
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NOISY DATA PRUNING BY LABEL DISTRIBUTION DIS-
CRIMINATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Data pruning aims to prune large-scale datasets into concise subsets, thereby re-
ducing computational costs during model training. While a variety of data pruning
methods have been proposed, most focus on meticulously curated datasets, and
relatively few studies address real-world datasets containing noisy labels. In this
paper, we empirically analyze the shortcomings of previous gradient-based meth-
ods, revealing that geometry-based methods exhibit greater resilience to noisy
labels. Consequently, we propose a novel two-stage noisy data pruning method
that incorporates selection and re-labeling processes, which takes into account
geometric neighboring information. Specifically, we utilize the distribution diver-
gence between a given label and the predictions of its neighboring samples as an
importance metric for data pruning. To ensure reliable neighboring predictions,
we employ feature propagation and label propagation to refine these predictions
effectively. Furthermore, we utilize re-labeling methods to correct selected subsets
and consider the coverage of both easy and hard samples at different pruning rates.
Extensive experiments demonstrate the effectiveness of the proposed method, not
only on real-world benchmarks but also on synthetic datasets, highlighting its suit-
ability for practical applications with noisy label scenarios.

1 INTRODUCTION

The explosive growth of datasets has been a pivotal factor driving the success of deep neural net-
works (DNNs) across various applications. However, training on large-scale datasets is not only
time-consuming but also economically challenging Ho et al. (2020). In fact, a substantial portion of
the training data is redundant, indicating that the excess data can be pruned without compromising
model performance Marion et al. (2023). Consequently, considerable research efforts have been
devoted to data pruning, employing various metrics to identify important samples, including loss
Paul et al. (2021), distribution distance Xiao et al. (2024), uncertainty Coleman et al. (2020) and
gradients Killamsetty et al. (2021b).

While these methods have been proven effective in their respective contexts, they often rely on the
prior assumption that the data is perfectly labeled. For instance, Paul Paul et al. (2021) posits that
samples with high loss values are hard samples that are essential to improve the model performance,
while samples with low loss values are regarded as easy samples that can be pruned. However, when
this assumption is violated, that is, the dataset contains mislabeled samples, the samples with larger
gradient values may actually be the mislabeled ones. From a robustness perspective, the samples
with small loss Lyu & Tsang (2019) will be more beneficial for enhancing the model robustness.
Moreover, in real-world scenarios, data collection often involves complex processes such as crowd
sourcing and web crawler, which may not conform to the assumption of perfectly labeled data.

Therefore, previous data pruning methods that operate under the assumption of perfectly labeled
samples face two significant challenges. First, in the noisy label scenario, the prediction results
of the model become inaccurate, leading to both noisy labels and hard samples generating out-
liers. Second, when the selected subset contains noisy samples, previous methods may cause the
model to overfit to these noisy samples. As shown in Fig. 1, the performance of the loss-based
method (GraNd) is significantly degraded compared to the geometry-based method (KCenter Sener
& Savarese (2017)) in the noisy label scenario. This performance drop is attributed to the sample
selection bias inherent in GraNd, which tends to identify mislabeled samples as hard samples. In
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Figure 1: The different data pruning methods on clean label (CIFAR-10) and noisy label dataset
(CIFAR-10N) at different pruning rates. Full means using the entire noisy label dataset.

contrast, KCenter considers the relationship among neighboring samples, resulting in less degrada-
tion in performance. Moreover, the model is prone to overfitting to noisy labels under noisy labels,
leading to overall lower performance than methods designed for clean labels.

To solve these issues, an intuitive method is to find as many clean samples as possible from noisy
samples to reduce sample selection bias, and then re-label the selected subset to prevent overfitting
to the noisy samples. For instance, Adacore Pooladzandi et al. (2022) leverages the second-order
information through the hessian matrix to minimize sample selection bias. Pr4ReL Park et al. (2024)
uses robust learning methods to relabel the selected subset, maximizing the re-labeling accuracy and
alleviating model overfitting. Unfortunately, these methods often fail to adequately balance the
interplay between selection bias and the difficulty of sample re-labeling, which limits the overall
effectiveness of the samples selected for re-labeling.

In this paper, we propose a two-stage Robust Pruning (RoP) method, called RoP, which aims to
effectively address these challenges by selecting and re-labeling. Firstly, we use the neighboring
label inconsistency score (NLI-Score) to identify noisy label samples and select clean samples.
Specifically, we assess the label distribution divergence between a given sample and its neighboring
predictions to obtain the NLI-Score. To enhance the accuracy of neighboring predictions during
obtaining NLI-Score, we employ feature propagation and label propagation techniques to refine
these predictions. Second, we use robust learning methods to re-label the selected samples to prevent
overfitting. Meanwhile, we empirically analyzing the difficulty of samples being re-labeled. Then,
we leverage the density-based pruning method to ensure the coverage of easy and hard samples,
thereby ensuring the benefits of subsets at different pruning rates. Our contributions are as follows:

• We propose a robust two-stage data pruning method by selecting and re-labeling, which
first selects as many clean samples as possible by NLI-Score, and then re-labels the selected
samples to avoid overfitting to noisy labels.

• We propose feature and label propagation to rectify the neighboring predictions during the
NLI-Score estimation process, which improves the ability to identify noisy samples.

• Extensive experiments show that the proposed method is effective not only on synthetic
noisy datasets but also on real-world benchmarks.

