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Abstract

This paper explores the potential of Kolmogorov-Arnold Networks (KAN) as an
alternative to traditional Multi-Layer Perceptrons (MLPs) for hand gesture classi-
fication. While MLPs are integral to many AI applications, they have limitations
such as inefficiency in parameter usage and a lack of interpretability. KANs ad-
dress these issues by introducing adaptive, univariate functions that serve as both
weights and activation functions, enhancing both the efficiency and flexibility of the
network. Experiments were conducted using surface electromyography (sEMG)
data from 30 participants performing seven hand gestures. The data were pro-
cessed through a series of steps, including signal filtering, windowing, and feature
extraction. The results showed that KANs performed comparably to, or better
than, traditional classifiers such as Neural Networks, Random Forest, and Extreme
Gradient Boosting, particularly when larger window sizes were used. However, the
training time and risk of overfitting remain challenges. Overall, KANs demonstrate
promise for low-resource systems like prosthetics, warranting further exploration
in real-world applications and with larger datasets.

1 Introduction

Various methodologies have been used for hand gesture recognition, with surface electromyogram
(sEMG) data being particularly effective. sEMG signals, generated by muscle movements, are
valuable in developing medical devices like prosthetics and rehabilitation tools(20). These signals
provide key information for intelligent systems, often classified using machine learning (ML) meth-
ods such as XGBoost, Random Forest, k-nearest neighbors (kNN), and support vector machines
(SVM)(21)(23) (22)(24). Features for classification are extracted from sEMG signals across time,
frequency, and time–frequency domains. ML-based approaches have achieved accuracies from
70% to 95% (30)(31). In addition to traditional ML approaches, deep learning (DL) methods that
are more complex variants of the artificial neural networks (ANNs) commonly used in ML have
recently gained popularity for hand gesture classification. DL methods, especially convolutional
neural networks (CNNs), have gained popularity for gesture classification due to their ability to
automatically extract features. However, studies such as (1), (2), and (3) highlight that although
these sophisticated models achieve high accuracy, their computational complexity and longer average
processing times make them unsuitable for real-time applications, where rapid response is critical
and resources are limited, simpler algorithms with lower computational complexity are often more
practical. Various studies, such as (4), (5), (6), (25), and (26), have implemented ML algorithms
that, while requiring lower computational power, still achieve relatively strong performance, making
them suitable for real-time applications. Given these considerations, this study explores KANs as an
alternative neural architecture for classifying hand gestures using sEMG signals. This makes KANs
an option for real-time gesture classification.
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Figure 1: Left: Illustrates the notation for activations flowing through the network. Right: Depicts an
activation function parameterized as a B-spline. The parameter k determines the type of B-spline
used, enabling the activation function to transition between coarse-grained and fine-grained grids,
providing flexibility in capturing data patterns.(8)

The structure of the paper is as follows: Section 2 reviews the key concepts of KANs and sEMG
signal processing. Section 3 describes our proposed approach, and the configuration and evaluation
of the KAN model. Section 4 presents the results, comparing KAN’s performance with traditional
machine learning models for sEMG. Finally, Section 5 summarizes the findings and explores future
research directions.

2 Background

2.1 Kolmogorov-Arnold Networks(KAN)

Multi-layer perceptrons (MLPs) are widely used for approximating nonlinear functions(27). However,
they come with notable limitations. In transformer architectures MLPs make up the bulk of non-
embedding parameters, leading to potential inefficiencies(28)(29).

