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ABSTRACT

Diffusion models have recently outperformed alternative approaches to model
the distribution of natural images. Such diffusion models allow for deterministic
sampling via the probability flow ODE, giving rise to a latent space and an encoder
map. While having important practical applications, such as the estimation of the
likelihood, the theoretical properties of this map are not yet fully understood. In the
present work, we partially address this question for the popular case of the VP-SDE
(DDPM) approach. We show that, perhaps surprisingly, the DDPM encoder map
coincides with the optimal transport map for common distributions; we support this
hypothesis by extensive numerical experiments using advanced tensor train solver
for multidimensional Fokker-Planck equation. We provide additional theoretical
evidence for the case of multivariate normal distributions.

1 INTRODUCTION

Denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) have
recently outperformed alternative approaches to model the distribution of natural images both in the
realism of individual samples and their diversity (Dhariwal & Nichol, 2021). These advantages of
diffusion models are successfully exploited in applications, such as colorization (Song et al., 2021b),
inpainting (Song et al., 2021b), super-resolution (Saharia et al., 2021; Li et al., 2022), and semantic
editing (Meng et al., 2021), where DDPM often achieve more impressive results compared to GANs.

One crucial feature of diffusion models is the existence of a deterministic invertible mapping from
the data distribution to the limiting distribution of the diffusion process, commonly being a standard
normal distribution. This approach termed denoising diffusion implicit model (DDIM) (Song
et al., 2021a), or the probability flow ODE in the continuous model (Song et al., 2021b), allows
to invert real images easily, perform data manipulations, obtain a uniquely identifiable encoding,
as well as to compute exact likelihoods. Despite these appealing features, not much is known
about the actual mathematical properties of the encoder map and corresponding latent codes, which
is the question we address in this work. Concretely, in this paper, we show that for the DDPM
diffusion process, based on the Variance Preserving (VP) SDE (Song et al., 2021b), this encoder
map with a large numerical accuracy coincides with the Monge optimal transport map between the
data distribution and the standard normal distribution. We provide extensive empirical evidence on
controlled synthetic examples and real datasets and give a proof of equality for the case of multivariate
normal distributions. Our findings suggest a complete description of the encoder map and an intuitive
approach to understanding the ‘structure’ of a latent code for DDPMs trained on visual data. In this
case, the pixel–based Euclidean distance corresponds to high–level texture and color–level similarity,
directly observed on real DDPMs. To summarize, the contributions of our paper are:
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1. We theoretically verify that for the case of multivariate normal distributions the Monge
optimal transport map coincides with the DDPM encoder map.

2. We study the DDPM encoder map by numerically solving the Fokker-Planck equation on a
large class of synthetic distributions and show that the equality holds up to negligible errors.

3. We provide additional qualitative empirical evidence supporting our hypothesis on real
image datasets.

2 REMINDER ON DIFFUSION MODELS

We start by recalling various concepts from the theory of diffusion models and stochastic differential
equations (SDEs).

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising diffusion probabilistic models (DDPMs) is a class of generative models recently shown to
obtain excellent performance on the task of image synthesis (Dhariwal & Nichol, 2021; Ho et al.,
2020; Song et al., 2021b). We start with a forward (non-parametric) diffusion which gradually adds
noise to data, transforming it into a Gaussian distribution. Formally, we specify the transitions
probabilities as

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)

for some fixed variance schedule β1, . . . , βt. Importantly, a noisy sample xt can be obtained directly
from the clean sample x0 as xt =

√
ᾱtx0 +

√
1− ᾱtz, with z ∼ N (0, I) and αt := 1 − βt,

ᾱt :=
∏t

s=1 αs. The generative model then learns to reverse this process and thus gradually produce
realistic samples from noise. Specifically, DDPM learns parameterized Gaussian transitions:

pθ(xt−1|xt) := N (xt; aθ(xt, t), σt). (2)

In practice, rather than predicting the mean of the distribution in Equation (2), the noise predictor
network ϵθ(xt, t) predicts the noise component from the sample xt and the step t; the mean is then
a linear combination of this noise component and xt. The covariances σt can be either fixed or
learned as well; the latter was shown to improve the quality of models (Nichol & Dhariwal, 2021).
Interestingly, the noise predictor ϵθ(xt, t) is tightly related to the score function (Stein, 1972; Liu
et al., 2016; Gorham, 2017) of the intermediate distributions; specifically by defining sθ(xt, t) as

sθ(xt, t) =
ϵθ(xt, t)√
1− ᾱt

(3)

we obtain that sθ∗(xt, t) ≈ ∇x log pt(xt), with pt(xt) being the density of the target distribution
after t steps of the diffusion process and θ∗ are the parameters at convergence.

