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Abstract

Large Language Models (LLMs) have recently been successfully applied to regres-1

sion tasks—such as time series forecasting and tabular prediction—by leveraging2

their in-context learning abilities. However, their autoregressive decoding process3

is ill-suited to continuous-valued outputs, and obtaining predictive distributions4

over numerical targets typically requires repeated sampling, leading to high compu-5

tational cost. In this work, we investigate whether distributional properties of LLM6

predictions can be recovered without explicit autoregressive generation. To this7

end, we study a set of regression probes trained to predict statistical functionals8

(e.g., mean, median, quantiles) of the LLM’s numerical output distribution directly9

from its internal representations. Our results suggest that LLM embeddings carry10

informative signals about numerical uncertainty, and that summary statistics of their11

predictive distributions can be approximated with reduced computational overhead.12

This investigation opens up new questions about how LLMs internally encode13

uncertainty in numerical tasks, and about the feasibility of lightweight alternatives14

to sampling-based approaches for uncertainty-aware numerical predictions.15

1 Introduction16

With the increasing capabilities of LLMs, a growing body of work has explored their use for structured17

data prediction–most notably for tabular data regression [e.g. Requeima et al., 2024, Hegselmann18

et al., 2023, Shysheya et al., 2025, Vacareanu et al., 2024] and time series forecasting [e.g. Gruver19

et al., 2024, Xue and Salim, 2023]. These studies demonstrate that LLMs can act as competitive20

regressors, even without task-specific fine-tuning. This advantage is especially pronounced in low-21

data regimes, where LLMs can leverage their pretraining, prior knowledge, and capacity to condition22

on auxiliary textual context to match or outperform specialised models.23

However, issuing numerical predictions with LLMs remains computationally expensive due to their24

autoregressive nature: real-valued numbers typically span multiple tokens, and decoding them25

requires sequential auto-regressive generation. This is particularly problematic when apart from the26

point prediction one would like to also quantify the prediction uncertainty, which requires repeated27

sampling from the model’s output distribution or auto-regressive computation of token logits [Gruver28

et al., 2024, Requeima et al., 2024].29

This motivates us to explore whether the internal representations of pre-trained LLM’s encode enough30

information to recover the entire predictive distribution–without resorting to autoregressive decoding.31

This is a non-trivial question; producing a complete number involves resolving its order of magnitude,32

which depends on decisions such as decimal placement or termination–often made only after several33

tokens have already been generated.34
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Focusing on the problem of time series forecasting specifically, we explore to what extent the LLM’s35

internal representation of the input sequence can be used to reconstruct its numerical predictive36

distribution of the next number. Concretely, we explore the following three questions:37

Do LLMs encode the next number they intend to generate? (Section 3) We begin by examining38

whether LLM’s internal representations encode sufficient information to recover point predictions–39

specifically, the greedy output, mean, and median of the predictive distribution. To test this, we40

develop a magnitude-factorised regression probe that separates prediction into two components:41

a coarse magnitude classification and a scale-invariant value regression, such that our model can42

effectively learn to predict numbers of varying orders of magnitude. Trained on LLM embeddings43

from synthetic time series data, our probe accurately predicts numerical targets across data with44

varying orders of magnitude..45

Can we elicit the uncertainty of the LLM’s predictive distribution? (Section 4) We then ask46

whether uncertainty information is also captured in LLM’s hidden states. Using quantile regression,47

we train probes to predict various quantiles of the LLM’s output distribution, approximated via48

sampling. The resulting models accurately recover the interquartile range, produce well-calibrated49

confidence intervals, and may allow to obtain sample-efficient estimates of statistical functionals.50

Do these results generalise to other settings? (Section 5) The ability to recover numerical51

predictions directly from LLM embeddings holds the potential to bypass auto-regressive sampling–52

offering substantial computational savings. However, for such probes to be practically useful, they53

must generalise beyond the specific conditions under which they were trained. We therefore evaluate54

whether a single probing model can be deployed across varied settings without retraining. First, we55

test generalisation to unseen time series lengths. Second, we assess generalisability of our previous56

results to real-world data. We investigate whether probes trained on real-world data generalise across57

different sub-domains and whether probes trained on synthetic data generalise to real-world data. We58

demonstrate that, while some drop in calibration occurs on out-of-distribution datasets, our probes59

demonstrate encouraging generalisation abilities.60

Our findings provide new insights into the numerical capabilities of LLMs: much of the “reasoning”61

underlying numerical predictions appears to be encoded in the model’s internal representations, prior62

to token-level decoding. This raises questions whether auto-regressive sampling is necessary to63

extract real-valued outputs from LLMs, and opens the door to developing more efficient single-pass64

approaches. By showing that both point estimates and uncertainty can be reliably extracted from65

hidden states, our work suggests a lightweight, general-purpose strategy for deploying LLMs in66

regression tasks–particularly in settings where computational efficiency and uncertainty estimation are67

essential. We hope these results motivate further study of how LLMs internally represent numerical68

quantities, and how this information can be surfaced for practical downstream use.69

The code to reproduce our experiments can be found at https://anonymous.4open.science/r/70

guess_llm-811B/.71

2 Related Works72

Numerical Predictive Distributions of LLMs. When used as regressors, LLMs can provide73

not only point estimates but also full predictive distributions, reflecting their stochastic nature. To74

elicit continuous distributions over numerical outputs, Gruver et al. [2024] and Requeima et al.75

[2024] propose an autoregressive approach that generates logit values over discretised numeric76

bins, which are then scaled to form a valid probability distribution. Access to such distributions is77

crucial for downstream tasks requiring uncertainty quantification, including decision-making under78

uncertainty and Bayesian optimisation. However, these methods are computationally intensive, as79

they require multiple sequential queries to the LLM to construct a single distribution (e.g., pp123.4q “80

pp1qpp2|1qpp3|12qpp.|123qpp4|123.q). This motivates us to explore alternative approaches to eliciting81

numerical predictive distributions from LLMs.82

Discrepancy between number generation and auto-regression. As next-token predictors, LLMs83

are not explicitly trained to understand the value of numbers. Due to their autoregressive nature,84

early tokens encode digits before key decisions like decimal placement (that determine a number’s85

magnitude) are made. This can lead to surprisingly poor performance on simple numerical tasks86

[Yang et al., 2019, Akhtar et al., 2023, Zhou et al., 2024, Schwartz et al., 2024]. To address87

these limitations, several works have proposed alternatives to standard autoregressive decoding88
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for numerical predictions. For instance, Golkar et al. [2024] introduce a special [NUM] token,89

replaced post-hoc with a continuous value predicted by a learned regression head–though this requires90

retraining the model. Others [Singh and Strouse, 2024, Schwartz et al., 2024] investigate number-91

specific tokenizations to improve numerical accuracy of LLMs. In contrast, we ask whether one92

can bypass autoregressive decoding in pre-trained LLMs by directly reading out the predictive93

distribution from the internal representations.94

Probing numeracy in LLM embeddings. A number of prior works give evidence that simple95

probing models can be used to learn numerical values encoded in the LLM embeddings. Wallace96

et al. [2019] has shown that the value of a number can be successfully decoded from its encoded word97

embedding (e.g., “71” Ñ 71.0.). Stolfo et al. [2023] identified specific layers in LLMs that store98

numerical content, recoverable via simple linear probes, while Zhu et al. [2023] demonstrated that99

intervening on these layers alters generated outputs. More recently, Koloski et al. [2025] showed that100

