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Abstract

First-order methods (FOMs) are arguably the most scalable algorithms for equilib-
rium computation in large extensive-form games. To operationalize these methods,
a distance-generating function, acting as a regularizer for the strategy space, must
be chosen. The ratio between the strong convexity modulus and the diameter of
the regularizer is a key parameter in the analysis of FOMs. A natural question is
then: what is the optimal distance-generating function for extensive-form decision
spaces? In this paper, we make a number of contributions, ultimately establish-
ing that the weight-one dilated entropy (DilEnt) distance-generating function is
optimal up to logarithmic factors. The DilEnt regularizer is notable due to its
iterate-equivalence with Kernelized OMWU (KOMWU)—the algorithm with state-
of-the-art dependence on the game tree size in extensive-form games—when used
in conjunction with the online mirror descent (OMD) algorithm. However, the
standard analysis for OMD is unable to establish such a result; the only current
analysis is by appealing to the iterate equivalence to KOMWU. We close this gap
by introducing a pair of primal-dual treeplex norms, which we contend form the
natural analytic viewpoint for studying the strong convexity of DilEnt. Using these
norm pairs, we recover the diameter-to-strong-convexity ratio that predicts the same
performance as KOMWU. Along with a new regret lower bound for online learning
in sequence-form strategy spaces, we show that this ratio is nearly optimal. Finally,
we showcase our analytic techniques by refining the analysis of Clairvoyant OMD
when paired with DilEnt, establishing an O(n log |V| log T/T ) approximation rate
to coarse correlated equilibrium in n-player games, where |V| is the number of
reduced normal-form strategies of the players, establishing the new state of the art.

1 Introduction

Extensive-form games (EFG) are a popular framework for modeling sequential games with imperfect
information. The framework has been widely used to build superhuman AI agents in real-world
imperfect information games [5, 31, 6, 8]. Several notions of equilibrium, including Nash equilibrium
[32] in two-player zero-sum and coarse correlated equilibrium in general multiplayer EFGs, can be
computed in polynomial time in the size of the game tree under the standard hypothesis of perfect
recall [41, 35, 23, 24]. These polynomial-time algorithms, however, require running the ellipsoid
method or polynomial algorithm for linear programming, both of which are impractical for large-scale
games, due to the high memory usage and large per-iteration computational costs [38].
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Instead, fast iterative methods based on convex first-order optimization methods (FOMs) [43, 12, 40,
7, 15, 27, 16, 28–30] are commonly used to find an approximate equilibrium. These iterative methods
define strategy update rules that each player can apply iteratively while training in self-play with other
players, and that guarantee ergodic convergence to the set of equilibria in the long run. Three popular
classes of such FOMs are employed in EFGs: methods based on online mirror descent (OMD) [4, 12],
methods based on the counterfactual regret minimization framework [43], and (in the context of
two-player zero-sum games specifically) accelerated offline methods such as mirror prox [33] and the
excessive gap technique [34] algorithm. In general, these methods are all proximal methods—that is,
they perform a generalized notion of projected gradient descent step at each iteration. Some do this
explicitly, including OMD and mirror prox, while others do it implicitly, including the counterfactual
regret minimization algorithm, which runs proximal steps locally at each decision point [17].

In all methods mentioned above, except CFR,1 the constraint set for the proximal step (i.e., the set
on which gradient steps must be projected onto) is the strategy polytope of the EFG. The proximal
steps are parameterized by a choice of distance-generating function (DGF) for the strategy polytope,
which acts as a regularizer. The performance of FOMs is sensitive to the properties of the DGF. In
particular, two qualities are often desired: (1) the ratio between the diameter of the feasible domain
(as measured with the DGF) and the strong convexity modulus, with respect to a given norm, of the
DGF must be as small as possible; and (2) projections with respect to the DGF onto the feasible set
should take linear time in the dimension of the set.

In EFGs, the only DGF family that satisfies the second requirement is based on the framework
of dilated regularization introduced by Hoda et al. [22]. Within this framework, Kroer et al. [27]
gave the first explicit strong convexity bounds based on the dilation framework, specifically for
the dilated entropy DGF. By combining optimistic regret minimizers for general convex sets with
this DGF, one gets an algorithm that achieves a T−1 convergence rate for two-player zero-sum
EFGs. Subsequent work by Farina et al. [16] introduced the dilated global entropy DGF with an
improved diameter-to-strong-convexity ratio. By plugging their DGF results into the genereic OMD
regret bound, one immediately achieves a regret bound of O(∥Q∥1

√
log |A|

√
T ). This was the

state-of-the-art regret bound when introduced, in terms of dependence on game constants. Moreover,
until now, it was the best bound known to be achievable through the direct application of OMD regret
bounds combined with DGF results. However, Farina et al. [20] developed a, seemingly, different
approach based on kernelization, which is a way to simulate, in linear time in the EFG size, the
results of applying optimistic multiplicative weights (OMWU) on the normal-form reduction of an
EFG. They call their algorithm KOMWU. KOMWU achieves a better, and now state-of-the-art, regret
bound O(

√
log |V|

√
T ) in online learning with full-information feedback. Based on their result,

two open questions emerged: 1) is this the best possible regret bound that one can achieve? 2) is it
possible to achieve such a bound directly using the standard OMD machinery, without resorting to this
kernelization trick? Bai et al. [2] made highly interesting progress on the second question: they show
that, in fact, the KOMWU algorithm is iterate equivalent to OMD, with the specific version of dilated
entropy that uses weight one everywhere. However, their result only shows a state-of-the-art rate
by equivalence to KOMWU, and it is still unknown whether this state-of-the-art rate is achieveable
directly through results on DGF properties and the standard OMD regret bound. In this paper, we
answer these two open questions, by answering the following question:

What is the optimal DGF for FOMs in solving EFGs?

We show that weight-one dilated entropy (DilEnt) is indeed the optimal DGF for FOMs in solving
EFGs with full-information feedback, in terms of the diameter-to-strong-convexity ratio (|D|/µ),
up to logarithmic factors. We note that the diameter-to-strong-convexity ratio of the regularizer is a
key factor in the performance of FOMs. Intuitively, performance degrades as the diameter increases
(since there is more “space” to search), and improves as the regularizer becomes more bowl-shaped
(i.e., strongly convex). Consequently, a smaller diameter-to-strong-convexity ratio leads to better
performance of the corresponding FOM. Our contributions can be summarized as follows:

• We introduce a pair of primal-dual treeplex norms for the extensive-form decision space. These
norms establish an improved framework for analyzing FOMs in EFGs, leading to results with better
dependence on the size of the game. Based on this framework, we derive a new state-of-the-art

1In CFR, the gradient steps are projected onto the nonnegative cone locally at each decision point of the
game, and then renormalized to be a valid probability distribution over the actions.
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Regularizer Norm pair |D|/µ ratio Max gradient norm

Dilated Entropy [27] ℓ1 and ℓ∞ norms O(2D∥Q∥21 log |A|) ≤ 1

Dilated Gl. Entropy [16] ℓ1 and ℓ∞ norms O(∥Q∥21 log |A|) ≤ 1

DilEnt (this paper) treeplex norms ln |V| ≤ 1

Table 1: Comparison of the diameter-to-strong-convexity (|D|/µ) ratio with prior results in DGFs for
EFGs, where the “Norm pair” indicates the primal norm used in establishing the strong convexity,
and its dual. “Max gradient norm” indicates the maximum norm—measured in the dual of the norm
with respect to which each DGF is strongly convex—of any reward vector, or the gradient of utility
function, that can be encountered during optimization, assuming that all payoffs at the terminal nodes
of the EFG are in the range [0, 1]. D denotes the depth of the tree, ∥Q∥1 the tree size (see Section 3),
|A| the maximum number of actions, and |V| the number of reduced normal-form strategies. We
remark that ln |V| ≤ O(∥Q∥1 log |A|).

diameter-to-strong-convexity ratio among all known DGFs for the EFG strategy spaces (see Table 1
for comparison). By combining this new results with the standard OMD regret bound, we establish
a regret upper bound that aligns with the results achieved by KOMWU.

• By establishing a matching regret lower bound, we identify a minimum diameter-to-strong-
convexity ratio for any regularizer. We find that the DilEnt regularizer achieves the optimal
ratio up to logarithmic factors, making it a natural candidate for FOMs on EFGs.

• An advantage of our new results, as compared to showing a regret bound through the KOMWU
equivalence, is that our DGF result can also be combined with other algorithmic setups. As an
example of our results, we show that by equipping Clairvoyant OMD [19] with the DilEnt DGF, we
enable convergence to a coarse correlated equilibrium at a rate ofO(n log |V| log T/T ) in n-player
EFGs. This improves upon the previous results of O(n log |V| log4 T/T ) by Farina et al. [20] and
O(n · |J × A|∥Q∥21 log T/T ) by Farina et al. [18], establishing a new state-of-the-art rate.

2 Related Works

Equilibrium Computation in General-Sum Extensive-Form Games The first line work in the
equilibrium computation on general-sum EFGs used linear program (LP) which can be solved
efficiently [35, 24]. However, due to the large exponent of LP solvers, it is impractical to run such
algorithms on large-scale games. The modern equilibrium computation using fast-iterative methods:
Syrgkanis et al. [39] introduced the RVU property on the regret bound for a broad class of optimistic
no-regret learning algorithms. With that property, they demonstrated that the individual regret of each
player grows as T 1/4 in general games, thus leading to a T−3/4 converge rate to the coarse correlated
equilibrium (CCE). A near-optimal bound of order log4(T ) was established by Daskalakis et al.
[13], which implies a fast convergence rate of order Õ(1/T ). Subsequent work by Farina et al. [20]
generalized the result to a class of polyhedral games that includes EFG. Concurrently, Piliouras et al.
[36] introduced the Clairvoyant MWU. Although the algorithm is not non-regret learning, a subset of
the steps converge to CCE with a rate of log T/T . Farina et al. [19] showed that the algorithm is an
instantiation of the conceptual proximal methods, which has been studied in the literature of FOMs
[10, 33]. Using another technique, Farina et al. [18] also achieved this rate with worse game size
dependence. Another class of fast iterative methods follows from counterfactual regret minimization
(CFR) [43], which guarantees a regret bound of order

√
T . Farina et al. [14] showed that running

OMWU at each decision point achieves a T 1/4 external regret, thus leading to a T−3/4 approximation
rate to the CCE. Although CFR has a weaker guarantee on convergence rate, variants of the algorithm
are widely used in practice due to their superior practical performance [26].

Regret Lower Bounds in Extensive-Form Games Several works have studied lower bounds in
EFGs across various settings. Koolen et al. [25] established a lower bound dependent on the number
of orthogonal strategy profiles in the decision set for structured games, including EFGs, resulting in
a bound of Ω(

√
T log |A|). Syrgkanis et al. [39] demonstrated that in two-player zero-sum games,

if one player uses MWU while the other best responds, the former must endure a regret of at least

3



Ω(
√
T ). Similarly, Chen and Peng [11] gave the same lower bound when both players use MWU.

For equilibrium computation, Anagnostides et al. [1] analyzed the sparse-CCE in EFGs, showing
that under certain assumptions, no polynomial-time algorithm can learn an ε-CCE with less than
2log

1/2−o(1)
2 |T | oracle accesses to the game for even constantly large ε > 0, where |T | is the number

of nodes of the EFG. In the context of stochastic bandit, Bai et al. [3], Fiegel et al. [21] investigated
online learning in EFGs with bandit feedback, establishing matched lower and upper bounds.

3 Preliminaries

General Notation We use lowercase boldface letters, such as x, to denote vectors. Let x ⊙ y
represent the element-wise product of two vectors, and |x| the element-wise absolute value. For an
index set C, denote by x[C] ∈ RC the entries of x at indices in C, and by |C| the set cardinality. Let
JkK be the set {1, 2, . . . , k} and ∅ the empty set. Denote the simplex over the set C by ∆C . The
logarithm of x to base 2 is denoted as log x. For non-negative sequences {an} and {bn}, an ≤ O(bn)
or bn ≥ Ω(an) indicates the existence of a global constant C > 0 such that an ≤ Cbn for all n > 0.

Extensive-Form Games An extensive-form game (EFG) is an n-player game with a sequential
structure that can be represented using a tree. A detailed definition of EFG is available in Appendix A.
Each node represents a game state where an agent (a.k.a. player) i ∈ JnK or the environment takes
action. We use superscript (i) to denote properties of player i, but also omitting the superscript
when context allows. Internal nodes branch into feasible actions. At these nodes, the designated
player selects an action, advancing the game to the subsequent state according to the tree. The game
concludes at a terminal node z ∈ Z , where players receive a reward u[z]. The goal of each player is
to maximize their expected reward. We assume the reward for each player is bounded by 1 as follows:

Assumption 3.1. The reward received by player i at any terminal node z ∈ Z satisfies u(i)[z] ∈ [0, 1].