Stochastic and deterministic sampling. Given the DDPM model, the generative process is ex-
pressed as

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
+ σtz,

with the initial sample xT ∼ N (0, I) and z ∼ N (0, I). The sampling procedure is stochastic,
and no single ‘latent space‘ exists. The authors of Song et al. (2021a) proposed a deterministic
approach to produce samples from the target distribution, termed DDIM (denoising diffusion implicit
model). Importantly, this approach does not require retraining DDPM and only changes the sampling
algorithm; the obtained marginal probability distributions pt are equal to those produced by the
stochastic sampling. It takes the following form:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√

1− ᾱt−1 · ϵθ(xt, t). (4)

By utilizing DDIM, we obtain a concept of a latent space and encoder for diffusion models, since the
only input to the generative model now is xT ∼ N (0, I) for sufficiently large T . In the next section,
we will see how it is defined in the continuous setup.
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2.2 SDE VIEW ON DIFFUSION MODELS

The authors of Meng et al. (2021) proposed to view diffusion models as a discretization of certain
stochastic differential equations. SDEs generalize standard ordinary differential equations (ODEs) by
injecting random noise into dynamics. Specifically, the diffusion process specified by Equation (1) is
a discretization of the following SDE:

dx = −1

2
β(t)xdt+

√
β(t)dw. (5)

where dx is an increment of x over the infinitesimal time step dt. Here, w represents a Brownian
motion process, so dw can be intuitively understood as an infinitesimal Gaussian noise. Similar to
DDPMs, an initial distribution with density p0 evolves into a standard normal distribution under
this SDE. Various DDPM algorithms can be seen as discretizations of SDE-based algorithms. For
instance, the continuous analogue of DDIM sampling (4) is constructed in the following way. The
following (deterministic) ODE, termed probability flow ODE (Song et al., 2021b)

dx = −β(t)

2
[x+∇x log pt(x)] dt, (6)

results in the same marginal distributions pt as given by the SDE (5). Here, the score function
∇x log pt(x) is similarly approximated via a neural network during training. If we reverse this ODE,
we obtain a mapping from the limiting distribution to the data distribution. It turns out that the DDIM
sampling is a discretization of this continuous approach (Song et al., 2021b).

The well-developed theory of SDEs provides us with a rigorous mathematical apparatus allowing
us to study the properties of diffusion models at hand. We will utilize the following well-known
equation termed the forward Kolmogorov, or Fokker-Planck equation (Risken, 1996). This equation
determines how a density p0 evolves under a (general) SDE. For (5) it takes the following form:

∂pt
∂t

=
β(t)

2

[
∇x · (xpt) +∇2

xpt
]
. (7)

Note, that β(t) can be removed from (7) by change of variables dt := β(t)
2 dt, resulting in the PDE of

the form
∂pt
∂t

= ∇x · (xpt) +∇2
xpt. (8)

Without loss of generality, we will work with this simplified equation since the specific form of β(t)
does not affect the results. In this case, the probability flow ODE takes the following form:

dx = − [x+∇x log pt(x)] dt. (9)

Encoder map. As mentioned above, by considering the probability flow ODE (6), we can obtain
latent codes for samples from the original distribution. For a given distribution µ0 and a timestep t,
let us denote the flow generated by this vector field as Eµ0(t, ·). I.e., a point x ∼ µ0 is mapped to
Eµ0(t, x) when transported along the vector field for a time t. The ‘final’ encoding map is obtained
when t → ∞, i.e,

Eµ0
(x) := lim

t→∞
Eµ0

(t, x).

Note that Eµ0 implicitly depends on all the intermediate densities µt obtained from the diffusion
process (or the Fokker-Planck equation).

3 DDPM ENCODER AND OPTIMAL TRANSPORT

By construction and properties of the phase flow, the map Eµ transforms the original distribution
µ0 into the standard normal distribution π := µ∞ ∼ N (0, I). Our further analysis investigates a
perhaps surprising hypothesis that this map is very close to the optimal transport map. How to arrive
at this idea? A priori, it seems nontrivial that the theory of optimal transportation is related to the
Fokker-Planck equation and diffusion processes. Some intuition may be obtained from the Otto
calculus (Otto, 1996; 2001; Villani, 2009). It presents an alternative view of the solutions of the
Fokker-Planck-type PDEs and diffusion equations in the following manner. It can be shown that the
trajectory {µt}∞t=0, obtained by solving the Fokker-Planck equation (or an equivalent diffusion SDE),
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t = 0.0 t = 1.0 t = 2.0 t = 3.0

x∼ µ
Eµ(x)∼N (0,1)

