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ABSTRACT

Using generative models for protein design is gaining interest for their potential scientific
impact. However, biological processes are mediated by many modalities, and simulta-
neous generating multiple biological modalities is a continued challenge. We propose
PLAID (Protein Latent Induced Diffusion), whereby multimodal biological generation
is achieved by learning and sampling from the latent space of a predictor from a more
abundant data modality (e.g. sequence) to a less abundant data modality (e.g. crystallized
structure). Specifically, we examine the all-atom structure generation setting, which re-
quires producing both the 3D structure and 1D sequence, to specify how to place sidechain
atoms that are critcial to function. Crucially, since PLAID only requires sequence inputs
to obtain the latent representation during training, it allows us to use sequence databases
when training the generative model, thus augmenting the sampleable data distribution by
102× to 104× compared to experimental structure databases. Using sequence-only training
further unlocks more annotations that can be used to conditioning model generation. As
a demonstration, we use two conditioning variables: 2219 function keywords from Gene
Ontology, and 3617 organisms across the tree of life. Despite not receiving structure inputs
during training, model generations nonetheless exhibit strong performance on structure
quality, diversity, novelty, and cross-modal consistency metrics. Analysis of function-
conditioned samples show that generated structures preserve non-adjacent catalytic residues
at active sites, and learn the hydrophobicity pattern of transmembrane proteins, while
exhibiting overall sequence diversity. Model weights and code are publicly accessible at
[redacted].

1 INTRODUCTION

Figure 1: Drawn-to-scale size
comparison of dataets. Com-
pared to structural databases, se-
quence databases offer far more
comprehensive coverage of the
natural protein space than struc-
ture databases.

Generative protein models propose designs and can accelerate innovation
in bioengineering. Many protein functions are mediated by their struc-
ture, including the identity, placement, and biophysical properties of both
sidechain and backbone atoms, known as the all-atom structure. However,
to know which sidechain atoms to place, one must first know the sequence;
all-atom structure generation thus can be seen as a multimodal problem
that requires simultaneous generation of sequence and structure.

While generative modeling for protein structures has seen rapid recent
progress, important challenges remain: (1) Existing protein structure
and sequence generation methods often treat sequence and structure as
separate modalities; structure-generation methods often only provide
backbone atoms. (2) Methods that do address all-atom design often require
alternating between folding and inverse-folding steps using an extraneous
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Figure 2: (A) Using the PLAID paradigm to sample from the latent space of ESMFold unconditionally
generates high quality all-atom structure and sequence despite using only sequence input to train the
generative model. (B) Since sequence-only databases has more annotations, we can compositionally condition
by function and expression organism. Function-conditioned proteins can preserve known catalytic
residues. An example is shown for generating human kinases; generations exhibit the DGF catalytic motif,
and the global N-terminal and C-terminal lobes characteristic of human MAP kinases [1], while sharing only
48% global sequence identity to the generation. Generated samples are classified as being in active kinase
conformation by the Kincore predictor [2].

prediction model. (3) Evaluations often emphasize in silico oracle-based
designability, or structure-conditioning, with limited progress towards other forms of flexible controllability.
(4) Methods that rely on experimentally-resolved structure databases have a strong bias towards crystallizable
proteins. (5) Methods that ingest structure as inputs have more restrictions on architecture, and is harder to
leveraging progress in hardware-aware Transformer models for more scalable large language models.

Contributions Towards resolving these challenges, we introduce PLAID (Protein Latent Induced
Diffusion). Our principal demonstration is that multimodal generation in biology can be achieved by
learning the latent space of a predictor from a more abundant data modality (e.g. sequence) to a less abundant
data modality (e.g. crystallized structure). In particular, we focus on ESMFold [3] and all-atom structure
generation, and present a controllable diffusion model capable of simultaneous sequence and all-atom
structure generation, while requiring only sequence inputs during training. Because training dataset can
be defined by sequence databases rather than structural ones, one can obtain better coverage of the viable
protein space traversed by evolution. It furthermore allows us to leverage structural information encoded
in the pretrained weights rather than training data. Finally, it increases the availability of annotations for
controllable generation. As a motivating demonstration, we examine compositional control across the axes
of function and organism, though sequence databases also offer far more annotation types, such as natural
language abstracts. The method is designed to be easily adaptable to expanding sequence datasets, capitalize
on improved inference and training infrastructure for Transformer-based models [4, 5, 6], and increasingly
multimodal protein folding models, such as nucleic acids and molecular ligand binding [7, 8].