Tree-Form Sequential Decision Process In an EFG, an individual player i’s decision problem can
be modeled by a tree-form sequential decision process (TFSDP). Let J denote the set of decision
points, where each point j ∈ J corresponds to an information set in the EFG. At each decision
point, the player is provided with a set of available actions Aj and must select an action a ∈ Aj .
After an action a is taken at decision point j, the game either concludes before the player acts again
or continues to a set of possible next decision points determined by actions of other players or by
stochastic events. We denote the set of potential subsequent decision points as Cja ⊆ J , which are
reached immediately after action a at decision point j. The tree structure guarantees non-overlapping
successors, meaning Cja ∩ Cj′a′ = ∅ for any distinct pairs ja and j′a′, where j ̸= j′ or a ̸= a′. This
encapsulation of all past actions and outcomes at each decision point is known as perfect recall.

The point-action pair ja, where action a is taken at decision point j, is referred to as an observation
point. This leads to a new state influenced by other agents and the environment. We denote the set
of all point-action pairs as Σ+ := {ja | j ∈ J , a ∈ Aj}. Each decision point j ∈ J has a parent
pj , the last observation point on the path from the root of the decision process to j. If no action
precedes j, pj defaults to the special observation point ∅. We define Σ := Σ+ ∪ {∅} as the set of
observation points, each also called a sequence. The total set of points in the TFSDP,H := J ∪ Σ,
includes both decision points and sequences. We use h ∈ H for unspecified point types. The TFSDP
concludes at terminal observation points E = {σ ∈ Σ : Cσ = ∅}, where reward r[σ] is observed.
Under Assumption 3.1, it holds that r[σ] ∈ [0, 1].

Strategies and Transition Kernels A strategy profile for a player in a TFSDP is an assignment of
probability distributions over actions Aj at each decision point j ∈ J . As customary when using
convex optimization techniques in EFGs, we represent strategies in the sequence-form representation
[41]. This representation stores a player’s strategy as a vector whose entries represent the probability
of all of the player’s actions on the path from the root to the points. Since products of probabilities
on paths are stored directly as variables, expected utilities are multilinear in the sequence-form
representation of the players’ strategies. For symmetry reasons which will become apparent later, we
slightly depart from the typical definition of the sequence form, by storing the product of a player’s
action probabilities on paths from the root to all points in the tree—not only those that belong to
the player. We call this representation the extended sequence-form representation. For an extended
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sequence-form strategy to be valid, probability conservation constraints must be satisfied at every
point of the tree. Specifically, the set of all valid extended sequence-form strategies is given by

Q̂ :=

x ∈ [0, 1]H :

x[∅] = 1

x[σ] = x[j] ∀σ ∈ Σ \ E , j ∈ Cσ
x[j] =

∑
a∈Aj

x[ja] ∀j ∈ J

 ,

The distribution of observation outcomes at each observation point, or the transition kernel, is
determined by the strategy played by other agents as well as the environment. It can viewed as an
opponent who only acts at the observation points. This allows us to encode the transition kernel
using a vector y ∈ [0, 1]H similar to the sequence-form strategy. The entry corresponding to each
point h ∈ H represents the product of transition probabilities on the path from the root to the point.
Formally, the transition kernel space is given by

Ŷ :=

y ∈ [0, 1]H :

y[∅] = 1

y[σ] =
∑
j∈Cσ

y[j] ∀σ ∈ Σ \ E

y[j] = y[ja] ∀j ∈ J , a ∈ Aj

 ,

We parameterize the vector spaces primarily over the terminals, since the reach of internal points
can be uniquely determined by terminal reaches. We define the compressed extensive-form decision
spaceQ := {x[E ] | x ∈ Q̂} and the compressed transition kernel Y := {y[E ] | y ∈ Ŷ}, representing
the projection of the corresponding spaces onto the vector space generated by terminal observation
points. The existing of one-to-one mapping guarantees that Q and Y are homogeneous to Q̂ and Ŷ .
For each non-terminal point h ∈ H \ E , we denote by x[h] the value of x̂[h] in Q̂, corresponding to
the compressed strategy profile x. When the agent adopts strategy profile x ∈ Q while the transition
kernel aligns with y ∈ Y , the reach probability of terminal point σ ∈ E is given by x[σ]y[σ]. The
expected reward of the player can be computed from u(x;w) = ⟨x,w⟩, where w := r ⊙ y is the
reward vector, or the gradient of utility.

To assess the complexity of the game, we use several complexity measures for the extensive-form
decision space. We define the tree size and leaf count, denoted as ∥Q∥1 and ∥Q∥⊥, as the maximum
number of observation points and terminal observation points that can be reached among all pure
strategy profiles, respectively. Formally, we write

∥Q∥1 := sup
x∈Q
∥x[Σ]∥1 = sup

x∈Q

∑
σ∈Σ

x[σ], ∥Q∥⊥ := sup
x∈Q
∥x∥1 = sup

x∈Q

∑
σ∈E

x[σ],

where we implicitly extend the domain of x to Q̂ when writing x[Σ]. We further define V :=
Q∩ {0, 1}E as the vertices in the extensive-form decision space. Each vertex refers to a pure strategy
profile of the player, which reduced to a norm-form strategy. The number of reduced normal-form
strategy is given by |V|. We remark that both ∥Q∥1 and |V| have been used in the literature [e.g., 20].

Subtree As we will often incorporate the recursive structure in TFSDP, we define a subtree as the
subgame starting from some internal point h ∈ H. For two points h, h′ ∈ H, we write h′ ⪰ h if h′ is
reachable from h in TFSDP. LetHh = {h′ ∈ H : h′ ⪰ h} and Eh = {σ ∈ E : σ ⪰ h} be the sets of
points and terminals reachable from h. We denote by Qh and Yh the projected spaces of Q and Y
over [0, 1]Eh , with restrictions x[h] = 1 and y[h] = 1, respectively. Formally, for any point h ∈ H,
we define the compressed projected decision space as Qh := {x[Eh] | x ∈ Q,x[h] = 1}. From the
definition of the compressed extensive-form decision space, this space can be seen as a projection of

Q̂h :=

x ∈ [0, 1]Hh :

x[h] = 1

x[σ] = x[j] ∀σ ∈ Σ \ E , j ∈ Cσ
x[j] =

∑
a∈Aj

x[ja] ∀j ∈ J

 .

Similarly, we define the compressed projected transition kernel space as Yh := {y[Eh] | y ∈
Y,y[h] = 1}. It is important to note that this space exhibits a similar closed form to that of the
compressed extensive-form decision space.
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Proximal Methods We review the standard objects and notations that relate to proximal methods.
For a given decision set Q, the proximal method requires a distance generating function (DGF)
φ : Q → R defined on the decision set. The algorithm is valid when the DGF is µ-strongly convex
with respect to some norm ∥·∥. The DGF induces a generalized notion of distanceDφ : Q×Q → R≥0,
referred to as the Bregman Divergence, which is defined by

Dφ(x̂∥x) := φ(x̂)− φ(x)− ⟨∇φ(x), x̂− x⟩.

We define the proximal operator with respect to the feasible space Q and the DGF φ. Given a pivot
point x and a gradient vector g ∈ RE , the proximal operator Πφ(g,x) generalizes the notion of a
gradient ascent step, and is defined as

Πφ(g,x) := argmax
x̂∈Q

{⟨g, x̂⟩ − Dφ(x̂∥x)}.

For the extensive-form decision space Q, the DGF is usually restricted to the dilated DGF [22] so
that the proximal operator can be efficiently computed. Moreover, it is well known that the proximal
operator is Lipschitz continuous: [e.g. 33, Lemma 2.1]

Lemma 3.2. For any g,g′ ∈ RE , it satisfies that ∥Πφ(g,x)−Πφ(g
′,x)∥ ≤ µ−1∥g − g′∥∗.

4 Primal-Dual Treeplex Norms

We first introduce the treeplex ℓ1 norm ∥ · ∥H,1 and the treeplex ℓ∞ norm ∥ · ∥H,∞, which are a
primal-dual norm pair defined over the vector space RE , with respect to a given TFSDP with the
point setH. As we will show later, these norms enable a better framework for analyzing FOMs in
EFGs. Specifically, in the analysis of OMD, we use the fact that the ℓ∞ norm for any feasible reward
vector w satisfies ∥w∥∞ ≤ 1. Although treeplex ℓ∞ norm is a relaxation of the ℓ∞ norm, it can still
preserve the same guarantee such that ∥w∥H,∞ ≤ 1. With the relaxation, we have that the treeplex
ℓ1 norm generates a smaller distance compared to the ℓ1 norm, which allows us to provide a better
strong convexity modulus for the regularizer, finally improving the induced regret upper bound.

Both treeplex norms are defined as the support functions with respect to the vector of element-wise
absolute values. Specifically, the support function of treeplex ℓ1 norm is defined using the transition
kernel space Y , while the support function of treeplex ℓ∞ norm is defined using the extensive-form
decision space Q. Formally, for some vector u ∈ RE , we denote

∥u∥H,1 := sup
y∈Y
⟨|u|,y⟩ = sup

y∈Y

∑
σ∈E
|u[σ]| · y[σ],

∥u∥H,∞ := sup
x∈Q
⟨|u|,x⟩ = sup

x∈Q

∑
σ∈E
|u[σ]| · x[σ].

We remark that the treeplex ℓ∞ norm has been used by Zhang et al. [42] for analyzing low-degree
swap regret minimization. When the EFG degenerates to an NFG (normal-form game), i.e., |J | = 1,
the extensive-form decision space Q in the TFSDP becomes a simplex ∆E , and the transition kernel
Y = {1} only contains the all-one vector. It follows that the treeplex ℓ1 norm ∥ · ∥H,1 and the
treeplex ℓ∞ norm ∥ · ∥H,∞ degenerate to the conventional ℓ1 norm and ℓ∞ norm for the vector space,
respectively. The following lemma verifies that both treeplex ℓ1 norm and treeplex ℓ∞ norm are
norms in the technical sense. The missing proofs in this section are provided in Appendix C.

Lemma 4.1. The functions ∥ · ∥H,1 and ∥ · ∥H,∞ are norms defined on the space RE .

Thanks to the recursive structure of TFSDP, the maximization among Y or Q in the treeplex norms
can be decomposed at each point h ∈ H. This decomposition allows us to compute both treeplex
norms in a recursive manner.

Lemma 4.2. Let u ∈ REh be a vector with respect to some point h ∈ H. The treeplex ℓ1 norm and
the treeplex ℓ∞ norm of vector u overHh can be computed recursively as follows.

• If h = σ ∈ E is a terminal observation point, then:

∥u∥Hσ,1 := |u[σ]|, ∥u∥Hσ,∞ := |u[σ]|.
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• If h = j ∈ J is a decision point, then:
∥u∥Hj ,1 :=

∑
a∈Aj

∥u[Eja]∥Hja,1, ∥u∥Hj ,∞ := maxa∈Aj
∥u[Eja]∥Hja,∞.

• If h = σ ∈ Σ \ E is a non-terminal observation point, then:
∥u∥Hj ,1 := maxa∈Aj

∥u[Eja]∥Hja,1, ∥u∥Hj ,∞ :=
∑

a∈Aj
∥u[Eja]∥Hja,∞.

Equipped with the recursive formula, we are able to show that the two treeplex norms with respect to
the same TFSDP are a pair of primal-dual norms.

Theorem 4.3. We have ∥ · ∥H,1 and ∥ · ∥H,∞ is a pair of primal-dual norms for a given TFSDP with
point setH. Specifically, for any vector u ∈ RE ,

∥u∥∗H,1 := sup
v∈RE

⟨u,v⟩
∥v∥H,1

= ∥u∥H,∞.

Furthermore, the recursive formula also enables us to bound the treeplex norms for specific vectors.

Lemma 4.4. We have ∥x∥H,1 = 1 for any strategy profile x ∈ Q, ∥y∥H,∞ = 1 for any transition
kernel y ∈ Y , and ∥w∥H,∞ ≤ 1 for any feasible reward vector w under Assumption 3.1.

