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Abstract. Several variants of Neural Radiance Fields (NeRFs) have sig-
nificantly improved the accuracy of synthesized images and surface re-
construction of 3D scenes/objects. In all of these methods, a key char-
acteristic is that none can train the neural network with every possible
input data, specifically, every pixel and potential 3D point along the
projection rays due to scalability issues. While vanilla NeRFs uniformly
sample both the image pixels and 3D points along the projection rays,
some variants focus only on guiding the sampling of the 3D points along
the projection rays. In this paper, we leverage the implicit surface repre-
sentation of the foreground scene and model a probability density func-
tion in a 3D image projection space to achieve a more targeted sampling
of the rays toward regions of interest, resulting in improved rendering.
Additionally, a new surface reconstruction loss is proposed for improved
performance. This new loss fully explores the proposed 3D image pro-
jection space model and incorporates near-to-surface and empty space
components. By integrating our novel sampling strategy and novel loss
into current state-of-the-art neural implicit surface renderers, we achieve
more accurate and detailed 3D reconstructions and improved image ren-
dering, especially for the regions of interest in any given scene. Project
page: https://merl.com/research/highlights/ps-neus.

Keywords: Neural implicit surface renderer - Non-uniform sampler -
Probability density function - Signed distance functions

1 Introduction

Recovering the 3D structure of the scene and rendering it from new views is
valuable for numerous tasks such as Augmented Reality/Virtual Reality asset
creation, 3D reconstruction [53, 54|, environment mapping [18, 36, 41, 66], etc.
In the last few years, Neural Radiance Fields (NeRF) [26] have emerged as a
promising solution for this task. These learn a mapping from a 3D point and a
viewing direction to its color and volume density. In theory, it may be desirable
to train NeRFs on every pixel and every scene image from the training data.

*Work was partly done while interning at MERL.
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Fig. 1: Schematic of our pipeline and an example: We leverage neural implicit
representations to guide the sampling of rays during the training of the neural surface
rendering pipeline. In particular, we sample a point in the three-dimensional image
space (image coordinates + depth) (Probability-guided Sampling) to obtain the
ray (Ray Sampling) and some additional points around the surface, along the ray.
These are then passed through the Backbone Network, which is regularized using
the sampled depth (Surface Reconstruction Losses). The two figures on the right
show a 3D reconstruction of an example DTU scene (DTU122) using Neuralangelo as
a backbone, with (rightmost) and without (second from right) our sampling strategy.

However, given the large amount of data, this is infeasible, i.e., one must sample
the image pixels uniformly and the points on the projection ray.

Recent approaches like NeuS [50] and its variants [16, 21, 51, 52] leverage
neural implicit representations to achieve finer detail and higher-resolution 3D
surface reconstruction, particularly of 3D objects. These methods typically em-
ploy Signed Distance Fields (SDF) or occupancy to implicitly represent the fore-
ground surfaces. All NeuS-inspired methodologies adhere to a standardized sam-
pling strategy involving uniform sampling of pixels and corresponding projection
rays followed by hierarchical sampling of 3D points along the projection rays.

This paper argues that the full potential of neural implicit representations
has not yet been explored. While many existing methods focus solely on guiding
the sampling of 3D points along projection rays, disregarding the crucial aspect
of pixel sampling [3-5, 26], trivial solutions to pixel sampling, such as uniform
sampling, generate worse rendering quality in areas of interest in the scene due to
insufficient representation during training. This leads us to the following research
question: Can the implicit surface representation guide training rays and points
for accurate 3D reconstruction and rendering?

There are two trivial solutions to the proposed research question: (i) The more
straightforward one would be to cast a ray for every possible pixel in every camera
and check whether any volume density accumulated along the ray. This solution
is computationally expensive since one must run the model for all cameras and
all pixels. Indeed, Sun et al. [45] partially follows this idea but reduces the
sampling space by evaluating it in patches to make the training feasible. The
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pixels are still uniformly sampled inside each patch. (ii) The second approach
voxelizes the implicit surface representation and projects every possible 3D point
to every camera, which is computationally expensive. Additionally, occlusions —
which need to be factored in for view-dependent rendering — cannot be trivially
handled using such a technique. Similar ideas were followed in works such as
RegSDF [61], where the authors use the Structure from Motion (SfM) points
instead. However, this is a simplification of the trivial solution and only handles
much simpler sampling scenarios, which do not need to deal with voxelization,
view dependency, and training issues raised from dense 3D points.

Our paper introduces a novel solution for image pixel sampling. It leverages
a 3D probability density function estimated from the scene’s SDF within the
3D image space facilitated by per-camera grids. This enables efficient interpola-
tion of camera pixels and depth approximation. Our method offers a streamlined
update process, requiring only a single model run for the 3D probability den-
sity function update, thus ensuring speed and adaptability. Unlike conventional
methods relying on additional depth data, our approach constructs the sampling
space through 3D coordinate transformations and view constraints without any
additional depth supervision. Notably, our technique enhances 3D scene render-
ing across various backbones. The sampling pipeline and a mesh reconstruction
are represented in Fig. 1. Our main contributions are:

1. A probabilistic 3D orthographic image projection sampling for neural im-
plicit surface rendering that is view-dependent and feasible for training;

2. A new loss function that combines near-the-surface and empty space compo-
nents for better modeling foreground and background regions of the scene;

3. The sampling is agnostic to the implicit model, i.e., the derived extra pipeline
steps can be used with different models without changing the backbone;

4. We show that coupling our probabilistic sampling with current state-of-the-
art neural implicit representation methods (namely [21,50]) improves 3D
reconstruction and rendering in regions of interest of the scene.

2 Related Work

Neural rendering: Reconstructing 3D structures from multi-view images is a
core problem of computer vision, with approaches based on SfM [12,37,38,53] or
Simultaneous Localization and Mapping (SLAM) [6,8, 18,36,41,66]. NeRF [26]
introduces a more recent view synthesis strategy that enables dense reconstruc-
tions, using volume rendering. During training, projection rays and 3D points
are uniformly sampled from the image and any given projection ray, respectively.
Image synthesis is achieved by rendering the sampled 3D points by volume,
which gives their color and volume density values. Lately, several NeRF vari-
ants have been proposed, focusing on improving view synthesis quality [3,4,63],
improving computational performance [3,28,42], scaling up to large-scale envi-
ronments [9, 46,48, 64], dynamic scenes [1,20,22,24,31,34,47], etc.