2 RELATED WORKS

Generative Modeling for Proteins State-of-the-art diffusion models for designing protein structure have
thus far focused on generating novel backbone folds, with conditioning controllability typically governed by
secondary structure, or for generating scaffolding for a known motif [13, 14, 15, 16]. Evaluation and design
of these models focus on fold stability and novelty, and often involve using oracle models [17, 3, 18, 19] for
folding or inverse folding. However, to synthesize the protein, the sequence is required, and not all sampled
structures might have a corresponding sequence. To address this, “designability” has been posited as a metric,
which assesses the correspondence between the original structure and the sequence predicted for that structure.
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Figure 3: Overview of PLAID. (A) ESMFold [3] latent space. The latent space p(x) can be considered a
joint embedding of sequence and structure. (B) Latent diffusion training. Our goal is to learn and sample
from pθ(x), following the diffusion [9] formulation. To improve learning efficiency, we use the CHEAP
[10] encoder he(·) to obtain compressed embedding x′ = he(x), such that the actual diffusion objective
becomes sampling from pθ(he(x)). (C) Inference. To obtain both sequence and structure at inference time,
we use the trained model to sample x̃′ ∼ pθ(x

′), then uncompress using the CHEAP decoder to obtain
x̃ = hd(x̃′). This x̃′ embedding can then be decoded into amino acid identities using frozen sequence
decoder (trained in CHEAP [10]). This is used as input along with x̃ to the frozen structure structure
decoder (trained in ESMFold [3]) to obtain the all-atom structure. (D) DiT block architecture. We use the
Diffusion Transformer (DiT) [11] architecture, which uses adaLN-zero DiT blocks to incorporate conditioning
information. Classifier-free guidance is used to incorporate the function (i.e. GO term) and organism class
label embeddings [12].

However, there are few mechanisms to enforce designability during training. Methods also exist for designing
sequence [20, 21, 22, 23], sometimes conditioned by the structure [24]. Structure can be constructed from
these generations using a protein folding model, but models do not explicitly produce atomic positions.

Multimodal Sequence-Structure and All-Atom Generation All-atom generation can thus be viewed as a
multimodal generation problem, where the 1D protein sequence and 3D protein structure are jointly produced.
Existing works [25, 26] often generate only one of structure or sequence at each diffusion step, and rely on an
external predictor to produce the other modality. Multiflow [27] performs co-generation without an external
tool, but does not produce side chain positions. Some works have focused on specific protein subclasses,
such as antibody design [28, 29]. While these models achieve success within their specialized domains,
antibodies represent a narrow subset of protein space and such models often struggle with out-of-distribution
generalization to all protein families. Concurrently developed with this work, ESM3 [30] also uses generates
in the shared sequence-structure space, and is conditioned on Interpro [31] (many of which are derived from
GO terms [32]) for controllability. However, the ESM3 tokenizer is trained on structure datasets, rather than
sequence databases, and cannot perform all-atom generation. It is easy to extend PLAID to the tokenized
setting, since CHEAP [10] embeddings also includes a tokenized variant.
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Figure 4: Comparing latent space diffusion effects on sequence and structure. We add noise via a cosine
schedule [33] to both the raw, uncompressed latent space x and the compressed latent space, x′ = he(x).
The true signal-to-noise ratio (SNR) curve is overlayed in orange. Prior to the normalization and compression
steps in CHEAP, noise added in the latent space does not affect sequence and structure until the final timesteps
in forward diffusion, meaning that the denoising task would be trivial for most sampled timesteps. After
adding the compression, corruptions in the sequence and structure space is closer to the true SNR.

3 PLAID: PROTEIN LATENT INDUCED DIFFUSION

Notation A protein is composed of component amino acids. A protein sequence s := {ri}Li=1 is often
shown as a string of characters, with each character denoting the identity of an amino acid residue r ∈ R,
with |R| = 20. Each unique residue r can be mapped to a set of atoms as r := {ai}Mi , where a ∈ R3 is the
3D coordinates of the atom, and the number of atoms M in each residue r may be different depending on the
identity. A protein structure Ω := {ri}Lj=1 consists of all atoms in the protein.1

All-Atom Structure vs. Backbone-Only Structure From above definitions, we see that the all-atom
structure Ω requires knowledge of the amino acid identities at each position in order to specify the side
chain atoms. To reduce complexity, protein structure designers sometimes work with the backbone atoms
Ωbackbone ⊂ Ω only, which only include the N,C,Cα atoms only, and are generally sufficient to define the
protein fold.2

3.1 DEFINING p(SEQUENCE,STRUCTURE)

We begin with the motivation that sampling directly from p(s,Ω) without implicitly factorizing it into
p(Ω)p(s|Ω) (e.g., Protpardelle [25]) or p(s)p(Ω|s) (e.g., ProteinGenerator [26]) circumvents the difficulty
in all-atom generation of not knowing which side chain atoms to place; one can choose a latent manifold
where residues do not need to be explicitly specified during iterative generation. Avoiding reliance on external
prediction tools is computationally cheaper, and avoids amplifying errors.

Our goal is to characterize a distribution p(x) over X that encapsulates both sequence and structure informa-
tion, such that there is a mapping x = ϕs,Ω(s,Ω). To do this, we follow the definition of joint embedding

1In practice, to make use of array broadcasting, a standard M is selected for all residues, with an associated one-hot
mask to specify which atoms are present for a given residue, and we treat each structure as a matrix Ω ∈ RL×M×3.
Following prior work [34, 3], we use the atom14 representation where M = 14.

