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Abstract

Large Language Models (LLMs) have recently been successfully applied to regres-
sion tasks—such as time series forecasting and tabular prediction—by leveraging
their in-context learning abilities. However, their autoregressive decoding process
is ill-suited to continuous-valued outputs, and obtaining predictive distributions
over numerical targets typically requires repeated sampling, leading to high compu-
tational cost. In this work, we investigate whether distributional properties of LLM
predictions can be recovered without explicit autoregressive generation. To this
end, we study a set of regression probes trained to predict statistical functionals
(e.g., mean, median, quantiles) of the LLM’s numerical output distribution directly
from its internal representations. Our results suggest that LLM embeddings carry
informative signals about numerical uncertainty, and that summary statistics of their
predictive distributions can be approximated with reduced computational overhead.
This investigation opens up new questions about how LLMs internally encode
uncertainty in numerical tasks, and about the feasibility of lightweight alternatives
to sampling-based approaches for uncertainty-aware numerical predictions.

1 Introduction

With the increasing capabilities of LLMs, a growing body of work has explored their use for structured
data prediction—most notably for tabular data regression [e.g. Requeima et al., 2024, Hegselmann
et al., 2023, Shysheya et al., 2025, Vacareanu et al., 2024] and time series forecasting [e.g. Gruver
et al., 2024, Xue and Salim, 2023]. These studies demonstrate that LLMs can act as competitive
regressors, even without task-specific fine-tuning. This advantage is especially pronounced in low-
data regimes, where LLMs can leverage their pretraining, prior knowledge, and capacity to condition
on auxiliary textual context to match or outperform specialised models.

However, issuing numerical predictions with LLMs remains computationally expensive due to their
autoregressive nature: real-valued numbers typically span multiple tokens, and decoding them
requires sequential auto-regressive generation. This is particularly problematic when apart from the
point prediction one would like to also quantify the prediction uncertainty, which requires repeated
sampling from the model’s output distribution or auto-regressive computation of token logits [Gruver
et al., 2024, Requeima et al., 2024].

This motivates us to explore whether the internal representations of pre-trained LLM’s encode enough
information to recover the entire predictive distribution—without resorting to autoregressive decoding.
This is a non-trivial question; producing a complete number involves resolving its order of magnitude,
which depends on decisions such as decimal placement or termination—often made only after several
tokens have already been generated.
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Focusing on the problem of time series forecasting specifically, we explore to what extent the LLM’s
internal representation of the input sequence can be used to reconstruct its numerical predictive
distribution of the next number. Concretely, we explore the following three questions:

Do LLMs encode the next number they intend to generate? (Section 3) We begin by examining
whether LLM’s internal representations encode sufficient information to recover point predictions—
specifically, the greedy output, mean, and median of the predictive distribution. To test this, we
develop a magnitude-factorised regression probe that separates prediction into two components:
a coarse magnitude classification and a scale-invariant value regression, such that our model can
effectively learn to predict numbers of varying orders of magnitude. Trained on LLM embeddings
from synthetic time series data, our probe accurately predicts numerical targets across data with
varying orders of magnitude..

Can we elicit the uncertainty of the LLM’s predictive distribution? (Section 4) We then ask
whether uncertainty information is also captured in LLM’s hidden states. Using quantile regression,
we train probes to predict various quantiles of the LLM’s output distribution, approximated via
sampling. The resulting models accurately recover the interquartile range, produce well-calibrated
confidence intervals, and may allow to obtain sample-efficient estimates of statistical functionals.

Do these results generalise to other settings? (Section 5) The ability to recover numerical
predictions directly from LLM embeddings holds the potential to bypass auto-regressive sampling—
offering substantial computational savings. However, for such probes to be practically useful, they
must generalise beyond the specific conditions under which they were trained. We therefore evaluate
whether a single probing model can be deployed across varied settings without retraining. First, we
test generalisation to unseen time series lengths. Second, we assess generalisability of our previous
results to real-world data. We investigate whether probes trained on real-world data generalise across
different sub-domains and whether probes trained on synthetic data generalise to real-world data. We
demonstrate that, while some drop in calibration occurs on out-of-distribution datasets, our probes
demonstrate encouraging generalisation abilities.