LLM embeddings can serve as effective covariates in downstream regression models. Complementary101

findings from mechanistic interpretability suggest that, even in purely textual settings, LLM hidden102

states encode representations of tokens that the model is most likely to generate [Lindsey et al., 2025].103

Taken together, these results support the hypothesis that it should be possible to train probes that104

approximate the numerical predictive distribution of the LLM, motivating our work.105

3 Do LLMs Encode the Next Number They Intend to Generate?106

LLMs are trained for next-token-predictions. Thus, as a single number typically spans multiple tokens,107

obtaining a complete numerical prediction from the LLM requires repeated auto-regressive sampling.108

This can be computationally expensive in number-heavy tasks, particularly when one would like to109

obtain repeated samples for the purpose of uncertainty estimation. To mitigate this overhead, we110

ask: to what extent is the full predicted number–beyond just its leading digit–already encoded in the111

LLM’s internal representation, prior to any token-by-token generation? If such information can be112

reliably extracted, one could sidestep autoregressive generation altogether, enabling more efficient113

inference. However, this possibility is not trivial: critical aspects of number generation, such as the114

placement of the decimal point or number termination, which determine the order of magnitude of115

the number, often occur late in the decoding process, particularly for large magnitudes.116

3.1 Method of Investigation117

We provide an overview of our methodology below. For more details, see Appendix.118

Objective. Let x “ rx1, . . . , xns be a sequence of numbers (e.g., an equally-spaced time series).119

Given x, a language model induces a predictive distribution pLLMp¨ | xq over the next value xn`1.120

In this section, we investigate whether the internal representations of the LLM encode sufficient121

information to predict this distribution’s key statistics. Specifically, we aim to train independent122

probing models to recover: (a) the LLM’s greedy prediction, (b) the mean of pLLM, and (c) the median123

of pLLM. We approximate the mean and median using 100 samples yj „ pLLMp¨ | xq.124

LLM Representation. Let LLMpxq denote the sequence of hidden states produced by the model125

when encoding x, where, following Gruver et al. [2024], we serialise x to text as “x1, x2, x3, . . . , xn,”.126

We do not apply any scaling to the time series before serializing the inputs. This is important, as127

LLMs often contain contextual prior knowledge and scaling of the original time series may prohibit128

the LLM from using this prior knowledge effectively. From a pre-selected set of N layers H, we129

extract the final token’s hidden state from each layer, denoted hℓr´1s P Rdℓ . We concatenate these130

vectors to form a single input embedding for the probe:131

e :“ concat phℓr´1sqℓPH P Rdinput , (1)

where dinput “ dℓ ˆ |H|. The choice of the hidden layers in H is a hyperparameter of our model.132

Throughout this paper we use LLama-2-8B model for generating the embeddings, for which dℓ “133

4096. Experiments with other LLMs can be found in the Appendix.134

Datasets. We use synthetically generated datasets to evaluate probing performance. Each sequence135

x is sampled from functions exhibiting varied numerical dynamics, including sinusoidal patterns,136

Gaussians, beat functions, and random noise (details in Appendix). The generated time series also vary137

in the length, n, and the level of noise, to ensure diversity in the generated embeddings. We generate138

variants of the dataset by rescaling the value range from r´1, 1s to progressively larger intervals:139

r´10, 10s, r´1000, 1000s, and r´10000, 10000s. We then concatenate the datasets of different scales140
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to obtain a dataset of approximately 80k unique sequences, balanced across the different magnitudes.141

Our training datasets have the following structure:
!´

xi, ei, y
greedy
i , tyji u100j“1

¯)N

i“1
, where N is the142

total number of examples in a dataset, yji a single LLM sample from pp¨|xiq and ygreedy
i the LLM’s143

greedy prediction given xi.144

Probing Model. The primary challenge in training regression probes for LLM numerical predictions145

lies in the wide spread of target magnitudes. Standard regression losses such as MSE or transformation146

techniques like log-scaling fail to provide stable gradients across this scale variability. To address147

this, we introduce a magnitude-factorised regression model that decomposes the prediction into a148

magnitude classification and a scale-invariant regression.149

Let y˚ be a target scalar (greedy, mean, or median prediction). We define its order of magnitude as:150

mpy˚q :“ tlog10 p|y˚|qu . (2)

Our model architecture consists of the following modules:151

• g : Rdinput Ñ Rdhidden : an encoder mapping the input e to a latent representation.152

• forder : Rdhidden Ñ RM : a classifier predicting logits over M magnitude bins.153

• fval : Rdhidden Ñ R: a regressor predicting a rescaled value.154

The final prediction is reconstructed by taking the expectation over the top-K predicted orders:155

ŷi “ r̂i ¨ 10m̂i , where r̂i “ fvalpgpeiqq, m̂i :“ 10
ř

kPKi
k¨pkpgpeiqq, (3)

where Ki is a set of K exponents with the largest logit values as predicted by forderpgpeiqq and156

pkpgpeiqq is derived from forderpgpeiqq using the softmax over the top-K logits.157

Training Objective. To decouple magnitude errors from value regression during early training, we158

use the ground-truth magnitude mpy˚q to compute ŷ and define the training objective as:159

L “ Lorder ` β ¨ Lval, where (4)

Lorder “
1

Nb

Nb
ÿ

i“1

CrossEntropyLosspm̂i,mpy˚
i qq, Lval “

1

Nb

Nb
ÿ

i“1

ˆ

r̂i ´
y˚
i

10mpy˚
i q

˙2

. (5)

In the above Nb is the batch size and the hyperparameter β balances the magnitude and value160

objectives. This formulation of the loss allows the model to learn scale-invariant value predictions161

and as we found out, it improves stability during optimization.162

3.2 Results163

Order of magnitude. We first investigate to what extent our probing model can correctly recover164

the order of magnitude of the number generated by the LLM. We train three separate models, for each165

of the mean, median and greedy predictions. As visualised on Figure 2, we find strong correlation166

between the log10 of the predicted number and log10 of the true value, for all three statistics. Further,167

the bar chart on the right hand side of Figure 2 visualises that our model achieves above 80% accuracy168

in predicting the exponent of the generated number.169 Figure 1: MSE of the predicted values
(no scaling).

target ŷ (ours) x̄ x̄i xi,n

mean 0.009 0.256 0.035 0.085
median 0.009 0.260 0.041 0.087
greedy 0.024 0.273 0.065 0.109

Precision in generated digits. To further assess whether170

the LLM’s internal representations encode fine-grained171

information beyond the order of magnitude, we focus on172

the dataset with time series values in the interval r´1, 1s.173

We report the mean squared error (MSE) of our predictions174

in Figure 1 and compare them against three baselines: x̄175

(predicting the average value in the whole training dataset),176

x̄i (predicting the average of each time series) and xi,n (predicting the last value from each time177

series). We further plot the obtained predictions in Figure 3. Interestingly, among the three targets178

considered (mean, median, greedy), the model performs worst when predicting the greedy output. As179

shown in Figure 3, the probe captures the sign of the greedy prediction reliably but exhibits larger180

errors in the decimal digits. We hypothesise that this is because the greedy prediction is not an explicit181

function of the model’s predictive distribution, but rather a byproduct of the autoregressive decoding182

process, making it harder to recover precisely from internal states.183
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Figure 2: Predicted vs. true values of mean, median and greedy prediction, presented on log10 scale.
The probing model accurately recovers the number that the LLM intends to predict, indicating that
the internal representations encode the order of magnitude of prediction.
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Figure 3: Predicted vs. true values of mean, median and greedy prediction. The probing model
accurately recovers the number the LLM intends to predict, with the precision surpassing just order
of magnitude estimation.