2The three torsion angles in backbone-only structures induces 3L degrees of freedom; depending on the residue
identity, there may be 0 to 4 additional rotamer angles associated with the sidechains. Therefore, even when the sequence
is known, there may up to 4L additional degrees of freedom necessary for all-atom structure prediction.

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2025

of sequence and structure in Lu et al. [10]: if we decompose x = ϕs,Ω(s,Ω) = ϕs(s) ◦ ϕΩ(Ω), we can
look for a space where some deterministic mapping will map sequence s and its corresponding structure
Ω to the same latent embedding x ∈ X . One way to do so is by defining x as the latent space of a protein
folding model p(Ω|s). The trunk of the model provides x = ϕESM(s), and the structure head provides
Ω = ϕStructure Module(x). If we consider there to be an implicit inverse function of the Structure Module such
that x = ϕ−1

Structure Module(Ω), then this provides the mappings for x = ϕs,Ω(s,Ω) = ϕs(s) ◦ ϕΩ(Ω) that we
are looking for.

Cross-
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Measure of cross-
modal consistency
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Figure 5: Schematic of consistency metrics
used for evaluation (Section E).

Overview of ESMFold Briefly, ESMFold [3] has two main
components: a protein language model component x =
ϕESM2(s) that captures evolutionary priors via the masked lan-
guage modeling loss (MLM), and a structure module compo-
nent Ω = ϕStructure Module(x) that decodes these latent embed-
dings into a 3D structure. For the rest of this work, “latent space
of ESMFold” refers to the x ∈ RL×1024 representation at the
layer just prior to the Structure Module, where L is the length
of a given protein. We choose this layer due to the observations
in Lu et al. [10] (also see Section 3.2) that the pairwise input
at inference time to the Structure Module is initialized to zeros,
such that this sequence embedding contains all information for
structure prediction (Figure 3A and Appendix B).

3.2 SAMPLING ALL-ATOM STRUCTURE

Latent Generation Our goal is to learn pθ(x) ≈ p(x), where θ are parameters of the model learned through
diffusion training (Figure 3C). Then, after training, we can sample x̃ ∼ pθ(x) (Figure 3C). To do so, we
use diffusion models [9, 35], with some modifications (described in ablation Table 1). To obtain structure
from the sampled latent embedding, we can simply use frozen ESMFold structure module weights to obtain
Ω̃ = ϕStructure Module(x̃) (Figure 3C). Since the output of ϕStructure Module is all-atom, the sampled Ω̃ is also
all-atom.

Sequence Decoder To obtain the sequence, we need an “inverse mapping of ESM2" to get s̃ = ϕ−1
ESM(x̃).

This inverse mapping is straightforward to train, since x is a linearly projected version of the ESM2 embedding,
which was trained via the MLM loss. This sequence decoder ϕ−1

ESM is also trained and provided in Lu et al.
[10], with validation accuracy on a heldout partition of UniRef [36] reaching 99.7% [10]. Note that s̃ must be
decoded first, which determines the side-chain atoms to be placed in Ω̃.

Latent Space Compression In initial experiments, we found that directly learning p(s) performed poorly
(results shown in Appendix Figure 10). We suspected that this might be due to the dimensions of x ∈ RL× 1024.
For proteins with length L = 512 (the length cut-off used in this work), this maps to a high-resolution synthesis
problem in image diffusion literature. We therefore mirror works in this literature, and perform diffusion in
the latent space of an autoencoder s′ = he(x) such that the array dimensions of x′ is much smaller [37]. We
use the CHEAP autoencoder [10], such that diffusion training becomes pθ(x′) = he(x). Noise is added and
denoised from p(x′). At inference time, we first sample the compressed latent x̃′ ∼ pθ(x

′), then “uncompress”
it to x̃ = hd(x

′), followed by using frozen decoders to obtain s̃ = ϕ−1
ESM(x̃) and Ω̃ = ϕStructure Module(x̃).

Figure 4 illustrates how noised added in the latent space manifests in the sequence and structure spaces, and
Appendix Figure 10 shows results without compression. More information on CHEAP can be found in Lu
et al. [10] and Appendix B.
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3.3 DATA AND TRAINING

Choice of Sequence Database The general paradigm in PLAID can be used on any sequence database. As
of 2024, sequence-only database sizes can range from UniRef90 [36] (193 million sequences) to metagenomic
datasets such as BFD [38] (2.5 billion sequences) and OMG [39] (3.3 billion sequences). We use Pfam
because it provides more annotations for in silico evaluation, and because protein domains are the main units
of structure-mediated functions. More information can be found in Appendix C.

Compositional Conditioning by Function and Organism Gene Ontology (GO) is a structured hierarchical
vocabulary for annotating gene functions, biological processes, and cellular components across species [40,
41]. We examine all Pfam domains for which there exists a Gene Ontology mapping; there are 2219 GO
terms compatible with our model (an abbreviated list is listed in Appendix ??). We also examine all unique
organisms in our dataset, and find 3617 organisms. Models are trained with classifier-free guidance [12]. The
conditioning architecture is described in Figure 3D. More details can be found in Appendix A.

