.001 0.001 0.001

R-10K - - 10 - - 10 - - 64 - - 0.01 - - 0.0000001 - - 0.1
20-NG - - 1.5 - - 15 - - 64 - - 0.1 - - 0.0000001 - - 0.1

B.7 HYPERPARAMETERS FOR BASELINES

We compare DCAM with baseline clustering schemes k-means and agglomerative from
scikit-learn, ClAM, DCEC, DEKM and EDCWRN. For k-means and agglomerative, we

14

New Frontiers in Associative Memory workshop at ICLR 2025

(a) RL vs Training (b) SC vs Training

Figure 4: Reconstruction loss (RL) and clustering quality (SC) for varying number of steps (T) for
FMNIST. Red point in Fig. 4a indicates the lowest reconstruction loss and orange points indicate the
reconstruction loss within 10% of this lowest reconstruction loss.

perform a comprehensive search for tuning different hyperparameters available in scikit-learn
and pick the best results. For DCEC, DEKM and EDCWRN, we tuned all related hyperparams to
obtain the best SC (for 10% RRL) and best RL (for 10% of best SC). For ClAM we precisely replicate
the hyperparameter search criteria outlined in its respective paper, which closely aligns with our
approach for DCAM, as detailed in Table 5. Table 7 provides a brief description of the hyperparameters
and their roles in the baseline schemes.

C DETAILED AND ADDITIONAL EXPERIMENTAL RESULTS

C.1 PRETRAINED LOSSES FOR ALL ARCHITECTURE AND ALL DATASETS

Table 8 records the pretrained reconstruction losses (RL) for all architectures and all datasets. These
are the base RL values RLp used when computing RRL.

C.2 DETAILED RESULTS WITH VARIOUS CLUSTERING QUALITY METRICS

Table 9 provides a comprehensive overview of the metrics (SC, NMI, RL, ETP, and CS) for DCAM,
and corresponding baselines, focusing on the best SC in each method across various AE architectures
where RL is constrained to 10% of the pretrained AE loss. For k-means, Agglomerative and ClAM,
we apply them both in the original ambient space (No-AE or NAE) and in the latent space (utilizing
CAE). RL is not presented for k-means, Agglomerative and ClAM for the original space and for CAE
as it remains consistent across the three methods after pretraining. Similarly, Table 10 provides a
similar overview of the metrics (SC, NMI, RL, ETP, and CS) for DCAM, and corresponding baselines,
focusing on the best Relative RL (RRL) in each method across various AE architectures where SC
is constrained to 10% of the best/peak SC of the method. Table 11 represents all corresponding
metrics focusing on the best NMI in each method. These tables highlight that DCAM exhibits strong
performance not only in terms of SC and RL, but also when compared to the ground truth labels via
NMI. In fact, for NMI, DCAM has the best values in 5 out of the 8 datasets (DCEC has the best values
on the other 3). Additionally, DCAM clusters maintain reasonable entropy (ETP) and cluster size (CS),
ensuring a balanced clustering outcome.

For an understanding of the importance of ETP and CS in clustering, consider the case of Agglomer-
ative clustering in the latent space (CAE) on the CIFAR-10 dataset (see Table 9). In this instance,
almost all points (49991 out of 50000) belong to one cluster, while the other 9 clusters contain only
one data point each, indicating very poor clustering. The low entropy (0.003) further highlights the
deficiency of the clustering.

In certain situations, when comparing two clustering methods, it can happen that a method performs
better in terms of SC and RL but still exhibits a lower NMI compared to another method (see Table 9

15

New Frontiers in Associative Memory workshop at ICLR 2025

Table 7: Hyperparameters (HPs), their roles and range of values for the baseline clustering schemes.

Baseline HP Role Used Values

k-means
init Initialization method [‘k-means++’, ’random’]
n init Number of time the k-means algorithm will be run 1000

Agglomerative

affinity Metric used to compute the linkage [‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’,
‘cosine’]

linkage Linkage criterion to use [‘single’, ‘average’, ‘complete’,
‘ward’]

DCEC

batch size Size of each batch [64, 128, 256]
maxiter Maximum number of iteration [2e4, 3e4]
alpha Degree of freedom of student’s t-distribution 1
gamma Coefficient of clustering loss [0.01, 0.1, 1, 10]
update interval Interval at which the predicted and target distributions

are updated
[1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 75,
100, 125, 140, 150, 200]

tol Tolerance rate 0.001

DEKM

batch size Size of each batch [64, 128, 256]
maxiter Maximum number of iteration 2e4
hidden units Number of latent dimension Number of true cluster as per dataset
update interval Interval at which the predicted and target distributions

are updated
[10, 20, 30, 40, 50, 75, 100, 125,
140, 150, 200]

tol Tolerance rate 0.000001

EDCWRN

batch size Size of each batch [64, 128, 256]
maxiter pretraining Maximum number of iteration in pertaining 500*batch size
maxiter clustering Maximum number of iteration in clustering [8000, 16000, 24000]
gamma Coefficient of clustering loss [0.01, 0.1, 1, 10]
update interval Interval at which the predicted and target distributions

are updated
[1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 75,
100, 125, 140, 150, 200]

tol Tolerance rate 0.0001

ClAM

β Inverse temperature [10−5 - 5]
T = 1/α = τ/dt Number of layers [2-20]
batch size Size of each batch [8, 16, 32, 64, 128, 256]
ϵ Adam initial learning rate [10−4, 10−3, 10−2, 10−1]
ϵ factor Reduce LR by factor 0.8
ϵ patience Reduce LR patience (epochs) 5
ϵ min Minimum LR 10−5