Figure 1: A toy example of our approach on a 2d multivariate normal distribution µ. The first four
plots visualize the diffusion process. The fifth plot demonstrates the trajectories of the probability
flow ODE. In this case, the optimal transport map is known analytically and exactly coincides with
the mapping Eµ, introduced in Section 3.2. Note that the trajectories of the probability flow ODE are
not straight lines even in this simple case.

is, in fact, the gradient flow of a certain functional in the Wasserstein space of probability measures.
Moreover, locally, optimal transport maps between two ‘consecutive’ densities (i.e., separated by an
infinitesimal time interval) along this trajectory are given precisely by the flow of the ODE (6). Thus,
this trajectory is generally a sequence of infinitesimal optimal transports, which may not result in the
‘global’ optimal transport map. However, our experiments suggested that in the case when the target
density is N (0, I) as in DDPMs, the map is practically indistinguishable from the optimal transport
map. We start with a toy example and then proceed to more general cases.

3.1 TOY EXAMPLE

One of the few cases when both optimal transport and diffusion equations can be solved explicitly
is the case of multivariate Gaussian distributions. For simplicity, in this example, we consider
µ0 ∼ N (a, I) with a ∈ Rn and I ∈ Rn×n being the identity matrix. Rather than utilizing
Equation (8) to obtain intermediate density values, we can do it directly from the transition formulas
for SDE (5) found in Song et al. (2021b); Särkkä & Solin (2019); the corresponding probabilities
then take the form:

µt ∼ N (ae−t, I). (10)

The probability flow ODE takes the form dx
dt = −ae−t. Solving this ODE amounts to simply

integrating the function in the right-hand side, and in the limit t → ∞ we obtain Eµ0(x) = x− a.
Note that this is exactly the optimal transport map between µ0 and N (0, I).

3.2 REMINDER ON OPTIMAL TRANSPORT

We now briefly recall the main definitions of the optimal transport theory. For a thorough review
of optimal transport, we refer the reader to classical texts such as Thorpe (2018); Villani (2009);
Ambrosio et al. (2005).

Kantorovich and Monge formulation. Suppose we have two random variables with densities µ
and ν supported on spaces X and Y respectively (in our work, we only consider distributions in
Euclidean spaces). We consider the optimal transport problem between µ and ν. There are several
possible formulations of this task, namely the Kantorovich formulation and Monge formulation.
Under quite general assumptions, these two formulations are equivalent. We will start from the
Kantorovich formulation. In this formulation, we consider densities γ ∈ P(X × Y ) such that their
marginal densities are µ and ν respectively. Such set is denoted by Π(µ, ν) and its elements are
termed transport plans. The Kantorovich formulation of the optimal transport problem is finding the
optimal transport plan: ∫

c(x, y)γ(x, y)dxdy → min
γ∈Π(µ,ν)

, (11)

where c(x, y) is a cost function. Under quite general assumptions on µ, ν, there exists a unique
solution to the Kantorovich problem. Rather than working with transport plans, it is more convenient
to work with transport maps, which provide the means to actually move one distribution to another.
In this formulation (termed the Monge formulation), our goal is to find a transport map S : X → Y
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such that ∫
c(x, S(x))µ(x)dx → inf

S
, (12)

over all µ-measurable transport maps S such that ν = S#µ. Here, S#µ is the push-forward measure,
i.e., (S#µ)(A) = µ(S−1(A)) for all measurable sets A.

Importantly, for non-atomic measures, these two definitions are equivalent (Villani, 2009). Given
an optimal transport map, it can be straightforwardly converted to the optimal transport plan. Such
a plan is deterministic, as we know precisely where to move each point. In this work, we consider
the quadratic cost function, i.e., c(x, y) = ∥x − y∥2, as commonly done in the study of diffusion
equations and gradient flows in Wasserstein spaces Villani (2009). In this case, the distance between
distributions is denoted as W2(·, ·) and is given by the square root of the optimal transport cost (11).
In the appendix, we also discuss the Benamou-Brenier formulation of optimal transport.

3.3 MULTIVARIATE NORMAL DISTRIBUTION CASE

We start by showing theoretically that for arbitrary multivariate normal distributions, the DDPM
encoder map coincides with the optimal transport map. This map is known analytically for normal
distributions in the case of the quadratic cost function (Givens & Shortt, 1984).
Theorem 3.1. Let µ0 ∼ N (a(0),Σ(0)) be a multivariate normal distribution. Then Eµ0

is the
Monge optimal transport map between µ0 and N (0, I), i.e.,

Eµ0
(x) = Σ(0)−

1/2(x− a(0)).