Neural implicit volume rendering: A drawback of the volume rendering in
NeRF is that it imposes insufficient constraints for representing 3D surfaces.
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This prevents it from learning intricate 3D object details, making high-quality
reconstructions infeasible. To solve this problem, occupancy approaches [23, 25,
29, 30, 32, 35] and SDF approaches (2,7, 11,21, 44,50,51,57,58,61, 62, 65| were
proposed. In particular, NeuS [50] and VolSDF [57] use SDF as an implicit rep-
resentation for a surface and are trained from multiple views. Both outperform
NeRF-based methods, even handling scenes with occlusions. Further improve-
ment was achieved by reducing the implicit bias, in the depth estimates [65].
Another issue with NeuS is its slow training speed. NeuS2 [51] proposes an ef-
ficient parallelization and a new training strategy to address this concern. Neu-
ralangelo [21] introduces multi-resolution hash grids for surface rendering. This
approach achieves high-quality reconstruction in highly detailed scenes, with a
small cost in training efficiency. While these approaches use the learned implicit
representation for sampling on the projection rays, our work utilizes a proba-
bility density function for sampling. To further improve surface reconstruction,
other approaches use priors such as object masks [29,59], depth [60, 62|, nor-
mals [49, 60], or point clouds [10,61]. These additional inputs guide the surface
learning process, improving the reconstruction results and optimization time.
We propose a method where sampling is guided by surface estimates, enabling
rays to converge toward textured regions without the need for additional inputs.

Pixel Sampler for NeRF: The straightforward approach to sampling the rays
while training NeRFs is to uniformly sample both the pixels in the image as well
as the 3D points that lie on the corresponding projection rays, passing through
the chosen pixels [26]. Most sampling strategies in NeRF propose to improve the
3D sampling on the ray, by exploring anti-aliasing [3,5,14,19] or 3D geometry [23,
50,57]. In contrast, this paper focuses on a more effective pixel sampling strategy
for training similar to [43,45,55]. Sun et al. [45] proposes a patch sampling based
on the depth and color contrast estimates for their pixel sampling, where a pre-
trained model trained on the DTU [15] is used to obtain the initial proposals.
Neural 3D reconstruction in the Wild [43] attempts to sample only around the
surface through voxel-guided and surface-guided sampling. ActRay [55] uses a
reinforcement learning agent to reduce the number of rays by focusing on the
rays with the highest loss values. In contrast, we design a 3D view-dependent
camera probability space, derived from the implicit representation of the surface
to sample the pixel and directly gain depth information for the sampled ray. A
backbone model, upon which our sampling strategy operates, is trained from
scratch without needing additional information.

3 Notations and Background

3.1 Notations

Let a 3D point in world coordinates be given by = [r,y,2] € X C R3. For a
set of cameras C = {1,...,C}, the same point in the c'® camera, is denoted by
Z. = [Ty e, 2e) € Xe. he(+) transforms the point from the world to the camera ¢
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(see [13]). For ¢, we define a 3-dimensional image space such that
Ue €U = 9(Te) = [Te/Ze; Yo/ Zer Ze] = [te, Ve, A, (1)

where u., v, and U, (respectively) are bounded to image size and intrinsic pa-
rameters of each camera, and depth A. > 0, which is bijective to the camera
reference frame'. Using the transformation from the world to the camera coor-
dinate system h.(-) and image projection g(-) (for more detail see [13]), we define
the composition f.(-), such that

ue = fe(x) = g(he(x)). (2)

To simplify the notations, we sometimes omit the subscript ¢, for example, u =
U, and & = Z.. Finally, |-| denotes the determinant of a matrix.

3.2 Neural Implicit Surface Rendering

Consider a set of images of a specific 3D scene, captured from calibrated cameras
with known poses. A NeRF [26] creates an implicit 3D representation of the scene
from known camera positions to the images. This implicit representation allows
for a dense reconstruction of the scene, by simultaneously estimating the volume
density and color for every 3D point. A more evolved alternative is proposed in
Wang et al. [50]. The authors introduce a novel approach to estimate densities
from an SDF representation by approximating it using a logistic function:

¢s(0) = (se7°) /(1 + €7, (3)

where s is the logistic scale and o the SDF output. This conversion enables the
application of camera-free volume rendering techniques for scene reconstruction.
Using the SDF, the scene’s outer surface S is represented as the zero-level set,
defined as § = {x € R® : S(x) = 0}, where S() is the output of the SDF
network. The rendering is then computed using the SDF at a particular 3D
point. The volume density at each point along the ray is

L (Du(S() — @ (S(wisn))
“= ( ®.(S(x:) ’0>’

(4)

where ®,(+) is the sigmoid function?. The accumulated volume density is

g

w; = o T :OéiH(lfaj)a (5)

§=0
where T; is the transmittance at the point ¢ along the ray. See [50] for details.

Proof and more details given in the supplementary material.
2¢s() is the derivative of ®4(-), hence ®,(-) is the cumulative density function of
the logistic distribution.
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Fig. 2: Proposed guided-sampling: The scene is represented as a 3D grid Gx, and
characterized by a PDF p(x) computed from the SDF network and modeled by a
logistic distribution of the SDF values ¢,(S(x)). We propose to use a 3D image space
that includes depth, represented as Gy, where one can define p(u) based on p(x) as
described in Interpolation — Sec. 4.2. Then, we consider the camera viewpoint of the
scene (such as occlusions), by weighting p(u) as described in View Dependency —
Sec. 4.3. In the shown grids, color hue maps to the probability value, normalized for
each grid. A higher hue is more probable. At every training step, points are sampled
from p(u) to create ray samples & (Probabilistic Sampling — Sec. 4.4). We sample
rays uniformly to allow overall image quality and scene exploration.