Our findings provide new insights into the numerical capabilities of LLMs: much of the “reasoning”
underlying numerical predictions appears to be encoded in the model’s internal representations, prior
to token-level decoding. This raises questions whether auto-regressive sampling is necessary to
extract real-valued outputs from LLMs, and opens the door to developing more efficient single-pass
approaches. By showing that both point estimates and uncertainty can be reliably extracted from
hidden states, our work suggests a lightweight, general-purpose strategy for deploying LLMs in
regression tasks—particularly in settings where computational efficiency and uncertainty estimation are
essential. We hope these results motivate further study of how LLMs internally represent numerical
quantities, and how this information can be surfaced for practical downstream use.

The code to reproduce our experiments can be found at https://anonymous.4open.science/r/
guess_11lm-811B/.

2 Related Works

Numerical Predictive Distributions of LLMs. When used as regressors, LLMs can provide
not only point estimates but also full predictive distributions, reflecting their stochastic nature. To
elicit continuous distributions over numerical outputs, Gruver et al. [2024] and Requeima et al.
[2024] propose an autoregressive approach that generates logit values over discretised numeric
bins, which are then scaled to form a valid probability distribution. Access to such distributions is
crucial for downstream tasks requiring uncertainty quantification, including decision-making under
uncertainty and Bayesian optimisation. However, these methods are computationally intensive, as
they require multiple sequential queries to the LLM to construct a single distribution (e.g., p(123.4) =
p(1)p(2]1)p(3]|12)p(.|123)p(4]123.)). This motivates us to explore alternative approaches to eliciting
numerical predictive distributions from LLMs.

Discrepancy between number generation and auto-regression. As next-token predictors, LLMs
are not explicitly trained to understand the value of numbers. Due to their autoregressive nature,
early tokens encode digits before key decisions like decimal placement (that determine a number’s
magnitude) are made. This can lead to surprisingly poor performance on simple numerical tasks
[Yang et al., 2019, Akhtar et al., 2023, Zhou et al., 2024, Schwartz et al., 2024]. To address
these limitations, several works have proposed alternatives to standard autoregressive decoding


https://anonymous.4open.science/r/guess_llm-811B/
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for numerical predictions. For instance, Golkar et al. [2024] introduce a special [NUM] token,
replaced post-hoc with a continuous value predicted by a learned regression head—though this requires
retraining the model. Others [Singh and Strouse, 2024, Schwartz et al., 2024] investigate number-
specific tokenizations to improve numerical accuracy of LLMs. In contrast, we ask whether one
can bypass autoregressive decoding in pre-trained LLMs by directly reading out the predictive
distribution from the internal representations.

Probing numeracy in LLM embeddings. A number of prior works give evidence that simple
probing models can be used to learn numerical values encoded in the LLM embeddings. Wallace
et al. [2019] has shown that the value of a number can be successfully decoded from its encoded word
embedding (e.g., “71” — 71.0.). Stolfo et al. [2023] identified specific layers in LLMs that store
numerical content, recoverable via simple linear probes, while Zhu et al. [2023] demonstrated that
intervening on these layers alters generated outputs. More recently, Koloski et al. [2025] showed that
LLM embeddings can serve as effective covariates in downstream regression models. Complementary
findings from mechanistic interpretability suggest that, even in purely textual settings, LLM hidden
states encode representations of tokens that the model is most likely to generate [Lindsey et al., 2025].
Taken together, these results support the hypothesis that it should be possible to train probes that
approximate the numerical predictive distribution of the LLM, motivating our work.

3 Do LLMs Encode the Next Number They Intend to Generate?

LLMs are trained for next-token-predictions. Thus, as a single number typically spans multiple tokens,
obtaining a complete numerical prediction from the LLM requires repeated auto-regressive sampling.
This can be computationally expensive in number-heavy tasks, particularly when one would like to
obtain repeated samples for the purpose of uncertainty estimation. To mitigate this overhead, we
ask: to what extent is the full predicted number—beyond just its leading digit—already encoded in the
LLM’s internal representation, prior to any token-by-token generation? If such information can be
reliably extracted, one could sidestep autoregressive generation altogether, enabling more efficient
inference. However, this possibility is not trivial: critical aspects of number generation, such as the
placement of the decimal point or number termination, which determine the order of magnitude of
the number, often occur late in the decoding process, particularly for large magnitudes.