2 RELATED WORK

2.1 DATASET PRUNING

Existing data pruning methods can be roughly divided into two categories: score-based and
optimization-based. Score-based methods usually select samples by carefully designed metrics
based on gradients Paul et al. (2021); Zhang et al. (2024), feature embeddings Coleman et al. (2020),
and model predictions Coleman et al. (2020), etc. For example, GraNd Paul et al. (2021) tends to
select samples with large gradients, considering these samples as hard samples in the training pro-
cess. However, it is not suitable in real noisy scenarios, as noisy samples also exhibit large gradients.
Uncertainty Coleman et al. (2020) tends to select samples that the model is not confident about, as
these samples may contain more information. K-Center Sener & Savarese (2017) removes redun-
dant samples based on the similarity of samples in the feature space. Optimization-based methods
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Killamsetty et al. (2021a); Xiao et al. (2024) aims to reduce the distribution bias between subset
and the entire dataset. Some optimization-based methods ensure the distribution of the selected
subset is close to the complete dataset by matching the gradients or feature distribution. Although
optimization-based methods have theoretical guarantees, the data pruning process is usually very
time-consuming.

Furthermore, recent studies Xia et al. (2022); Zheng et al. (2022a) have shown that existing socre-
based methods do not work well at high pruning rates, which is due to neglecting the trade-off
between the number of easy and hard samples. To mitigate this issue, some methods have designed
different sampling strategy to ensure the coverage of easy and hard samples in extreme pruning rates.
Although above methods have improved the robustness of data pruning under different pruning rates,
they are still powerless against the selected samples with noisy labels.

2.2 NOISE LABEL LEARNING

Noisy label learning (NLL) Song et al. (2022); Li et al. (2022); Zhang et al. (2023) has emerged as
an effective method to improve the robustness of DNNs, attracting widespread research interests.
Early methods adopted a more direct insight, first aiming to identify clean samples by using care-
fully designed metric, and then reduce de-weighting potentially noisy samples during training, or
leverage semi-supervised learning to re-relabel the noisy samples. For instance, Small Lyu & Tsang
(2019) selects clean samples with small losses, combines them with the Gaussian Mixture Model
(GMM) Reynolds et al. (2009) to estimate the noisy samples, and then reduces the loss weights
of the noisy samples during the training process. Recently NLL studies Li et al. (2020); Liu et al.
(2020; 2022a) have focused on leveraging self-consistency regularization to re-label the noisy sam-
ples. The mainly idea is to apply a series of strong augmentations to the input images and then
use the consistency regularization loss to ensure the consistency between the augmented samples
and the original ones. Popular methods in this family include DivideMix Li et al. (2020), ELR+
Liu et al. (2020), and SOP+ Liu et al. (2022a). DivideMix further improves the re-labeling accu-
racy by using a co-training framework, while SOP+ introduces additional learnable variables with a
self-consistent loss. While these methods are highly effective, the re-labeling models often require
more computational time and longer training epochs due to the additional data augmentations and
multiple backbones, highlighting the need to improve their efficiency.

3 METHODOLOGY

In this section, we describe the preliminaries and show in detail how RoP can be applied in the noise
label scenario. Fig. 2 presents an overview of RoP method, which comprises two stages, the first
stage focuses on identifying noise samples, while the second stage is dedicated to re-labeling the
pruned subsets.

3.1 PRELIMINARIES

We focus on data pruning for classification task, which is a widely studied scenario in machine
learning community. We are given a training set D̃ = {(xi, ỹi)}ni=1 and a subset S = {(xi, ỹi)}mi=1,
where xi ∈ X , ỹi ∈ Ỹ denotes the label-sample pair (contains noisy label), m and n denotes the
number of samples. Data pruning aims to find the most representative subset S∗ from D̃, so that
the model θS∗ trained on S∗ has closer generalization performance of the model θD̃ trained on the
entire dataset D̃.

3.2 NOISE LABEL DISCRIMINATION

Most methods for addressing noise label establish a selection criteria for noisy samples based on
predicting the label distribution of individual samples Lyu & Tsang (2019). These methods often
face challenges in avoiding selection bias, as they rely heavily on the evaluation of a single sample
without considering neighboring relationships. In weakly supervised learning Zhou et al. (2003),
there is the key prior assumption of consistency, which means points on the same structure (typically
referred to as a cluster or a manifold) are likely to have the same label. From this perspective,
candidate samples that may have clean labels can be found by evaluating the neighboring label
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Figure 2: Illustration of the proposed framework. The proposed method mainly consists of two
stages: noise label discrimination, pruning and re-labeling. The first stage aims to find as many clean
samples as possible, which mainly includes three parts: feature propagation, label propagation, and
neighborhood label inconsistency estimation. Specifically, we construct local graphs by propagation
and label propagation to correct the neighboring predictions. Then, we use the label distribution
divergence between the given label and its neighboring predictions to identify noisy samples. In
the second stage, we use NLI-Score to select samples and re-label the selected subset by robust
learning methods. During data pruning, we further balance the coverage of easy and hard samples
by density-based sampling.

consistency of a given sample Iscen et al. (2022); Li et al. (2022). Therefore, we discriminate
noisy samples by neighboring label consistency in the robust data pruning. Specifically, this process
includes feature propagation, label propagation and neighboring label inconsistency estimation.

3.2.1 FEATURE PROPAGATION

As considering the neighboring label distribution, we first find the K nearest neighbors of the given
sample xi based on the cosine similarity in feature embedding space. Specifically, given a candidate
sample-label pair (xi, ỹi) ∈ D̃train (D̃train contains noisy label), we use the cosine similarity in Eq.
(1) to find the K nearest neighbors of sample xi.

cos(fθ(xi), fθ(xj)) =
fT
θ (xi)fθ(xj)

||fθ(xi)||2||fθ(xj)||2
(1)

where fθ(xi) is the feature embedding of the sample xi from the pre-trained model θD̃ and || ||2
denotes the l2 regularization. And then, we define them as local neighboring samples (LNS), as
formulated below.