� These results show that the internal representations of a pre-trained LLM encode detailed
information about its intended numerical output–even before any tokens are generated. Our
probing model accurately recovers not only the order of magnitude, but also fine-grained point
estimates of the mean, median, and the greedy output. This demonstrates that much of the
numerical reasoning performed by the LLM is already present in its hidden states, and may not
require the autoregressive decoding process.

184

4 Can We Elicit the Uncertainty of the LLM’s Predictive Distribution?185

In the previous section, we demonstrated that point estimates—such as the greedy prediction, mean,186

and median—of an LLM’s predictive distribution pLLMp¨ | xq can be recovered from its internal187

representations without the need for performing auto-regressive sampling. Encouraged by these188

findings, we now investigate whether we can go beyond point estimates to recover the uncertainty of189

pLLM by approximating its distributional shape. Specifically, we attempt to recover multiple quantiles190

of pLLM, enabling a coarse-grained reconstruction of its distribution function an an easy way of191

estimating the confidence intervals for the LLM’s predictions.192

4.1 Method of Investigation193

Why Quantiles? Since the underlying distribution pLLM may be multi-modal and non-Gaussian, we194

rule out parametric approximations (e.g., fitting a Gaussian). Instead, we adopt quantile regression,195

which enables direct estimation of distributional shape without strong assumptions about its form.196

Quantile Regression. Let Q “ rτ1, . . . , τSs be a fixed list of target quantiles. For each quantile197

level τs P r0, 1s, we denote the predicted value as q̂s . We train the quantile predictor using the198

pinball loss [Koenker and Hallock, 2001], computed with respect to LLM samples yji „ pLLMp¨ | xiq.199

For a single quantile level τ , predicted quantile q̂ and an LLM sample y, this loss function is defined200

as:201

PinballLosspτ, q̂, yq :“ max pτpy ´ q̂q, p1 ´ τqpq̂ ´ yqq . (6)

Architecture. As in Section 3, we use a magnitude-factorised model to address the challenge of202

scale variance in numerical outputs. The model is defined as follows:203

• g : Rdinput Ñ Rdhidden : a shared encoder that maps the input representation e to a latent space.204

• For each quantile index s P t1, . . . , Su:205

– fs
order : Rdhidden Ñ RM : a classifier predicting the order of magnitude ms of quantile qs.206
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– fs
val : Rdhidden Ñ R: a regressor predicting a scale-invariant value r̂s.207

Similarly as before, each quantile is reconstructed from the predicted components as:208

q̂si “ r̂si ¨ 10m̂
s

, where r̂si “ fs
valpgpeiqq, m̂s

i “ 10
ř

kPKs k¨ps
kpgpeiqq. (7)

where Ks
i is a set of K exponents with the largest logit values as predicted by fs

orderpgpeiqq and209

pskpgpeiqq is derived from fs
orderpgpeiqq using the softmax over the top-K logits.210

Training Objective. As before, we use the true order of magnitude mpyji q for each target value211

during training to enable stable learning. The total loss is the sum of the cross-entropy losses for212

magnitude prediction and pinball losses for quantile regression:213

L “

S
ÿ

s“1

ws pLs
order ` β ¨ Ls

valq , (8)

Ls
order “

1

Nb

Nb
ÿ

i“1

CrossEntropyLosspfs
orderpgpeiqq,mpy˚

i qq, (9)

Ls
val “

1

NbNsa

Nb
ÿ

i“1

PinballLoss

˜

τs, r̂si ,
yji

10mpyj
i q

¸

, (10)

where Nb is the batch size, Nsa is the number of LLM samples per input, S is the number of214

quantiles, and rw1, . . . , wSs a set of weights per each quantile, which is a hyperparameter of our215

model. In our experiments we have Nsa “ 100 and S “ 7, with the corresponding quantile list216

Q “ r0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975s. This choice of quantiles allows us to estimate: the217

median, the interquartile range (IQR), as well as the 90% and 95% confidence intervals.218

Datasets We use the same datasets as in section 3, considered separately rather than concatenated.219

4.2 Results220

IQR Prediction. To investigate whether the LLM’s internal representations encode information221

about the spread of its predictive distribution, we estimate the interquartile range (IQR) using the222

predicted 25th and 75th percentiles. As the IQR is sensitive to scale, we normalise it by the predicted223

median, and similarly normalise the empirical IQR from LLM samples using the sample median.224

If the probe captures uncertainty faithfully, we should observe a monotonic relationship between225

the predicted and empirical (normalised) IQRs. As shown in Figure 4, we find a strong correlation226

between predicted and sample-based IQRs, suggesting that the model is able to infer distributional227

spread from internal LLM activations.228
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Figure 4: Predicted vs. sample-based IQR (both median-normalised). The model accurately tracks
the variability of the LLM’s output distribution.

Table 1: Coverage of the predicted confi-
dence intervals. Values denote empirical
coverage (%) ± standard error.

α 50% 90% 95%

1.0 49.2 ± 0.4 89.2 ± 0.3 94.1 ± 0.3
10.0 49.8 ± 0.4 90.2 ± 0.3 94.1 ± 0.3
1000.0 50.4 ± 0.5 89.0 ± 0.3 93.7 ± 0.3
10000.0 51.2 ± 0.5 88.2 ± 0.4 92.7 ± 0.3

Confidence Interval Coverage. We next evaluate229

whether the predicted quantiles yield calibrated confidence230

intervals. Given a desired confidence level α and its asso-231

ciated interval Cpαq predicted by the probe, we compute232

the empirical coverage by checking what fraction of LLM233

samples fall within the predicted interval. We expect that:234

α “ Ey„pp¨|xq r1ty P Cpαqus

«
1

Nsa

Nsa
ÿ

j“1

1tyj P Cpαqu, where yj „ pLLMp¨|xq.
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Table 1 reports the empirical coverage for 50%, 90%, and 95% intervals across datasets with different235

scaling parameters ℓ. In all cases, empirical coverage closely matches the target level, indicating that236

the quantile probe is well-calibrated.237
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Figure 5: The probe (horizon-
tal line) achieves lower MSE
than sampling for n ď 5.