5 Metric Properties of the DilEnt Regularizer and Improved Regret Bounds

In this section, we study the strong convexity modulus of the weight-one dilated entropy (DilEnt)
function with respect to the treeplex norms defined above. The DilEnt regularizer is an instantiation
of the more general dilated DGFs framework [22]. Specifically, a dilated DGF for an extensive-form
decision space is constructed by taking a weighted sum over suitable local regularizers φj for each
j ∈ J , and is of the form

φ : Q ∋ x 7→
∑
j∈J

αjφ
□
j (x[pj ], {x[ja]}a∈Aj ),

where

φ□
j (x[pj ], {x[ja]}a∈Aj

) :=

{
0 if x[pj ] = 0

x[pj ]φj

({x[ja]}a∈Aj

x[pj ]

)
otherwise

and αj > 0 are flexible weight terms that can be chosen to ensure good properties. Note that we
have implicitly extended the domain of x to Q̂. Each local function φj : ∆Aj → R is required to
be continuously differentiable and strongly convex on the relative interior of the local probability
simplex ∆Aj . They show that the proximal steps on the dilated DGF can be efficiently computed,
provided that the proximal steps for each individual φj can be efficiently computed.

The DilEnt regularizer φ1 : Q → R is a specific instantiation of the dilated DGF with αj = 1
and each local regularizer dj being the negative entropy function. It has been used as a specific
instantiation for practical implementations [e.g. 28]. The function has the following closed form.

φ1 : x 7→
∑
j∈J

∑
a∈Aj

x[ja] ln
(x[ja]
x[pj ]

)
.

Prior to our work, weighted variants of the dilated entropy had been the only variants known to have
concrete strong convexity bounds, all with weights that grew with the size of the decision space
beneath a given decision point [27, 16]. These results used the standard ℓ1 norm as the corresponding
norm for showing strong convexity. With the help of our new primal-dual treeplex norms, we can
show that the DilEnt regularizer enjoys very strong properties on the extensive-form decision space.
We inspect the following y-weighted dilated entropy for y ∈ Y:

φy : x 7→
∑
j∈J

∑
a∈Aj

y[ja]x[ja] ln
(x[ja]
x[pj ]

)
.

By showing that the function is equivalent to the y-weighted negative entropy on the terminal reach,
we are able to prove φy is 1-strongly convex with respect to the y-weighted ℓ1 norm. Since the
difference φ1−φy is a summation of convex functions, it can be finally demonstrated that the DilEnt
regularizer is 1-strongly convex with respect to the treeplex ℓ1 norm.
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Lemma 5.1. The weight-one dilated entropy (DilEnt) is 1-strongly convex within the extensive-form
decision space Q with respect to the treeplex ℓ1 norm ∥ · ∥H,1. Specifically, for any vector z ∈ RE

and strategy profile x ∈ Q, we have that ∥z∥2∇2φ1(x)
≥ ∥z∥2H,1.

The complete proof is provided in Appendix D. Next, we inspect the diameter of the decision space
measured by DilEnt. Using an induction statement, we show that ln |V| ≤ φ1(x) ≤ 0 holds for any
strategy profile x ∈ Q. By choosing the initial strategy that minimizes the DilEnt regularizer, we
upper bound the diameter of the sequence-form decision space with respect to the DilEnt regularizer.

Lemma 5.2. Let x1 := argminx∈Q φ1(x) be the strategy profile minimize the DilEnt regularizer.
The Bregman divergence generated by the DilEnt regularizer between x1 and any x∗ ∈ Q can be
upper bounded by Dφ1(x∗,x1) ≤ ln |V|.

By combining the above two lemmas, we have that the DilEnt regularizer achieves |D|/µ ≤ ln |V|.
Using this result, we can establish performance guarantees for FOMs with the DilEnt regularizer. We
list these results in the following sections.

5.1 Results on Online Mirror Descent

We first inspect online learning in TFSDP with full-information feedback. Consider the use of
(Predictive) OMD [12]. The pseudocode of the algorithm can be found in Algorithm 1 in Appendix B.
The algorithm starts from x̃1 ← argminx∈Q φ(x) and follows a straightforward structure in each
episode t: Take a proximal gradient step from x̃t according to the prediction mt to get the policy xt;
Execute policy xt; Take another proximal gradient step from x̃t according to the observed reward
vector wt to get x̃t+1. The algorithm takes some DGF φ to execute proximal steps:

xt ← Πφ(ηmt, x̃t), x̃t+1 ← Πφ(ηwt, x̃t).

The value of prediction mt depends on the specific variant used (e.g. mt ← wt−1 in Optimistic
OMD). For the non-predictive variant, we set mt ← 0, and thus xt = x̃t. It is known that the
algorithm has the following regret bound with respect to a given pair of primal-dual norms.

Theorem 5.3 (Regret Bound for (Predictive) OMD, Rakhlin and Sridharan [37], Syrgkanis et al. [39]).
Let ∥ · ∥ and ∥ · ∥∗ be a pair of primal-dual norm defined on RE . Let φ be a DGF that is µ-strongly
convex on ∥ · ∥. Denote wt as the reward gradient received in episode t. The cumulative regret of
running (Predictive) OMD with DGF φ and learning rate η can be upper bounded by

Regret(T ) := max
x∗∈Q

T∑
t=1

⟨x∗ − xt,wt⟩ ≤
1

η
Dφ(x∗,x1) +

η

2µ

T∑
t=1

∥wt −mt∥2∗.

Consider using non-predictive OMD with the DilEnt regularizer φ1. The performance of the algorithm
can be analyzed by selecting the treeplex ℓ1 norm and the treeplex ℓ∞ norm as the desired pair of
primal-dual norms. Using the diameter-to-strong-convexity ratio of DilEnt, we can immediately get a
regret upper bound that recovers the state-of-the-art result given by KOMWU [20].

Theorem 5.4. Let φ be a regularizer for extensive-form decision spaceQ which is µ-strongly convex
on ∥ · ∥H,1 and has a diameter |D| := supx∗∈QDφ(x∗, x1). Under Assumption 3.1, the cumulative
regret of running OMD with regularizer φ and learning rate η :=

√
2|D|/(µT ) is upper bounded by

Regret(T ) ≤
√

2|D|/µ
√
T .

Moreover, if we use the DilEnt regularizer φ1 in proximal steps, the result can be specified as

Regret(T ) ≤
√
2 ln |V|

√
T .

5.2 Results on Clairvoyant Online Mirror Descent

Consider equilibrium computation in n-player EFGs. In this scenario, a group of agents aim to jointly
learn the coarse correlated equilibrium (CCE) given only oracle access to the game (See Appendix A
for detailed definition). We adopt Clairvoyant OMD to compute CCE, introduced by Piliouras et al.
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[36], Farina et al. [19]. The pseudocode of the algorithm can be found in Algorithm 2 in Appendix B.
The algorithm can be viewed as a specialized form of predictive OMD, in each episode t ∈ JKK,
an additional routines is introduced to compute the prediction vector mt for each player i (we omit
the superscript). The prediction in the episode is calculated through L steps of fixed-point iteration
starting from xt,1 ← x̃t. In each step l ∈ JLK, each player i computes proximal step

xt,l+1 ← Πφ(ηwt,l, x̃t).

where we denote by wt,l the reward vector observed by the player joint policy is corresponding to
xt,l. Clairvoyant OMD finally sets the prediction mt to the iteration result wt,L. In this case, the
committed policy xt ← Πφ(ηmt, x̃t) in the OMD framework is equal to xt,L and the reward vector
wt is wt,L+1. We show the fixed-point iteration achieves linear convergence. Thus, the difference
∥wt,L+1−wt,L∥H,∞ can be made as arbitrarily small. The proof starts from the following inequality,
establishing that the reward vector is Lipschitz continuous with respect to the joint strategy:

∥w(i)
1 −w

(i)
2 ∥H(i),∞ ≤

n∑
j=1

∥x(j)
1 − x

(j)
2 ∥H(j),1.

We denote by w
(i)
1 the reward vector of player i when all the players align with joint policy {x(j)

1 }nj=1.
Together with the fact that the proximal operator is Lipschitz (Lemma 3.2), we can show that the
fixed-point iteration achieves a linear convergence rate when the learning rate η is sufficiently small.

Lemma 5.5. Under Assumption 3.1, when running COMD with DilEnt, the reward vector w(i)
t,l

received by player i in any (t, l) ∈ JKK× JLK satisfies ∥w(i)
t,l+1 −w

(i)
t,l ∥H(i),∞ ≤ 2(nη)l−1.

Therefore, with a logarithmic number of iterations, the discrepancy between the reward vector and the
prediction in the OMD framework can be made as small as ∥wt−mt∥H,∞ = ∥wt,L+1−wt,L∥H,∞ ≤
1/K. Substituting this result into Theorem 5.3 implies the average joint policy given by all xt among
t ∈ JKK episodes in Clairvoyant OMD only causes a constant regret. Using the standard online-
to-batch conversion [9], we can demonstrate that Clairvoyant OMD finds an ϵ-CCE with only a
near-linear number of oracle accesses to the game, establishing the new state of the art.

Theorem 5.6. Under Assumption 3.1, if every player runs Clairvoyant OMD with DilEnt regularizer
and learning rate η = 1/(2n) for K episodes. With L = ⌈logK⌉ steps of inner iterations, the average
joint policy π̄K is an ε-CCE for ε ≤ O(n ln |V|/K). This implies the algorithm converge to a CCE
at rate O(n log |V| log T/T ) where T = KL is the number of oracle access to the game.

6 Lower Bounds for Regret Minimization in EFGs and Optimality of DilEnt

In this section, we show that the DilEnt regularizer has a nearly optimal diameter-to-strong-convexity
ratio within the extensive-form decision space. To establish this, we prove a lower bound for online
learning in TFSDP with full-information feedback. We show that every algorithm must suffer a
regret lower bound that matches our regret upper bound in Theorem 5.4. The optimality of the
DilEnt regularizer is demonstrated by contradiction: If there were a regularizer with a much better
diameter-to-strong-convexity ratio, then the regret of running OMD with that regularizer would
violate the established regret lower bound. We prove the lower bound by constructing a hard instance
that is completely random. In this scenario, no online learning algorithm can benefit from historical
data, while the cumulative reward of the optimal policy benefits from the anti-concentration properties
of the maximum among random distributions.

Theorem 6.1. Given a TFSDP with decision space Q, there is an EFG satisfying Assumption 3.1
such that: when the other players are controlled by the adversary, any algorithm Alg incurs an
expected regret of at least Ω(

√
∥Q∥⊥ log |A0|

√
T ) for a given of episode number T ≥ ∥Q∥⊥, where

|A0| := minj∈J |Aj | is the size of the minimum action set.

We provide missing proofs in Appendix E. Comparing Theorem 6.1 with Theorem 5.4, we estab-
lish a lower bound for the diameter-to-strong-convexity ratio, |D|/µ ≥ Ω(∥Q∥⊥ log |A0|) for any
regularizer on the extensive-form decision space with respect to our new treeplex norms. Recall the
diameter-to-strong-convexity ratio of the DilEnt regularizer is at most |D|/µ ≤ ln |V|, derived from
combining Lemma 5.1 and Lemma 5.2. We establish connections between these two quantities using
the following lemma, implying that the ratio achieved by the DilEnt regularizer is nearly optimal.
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Lemma 6.2. Consider a TFSDP with a given point setH. Define |A| := maxj∈J |Aj | as the size of
the largest action set. If there is no non-root observation point yields exactly one observation outcome,
that is, |Cσ| ≥ 2 for any σ ∈ Σ+ \ E , then it follows that ln |V| ≤ O(∥Q∥⊥ log |A|). Without this
structural condition, we have ln |V| ≤ O(∥Q∥⊥ log |J × A|) in general.

According to Lemma 6.2, if every each action set has the same number of actions |A0| = |A|, and no
non-root observation point yields only one outcome, we have |D|/µ ≤ ln |V| ≤ O(∥Q∥⊥ log |A0|),
implying the DilEnt regularizer achieves the optimal diameter-to-strong-convexity ratio up to constant
factors in this scenario. If the action sets vary in size, it creates a gap logarithmic to the size of
the maximal action set. If there is some observation point that yields only one observation, the gap
inflates with another factor of logarithmic to the number of decision points. All in all, the DilEnt
regularizer achieves the optimal diameter-to-strong-convexity ratio up to only logarithmic factors.