{xk}Kk=1 ← KNN(xi; D̃train;K) (2)

where {xk}Kk=1 defines as the LNS, KNN(xi; D̃train;K) is a function that returns K most similar
samples in D̃train for the candidate sample xi. Note that xi is temporarily removed from D̃trian at
this moment.

To further exploit the relationship among LNS, we use the K nearest neighboring samples to define a
local graph Gxi(V,E), where vertices matrix V ∈ RK×d contains the stacked neighboring features
{fθ(xk)}Kk=1. To define the adjacency matrix E ∈ RK×K , we first obtain the similarity matrix S,
as formulated below.

S[i, j] =

{
cos(V [i, :], V [j, :]) if i ̸= j
0 otherwise

(3)

where V [i, :] denotes the i-th row of the matrix V . Note that in all backbone architectures utilized
in our experiments, the penultimate layers are activated using a ReLu function, ensuring that all
coefficients in V are non-negative. Consequently, this implies that the coefficients in S are also
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non-negative and S is symmetric. Then, we apply normalization to the resulting matrix.

E = D−1/2SD−1/2, D[i, i] =
∑
j

S[i, j] (4)

where E is the Laplacian of the adjacency matrix and D is the degree diagonal matrix. Therefore,
the graph vertices represent the neighbor features of sample xi. Its nonzero weights are based on the
cosine similarity between corresponding transferred representations.

We then apply feature propagation to obtain new features for each vertex, as formulated below.

Vnew = (I + E)V (5)

where I denotes the identity matrix. Vnew represents the result of feature propagation among the K
neighboring samples.

3.2.2 LABEL PROPAGATION

After feature propagation, we use the Vnew to the fully connected (FC) layer of the model for la-
bel propagation, which aims to correct the predictions {p(y|xk)}Kk=1 of the neighboring samples
{xk}Kk=1. The specific formula is as follows:

{p(y|xk)}Kk=1 = softmax(VnewWn) (6)

where Wn denotes the parameters of FC layer trained on noisy label dataset D̃train. p(y|xk) denotes
the predicted output of the mode on the sample xk.

3.2.3 NEIGHBORHOOD LABEL INCONSISTENCY ESTIMATE

In order to reduce selection bias, instead of directly using model predictions on a given sample xi to
identify the noisy label, we consider the consistency of its nerghborhood samples. The neighboring
label inconsistency score between the given sample xi and neighboring predictions {p(y|xk)}Kk=1
can be defined as follow.

Nscore(xi, yi) =
1

K

K∑
k=1

JS(p(y|xk), yi) (7)

where Nscore(xi, yi) denotes the NLI-Score value of the sample xi, yi is the one-hot vector for the
given ground-truth label of the sample xi. And, p(y|xk) denotes the predicted probability of the
k-th neighbor sample. JS denotes Jensen-Shannon divergence, as formulated follow:

JS(pi, pj) =
1

2
KL(pi||

pi + pj
2

) +
1

2
KL(pj ||

pi + pj
2

) (8)

where KL(||) represents the Kullback-Leibler (KL) divergence. pi and pj denotes the probability
distribution of two different samples, respectively.

3.3 PRUNING AND RE-LABELING

According to the obtained NLI-score, we can distinguish the clean and noisy label samples as much
as possible. When a candidate sample exhibits a small NLI-score, it indicates a strong consistency
with the predicted labels of its neighboring samples. Consequently, samples with smaller NLI-score
are more likely to be clean label samples. We can then utilize the NLI-score for data pruning, aiming
to minimize the presence of noisy samples within subset. However, selection bias is an inherent
challenge in the noise label scenarios. To address this, a viable approach is to employ re-labeling
methods to correct the labels of pruned subsets.

3.3.1 RE-LABELING AND EMPIRICAL ANALYSIS

In this section, we use the SOTA noisy label learning methods to re-labeling the pruned subsets. In
noisy label learning, re-labeling methods Song et al. (2019) have achieved SOTA generalization by
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designing self-correction modules such as self-supervised regularization Liu et al. (2022b). For ex-
ample, SOP+ Liu et al. (2022b) almost reaches the same performance on CIFAR-10N noisy dataset
as on CIFAR-10 clean dataset. Therefore, we consider using SOP+ to re-labeling the pruned subsets.

Intuitively, samples with high neighboring consistency are more likely to be rectified. Therefore,
we empirically analyze the correlation between the NLI-Score and the re-labeling accuracy by using
SOP+ as the re-labeling method on CIFAR-10N in Fig. 3.

Converage

Figure 3: Empirical analysis about the relation-
ship between the re-labeling accuracy and the
NLI-Score values on CIFAR-10N.

Specifically, we train SOP+ in the 20% ran-
domly selected subset S for a warm-up training
with 10 epochs and calculate the NLI-Score for
the entire training samples. Next, we fully train
SOP+ on the random subset S. Last, we di-
vide the entire training set into 14 bins accord-
ing to the obtained NLI-Score and verify the av-
erage re-labeling accuracy for each bin. Fig. 3
shows that a strong correlation between the re-
labeling accuracy and the neighboring label in-
consistency score, and the relabeling accuracy
decreases with the increase of the NLI-score.