See the appendix for the proof.

Discussion. We show that for multivariate normal distributions, the probability flow induced by the
DDPM diffusion reduces to the optimal transport map in the limit. Despite the apparent simplicity of
this case, the proof requires a non-trivial argument about the probability flow ODE. Thus, it is hard to
attribute this result to a mere coincidence. We hypothesize that the statement of Theorem 3.1 is valid,
perhaps, approximately, for arbitrary distributions (or at least a very large class of distributions), but
defer more precise theoretical analysis of this statement to future work. For now, we thoroughly
evaluate this hypothesis on a large class of synthetic and real distributions and show that it holds
with high numerical precision. Very recently, in Lavenant & Santambrogio (2022) appeared a
counterexample to the above statement with the two maps not being exactly equal (at a single
point). However, our further analysis suggests that when given a finite number of samples in higher
dimensions, the difference is still extremely low.

3.4 NUMERICAL EXPERIMENTS ON SYNTHETIC DATA

In this section, we numerically evaluate the aforementioned optimal transport map hypothesis. The
main computational difficulty is the solution of the multidimensional Fokker-Planck equation (8).
To maintain accuracy in traditional discretization-based numerical methods, the number of degrees
of freedom of the approximation, i.e., the number of unknowns, grows exponentially as the di-
mensionality of the underlying state-space increases. In recent years, low-rank (low-parametric)
tensor approximations have become especially popular for solving multidimensional problems in
various fields of knowledge (Cichocki et al., 2016; 2017). Recently proposed approach (Chertkov &
Oseledets, 2021) for the solution of the Fokker-Planck equation utilizing low-rank tensor train (TT)
format (Oseledets, 2011), Chebyshev interpolation, splitting and spectral differentiation techniques,
allowing us to consider sufficiently fine grids.

Method. We start by numerically solving the Fokker-Planck equation for an initial density p0(x) ≡
p(x, 0). According to approach (Chertkov & Oseledets, 2021), Equation (8) is discretized on a
tensor-product Chebyshev grid with N nodes for each dimension, and the density p at each time
step is represented as a d-dimensional tensor (array) P . This tensor is approximated in the low-rank
TT-format

P[n1, n2, . . . , nd] ≈
R1∑

r1=1

R2∑
r2=1

· · ·
Rd−1∑

rd−1=1

G1[1, n1, r1]G2[r1, n2, r2] . . .Gd[rd−1, nd, 1], (13)
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where nk = 1, 2, . . . , N (k = 1, 2, . . . , d) represent the multi-index, three-dimensional tensors
Gk ∈ RRk−1×N×Rk are named TT-cores, and integers R0, R1, . . . , Rd (with convention R0 =
Rd = 1) are named TT-ranks. Storage of the TT-cores G1,G2, . . . ,Gd requires less or equal than
d×N ×max1≤k≤d R

2
k memory cells instead of Nd cells for the uncompressed tensor, and hence the

TT-decomposition is free from the curse of dimensionality if the TT-ranks are bounded. Thus, at each
time step m = 1, 2, . . . , tmax

h , we obtain discrete values of the density p(x,mh), represented in the
compact TT-format as in Equation (13). In the appendix, we describe the algorithm in more details.

Next, we solve the probability flow ODE from Equation (9). We sample a set of points, termed
X0, from the original density p0(x) (since the initial density is presented in the TT-format, we use
a specialized method for sampling from (Dolgov & Scheichl, 2019)). Then we numerically solve
the probability flow ODE with the Runge-Kutta method (DeVries & Wolf, 1994) for each point (we
calculate the density logarithm gradient using the spectral differentiation methods in the TT-format
from (Chertkov & Oseledets, 2021)). The resulting set is denoted as X1.

Given these two point clouds, X0 and X1, we numerically compute the optimal transport cost with
the Python Optimal Transport (POT) library (Flamary et al., 2021). We then compute the
transport cost for the map sending a point xi ∈ X0 to its counterpart Ep(xi) ∈ X1. Our hypothesis
suggests that these two costs will be equal to a reasonable precision.