To fully appreciate the potential of KANs as an alternative, it’s important to revisit the role of
Multi-Layer Perceptrons (MLPs), which have traditionally served as the backbone of AI applications.
MLPs are integral to AI, structuring computations through a series of layered transformations, which
can be understood as:

f(x) = σ(W ∗ x+B) (1)

The key to training these networks is optimizing the weights (W ). On the other hand, KAN redefines
how activation functions σ are used. Unlike the static and non-learnable activation functions in MLPs,
KAN utilizes univariate functions that serve a dual role as both weights and activation functions.
These functions adapt and evolve as part of the learning process, which can be understood as:

f(x1, x2) = ϕ2(ϕ2,1(ϕ1,1 ∗ (x1) + ϕ1,2 ∗ (x2)) (2)

Where: x1 and x2 are inputs, ϕ1,1 and ϕ1,2 are specific univariate functions for each input, combined
and then processed through another function ϕ2 in the subsequent layer. The innovations of KANs
are clearly illustrated in Figure 1.

KANs introduces non-linearity before summing inputs and relocates activation functions to the edges
of the network instead of embedding them within neurons. This shift allows for a more nuanced
handling of individual features, making KANs both more intuitive and efficient. These innovations
give KANs the potential to excel at complex and dynamic tasks, offering a fundamentally improved
architecture that goes beyond incremental improvements seen in traditional models.
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Figure 2: The schematic visualization of the feature extraction process involves 6 input channels, each
representing multivariate time series data. Using a step size (s) of 50 ms and a window length (W)
of various sizes (e.g., 200 ms), each time series generates a 9-dimensional feature vector, capturing
essential characteristics of the data within the specified window.).

3 Proposal

3.1 sEMG Data Collection and Signal Filtering

We used publicly available sEMG data from (17), collected in accordance with the Helsinki Decla-
ration and approved by Izmir Katip Celebi University (IKCU). The dataset consists of 30 healthy
participants (15 male, 15 female, average age 22.37 ± 1.47 years) performing seven hand gestures.
Signals were recorded from the flexor and extensor muscles of the right hand during 6-second gesture
intervals, with 4-second rests, over five 74-second cycles, totaling 490 seconds per participant.

To reduce environmental noise, raw sEMG signals were filtered with a sixth-order Butterworth
band-pass filter (5–500 Hz). The signals were segmented based on the steady-state muscle activity,
excluding transition phases. Windowing was applied using rectangular sliding windows of varying
lengths (50–200 ms) with a 25 ms shift, enabling optimized feature extraction and classification
performance.

3.2 Feature extraction

According to (10)(30)(31), the most commonly extracted features from sEMG signals in-
clude Integrated EMG(IEMG), Mean Absolute Value(MAV)(15), Modified Mean Abso-
lute Value(MMAV1)(12), Willison amplitude(WAMP)(13), Root Mean Square(RMS)(14), V-
Order(V3)(15), Waveform Length(WL)(16), Average Amplitude Change(AAC), Slope Sign
Changes(SSC). These nine features generate a feature vector, which can be formalized by accounting
for the multiple channels of sEMG data. If the sEMG signal for M gestures is acquired using a
device with C channels over time, and F features are adopted to describe each gesture, the feature
vector of m− th gesture Dm can be defined by the following equation:

Dm = [dm1,1, d
m
1,2, ..., d

m
1,F , d

m
2,1, d

m
2,2, ..., d

m
2,F , d

m
c,1, d

m
c,2, ..., d

m
C,F ] (3)

Where, dmc,f represents the f-th feature of the c-th channel for the m-th gesture. This paper uses
M = 3, 7 to evaluate the performance of the KAN architecture. Initially, we compare the performance
using 3 gestures: rest, extension, and flexion. Subsequently, we extend the comparison to 7 gestures
by adding ulnar deviation, radial deviation, and punch. Additionally, we use C = 6 channels and
F = 9 features. The schematic visualization of the feature extraction is presented in Figure 2.
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Table 1: Summary for the best hyperparameter tuning results of the machine learning models. For KAN model
"Hidden layer": refers to the number of basis functions,"Grid": determines the interval over which the activation
function operates, "k": This parameter is related to the type of B-spline used in the activation function

Model 3-Gestures 7-Gestures

XGBoost Maximum tree’s depth: 6 Maximum tree’s depth: 7
Learning rate: 0.01 Learning rate: 0.01
Columns per tree: 0.9 Columns per tree: 0.9