Sample Efficiency. Finally, we examine whether the probe can238

outperform direct sampling from the LLM in terms of sample effi-239

ciency. Let S denote a target statistic (e.g., median or a quantile).240

We define Spnq as the estimate from n ă 100 samples and we let241

S˚ :“ Sp100q as a proxy for the ground-truth. We compute the242

LLM sample error as MSEpSpnq, S˚q and compare it to the probe243

error MSEpŜ, S˚q.244

Figure 11 illustrates this comparison for the median on a dataset with245

scale 1.0. The probe outperforms empirical sampling for all n ď 5,246

demonstrating that our approach can be more sample-efficient. Re-247

sults for additional quantiles and larger-scale datasets are reported248

in the Appendix. A probe of this kind can serve as a computation-249

ally efficient surrogate for estimating statistics of the LLM output250

distribution which can help in cost and compute time reduction.251

� Key Insights.
• Our findings in this section provide strong evidence that the uncertainty of an LLM’s

predictive distribution is encoded in its internal activations and can be effectively elicited
using a quantile regression probe. The probe is capable of predicting meaningful spread
measures (e.g., IQR), producing well-calibrated confidence intervals that match the empirical
coverage observed when generating samples from the LLM.

• Furthermore, the probe demonstrates an encouraging sample efficiency, enabling uncertainty
estimation without incurring the cost of repeated sampling.

• Together, these results suggest that LLMs internalise rich distributional information during
generation, which can be accessed and approximated efficiently via probing techniques.
This opens up new opportunities for downstream applications that rely on uncertainty
quantification—such as safe decision-making, model-based control, and probabilistic rea-
soning—while avoiding the overhead of sampling-based inference.

252

5 Generalisation Properties253

In this section, we investigate the generalisation capabilities of our approach along several axes254

including context length generalisation, applicability to real-world data, and cross-dataset generalisa-255

tion. As the process of training a probe can be costly, such generalisation capabilities are important256

for real-world applications, if we would like to use a pre-trained probe on new datasets with different257

distributional properties instead of performing repetitive auto-regressive sampling to estimate the258

LLM’s predictive distribution.259

Throughout this section, we use the same probing architecture introduced in Section 4.260

5.1 Generalisation to Unseen Context Lengths261
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Figure 6: Generalisation to unseen context lengths. A probe trained on a restricted context length
range (Restricted) exhibits greater deviation in empirical coverage outside its training range.
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We begin by asking whether a probe trained on a fixed range of input sequence lengths generalises to262

longer or shorter contexts. We train and compare against each other two models:263

• Base: Trained on input sequences x with length in the range r3, 40s.264

• Restricted: Trained only on input sequences x with length in the range r10, 20s.265

At test time, we evaluate both models on contexts shorter than 10 and longer than 20. We assess266

generalisation by measuring the empirical coverage of predicted confidence intervals, as defined in267

Section 4.2. Figure 6 shows results on the dataset with scale factor 1.0.268

We observe that while both models achieve reasonable calibration, the Restricted model exhibits269

slightly greater deviations from the nominal coverage, particularly for context lengths further from270

the training distribution. These results suggest that the probe generalises to novel context lengths, but271

training on a wider context ranges should be beneficial for more robust generalisation.272

5.2 Application to Real-World Data273

Thus far, our analysis has focused on synthetic data. We now evaluate whether our probing model274

can be trained successfully on real-world datasets, and how well predictions can generalise across275

different types of input series.276

To assess this, we construct a dataset using time series from the Darts [Herzen et al., 2022] and Monash277

[Godahewa et al., 2021] collections. Following the same format as in our synthetic experiments, we278

generate LLM embeddings and samples from their predictive distribution for approximately 45,000279

distinct sequences across 32 sub-datasets (e.g., US Births, Bitcoin, Air Passengers). Furthermore, we280

also investigate an even stronger form of generalisation: from a model trained on synthetic data only281

to testing on real-world data. Thus, we train the following models:282

• Real (all): Trained on a random 80% of all sequences across all sub-datasets. The remaining283

20% is held out for testing.284

• Real (5 fold): We partition the dataset into 5 folds such that, in each fold, one model is285

trained on 80% of the sub-datasets and evaluated on the remaining 20%. This ensures that each286

sub-dataset appears in the test fold of exactly one out of 5 models trained.287

• Synth: A model trained on the combination of the 4 synthetic dataset from the previous sections288

with scales 1.0, 10.0, 1000.0 and 10000.0.289

At test time, the above models face increasingly stronger distribution shifts. In terms of generalisation290

performance to previously unseen data distributions, we can view the Real (all) model as a baseline291

for Real (5 fold) and Synth.292

Table 2: Coverage of the CI intervals on previ-
ously unseen testing inputs.

α 50% 90% 95%
Model

Real (all) 53.1 ± 0.5 89.4 ± 0.3 93.3 ± 0.3
Real (5 fold) 46.6 ± 0.2 83.7 ± 0.1 89.0 ± 0.1
Synth 40.7 ± 0.5 56.4 ± 0.6 67.4 ± 0.6

Firstly, in Table 2 we report the average coverage of293

the CI across all training types. We observe that the294

Real (all) model demonstrates good performance,295

with the empirical coverage of LLM samples closely296

matching the expected coverage. The Real (5 fold)297

model demonstrates a slight downgrade in perfor-298

mance. Interestingly, while the Synth model under-299

performs it still demonstrates good generalisation300

for some of the sub-datasets as we can see on Fig-301

ure 7. This figure shows the distribution of the Absolute Error of the predicted median vs. the median302

of LLM samples across all sub-datasets. The x-axis is sorted by increasing order of magnitude of the303

datasets defined by the average of the median of LLM samples. We note that the sub-datasets in our304

collection cover widely varying ranges of values (with individual LLM samples varying in magnitude305

from 10´3 to 1013). We suspect that this is the main reason for our probing model struggling to306

generalise across some datasets.307

� Key Insights.
• The probing model exhibit some, albeit limited, generalisation across context lengths.
• When applied to real-world datasets, the model achieves accurate empirical coverage and

demonstrates partial transferability to unseen data distributions. Cross-dataset generalisation
is possible, but challenged by large variation in scale and distribution.
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Figure 7: Absolute Error on the Median across different sub-dataset. Comparison of generalisation
across models trained on different data.