Update Gx, Gu

________________________________________________

4 Proposed Approach

This work introduces a new probability-guided sampler for enhanced scene ren-
dering and 3D reconstruction, seamlessly merging with neural surface pipelines.

4.1 Method Overview

Consider a typical neural surface rendering pipeline, such as the one proposed by
NeuS [50]. An intermediate step of such methods consists of obtaining an SDF
that models the 3D structure of the foreground of a scene (see Neural Sur-
face Rendering Pipeline block in Fig. 2). In this work, we intend to utilize
the SDF for more effective sampling while training the neural volume field. In
particular, we intend to focus on the important regions of the scene, i.e. fore-
ground, when training. Additionally, we leverage the output information from
our sampling module to aid the sampling process along the rays and the train-
ing with additional surface reconstruction losses. Our method does not require
any additional information (e.g. StM points) or models. The proposed training
pipeline is depicted in Fig. 2, Probability-guided Sampler.

We start by leveraging SDF representation in Eq. 3 to define a Probability
Density Function (PDF) over the points in the 3D scene to capture the likelihood
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Fig. 3: Bird’s-eye view illustration of the Rie- Cu .
mann integral approximation of p(u): This figure . K| :
shows the 3D image space in red, the scene grid trans- .

formed to the image space in blue and how probability Y Y. 3
of u € Gu ( ) is computed. A projected scene 0 N\ é
point @ € Gyx) that lies inside the will con- BYAY O €

tribute to the computation of p(u), as shown in the Vv
equation. p(u)= Z Ne’p(Te)
oc

of it being sampled during training, denoted as p(x):

p(x) = ¢s (S(x)). (6)

Then, we explore a suitable 3D image space from p(x) for effective sampling in
the camera’s viewpoint. To compute the probability in a 3D image space, the
transformation has to be bijective and consequently invertible to account for the
change of variables. From a geometric point of view, the proposed space U is
obtained from X by transforming the projection rays, which, by definition, are
parallel to each other and perpendicular to the image space (i.e. orthographic
projection space). The new PDF is p(u) and is described in Sec. 4.2.

Next, we deal with the concerns arising from view dependency, such as oc-
clusions. Rather than sampling directly in the image from the scene’s projection
and probabilities, where awareness of the viewpoint is limited, we weigh the
camera’s PDF p(u) using a volume rendering strategy. This allows for seamless
integration of view dependency constraints and provides the foundation for the
sampling process. In Sec. 4.3, this PDF is defined as p(u).

The final step of our formulation consists of sampling 3D points on U using
p(uw). The proposed method follows a conditional sampling strategy detailed
in Sec. 4.4. Sec. 4.5 describes how the sampled w is used in the neural surface
pipeline and details the proposed surface regularization losses designed to guide
the training process by considering the sampled depth.

4.2 Interpolation

We aim to transform the density estimate p(x), for a point £ € X to the 3-
dimensional image space, defined in Eq. 1, which is denoted by p(v), where
v € U. This transform is given by

of ! (v)

p@ =p( )| L5 = @) =@, @

where v = f(x) and n the depth value of v.

To simplify and have a more compact representation, we discretize the 3D
scene space x, such that * € Gy C X, and the 3D image space of u such that
u € Gy C U, with Gy and Gy denoting a discretized grid on X and U. Note
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that v is not represented in the grid of the 3-dimensional image space Gy;. In-
stead, v is discretized according to the scene grid Gy after applying the camera
transformation f(-) in Eq. 2, which we define as Gy x). However, the probability
estimates p(u) in Gy cannot be easily interpolated from Eq. 7 due to the re-
spective space deformation resulting from the discretization and transformation.
Therefore, we approximate p(u) as the Riemann integral of all transformed cells
of Gy in u. We start by making sure Gy is discretized ﬁnelyg. For each u € Gy,
the probability estimate is the sum of the probability densities of all points G¢(x)
that lie inside the cell, as defined in Eq. 7. A depiction of the interpolation of
p(u) is shown in Fig. 3, where the selected transformed cells have an orange fill.
Further details in supplementary material.

4.3 View Dependency

Since p(u) does not account for occlusions created by the camera’s perspec-
tive projection, sampling a projection ray based on the object’s geometry alone
can result in too many occluded samples and, consequently, loss of training ef-
ficiency. To address this issue, we assume that the volume density o per cell is
p(u) as a naive solution discussed in Wang et al. [50]*. The transmittance T
can then be evaluated in the 3-dimensional image space by accumulating the
radiance weighted by the volume densities for cells along the ray, correspond-
ing to the image coordinates [u,v]. Considering the grid G, the transmittance
T; at the depth \; corresponding to the i-th cell along [u,v] can be defined as
T, =e” Z;le([um,Ak]T)’ where the k'"-cell is sorted by depth. Then, the view-
dependent probability p(u;) for u; = [u,v, \;]7 is defined as the transmittance
weighted by the volume density accumulated along a ray, as shown in Fig. 2,

Blus) = 07Ty = plug)e™ Zheo P T, (8)

4.4 Probability-guided Sampling

While in previous neural rendering pipelines, pixels are sampled in the image
uniformly, in this work, we combine the two sampling strategies: (i) sampling
using the view-dependent space PDF p(u), and (ii) sampling uniformly on the
image. The former is better suited for the foreground and the latter for the
background, allowing us to regulate the proportion of samples around the image.

Starting with the view-dependent space sampling, we use conditional proba-
bilities, which extend ray importance sampling in [33] to the 3-dimensional space

3To make sure that Gx is small enough, the scene Gy is partitioned by a factor F,
where each cell is divided at each axis into F equal parts, resulting in a total of F?
equal cells from the 3 axes. The probability of the newly partitioned cell is the original
cell probability divided by F? (see supplementary material for more details).