Random Forest Estimators: 14 Estimators: 34
Max depth: 21 Max depth: 11

Neural Networks Activation function: “tanh” Activation function: “tanh”
Alpha: 0.24 Alpha: 0.24
Hidden layer size: (8,) Hidden layer size: (14,)

ExtraTree Criterion: Gini Criterion: Gini
Max depth: 11 Max depth: 12
Estimators: 10 Estimators: 36

KAN Grid: 3 Grid:3
Hidden layer size: 17 Hidden layer size:17
k:3 k:3

Table 2: Classification scores for 3-gesture and 7-gesture groups improved with increasing window size, showing
significant gains up to 200 ms. Beyond 200 ms, the performance improvements plateau, making 200 ms the
optimal balance between accuracy and computational efficiency

Windows 100 150 200
Gestures Model Accuracy Recal F1 Accuracy Recal F1 Accuracy Recal F1

3

NN 0.7750 0.7434 0.744 0.832 0.8344 0.8331 0.8567 0.8444 0.8505
RF 0.8112 0.8023 0.810 0.8598 0.8677 0.8637 0.8758 0.8923 0.8839

XGB 0.8123 0.821 0.818 0.8609 0.8501 0.8554 0.9012 0.8979 0.8995
ET 0.8023 0.7923 0.7923 0.8459 0.8504 0.8479 0.8858 0.8777 0.8817

KAN 0.8234 0.8013 0.8121 0.8602 0.8705 0.8653 0.8969 0.9005 0.8986

7

NN 0.6745 0.6069 0.6069 0.8219 0.8214 0.8216 0.833 0.8422 0.8375
RF 0.7323 0.7545 0.7432 0.8333 0.8298 0.8315 0.8923 0.901 0.8966

XGB 0.7512 0.7628 0.7569 0.8513 0.8485 0.8498 0.9001 0.8874 0.8937
ET 0.7301 0.7247 0.7273 0.84 0.8322 0.8360 0.8717 0.8699 0.8707

KAN 0.7554 0.7589 0.7571 0.8495 0.8542 0.8518 0.8896 0.8915 0,8905

4 Preliminary Results and Conclusions

The extracted feature vectors are used as inputs for both the KAN architecture and classical classifiers
to train and compare their performance. Four classification algorithms were selected for comparison:
Neural Networks (NN), Random Forest (RF), Extreme Gradient Boosting (XGB), and Extra Trees
(ET) (19), (18). When using machine learning models, key considerations include evaluation metrics
such as F1-Score, Accuracy, and Recall, along with 5-fold cross-validation and hyperparameter tuning
(18). Hyperparameters, which govern the training process, significantly impact model performance
(19). To achieve optimal results, an extensive hyperparameter search was conducted for each model,
including KANs, where precise tuning is also necessary. Table 1 summarizes the best hyperparameters
obtained for each model. The classification results are presented in Table 2, with the highest scores in
each row highlighted in bold.

Key insights from the evaluation of KAN show Table 2 that KAN delivers competitive performance
in hand gesture classification, particularly with larger window sizes (e.g., 200 ms). Its accuracy
and F1 scores match or surpass those of models like XGBoost and Random Forest, demonstrating
KAN’s ability to effectively capture complex patterns in gesture data, making it a strong candidate
for precise classification tasks. Unlike resource-heavy models such as deep neural networks, KAN
excels in scenarios where computational resources are limited. This makes it ideal for applications
like prosthetics and embedded systems, where efficiency and low latency are critical. By Other
hand, KAN faces challenges with long training times and overfitting when hyperparameters are
not finely tuned, highlighting the need for further research to optimize its training process. Finally
KAN’s straightforward design offers advantages for rapid deployment and use in resource-constrained
environments, making it a valuable tool despite its simplicity.

In conclusion, while KAN faces some training challenges, its performance and efficiency in gesture
classification demonstrate its potential as a viable alternative to more complex models.
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