3.1 Method of Investigation

We provide an overview of our methodology below. For more details, see Appendix.

Objective. Letx = [x1,...,x,] be a sequence of numbers (e.g., an equally-spaced time series).
Given x, a language model induces a predictive distribution ppm(- | x) over the next value 2, 1.
In this section, we investigate whether the internal representations of the LLM encode sufficient
information to predict this distribution’s key statistics. Specifically, we aim to train independent
probing models to recover: (a) the LLM’s greedy prediction, (b) the mean of pyy, and (c) the median
of prrm. We approximate the mean and median using 100 samples yj ~ pum(- | x).

LLM Representation. Let LLM(x) denote the sequence of hidden states produced by the model
when encoding x, where, following Gruver et al. [2024], we serialise x to text as “x1, Lo, T3, . . ., T, -
We do not apply any scaling to the time series before serializing the inputs. This is important, as
LLMs often contain contextual prior knowledge and scaling of the original time series may prohibit
the LLM from using this prior knowledge effectively. From a pre-selected set of NV layers H, we
extract the final token’s hidden state from each layer, denoted hy[—1] € R%. We concatenate these
vectors to form a single input embedding for the probe:

e := concat (hy[—1]),c,, € R%, M

where dinpue = d¢ x |H|. The choice of the hidden layers in # is a hyperparameter of our model.
Throughout this paper we use LLama-2-8B model for generating the embeddings, for which d, =
4096. Experiments with other LLMs can be found in the Appendix.

Datasets. We use synthetically generated datasets to evaluate probing performance. Each sequence
x is sampled from functions exhibiting varied numerical dynamics, including sinusoidal patterns,
Gaussians, beat functions, and random noise (details in Appendix). The generated time series also vary
in the length, n, and the level of noise, to ensure diversity in the generated embeddings. We generate
variants of the dataset by rescaling the value range from [—1, 1] to progressively larger intervals:
[—10,10], [-1000, 1000], and [—10000, 10000]. We then concatenate the datasets of different scales
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to obtain a dataset of approximately 80k unique sequences, balanced across the different magnitudes.

. N
Our training datasets have the following structure: { (xi, e, Y=Y {y }ozol) } , where N is the
i=1

total number of examples in a dataset, 3/ a single LLM sample from p(-|x;) and 3£ the LLM’s
greedy prediction given x;.

Probing Model. The primary challenge in training regression probes for LLM numerical predictions
lies in the wide spread of target magnitudes. Standard regression losses such as MSE or transformation
techniques like log-scaling fail to provide stable gradients across this scale variability. To address
this, we introduce a magnitude-factorised regression model that decomposes the prediction into a
magnitude classification and a scale-invariant regression.

Let y* be a target scalar (greedy, mean, or median prediction). We define its order of magnitude as:
m(y*) = [logyo (|y*])]- @
Our model architecture consists of the following modules:
o g : R%mu — Réiwen: an encoder mapping the input e to a latent representation.

* forder : Raen — RM: 3 classifier predicting logits over M magnitude bins.

o fua : Riaen 5 R: a regressor predicting a rescaled value.
The final prediction is reconstructed by taking the expectation over the top- K predicted orders:
§i =7 -10™ where 7 = fua(g(e;)), 1y = 10%wex; Fprlalen), 3)

where KC; is a set of K exponents with the largest logit values as predicted by foer(g(€;)) and
pr(g(e;)) is derived from foaer(g(€;)) using the softmax over the top-K logits.

Training Objective. To decouple magnitude errors from value regression during early training, we
use the ground-truth magnitude m(y*) to compute ¢ and define the training objective as:

L = Loer + B+ Lya, Where (4)

1 Ny 1 N, y* 2
;Cor r T A C Ent Los AZ" * R ﬁvazi "ifii . 5
der = 7 Z; rossEntropyLoss(ri;, m(y})) 1= 7 Z; <r 10m(y?‘)> (5)

In the above N, is the batch size and the hyperparameter 5 balances the magnitude and value
objectives. This formulation of the loss allows the model to learn scale-invariant value predictions
and as we found out, it improves stability during optimization.