Table 1: Ablation results for metrics defined in Section 4.
Configuration ccTM scTM Ppl. Seq.

Div. %
Struct.
Div.%

A cosine noise sched.& pred. noise 0.54 0.55 16.97 0.98 0.86
B A + v-diffusion 0.52 0.53 17.37 0.98 0.89
C A + MinSNR 0.59 0.59 16.76 0.97 0.86
D A +B + C + sigmoid noise sched. 0.56 0.58 16.88 0.92 0.86
E D + self-conditioning 0.70 0.65 15.38 0.93 0.76
F E + no cond drop 0.57 0.57 17.28 0.97 0.85

Architecture We use a Diffusion Trans-
former [11] (DiT) for the denoising task.
This enables more flexible options for
finetuning on mixed input modalities, as
protein structure prediction models be-
gin expanding to complexes with nucleic
acids and small molecular ligands. It also
makes better use of Transformer training
infrastructure [42, 4, 43, 5, 44]. In early
experiments, we found that proportioning available memory to a larger DiT model was more helpful than
using triangular self-attention [17]. We train our models using the xFormers [42] implementation of [45],
which provided a 55.8% speedup with a 15.6% reduction in GPU memory usage in our inference-time
benchmarking experiments compared to a vanilla implementation using PyTorch primitives (Appendix G).
We train two versions of the model with 100 million and 2 billion parameters respectively, both for 800K
steps. More details are in Appendix A.

Diffusion Training and Inference-Time Sampling We use the discrete-time diffusion definition proposed
in Ho et al. [9], using 1000 timesteps. Additional strategies are used to stabilize training and improve
performance: min-SNR reweighting [46], v-diffusion [47, 48], self-conditioning [49, 50], and a Sigmoid
noise schedule [51], and EMA (exponential moving average) decay. Ablation results are shown in Table 1.
For sampling, unless otherwise noted, all results use the DDIM sampler [33, 35] with 500 timesteps. We use
c = 3 as the conditioning strength for conditional generation; however, we find (Appendix Figure 14C) that
sample quality is not strongly affected by this hyperparameter. We also find that that DPM-Solvers [52] can
attain comparable results with 10× fewer steps in cases where speed is of concern (Appendix Figure ??), but
here prioritize sample quality. More details are in Appendix D.

4 EVALUATION

Following previous works and to address the unique challenges of all-atom generation, we examine the
following metrics (more details in Appendix E). A schematic of consistency metrics is shown in Figure 3.1

1. Multimodal Cross-Consistency: When the generated sequence is folded, does it match the generated
structure? [Cross-consistency TM-Score (ccTM), cross-consistency RMSD (ccRMSD).] When the gener-
ated structure is inverse-folded into a sequence, does it match the generated sequence? [Cross-consistency
sequence recovery (ccSR).] What percentage of generated samples are designable? [ccRMSD < 2Å.]
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Figure 6: By-length analysis of quality, sample diversity, and secondary structures. Additional Figures
can be found in Appendix Figure 11. (A) At each protein length, we plot: 1. The fraction of designable
samples that have ccRMSD < 2Å; samples with ccRMSD > 20Å are not plotted. The red line denotes the
ccRMSD= 2Å threshold. 2. The ratio of unique structure clusters to samples, as a measure of structural
diversity; 3. The beta sheet and alpha helix percentage of generations. At higher sequence lengths, PLAID
can produce higher quality samples, whereas baseline methods often struggle, and/or exhibit mode collapse.
(B) Unconditional generation results on proteins with length 256 using PLAID. Protpardelle [25] and
ProteinGenerator [26] suffer mode collapse at this length towards TIM barrels and alpha helix bundles.

2. Uni-modal Sample Quality: What is the quality of generated sequence and structure, when examined
independently?

(a) Structure. If we inverse fold a generated structure into a sequence, and fold the result with
OmegaFold [53], is it consistent with the original? [Self-consistency TM-Score (scTM), self-
consistency RMSD (scRMSD).]

(b) Sequence. If we fold a generated sequence, and inverse-fold the result, is it consistency with the
original? [Self-consistency sequence recovery (scSR).] Do generated sequences have low perplexity
on next-token prediction models trained on natural proteins? [Perplexity (Ppl.) under RITA XL [23].]

3. Naturalness: Do samples exhibit sensible biophysical parameters for real-world characterization? In other
words, how similar are the distributions of biophysical properties between generated proteins and real
proteins? [Distributional conformity [20] scores.]

4. Diversity: After clustering [54, 55], how many distinct and designable clusters can we observe? [# Des.
seq. clusts., # Des. struct. clusts..]

5. Novelty: How similar generated structures to its closest structural match to real proteins? [Foldseek
TMScore.] What about sequences? [MMseqs seq id. %.]
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5 EXPERIMENTS

Table 2: Comparison of model performance across consistency and quality metrics. Bold values show best
performance among all-atom generation models. pLDDT refers to the confidence score directly returned
by the structure trunk of the generative model; for models which do not return a PLDDT metric, N/A is
used. Heavy asterisk (*) indicates models which generates backbone structure and residue identities without
sidechain positions.