Distributions. We consider d-dimensional distributions specified by the following set of parameters:
a1 ∈ Rd, a2 ∈ Rd, Q1 ∈ Rd×d, Q2 ∈ Rd×d, with Q1 and Q2 being symmetric positive definite.
Given these parameters, we set the density p(x) (with x ∈ Rd) by the following formula

p(x) =
1

Z
exp (−q1(x)− q2(x)),

q1(x) = (x− a1)
TQ1(x− a1), q2(x) =

(
(x− a2)

2
)T

Q2(x− a2)
2,

where the square in q2 is understood elementwise (so q2 is a polynomial of degree 4) and Z is a
normalizing constant obtained by numerical integration. We then consider uniform mixtures of up to
5 of such randomly generated distributions, i.e.,

p(x) =
1

K

K∑
i=1

pi(x), K ∼ Uniform(5), (14)

with pi being as above. Some examples for the 2-dimensional case (i.e., d = 2) are visualized at
Figure 2. We see that the distributions are quite diverse and lack any symmetry.

We use the distribution from Equation (14) for the 2 and 3-dimensional case. If d > 3, the number of
parameters in the TT-representation of this distribution turns out to be too large, so we use a density
of a simpler form

p̂(x) =
1

Z
q(x) · (2π)− d

2 · exp
(
−||x||2

2

)
, (15)

where Z is a normalizing constant obtained by numerical integration in the TT-format and q(x)
is a random function in the TT-format with positive TT-cores (each element of the TT-cores was
sampled from U(0, 1)) and of rank 2. Since the Gaussian density has rank 1 with variables being
completely separated, the above formula provides us with a low-rank fast decaying density suitable
for experiments.

Experiment and results. We consider three dimension numbers d = 2, 3, 7. For the case d = 2
and d = 3 we use the density from Equation (14) and for the case d = 7 we use the density from
Equation (15). As the spatial domain, we consider the square [−8, 8]d, and densities were scaled
beforehand to decay sufficiently fast towards the boundary. For the time dimension, we consider
the range [0, 5]. We construct 100 random densities for each d and compute two transport costs as
described above. Some examples of the obtained encoder maps for the 2-dimensional case are given
at Figure 3. The trajectories of the probability flow ODE are highly nonlinear, despite providing the
optimal transport map in the limit.

The obtained results are presented at Table 1. Here, the error is defined as

εrel(p) =
Cost(Ep)− Cost(OT )

Cost(OT )
,
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Figure 2: An example of 2-
dimensional distributions considered
for numerical comparison of the
Monge optimal transport map against
the DDPM encoder map.

x
E (x) (0, 1)

Figure 3: An example of the trajectories of the proba-
bility flow ODE and the limiting encoder map for two
2-dimensional distributions studied in Section 3.4.

Table 1: Numerical results for synthetic data of different dimensions.

Dimensionality d Spatial grid size Temporal grid size Maximum error εrel(p)

2 250 250 5.7 · 10−15

3 100 100 2.2 · 10−15

7 50 50 2.1 · 10−15

and in the table we report the obtained maximum value of the error for 100 random densities. For all
three considered settings, we have a very high (up to machine precision) accuracy, and we conclude
that this experiment fully supported our hypothesis. Note that these calculations were carried out on
a regular laptop and run for one random density took about 100 seconds on average for each model
problem. We have additionally run this experiment for the counterexample provided in Lavenant &
Santambrogio (2022), again obtaining a machine precision level difference, which is not surprising
since the difference between two maps is shown to hold only at (0, 0). This suggests that constructing
a ‘numerical’ counterexample is a nontrivial task. The code is available in the supplementary material.

We now attempt to verify it on a more qualitative level for high-dimensional distributions, where
solving the Fokker-Planck equation directly is infeasible. Namely, we consider DDPMs trained on
high-resolution image data.

3.5 EXPERIMENTS OF IMAGE DATASETS

Our experiments in this section are organized as follows. Suppose that we are given two datasets
and train a DDPM for each dataset. Then, by the hypothesis, each DDPM encoder performs optimal
transport from respective distributions to N (0, I). Since the optimal transport in our setting is
performed in the L2 sense, for images, this will be reflected by similarity in the pixel space, i.e., high-
level texture similarity. We can perform the following experiment to see if this indeed holds. Take a
latent code from N (0, I), and compute a corresponding image from each distribution respectively
by reversing the encoder map. We can now compare if these images share texture and a high level
semantic structure. Indeed, if each of those images is L2-close ‘on average’ to the same latent code,
we expect them to also be similar on the pixel level. Additionally, on datasets of relatively small sizes,
we again can compare the directly computed OT map in the pixel space with the DDPM encoder map.