3.2 Results

Order of magnitude. We first investigate to what extent our probing model can correctly recover
the order of magnitude of the number generated by the LLM. We train three separate models, for each
of the mean, median and greedy predictions. As visualised on Figure 2, we find strong correlation
between the log;, of the predicted number and log;, of the true value, for all three statistics. Further,
the bar chart on the right hand side of Figure 2 visualises that our model achieves above 80% accuracy

in predicting the exponent of the generated number. Figure 1: MSE of the predicted values

Precision in generated digits. To further assess whether (no scaling).
the LLM’s internal representations encode fine-grained
information beyond the order of magnitude, we focus on target g (ours) X Xi  Tin

the dataset with time series values in the interval [—1,1]. 1hean = 0009 0256 0.035 0.085
We report the mean squared error (MSE) of our predictions  median  0.009 0.260 0.041 0.087
in Figure | and compare them against three baselines: X  greedy 0.024 0.273 0.065 0.109
(predicting the average value in the whole training dataset),
x; (predicting the average of each time series) and x; ,, (predicting the last value from each time
series). We further plot the obtained predictions in Figure 3. Interestingly, among the three targets
considered (mean, median, greedy), the model performs worst when predicting the greedy output. As
shown in Figure 3, the probe captures the sign of the greedy prediction reliably but exhibits larger
errors in the decimal digits. We hypothesise that this is because the greedy prediction is not an explicit
function of the model’s predictive distribution, but rather a byproduct of the autoregressive decoding
process, making it harder to recover precisely from internal states.
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Figure 2: Predicted vs. true values of mean, median and greedy prediction, presented on log,, scale.
The probing model accurately recovers the number that the LLM intends to predict, indicating that
the internal representations encode the order of magnitude of prediction.
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Figure 3: Predicted vs. true values of mean, median and greedy prediction. The probing model
accurately recovers the number the LLM intends to predict, with the precision surpassing just order
of magnitude estimation.

Q These results show that the internal representations of a pre-trained LLM encode detailed
information about its intended numerical output—even before any tokens are generated. Our
probing model accurately recovers not only the order of magnitude, but also fine-grained point
estimates of the mean, median, and the greedy output. This demonstrates that much of the
numerical reasoning performed by the LLM is already present in its hidden states, and may not

require the autoregressive decoding process.

4 Can We Elicit the Uncertainty of the LLLM’s Predictive Distribution?

In the previous section, we demonstrated that point estimates—such as the greedy prediction, mean,
and median—of an LLM’s predictive distribution prym(- | x) can be recovered from its internal
representations without the need for performing auto-regressive sampling. Encouraged by these
findings, we now investigate whether we can go beyond point estimates to recover the uncertainty of
pLLm by approximating its distributional shape. Specifically, we attempt to recover multiple quantiles
of pLim, enabling a coarse-grained reconstruction of its distribution function an an easy way of
estimating the confidence intervals for the LLM’s predictions.

4.1 Method of Investigation

Why Quantiles? Since the underlying distribution py » may be multi-modal and non-Gaussian, we
rule out parametric approximations (e.g., fitting a Gaussian). Instead, we adopt quantile regression,
which enables direct estimation of distributional shape without strong assumptions about its form.

Quantile Regression. Let Q = [7!,...,7°] be a fixed list of target quantiles. For each quantile
level 7¢ € [0, 1], we denote the predicted value as ¢° . We train the quantile predictor using the

pinball loss [Koenker and Hallock, 2001], computed with respect to LLM samples yf ~ pum (- | x;).
For a single quantile level 7, predicted quantile ¢ and an LLM sample ¥, this loss function is defined

as:
PinballLoss(7, ¢, y) := max (7(y — §¢), (1 — 7)(§ — v)) - (6)

Architecture. As in Section 3, we use a magnitude-factorised model to address the challenge of
scale variance in numerical outputs. The model is defined as follows:
o g : R — Raen: 3 shared encoder that maps the input representation e to a latent space.
* For each quantile index s € {1,...,S}:

order - Raen — RM: 3 classifier predicting the order of magnitude m?* of quantile ¢°.
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Similarly as before, each quantile is reconstructed from the predicted components as:

G; =77 10", where 7f = f(g(e)), = 10Zker PRl ™
where /C is a set of K exponents with the largest logit values as predicted by f...(¢g(e;)) and
pi(g(e )) is derived from f2,..(g(e;)) using the softmax over the top-K logits.