Cross-Modal Consistency Structure Quality Sequence Quality

ccTM
(↑)

ccRMSD
(↓)

ccSR
(↑)

% ccRMSD
< 2Å (↑)

scTM
(↑)

pLDDT
(↑)

Beta sheet
% (↑)

scSR
(↑)

Ppl.
(↓)

ProteinGenerator 0.58 11.86 0.28 0.08 0.72 69.00 0.04 0.40 8.60
Protpardelle 0.44 24.28 0.22 0.00 0.57 N/A 0.11 0.44 8.86
PLAID 0.69 9.47 0.26 0.32 0.64 59.46 0.13 0.27 14.61

Multiflow* 0.92* 2.45* 0.52* 0.78* 0.91* N/A 0.10* 0.61* 8.1*

Natural 1.00 0.07 0.39 1.00 0.84 84.51 0.13 0.39 7.40

Table 3: Diversity, novelty, and distributional conformity [20] metrics across models. Asterisk (*)
indicates methods which do not generate sidechain positions and bold indicates best performance across
all-atom generation methods.

Diversity Novelty Distributional Conformity (Wasserstein Distance)

#
Des.
(↑)

# Des.
Seq.

Clusts.
(↑)

# Des.
Struct.
Clusts.

(↑)

MMseqs
Seq Id %

(↓)

Foldseek
TMScore

(↓)

Avg.
MW.
(↓)

Aroma-
ticity
(↓)

Instab-
ility

Index (↓)

Iso-
electric

Point (↓)

GRAVY
(↓)

Charge
pH=7
(↓)

PG 309 309 309 0.57 0.57 9.54 0.07 14.55 1.42 0.31 6.12
Protpardelle 0 0 0 0.56 0.72 10.4 0.07 8.61 1.99 0.37 8.58
PLAID 1171 809 522 0.60 0.67 0.62 0.01 1.98 0.49 0.28 2.71

Multiflow* 2812* 2452* 460* 0.45* 0.68* 5.43* 0.07* 4.11* 1.59* 0.3* 7.55*

Natural 3570 1362 600 0.81 0.87 0 0 0 0 0 0

5.1 UNCONDITIONAL GENERATION

Following prior work demonstrating the effect of protein length on performance [13, 25, 27], we sample 64
proteins for each protein length between {64, 72, 80, ..., 496, 504, 512}, for a total of 3648 samples. Results in
Figure 6 and Tables 2 and 3 show that while the degradation in performance for PLAID is far less pronounced
than other all-atom methods. At longer lengths, PLAID can better balance quality and diversity. This may be
due to the fact that the expanded dataset means that there are more samples available for lengths that are less
commonly seen in the dataset. Despite not seeing structures when training the diffusion model, PLAID is able
to achieve high cross-modal consistency between generated sequences and structures. Table 3 shows that the
distribution of biophysical features for PLAID generations are closer to that of natural proteins, potentially
due to the removed biases towards structure in its training data.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2025

Prompt:

  HUMAN [and] DEAMINASE 
ACTIVITY

RMSD: 2.25Å

Seq. Id.: 24.3%

H191
H214H17

H8

D273
D295

7RTG (Crystal Structure of 
the Human Adenosine 
Deaminase 1)

Sampled

zinc ion

A B

Hydrophilic Hydrophobic

H69

H92

F79

F103

L64

L141L67


L91

L72

L96

F17

F41

F39

F63 L82


L106

1y4v (T-To-T(High) quaternary 
transitions in human hemoglobin)

3RYG (128 hours neutron 
structure of perdeuterated 
rubredoxin)

Sampled

Prompt:

  HUMAN [and] HEME BINDING

Prompt:

  HUMAN [and] IRON ION BINDING

Prompt:

  HUMAN [and] MONOATOMIC CATION 

TRANSMEMBRANE TRANSPORTER ACTIVITY

RMSD: 1.16Å

Seq. Id.: 53.3%

SampledRMSD: 0.35Å

Seq. Id.: 53.3%

heme substrate

Prompt:

 HUMAN [and] MONOATOMIC CATION 

TRANSMEMBRANE TRANSPORTER ACTIVITY


Prompt:

 HUMAN [and]


G protein-coupled receptor activity

C7

C8

C40

C41

C47

C48

C4

C5
iron ion

GNVLVLIMMILKQREVKSMPNV
WVFNLALSDLLFLLSTPLLVVK
MSDTSWNLGLSPCKITTFLLFL
NLYSSVFFLACLSLDRYLTVRQ

VRSN...