4Note that this density representation along the ray causes a bias in the depth
estimate [50,65]. Nonetheless, this formulation remains occlusion-aware.
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U. The first marginal density function is then defined as

5W)=EJRAg;ﬁWu%AF% o)

for all (v, A) cells of u, where R, and R) are resolutions of the grid Gy, along the
axes of v and . Then, the first conditional distribution is computed as

p(v, A|u) = == 10
(v, ) = £ (10)
The second marginal applied to v can then be expressed as

mw:%mem (11)
A

for all A cells. Finally, the second conditional distribution is then defined as

- p(v, Alu)
p(A|u,v) = ——=. 12
() = 2l (12
With the marginals and conditionals defined, we sample u = [u, v, X] elU

in the 3-dimensional image space, to obtain the 3D projection ray and image
pixels. We start by sampling u from the first marginal, Eq. 9, using inverse
transform sampling [27]. Then, we approximate the second marginal p(v|@) from
the samples u using bilinear interpolation. Following the same inverse sampling
strategy, v is sampled according to p(v|u). Finally, using trilinear interpolation,
we approximate the second conditional p(A|w, @), with @ and v, and sample A
When sampling uniformly along the rays during training and evaluation, we
interpolate the second conditional, Eq. 12, with given values for @ and v, and
sample A directly. A representation of the sampled output is depicted in Fig. 2.

4.5 Surface Reconstruction Losses

The input to the rendering network (irrespective of what backbone is used) is
the 3D points sampled along the rays from the sampled pixel obtained from .
In addition to these obtained by following the sampling strategy of the backbone
network, we provide additional 3D points along the ray near the sampled depth A
for improved rendering of such regions, keeping the same sampling budget. This
is accomplished by drawing samples from a Gaussian distribution ~ N (5\, %),
where the variance is determined by the normal approximation of the logistic
distribution [40], with the mean being the sampled .

In addition to each backbone, we introduce losses for points near the surface
(near zero-level set), points within the empty ray space, and points belonging to
background rays. Consider M projection rays and N, foreground points sampled
along those rays. The proposed near-surface loss accounts for sampled points
within 99.7% of the possible near-surface samples during ray sampling, i.e.,
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points for the m-th ray, where m € {1,..., M}, satisfying Nxear = {f(x) €U :

f(x) € [(u,v, X — 3%), (u,v, A+ 3\/7%5)]}7 and is given by

LN = 3 [S(aiw, (13)

7;EJ\/'Near

where S(-) is the SDF value, and w; represents the volume density accumulated
along a ray of the point i, given by Eq. 5.

For points in the empty ray space, i.e., the complement set of Myear, denoted
as NMempty, we introduce a loss to encourage small SDF values and exploration:

Ly = 3 [(S(xy) — wy)?, (14)

JENEmpty

where ¢ is a small value. We consider view dependency in both losses by incor-
porating the accumulated volume densities, w,, where a € {i,j}.

Finally, for rays that do not intersect foreground surfaces, i.e., if the sampled
depth ) is outside of the scene’s boundary, the following background loss ensures
that the importance of accurately estimating the scene geometry decreases as
one moves farther from the surface:

Nfg
LBe = Zeiﬁls(mi)‘wk. (15)
k=1

All losses are averaged by over M rays. The total surface loss is computed as
LS = Xy LNear 1 )\, (LEmpty 1 [,B8) This surface loss is appropriately weighted
and added to the existing losses for each backbone.

5 Experiments

5.1 Experimental Setup

We use NeuS [50] and Neuralangelo [21] as backbones to evaluate the effec-
tiveness of our proposed approach. Specifically, we use Neuralangelo’s official
implementation® with the default settings and implemented NeuS within Neu-
ralangelo’s framework. Also, we use the default settings for both models when
evaluating the proposed probabilistic sampling. With respect to resolutions of
the scene space and camera spaces, we use 128 for the 3 dimensions of Gy, and
R, = R, =64 and R) = 128, for the 3D image space G;;. We set \; = Ay = 0.5.
We use the scene scale and centers provided with the dataset to define each scene
boundary. For each camera, we utilize the image corners to obtain &/ boundaries.
The depth boundary is computed by shooting a ray from the central image pixel
and computing where the ray hits the scene’s boundaries. During training, we
update the 3D image space every 2500 and 5000 iterations for Neuralangelo

Shttps://github.com/NVlabs /neuralangelo
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(a) NeuS (b) NeuS + Ours (c¢) Neuralangelo

Fig.4: DTU scan 37: When our sampling and surface reconstruction losses are in-
cluded in NeuS and Neuralangelo backbones, we get a sharper 3D reconstruction of
the foreground objects. Our approach also removes the hole obtained by Neuralangelo.

(a) Neuralangelo (b) Neuralangelo + Ours

Fig.5: DTU scans 118 and 114: We can extract more detailed meshes with our
sampler and losses. The synthesized normal images are less noisy, with sharper edges
in both scans, leading to better reconstruction. Image quality remains similar.

and NeuS, respectively. For a fair comparison, we use the same number of rays
and ray points as the baselines. We initialize the camera grids as a sphere [59],
facilitating the initial scene exploration. No depth ground-truth is used to su-
pervise or evaluate the model. At the start of training, we set 20% of the rays
to be sampled uniformly in the image. As training progresses, the percentage
increases to 40%, 60%, and 80%. In the rendering pipeline, we sample 32 points
around the sampled depth, as described in Sec. 4.5. We train all backbones with
their default losses, with L5 being assigned a weight of 500. We train and test
all models in an A40 GPU using 10 CPU cores.

Datasets: We use DTU [15], as the primary dataset, which has 15 object-focused
sequences in a controlled environment, with object masks available to evaluate
intricate details. Each DTU scan has 49 or 64 views each. We also evaluate
more diverse sequences in BMVS [56] dataset, where we choose 5 object-centric
sequences and 4 large-scale sequences from Tanks and Temples (TNT) [17]. The
last two datasets have around 200 images in each sequence.