Datasets. We consider the AFHQ animal dataset (Choi et al., 2020). It consists of 15000 images
split into 3 categories: cat, dog, and wild. This is a common benchmark for image-to-image methods.
We also verify our theory on the FFHQ dataset of 70.000 human faces (Karras et al., 2019) and the
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MetFaces dataset (Karras et al., 2020) consisting of 1000 human portraits. Finally, we consider a
conditional DDPM on the ImageNet dataset (Deng et al., 2009). By changing the conditioning label,
we can control what distribution is being produced, and the argument above still holds.

Models. We consider guided-diffusion, state-of-the-art DDPMs (Dhariwal & Nichol, 2021). We
use the official implementation available at github 1. For each of the datasets we train a separate
DDPM model with the same config as utilized for the LSUN datasets in Dhariwal & Nichol (2021)
(with dropout); we use default 1000 timesteps for sampling. The AFHQ models were trained for
3 · 105 steps, the FFHQ model was trained for 106 steps; for the MetFaces model, we finetune
the FFHQ checkpoint for 25 · 103 steps similar to Choi et al. (2021). All models were trained on
256× 256 resolution. For the ImageNet experiment, we utilize the 256 resolution checkpoint for the
conditional model available at the GitHub link above.

Algorithm. We follow the aforementioned experimental setup: we sample a number of latent codes
from N (0, I) in the pixel space (R256×256×3) and decode them by different DDPMs with the DDIM
algorithm. For the ImageNet, we have a single DDPM model but vary the conditioning label.

Figure 4: Examples of synthetic samples produced with DDIM sampling from the same latent codes.
(Top) Three independent DDPMs trained on AFHQ Dog/Cat/Wild. Each row translates into each row
in most cases preserving high-level semantics such as pose and texture, thus supporting the claim
of our hypothesis. (Bottom) Two DDPMs trained on FFHQ/MetFaces; high-level features such as
gender and texture/color are transferred. ‘Noisy’ samples seem also to be shared across models.
Qualitative results. We fix a number of latent codes and produce images by all the AFHQ models.
The obtained samples are visualized on Figure 4 (top). We observe that samples from different rows
indeed share high-level features such as texture and pose. Similarly, we visualize samples from FFHQ
and MetFaces on Figure 4 (bottom). We note that samples are aligned in this case as well; notably,
in most cases, pose, gender, and various features such as hairstyle and mustache are transferred.
Interestingly, artifacts of models such as slight noisiness also seem to be shared.

Results obtained with the ImageNet model are provided at Figure 5. We selected a number of diverse
classes, namely, rooster, pizza, crab, corgi. We sampled a number of latent codes and produced
images by conditioning on the respective label. We see that in this case, high-level textures are
transferred as well, sometimes in quite amusing ways (e.g., rooster/pizza rows). As a sanity check, we
performed a similar experiment with the conditional BigGAN model (Brock et al., 2019) pretrained

1https://github.com/openai/guided-diffusion
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on ImageNet. We did not observe similar behavior, suggesting that the texture alignment is an artifact
specific to DDPM and not happening simply due to the conditioning mechanism.

Figure 5: Examples of synthetic samples pro-
duced with DDIM sampling from same latent
codes for different classes with a conditional
ImageNet model. We observe that samples
share texture and pixel-based similarity.

Numerical results. We now apply the evaluation
scheme of Section 3.4 to the AFHQ dataset. We
take the validation subset of each part of the dataset
(Cat/Dog/Wild) containing 500 images and invert
them with DDIM. We then compute the optimal trans-
port matrix between the images and their respective
codes (understood as vectors in R256×256×3) with
POT. We then compared the obtained OT cost with
the cost for the ODE induced map. In all three cases,
they matched up to a machine precision. Given
the high dimensionality of the pixel space and a low
number of samples, the exact coincidence with the
hypothesis is not surprising, since for the majority
of synthetic experiments, there was an exact match.
Intuitively, this should become easier in high dimen-
sions as we may trade some inaccuracies in the model
with there being ‘more space’.

To conclude, experiments on real image datasets sup-
port our hypothesis and provide interesting examples
of how latent codes can be utilized to transfer images
from one distribution to another via a ‘proxy’ normal
distribution.