H145

H164 D37


D74

H33 
H70

D149 
D244

8J80 (hZnT7-Fab complex in 
zinc state 1)

SampledRMSD: 0.78Å

Seq. Id.: 53.6%

RMSD=1.98 RMSD=1.79 RMSD=2.43 RMSD=2.56

zinc ion

Figure 7: Function conditioned generation for human proteins. More examples are in Appendix 12.
(A) PLAID generations preserve catalytic motifs at non-adjacent residues, despite maintaining low
sequence identity. For each generation, we examine the closest Foldseek neighbor in the PDB [56] that was
crystallized in complex with a ligand, and structurally align the generated sample to examine the active site.
(B) Generated membrane proteins recapitulate known hydrophobicity patterns. (Top) Generated samples
consistently match known hydrophobicity patterns of membrane proteins. Hydrophobic residues are found at
transmembrane portions that span the lipid bilayer, while hydrophilic residues facing the aqueous environment.
(Right) GPCR samples exhibit the expected 7-helix structure. DeepTMMHMM [57] predictions on sequences
classifies generations as alpha transmembrane proteins, matching the known topology of GPCRs.

5.2 CONDITIONAL GENERATION

Computational evaluation of function- and organism-conditioned generative models presents a conundrum:
lower similarity is a favorable heuristic in machine learning, since it is indicates that the generative model
did not merely memorize the training data. From a bioinformatics perspective, however, conservation is key
to function; taxonomic membership can be difficult to validate, given the high degree of similarity between
homologs. In our case study experiments, we look for high structural similarity to evaluate for function
conditioning, and low sequence similarity to penalize exact memorization. Case studies shown in Figure 7
show that function-conditioned proteins possess known biological characteristics, such as conserved active
site motifs, and membrane hydrophobicity patterns. Global sequence diversity is low despite high levels of
conservation at catalytic sites, suggesting the the model has learned key biochemical features associated with
the function prompt without direct memorization. Appendix Figure 14 considers how conditioning scale
might affect sample quality, and possible GO term characteristics that might be influencing the difference in
Sinkhorn Distance between function-conditioned generations and random proteins.

We further by examining the Sinkhorn distance between generated latent embeddings and real proteins from
heldout validation set unseen during training (Figure 8). This assess conditional generations indepedent of
the sequence and structural decoders. For comparison, the Sinkhorn distance between random real proteins
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Prompt:

 [organism] [and]


DNA-binding transcription 
factor activity

Prompt:

 [organism] [and]


PROTEIN KINASE ACTIVITY

Figure 8: (Left) For each unique GO term in the validation set, we examine the Sinkhorn distance between
generated samples and real proteins in the heldout subset in this class. For reference, we also calculate the
Sinkhorn distance between random real proteins to the heldout subset. (Right) T-SNE reduction of generated
embeddings, colored by the organism used for conditioning.

from the validation set and the function-conditioned generations are also evaluated. Conditional generations
generally have lower Sinkhorn distances than random samples, suggesting that the desired latent information
has been captured in the embedding. Figure 8 shows tSNE plots of generated embeddings colored by organism.
Organisms that are further away phylogenetically, such as Glycine max (i.e. soybean) and E. coli, form more
distinct clusters than those closer evolutionarily, such as human and mouse. This suggests that function and
organism conditioned samples have been imbued with desired characteristics at a high level.

6 DISCUSSION

We proposed PLAID, a paradigm for multi-modal, controllable generation of proteins by diffusing in the
latent space of a prediction model that maps single sequences to the desired modality. Our method is
designed to adhere to progress in data availability, model scalability, and sequence-to-structure prediction
capabilities. To this end, we chose an implementation that can make use of fast attention kernels [42] for
Transformer-based architectures, and chose GO terms as a proxy for the vast quantities of language annotation
that are paired with sequence databases.

It is straightforward to expand PLAID to many downstream capabilities. First, though we do not examine
motif scaffolding or binder design explicitly in this current work, this is easy to build by holding some input
residues constant. Second, though we examine ESMFold [3] in this work, the method can be applied to
any prediction model. There is rapid progress [8, 7, 58, 59, 60] in predicting complexes from structure, and
diffusing in the latent space of such models enables us to use the frozen decoder to obtain more modalities
than just all-atom structure.

A limitation of PLAID is that performance can be bottlenecked by the prediction model from which the
frozen decoders are derived. Here, we rely on the optimism that such models will continue to improve. With
explicit finetuning for latent generation (e.g. training CHEAP and the structure decoder end-to-end), model
performance can likely be improved. Furthermore, since the current structure decoder is deterministic, it
does not sample alternative conformations. A solution is to use a decoder that returns a distribution over
structural conformations instead; such a model might naturally be developed with progress in the field, or be
explicitly finetuned for. Additionally, the GO term one-hot encoding used here does not take into account the
hierarchical nature of the Gene Ontology vocabulary, nor that a protein might have several relevant GO terms.
Finally, the classifier-free guidance scale can be separated for the organism and function conditions, since the
two may require different guidance strengths in real-world use cases. These limitation will be examined in
future work.
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APPENDIX

A ADDITIONAL TRAINING DETAILS

We train two variants of the model: a 2B version and a 100M version, both with the memory efficient attention
implementation in xFormers, with float32 precision. A learning rate of 1e-4 was used, with a cosine annealing
applied over 800,000 steps. The xFormers memory efficient attention kernel requires input lengths to be a
multiple of 4. Since we also apply an upsampling factor of 2, the actual inference length must be a multiple
of 4. During training, the maximum sequence length we use is 512, based on the distribution of sequences in
Pfam and a shorten factor of 2 based on results in Lu et al. [10].