Evaluation Metrics: For image synthesis, we use the Peak Signal-to-Noise
Ratio (PSNR). Following the evaluation protocols of prior work, we use Neural-
Warp’s evaluation methodology [7] for 3D reconstruction and report the Chamfer
distance [15] in DTU and F1-score [17] in TNT. Note that we evaluate the models
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(a) Neuralangelo (b) Neuralangelo 4+ Ours

Fig. 6: BMVS sequence "Sphere": We observe that Neuralangelo + Ours get a sig-
nificantly more complete 3D surface reconstruction. Also, our sampling better captures
small and intricate regions, such as the small hole highlighted in the object foreground.

i e
)Vi . Pt
LaTEig MY a S

(a) NeuS (b) NeuS + Ours

o

Fig.7: BMVS sequence "Bandstand": Our sampling and surface reconstruction
losses have clear advantages. While NeuS fails to capture the foreground surfaces, the
proposed sampling obtains a reasonable 3D structure and high-quality images.

with object masks, when available, to measure the effectiveness of reconstructing
the foreground. However, we do not use them during training.

Baselines: Our primary goal is to evaluate the impact of the probabilistic guided
ray sampling by comparing it against approaches that do not use it. Towards this
end, the main baselines are NeuS [50]° and Neuralangelo [21], where we augment
the proposed sampling strategy. For assessing the effectiveness of image synthe-
sis and reconstruction quantitatively, we compare against existing literature:
VoISDF [57], RegSDF [61], NeuralWarp [7], and HF-NeuS [52].

5.2 Results

We discuss qualitative and quantitative results on the proposed sampler. We also
comment on the ablation study and the computational overhead.

Qualitative results: We show a qualitative comparison of the DTU and BMVS
datasets. When observing the 3D reconstruction, the proposed approach pre-
serves finer details, has fewer artifacts, increased completeness, and fewer holes

S0ur implementation within Neuralangelo framework.
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Fig. 8: Reconstruction Error and Variance le—3
over training. Our sampling converges faster 2.5{ | n
to a better 3D representation (solid line), while %2 ol 1 — Neuralangelo + Ours | g
significantly reducing the variance of the logistic @ Neuralangelo 0_5%
output density (dashed). 15 \~\ o =

0 100k 200k 300k 400k 500k
Iteration

Table 1: Quantitative results on DTU [15]. We highlight the best result for each
backbone method with and without the proposed sampler. T Requires SfM points.

24 37 40 55 63 65 69 8 97 105 106 110 114 118 122 |Mean

NeRF [26] 26.24 25.74 26.79 27.57 31.96 31.50 29.58 32.78 28.35 32.08 33.49 31.54 31.00 35.59 35.51 | 30.65

 VoISDF [57] 26.28 25.61 26.55 26.76 31.57 31.50 29.38 33.23 28.03 32.13 33.16 31.49 30.33 34.90 34.75 | 30.38

£ RegSDF' [61] 24.78 23.06 23.47 22.21 28.57 25.53 21.81 28.89 26.81 27.91 24.71 25.13 26.84 21.67 28.25| 25.31

« & NeuS [50] 23.85 27.63 27.16 29.4 3271 33.1 30.58 34.25 29.97 33.69 3534 32.81 31.96 36.72 37 |31.74

nzﬁ 5 NeuS + Ours 28.28 28.1 28.16 24.71 33.1 33.97 29.59 33.25 30.35 33.61 35.66 32.97 32.29 37.15 35.56 | 31.78

g Newralangelo [21] ~ 30.64 27.78 3270 34.18 3515 35.89 31.47 36.82 30.13 35.92 36.61 32.60 3120 38.41 38.05 33.84

Neuralangelo + Ours 33.73 30.36 33.55 34.06 35.22 34.64 32.49 33.2 31.93 34.17 37.64 35.3 34.01 38.04 37.87|34.41

~ Neus [50] 28.93 28.29 27.53 30.57 36.48 36.48 31.83 40.59 31.26 37.19 36.87 33.9 32.65 39.63 40.88 | 34.21

£ NeuS + Ours 28.98 29.22 28.66 25.22 37.24 38.73 30.77 42.47 32.34 37.5 37.49 34.34 33.11 40.84 38.45 | 34.36

§ Newralangelo [21]  35.21 31.76 35.12 38.16 41.17 40.46 34.39 44.22 34.09 408 40.8 37.24 34.92 42.36 43.56 | 38.28

Neuralangelo + Ours 35.13 32.86 35.2 38.51 41.41 41 34.51 44.93 35.64 41.13 40.95 37.78 35.26 43.3 44.59|38.81

NeRF [26] 1.90 1.60 1.85 0.58 228 127 147 167 205 107 088 253 1.06 115 096 | 1.49

~ VoISDF [57] 114 126 081 049 125 070 0.72 129 118 070 0.66 1.08 042 0.61 0.55 | 0.86

£ HF-NeuS [52] 076 1.32 070 039 1.06 063 063 115 112 080 052 1.22 033 049 0.50 | 0.77

£ RegSDF' [61] 0.60 141 064 043 134 062 060 090 092 1.02 060 059 030 041 039 | 0.72

% NeuralWarp [7] 049 071 038 038 0.79 081 082 1.20 1.06 0.68 0.66 0.74 041 0.63 0.51 | 0.68

T NeuS [50] 077 078 582 050 139 1.76 1.06 4.01 147 077 0.64 129 034 056 0.53 | 1.30

£ NeuS + Ours 1.08 0.74 1.27 243 105 1.05 166 132 21 079 06 107 032 04 208 ]| 12
%)

Neuralangelo [21] 0.37 072 035 035 087 0.54 0.53 1.29 097 073 0.47 0.74 032 041 043 | 0.61

Neuralangelo + Ours 0.39 0.68 0.32 0.33 0.87 058 0.53 13 0.93 070 0.5 0.74 0.31 0.37 0.38 | 0.6

as illustrated in Figs. 1 and 4 to 6. Even in complex scenes, the sampler reduces
failure cases, such as in Fig. 7. Guiding the pixel sampling towards surface areas
enhances 3D consistency and subsequently improves sharpness while displaying
faster convergence and lower model variance as shown in Fig. 8. See supplemen-
tary material for more qualitative results, including on TNT.