6 Discussion, Limitations and Further Work309

Discussion Our findings demonstrate that LLMs internally encode rich numerical information about310

their intended predictions, well before any autoregressive decoding occurs. By training lightweight311

probes on hidden states, we can recover both point estimates (mean, median, greedy outputs) as well312

as informations about the uncertainty of the model’s predictive distribution. This suggests that much313

of the LLM’s “reasoning” over numeric outputs is already complete at the point of processing the input314

sequence, and that decoding primarily serves as a mechanism for surfacing the LLM’s predictions.315

Beyond shedding light on the internal mechanics of LLMs in regression settings, these results open316

up a practical direction: enabling uncertainty-aware numerical prediction without incurring the high317

cost of repeated sampling.318

Limitations Despite these promising findings, several limitations remain. First, while our approach319

applies to pre-trained model and does not require any fine-tuning, we assume access to internal model320

activations. Second, while our probing models exhibit some generalisation abilities, they are still321

trained per-model and require retraining for new architectures or tokenization schemes. Third, for322

training and evaluation purposes, we approximate the LLM’s predictive distribution using empirical323

sampling, which is itself a noisy and computationally costly proxy.324

Further Work Future research could explore extending this framework to broader classes of325

structured data and more diverse prediction tasks, including multivariate time series, univariate326

or multivariate regression tasks. A deeper investigation into the mechanistic basis of numerical327

encoding—i.e., how and where numerical quantities are represented across LLM layers—could also328

reveal connections to known computational circuits or arithmetic operations within the model. Finally,329

motivated by our generalisation results, an important next step is the development of a universal330

probing model which, for a given LLM, can be applied off-the-shelf across diverse tasks and data331

domains. This would eliminate the need for repeated retraining—an important consideration given332

the cost of training high-capacity probes at scale.333
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NeurIPS Paper Checklist493

1. Claims494

Question: Do the main claims made in the abstract and introduction accurately reflect the495

paper’s contributions and scope?496

Answer: [Yes]497

Justification: The claim that our results suggest that LLM embeddings carry informative498

signals about summary statistics of their predictive distributions is justified in Section 3.499

The claim that our results suggest that LLM embeddings carry informative signals about500

numerical uncertainty is justified by experimental results in Section 4. The empirical results501

that justify that our results might lead to reduced computational overhead are presented in502

Figure 11.503

Guidelines:504

• The answer NA means that the abstract and introduction do not include the claims505

made in the paper.506

• The abstract and/or introduction should clearly state the claims made, including the507

contributions made in the paper and important assumptions and limitations. A No or508

NA answer to this question will not be perceived well by the reviewers.509

• The claims made should match theoretical and experimental results, and reflect how510

much the results can be expected to generalize to other settings.511

• It is fine to include aspirational goals as motivation as long as it is clear that these goals512

are not attained by the paper.513

2. Limitations514

Question: Does the paper discuss the limitations of the work performed by the authors?515

Answer: [Yes]516

Justification: See Section 6.517

Guidelines:518

• The answer NA means that the paper has no limitation while the answer No means that519

the paper has limitations, but those are not discussed in the paper.520

• The authors are encouraged to create a separate "Limitations" section in their paper.521

• The paper should point out any strong assumptions and how robust the results are to522

violations of these assumptions (e.g., independence assumptions, noiseless settings,523

model well-specification, asymptotic approximations only holding locally). The authors524

should reflect on how these assumptions might be violated in practice and what the525

implications would be.526

• The authors should reflect on the scope of the claims made, e.g., if the approach was527

only tested on a few datasets or with a few runs. In general, empirical results often528

depend on implicit assumptions, which should be articulated.529

• The authors should reflect on the factors that influence the performance of the approach.530

For example, a facial recognition algorithm may perform poorly when image resolution531

is low or images are taken in low lighting. Or a speech-to-text system might not be532

used reliably to provide closed captions for online lectures because it fails to handle533

technical jargon.534

• The authors should discuss the computational efficiency of the proposed algorithms535

and how they scale with dataset size.536

• If applicable, the authors should discuss possible limitations of their approach to537

address problems of privacy and fairness.538

• While the authors might fear that complete honesty about limitations might be used by539

reviewers as grounds for rejection, a worse outcome might be that reviewers discover540

limitations that aren’t acknowledged in the paper. The authors should use their best541

judgment and recognize that individual actions in favor of transparency play an impor-542

tant role in developing norms that preserve the integrity of the community. Reviewers543

will be specifically instructed to not penalize honesty concerning limitations.544

3. Theory assumptions and proofs545
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Question: For each theoretical result, does the paper provide the full set of assumptions and546

a complete (and correct) proof?547

Answer: [NA]548

Justification: The paper focuses on experimental results, with no novel theoretical results549

introduced.550

Guidelines:551

• The answer NA means that the paper does not include theoretical results.552

• All the theorems, formulas, and proofs in the paper should be numbered and cross-553

referenced.554

• All assumptions should be clearly stated or referenced in the statement of any theorems.555

• The proofs can either appear in the main paper or the supplemental material, but if556

they appear in the supplemental material, the authors are encouraged to provide a short557

proof sketch to provide intuition.558

• Inversely, any informal proof provided in the core of the paper should be complemented559

by formal proofs provided in appendix or supplemental material.560

• Theorems and Lemmas that the proof relies upon should be properly referenced.561

4. Experimental result reproducibility562

Question: Does the paper fully disclose all the information needed to reproduce the main ex-563

perimental results of the paper to the extent that it affects the main claims and/or conclusions564

of the paper (regardless of whether the code and data are provided or not)?565

Answer: [Yes]566

Justification: Most important details of the experiments are presented in Sections 3-5, in a567

dedicated Method of Investigation section. Further details are provided in the Appendix.568

Guidelines:569

• The answer NA means that the paper does not include experiments.570

• If the paper includes experiments, a No answer to this question will not be perceived571

well by the reviewers: Making the paper reproducible is important, regardless of572

whether the code and data are provided or not.573

• If the contribution is a dataset and/or model, the authors should describe the steps taken574

to make their results reproducible or verifiable.575

• Depending on the contribution, reproducibility can be accomplished in various ways.576

For example, if the contribution is a novel architecture, describing the architecture fully577

might suffice, or if the contribution is a specific model and empirical evaluation, it may578

be necessary to either make it possible for others to replicate the model with the same579

dataset, or provide access to the model. In general. releasing code and data is often580

one good way to accomplish this, but reproducibility can also be provided via detailed581

instructions for how to replicate the results, access to a hosted model (e.g., in the case582

of a large language model), releasing of a model checkpoint, or other means that are583

appropriate to the research performed.584

• While NeurIPS does not require releasing code, the conference does require all submis-585

sions to provide some reasonable avenue for reproducibility, which may depend on the586

nature of the contribution. For example587

(a) If the contribution is primarily a new algorithm, the paper should make it clear how588

to reproduce that algorithm.589

(b) If the contribution is primarily a new model architecture, the paper should describe590

the architecture clearly and fully.591

(c) If the contribution is a new model (e.g., a large language model), then there should592

either be a way to access this model for reproducing the results or a way to reproduce593

the model (e.g., with an open-source dataset or instructions for how to construct594

the dataset).595

(d) We recognize that reproducibility may be tricky in some cases, in which case596

authors are welcome to describe the particular way they provide for reproducibility.597

In the case of closed-source models, it may be that access to the model is limited in598

some way (e.g., to registered users), but it should be possible for other researchers599

to have some path to reproducing or verifying the results.600
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5. Open access to data and code601

Question: Does the paper provide open access to the data and code, with sufficient instruc-602

tions to faithfully reproduce the main experimental results, as described in supplemental603

material?604

Answer: [Yes]605

Justification: The code to reproduce the experiments can be found at https://anonymous.606

4open.science/r/guess_llm-811B/.607

Guidelines:608

• The answer NA means that paper does not include experiments requiring code.609

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/610

public/guides/CodeSubmissionPolicy) for more details.611

• While we encourage the release of code and data, we understand that this might not be612

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not613

including code, unless this is central to the contribution (e.g., for a new open-source614

benchmark).615

• The instructions should contain the exact command and environment needed to run to616

reproduce the results. See the NeurIPS code and data submission guidelines (https:617