Therefore, samples with lower NLI-Scores are
more likely to be correctly re-labeled, while
samples with higher NLI-Scores are more diffi-
cult to accurately annotate. Therefore, we identify samples with relatively low NLI-Scores as easy
samples and those with high NLI-Scores as hard samples.

3.3.2 DENSITY-BASED COVERAGE PRUNING

Algorithm 1 RoP: Robust Pruning

Input: Training data D̃ = {xi, ỹi}ni=1, budget
size k,
feature extractor fθ
Training Variables: Feature extractor fθ pre-
trained on D̃
Output:Subset S∗

1: Warm-up the feature extractor fθ on D̃
2: for (xi, yi) ∈ D̃ do
3: Feature propagation by Eq. (3)
4: Label propagation by Eq. (6)
5: Calculate NLI-Socre Ever(xi, y

(c)
i ) by Eq.

(7)
6: end for
7: Density-based coverage pruning S∗
8: Re-labeling the subset S∗
9: Return S∗

Recent studies Toneva et al. (2018); Lyu &
Tsang (2019) have shown that models tend to
learn from easy samples before progressing to
hard ones. However, hard samples are more
effective to improve the generalization ability
of the model. Previous score-based data prun-
ing methods Paul et al. (2021); Coleman et al.
(2020) have primarily focused on identifying
and retaining hard samples, while neglecting
the coverage of easy samples. This oversight
has resulted in a significant decline in perfor-
mance at high pruning rates.

Furthermore, methods such as Moderate Xia
et al. (2022) and Small Lyu & Tsang (2019)
indicate that retaining retaining as many easy
samples as possible under high pruning is es-
sential for maximizing the benefits. Therefore,
we advocate for a coverage method that ensures
the inclusion of both easy and hard samples at
different pruning rates.

Specifically, we use NLI-Score as an indicator to assess the difficulty of each sample in D̃. Sub-
sequently, we apply the coverage coreset sampling (CCS) Zheng et al. (2022b) to ensure adequate
representation of both hard and easy samples based on their NLI-Scores. CCS aims to strike a bal-
ance between the number of easy and hard samples, thereby alleviating the performance degradation
often observed in high pruning rates. The complete algorithm of the Robust Pruning (RoP) method
is outlined in Algorithm 1, which mainly contains the following five steps :

• Step 1 : Using feature propagation to update the neighboring features;
• Step 2 : Using label propagation to update the predictions of neighboring samples;
• Step 3 : Calculating the neighboring label inconsistency score of given samples;
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• Step 4 : Obtaining the pruned subset S∗ based on coverage pruning.

• Step 5 : Re-labeling the pruned subset S∗ based on robust learning methods.

4 EXPERIMENTS

4.1 EXPERIMENTAL DATASET

In experiments, we mainly conduct experiments on four datasets, including three real noisy label
datasets and one synthetic noisy label dataset. For real noisy label, we use CIFAR-10N, CIFAR-
100N Wei et al. (2022), and Webvision Li et al. (2017). For synthetic noisy label, we use ImageNet-
1K Deng et al. (2009) with asymmetric label noise. CIFAR-10N and CIFAR-100N contain hu-
man re-annotations of 50K training images in the original CIFAR-10 and CIFAR-100. Specifically,
CIFAR-10N contain 3 random noisy labels, called Random 1,2,3, which are further transformed into
the worst-case label. CIFAR-100N contains one type of noisy label, called Random. WebVision is a
large-scale noisy datasets, which contains 2.4M images crawled from the Web using the 1k concepts
in ImageNet-1K. Following prior work Chen et al. (2019), we use mini-WebVision consisting of the
first 50 classes of the Google image subset with approximately 66K training images. Finally, we use
ImageNet-1k to synthesize a asymmetric label noise dataset, called ImageNet-N, consisting of 1.2M
training images.

4.2 PRUNING RATE

For CIFAR-10N, CIFAR-100N, and WebVision, we select the subset at the pruning rates 0.2, 0.4,
0.6, 0.8. For ImageNet-N, we select the subset at pruning rates 0.05, 0.1, 0.2, 0.4. We evaluate the
accuracy of the selected subset by using SOP+ as the Re-labeling model. Every experiment is run 3
times, and the average of the last accuracy is reported. For CIFAR-10N with the random noise, we
average the test accuracy of the models trained using the three noisy labels.

4.3 BASELINES

To demonstrate the effectiveness of the proposed method, we compare random selection and 10 data
pruning methods, which are Small Lyu & Tsang (2019), Margin Coleman et al. (2020) , KCenter
Sener & Savarese (2017) , Forget Toneva et al. (2018), GraNd Paul et al. (2021), SSP Sorscher et al.
(2022), Moderate Xia et al. (2022), FDMat Xiao et al. (2024) and Pr4ReL Park et al. (2024). (1)
KCenter selects K samples as representative subsets whose maximum distance between samples is
able to cover the entire training dataset. (2) GraNd takes the average norm of the gradient vector
as a measure of the contribution of sample to the model. (3) Moderate aims to select samples with
moderate difficulty to form a representative subset by selecting samples with median distance to the
prototype. (4) FDMat aims to select a constituent representative subset whose feature distribution
is close to the class prototype feature distribution. (5) Forgetting selects the samples that are easily
forgotten (misclassified) by the classifier during the whole training process as representative sam-
ples. (6) Pr4Rel finds representative subsets by maximizing the re-labeling accuracy. (7) Margin
selects samples by taking the difference between the first and second largest predicted probability
of the model as a criterion to measure the difficulty of the sample. (8) SSP utilizes a self-supervised
pre-trained model to select the most typical samples. (9) Small selects samples with small losses as
typical samples. (10) Uniform selects samples with random selection.