Quantitative results: For image synthesis on the DTU and the TNT datasets,
we assess the proposed method through two distinct analyses: evaluating the
image quality and examining the quality in masked regions, given our focus on
sampling areas with surfaces. Results are shown in Tab. 1. We observe that
adding the proposed sampling improves image quality, outperforming NeuS and
Neuralangelo by a mean of 0.04dB and 0.57dB on PSNR, respectively. Moreover,
when only regions of interest are evaluated, we observe a higher improvement
over NeuS (0.15dB) and about the same gain for Neuralangelo. 3D reconstruction
performance on the DTU and TNT datasets is shown in Tabs. 1 and 2. We notice
that even while relying on SfM priors, RegSDF achieves worse reconstruction
results while we improve against the backbones. In particular, we achieve state-
of-the-art performance with our sampling strategy coupled with Neuralangelo.

Ablation study: We ablate our sampling strategy using DTU. We follow pre-
vious methods and use a subset of DTU (24, 65, 97, and 122) to ablate the
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Table 3: Ablations: L—surface loss weight;
VD-view dependency; RU-uniform ray sam-
pling; FS—fixed s probability update.

Table 2: Quantative results
for TNT: Small improvement
in 3D from a decrease in image

quality. Ablation L VD RU FS PSNR{ Chamfer |
A1 o v X X 35.44 0.82
PSNR 1 F11 A2 50 X X 3524 0.57
Neuralangelo 25.99  0.58 A3 500 X X X 34.91 1.04
Neuralangelo + Ours 25.65 0.59 A4 500 v X 34.82 0.58
A5 500 v X/ 35.22 0.58

method. Results are shown in Tab. 3. The ablations A1vsA2 show that surface
losses substantially improve 3D reconstruction while slightly decreasing image
quality. Ablations A2vsA3 assess the impact of view dependency, where fo-
cusing the sampling on occluded areas introduces uncertainty, diminishing both
image quality and 3D reconstruction accuracy. A2vsA4 illustrates the impact
of additional ray samples near the surface. These samples improve image quality
but have minimal effect on 3D reconstruction. Ablations A2vsA5 examines a
constant value for s (logistic scale in Eq. 3) in probability updates. When using
a constant low-value for s, the 3D image space sampling produces high-variance
samples, preventing refinement and introducing uncertainty in the model.

Computational overhead: Evaluation overhead is insignificant. The 3D recon-
struction does not change since grid points are directly evaluated in the implicit
surface network. For image synthesis, only the A-axis is sampled since v and v
are known (all pixels in the image). The overhead during evaluation is negligi-
ble (average +0.7%) when compared between Neuralangelo with and without
our sampling in DTU. Training overhead comes from interpolating the camera
weights and interpolating and sampling each axis for all cameras in the batch,
which amounts to an additional 10% of training time with our implementation.

6 Discussion

In this work, we explore the scene’s implicit surface representation to define a
novel sampling strategy for training implicit neural surface fields more effectively.
We propose a view-dependent and occlusion-aware 3D orthographic projection
space, where we conditionally sample the image coordinates and depth for each
camera. We utilize this depth to regularize the scene’s surface during training.
Our strategy can be coupled with typical image sampling on neural surface
pipelines and does not depend on specific backbones. Experiments show that
our proposed sampling strategy improves both image synthesis and 3D recon-
struction, preserving the foreground details of the scene.

Future work involves extending our approach to incorporate other sources of
information, such as semantics or point clouds, to reduce in-ray uncertainties.



A Probability-guided Sampler for Neural Implicit Surface Rendering 15

Acknowledgments

Pais and Piedade were partially supported by LARSyS, Portuguese “Fundagao
para a Ciéncia e a Tecnologia” (FCT) funding (DOI: 10.54499/LA/P/0083/2020,
10.54499/UIDP/50009/2020, and 10.54499/UIDB/50009/2020). Pais was also
partially supported by FCT grant PD/BD/150630/2020.

References

10.

11.

12.

13.

14.

. Attal, B., Huang, J.B., Richardt, C., Zollhoefer, M., Kopf, J., O’Toole, M., Kim, C.:

Hyperreel: High-fidelity 6-dof video with ray-conditioned sampling. In: IEEE/CVF
Conf. Computer Vision and Pattern Recognition (CVPR). pp. 1661016620 (2023)
Azinovi¢, D., Martin-Brualla, R., Goldman, D.B., Niefsner, M., Thies, J.: Neural
rgb-d surface reconstruction. In: IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR). pp. 6290-6301 (2022)

Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In: IEEE/CVF Int’l Conf. Computer Vision (ICCV). pp. 5855-5864 (2021)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In: IEEE/CVF Conf. Computer
Vision and Pattern Recognition (CVPR). pp. 5470-5479 (2022)

Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-nerf:
Anti-aliased grid-based neural radiance fields. IEEE/CVF Conf. Computer Vision
and Pattern Recognition (CVPR) (2023)

Campos, C., Elvira, R., Rodriguez, J.J.G., Montiel, J.M., Tardés, J.D.: Orb-slam3:
An accurate open-source library for visual, visual-inertial, and multimap slam.
IEEE Trans. Robotics (T-RO) 37(6), 1874-1890 (2021)

Darmon, F., Bascle, B., Devaux, J.C., Monasse, P., Aubry, M.: Improving neural
implicit surfaces geometry with patch warping. In: IEEE/CVF Conf. Computer
Vision and Pattern Recognition (CVPR). pp. 6260-6269 (2022)

Davison: Real-time simultaneous localisation and mapping with a single camera.
In: IEEE Int’l Conf. Computer Vision (ICCV). pp. 1403-1410 (2003)

Deng, J., Wu, Q., Chen, X., Xia, S., Sun, Z., Liu, G., Yu, W., Pei, L.: Nerf-
loam: Neural implicit representation for large-scale incremental lidar odometry
and mapping. In: IEEE/CVF Int’l Conf. Computer Vision (ICCV). pp. 8218-8227
(2023)

Fu, Q., Xu, Q., Ong, Y.S., Tao, W.: Geo-neus: Geometry-consistent neural implicit
surfaces learning for multi-view reconstruction. Advances in Neural Information
Processing Systems (NeurIPS) 35, 3403-3416 (2022)

Gaur, A., Pais, G.D., Miraldo, P.: Oriented-grid encoder for 3d implicit represen-
tations. In: Int’l Conf. 3D Vision (3DV) (2024)