7 Conclusion, Limitations, and Open Questions

In this paper, we introduce a new primal-dual norm pair for studying the strong convexity properties
of distance-generating functions for sequence-form strategy polytopes arising in extensive-form
games. Quantifying these properties is a key component in the construction of efficient first-order
optimization methods for equilibrium computation. Our techniques enable us to explain the strong
theoretical performance of the DilEnt regularizer, for which no meaningful strong convexity bounds
were previously known. In fact, we find that among all convex regularizers for extensive-form games,
DilEnt is optimal up to logarithmic factors. To establish this result, we introduced a new regret lower
bound for learning in extensive-form games, which is likely of independent relevance.

We remark that our lower bound only applies to extensive-form games with full-information feedback,
a setting common in self-playing algorithms. Thus, the optimality of the DilEnt regularizer may not
extend to scenarios with stochastic feedback. It would be interesting to study tight lower bounds
for learning under other types of feedback. While Fiegel et al. [21] gave matching lower and upper
bounds under trajectory bandit feedback, results for external sampling remain open to our knowledge.

Furthermore, we can only prove tight upper and lower bounds up to constant factors for the diameter-
to-strong-convexity ratio in a specific family of TFSDPs. There still remains a logarithmic gap related
to the total number of sequences in general. In principle, it is possible that this gap could be further
reduced, yielding a different regularizer that offers logarithmic advantages over the DilEnt regularizer.
Overcoming this technical hurdle and showing that the DilEnt regularizer indeed achieves the optimal
rate remains an interesting direction of research. Notably, Fiegel et al. [21] were also only able to
prove lower bounds in specific games under bandit feedback, alluding to the intrinsic hardness of
proving lower bounds without slight restrictions to the game class.
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A Extended Preliminaries

An extensive-form game (EFG) is an n-player game with a sequential structure representable as a
tree. Let T be the set of all nodes in the tree, where each node z ∈ T corresponds to a game state.
Each node is assigned to either a player i ∈ JnK or the environment for action. The subset T (i) ⊆ T
comprises nodes assigned to player i. The environment, treated as a special player, acts according to
a fixed distribution, modeling stochastic outcomes like card dealing in games. Each node’s branches
represent possible actions. Upon reaching a node, the assigned player selects an action, moving the
game to the next node per the tree structure. Let Z be the set of terminal nodes. The game concludes
when it reaches a terminal node z ∈ Z , where each player i receives a reward u(i)[z]. Players aim
to maximize their expected reward by reaching these terminal nodes. We assume u(i)[z] ∈ [0, 1],
following Assumption 3.1.
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Figure 1: An two-player extensive-form game and the corresponding TFSDP of player 1. The TFSDP
has decision point J = {A,B,C,D}. It has tree size ∥Q∥1 = 4 and leaf count ∥Q∥⊥ = 2, both
given by the pure strategy {A → 1,B → 3,C → 5}. Furthermore, The player 1 has |V| = 7 pure
strategy profiles in total.

We model imperfect information with information sets. An information set I ⊆ T (i) is a subset of
nodes assigned to player i, which the player cannot distinguish. The player must act consistently
across all nodes within the same information set. For example, in poker, an information set includes
all states with identical public cards and bets, with each node representing a different potential hand
held by the opponent. Each terminal observation point σ ∈ E(i) is associated with a set Iσ ⊆ Z of
corresponding terminal nodes in the original EFG. For each terminal node z ∈ Z , σ(i)

z denotes the
observation point of player i in the TFSDP.

Let π = {x(i)}ni=1 be a joint policy of n players. We denote by u(i)(π) the expected reward
received by player. Consider the terminal node z ∈ Z , the reach of probability can be computed by
p[z]

∏n
j=1 x

(j)[σ
(j)
z ], where p[z] is the product of transition probability of the environment actions

from the root to z. In this case, the expected reward of player i is given by

u(i)(π) =
∑
z∈Z

u(i)[z] · p[z]
n∏

j=1

x(j)[σ(j)
z ].

Consider the corresponding reward vector w(i) := ∂iu
(i)(π) ∈ RE(i)

of player i when the players
agree on joint policy π = {x(i)}ni=1. The vector satisfies that u(i)(π) = ⟨x(i),w(i)⟩. It is clear that
the reward vector has the following closed form for each entry:

w(i)[σ] =
∑
z∈Iσ

u(i)[z] · p[z]
∏
j ̸=i

x(j)[σ(j)
z ] ∀σ ∈ E(i).

In this work, we examine two problems in EFGs. For the online learning problem, an agent seeks to
maximize their expected reward while facing an adversarial environment and other players in the
online decision-making process. The agent can observe the reward vector wt after committing to the
strategy profile xt in episode t. We measure the performance of the online learning algorithm using
regret. The cumulative (external) regret over T episodes is defined as:

Regret(T ) := max
x∗∈Q

T∑
t=1

⟨x∗,wt⟩ −
T∑

t=1

⟨xt,wt⟩.
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where xt is the strategy proposed by the player in episode t. This definition quantifies the cumulative
difference between the expected rewards that could have been obtained by the optimal strategy and
those achieved under the actual strategy used.

For equilibrium computation, a group of agents aim to jointly learn the coarse correlated equilibrium
(CCE) given only oracle access to the game. A joint policy profile π is said an ε-CCE, if for any
player i, it satisfies that

u(i)(x(i) × π(−i)) ≤ u(i)(π) + ε, ∀x(i) ∈ Q(i),

where we denote by x(i)×π(−i) the joint policy in which player i takes strategy profile x(i) while other
players still follows π. It is known that the equilibrium computation can be reduced to online learning:
If every player runs a no-regret learning algorithm simultaneously, then the average joint policy π̄T

of the interaction history is an ε-CCE with ε ≤ maxi∈JnK Regret(i)(T )/T [9]. As the players are not
adversarial against each other, the regret bound of the learning algorithm can sometimes be improved
compared to the online learning setting.

B Pseudocode of Predictive OMD and Clairvoyant OMD

In this section, we list the pseudocode of the algorithms used in the paper.

Algorithm 1: (Predictive) Online Mirror Descent
x̃1 ← argminx∈Q φ(x)
for t = 1 to T do

Receive prediction mt (set mt = 0 for the non-predictive variant)
xt ← Πφ(ηmt, x̃t)
Commit policy xt, receive reward ⟨xt,wt⟩ and observe reward vector wt

x̃t+1 ← Πφ(ηwt, x̃t)
end

The (Predictive) OMD framework [12, 39] depicts a family of no-regret learning algorithms. The
pseudocode of the algorithm can be found in Algorithm 1. The algorithm takes a learning rate µ and
a DGF φ for the decision set Q of the TFSDP as parameters. It starts from an initial point x̃1 and
follows a straightforward structure in each episode t:

• Receive prediction vector mt from external logic (set mt = 0 for the non-predictive variant)

• Take a proximal gradient step from x̃t according to the prediction mt to get the policy xt.

• Execute policy xt and observe reward vector wt.

• Take another proximal gradient step from x̃t according to wt to get x̃t+1 for the next episode.

It can be shown from Theorem 5.3 that the algorithm achieves a sub-linear regret rate of
√
T in

general. The performance of the algorithm can be further improved by selecting more accurate mt.
For example, if we can ensure mt = wt, then the algorithm suffers only constant regret, upper
bounded by Dφ(x∗,x1)/η.

Although the reward vector wt in the adversarial setting is given by the environment which is
generally unpredictable, in self-playing, it is determined by other agents, which generally follow
a smooth dynamic and thus can be predictable. Syrgkanis et al. [39] introduced Optimistic OMD,
which sets the prediction mt ← wt−1 as the reward vector given from the previous play. This allows
them to establish a regret bound of O(T 1/4). By analyzing the higher-order derivatives, Daskalakis
et al. [13] show ∥mt −wt∥∗ is small in Optimistic OMD, which finally leads to a logarithmic regret
bound of O(log4 T ).

Note that the desired prediction mt = wt is a solution to w
(i)
t = ∂iu

(i)(πt) for every player i, where
the joint policy πt = {x(i)

t }ni=1 is given by proximal step x
(i)
t = Πφ(i)(ηw

(i)
t , x̃

(i)
t ) for each player i.
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Algorithm 2: Clairvoyant OMD, Decentralized
for each player i ∈ JnK, in parallel do

x̃
(i)
1 ← argminx∈Q(i) φ(i)(x)

for t = 1 to K do
x
(i)
t,1 ← x̃

(i)
t

for l = 1 to L do
Synchronous with other players and commit joint policy πt,l ← {x(i)

t,l }ni=1

Observe reward vector w(i)
t,l ← ∂iu

(i)(πt,l)

x
(i)
t,l+1 ← Πφ(i)(ηw

(i)
t,l , x̃

(i)
t )

end
m

(i)
t ← w

(i)
t,L

x
(i)
t ← x

(i)
t,L;πt ← πt,L // x

(i)
t = Πφ(i)(ηm

(i)
t , x̃

(i)
t )

w
(i)
t ← w

(i)
t,L+1

x̃
(i)
t+1 ← x

(i)
t,L+1 // x̃

(i)
t+1 = Πφ(i)(ηw

(i)
t , x̃

(i)
t )

end
end
Report average joint policy π̄K of πt among t ∈ JKK

Note this is a fixed-point to dynamics
πt ← {x(i)

t }ni=1

w
(i)
t ← ∂iu

(i)(πt)

x
(i)
t ← Πφ(i)(ηw

(i)
t , x̃

(i)
t )

Clairvoyant OMD [36, 19] uses these update rules to find mt through the fixed-point iteration. By
showing that all these updating rules are Lipschitz, one can see that this fixed-point iteration achieves
a linear convergence rate when the learning rate η is small. Let K be the number of episodes used
for aggravating the average joint policy. The linear convergence rate allows one to find mt where
∥mt −wt∥∗ is polynomially small with O(1/K) in only L = O(logK) steps, indicating that the
corresponding OMD dynamics only suffer from a constant regret bound. This finally establishes that
the algorithm has an almost-optimal convergence rate of log T/T where T = KL is the number of
oracle access to the game.

C Proof of Treeplex Norm

C.1 Proof of Lemma 4.1

Lemma 4.1 (restatement). The functions ∥ · ∥H,1 and ∥ · ∥H,∞ are norms defined on the space RE .

Proof. We verify that ∥ · ∥H,1 and ∥ · ∥H,∞ are norms as follows:

Positive definiteness: It is clear from the definition that ∥u∥H,1 = 0 and ∥u∥H,∞ = 0 when u = 0.
When u ̸= 0, there exists σu ∈ E such that |u[σu]| > 0. From the definition of Y , we can always
find some transition kernel yu ∈ Y such that σu is reachable. In this case, yu[σu] > 0 and we have

∥u∥H,1 ≥
∑
σ∈E
|u[σ]| · yu[σ] ≥ |u[σx]| · yu[σu] > 0.

Similarly, we can always find some strategy profile xu with xu[σu] > 0, which implies that

∥u∥H,∞ ≥
∑
σ∈E
|u[σ]| · xu[σ] ≥ |u[σx]| · xu[σu] > 0.

This verifies that both functions are strictly positive on non-zero vectors.
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Homogeneity: For any k ∈ R and u ∈ RE , it holds that

∥ku∥H,1 = sup
y∈Y

∑
σ∈E
|ku[σ]| · y[σ] = |k| sup

y∈Y

∑
σ∈E
|u[σ]| · y[σ] = |k| · ∥u∥H,1

∥ku∥H,∞ = sup
x∈Q

∑
σ∈E
|ku[σ]| · x[σ] = |k| sup

x∈Q

∑
σ∈E
|u[σ]| · x[σ] = |k| · ∥u∥H,∞,

which verifies absolute homogeneity.

Triangle inequality: We verify the triangle inequality for any u1,u2 ∈ RE by

∥u1 + u2∥H,1 = sup
y∈Y

∑
σ∈E
|u1[σ] + u2[σ]| · y[σ]

≤ sup
y∈Y

∑
σ∈E
|u1[σ]| · y[σ] + sup

y∈Y

∑
σ∈E
|u2[σ]| · y[σ] = ∥u1∥H,1 + ∥u2∥H,1.

With a similar calculation, it is straightforward to check ∥ · ∥H,∞ also satisfies triangle inequality.

To conclude, both ∥ · ∥H,1 and ∥ · ∥H,∞ are norms.

C.2 Proof of Lemma 4.2

Lemma 4.2 (restatement). Let u ∈ REh be a vector with respect to some point h ∈ H. The treeplex
ℓ1 norm and the treeplex ℓ∞ norm of vector u overHh can be computed recursively as follows.

• If h = σ ∈ E is a terminal observation point, then:
∥u∥Hσ,1 := |u[σ]|, ∥u∥Hσ,∞ := |u[σ]|.