ϵ loss threshold Reduce LR loss threshold 10−3

max epochs Maximum Number of epochs 200
restart Number of restart 10
mask prob Mask probability [0.1, 0.12, 0.15, 0.2, 0.25, 0.3]
mask val Mask value [‘mean’, ‘min’, ‘max’]

Table 8: Per-dataset, per-architecture pretrained loss. Note abbreviations Conv-AE→CAE, Resnet-
AE→RAE, and EDCWRN-AE→EAE. Further, ‘-’ denotes NA.

Dataset Architecture

CAE RAE EAE

FM 0.0122 0.0083 0.0087
C-10 0.0220 0.0180 0.0167
C-100 0.0070 0.0040 0.0096
USPS 0.0019 0.0023 0.0005
STL 0.0179 0.0173 0.0206
CBird 0.0055 0.0036 0.0187
R-10K - - 0.0010
20NG - - 0.0008

for USPS where DCAM outperforms DCEC in both CAE and RAE architecture in both SC and RL,
however, the NMI is worse than DCEC in both cases). This indicates that the alignment of semantic
class (ground truth or true underlying structure) with the geometric characteristics of the data might
not be consistent or straightforward.

16

New Frontiers in Associative Memory workshop at ICLR 2025

Table 9: Metrics obtained by DCAM and baselines corresponding to the best SC (RL within 10%
of the pretrained AE loss). The best performance for each dataset is in boldface. (note abbreviations
DCEC→DC, EDCWRN→EDC, Entropy→ETP, Cluster-size→CS, No-AE→NAE, Conv-AE→CAE,
EDCWRN-AE→EAE, Resnet-AE→RAE). ‘-’ denotes NA. x▼ indicates negative RRL which means
the RL of the method is x% less than the pretrained AE loss.

Data Met Kmeans Agglo ClAM DC DEKM EDC DCAM

NAE CAE NAE CAE NAE CAE CAE RAE CAE RAE CAE EAE RAE

FM

SC 0.154 0.257 0.109 0.201 0.158 0.279 0.923 0.726 0.260 0.258 0.483 0.970 0.663 0.712
NMI 0.511 0.643 0.534 0.624 0.521 0.622 0.558 0.624 0.551 0.609 0.495 0.472 0.511 0.488
RL - 0.0122 - 0.0122 - 0.0122 0.0134 0.0091 0.0105 0.0097 0.0096 0.0120 0.0096 0.0091

RRL - 0.0 - 0.0 - 0.0 9.8 9.6 13.9▼ 18.1 10 1.6▼ 10 9.6
ETP 3.17 3.17 3.14 3.2 2.81 2.80 3.23 3.23 3.14 3.15 3.11 2.83 3.14 3.11
CS 9617-2361 11145-2744 11830-1860 10298-2544 19032-1524 15679-2 10208-2733 8914-3338 12360-2310 10974-2724 12118-1478 20448-504 11734-2251 15906-2082

C-10

SC 0.050 0.084 0.158 0.372 0.073 0.208 0.787 0.659 0.116 0.082 0.511 0.863 0.632 0.697
NMI 0.078 0.122 0.0005 0.0004 0.073 0.015 0.074 0.094 0.123 0.129 0.112 0.075 0.061 0.079
RL - 0.0220 - 0.0220 - 0.0220 0.0241 0.0197 0.0239 0.0199 0.0184 0.0178 0.0184 0.0170

RRL - 0.0 - 0.0 - 0.0 9.6 8.9 8.6 11.1 10 19.5▼ 10 5▼

ETP 3.27 3.19 0.006 0.003 2.50 0.24 3.22 2.99 3.25 3.15 3.24 2.83 2.65 2.81
CS 7105-2734 9779-2524 49979-1 49991-1 23544-582 48234-1 8511-2610 11229-1724 7905-3245 11731-2107 8198-2632 17521-425 13771-570 17121-569

C-100

SC 0.015 -0.020 0.028 0.149 0.018 0.053 0.314 0.470 -0.007 -0.016 0.311 0.598 0.536 0.482
NMI 0.161 0.183 0.036 0.004 0.153 0.156 0.104 0.119 0.238 0.184 0.181 0.110 0.202 0.125
RL - 0.0070 - 0.0070 - 0.0070 0.0059 0.0043 0.0046 0.0041 0.0106 0.0069 0.0099 0.0044

RRL - 0.0 - 0.0 - 0.0 15.7▼ 7.5 34.3▼ 2.5 4.3 1.4▼ 3.1 10
ETP 6.53 6.48 0.940 0.052 6.51 4.38 5.54 4.52 6.25 6.46 6.49 4.16 5.85 4.03
CS 1160-129 1395-23 38814-1 49834-1 1317-177 13950-11 2255-325 12721-122 1715-5 1322-87 999-216 11085-112 4116-32 8245-112