Following Ho and Salimans [12], with puncond = 0.3, the class label is replaced with the ∅ unconditional
token. This is sampled separately for both function and organism. Note that not all data samples will have
an associated GO term; we use the ∅ token for those cases as well. At inference time, to perform generate
unconditionally (for either or both of function and/or organism), we use the ∅ token for conditioning.

B CHEAP COMPRESSION DETAILS

Briefly, the CHEAP encoder and decoder uses an Hourglass Transformer [61] architecture that downsamples
lengthwise, as well as downprojects the channel dimension, to create a bottleneck layer, the output of
which is our compressed embedding. The entire model is trained with the reconstruction loss MSE(x, x̂).
Results in Lu et al. [10] show that structural and sequence information in ESMFold latent spaces are in fact
highly compressible, and despite using very small bottleneck dimensions, reconstruction performance can be
nonetheless maintained when evaluated in sequence or structure space.

Based on reconstruction results in Lu et al. [10], we choose x′ ∈ RL
2 ×32 with L = 512, which balances

reconstruction quality at a resolution comparable to the size of latent spaces in image diffusion models [37].
Dividing the length in half allows us to better leverage the scalability and performance of Transformers, while
managing its O(L) memory needs.

The CHEAP module involves a channel normalization step prior to the forward pass through the autoencoder.
We find that the distribution of embedding values is fairly “smooth" here (Figure 9). Though the original
Rombach et al. [37] paper was trained with a KL constraint to a Gaussian distribution, we use the embedding
output as is. CHEAP embeddings were also trained with a tanh layer at the output of the bottleneck; this
allows us to clip our samples between [−1, 1] at each diffusion iteration, as was done in original image
diffusion works [9, 12, 33, 62]. We found in early experiments being able to clip the output values were
very helpful for improving performance. Without using the CHEAP compression prior to diffusion, sample
quality was poor, even on short (L = 128) generations, shown in Figure 10.

C DATA

We use the September 2023 Pfam release, consisting of dataset, consisting of 57,595,205 sequences and
20,795 families. PLAID is fully compatible with larger sequence databases such as UniRef or BFD (roughly 2
billion sequences), which would offer even better coverage. We elect to use Pfam because sequence domains
have more structure and functional labels, which is easier for in silico evaluation of generated samples. We
also hold out about 15% of the data for validation.

Approximately 46.7% of the dataset (N=24,637,236) is annotated with a GO term. Using the publicly
available mapping as of July 1, 2024, we take a count of all GO occurrences; for each Pfam entry with
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Figure 9: Visualizing the original ESMFold latent space before normalization, after per-channel normalization,
and after compression. The value distribution of p(x′) is fairly smooth and “Gaussian-like", making it
amenable to diffusion.

scTM vs. pLDDT ccTM vs. scTM

ccSR vs scSR

Figure 10: Results when running PLAID on the ESMFold latent space naively without CHEAP compression,
for proteins of length 128. There is a tendency to generate repeated sequences, and quality is low compared
to baselines.

multiple GO entries, we pick the one with the fewest GO occurences to encourage more descriptive and
distinct GO labels.
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The Pfam-A.fasta file available from the Pfam FTP server includes the UniRef code of the source
organism from which the Pfam domain is from. The UniRef code further more includes a 5 letter “mneumonic"
to denote the organism. We examine all unique organisms in our dataset, and find 3617 organisms.

D SAMPLING

Inference-time sampling hyperparameters provides the user with additional control over quality and sampling
speed trade-off. PLAID supports the DDPM sampler [9] and the DDIM sampler [33], as well as the improved
speed samplers from DPM++ [52]. We find that using the DDIM sampler with 500 timesteps using either the
sigmoid or cosine schedulers works best during inference, and reasonable samples can be obtained using the
DPM++2M-SDE sampler with only 20 steps. Experiments shown here uses DDIM sampler with the sigmoid
noise schedule at 500 timesteps.

Note that the performance bottleneck is found mostly during the latent sampling and structure decoding
(which depends on the number of recycling iterations [17, 3] used); however, these two processes can be
easily decoupled and parallelized, which cannot be done in existing protein diffusion methods. Furthermore,
it allows us to prefilter which latents to decode using heuristic methods, and decode only those latents to
structure, which would boost performance for nearly the same computational cost. We do not empirically
explore this in this paper to provide a fair comparison, and because the filtering criteria would vary greatly by
downstream use.

E EVALUATION DETAILS

For all benchmarks and models, we use default settings provided in their open-source code. For ProteinMPNN
[18], we use the v_48_002 model with a sampling temperature of 0.1 and generate 8 sequences for protein,
from which the best performing sequence use chosen. To calculate self-consistency, we fold sequences using
OmegaFold [53] rather than ESMFold.