• If h = j ∈ J is a decision point, then:
∥u∥Hj ,1 :=

∑
a∈Aj

∥u[Eja]∥Hja,1, ∥u∥Hj ,∞ := maxa∈Aj ∥u[Eja]∥Hja,∞.

• If h = σ ∈ Σ \ E is a non-terminal observation point, then:
∥u∥Hj ,1 := maxa∈Aj ∥u[Eja]∥Hja,1, ∥u∥Hj ,∞ :=

∑
a∈Aj

∥u[Eja]∥Hja,∞.

Proof. Consider the statement for treeplex ℓ1 norm. The plan is to prove the statement by induction
on H from the bottom up on TFSDP. We will show that the recursive definition ensures ∥u∥Hh,1

represents the treeplex ℓ1 norm restricted to the subtree of h. Specifically, we will demonstrate that
for every point h ∈ H and vector u ∈ REh , the recursive formula at point h matches the original
definition of treeplex ℓ1 norm with restricted in the subtreeHh, which is:

∥u∥Hh,1 = sup
y∈Yh

⟨|u|,y⟩.

Case 1: The base case for the induction occurs when h = σ, where σ ∈ E is a terminal point. We
verify the induction basis by

∥u∥Hσ,1 = |u[σ]| · 1 = sup
y∈Yσ

⟨|u|,y⟩,

where the last equality is given by the fact that y[Eσ] = 1 for y ∈ Yσ .

Case 2: For any decision point h = j ∈ J , it holds that

∥u∥Hj ,1 =
∑
a∈Aj

∥u[Eja]∥Hja,1

=
∑
a∈Aj

sup
yja∈Yja

⟨|u[Eja]|,yja[Eja]⟩

= sup
{yja∈Yja}a∈Aj

∑
a∈Aj

⟨|u[Eja]|,yja[Eja]⟩

= sup
y∈Yj

∑
a∈Aj

⟨|u[Eja]|,y[Eja]⟩

= sup
y∈Yj

⟨|u|,y⟩,
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where the first equality holds according to the recursive definition of ∥u∥Hj ,1, the second equality
follows from the induction hypothesis, the third equality holds as the set of terminal points Eja are
disjoint for each a ∈ Aj , the fourth equality follows from the fact that Yj can be decomposed into
the Cartesian product of Yja among all a ∈ Aj for any j ∈ J , and the last equality holds as each
term of the ℓ1 norm is positive.

Case 3: For some non-terminal observation point h = σ ∈ Σ \ E , we will show that quantity
∥u∥Hσ,1 = maxj∈Cσ ∥u[Ej ]∥Hj ,1 is neither less than nor greater than supy∈Yσ

⟨|u|,y[Eσ]⟩. Firstly,
for decision point j ∈ Cσ that is a successor of σ, it satisfies that

∥u[Ej ]∥Hj ,1 = sup
y∈Yj

⟨|u[Ej ]|,y[Ej ]⟩ ≤ sup
y∈Yσ

⟨|u|,y⟩,

where the equality holds from the induction hypothesis and the inequality holds since the inner
product can be upper bounded according to ⟨|u[Ej ]|,y[Ej ]⟩ ≤ ⟨|u|,y⟩ and Yj is a subset of Yσ. By
taking the maximal among all successor j ∈ Cσ, this inequality immediately establishes an upper
bound for ∥u∥Hσ,1:

∥u∥Hσ,1 = max
j∈Cσ

∥u[Ej ]∥Hj ,1 ≤ sup
y∈Yσ

⟨|u|,y⟩. (C.1)

Moreover, fix some transition kernel y ∈ Yσ . According to the tree-structure of the TFSDP, we have
that the vector y[Ej ]/y[j] with respect to some successor j ∈ Cσ is a valid transition kernel with in
the subtree of j. In other words, we have vector y[Ej ]/y[j] ∈ Yj . Thus, we can write

⟨|u|,y⟩ =
∑
j∈Cσ

y[j] · ⟨|u[Ej ]|,y[Ej ]/y[j]⟩

≤
∑
j∈Cσ

y[j] · sup
yj∈Yj

⟨|u[Ej ]|,yj [Ej ]⟩

=
∑
j∈Cσ

y[j] · ∥u[Ej ]∥Hj ,1

≤ max
j∈Cσ

∥u[Ej ]∥Hj ,1

where the first equality follows from the fact that Ej , for all successor j ∈ Cσ, forms a partition
of Eσ, the first inequality holds since y[Ej ]/y[j] ∈ Yj , the second equality follows from induction
hypothesis, and the last inequality holds since

∑
j∈Cσ

y[j] = 1 and y[j] ≥ 0 for transition kernel
y ∈ Yσ. By taking supremum among all transition kernel y ∈ Yσ, we establishes an lower bound
∥u∥Hσ,1

sup
y∈Yσ

⟨|u|,y⟩ ≤ max
j∈Cσ

∥u[Ej ]∥Hj ,1 = ∥u∥Hσ,1. (C.2)

As the upper bound in (C.1) and the lower bound in (C.2) agrees on the same quantity, we immediately
reach the following equation

∥u∥Hσ,1 = max
j∈Cσ

∥u[Ej ]∥Hj ,1 = sup
y∈Yσ

⟨|u|,y⟩

which proves the induction statement on observation point σ.

In general, the induction hypothesis always holds. By inspecting h = ∅, we reach the desired
statement in which ∥u∥H∅,1 = supy∈Y⟨|u|,y⟩ = ∥u∥H,1.

Finally, since the treeplex ℓ∞ norm closely mirrors treeplex ℓ1 norm, the result for treeplex ℓ∞
norm can be directly reached with the only modification being the interchange of cases 2 and 3.

C.3 Proof of Theorem 4.3

Theorem 4.3 (restatement). We have ∥ · ∥H,1 and ∥ · ∥H,∞ is a pair of primal-dual norms for a given
TFSDP with point setH. Specifically, for any vector u ∈ RE ,

∥u∥∗H,1 := sup
v∈RE

⟨u,v⟩
∥v∥H,1

= ∥u∥H,∞.
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Proof. Firstly, from the definition of the treeplex ℓ1 norm and the treeplex ℓ∞ norm, the norm of any
vector is equal to the norm of the vector that takes the absolute value at each index, that is, we have
∥v∥H,1 = ∥|v|∥H,1 and ∥u∥H,∞ = ∥|u|∥H,∞ holds for any u,v ∈ RE . Therefore, we can always
choose v such that it matches the sign of u to maximize the inner product in the dual norm, which
implies

∥u∥∗H,1 = sup
v∈RE

⟨u,v⟩
∥v∥H,1

= sup
v∈RE

⟨|u|, |v|⟩
∥v∥H,1

We will use induction on H from the bottom up, demonstrating that ∥u∥∗Hh,1
= ∥u∥Hh,∞ always

holds for every h ∈ H. Specifically, we will show that for every h ∈ H and u ∈ REh :

sup
v∈REh

⟨|u|, |v|⟩
∥v∥Hh,1

= ∥u∥Hh,∞.

Case 1: The induction basis occurs at h = σ ∈ E , where the statement can be verified from

sup
v∈REσ

⟨|u|, |v|⟩
∥v∥Hσ,1

= sup
v∈REσ

|u[σ]| · |v[σ]|
|v[σ]|

= |u[σ]| = ∥u∥Hσ,∞.

where the first equality is given by Lemma 4.2 and the last equality is given by Lemma 4.2.

Case 2: Consider some decision point h = j ∈ J . It satisfies that

sup
v∈REj

⟨|u|, |v|⟩
∥v∥Hj ,1

= sup
v∈REj

∑
a∈Aj

⟨|u[Eja]|, |v[Eja]|⟩∑
a∈Aj

∥v[Eja]∥Hja,1
= sup

{vja∈REja}a∈Aj

∑
a∈Aj

⟨|u[Eja]|, |vja|⟩∑
a∈Aj

∥vja∥Hja,1
,

(C.3)
where the expression for the numerator in the first equality is valid since Eja for a ∈ Aj is a partition
of Ej , while the expression for the denominator follows from Lemma 4.2. The fraction can be
interpreted as a weighted average of ⟨|u[Eja]|, |vja|⟩/∥vja∥Hja,1, indicating that∑

a∈Aj
⟨|u[Eja]|, |vja|⟩∑

a∈Aj
∥vja∥Hja,1

≤ max
a∈Aj

⟨|u[Eja]|, |vja|⟩
∥vja∥Hja,1

.

Additionally, by choosing some specific a ∈ Aj and assigning vja′ = 0 for any a′ ̸= a, we have that

sup
{vja∈REja}a∈Aj

∑
a∈Aj

⟨|u[Eja]|, |vja|⟩∑
a∈Aj

∥vja∥Hja,1
≥ sup

vja∈REja

⟨|u[Eja]|, |vja|⟩
∥vja∥Hja,1

.

These inequalities define the upper and lower bounds for the same quantity, leading to the equation:

sup
{vja∈REja}a∈Aj

∑
a∈Aj

⟨|u[Eja]|, |vja|⟩∑
a∈Aj

∥vja∥Hja,1
= max

a∈Aj

sup
vja∈REja

⟨|u[Eja]|, |vja|⟩
∥vja∥Hja,1

. (C.4)

Moreover, according to the induction hypothesis, we can replace the inner supremum by

sup
vja∈REja

⟨|u[Eja]|, |vja|⟩
∥vja∥Hja,1

= ∥u[Eja]∥Hja,∞. (C.5)

By combining (C.3), (C.4), (C.5), and Lemma 4.2, we establish the induction statement on j ∈ J :

sup
v∈REj

⟨|u|, |v|⟩
∥v∥Hj ,1

= max
a∈Aj

∥u[Eja]∥Hja,∞ = ∥u∥Hj ,∞.

Case 3: When h = σ ∈ Σ \ E , it follows from the symmetric relationship between treeplex ℓ1
norm and treeplex ℓ∞ norm that, similarly to the previous arguments, we can conclude that

sup
v∈REσ

⟨|u|, |v|⟩
∥v∥Hσ,∞

= ∥u∥Hσ,1.

This suggests that the norm ∥ · ∥Hσ,∞ is a dual norm of ∥ · ∥Hσ,1, which immediately leads to the
desired statement, in which

sup
v∈REσ

⟨|u|, |v|⟩
∥v∥Hσ,1

= ∥u∥Hσ,∞.
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C.4 Proof of Lemma 4.4

Lemma 4.4 (restatement). We have ∥x∥H,1 = 1 for any strategy profile x ∈ Q, ∥y∥H,∞ = 1 for any
transition kernel y ∈ Y , and ∥w∥H,∞ ≤ 1 for any feasible reward vector w under Assumption 3.1.

Proof. According to the definition of Q and Y , for any element x ∈ Q and y ∈ Y , it is established
that ∥x∥Hh,1, ∥y∥Hh,∞, and their respective x[h] and y[h] agree on the same recursive formula
across all h ∈ H given by Lemmas 4.2. Consequently, it is always true that ∥x∥Hh,1 = x[h] and
∥y∥Hh,∞ = y[h], thereby implying ∥x∥H,1 = 1 and ∥y∥H,∞ = 1. Finally, we have w = y ◦ r for
r ∈ [0, 1]E under Assumption 3.1. Thus, we have

∥w∥H,∞ = sup
x∈Q
⟨|w|,x⟩ = sup

x∈Q
⟨|r| ⊙ |y|,x⟩ ≤ sup

x∈Q
⟨|y|,x⟩ = ∥y∥H,∞ = 1.

where the inequality is given by the x is always non-negative as well as r ≤ 1.

D Proof of Regret Upper Bounds

D.1 Proof of Lemma 5.1

Lemma 5.1 (restatement). The weight-one dilated entropy (DilEnt) is 1-strongly convex within the
extensive-form decision space Q with respect to the treeplex ℓ1 norm ∥ · ∥H,1. Specifically, for any
vector z ∈ RE and strategy profile x ∈ Q, we have that ∥z∥2∇2φ1(x)

≥ ∥z∥2H,1.

Proof. For some transition kernel y ∈ Y , we define the y-weighted dilated entropy:

φy(x) :=
∑
j∈J

∑
a∈Aj

y[ja]x[ja] ln
(x[ja]
x[pj ]

)
.