USPS

SC 0.143 0.195 0.124 0.158 0.144 0.194 0.935 0.758 0.195 0.217 0.461 0.820 0.872 0.891
NMI 0.573 0.628 0.627 0.680 0.475 0.619 0.732 0.761 0.631 0.665 0.467 0.444 0.347 0.428
RL - 0.0019 - 0.0019 - 0.0019 0.0018 0.0019 0.0020 0.0024 0.0005 0.0021 0.0006 0.0025

RRL - 0.0 - 0.0 - 0.0 5.3▼ 17.4▼ 5.3 4.3 0.0 10 10 8.7
ETP 3.27 3.23 3.26 3.27 3.10 3.16 3.26 3.29 3.23 3.25 3.29 3.12 2.78 2.99
CS 284-121 359-89 333-121 328-104 420-53 375-64 287-106 281-138 379-90 319-99 295-134 442-71 841-76 524-49

STL

SC 0.039 0.079 0.158 0.270 0.051 0.108 0.132 0.259 0.082 0.081 0.411 0.475 0.891 0.615
NMI 0.127 0.152 0.007 0.004 0.106 0.139 0.180 0.162 0.167 0.167 0.066 0.077 0.073 0.119
RL - 0.0179 - 0.0179 - 0.0179 0.0204 0.0189 0.0180 0.0174 0.0196 0.0187 0.0227 0.0190

RRL - 0.0 - 0.0 - 0.0 13.9 9.2 0.6 0.6 4.9▼ 4.5 10 9.8
ETP 3.26 3.25 0.069 0.025 2.43 1.4 3.19 3.17 3.21 3.19 2.92 2.48 2.99 2.87
CS 764-312 830-287 4969-1 4991-1 2586-82 3888-38 931-239 1003-263 844-191 804-258 2611-33 2076-21 912-45 1219-113

CBird

SC -0.019 -0.021 0.037 0.094 -0.026 -0.062 0.311 0.251 -0.032 -0.037 0.171 0.448 0.446 0.312
NMI 0.412 0.353 0.206 0.132 0.423 0.485 0.347 0.299 0.372 0.370 0.471 0.221 0.467 0.211
RL - 0.0055 - 0.0055 - 0.0055 0.0061 0.0040 0.0055 0.0036 0.0206 0.0060 0.0115 0.0039

RRL - 0.0 - 0.0 - 0.0 10 10 0.0 0.0 10 9.1 39▼ 8.3
ETP 6.34 5.59 2.71 0.958 6.56 7.21 5.41 5.04 5.81 5.80 7.41 5.68 7.02 5.07
CS 131-1 245-1 1722-1 2773-1 101-2 99-2 241-1 291-1 168-1 197-1 37-2 213-1 99-1 676-1

R-10k

SC -0.010 - 0.114 - -0.002 - - - - - 0.023 - 0.564 -
NMI 0.398 - 0.012 - 0.383 - - - - - 0.152 - 0.367 -
RL - - - - - - - - - - 0.0011 - 0.0011 -

RRL - - - - - - - - - - 10 - 10 -
ETP 5.13 - 0.072 - 5.10 - - - - - 5.51 - 4.77 -
CS 916-20 - 11172-1 - 885-18 - - - - - 721-51 - 1046-1 -

20NG

SC -0.021 - 0.114 - -0.008 - - - - - 0.101 - 0.197 -
NMI 0.155 - 0.003 - 0.166 - - - - - 0.019 - 0.181 -
RL - - - - - - - - - - 0.0009 - 0.0009 -

RRL - - - - - - - - - - 10 - 10 -
ETP 4.03 - 0.022 - 3.86 - - - - - 4.32 - 4.21 -
CS 2217-107 - 18818-1 - 3428-26 - - - - - 1131-599 - 1812-199 -

C.3 HOW INTERPRETABLE ARE THE MEMORIES OF DCAM?

We explore the representation of the learned prototypes in latent space for DCAM for Fashion-MNIST
and USPS in Fig. 5. For Fashion-MNIST, the 60k images are partitioned into 10 clusters, and
the evolution of cluster prototypes is visualized in Fig. 5a during the training process outlined in
Algorithm 1 for DCAM. In each sub-figure we observe the evolution over epochs. At epoch 0, there
are no distinct prototypes for clustering; instead, there are pairs of pullover (rows 3 and 5), shirts
(rows 7 and 8), and t-shirts/tops (rows 6 and 9). However, discernible patterns emerge at epoch 10,
refining further by epoch 20. By epoch 100, all ten prototypes represent distinct shapes, representing
different cluster centroids.

Figure 6 provides a visualization of the 20 data points from the Fashion-MNIST dataset that are
closest to each learned prototype. In the figure, the leftmost column represents the 10 learned
prototypes stacked vertically, with each corresponding to one cluster in the dataset. The subsequent
columns show the 20 data points that are nearest to each prototype or cluster center in terms of the
Euclidean distance within the learned latent space. This visualization offers valuable insights into the
nature of the learned prototypes and the clusters they represent. By examining the closest points, we
can see how well the prototypes capture the underlying data distribution and whether they correspond
to semantically meaningful clusters. For example, the learned prototypes often represent exemplar
or central examples of specific fashion items (such as shirts, trousers, or shoes), while the nearest
points reveal variations of these items that still fall within the same cluster. Such visualizations
not only highlight the interpretability of DCAM ’s energy-based clustering but also demonstrate the
model’s ability to learn compact and meaningful representations of the data. This approach provides
an intuitive way to assess the quality of the learned clusters and their alignment with the dataset’s
inherent structure.