4.4 EXPERIMENTS ON REAL NOISY DATASETS

We conduct experiments with real noisy labels on CIFAR10-N, CIFAR100-N and WebVision re-
spectively. In Tab. 1, we compare RoP with 10 baseline methods on CIFAR-10N and CIFAR-100N,
respectively. Overall, our method shows improved performance than the SOTA data pruning meth-
ods in the noisy label scenario. In particular, for the worst-case label scenario on CIFAR-10N,
ROPB significantly outperforms the sub-optimal method, e.g., 1.5% improvement at 20% pruning
rate. In addition, we also find that previous data pruning methods are indeed less robust in noisy
label scenarios, for example GraNd has only 15.4% precision in worst-case label scenario of CIFAR-
10N. This is because methods such as GraNd and Margin tend to prefer hard samples in the case of
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Table 1: Comparison of baselines and the proposed RoP by using PreAct ResNet-18 and re-labeling
method (SOP+) on CIFAR-10N and CIFAR-100N. RoP and RoPB denote pruning by NLI-Score
without and with considering coverage, respectively. The best results are in bold.

Re-label

Methods

Selection

Methods

CIFAR-10 CIFAR-100

Random(Noise ration ≈20%) Worst(Noise ratio≈40%) Random(Noise ratio≈40%)

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

SOP+

Random 87.5±0.3 91.5±0.1 93.4±0.0 94.8±0.2 81.9±0.1 87.5±0.1 90.8±0.1 91.8±0.1 46.5±0.0 55.7±0.2 60.8±0.3 64.4±0.2

Small 77.6±2.5 86.2±0.1 90.7±0.6 94.3±0.2 78.8±0.2 84.1±0.1 89.3±0.1 92.3±0.2 48.5±0.8 59.8±0.4 63.9±0.2 66.1±0.6

Margin 52.1±5.0 79.6±8.6 92.6±3.9 95.1±1.3 45.7±1.1 61.8±0.7 84.6±0.3 92.5±0.0 20.0±1.2 34.4±0.3 50.4±0.6 63.3±0.1

KCenter 86.3±0.4 92.2±0.3 94.1±0.2 95.3±0.1 81.9±0.0 88.0±0.0 91.3±0.1 92.3±0.0 44.8±0.6 55.9±0.3 61.6±0.3 65.2±0.6

Forget 82.4±1.0 93.0±0.2 94.2±0.3 95.0±0.1 71.1±0.4 87.7±0.1 90.6±0.3 92.2±0.0 38.0±0.5 55.3±0.2 63.2±0.1 65.8±0.4

GraNd 24.2±5.5 51.6±3.2 85.9±1.2 94.9±0.2 15.4±1.6 25.7±0.8 51.0±0.5 86.8±0.5 11.0±0.1 19.0±0.6 38.7±0.5 62.1±0.5

SSP 80.5±2.6 91.7±1.5 93.8±1.0 95.0±0.2 70.8±2.7 86.6±1.9 89.2±0.9 92.3±0.4 39.2±2.2 54.9±1.5 62.7±0.7 65.0±0.3

Moderate 87.8±1.0 92.8±0.5 94.0±0.3 94.9±0.2 75.2±1.5 81.9±1.2 87.7±0.7 91.8±0.3 46.4±1.8 54.6±1.7 60.2±0.4 64.6±0.4

Pr4ReL 88.5±0.3 93.1±0.2 94.4±0.1 95.3±0.1 84.9±0.6 89.2±0.6 91.3±0.3 92.9±0.1 52.9±0.8 60.1±0.6 64.1±0.4 66.2±0.3

FDMat 85.7±2.1 92.3±0.5 94.1±0.4 94.6±0.3 85.0±0.3 86.7±1.2 90.2±1.6 92.9±0.2 38.7±0.2 53.8±0.2 61.3±0.2 65.4±0.2

RoP 87.9±-1.3 92.0±0.4 94.0±0.5 94.8±0.4 86.4±0.4 90.8±0.1 92.4±0.1 93.3±0.2 54.9±0.2 60.6±0.3 64.1±0.1 66.2±0.2

RoPB 89.2±2.1 93.3±0.5 94.6±0.4 95.3±0.3 85.4±0.4 89.6±0.4 91.7±0.1 93.3±0.2 53.3±0.2 60.9±0.2 64.3±0.1 66.3±0.2

Table 2: Performance without re-labeling on CIFAR-10N and CIFAR-100N by using RreAct
ResNet-18 over 3 different random seeds. The best results are in bold.

Learning

Models

Selection

Methods

CIFAR-10 CIFAR-100

Random (Noise ratio≈20%) Worst(Noise ratio≈40%) Random(Noise ratio≈40%)

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

CE

Random 75.5±1.1 81.0±0.9 83.8±0.4 84.9±0.3 58.3±0.6 70.1±0.4 74.2±0.4 77.1±0.3 37.6±1.2 46.5±0.8 50.0±0.5 52.0±0.4

GraNd 29.1±3.2 51.5±1.3 74.6±0.7 85.3±0.7 14.2±1.2 25.5±0.6 41.6±0.5 68.6±0.7 12.9±0.5 24.8±0.5 37.2±1.4 48.2±0.7

KCenter 75.6±0.5 82.7±0.5 84.8±0.7 85.2±0.4 57.3±0.9 70.9±0.7 76.1±0.7 78.0±0.4 40.8±0.4 48.6±0.6 53.1±1.0 54.7±0.7