4 RELATED WORK

OT is a classical area of mathematics tightly related to diffusion processes and PDEs. With hundreds
of papers on this topic, we can not provide a thorough review of all the literature and refer the
reader to great texts such as Villani (2009); Ambrosio et al. (2005); Thorpe (2018). Computational
approaches to OT have been extensively studied by the machine learning communities (Cuturi, 2013;
Altschuler et al., 2017; Lin et al., 2019). We also note the work (Onken et al., 2021) in which
the relationship between OT and normalizing flows was considered, as well as the work (Mokrov
et al., 2021), where a method based on the Wasserstein gradient flows was proposed for solution of
the Fokker-Planck equation. A recently introduced class of score-based models termed diffusion
Schrödinger bridges (Chen et al., 2016; De Bortoli et al., 2021; Gushchin et al., 2022) is tightly related
to the entropy-regularized OT problem, providing a continuous analog of the Sinkhorn algorithm. In
our paper, we show a connection between DDIM and (non-regularized) OT formulations, not covered
by the Schrödinger bridge theory. As mentioned in Section 3.2, a similar question was studied in
Lavenant & Santambrogio (2022) providing a theoretical counterexample, while our analysis is
mostly numerical and is motivated by the practical goal of understanding the DDPM encoder.

5 CONCLUSION

In this work, we provided theoretical and experimental evidence that due to the nature of DDPMs, the
encoder map turns out to be the optimal transport map. We believe that this result will be interesting
to both optimal transport and diffusion models communities. We hope that it will inspire other
researchers to obtain general proof of this hypothesis. One observation about the obtained results is
that the quadratic cost in the pixel space seems suboptimal when working with visual data. Perhaps,
a more elaborate diffusion process leading to feature-based cost may be constructed. We leave this
analysis to future work.
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A BENAMOU-BRENIER FORMULATION OF OPTIMAL TRANSPORT

It will be instructive to consider another formulation of the optimal transport, originating in spirit
from the fluid dynamics (Benamou & Brenier, 2000; Villani, 2003). Assume that at t = 0 we are
given a set of ‘particles’ from the density ρ0 which move in such a way that at t = 1 their state
is described by the density ρ1. Moreover, these particles move in such that they perform the least
amount of work. Formally, they minimize the following action:

A =

∫ 1

0

(∑
x

|ẋ(t)|2
)
dt,

with x varying in the set of particles. In the continuous limit, we obtain the following formulation
(with vt being the velocity field):

inf
ρ,v

{∫ 1

0

∫
ρt(x) |vt(x)|2 dxdt;

∂ρt
∂t

+∇ · (ρtvt) = 0

}
(16)

where the infimum is taken over all time-dependent probability densities {ρt}1t=0 which agree with
ρ0 and ρ1 at respective times t = 0 and t = 1, and overall time-dependent velocity fields {vt}1t=0
which convect ρt, as expressed by the continuity equation in the right-hand side of Equation (16).

It can be shown that the infimum in Equation (16) is given by W2(ρ0, ρ1)
2. Moreover, given an

optimal transport map the corresponding admissible trajectory for the Benamou-Brenier formulation
can be easily constructed. Importantly, trajectories generated by this vector field are straight lines,
which does not hold for the probability flow ODE (see, e.g., Figure 1). There is no contradiction
here: we do not claim that the probability flow ODE is the solution of the Benamou-Brenier problem,
but only that the flow map induced by this ODE (in the limit t → ∞) solves the Monge problem.
So, in general, the vector field solving (16) and the vector field of the probability flow ODE will be
different.

B PROOF OF THEOREM 3.1

The proof of Theorem 3.1 is based on the fact that in the case of µ0 being normal distribution, all
the intermediate densities µt are normal as well, i.e, µt ∼ N (a(t),Σ(t)). Moreover, we can easily
obtain ODEs describing how their means and covariances transform (Song et al., 2021b; Särkkä &
Solin, 2019). These ODEs take the following form:

dΣ(t)

dt
= 2(I − Σ(t));

da(t)

dt
= −a(t),

with the solutions
Σ(t) = I + e−2t(Σ(0)− I); a(t) = e−ta(0).

Let us start with the homogeneous case a(0) = 0, so a(t) ≡ 0 (we provide the proof of the general
case below). The probability flow ODE then takes the following form:

dx

dt
= −(I − Σ−1(t))x. (17)

We start by noticing that all the matrices Σ(t) commute with each other. We then can write the
solution of Equation (20) as:

x(t) = exp

(
−
∫ t

0

I − Σ−1(τ)dτ

)
x(0),

with exp being the matrix exponential. Let us consider the eigendecomposition of Σ(0), i.e., assume
that Σ(0) = UTΛU with Λ = diag(λ1, . . . , λd) being a diagonal matrix of positive eigenvalues and
UTU = I . We obtain that

x(t) = UT diag(f(λ1, t), f(λ2, t), . . . f(λd, t))Ux(0), (18)
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where f(λ, t) is a function defined as

f(λ, t) = exp

(
−
∫ t

0

1− (1 + e−2τ (λ− 1))−1dτ

)
,

where now all the functions operate on real numbers. Direct integration shows that:

f(λ, t) = exp

(
−t+

1

2
log (λ− 1 + e2t)− 1

2
log λ

)
=

√
λ− 1 + e2t

λe2t
=

√
e−2t(λ− 1) + 1

λ
.