17

New Frontiers in Associative Memory workshop at ICLR 2025

Table 10: Metrics obtained by DCAM and baselines corresponding to the best RL (SC within
10% of the best SC of the method). The best performance for each dataset is in boldface. (note
abbreviations DCEC→DC, EDCWRN→EDC, Entropy→ETP, Cluster-size→CS, No-AE→NAE,
Conv-AE→CAE, EDCWRN-AE→EAE, Resnet-AE→RAE). ‘-’ denotes NA. x▼ indicates negative
RRL which means the RL of the method is x% less than the pretrained AE loss.

Data Met Kmeans Agglo ClAM DC DEKM EDC DCAM

NAE CAE NAE CAE NAE CAE CAE RAE CAE RAE CAE EAE RAE

FM

SC 0.154 0.257 0.109 0.201 0.158 0.279 0.898 0.824 0.785 0.742 0.521 0.891 0.715 0.922
NMI 0.511 0.643 0.534 0.624 0.521 0.622 0.561 0.623 0.571 0.633 0.493 0.472 0.522 0.401
RL - 0.0122 - 0.0122 - 0.0122 0.0109 0.0105 0.0514 0.0516 0.0211 0.0102 0.0131 0.0118

RRL - 0.0 - 0.0 - 0.0 9.8▼ 26.5 321 522 143 16.4▼ 54.0 42.2
ETP 3.17 3.17 3.14 3.2 2.81 2.80 3.21 3.6 3.15 3.16 3.09 2.83 3.16 2.98
CS 9617-2361 11145-2744 11830-1860 10298-2544 19032-1524 15679-2 11307-2766 9450-3132 12720-2478 11178-2658 13199-1391 17040-504 11886-2148 11830-1290

C-10

SC 0.050 0.084 0.158 0.372 0.073 0.208 0.786 0.667 0.622 0.461 0.541 0.809 0.731 0.697
NMI 0.078 0.122 0.0005 0.0004 0.073 0.015 0.099 0.094 0.092 0.119 0.111 0.079 0.060 0.082
RL - 0.0220 - 0.0220 - 0.0220 0.0217 0.0217 0.0616 0.0502 0.0291 0.0175 0.0252 0.0171

RRL - 0.0 - 0.0 - 0.0 0.9▼ 20 180 179 74.3 20.4▼ 50.9 5▼

ETP 3.27 3.19 0.006 0.003 2.50 0.24 3.15 2.99 2.01 3.07 3.25 2.83 2.64 2.50
CS 7105-2734 9779-2524 49979-1 49991-1 23544-582 48234-1 7145-4055 11025-1542 23420-26 14530-2505 8172-2562 17520-390 14890-120 17121-455

C-100

SC 0.015 -0.020 0.028 0.149 0.018 0.053 0.572 0.557 0.047 0.036 0.337 0.540 0.617 0.921
NMI 0.161 0.183 0.036 0.004 0.153 0.156 0.158 0.119 0.162 0.221 0.186 0.112 0.201 0.094
RL - 0.0070 - 0.0070 - 0.0070 0.0083 0.0047 0.0679 0.0494 0.0128 0.0061 0.0092 0.0051

RRL - 0.0 - 0.0 - 0.0 18.6 17.5 870 1135 33.3 12.9▼ 4.2▼ 27.5
ETP 6.53 6.48 0.940 0.052 6.51 4.38 5.8 4.06 6.18 6.11 6.51 4.02 5.83 3.22
CS 1160-129 1395-23 38814-1 49834-1 1317-177 13950-11 2540-115 13736-12 1950-10 1980-10 996-156 11010-25 4350-10 22480-1

USPS

SC 0.143 0.195 0.124 0.158 0.144 0.194 0.929 0.909 0.882 0.843 0.491 0.914 0.911 0.914
NMI 0.573 0.628 0.627 0.680 0.475 0.619 0.717 0.736 0.691 0.684 0.451 0.477 0.339 0.437
RL - 0.0019 - 0.0019 - 0.0019 0.0014 0.0029 0.0487 0.0558 0.0007 0.0025 0.0013 0.0025

RRL - 0.0 - 0.0 - 0.0 26.3▼ 26.1 2463 2326 40 31.6 160 8.7
ETP 3.27 3.23 3.26 3.27 3.10 3.16 3.27 3.27 3.24 3.25 3.29 3.11 2.55 2.99
CS 284-121 359-89 333-121 328-104 420-53 375-64 283-106 283-127 334-87 312-97 294-156 463-35 947-27 513-49

STL

SC 0.039 0.079 0.158 0.270 0.051 0.108 0.766 0.812 0.745 0.804 0.431 0.919 0.923 0.865
NMI 0.127 0.152 0.007 0.004 0.106 0.139 0.181 0.170 0.149 0.152 0.065 0.144 0.072 0.107
RL - 0.0179 - 0.0179 - 0.0179 0.0242 0.0310 0.0711 0.0578 0.0525 0.0354 0.0263 0.0255