By decomposing the logarithm term in the summation, we get

φy(x) =
∑
j∈J

∑
a∈Aj

y[ja]x[ja] lnx[ja]

︸ ︷︷ ︸
I1

−
∑
j∈J

∑
a∈Aj

y[ja]x[ja] lnx[pj ]︸ ︷︷ ︸
I2

. (D.1)

We can rewrite the first term as

I1 =
∑
j∈J

∑
a∈Aj

y[ja]x[ja] lnx[ja] =
∑

σ∈Σ+

y[σ]x[σ] lnx[σ]. (D.2)

For the second term, we can further write:

I2 =
∑
j∈J

∑
a∈Aj

y[ja]x[ja] lnx[pj ]

=
∑
j∈J

y[j]x[pj ] lnx[pj ]

=
∑

σ∈Σ\E

∑
j∈Cσ

y[j]x[σ] lnx[σ]

=
∑

σ∈Σ\E

y[σ]x[σ] lnx[σ] (D.3)

where the second equality is given by y[j] = y[ja] for transition kernel y ∈ Y and x[pj ] =∑
a∈Aj

x[ja] for strategy profile x ∈ Q, the third equality is derived from the fact that Cσ, for all
σ ∈ Σ \ E , forms a partition of J , and the last equality follows from y[σ] =

∑
j∈Cσ

y[j] for any
non-terminal observation point σ ∈ Σ \ E over y ∈ Y .

Plugging (D.2) and (D.3) into (D.1), we obtain the following result, indicating that function φy can
be expressed as the weighted negative entropy over all terminal observation points σ ∈ E :

φy(x) =
∑
σ∈E

y[σ]x[σ] lnx[σ].
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We are ready to show the strong convexity of weight-one dilated entropy φ1. Consider a vector
z ∈ RE . Since function φy is additively separable over all variables x[σ], the Hessian matrix of
φy(x) is diagonal. Thus, the squared norm of z over∇2φy(x) can be interpreted according to

z⊤∇2φy(x)z =
∑
σ∈E

z[σ]2 · ∇2
x[σ]φy(x)

=
∑
σ∈E

z[σ]2 · y[σ]
x[σ]

≥
(∑

σ∈E
z[σ]2 · y[σ]

x[σ]

)
·
(∑

σ∈E
y[σ]x[σ]

)

≥
(∑

σ∈E
|z[σ]| ·

√
y[σ]

x[σ]
·
√

y[σ]x[σ]
)2

=
(∑

σ∈E
|z[σ]| · y[σ]

)2

= ⟨|z|,y⟩2. (D.4)

where the first inequality follows from Lemma 4.4 which implies
∑

σ∈E y[σ]x[σ] ≤ ∥y∥H,∞ = 1 as
x ∈ X and y ∈ Y and the second inequality is given by the Cauchy–Schwarz inequality.

Moreover, consider the difference between function φ1(·) and φy(·), we have

φ1−y(x) := φ1(x)− φy(x) =
∑
j∈J

∑
a∈Aj

(1− y[ja])x[ja] ln
(x[ja]
x[pj ]

)
.

From transition kernel y ∈ Y , we always have 1− y[ja] ≥ 0 for any j ∈ J and a ∈ Aj . Together
with the fact that a ln(a/b) is convex for a, b ∈ R≥0, we have that the difference φ1−y is a positive
combination of convex functions. Thus, function φ1−y is a convex function, which implies

z⊤∇2φ1−y(x)z ≥ 0. (D.5)

Using additivity of the Hessian and inequalities (D.5) and (D.4), we obtain

z⊤∇2φ1(x)z = z⊤∇2φy(x)z+ z⊤∇2φ1−y(x)z ≥ ⟨|z|,y⟩2.

By taking the supremum among all transition kernels y ∈ Y , we reach the final statement

∥z∥2∇2φ1(x)
= z⊤∇2φ1(x)z ≥ max

y∈Y
⟨|z|,y⟩2 = ∥z∥2H,1.

This concludes that the weight-one dilated entropy φ1 is 1-strongly convex with respect to the treeplex
ℓ1 norm ∥ · ∥H,1.

D.2 Proof of Lemma 5.2

Lemma D.1. The value of the DilEnt regularizer for some strategy profile x ∈ Q can be bounded by
− ln |V| ≤ φ1(x) ≤ 0, where |V| is the number of reduced normal-form strategies.

Proof. Since the DilEnt regularizer is the weighted summation of negative entropy, and the fact that
negative entropy is always non-positive, we directly get φ1(x) ≤ 0. We will prove φ1(x) ≥ − ln |V|
by induction on the TFSDP from the bottom up. In specific, we will show that for any point h ∈ H
and a corresponding strategy profile xh ∈ Qh, the DilEnt with retricted toHh satisfies

φ1,h(xh) :=
∑
j∈Jh

∑
a∈Aj

xh[ja] ln
(xh[ja]

xh[pj ]

)
≥ − ln |Vh|.

Case 1: The induction basis occurs at h = σ ∈ E , where the statement holds since for any xσ ∈ Qσ ,

φ1,σ(xσ) = 0 = − ln |Vσ|,

where we have |Vσ| = 1 from Lemma F.2.
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Case 2: Consider some decision point h = j ∈ J . We can decompose the DilEnt regularizer over
xj ∈ Qj according to

φ1,j(xj) =
∑
a∈Aj

xj [ja] lnxj [ja] +
∑
a∈Aj

∑
j′∈Jja

∑
a′∈Aj′

xj [j
′a′] ln

(xj [j
′a′]

xj [pj′ ]

)
(D.6)

Consider the vector xja := x[Eja]/x[ja] for some action a ∈ Aj . If x[ja] = 0, we have∑
j′∈Jja

∑
a′∈Aj′

xj [j
′a′] ln

(xj [j
′a′]

xj [pj′ ]

)
= 0 ≥ −xj [ja] ln |Vja|.

Otherwise, it satisfies that xja ∈ Qja according to the tree-structure of TFSDP. Thus, we can write∑
j′∈Jja

∑
a′∈Aj′

xj [j
′a′] ln

(xj [j
′a′]

xj [pj′ ]

)
= xj [ja]

∑
j′∈Jja

∑
a′∈Aj′

(xj [j
′a′]

xj [ja]

)
ln
(xj [j

′a′]

xj [pj′ ]

)
= xj [ja]

∑
j′∈Jja

∑
a′∈Aj′

xja[j
′a′] ln

(xja[j
′a′]

xja[pj′ ]

)
= xj [ja]φ1,ja(xja)

≥ −xj [ja] ln |Vja|,

where the last inequality is given by induction hypothesis.

In general, it always satisfies that∑
j′∈Jja

∑
a′∈Aj′

xj [j
′a′] ln

(xj [j
′a′]

xj [pj′ ]

)
≥ −xj [ja] ln |Vja|.

Plugging this inequality into (D.6) gives

φ1,j(xj) ≥
∑
a∈Aj

xj [ja] lnxj [ja]−
∑
a∈Aj

xj [ja] ln |Vja|

≥ ln
( ∑

a∈Aj

exp(− ln |Vja|)
)

= − ln
( ∑

a∈Aj

|Vja|
)

= − ln |Vj |.

where the first inequality holds since the minimizer is given by xj [ja] ∝ exp(− ln |Vja|), and the
last equality is given by Lemma F.2.

Case 3: Consider some decision point h = σ ∈ Σ. We can decompose the weight-one dilated entropy
according to the tree-structure of TFSDP. Thus, we can write

φ1,σ(xσ) =
∑
j∈Cσ

∑
j′∈Jj

∑
a′∈Aj′

xσ[j
′a′] ln

(xσ[j
′a′]

xσ[pj′ ]

)
=

∑
j∈Cσ

φ1,j(xσ[Ej ])

≥
∑
j∈Cσ

− ln |Vj |

= − ln |Vσ|,

where the second inequality is given by induction hypothesis, and the last equality is given by
Lemma F.2.

In general, it always holds that φ1,h(xh) ≥ − ln |Vh|, which concludes the proof. Substituting this
with h = ∅ reaches the desired result.
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Lemma 5.2 (restatement). Let x1 := argminx∈Q φ1(x) be the strategy profile minimize the DilEnt
regularizer. The Bregman divergence generated by the DilEnt regularizer between x1 and any x∗ ∈ Q
can be upper bounded by Dφ1(x∗,x1) ≤ ln |V|.

Proof. From the definition of Bregman divergence Dφ1 , we can write

Dφ1(x∗,x1) = φ1(x∗)− φ1(x1)− ⟨∇φ1(x1),x∗ − x1⟩ (D.7)

According to Lemma D.1, we have φ1(x∗) − φ1(x1) ≤ ln |V|. From the chosen of x1, we have
⟨∇φ1(x1),x∗ − x1⟩ = 0. By plugging both inequalities into (D.7), we reach the desired result

Dφ1(x∗,x1) ≤ ln |V|.

D.3 Proof of Theorem 5.4

Theorem 5.4 (restatement). Let φ be a regularizer for extensive-form decision space Q which is
µ-strongly convex on ∥·∥H,1 and has a diameter |D| := supx∗∈QDφ(x∗, x1). Under Assumption 3.1,
the cumulative regret of running OMD with regularizer φ and learning rate η :=

√
2|D|/(µT ) is

upper bounded by

Regret(T ) ≤
√

2|D|/µ
√
T .

Moreover, if we use the DilEnt regularizer φ1 in proximal steps, the result can be specified as

Regret(T ) ≤
√
2 ln |V|

√
T .

Proof. We will apply Theorem 5.3 with ∥ · ∥H,1 and ∥ · ∥H,∞ be the desired primal-dual pair. In the
context of the theorem, we have ∥wt∥H,∞ ≤ 1 for any t ∈ JT K from Lemma 4.4. Together with
Dφ(x∗,x1) ≤ |D|, when choosing learning rate η :=

√
2|D|/(µT ), we have the regret can be upper

bounded by

Regret(T ) ≤ 1

η
· |D|+ η

2
· T =

√
2|D|/µ

√
T .

When selecting DilEnt as the regularizer, we have |D| ≤ ln |V| from Lemma 5.2 and µ ≥ 1 from
Lemma 5.1. Plugging these results indicates

Regret(T ) ≤
√
2 ln |V|

√
T .

D.4 Proof of Lemma 5.5

We first prove the lemma starts from the following locally Lipshitz.

Lemma D.2. In Algorithm 2, consider two joint policies that agree on all strategy profile expect
for player j ∈ JnK, π1 := {x(1)

0 , · · · ,x(j)
1 , · · · ,x(n)

0 } and π2 := {x(1)
0 , · · · ,x(j)

2 , · · · ,x(n)
0 }. Under

Assumption 3.1, we have the reward vector is locally Lipschitz under the treeplex ℓ1 norm, that is,
denote by w

(i)
1 := ∂iu

(i)(π1) and w
(i)
2 := ∂iu

(i)(π2) the reward vector of player i, it satisfies that

∥w(i)
1 −w

(i)
2 ∥H(i),∞ ≤ ∥x

(j)
1 − x

(j)
2 ∥H(i),1.

Proof. If j = i, we have w
(i)
1 = w

(i)
2 and the statement holds true from

∥w(i)
1 −w

(i)
2 ∥H(i),∞ = 0 ≤ ∥x(j)

1 − x
(j)
2 ∥H(i),1.

Otherwise it satisfies that j ̸= i. According to the definition of treeplex ℓ∞ norm, we have that

∥w(i)
1 −w

(i)
2 ∥H(i),∞ = sup

x∈Q(i)

⟨|w(i)
1 −w

(i)
2 |,x⟩ = sup

x∈Q(i)

∑
σ∈E(i)

|w(i)
1 [σ]−w

(i)
2 [σ]| · x[σ]. (D.8)
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By expressing the reward vector using the strategy of other players, we have that

w
(i)
1 [σ] =

∑
z∈Iσ

u(i)[z] · p[z] · x(j)
1 [σ(j)

z ]
∏
k ̸=i,j

x
(k)
0 [σ(k)

z ]. (D.9)

Plugging (D.9) into (D.8) gives

∥w(i)
1 −w

(i)
2 ∥H(i),∞ (D.10)

= sup
x∈Q(i)

∑
σ∈E(i)

x[σ] ·
∣∣∣ ∑
z∈Iσ

u(i)[z] · p[z] · (x(j)
1 [σ(j)

z ]− x
(j)
2 [σ(j)

z ])
∏
k ̸=i,j

x
(k)
0 [σ(k)

z ]
∣∣∣

≤ sup
x∈Q(i)

∑
σ∈E(i)

x[σ]
∑
z∈Iσ

p[z] ·
∣∣x(j)

1 [σ(j)
z ]− x

(j)
2 [σ(j)

z ]
∣∣ ∏
k ̸=i,j

x
(k)
0 [σ(k)

z ]

= sup
x∈Q(i)

∑
z∈Z

x[σ(i)
z ] · p[z] ·

∣∣x(j)
1 [σ(j)

z ]− x
(j)
2 [σ(j)

z ]
∣∣ ∏
k ̸=i,j

x
(k)
0 [σ(k)

z ], (D.11)

where the inequality holds since the reward u(i)[z] ∈ [0, 1] and the last equality is given by permuting
the summation.