Though our models generate all-atom structure, we examine Cα RMSD rather than all-atom RMSD, to avoid
mis-attributing sequence generation under-performance to structure generation failures. Also, since there are
usually differences in the sequence that is generated, different number of atoms make it difficult to assess
all-atom RMSD.

For the hold-out natural reference dataset, we use sequences from Pfam and keep length distributions similar
to that of the sampled proteins. Specifically, for each sequence bin between {64, 72, ..., 504, 512}, we take
64 natural sequences of that length. For the experiment in Figure 14D, we use the Sinkhorn Distance rather
than the Frechet Distance used commonly in images and video. Since not all functions have a large number
of samples, we elected to use a metric that works better in low sample settings.

Structure novelty is obtained by searching samples to PDB100 using Foldseek [55] easy-search. We
examine the TM-score to the closest neighbor. For Foldseek and MMseqs experiments, all clustering
experiments are performed by length. We use default settings for both tools. Though we report the average
TMScore to top neighbor for Foldseek, we run easy-search in 3Di mode. For sequences, we use
MMseqs2 [54] to see if sequences have a homolog in UniRef50, using default sensitivity settings. For samples
with homologs, we further calculate the average sequence identity to the closet neighbor to assess novelty
(Seq ID %).
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F SAMPLING SPEEDS

We examine the amount of time necessary for generating a simple sample. We first explore the time necessary
to generate 100 sequences with L = 600. Multiflow and ProteinGenerator does not support batched generation
in its default implementation, so in this experiment, we simply generate one sample at a time for a total of
100 samples. We report the amount of time per sample. For comparison, we also run an experiment where
we only generate a single sample, such that none of the methods can make use of any improvements from
batching.

Table 4: Time required to sample proteins with 600 residues. We assess time required both for sampling
N = 100 samples in batches whenever possible, and when generating a single sequence. Experiments are
run on Nvidia A100. Methods marked by (*) do not support batching in the default implementation.

seconds/sample, batched seconds/sample, unbatched

Sample Latent Decode Sample Latent Decode

Protpardelle 11.21 - 17.16 -
Multiflow* 231.32 - 277.11 -

ProteinGenerator* 343.32 - 342.28 -
PLAID (100M) 1.64 15.12 27.63 1.07

PLAID (2B) 19.34 15.07 49.03 0.9

G ATTENTION SPEED

Forward pass benchmark of vanilla multihead attention compared to the optimized xFormers implementation
of memory-efficient attention [45] and FlashAttention-2 [4]. Though FlashAttention2 performed best in
our benchmarks, a fused kernel implementation with key padding was not yet available at the time of
writing. Since our data contained different lengths (as compared to most image diffusion use cases, or
language use-cases that can make use of the implemented causal masking), we instead use the xFormers
implementation. We expect that sampling speed results would improve once this feature is becomes available
in the FlashAttention package.

Method Mean Time (s) Mean Memory (GB)
Standard Multihead Attention 0.0946 ± 9.23e-4 76.0 ± 0.409
xFormers Memory Efficient Attention 0.0519 ± 4.33e-05 64.0 ± 0.409
Flash Attention 0.0377 ± 1.91e-3 49.2 ± 0.783

H ADDITIONAL RESULTS
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Cross-Consistency RMSD (Clustered Structures)

Self-Consistency RMSD (Clustered Structures)

Sequence Perplexity Under RITA XL (Clustered Sequences)

Cross-Consistency Sequence Recovery (Clustered Sequences)

Self-Consistency Sequence Recovery (Clustered Sequences)

Figure 11: More comparison results between PLAID and baselines.
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Figure 12: More case studies of conditional generations.
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Prompt:

 YEAST [and]


ATP-DEPENDENT PROTEIN FOLDING CHAPERONE

Figure 13: (Left) Frechet Distance between sampled protein and reference set of real protein, across sampling
(reverse diffusion) timesteps, for the DDIM [33] sampler and the DPM++2M [52] sampler. For both, sample
quality decreases steadily over time before plateauing. DPM++2M can achieve low FID results with only
10% of the original number of steps, but final results are still slightly worse. (Center) Examining the effect of
conditioning scale on the output quality. (Right) Analyzing factors which may be contributing to a greater δ
difference between the Sinkhorn distance of samples-to-real-functional-proteins vs random-proteins-to-real-
functional-proteins.

Motif:

5TPN.pdb 

Chain A, residue 
163-181

Motif
Sampled

Motif

Sampled

Figure 14: Demo of motif scaffolding. We use the same motif as the RFDiffusion [13]
design_motifscaffolding.sh example for this experiment. The input motif is held constant at
the user-prescribed location. Note that PLAID generates all-atom structure, whereas RFDiffusion does not
position the sidechain atoms.
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Figure 15: Examining histogram of metrics for nuanced comparison of how generated samples compare to
that of natural proteins.
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Figure 16: To examine the degree to which co-generation methods are overfitting to structure-based metrics,
we examine properties on natural proteins.
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