Training Objective. As before, we use the true order of magnitude m(yf ) for each target value
during training to enable stable learning. The total loss is the sum of the cross-entropy losses for
magnitude prediction and pinball losses for quantile regression:

L= Z wS order + ﬁ [’val) (8)
s=1
S 1 *
order — Z CrOSSEntrOpyLOSS(forder(g(ei))a m(y7 ))7 (9)
o S PiubaliLoss i (10)
mn —_—
val — Nsza P S ) 17 10m(yf) )

where N, is the batch size, N, is the number of LLM samples per input, S is the number of
quantiles, and [wy, ..., wg] a set of weights per each quantile, which is a hyperparameter of our
model. In our experiments we have Ny, = 100 and S = 7, with the corresponding quantile list
Q = [0.025,0.05,0.25,0.5,0.75,0.95,0.975]. This choice of quantiles allows us to estimate: the
median, the interquartile range (IQR), as well as the 90% and 95% confidence intervals.

Datasets We use the same datasets as in section 3, considered separately rather than concatenated.

4.2 Results

IQR Prediction. To investigate whether the LLM’s internal representations encode information
about the spread of its predictive distribution, we estimate the interquartile range (IQR) using the
predicted 25th and 75th percentiles. As the IQR is sensitive to scale, we normalise it by the predicted
median, and similarly normalise the empirical IQR from LLM samples using the sample median.
If the probe captures uncertainty faithfully, we should observe a monotonic relationship between
the predicted and empirical (normalised) IQRs. As shown in Figure 4, we find a strong correlation
between predicted and sample-based IQRs, suggesting that the model is able to infer distributional
spread from internal LLM activations.

\ Dataset scale 1 0 Dataset scale 10 O Dataset scale 1000 O Dataset scale 10000 0
10 . " "o . e o

1027

--- y=x % Py ol
10 .
100
107! i § H
2 OF S Pearson r. 0.65 Pearson n 0.64 Pearson R 0.60 G Pearson n 0.63

10 Spearman R 0.93 Speavman R: 0.95 Spearman R: 0.93 % Spearman R 0.93

10-3 =" . 5
1073 1072 107! 10° 10 10% 10% IU 31072 1070 100 10! 10% 10* I‘] 102 107t 100 10! 10% 10% l(i 51072 107! 10° 10 10% 10%

Predicted IQR

Sample IQR

Figure 4: Predicted vs. sample-based IQR (both median-normalised). The model accurately tracks
the variability of the LLM’s output distribution.

Confidence Interval Coverage. We next evaluate Table 1: Coverage of the predicted confi-
whether the predicted quantiles yield calibrated confidence ~dence intervals. Values denote empirical
intervals. Given a desired confidence level v and its asso- coverage (%) + standard error.

ciated interval C(«) predicted by the probe, we compute

the empirical coverage by checking what fraction of LLM a 50% 90% 95%

samples fall within the predicted interval. We expect that: 1.0 492+04 892+03 94.1+03
- 1 10.0 498 +04 90.2+0.3 94.1+0.3

a=E, p(x [H{yeC(a)}] 10000 504+05 89.0+0.3 93.7+0.3
Nsa 10000.0 51.2+0.5 882+04 92.7+03

~ N Z:l]l{yj €C(a)}, where y? ~ pLm(+|x).
J




235 Table | reports the empirical coverage for 50%, 90%, and 95% intervals across datasets with different
236 scaling parameters £. In all cases, empirical coverage closely matches the target level, indicating that
237 the quantile probe is well-calibrated.

238 Sample Efficiency of Median Estimation  Sample Efficiency. Finally, we examine whether the probe can
239 el ) . ETSE”O; ] ; outperform direct sampling from the LLM in terms of sample effi-
240 0006 aaeiial ciency. Let S denote a target statistic (e.g., median or a quantile).