RRL - 0.0 - 0.0 - 0.0 35.8 79.2 297 234 155 97.8 27.7 47.4
ETP 3.26 3.25 0.069 0.025 2.43 1.4 3.23 3.26 1.15 3.22 2.90 2.48 2.98 2.86
CS 764-312 830-287 4969-1 4991-1 2586-82 3888-38 725-229 741-299 4064-16 821-261 2641-23 2280-27 929-34 1466-69

CBird

SC -0.019 -0.021 0.037 0.094 -0.026 -0.062 0.386 0.282 0.018 0.035 0.188 0.413 0.441 0.377
NMI 0.412 0.353 0.206 0.132 0.423 0.485 0.333 0.297 0.316 0.273 0.484 0.222 0.466 0.209
RL - 0.0055 - 0.0055 - 0.0055 0.0229 0.0139 0.0625 0.0560 0.0377 0.0056 0.0104 0.0039

RRL - 0.0 - 0.0 - 0.0 316 286 1036 1455 102 1.8 44.4▼ 8.3
ETP 6.34 5.59 2.71 0.958 6.56 7.21 5.51 5.03 5.16 4.47 7.43 5.68 7.01 5.06
CS 131-1 245-1 1722-1 2773-1 101-2 99-2 248-1 297-1 312-1 519-1 35-2 211-1 100-1 701-1

R-10k

SC -0.010 - 0.114 - -0.002 - - - - - 0.035 - 0.673 -
NMI 0.398 - 0.012 - 0.383 - - - - - 0.147 - 0.378 -
RL - - - - - - - - - - 0.0016 - 0.0022 -

RRL - - - - - - - - - - 60 - 120 -
ETP 5.13 - 0.072 - 5.10 - - - - - 5.55 - 4.79 -
CS 916-20 - 11172-1 - 885-18 - - - - - 727-56 - 1026-1 -

20NG

SC -0.021 - 0.114 - -0.008 - - - - - 0.099 - 0.287 -
NMI 0.155 - 0.003 - 0.166 - - - - - 0.018 - 0.180 -
RL - - - - - - - - - - 0.0006 - 0.0012 -

RRL - - - - - - - - - - 25▼ - 50 -
ETP 4.03 - 0.022 - 3.86 - - - - - 4.31 - 4.19 -
CS 2217-107 - 18818-1 - 3428-26 - - - - - 1142-582 - 1809-197 -

n0 n5 n10 n20 n50 n100

(a) FM

n0 n5 n10 n20 n50 n100

(b) USPS

Figure 5: Evolution of prototypes for Fashion-MNIST and USPS for DCAM. We visualize the
prototypes at the nth training epoch for n = 0, 5, 10, 20, 50, 100 (with T = 10).

C.4 EFFECT OF LATENT DIMENSIONALITY

It is important to clarify that in DCAM the latent dimension m is always set as the true number of classes
per dataset, i.e., m = k. Indeed, most deep clustering schemes in the literature such as DCEC (Guo
et al., 2017b), DEC (Xie et al., 2016), DEKM (Guo et al., 2021), and EDCWRN Oskouei et al. (2023)
either follow this strategy or fix this to a specific number (e.g., 10), since latent representations are

18

New Frontiers in Associative Memory workshop at ICLR 2025

Table 11: Metrics obtained by DCAM and baselines corresponding to the best NMI. The best
performance for each dataset is in boldface. (note abbreviations DCEC→DC, EDCWRN→EDC,
Entropy→ETP, Cluster-size→CS, No-AE→NAE, Conv-AE→CAE, EDCWRN-AE→EAE, Resnet-
AE→RAE). ‘-’ denotes NA. x▼ indicates negative RRL which means the RL of the method is x%
less than the pretrained AE loss.

Data Met Kmeans Agglo ClAM DC DEKM EDC DCAM

NAE CAE NAE CAE NAE CAE CAE RAE CAE RAE CAE EAE RAE

FM

SC 0.154 0.251 0.109 0.201 0.140 0.262 0.861 0.716 0.819 0.784 0.430 0.817 0.619 0.825
NMI 0.511 0.643 0.534 0.625 0.525 0.631 0.629 0.668 0.586 0.639 0.457 0.610 0.534 0.597
RL - 0.0122 - 0.0122 - 0.0122 0.0138 0.0139 0.0574 0.0596 0.0263 0.0406 0.0327 0.0387

RRL - 0.0 - 0.0 - 0.0 13.1 67.5 370 618 202 233 276 366
ETP 3.17 3.17 3.14 3.20 3.13 2.98 3.22 3.20 3.07 3.16 3.00 3.16 3.22 3.18
CS 9617-2361 11145-2744 11830-1860 10298-2544 14068-2435 15262-2100 10886-3030 9734-2847 12974-1191 11023-2652 17140-1578 11028-2658 10332-3054 10404-2610