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.618

• The authors should provide instructions on data access and preparation, including how619

to access the raw data, preprocessed data, intermediate data, and generated data, etc.620

• The authors should provide scripts to reproduce all experimental results for the new621

proposed method and baselines. If only a subset of experiments are reproducible, they622

should state which ones are omitted from the script and why.623

• At submission time, to preserve anonymity, the authors should release anonymized624

versions (if applicable).625

• Providing as much information as possible in supplemental material (appended to the626

paper) is recommended, but including URLs to data and code is permitted.627

6. Experimental setting/details628

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-629

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the630

results?631

Answer: [Yes]632

Justification: Details of the data splits, hyperparameters, and optimization process can be633

found in the provided code, and are also described in the Appendix.634

Guidelines:635

• The answer NA means that the paper does not include experiments.636

• The experimental setting should be presented in the core of the paper to a level of detail637

that is necessary to appreciate the results and make sense of them.638

• The full details can be provided either with the code, in appendix, or as supplemental639

material.640

7. Experiment statistical significance641

Question: Does the paper report error bars suitably and correctly defined or other appropriate642

information about the statistical significance of the experiments?643

Answer: [Yes]644

Justification: Where relevant, the plots include the necessary error bars (e.g. Figure 11,645

Figure 6).646

Guidelines:647

• The answer NA means that the paper does not include experiments.648

• The authors should answer "Yes" if the results are accompanied by error bars, confi-649

dence intervals, or statistical significance tests, at least for the experiments that support650

the main claims of the paper.651
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• The factors of variability that the error bars are capturing should be clearly stated (for652

example, train/test split, initialization, random drawing of some parameter, or overall653

run with given experimental conditions).654

• The method for calculating the error bars should be explained (closed form formula,655

call to a library function, bootstrap, etc.)656

• The assumptions made should be given (e.g., Normally distributed errors).657

• It should be clear whether the error bar is the standard deviation or the standard error658

of the mean.659

• It is OK to report 1-sigma error bars, but one should state it. The authors should660

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis661

of Normality of errors is not verified.662

• For asymmetric distributions, the authors should be careful not to show in tables or663

figures symmetric error bars that would yield results that are out of range (e.g. negative664

error rates).665

• If error bars are reported in tables or plots, The authors should explain in the text how666

they were calculated and reference the corresponding figures or tables in the text.667

8. Experiments compute resources668

Question: For each experiment, does the paper provide sufficient information on the com-669

puter resources (type of compute workers, memory, time of execution) needed to reproduce670

the experiments?671

Answer: [Yes]672

Justification: The information about the computer resources used can be found in the673

Appendix.674

Guidelines:675

• The answer NA means that the paper does not include experiments.676

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,677

or cloud provider, including relevant memory and storage.678

• The paper should provide the amount of compute required for each of the individual679

experimental runs as well as estimate the total compute.680

• The paper should disclose whether the full research project required more compute681

than the experiments reported in the paper (e.g., preliminary or failed experiments that682

didn’t make it into the paper).683

9. Code of ethics684

Question: Does the research conducted in the paper conform, in every respect, with the685

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?686

Answer: [Yes]687

Justification: The paper does not involve human subjects or participants. No new real-world688

datasets are released as a part of this project. The project does not raise any significant689

ethical considerations listed in the ‘Societal Impact’ section.690

Guidelines:691

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.692

• If the authors answer No, they should explain the special circumstances that require a693

deviation from the Code of Ethics.694

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-695

eration due to laws or regulations in their jurisdiction).696

10. Broader impacts697

Question: Does the paper discuss both potential positive societal impacts and negative698

societal impacts of the work performed?699

Answer: [NA]700

Justification: The paper provides an investigation into the numerical predictive distributions701

of the LLMs, and whether they can be approximated using LLM’s internal representations702

and as such, it does not have a significant societal impact.703
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Guidelines:704

• The answer NA means that there is no societal impact of the work performed.705

• If the authors answer NA or No, they should explain why their work has no societal706

impact or why the paper does not address societal impact.707

• Examples of negative societal impacts include potential malicious or unintended uses708

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations709

(e.g., deployment of technologies that could make decisions that unfairly impact specific710

groups), privacy considerations, and security considerations.711

• The conference expects that many papers will be foundational research and not tied712

to particular applications, let alone deployments. However, if there is a direct path to713

any negative applications, the authors should point it out. For example, it is legitimate714

to point out that an improvement in the quality of generative models could be used to715

generate deepfakes for disinformation. On the other hand, it is not needed to point out716

that a generic algorithm for optimizing neural networks could enable people to train717

models that generate Deepfakes faster.718

• The authors should consider possible harms that could arise when the technology is719

being used as intended and functioning correctly, harms that could arise when the720

technology is being used as intended but gives incorrect results, and harms following721

from (intentional or unintentional) misuse of the technology.722

• If there are negative societal impacts, the authors could also discuss possible mitigation723

strategies (e.g., gated release of models, providing defenses in addition to attacks,724

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from725

feedback over time, improving the efficiency and accessibility of ML).726

11. Safeguards727

Question: Does the paper describe safeguards that have been put in place for responsible728

release of data or models that have a high risk for misuse (e.g., pretrained language models,729

image generators, or scraped datasets)?730

Answer: [NA]731

Justification: The paper does not release new datasets or pre-trained models.732

Guidelines:733

• The answer NA means that the paper poses no such risks.734

• Released models that have a high risk for misuse or dual-use should be released with735

necessary safeguards to allow for controlled use of the model, for example by requiring736

that users adhere to usage guidelines or restrictions to access the model or implementing737

safety filters.738

• Datasets that have been scraped from the Internet could pose safety risks. The authors739

should describe how they avoided releasing unsafe images.740

• We recognize that providing effective safeguards is challenging, and many papers do741

not require this, but we encourage authors to take this into account and make a best742

faith effort.743

12. Licenses for existing assets744

Question: Are the creators or original owners of assets (e.g., code, data, models), used in745

the paper, properly credited and are the license and terms of use explicitly mentioned and746

properly respected?747

Answer: [Yes]748

Justification: Any existing assets are listed and credited in the Appendix.749

Guidelines:750

• The answer NA means that the paper does not use existing assets.751

• The authors should cite the original paper that produced the code package or dataset.752

• The authors should state which version of the asset is used and, if possible, include a753