Pr4Rel 76.2±0.9 77.2±0.7 83.5±0.5 85.4±0.5 62.1±0.4 72.2±0.6 75.3±0.6 77.9±0.5 20.9±0.7 39.0±1.3 48.0±0.7 52.7±0.5

FDMat 76.3±0.5 82.0±0.7 84.0±0.7 85.3±0.5 59.7±1.1 70.8±0.5 74.2±0.5 77.4±0.4 34.4±1.3 47.1±0.4 50.8±0.7 53.6±0.5

RoP 83.1±0.9 87.3±0.4 88.0±0.4 86.9±0.3 81.8±0.6 83.4±0.4 79.5±0.3 78.5±0.3 46.6±0.9 52.7±0.6 55.1±0.4 55.2±0.4

extreme pruning. And the probability that these hard samples are noisy labels is very high, which
makes it difficult for the model to learn these hard samples in the case of limited samples. On the
contrary, some methods such as Small loss and Moderate consider covering easy samples, so that
it is easy for the model to learn easy samples guaranteeing the performance of the model under ex-
treme pruning. In Tab. 1, RoP means that samples with smaller NLI-Score are selected for pruning,
while RoPB means that NLI-Score is sampled by using coverage. Due to NLI-Score considers the
consistency between neighboring samples, directly using RoP to select easy samples can achieve
excellent results on CIFAR-10N (Worst) and CIFAR-100N. RoPB further considers the coverage of
hard and easy samples, and weighs the performance under different pruning rates and ensure the
robustness.

Next, in Tab. 2, we analyze the performances of data pruning methods without using re-labeling
method. Our findings reveal that the RoP method significantly outperforms the other baselines,
particularly in the CIFAR-10N (Worst) dataset. This superior performance can be attributed to the
NLI-Score metric, which evaluates label consistency among neighboring samples, thereby enabling
RoP to select the maximum number of clean samples possible.

To further validate the efficacy of RoP in selecting clean samples using the LNI-Score, we compare
the number of noisy samples contained across different methods, as presented in Tab. 3. The results
indicate that the subset selected by RoP contains only 4.8% noisy labels, in stark contrast to 17%
for other methods when 20% of the samples from CIFAR-10N are selected. This demonstrates that
the NLI-Score effectively distinguish clean samples from noise label dataset.

Then, in Fig. 4, we compare the performances on a larger real noisy dataset, WebVision. We
observe that methods considering only single-sample information, such as Small and GraNd, fail on
large-scale datasets. However, the methods considering neighboring samples such as Pr4ReL and
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Table 3: Ratio of noisy samples in selected sub-
set.(10K images are selected from CIFAR-10N.)

Re-label
Model

Selection
Methods

CIFAR-10N(Random)
Test Acc. %Noisy

SOP+

Uniform 87.5 17.8
KCenter 86.3 17.0
Forget 82.4 17.0

Pr4ReL 88.1 17.0
RoP 89.2 4.8

Table 4: Comparison of baselines and RoP on
ImageNet-N. (Noise ratio≈20%)

Re-label
Model

Selection
Methods

ImageNet-1K
0.05 0.1 0.2 0.4

SOP+

Uniform 27.8 42.5 52.7 59.2
Small 22.8 31.4 42.7 54.4
Forget 4.1 8.3 50.6 57.2

Pr4ReL 30.2 44.3 53.5 60.0
RoP 31.0 44.7 55.6 63.4

Figure 4: Comparison of data pruning methods on
the large-scale real noisy WebVision dataset.

Figure 5: Data pruning efficiency on
ImageNet-N with a selection ratio of 0.2.

KCenter still have certain robustness. In contrast, methods that leverage neighboring samples, like
Pr4ReL and KCenter, demonstrate greater robustness. Importantly, RoP consistently outperforms
the compared methods on the WebVison dataset, especially as the subset size increases.

4.5 EXPERIMENTS ON SYNTHESIS NOISY DATASET.

In Tab. 4, we further validate the performance of RoP on synthesis noisy dataset ImageNet-N, which
incorporates 20% synthetic label noise into the widely used ImageNet-1K dataset. Our findings
indicate that RoP consistently outperforms random selection and other data pruning methods across
various pruning rates, with its advantages becoming most pronounced at lower pruning rates.

4.6 SELECTION EFFICIENCY

In data pruning tasks, the efficiency of sample selection is crucially important. In Fig. 5, we provide
a detailed comparison of selection efficiency across various methods. Our analysis reveals that
KCenter is ill-suited for large-scale datasets, primarily due to the substantial computational costs
associated with sub-modular functions. In contrast, the other methods exhibit only minor differences
in selection time, with the efficiency of RoP closely paralleling that of GraNd, both of which operate
within an acceptable range.

4.7 DIFFERENT RE-LABELING METHODS

In Tab. 5, we investigate the impact of various re-labeling methods on our proposed two-stage
framework. Specifically, we employ DivMix Li et al. (2020) as the re-labeling technique and conduct
experiments with different pruning rates on the CIFAR-N (Worst) dataset. Our results reveal that
methods utilizing DivMix exhibit a decline in performance compared to those using SOP+ Liu et al.
(2022b) . Nevertheless, our proposed approach maintains superior performance relative to the other
methods, even when DivMix is employed as the re-labeling strategy.
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Table 5: Comparison of baselines and RoP
by different re-labeling methods on CIFAR-10N
(Worst). All methods use RreAct ResNet-18 with
3 different random seeds. The best results are in
bold.