C-10

SC 0.050 0.072 0.014 0.020 0.064 0.101 0.118 0.653 0.276 0.262 0.541 0.713 0.632 0.420
NMI 0.078 0.122 0.071 0.101 0.086 0.105 0.121 0.120 0.116 0.122 0.111 0.123 0.114 0.119
RL - 0.0220 - 0.0220 - 0.0220 0.0221 0.0245 0.0426 0.0362 0.0291 0.0403 0.0379 0.0326

RRL - 0.0 - 0.0 - 0.0 0.5 36.1 93.6 101 74.3 83.2 127 81.1
ETP 3.27 3.19 3.17 3.02 3.23 2.21 3.07 3.21 3.19 3.11 3.25 3.18 2.98 3.28
CS 7105-2734 9779-2524 10505-1650 11278-1764 9587-2925 26395-361 11022-3374 10235-1968 10275-2454 13746-2168 8172-2562 8595-2365 10721-289 6843-3144

C-100

SC 0.015 -0.014 -0.018 -0.043 0.018 0.001 0.048 0.002 -0.011 -0.028 0.308 0.354 0.200 0.130
NMI 0.161 0.183 0.150 0.167 0.153 0.170 0.162 0.179 0.186 0.189 0.186 0.219 0.225 0.239
RL - 0.0070 - 0.0070 - 0.0070 0.0072 0.0049 0.0112 0.0074 0.0398 0.0257 0.0250 0.0226

RRL - 0.0 - 0.0 - 0.0 2.9 22.5 60 85 315 267 160 465
ETP 6.53 6.48 6.45 6.30 6.51 6.27 6.41 6.41 5.23 6.45 5.51 6.33 6.33 6.36
CS 1160-129 1395-23 1299-77 2308-17 1317-177 2535-39 1623-14 1380-21 2213-32 1440-60 996-156 1210-5 2105-15 1315-5

USPS

SC 0.143 0.195 0.124 0.159 0.142 0.180 0.920 0.896 0.946 0.465 0.43 0.865 0.660 0.857
NMI 0.573 0.628 0.627 0.680 0.564 0.640 0.737 0.736 0.728 0.701 0.451 0.689 0.583 0.660
RL - 0.0019 - 0.0019 - 0.0019 0.0074 0.0039 0.0748 0.0374 0.0006 0.0451 0.0322 0.0409

RRL - 0.0 - 0.0 - 0.0 289 69.6 3836 1526 20 2274 6340 1678
ETP 3.27 3.23 3.26 3.27 3.27 3.21 3.27 3.27 3.24 3.24 3.29 3.11 3.24 3.23
CS 284-121 359-89 333-121 328-104 290-132 343-73 284-108 282-107 298-80 318-91 294-156 396-35 385-107 308-72

STL

SC 0.039 0.074 0.024 0.021 0.042 0.069 0.822 0.837 0.109 0.079 0.332 0.388 0.597 0.280
NMI 0.127 0.152 0.121 0.138 0.130 0.169 0.188 0.165 0.170 0.166 0.103 0.149 0.151 0.159
RL - 0.0179 - 0.0179 - 0.0179 0.0328 0.0362 0.0315 0.0174 0.0433 0.0409 0.0454 0.0364

RRL - 0.0 - 0.0 - 0.0 83.2 109 76.0 0.6 110 128 120 110
ETP 3.26 3.25 3.02 3.02 3.24 2.82 3.24 3.28 3.21 3.20 2.62 3.13 3.18 3.15
CS 764-312 830-287 1379-205 1373-130 945-317 1212-2 849-232 671-326 807-250 876-264 2173-121 982-46 929-232 938-181

CBird

SC -0.019 -0.021 -0.018 -0.064 -0.026 -0.062 0.248 0.152 -0.041 -0.038 0.188 0.135 0.068 0.167
NMI 0.412 0.353 0.469 0.439 0.423 0.485 0.356 0.320 0.364 0.370 0.484 0.421 0.493 0.385
RL - 0.0055 - 0.0055 - 0.0055 0.0229 0.0152 0.0066 0.0036 0.0377 0.0255 0.0237 0.0249

RRL - 0.0 - 0.0 - 0.0 316 322 20 0.0 102 364 26.7 592
ETP 6.34 5.59 6.97 6.58 6.56 7.21 5.84 5.12 5.71 5.80 7.43 6.48 7.39 6.05
CS 131-1 245-1 93-1 232-1 101-2 99-2 167-1 570-1 177-1 197-1 35-2 143-1 58-2 180-1

R-10k

SC -0.010 - -0.012 - -0.007 - - - - - 0.013 - 0.647 -
NMI 0.398 - 0.404 - 0.394 - - - - - 0.169 - 0.414 -
RL - - - - - - - - - - 0.0014 - 0.0020 -

RRL - - - - - - - - - - 40 - 100 -
ETP 5.13 - 5.15 - 5.22 - - - - - 5.47 - 5.2 -
CS 916-20 - 845-18 - 650-41 - - - - - 478-76 - 540-1 -

20NG

SC -0.021 - -0.186 - -0.103 - - - - - 0.066 - 0.199 -
NMI 0.155 - 0.167 - 0.176 - - - - - 0.018 - 0.229 -
RL - - - - - - - - - - 0.0006 - 0.0012 -