URL.754

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.755
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• For scraped data from a particular source (e.g., website), the copyright and terms of756

service of that source should be provided.757

• If assets are released, the license, copyright information, and terms of use in the758

package should be provided. For popular datasets, paperswithcode.com/datasets759

has curated licenses for some datasets. Their licensing guide can help determine the760

license of a dataset.761

• For existing datasets that are re-packaged, both the original license and the license of762

the derived asset (if it has changed) should be provided.763

• If this information is not available online, the authors are encouraged to reach out to764

the asset’s creators.765

13. New assets766

Question: Are new assets introduced in the paper well documented and is the documentation767

provided alongside the assets?768

Answer: [NA]769

Justification: The paper does not release new assets.770

Guidelines:771

• The answer NA means that the paper does not release new assets.772

• Researchers should communicate the details of the dataset/code/model as part of their773

submissions via structured templates. This includes details about training, license,774

limitations, etc.775

• The paper should discuss whether and how consent was obtained from people whose776

asset is used.777

• At submission time, remember to anonymize your assets (if applicable). You can either778

create an anonymized URL or include an anonymized zip file.779

14. Crowdsourcing and research with human subjects780

Question: For crowdsourcing experiments and research with human subjects, does the paper781

include the full text of instructions given to participants and screenshots, if applicable, as782

well as details about compensation (if any)?783

Answer: [NA]784

Justification: The paper does not involve human subjects.785

Guidelines:786

• The answer NA means that the paper does not involve crowdsourcing nor research with787

human subjects.788

• Including this information in the supplemental material is fine, but if the main contribu-789

tion of the paper involves human subjects, then as much detail as possible should be790

included in the main paper.791

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,792

or other labor should be paid at least the minimum wage in the country of the data793

collector.794

15. Institutional review board (IRB) approvals or equivalent for research with human795

subjects796

Question: Does the paper describe potential risks incurred by study participants, whether797

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)798

approvals (or an equivalent approval/review based on the requirements of your country or799

institution) were obtained?800

Answer: [NA]801

Justification: The research does not involve human subjects.802

Guidelines:803

• The answer NA means that the paper does not involve crowdsourcing nor research with804

human subjects.805
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• Depending on the country in which research is conducted, IRB approval (or equivalent)806

may be required for any human subjects research. If you obtained IRB approval, you807

should clearly state this in the paper.808

• We recognize that the procedures for this may vary significantly between institutions809

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the810

guidelines for their institution.811

• For initial submissions, do not include any information that would break anonymity (if812

applicable), such as the institution conducting the review.813

16. Declaration of LLM usage814

Question: Does the paper describe the usage of LLMs if it is an important, original, or815

non-standard component of the core methods in this research? Note that if the LLM is used816

only for writing, editing, or formatting purposes and does not impact the core methodology,817

scientific rigorousness, or originality of the research, declaration is not required.818

Answer: [Yes]819

Justification: The relevant description of the way that the LLMs are used in the experiments820

presented in this paper is included in the Appendix as well as in the provided code.821

Guidelines:822

• The answer NA means that the core method development in this research does not823

involve LLMs as any important, original, or non-standard components.824

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)825

for what should or should not be described.826
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A Details of the Experimental Setup827

A.0.1 Assets and Licensing Information828

The following existing assets were used to produce the experimental results:829

• Monash dataset Godahewa et al. [2021]830

• Darts dataset Herzen et al. [2022]831

• Llama-2-7B model Touvron et al. [2023]832

• Llama-3-8B model Grattafiori et al. [2024]833

• Phi-3.5-mini model Abdin et al. [2024]834

A.1 Computer infrastructure used835

Hardware. All experiments were conducted using 2 separate NC24rs_v3 instances and one836

NC80adis_H100_v5 instance on the Microsoft Azure cloud platform. This instances are a part837

of Azure’s GPU-optimised virtual machine series, with their hardware specifications summarised in838

Table 3.839

Table 3: Azure Virtual Machine Specifications
Specification NC24rs_v3 NC80adis_H100_v5
vCPUs 24 80
System Memory (GiB) 448 640
GPU Model 4× NVIDIA Tesla V100 2× NVIDIA H100 NVL
GPU Memory (per GPU) 16 GiB 94 GiB
Total GPU Memory 64 GiB 188 GiB
GPU Architecture Volta Hopper
CUDA Version 11.x 12.x
CPU Model Intel Xeon E5-2690 v4 AMD EPYC Genoa
Local Storage 2.9 TB 7.1 TB

Generating the synthetic dataset for one scaling factor ℓ P t1, 10, 1000, 10000u took no more than840

10h. Training one probe model took no more than 4h.841

A.2 Details of the datasets842

A.2.1 Details of the synthetic time series dataset843

We generate a synthetic dataset comprising time series derived from a family of parametric functions,844

each evaluated over a fixed domain and perturbed with controlled noise. The purpose is to simulate845

diverse temporal patterns, inducing varying levels of uncertainty in the LLM’s predictions.846

We use a set of base functions defined over the interval x P r0, 60s, discretized into 120 equidistant847

points. The functions are summarised in Table 4. For each function and value of a, we generate a848

clean series y “ fpa ¨ xq, and then apply:849

• Additive Gaussian noise with variance σ2 P t0.0, 0.01, 0.05, 0.1u.850

• Vertical scaling by b „ Up0, ℓq851

• Vertical translation by d „ Up´ℓ, ℓq852

From each transformed series, we sample 10 different subsequences for each of the lengths n P853

t3, 5, 7, 10, 13, 15, 17, 20, 25, 30, 35, 40u, with each subsequence starting at a random offset. Each854

sequence becomes a training input. Inputs are serialized as floating-point strings with a user-defined855

number of decimal places p (we use p “ 4 for ℓ “ 1.0, p “ 3 for ℓ “ 10.0, p “ 2 for ℓ “ 1000.0856

and p “ 1 for ℓ “ 10000.0). This results in 33600 generated time series for each value of ℓ.857

Concatenated dataset. Having constructed the individual dataset for each scaling factor ℓ P858

t1, 10, 1000, 10000u, we also construct one concatenated dataset. In doing that, we limit the number859

of datapoints to 80000 and ensure that the ytest values of the generated time series are equally860

distributed on the log scale, from 10´2 to 104. This is to ensure a balanced distribution of the train861

and test examples.862
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Dataset filtering. Before using the generated datasets for training the probing models, we apply863

dataset filtering to exclude any potential outliers. Namely, we ensure that the mean, median and864

greedy LLM prediction lie in r´ℓ, ℓs.865

Function name Formula a-range
sin sinpxq [0.5, 6.0]
linear_sin 0.2 ¨ sinpxq ` x

450 [0.5, 6.0]
sinc sincpxq [0.05, 0.2]
xsine x´30

50 ¨ sinpx ´ 30q [0.5, 1.3]
beat sinpxq ¨ sin

`

x
2

˘

[0.1, 6.0]

gaussian_wave e´
px´2q2

2 ¨ cosp10πpx ´ 2qq [0.01, 0.1]
random Up´1, 1q [0.0, 1.0]

Table 4: Functions used to generate time series data, their mathematical forms, and the range of the
time-scaling parameter a.