Re-label
Methods

Selection
Methods

CIFAR-10
Worst

0.2 0.4 0.6 0.8

DivMix

Random 83.2±0.2 88.5±0.1 90.2±0.0 91.4±0.0

Small 70.3±0.6 80.3±0.2 89.1±0.0 92.1±0.1

Margin 61.3±0.8 75.1±0.7 85.3±0.2 90.2±0.1

KCenter 82.7±0.8 88.4±0.1 90.6±0.1 92.2±0.0

Forget 78.3±0.6 88.3±0.2 90.4±0.1 92.0±0.2

GraNd 18.5±1.7 25.5±0.9 49.3±0.9 88.0±0.5

SSP 81.4±2.5 86.5±1.9 89.6±1.2 91.9±0.4

Moderate 81.4±1.2 86.5±0.6 90.0±0.6 91.6±0.2

Pr4ReL 83.7±0.4 88.6±0.4 90.8±0.2 92.4±0.2

FDMat 82.3±1.7 88.1±0.4 91.2±0.3 92.3±0.2

RoP 83.4±0.3 89.3±0.3 91.6±0.3 92.4±0.2

RoPB 84.4±0.1 88.6±0.2 92.4±0.3 93.2±0.2

Table 6: Ablation study of the two stages in RoP.
No-Rec. means neither feature nor label propaga-
tion is used to rectify neighborhood labels. Rec.
means using both feature and label propagation.

No-Rec. Rec. Re-labeling
CIFAR-10 (Worst)

0.2 0.4 0.6 0.8
✓ 80.5 82.1 77.8 77.8

✓ 81.8 83.4 78.5 78.5
✓ ✓ 85.4 90.2 92.0 92.9

✓ ✓ 86.4 90.8 92.4 93.3

Figure 6: Impact of neighborhood sample size K
on CIFAR-10N (Worst).

4.8 ABLATION STUDIES

In Tab. 6, we conduct ablation experiments to evaluate the effectiveness of the proposed two-stage
method. First, we examine the role of feature propagation and label propagation in rectifying the
predictions of neighboring samples. “Rec.” denotes the method that employs both feature propaga-
tion (FP) and label propagation (LP) techniques to rectify the predictions of neighboring samples,
while “No-Rec” refers to the method that dose not utilize these techniques. As shown in Tab. 6, af-
ter using FP and LP, the performance is improved compared to directly calculating the neighboring
label inconsistency even without using the re-labeling method. The results show that neighboring
label correction is effective and relabeling is crucial for noisy label processing. However, not using
the re-labeling method will cause the model to overfit to the noisy labels at low pruning rates, re-
sulting in a decrease in model performance. When the re-labeling method is used, the model avoids
overfitting to noisy labels to some extent, and the performance does not degrade at low pruning rates.

In addition, Fig. 6 presents ablation studies on the number of neighboring samples K used to
correct neighboring prediction when obtaining NLI-Score. We find that a smaller value K leads to a
decreased performance when the selection rate is low. However, as the number of selected samples
increases, the influence of K tends to be stabilized. When K is in the range of 10-15, the subset can
achieve reasonable performance.

5 CONCLUSION

We present a two-stage robust data pruning method, called RoP, designed for noisy label scenar-
ios. Initially, RoP identifies the clean samples and subsequently re-labels these selected samples.
To identify clean samples, RoP introduces a novel metric termed the neighborhood label inconsis-
tency score (NLI-Score), which quantifies the divergence discrepancy between a given label and
predictions of neighboring samples. During the process of obtaining NLI-Score, RoP employs fea-
ture and label propagation to rectify neighboring predictions, thereby exploring the interrelations
among them more deeply. Then, RoP selects samples by NLI-Score, and uses the density-based
coverage sampling method to balance the number of easy and hard samples, which ensures the ro-
bustness across different pruning rates. Finally, RoP re-labels the selected subset using different
re-labeling methods. RoP is limited by the performance of the chosen re-labeling methods. Exten-
sive experiments demonstrate the effectiveness of the proposed data pruning method under noisy
label scenarios.
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6 REPRODUCIBILITY STATEMENT

The code is available at anonymous link https : //anonymous.4open.science/r/RoP − 6D60.
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A APPENDIX

Algorithm 2 CCS: Coverage-centric Coreset Selection
Input: S = {NLI-Score(xi)}ni=1: dataset with the NLI-Score for each example;
α: data pruning rate;
β: hard cutoff rate (β ≤ 1− α); k: the number of strata.
Output: Pruned data S∗

1: S′ ← S\{[n ∗ β]hardestexamples} ;
2: B′ ← {Bi\{[n ∗ β]hardestexamples} ;
3: R1, R2, ...Rk ← Split scores in S′

into k ranges with an even range width ;
4: B ← {Bi, : Bi : consists of examples whose scores are in Ri, i = 1...k};
5: while B ≤ ∅ do
6: R1, R2, ...Rk ← Split scores in S′

into k ranges with an even range width ;
7: Bmin ← argmin

B∈B
|B|;

8: mB ← min{|Bmin|, | m|B|};
9: SB ← randomly sample mB examples from Bmin;

10: Sc ← Sc ∪ SB
11: B ← B∅{Bmin}
12: m← m−mB

13: end while
14: Return S∗

A.1 DETAILS FOR COVERAGE SAMPLING

We leverage the density-based Coverage- centric Coreset Selection (CCS) Zheng et al. (2022b) to
trade off the number of hard and easy samples, as outlined in Algorithm 2. CCS first partitions
the dataset into distinct, non-overlapping strata, with each stratum defined by a fixed-length range of
NLI-Scores. Though the NLI-Score ranges are uniform across strata, the number of examples within
each stratum may vary. CCS then sets an initial budget on the number of examples to be selected
from each stratum, based on the desired pruning rate. However, if a particular stratum contains fewer
examples than the allocated budget, the excess budget is evenly redistributed across the remaining
strata.