RRL - - - - - - - - - - 25▼ - 50 -
ETP 4.03 - 3.64 - 3.77 - - - - - 4.31 - 3.87 -
CS 2217-107 - 4024-52 - 4227-103 - - - - - 1142-582 - 3203-105 -

(a)
M (b) 20-closest points

Figure 6: DCAM: Final memories (left column) and the 20-closest points for each memory in
F-MNIST.

not only just good representations of the data points, they also represent the clusters. We thus always
set this latent dimension as the number of clusters. By setting this exactly the same as the number of
clusters, each latent dimension should ideally represent one specific cluster. If the latent dimensions

19

New Frontiers in Associative Memory workshop at ICLR 2025

are larger than the number of clusters, some dimensions might not align with any specific cluster,
or multiple dimensions could end up representing the same cluster. This can introduce redundancy
and result in a less efficient representation. On the other hand, if the latent dimensions are smaller
than the number of clusters, some clusters may not be adequately represented. This forces multiple
clusters to share the same dimension, making it challenging for the model to distinguish between
them accurately.

We can also consider a spectral argument (Von Luxburg, 2007) for setting m = k . Given a set of n
points (in any representation) from k ground-truth clusters, consider a graph (weighted or unweighted
and undirected) with each point as a node, and edges between points belonging to the same cluster,
and no inter-cluster edges. This graph would have k connected components, and the Laplacian
L ∈ Rn×n of this graph will have k zero eigenvalues (for example, see Von Luxburg [5, Proposition
2]). Now consider the first k eigenvectors u1, . . . , uk ∈ Rn forming the columns of the matrix
U ∈ Rn×k. Then each row zi ∈ Rk of U can serve as a representation of the point i, and the points
will be well-separated into k clusters in this representation. This is the intuition that forms the basis
of various spectral clustering algorithms.

The above implies the existence of a k-dimensional space where the points (coming from k ground-
truth clusters) are well-separated into k clusters. Thus, a latent space of k dimensions is necessary to
obtain well-separated clusters. As Euclidean clustering becomes more challenging with increasing
representation dimensionality (the representation in which the clustering is happening), the motivation
is to keep the latent space dimension as low as possible as long as we have enough dimensions to
separate the clusters. For this reason, the latent space dimensionality in most deep clustering methods
usually matches the desired number of clusters. A higher latent dimensionality will definitely help
with the reconstruction but can potentially hurt Euclidean clustering; a lower latent dimensionality
would not be sufficient to obtain k well-separated clusters. Fortunately, given the extremely expressive
modern deep learning encoder and decoders, we are able to still get quite low reconstruction loss
with a m = k dimensional latent space.

(a) RL vs Training (b) SC vs Training

Figure 7: Reconstruction loss (RL) and clustering quality (SC) for varying latent dimension (m) for
USPS (T is set to 10).

Despite the aforementioned caveats, Figure 7 illustrates the impact of varying the latent space
dimensionality m on the USPS dataset, which consists of 10 classes. The figure highlights the
trade-offs between reconstruction loss (RL) and Silhouette Coefficient (SC) for different values of m.
From the results, it is evident that setting m = 10 provides an optimal balance between RL and SC,
achieving a strong trade-off compared to other values of m. This observation further supports our
claim for matching the latent dimensionality with the number of clusters in the dataset. By doing
so, DCAM effectively captures the underlying structure of the data while maintaining compact and
well-separated clusters. This experiment underscores the importance of selecting an appropriate

20

New Frontiers in Associative Memory workshop at ICLR 2025

latent dimensionality in clustering tasks and demonstrates how DCAM leverages this alignment to
deliver meaningful and interpretable partitions.

C.5 HOW DCAM LOSS RELATES TO TRADITIONAL DEEP CLUSTERING LOSS

Here, we show how the DCAM loss L̄ in Eq. (2) is related to the loss L = Lr + γLc in Eq. (1). If
the encoder e and decoder d form a decent autoencoder (for example, if they are pretrained, as is
common practice), then for a input x ∈ S, the single sample loss can be compared as follows:

ℓr(x, e,d) ≜ ∥x− d(e(x))∥2 ≤ ∥x− d(AT
ρ (e(x)))∥2 ≜ ℓ̄(x, e,d,ρ), (3)

since AT
ρ (e(x)) will be some distortion of e(x), and thus its decoded version will generally be worse

than the decoded version of e(x). Let us now assume that the decoder d : Rm → Rd is Cd-Lipschitz
continuous. Then, considering the per-sample loss ℓ̄ in Eq. (2), and applying the triangle inequality
and the AM–GM inequality, we can show that

ℓ̄(x, e,d,ρ) = ∥x− d(AT
ρ (e(x)))∥2

≤ 2
(
∥x− d(e(x))∥2 + ∥d(e(x))− d(AT

ρ (e(x)))∥2
)

≤ 2
(
∥x− d(e(x))∥2 + C2

d∥e(x)−AT
ρ (e(x))∥2

)
= 2ℓr(x, e,d) + 2C2

dℓc(x, e,ρ), (4)

where the last inequality uses the Lipschitz continuity, and the last equality comes from the definition
of the clustering loss in the latent space with the AM dynamics operator. Summing the above
inequalities in Eqs. (3) and (4) over x ∈ S gives us Lr≤L̄≤γ1Lr+γ2Lc, where the upperbound of
L̄ is (a scaled version of) the standard deep clustering objective of the weighted combination of the
reconstruction loss Lr and the clustering loss Lc in Eq. (1).