Geppert, M., Larsson, V., Speciale, P., Schénberger, J.L., Pollefeys, M.: Privacy
preserving structure-from-motion. In: European Conf. Computer Vision (ECCV).
pp- 333-350 (2020)

Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2 edn. (2004)

Hu, W., Wang, Y., Ma, L., Yang, B., Gao, L., Liu, X., Ma, Y.: Tri-miprf: Tri-mip
representation for efficient anti-aliasing neural radiance fields. In: IEEE/CVF Int’]
Conf. Computer Vision (ICCV). pp. 19774-19783 (2023)



16

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

G. D. Pais, V. Piedade, M. Chatterjee, M. Greiff, and P. Miraldo

Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanas, H.: Large scale multi-view
stereopsis evaluation. In: IEEE Conf. Computer Vision and Pattern Recognition
(CVPR). pp. 406-413 (2014)

Johnson, E.; Habermann, M., Shimada, S., Golyanik, V., Theobalt, C.: Unbiased
4d: Monocular 4d reconstruction with a neural deformation model. In: IEEE/CVF
Conf. Computer Vision and Pattern Recognition (CVPR). pp. 6597-6606 (2023)
Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmark-
ing large-scale scene reconstruction. ACM Transactions on Graphics (TOG) 36(4)
(2017)

Kong, X., Liu, S., Taher, M., Davison, A.J.: vmap: Vectorised object mapping for
neural field slam. In: IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR). pp. 952-961 (2023)

Kurz, A., Neff, T., Lv, Z., Zollhtfer, M., Steinberger, M.: Adanerf: Adaptive sam-
pling for real-time rendering of neural radiance fields. In: European Conf. Computer
Vision (ECCV). pp. 254-270 (2022)

Li, T., Slavcheva, M., Zollhofer, M., Green, S., Lassner, C., Kim, C., Schmidt, T.,
Lovegrove, S., Goesele, M., Newcombe, R., Lv, Z.: Neural 3d video synthesis from
multi-view video. In: IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR). pp. 5521-5531 (2022)

Li, Z., Miller, T., Evans, A., Taylor, R.H., Unberath, M., Liu, M.Y., Lin, C.H.:
Neuralangelo: High-fidelity neural surface reconstruction. In: IEEE/CVF Conf.
Computer Vision and Pattern Recognition (CVPR). pp. 8456-8465 (2023)

Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time
view synthesis of dynamic scenes. In: IEEE/CVF Conf. Computer Vision and Pat-
tern Recognition (CVPR). pp. 6498-6508 (2021)

Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields.
Advances in Neural Information Processing Systems (NeurIPS) 33, 15651-15663
(2020)

Liu, X., Tai, Y.w., Tang, C.K., Miraldo, P., Lohit, S., Chatterjee, M.: Gear-nerf:
Free-viewpoint rendering and tracking with motion-aware spatio-temporal sam-
pling. In: IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR)
(2024)

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy net-
works: Learning 3d reconstruction in function space. In: IEEE/CVF Conf. Com-
puter Vision and Pattern Recognition (CVPR). pp. 44604470 (2019)

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Eu-
ropean Conf. Computer Vision (ECCV) (2020)

Mosegaard, K., Tarantola, A.: Monte carlo sampling of solutions to inverse prob-
lems. Journal of Geophysical Research: Solid Earth 100(B7), 12431-12447 (1995)
Miiller, T, Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with
a multiresolution hash encoding. ACM Transactions on Graphics (TOG) 41(4), 1-
15 (2022)

Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumet-
ric rendering: Learning implicit 3d representations without 3d supervision. In:
IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR) (2020)
Oechsle, M., Peng, S., Geiger, A.: Unisurf: Unifying neural implicit surfaces and
radiance fields for multi-view reconstruction. In: IEEE/CVF Int’l Conf. Computer
Vision (ICCV). pp. 5589-5599 (2021)



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

A Probability-guided Sampler for Neural Implicit Surface Rendering 17

Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Nerfies: Deformable neural radiance fields. In: IEEE/CVF Int’] Conf.
Computer Vision (ICCV). pp. 5865-5874 (2021)

Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional
occupancy networks. In: European Conf. Computer Vision (ECCV). pp. 523-540
(2020)

Pharr, M., Jakob, W., Humphreys, G.: Physically based rendering: From theory
to implementation. MIT Press (2023)

Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural radi-
ance fields for dynamic scenes. In: IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR). pp. 10318-10327 (2021)

Saito, S., Simon, T., Saragih, J., Joo, H.: Pifuhd: Multi-level pixel-aligned implicit
function for high-resolution 3d human digitization. In: IEEE/CVF Conf. Computer
Vision and Pattern Recognition (CVPR). pp. 84-93 (2020)

Sandstrom, E., Li, Y., Van Gool, L., Oswald, M.R.: Point-slam: Dense neural point
cloud-based slam. In: IEEE/CVF Int’] Conf. Computer Vision (ICCV). pp. 18433—
18444 (2023)

Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: IEEE Conf.
Computer Vision and Pattern Recognition (CVPR) (2016)

Schonberger, J.L., Zheng, E., Frahm, J.M., Pollefeys, M.: Pixelwise view selection
for unstructured multi-view stereo. In: European Conf. Computer Vision (ECCV).
pp- 501-518 (2016)

Shen, J., Agudo, A., Moreno-Noguer, F., Ruiz, A.: Conditional-flow nerf: Accurate
3d modelling with reliable uncertainty quantification. In: European Conf. Com-
puter Vision (ECCV). pp. 540-557 (2022)

Stefanski, L.A.: A normal scale mixture representation of the logistic distribution.
Statistics & Probability Letters 11(1), 69-70 (1991)

Sucar, E., Liu, S., Ortiz, J., Davison, A.J.: imap: Implicit mapping and positioning
in real-time. In: IEEE/CVF Int’l Conf. Computer Vision (ICCV). pp. 6229-6238
(2021)

Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In: IEEE/CVF Conf. Computer Vision
and Pattern Recognition (CVPR). pp. 5459-5469 (2022)