(19)

We see that limt→∞ f(λ, t) = λ−1/2. Then, by definition of the matrix square root, Eµ0
(x) =

Σ(0)−
1/2x. This is exactly the optimal transport map between µ0 and N (0, I).

For a general case, we obtain the following ODE.
dx

dt
= −(I − Σ−1(t))x− Σ−1(t)a(t). (20)

This is an inhomogeneous ODE. We can obtain its solution via the following standard approach. Let
Z(t) be the fundamental solution of the homogeneous part (see Equation (18)), i.e,

Z(t) = UT diag(f(λ1, t), f(λ2, t), . . . f(λd, t))U,

with

f(λ, t) =

√
e−2t(λ− 1) + 1

λ
.

We find that a particular solution (with 0 initial condition) of the inhomogeneous problem is given by:

x̄(t) = −Z(t)

∫ t

0

Z−1(τ)Σ−1(τ)a(τ)dτ.

Recall that
Σ(t) = I + e−2t(Σ(0)− I); a(t) = e−ta(0).

We obtain:

x̄(t) =

(
−Z(t)

∫ t

0

Z−1(τ)Σ−1(τ)e−τdτ

)
a(0).

Again, it suffices to work on the level of the spectrum. I.e,

x̄(t) = UT diag(g(λ1, t), g(λ2, t), . . . , g(λd, t))Ua(0),

with

g(λ, t) = −f(λ, t)

∫ t

0

e−τ

(1 + e−2τ (λ− 1))f(λ, τ)
dτ

= −f(λ, t)

λ

∫ t

0

e−τ

f3(λ, τ)
dτ

= −
√
λf(λ, t)

∫ t

0

e−τ

(e−2τ (λ− 1) + 1)
3/2

dτ.

(21)

Direct integration shows that:

lim
t→∞

g(λ, t) = − 1√
λ
.

Thus, we obtain that
lim
t→∞

x̄(t) = −Σ(0)−
1/2a(0).

By combining this piece with the limit of general solution obtained above, we find that

Eµ0
(x) = Σ(0)−

1/2x− Σ(0)−
1/2a(0) = Σ−1/2(0)(x− a(0)),

which is exactly the desired optimal transport map between µ0 and N (0, 1) (Dowson & Landau,
1982; Olkin & Pukelsheim, 1982). This expression is also familiar from the commonly used Frechét
Inception Distance metric, where the OT distance is used to evaluate generative models (Heusel et al.,
2017).
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C TENSOR-TRAIN SOLVER FOR THE FOKKER-PLANCK EQUATION

Let us briefly summarize the algorithm from (Chertkov & Oseledets, 2021) for solving the Fokker-
Planck equation. If we introduce diffusion and convection operators from Equation (8)

V̂ p(x, t) ≡ ∇2
xp(x, t), Ŵ p(x, t) ≡ ∇x (x p(x, t)) ,

then on each time step m (m = 1, 2, . . . ,M ) the standard second order operator splitting technique
(Glowinski et al., 2017) may be formulated

pm+1 = eh(V̂+Ŵ)pm ≈ e
h
2 V̂ ehŴ e

h
2 V̂ pm,

where h is the size of the temporal grid and pm(x) = p(x,mh) is a solution on the m-th time step. It
is equivalent to the sequential solution of the following equations

∂p
(1)
D

∂t
= ∇2

xp
(1)
D , p

(1)
D ( · , tm) = ρm( · ), (22)

∂pC
∂t

= ∇x(xpC), pC( · , tm) = p
(1)
C ( · , tm +

h

2
), (23)

∂p
(2)
D

∂t
= ∇2

xp
(2)
D , p

(2)
D ( · , tm) = pC( · , tm + h), (24)

with the final approximation of the solution ρm+1( · ) = p
(2)
D ( · , tm + h

2 ).

To solve the diffusion part (see Equations (22) and (24)), we discretize the Laplace operator using the
second order Chebyshev differential matrices (Trefethen, 2000), and convolve the matrix exponential
with the TT-cores of pm. The convection part (see Equation (23)) is solved by efficient interpolation
in the TT-format with the TT-cross method (Oseledets & Tyrtyshnikov, 2010). Finally, at each time
step m, we obtain discrete values of the density p(x,mh), represented in the low rank TT-format as
in Equation (13). Then we can solve the probability flow ODE, using these tensors, as described in
the main text.
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