According to the definition of treeplex ℓ1 norm, we have

∥x(j)
1 − x

(j)
2 ∥H(j),1 = sup

y∈Y(j)

⟨|x(j)
1 − x

(j)
2 |,y⟩ = sup

y∈Y(j)

∑
σ∈E(j)

|x(j)
1 [σ]− x

(j)
2 [σ]| · y[σ]. (D.12)

By expressing the transition kernel using the strategy of other players, we can write

y[σ] =
∑
z∈Iσ

x(i)[σ(i)
z ] · p[z]

∏
k ̸=i,j

x(k)[σ(k)
z ] (D.13)

such that x(i) ∈ Q(i) and x(k) ∈ Q(k). Plugging (D.13) into (D.12) gives

∥x(j)
1 − x

(j)
2 ∥H(j),1 = sup

{x(k)∈Q(k)}k ̸=j

∑
σ∈E(j)

|x(j)
1 [σ]− x

(j)
2 [σ]|

∑
z∈Iσ

x(i)[σ(i)
z ] · p[z]

∏
k ̸=i,j

x(k)[σ(k)
z ]

≥ sup
x∈Q(i)

∑
σ∈E(j)

|x(j)
1 [σ]− x

(j)
2 [σ]|

∑
z∈Iσ

x[σ(i)
z ] · p[z]

∏
k ̸=i,j

x
(k)
0 [σ(k)

z ]

= sup
x∈Q(i)

∑
z∈Z

x[σ(i)
z ] · p[z] ·

∣∣x(j)
1 [σ(j)

z ]− x
(j)
2 [σ(j)

z ]
∣∣ ∏
k ̸=i,j

x
(k)
0 [σ(k)

z ], (D.14)

where the inequality holds as x(k)
0 ∈ Q(k) and the last equality is given by permuting the summation.

By combining (D.10) and (D.14), we can reach that

∥w(i)
1 −w

(i)
2 ∥H(i),∞ ≤ ∥x

(j)
1 − x

(j)
2 ∥H(j),1. (D.15)

Lemma D.3. In Algorithm 2, for two joint policy π1 = {x(j)
1 }nj=1 and π2 = {x(j)

2 }nj=1 where

x
(j)
1 ,x

(j)
2 ∈ Q(j) are the strategy profiles for player j ∈ JnK. Consider the corresponding reward

vectors w(i)
1 := ∂iu

(i)(π1) and w
(i)
2 := ∂iu

(i)(π2) of player i ∈ JnK when other players follow the
joint policy. Under Assumption 3.1, we have the reward vector is Lipschitz under the treeplex ℓ1
norm, that is,

∥w(i)
1 −w

(i)
2 ∥H(i),∞ ≤

n∑
j=1

∥x(j)
1 − x

(j)
2 ∥H(j),1.

Proof. Consider a series of reward vector policy π(j) := {x
(1)
2 , · · · ,x(j)

2 ,x
(j+1)
1 · · · ,x(n)

1 } which
are generated by the joint policy that aligns with joint policy π2 on the first j players while aligns with
π1 on the rest. Denote by w

(i)
(j) := ∂iu

(i)(π(j)) the reward vector. Under this definition, it satisfies

that w(i)
(0) = w

(i)
1 and w

(i)
(n) = w

(i)
2 . Therefore, we can write

∥w(i)
1 −w

(i)
2 ∥H(i),∞ ≤

n∑
j=1

∥w(i)
(j−1) −w

(i)
(j)∥H(i),∞ ≤

n∑
j=1

∥x(j)
1 − x

(j)
2 ∥H(j),1,

where the first inequality follows from the triangle inequality and the second inequality is given by
Lemma D.2.
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Lemma 5.5 (restatement). Under Assumption 3.1, when running COMD with DilEnt, the reward
vector w

(i)
t,l received by player i in any (t, l) ∈ JKK × JLK satisfies ∥w(i)

t,l+1 − w
(i)
t,l ∥H(i),∞ ≤

2(nη)l−1.

Proof. By applying Lemma 3.2 to the proximal steps x(i)
t,l ← Πφ1

(i)(ηw
(i)
t,l−1, x̃

(i)
t ) and x

(i)
t,l+1 ←

Πφ1
(i)(ηw

(i)
t,l , x̃

(i)
t ), we have that for every l ≥ 1,

∥x(i)
t,l+1 − x

(i)
t,l ∥H(i),1 ≤ η∥w(i)

t,l −w
(i)
t,l−1∥H(i),∞, (D.16)

where the strongly convex modulus µ ≥ 1 is given by Lemma 5.1. From Lemma D.3, we have that

∥w(i)
t,l+1 −w

(i)
t,l ∥H(i),∞ ≤

n∑
j=1

∥x(j)
t,l+1 − x

(j)
t,l ∥H(i),1. (D.17)

In addition, the difference between the initial steps can be upper bounded according to

∥w(i)
t,2 −w

(i)
t,1∥H(i),∞ ≤ ∥w

(i)
t,2∥H(i),∞ + ∥w(i)

t,1∥H(i),∞ ≤ 2, (D.18)

where the first inequality follows from the triangle inequality and the second inequality is given by
Lemma 4.4. By combining (D.16), (D.17), and (D.18), we reach the desired statement:

∥w(i)
t,l+1 −w

(i)
t,l ∥H(i),∞ ≤ 2(nη)l−1.

D.5 Proof of Theorem 5.6

Theorem 5.6 (restatement). Under Assumption 3.1, if every player runs Clairvoyant OMD with
DilEnt regularizer and learning rate η = 1/(2n) for K episodes. With L = ⌈logK⌉ steps of
inner iterations, the average joint policy π̄K is an ε-CCE for ε ≤ O(n ln |V|/K). This implies the
algorithm converge to a CCE at rate O(n log |V| log T/T ) where T = KL is the number of oracle
access to the game.

Proof. When η ≤ 1/(2n), we have nη ≤ 1/2. According to Lemma 5.5, the difference between the
actual reward vector and the prediction can be upper bounded by

∥w(i)
t −m

(i)
t ∥H(i),∞ = ∥w(i)

t,L+1 −w
(i)
t,L∥H(i),∞ ≤ 2(nη)L−1 ≤ 22−L.

Therefore, with L = ⌈logK⌉ steps of fixed-point iterations, the difference can be as small as
∥w(i)

t −m
(i)
t ∥H(i),∞ ≤ 4/K.

Let ∥ · ∥H(i),1 and ∥ · ∥H(i),∞ be the pair of primal-dual norms required by Theorem 5.3. In the
context of the theorem, we have ∥wt∥H(i),∞ ≤ 1 for any t ∈ JKK given by the definition of treeplex
ℓ∞ norm, Dφ1(x∗,x1) ≤ ln |V| according to Lemma 5.2, µ ≥ 1 according to Lemma 5.1, and
∥w(i)

t −m
(i)
t ∥H(i),∞ ≤ 1/K from the reasoning above. Plugging these results into the statement of

Theorem 5.3 gives:

Regret(K) ≤ 1

η
· ln |V|+ ηK

2
·
( 4

K

)2

.

With η = 1/(2n), we get that

Regret(K) ≤ O(n log |V|).

According to the online-to-batch conversion [see e.g. 36], we can conclude that the average joint
policy π̄K is an ε-CCE with ε ≤ O(n log |V|/K). Given oracle access budget T , we can select
K = ⌊T/ log T ⌋ satisfying KL ≤ T . This indicates that the algorithm converge to a CCE with
approximation rate O(n log |V| log T/T ).
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E Proof of Regret Lower Bounds

E.1 Proof of Theorem 6.1

Theorem 6.1 (restatement). Given a TFSDP with decision space Q, there is an EFG satisfying
Assumption 3.1 such that: when the other players are controlled by the adversary, any algorithm
Alg incurs an expected regret of at least Ω(

√
∥Q∥⊥ log |A0|

√
T ) for a given of episode number

T ≥ ∥Q∥⊥, where |A0| := minj∈J |Aj | is the size of the minimum action set.

Proof. We will prove the statement by induction onH from the bottom up. For each point h ∈ H\E ,
we construct a hard instance Ih(T ) such that any algorithm H playing in subgame Hh incurs an
expected regret of at least Ω(

√
∥Qh∥⊥ log |A0|

√
T ). We construct hard instance Ih(T ) to be a

two-player perfect-information EFG that has the same structure as the given TFSDP, where all the
observation points are the decision points of an adversarial opponent. It can be represented using a
set of random variables {yh,t, rh,t}Tt=1, where yh,t ∈ Yh is the transition kernel and rh,t ∈ [0, 1]Eh

encodes the expected reward of player conditional on each terminal observation point. Note that the
transition kernel yh,t is also the strategy profile of the opponent in his extensive-form decision space.
In this case, the expected reward of playing strategy profile xh,t onHh on episode t can be computed
by ⟨xh,t,wh,t⟩ where wh,t := rh,t ⊙ yh,t is the reward vector.

Case 1: The base case of the induction is that h = j ∈ J and ja ∈ E holds for every a ∈ Aj . In
this case, the TFSDP with point setHh is equivalent to a full-information multi-arm bandit problem
(a.k.a. expert problem). We construct the hard instance Ij(T ) by assigning

yj,t[ja] = 1, rj,t[ja] = Unif({0, 1})

for every episode t ∈ JT K, where Unif({0, 1}) is the Bernoulli random variable with p = 0.5. In this
case, the entries of the reward vector wj,t := rj,t ⊙ yj,t are independently random variables. Thus,
the expected cumulative reward among T episodes of any algorithm Alg can be computed by

E
[ T∑

t=1

⟨xj,t,wj,t⟩
]
=

T∑
t=1

1

2
=

T

2
. (E.1)

Additionally, the cumulative reward of the optimal policy can be computed according to

E
[
max
a∈Aj

T∑
t=1

⟨eja,wj,t⟩
]
= E

[
max
a∈Aj

T∑
t=1

(1
2
σa,t +

1

2

)]
=

1

2
E
[
max
a∈Aj

T∑
t=1

σa,t

]
+

T

2

≥ Ω(
√
T log |Aj |) +

T

2
, (E.2)

where eja is the pure strategy profile that always executes action a at decision point j and σa,t ∼
Unif({−1, 1}) are independent Rademacher random variables for a ∈ Aj and t ∈ JT K. The last
inequality follows from Lemma A.11 in Cesa-Bianchi and Lugosi [9]. Combining (E.1) and (E.2)
indicates that any algorithm suffer an expected regret of at least

Regretj(T ) = E
[
max
a∈Aj

T∑
t=1

⟨eja,wj,t⟩
]
− E

[ T∑
t=1

⟨xj,t,wj,t⟩
]
≥ Ω

(√
log |Aj |

√
T
)
.

Note that for the j ∈ J , we have ∥Qj∥⊥ = 1 from Lemma F.1. Together with |Aj | ≥ |A0| from the
definition of |A0|, we conclude that

Regretj(T ) ≥ Ω
(√
∥Qj∥⊥ log |A0|

√
T
)
,

establishing the induction basis.

Case 2: For any other decision point h = j ∈ J that is non-terminal, let a∗ = argmaxa∈A ∥Qja∥⊥
be the action that maximizes the leaf count in the subtree (breaking ties arbitrarily). Let Ija∗(T ) =
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{yja∗,t, rja∗,t}Tt=1 be the hard instance built in the subtree satisfying the induction hypothesis. We
construct the hard instance Ij(T ) = {yja∗,t, rja∗,t}t according to

yj,t[h] =

{
yja∗,t[σ] if σ ∈ E(ja∗)
⊥ otherwise

, rj,t[σ] =

{
rja∗,t[σ] if σ ∈ E(ja∗)
0 otherwise

where ⊥ refers to any valid transition kernel. In other words, the construction ensures taking action
a∗ leads to the hard instance Ija∗(T ) while taking any other actions always results in a reward of 0.