A.2.2 Monash dataset866

• Data Loading: We use the data from the Monash dataset, preprocessed by Gruver et al.867

[2024] and available from https://drive.google.com/file/d/1sKrpWbD3LvLQ_868

e5lWgX3wJqT50sTd1aZ/view?usp=sharing. Each sub-dataset file contains tuples of869

the form (train,test), which are concatenated to form full univariate time series.870

• Resampling: To ensure computational tractability, each series is subsampled (via strided871

slicing) to contain at most 1000 time steps.872

• Series Selection: For each dataset, a maximum of 50 time series are selected at random to873

control the number of examples used during training.874

• Subsequence Generation: From each selected series, we extract multiple training subse-875

quences of varying lengths n P t3, 5, 7, 10, 13, 15, 17, 20, 25, 30, 35, 40u. For each length,876

we generate up to 10 training subsequences, sampled at different offsets.877

A.2.3 Darts dataset878

• Data Loading: We use the data from the Darts dataset, available from the darts python879

package. We use the following sub-datasets: AirPassengersDataset, AusBeerDataset,880

GasRateCO2Dataset, MonthlyMilkDataset, SunspotsDataset, WineDataset, WoolyDataset,881

HeartRateDataset.882

• Resampling: To ensure computational tractability, the series for the datasets Sunspots-883

Dataset and HeartRateDataset are subsampled (via strided slicing).884

• Series Selection: For each dataset, all available time series are selected.885

• Subsequence Generation: From each selected series, we extract multiple training subse-886

quences of varying lengths n P t3, 5, 7, 10, 13, 15, 17, 20, 25, 30, 35, 40u. For each length,887

we generate up to 10 training subsequences, sampled at different offsets.888

A.2.4 LLM generation settings889

We generate the LLM hidden states from a Llama-2-7B model, available through the huggingface890

library. Each of the generated time series, we obtain 100 samples from the LLM, generated auto-891

regressively, as well as the greedy generation. As the Llama-2 tokenizer encodes each digit separately,892

during generation we narrow down the generated tokens to digits, decimal point and `{´ signs. For893

obtaining the random samples, we use temperature=1.0 and top_p=0.95. We exclude from the894

final dataset samples for which generation failed at least once (i.e. the obtained generation was not a895

valid number), such that each time series in the final dataset has exactly 100 LLM samples.896

A.2.5 Train-validation-test split897

Before training, we split each of the datasets in 80% training dataset, 10% validation dataset and 10%898

test dataset. Unless otherwise stated (in the generalisation experiments), these splits are random. We899

do not apply any scaling or transformation to either the LLM embeddings (which are inputs to our900

model) or the outputs.901
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A.3 Details of the magnitude-factorised regression model902

Our magnitude-factorised regression models, used both for the purpose of point prediction and for903

the purpose of quantile regression, has the following hyperparameters. We report the default values904

of the hyperparameters used in Table 5 and Table 6, and then report any deviations from these values905

for specific experiments below. We train the model using the ADAM optimiser. For a detailed906

implementation of the magnitude-factorised regression models, see the provided code.907

Hyperparameter Description Default Value
min_mag Minimum exponent for base-10 magnitude scaling (as used by forderq ´3
max_mag Maximum exponent for base-10 magnitude scaling log10ℓ
use_arctan Apply 10 ¨ arctanp0.5 ¨ xq to bound output of fval True
beta Weight for regression loss component 10.0
K Top-K exponents taken into consideration (see Equation 4) 3
hidden_layers Number of hidden layers in feature extractor 1
hidden_dim Dimensionality of hidden feature representation 512
hidden_states_list A list of the hidden states H to use as input r25, . . . , 32s

quantile_weights Weights of each of the quantiles in the quantile regression loss function r1, 1, 2, 5, 2, 1, 1s

Table 5: Model-specific hyperparameters for the magnitude-factorised regression model.

Hyperparameter Description Default Value

learning_rate Learning rate for the optimizer 10´4

weight_decay L2 regularization weight 0.1
scheduler_step_size Learning rate scheduler step size 100
scheduler_gamma Learning rate scheduler step size 0.5
batch_size Number of samples per training batch 1024
max_epochs Number of training epochs 500
patience Patience for the early stopping 200

Table 6: Optimizer and training-related hyperparameters.

A.3.1 Experiment-specific hyperparameter settings908

Figure 2. We use max_mag “ 4.909

Figure 3 and Figure 1. We use lr “ 10´4, max_epochs “ 2000.910

Figure 4 and Table 1. We use max_mag “ 13.911

Figure 7. We use batch_size “ 2048, lr “ 10´5 and max_mag “ 13.912

B Additional Experimental Results913

B.1 Results with other LLMs914

We provide results for the key experiments in the main paper with two other LLMs: Llama-3-8B915

and Phi-3.5-mini-instruct. As the tokenizers of these models do not encode digits separately, we do916

not narrow down the generated tokens during decoding. For obtaining the random samples, we use917

temperature=1.0 and top_p=0.95. We perform repeated sampling until for each time series, we918

obtain 100 LLM samples yji „ pLLMp¨|xiq.919

B.2 Sample Efficiency Results920

In fig 11 we provide sample efficiency results across all dataset scales and across the three statistics:921

the median, the first quartile (Q1) and the third quartile (Q3). Results are presented for the quantile922

regression model as described in section 4.923
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Figure 8: Predicted vs. sample mean, median and greedy prediction (on log10 scale).

Table 7: MSE for the predictions on the dataset with scale ℓ “ 1.0, reported for all models.
(a) Llama-2-7B

target ŷ (ours) x̄ x̄i xi,n

mean 0.009 0.256 0.035 0.085
median 0.009 0.260 0.041 0.087
greedy 0.024 0.273 0.065 0.109

(b) Llama-3-8B

target ŷ (ours) x̄ x̄i xi,n

mean 0.014 0.253 0.047 0.093
median 0.025 0.264 0.061 0.106
greedy 0.033 0.255 0.072 0.122

(c) Phi-3.5-mini-instruct

target ŷ (ours) x̄ x̄i xi,n

mean 0.007 0.248 0.042 0.100
median 0.010 0.252 0.047 0.104
greedy 0.021 0.270 0.060 0.113
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Figure 9: Predicted vs. sample mean, median and greedy prediction on the dataset with scale ℓ “ 1.0.

Table 8: Coverage of the CI for all models.
(a) Llama-2-7B

α 50% 90% 95%
dataset

1.0 47.3 ± 0.6 88.2 ± 0.4 93.3 ± 0.3
10.0 52.3 ± 0.6 89.5 ± 0.4 93.8 ± 0.3
1000.0 48.9 ± 0.6 87.2 ± 0.4 92.7 ± 0.3
10000.0 46.5 ± 0.6 86.0 ± 0.5 91.3 ± 0.4

(b) Llama-3-8B

α 50% 90% 95%
dataset

1.0 48.1 ± 0.6 88.2 ± 0.4 93.4 ± 0.3
10.0 50.6 ± 0.6 89.3 ± 0.4 93.9 ± 0.3
1000.0 48.9 ± 0.6 87.2 ± 0.4 92.7 ± 0.3
10000.0 45.5 ± 0.6 85.7 ± 0.5 91.2 ± 0.4

(c) Phi-3.5-mini-instruct

α 50% 90% 95%
dataset

1.0 51.1 ± 0.5 89.5 ± 0.4 94.7 ± 0.3
10.0 49.0 ± 0.5 89.1 ± 0.4 93.6 ± 0.3
1000.0 49.1 ± 0.5 88.5 ± 0.4 93.0 ± 0.3
10000.0 49.2 ± 0.5 87.6 ± 0.4 93.0 ± 0.3
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Figure 10: Predicted IQR vs. Sample IQR (median adjusted).
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Figure 11: Sample efficiency of estimating the median, the first (Q1) and the third (Q3) quartiles.
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