A.2 DETAILS FOR SYNTHESIS IMAGENET-N

Since ImageNet-1K is a clean dataset with no known real label noise, we inject the synthetic label
noise to construct ImageNet-N. Specifically, we inject asymmetric label noise to mimic real-world
label noise following the prior noisy label literature. When targeting an r% noise ratio for ImageNet-
N, we randomly select r% of the training examples from each class c in ImageNet-1K and then
systematically flip their labels to the next consecutive class c+ 1, i.e., class 0 into class 1, class 1
into class 2, and so on. This deliberate label flipping strategy is reasonable, as consecutive classes are
often semantically related, belonging to the same high-level conceptual category. For the selected
examples from the final class 1000, we uniquely flip their labels to class 0, completing the circular
noise injection process. This holistic label corruption approach serves to recreate the complex,
heterogeneous noise characteristics typically encountered in real-world visual recognition datasets,
providing a more realistic test environment for our subsequent research endeavors.

A.3 LIMITATION AND SOCIAL IMPACT

A.3.1 LIMITATION

While the RoP has consistently demonstrated its effectiveness in tackling classification tasks in-
volving real-world and synthetically introduced label noise, its applicability on datasets plagued by
open-set noise or containing out-of-distribution examples remains to be validated. Moreover, we
have not yet assessed the efficacy of RoP when applied to state-of-the-art deep learning models,
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Table 7: Summary of the hyperparameters for training SOP+ on the CIFAR-10N/100N,Webvision,
and ImageNet-N datasets.

Hyperparamters CIFAR-10N CIFAR-100N WebVision ImageNet-N

Training
Configuration

architecture PreAct PresNet18 PreAct PresNet18 InceptionResNetV2 ResNet50
warm-up epoch 10 30 10 1
training epoch 300 300 100 10

batch size 128 128 32 32
learning rate(lr) 0.02 0.02 0.02 0.02

lr scheduler Cosine Annealing Cosine Annealing MultiStep-50th MultiStep-50th

SOP+

λC 0.9 0.9 0.1 0
λB 0.1 0.1 0 0

lr for u 10 1 0.1 0.1
lr for v 100 100 1 1

such as large language models and vision-language architectures. Verifying the performance of RoP
across this expanded range of datasets and model paradigms would be immensely valuable, as the
need for robust data pruning strategies in the face of annotation noise is a ubiquitous challenge
permeating a wide spectrum of real-world applications. Additionally, the Robustness to Perturba-
tions approach has yet to be validated in other realistic data pruning scenarios, such as continual
learning and neural architecture search, where the selective retention of informative examples is of
paramount importance. We intend to address these crucial research gaps in our future work. By
rigorously evaluating the versatility and generalizability of RoP across diverse datasets, model ar-
chitectures, and application domains, we can further solidify its standing as a powerful and adaptable
tool for mitigating the detrimental effects of label noise.

A.3.2 SOCIAL IMPACT

When it comes to preserving model performance while simultaneously reducing computational costs
and energy consumption – which can lead to tangible benefits like lowering carbon dioxide emis-
sions – we recognize the inherent challenges involved. However, we firmly believe that the tech-
niques and approaches we explore in this work do not lend themselves to any nefarious or negative
applications.

It is our conviction that by optimizing model performance and computational efficiency hand-in-
hand, we can pave the way for wider adoption of AI technologies while minimizing their environ-
mental footprint. This dual objective is a key driver behind our research, as we strive to create
practical, ethical, and impactful solutions that benefit both the technical and the social realms. We
remain steadfast in our commitment to responsible innovation, ensuring that our advancements in
machine learning serve the greater good and do not give rise to any concerning social ramifications.

A.4 EXPERIMENT DETAILS

In Tab. 6, we provide a comprehensive summary of the configurations and hyperparameters em-
ployed during the training of the Re-labeling stage. The hyperparameters for the SOP+ method have
been favorably configured in accordance with the original publication Liu et al. (2022a). SOP+ in-
volves several key hyperparameters: λC for weighting the self-consistency loss, λB for weighting
the class-balance objective, and learning rates for training its additional variables u and v. Specifi-
cally, for CIFAR-10N, we use λC = 0.9 and λB = 0.1, and set the learning rates of u and v to 10 and
100, respectively. For CIFAR-100N, the hyperparameters are set as λC = 0.9, λB = 0.1, the learning
rates of u and v to 1 and 100, respectively. On the WebVision dataset, we employ λC = 0.1 and λB

= 0, and the learning rates of u and v to 0.1 and 1, respectively. For the ImageNet-N dataset, the
hyperparameters are λC = 0, λB = 0, and the learning rates of u and v are 0.1 and 1, respectively.

Furthermore, the hyperparameters of all compared data pruning methods are also favorably config-
ured based on the recommendations from their respective prior works. Specifically, for CIFAR-10N
and CIFAR-100N, A PreAct Resnet-18 is trained for 300 epochs using SGD with a momentum of
0.9, a weight decay of 0.0005, and a batch size of 128. The initial learning rate is 0.02, and it is
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decayed with a cosine annealing scheduler. For WebVision, InceptionResNetV2 is trained for 100
epochs with a batch size of 32. For ImageNet-N, ResNet-50 model is trained for 50 epochs with a
batch size of 64 and an initial learning rate of 0.02, also decayed with a cosine annealing scheduler.
All methods are implemented with PyTorch 1.8.0 and executed on NVIDIA Tesla A100 GPUs.
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