Sun, J., Chen, X., Wang, Q., Li, Z., Averbuch-Elor, H., Zhou, X., Snavely, N.:
Neural 3d reconstruction in the wild. In: ACM SIGGRAPH (2022)

Sun, J., Xie, Y., Chen, L., Zhou, X., Bao, H.: Neuralrecon: Real-time coherent 3d
reconstruction from monocular video. In: IEEE/CVF Conf. Computer Vision and
Pattern Recognition (CVPR). pp. 15598-15607 (2021)

Sun, S., Liu, M., Fan, Z., Jiao, Q., Liu, Y., Dong, L., Kong, L.: Efficient ray
sampling for radiance fields reconstruction. Computers & Graphics 118, 48-59
(2024)

Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P.,
Barron, J.T., Kretzschmar, H.: Block-nerf: Scalable large scene neural view syn-
thesis. In: IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR).
pp. 8248-8258 (2022)

Tretschk, E., Tewari, A., Golyanik, V., Zollhofer, M., Lassner, C., Theobalt, C.:
Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dy-
namic scene from monocular video. In: IEEE/CVF Int’l Conf. Computer Vision
(ICCV). pp. 12959-12970 (2021)



18

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

G. D. Pais, V. Piedade, M. Chatterjee, M. Greiff, and P. Miraldo

Turki, H., Ramanan, D., Satyanarayanan, M.: Mega-nerf: Scalable construction of
large-scale nerfs for virtual fly-throughs. In: IEEE/CVF Conf. Computer Vision
and Pattern Recognition (CVPR). pp. 12922-12931 (2022)

Wang, J., Wang, P., Long, X., Theobalt, C., Komura, T., Liu, L., Wang, W.:
Neuris: Neural reconstruction of indoor scenes using normal priors. In: European
Conf. Computer Vision (ECCV). pp. 139-155 (2022)

Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. In:
Advances in Neural Information Processing Systems (NeurIPS) (2021)

Wang, Y., Han, Q., Habermann, M., Daniilidis, K., Theobalt, C., Liu, L.:
Neus2: Fast learning of neural implicit surfaces for multi-view reconstruction. In:
IEEE/CVF Int’l Conf. Computer Vision (ICCV). pp. 3295-3306 (2023)

Wang, Y., Skorokhodov, 1., Wonka, P.: Hf-neus: Improved surface reconstruction
using high-frequency details. Advances in Neural Information Processing Systems
(NeurIPS) 35, 1966-1978 (2022)

Wei, X., Zhang, Y., Li, Z., Fu, Y., Xue, X.: Deepsfm: Structure from motion via
deep bundle adjustment. In: European Conf. Computer Vision (ECCV). pp. 230-
247 (2020)

Wen, B., Tremblay, J., Blukis, V., Tyree, S., Miiller, T., Evans, A., Fox, D., Kautz,
J., Birchfield, S.: Bundlesdf: Neural 6-dof tracking and 3d reconstruction of un-
known objects. In: IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR). pp. 606-617 (2023)

Wu, J., Liu, L., Tan, Y., Jia, Q., Zhang, H., Zhang, X.: Actray: Online active ray
sampling for radiance fields. In: ACM SIGGRAPH Asia. pp. 1-10 (2023)

Yao, Y., Luo, Z., Li, S., Zhang, J., Ren, Y., Zhou, L., Fang, T., Quan, L.:
Blendedmvs: A large-scale dataset for generalized multi-view stereo networks. In:
IEEE/CVF Conf. Computer Vision and Pattern Recognition (CVPR). pp. 1790
1799 (2020)

Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. Advances in Neural Information Processing Systems (NeurIPS) 34, 4805—
4815 (2021)

Yariv, L., Hedman, P., Reiser, C., Verbin, D., Srinivasan, P.P., Szeliski, R., Barron,
J.T., Mildenhall, B.: Bakedsdf: Meshing neural sdfs for real-time view synthesis.
In: ACM SIGGRAPH (2023)

Yariv, L., Kasten, Y., Moran, D., Galun, M., Atzmon, M., Ronen, B., Lipman, Y.:
Multiview neural surface reconstruction by disentangling geometry and appear-
ance. Advances in Neural Information Processing Systems (NeurIPS) 33, 2492-
2502 (2020)

Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: Monosdf: Exploring monoc-
ular geometric cues for neural implicit surface reconstruction. Advances in Neural
Information Processing Systems (NeurIPS) 35, 25018-25032 (2022)

Zhang, J., Yao, Y., Li, S., Fang, T., McKinnon, D., Tsin, Y., Quan, L.: Critical
regularizations for neural surface reconstruction in the wild. In: IEEE/CVF Conf.
Computer Vision and Pattern Recognition (CVPR). pp. 6270-6279 (2022)
Zhang, J., Yao, Y., Quan, L.: Learning signed distance field for multi-view surface
reconstruction. In: IEEE/CVF Int’l Conf. Computer Vision (ICCV). pp. 6525-6534
(2021)

Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and improving
neural radiance fields. arXiv:2010.07492 (2020)



64.

65.

66.

A Probability-guided Sampler for Neural Implicit Surface Rendering 19

Zhang, X., Bi, S., Sunkavalli, K., Su, H., Xu, Z.: Nerfusion: Fusing radiance fields
for large-scale scene reconstruction. In: IEEE/CVF Conf. Computer Vision and
Pattern Recognition (CVPR). pp. 5449-5458 (2022)

Zhang, Y., Hu, Z., Wu, H., Zhao, M., Li, L., Zou, Z., Fan, C.: Towards unbiased
volume rendering of neural implicit surfaces with geometry priors. In: IEEE/CVF
Conf. Computer Vision and Pattern Recognition (CVPR). pp. 4359-4368 (2023)
Zhu, Z., Peng, S., Larsson, V., Xu, W., Bao, H., Cui, Z., Oswald, M.R., Pollefeys,
M.: Nice-slam: Neural implicit scalable encoding for slam. In: IEEE/CVF Conf.
Computer Vision and Pattern Recognition (CVPR). pp. 12786-12796 (2022)



	A Probability-guided Sampler  for Neural Implicit Surface Rendering