We would like to clarify that DCAM does not impose any specific constraints on the structure of the
encoder and decoder (refer to Algorithm 1). In our discussion regarding Lipschitz continuity, our
main goal is to highlight the relationship between the novel loss of DCAM and the loss of traditional
deep clustering (Eq. (1) that consists of reconstruction and clustering losses). This comparison serves
to underscore how the novel loss is related to the better intertwining of the different components of
the deep clustering pipeline – the encoder, decoder, cluster centers. The novel DCAM loss provides
significant improvements over Eq. (1) which uses the standard loss. Also note that if it is a decoder
that we can differentiate through with auto-grad, the decoder is Lipschitz continuous. Additionally,
there exists a more general notion called the modulus of continuity, which extends beyond Lipschitz
continuity. We can substitute Lipschitz continuity with the modulus of continuity in our discussion,
maintaining the same inequality but with potentially different constants.

C.6 ADDITIONAL DETAILS ON HYPERPARAMETER SELECTION

In Figs. 8 to 12, we plot the reconstruction loss (RL) and the silhouette coefficient (SC) for each
hyperparameter configuration considered for DCAM and the baselines DCEC and DEKM for the
different vision datasets (reported in Tables 1, 3, 4, 9, and 10). We also highlight the Pareto front
for each of the dataset/method pairs, and the dotted vertical and horizontal lines denote the RL and
(1-SC) values corresponding to the 10% margin from the best RL and (1-SC). Furthermore, the
red and cyan highlighted points show the best hyperparameter configuration corresponding to the
metric reported in Table 9 and 10. These results clearly highlight how we thoroughly optimize the
hyperparameters, and how we select the final Pareto optimal performance values from the Pareto
front to be consistent and fair across all methods. These results clearly show that DCAM offers the best
clustering performance in terms of SC, as well as having low reconstruction loss. It also performs
very well on the supervised NMI metric. In fact, for NMI, DCAM has the best value in 5 out of the 8
datasets (see Table 11).

21

https://en.wikipedia.org/wiki/AM%E2%80%93GM_inequality

New Frontiers in Associative Memory workshop at ICLR 2025

(a) CAE: DCEC (b) CAE: DCAM (c) CAE: DEKM

(d) RAE: DCEC (e) RAE: DCAM (f) RAE: DEKM

Figure 8: FMNIST: Reconstruction loss and clustering quality (1-SC) for all hyperparameter
configurations for DCEC, DCAM and DEKM with CAE and RAE architectures. Lower is better for
both axes, since we plot 1-SC on the y-axis.

(a) CAE: DCEC (b) CAE: DCAM (c) CAE: DEKM

(d) RAE: DCEC (e) RAE: DCAM (f) RAE: DEKM

Figure 9: USPS: Reconstruction loss and clustering quality (1-SC) for all hyperparameter config-
urations for DCEC, DCAM and DEKM with CAE and RAE architectures. Lower is better for both
axes.

22

New Frontiers in Associative Memory workshop at ICLR 2025

(a) CAE: DCEC (b) CAE: DCAM (c) CAE: DEKM

(d) RAE: DCEC (e) RAE: DCAM (f) RAE: DEKM

Figure 10: CIFAR10: Reconstruction loss and clustering quality (1-SC) for all hyperparameter
configurations for DCEC, DCAM and DEKM with CAE and RAE architectures. Lower is better for
both axes.

(a) CAE: DCEC (b) CAE: DCAM (c) CAE: DEKM

(d) RAE: DCEC (e) RAE: DCAM (f) RAE: DEKM

Figure 11: CIFAR100: Reconstruction loss and clustering quality (1-SC) for all hyperparameter
configurations for DCEC, DCAM and DEKM with CAE and RAE architectures. Lower is better for
both axes.

23

New Frontiers in Associative Memory workshop at ICLR 2025

(a) CAE: DCEC (b) CAE: DCAM (c) CAE: DEKM

(d) RAE: DCEC (e) RAE: DCAM (f) RAE: DEKM

Figure 12: STL10: Reconstruction loss and clustering quality (1-SC) for all hyperparameter config-
urations for DCEC, DCAM and DEKM with CAE and RAE architectures. Lower is better for both
axes.

24

	Introduction
	Deep Clustering
	DCAM: Deep Clustering with AM Dynamics
	Novel Loss Function
	Energy Dynamics in Latent Space

	Empirical Evaluation
	Discussion
	Related Work
	DCAM Algorithm

	Experimental Details
	Evaluation Metrics:
	Dataset Details
	Metrics used
	Parameter settings
	Implementation details
	Hyperparameters for DCAM
	Hyperparameters for Baselines

	Detailed and Additional Experimental Results
	Pretrained losses for all architecture and all datasets
	Detailed results with various clustering quality metrics
	How interpretable are the memories of DCAM?
	Effect of latent dimensionality
	How DCAM loss relates to traditional deep clustering loss
	Additional details on hyperparameter selection