Since any action different from a∗ will result in a reward of 0, any algorithm Alg that ever assigned
weight outside ja∗ end up in a lower cumulative reward compared to the other algorithm Alg′ that
consistently play action a∗ on decision point j. Together with the fact that playing a∗ will reduce the
problem to Ija∗(T ), no algorithm can achieve a higher reward on the hard instance Ij(T ) comparing
to Ija∗(T ). Moreover, the strategy profile given by choosing a∗ then following the optimal strategy
profile on Ija∗(T ) leads to the same cumulative reward as the optimal strategy profile on Ija∗(T ).
This indicates that the cumulative reward of the optimal strategy profile on Ij(T ) is no less than
its counterpart on Ija∗(T ). Combining the two statements, we have that the regret lower bound on
Ij(T ) is no less than the regret lower bound on Ija∗(T ). This implies the regret of any algorithm
Alg can be lower bounded by

Regretj(T ) ≥ Ω
(√
∥Qja∗∥⊥ log |A0|

√
T
)
= Ω

(√
∥Qj∥⊥ log |A0|

√
T
)
.

where the last equality follows from Lemma F.1, which indicates ∥Qj∥⊥ = maxa∈Aj
∥Qja∥⊥ =

∥Qja∗∥⊥, where the last equality follows from the choice of action a∗.

Case 3: If h = σ ∈ Σ \ E is some non-terminal observation point, we construct the hard instance
Iσ(T ) by concatenating several hard instance blocks, each block for one observation outcome j ∈ Cσ .
For j ∈ Cσ, taking observation at point σ always leads to decision point j. Let {Tj ∈ Z≥0}j∈Cσ

be a partition which maximizes
∑

j Tj∥Qj∥⊥ under the constraint
∑

j Tj = T . This ensures

Tj ≈ T∥Qj∥⊥/∥Qσ∥⊥. We construct the hard instance block Iσ→j(Tj) = {rσ,t,yσ,t}
Tj

t=1 using
the hard instance Ij(Tj) = {rj,t,yj,t}

Tj

t=1 inHj given by the induction, by assigning

yσ,t[σ
′] =

{
yj,t[σ

′] if σ′ ∈ E(j)
⊥ otherwise

, rσ,t[σ
′] =

{
rj,t[σ

′] if σ′ ∈ E(j)
0 otherwise

.

We construct the hard instance Iσ(T ) by concatenating Iσ→j(Tj) over episodes.

From the property of observation point, the cumulative regret of any algorithm on hard instance
Iσ→j(Tj) is equal to that on Ij(Tj). Since hard instances Ij(Tj) are independent on the decision
space, the cumulative regret on Iσ(T ) is the summation of the cumulative regret among all Iσ→(Tj).
This indicates that any algorithm Alg will suffer a regret of at least

Regretσ(T ) =
∑
j∈Cσ

Regretσ→j(Tj)

=
∑
j∈Cσ

Regretj(Tj)

≥
∑
j∈Cσ

Ω
(√
∥Qj∥⊥ log |A0|

√
Tj

)
≥

∑
j∈Cσ

Ω
(√
∥Qj∥⊥ log |A0|

√
T∥Qj∥⊥/∥Qσ∥⊥

)
= Ω(

√
∥Qσ∥⊥ log |A0|

√
T ),

where the second inequality is given by the assignment of Tj and the last equality is given by
Lemma F.1 in which ∥Qσ∥⊥ =

∑
j∈Cσ

∥Qj∥⊥.

In general, the induction hypothesis always holds, indicating that for any algorithm Alg, it suffers an
expected regret of at least Ω(

√
∥Qh∥⊥ log |A0|

√
T ) in subtree h. The desired result can be reached

by inspecting h = ∅.
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E.2 Proof of Lemma 6.2

We first establish a structural result for TFSDPs where no non-root observation point yield exactly
one outcome.

Lemma E.1. For a TFSDP with a given point setH, if no non-root observation point yield exactly
one outcome, that is, |Cσ| ≥ 2 for any σ ∈ Σ+ \ E , then it follows that ∥Q∥1 ≤ 2∥Q∥⊥.

Proof. We prove the statement by induction onH from the bottom up, showing that for any strategy
profile x ∈ Q, and any non-root point h ∈ H \ {∅}, it satisfies that

∥x[Σh]∥1 :=
∑
σ∈Σh

x[σ] ≤ x[h] · (2∥Qh∥⊥ − 1).

Case 1: The base case for the induction occurs when h = σ ∈ E is a terminal node. In this scenario,
the statement holds true since∑

σ∈Σh

x[σ] = x[h] ≤ x[σ] · (2∥Qσ∥⊥ − 1).

where the last inequality is given by Lemma F.1 in which 2∥Qσ∥⊥ = 1.

Case 2: For any decision point h = j ∈ J , it holds that∑
σ∈Σj

x[σ] =
∑
a∈Aj

∑
σ∈Σja

x[σ]

≤
∑
a∈Aj

x[ja] · (2∥Qja∥⊥ − 1)

≤
∑
a∈Aj

x[ja] · (2∥Qj∥⊥ − 1)

= x[j] · (2∥Qj∥⊥ − 1),

where the first equality follows from to the tree hierarchy of Σ, the first inequality follows the induction
hypothesis, the second inequality holds since ∥Qja∥⊥ ≤ ∥Qj∥⊥ implied by Lemma F.1, and the
last equality follows from x[j] =

∑
a∈Aj

x[ja] as x ∈ Q. This indicates that
∑

σ∈Σ(h) x[σ] ≤
(2∥Qh∥⊥ − 1) · x[h] holds in this case.

Case 3: For any non-root-non-terminal observation point h = σ ∈ Σ+ \ E , it holds that∑
σ′∈Σσ

x[σ′] = x[σ] +
∑
j∈Cσ

∑
σ′∈Σj

x[σ′]

≤ x[σ] +
∑
j∈Cσ

x[j] · (2∥Qj∥⊥ − 1)

= x[σ] · (1 + 2∥Qσ∥⊥ − |Cσ|)
≤ x[σ] · (2∥Qσ∥⊥ − 1),

where the the first equality holds due to the tree hierarchy of Σ, the first inequality follows the
induction hypothesis, the second equality holds since x[j′] = x[σ] for j′ ∈ Cσ from x ∈ Q as well
as

∑
j′∈Cσ

∥Qj′∥⊥ = ∥Qσ∥⊥ from Lemma F.1, and the last inequality follows from the assumption
that |Cσ| ≥ 2.

In general, for any non-root point h ∈ Σ+, it satisfies that∑
σ∈Σh

x[σ] ≤ (2∥Qh∥⊥ − 1) · x[h].
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Now consider the root point h = ∅, we have that∑
σ∈Σ

x[σ] = x[∅] +
∑
j∈C∅

∑
σ∈Σj

x[σ]

≤ x[∅] +
∑
j∈C∅

x[j] · (2∥Qj∥⊥ − 1)

= 1 + 2∥Qσ∥⊥ − |Cσ|
≤ 2∥Qσ∥⊥,

where the the first equality holds due to the tree hierarchy of Σ, the first inequality follows the
induction hypothesis, the second equality holds since x[j′] = x[∅] = 1 for j′ ∈ C∅ from x ∈ Q as
well as

∑
j′∈C∅

∥Qj′∥⊥ = ∥Q∅∥⊥ from Lemma F.1, and the last inequality follows from |C∅| ≥ 1.
According to the definition that ∥Q∥⊥ = max

∑
σ∈Σ x[σ], we conclude that ∥Q∥⊥ ≤ 2∥Q∥1 if

|Cσ| ≥ 2 for any σ ∈ Σ+ \ E .

The next lemma shows any TFSDP can be transformed into a TFSDP where no non-root observation
point yield exactly one outcome.

Lemma E.2. Given TFSDP with a given point setH0, it can always be represented using another
TFSDPH with the same compressed extensive-form decision space Q such that no non-root observa-
tion point yield exactly one outcome. Furthermore, the leaf count ∥Q∥⊥ remains unchanged after the
transformation, while the total number of actions

∑
j∈J |Aj | does not increase.

Proof. We first present a transformation which removes each non-root observation point that yields
only one outcome while makes the compressed extensive-form decision space Q remain unchanged.

Let H0 be a TFSDP, where is some non-root observation point σ = ja ∈ Σ+ yields only one
outcome, say Cσ = {j′} for a single j′. The transformation is achieved by examining the local
reduced normal-form strategy at decision point j. As taking action a at decision point j invariably
leads to the state transition to decision point j′, we can dictate the agent’s actions at j′ contingent
on the choice of action a at point j. This eliminates the observation point σ while the compressed
extensive-form decision spaceQ remains unchanged, and the number of actions is reduced by 1 since
ja is eliminated. We present an example of this transformation in Figure 2.

Since the number of actions is bounded, this process will always terminate. At this stage, there is no
non-root observation point yield exactly one outcome, while the compressed extensive-form decision
spaceQ remains unchanged. The total number of actions

∑
j∈J |Aj | does not increase. Furthermore,

since the leaf count ∥Q∥⊥ can be determined by Q alone, this suggests the leaf count ∥Q∥⊥ also
remains unchanged after the transformation.

11 22

33 44 55 66 77 88 99

∅

A

B C D

−→
11

33 44 55 66

88 9977

∅

A

B C

Figure 2: Eliminating observation point A2 from the TFSDP. The compressed extensive-form decision
space Q remains unchanged and still has support {3,4,5,6,7,8,9}. Thus, the leaf count for the
new TFSDP remains ∥Q∥⊥ = 2. Furthermore the total number of actions is reduced by one.

Lemma 6.2 (restatement). Consider a TFSDP with a given point setH. Define |A| := maxj∈J |Aj |
as the size of the largest action set. If there is no non-root observation point yields exactly one obser-
vation outcome, that is, |Cσ| ≥ 2 for any σ ∈ Σ+ \ E , then it follows that ln |V| ≤ O(∥Q∥⊥ log |A|).
Without this structural condition, we have ln |V| ≤ O(∥Q∥⊥ log |J × A|) in general.
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Proof of Lemma 6.2. According to Proposition 5.1 in Farina et al. [20], we have |V| ≤ |A|∥Q∥1 .
When there is no non-root observation point yields exactly one outcome, we have ∥Q∥1 ≤ 2∥Q∥⊥
from Lemma E.1. This implies ln |V| ≤ O(∥Q∥1 log |A|).
In the general cases, we can use Lemma E.2 to transform the TFSDP into the desired representation.
In this case, neither the leaf count ∥Q∥⊥ nor the total number of actions

∑
j∈J |Aj | increases. The

size of the largest action set can be upper bounded using the total number of actions, which can be
further upper bounded from

∑
j∈J |Aj | ≤ |J × A|. This implies ln |V| ≤ O(∥Q∥1 log |J × A|)

always holds.

F Auxiliary Lemmas

Lemma F.1. The leaf count ∥Q∥⊥ = ∥Q∅∥⊥ can be computed recursively as:

• If h = σ ∈ E is a terminal observation point, then:

∥Qσ∥⊥ := 1.

• If h = j ∈ J is a decision point, then:

∥Qj∥⊥ := maxa∈Aj ∥Qja∥⊥.

• If h = σ ∈ Σ \ E is a non-terminal observation point, then:

∥Qσ∥⊥ :=
∑

j∈Cσ
∥Qj∥⊥.

Proof. According to the definition of leaf count and the treeplex ℓ∞ norm, we have

∥Q∥⊥ = sup
x∈Q
∥x∥1 = sup

x∈Q
⟨|1|,x⟩ = ∥1∥H,∞.

This establishes a connection between leaf count with the treeplex ℓ∞ norm. According to Lemma 4.2,
we immediately reach the desired statement.

Lemma F.2. The number of pure strategy profiles |V| = |V∅| can be computed recursively as

• If h = σ ∈ E is a terminal observation point, then:

|Vσ| := 1.

• If h = j ∈ J is a decision point, then:

|Vj | :=
∑

a∈Aj
|Vja|.

• If h = σ ∈ Σ \ E is a non-terminal observation point, then:

|Vσ| :=
∏

j∈Cσ
|Vj |.

Proof. According to the definition of reduced normal-form strategies, the statement can be immedi-
ately reached by inspecting the vertices of each extensive-form strategy space Qh.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We study the optimality of weight-one dilated entropy from a theoretical
perceptive. The contribution, assumptions and scope are clearly claimed in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitation in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide detailed proof for all theorems in the Appendix C, D, and E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper focuses on theoretical understanding and does not include experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper focuses on theoretical understanding and does not include experi-
ments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper focuses on theoretical understanding and does not include experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper focuses on theoretical understanding and does not include experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper focuses on theoretical understanding and does not include experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work serves as foundational research for algorithmic game theory. Al-
though there might be some potential social impacts on solving large-scale games, according
to the guidelines, we believe our result does not have a direct connection with these issues.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Does not apply.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Does not apply.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects nor crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects nor crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

36

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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