241
242

0.003 We define S(n) as the estimate from n < 100 samples and we let
] S* := 5(100) as a proxy for the ground-truth. We compute the

0.004

Mean Squared Error

43 5 0= LLM sample error as MSE(S(n), S*) and compare it to the probe
244 ' = ] error MSE(S, S*).

0.002 - 1
245 0.001 BTN ] Figure 11 illustrates this comparison for the median on a dataset with
246 *oete scale 1.0. The probe outperforms empirical sampling for all n < 5,
247 Number of LLM Sﬁ‘;ples demonstrating that our approach can be more sample-efficient. Re-

248 sults for additional quantiles and larger-scale datasets are reported
249 Figure 5: The probe (horizon-  in the Appendix. A probe of this kind can serve as a computation-
250 tal line) achieves lower MSE a1y efficient surrogate for estimating statistics of the LLM output
251 than sampling for n < 5. distribution which can help in cost and compute time reduction.

Q@ Key Insights.

* Qur findings in this section provide strong evidence that the uncertainty of an LLM’s
predictive distribution is encoded in its internal activations and can be effectively elicited
using a quantile regression probe. The probe is capable of predicting meaningful spread
measures (e.g., IQR), producing well-calibrated confidence intervals that match the empirical
coverage observed when generating samples from the LLM.

 Furthermore, the probe demonstrates an encouraging sample efficiency, enabling uncertainty
estimation without incurring the cost of repeated sampling.

Together, these results suggest that LLMs internalise rich distributional information during
generation, which can be accessed and approximated efficiently via probing techniques.
This opens up new opportunities for downstream applications that rely on uncertainty
quantification—such as safe decision-making, model-based control, and probabilistic rea-

soning—while avoiding the overhead of sampling-based inference.
252

253 5 Generalisation Properties

254 In this section, we investigate the generalisation capabilities of our approach along several axes
255 including context length generalisation, applicability to real-world data, and cross-dataset generalisa-
256 tion. As the process of training a probe can be costly, such generalisation capabilities are important
257 for real-world applications, if we would like to use a pre-trained probe on new datasets with different
258 distributional properties instead of performing repetitive auto-regressive sampling to estimate the
259 LLM'’s predictive distribution.

260 Throughout this section, we use the same probing architecture introduced in Section

261 5.1 Generalisation to Unseen Context Lengths

0.95
.9
Model type
g 0.50 —===madeeedececto b de e L W Restricted
I I I I 1 mm Base
0.80 7 0.40 i

7530354 7 25 30 35 40 3572530354

95% Coverage
z &
90% Coverage
Z
50"5 Coverage

Context Length (Unseen for the Restricted Model)

Figure 6: Generalisation to unseen context lengths. A probe trained on a restricted context length
range (Restricted) exhibits greater deviation in empirical coverage outside its training range.
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We begin by asking whether a probe trained on a fixed range of input sequence lengths generalises to
longer or shorter contexts. We train and compare against each other two models:

* Base: Trained on input sequences x with length in the range [3, 40].
* Restricted: Trained only on input sequences x with length in the range [10, 20].

At test time, we evaluate both models on contexts shorter than 10 and longer than 20. We assess
generalisation by measuring the empirical coverage of predicted confidence intervals, as defined in
Section 4.2. Figure 6 shows results on the dataset with scale factor 1.0.

‘We observe that while both models achieve reasonable calibration, the Restricted model exhibits
slightly greater deviations from the nominal coverage, particularly for context lengths further from
the training distribution. These results suggest that the probe generalises to novel context lengths, but
training on a wider context ranges should be beneficial for more robust generalisation.

5.2 Application to Real-World Data

Thus far, our analysis has focused on synthetic data. We now evaluate whether our probing model
can be trained successfully on real-world datasets, and how well predictions can generalise across
different types of input series.

To assess this, we construct a dataset using time series from the Darts [Herzen et al., 2022] and Monash
[Godahewa et al., 2021] collections. Following the same format as in our synthetic experiments, we
generate LLM embeddings and samples from their predictive distribution for approximately 45,000
distinct sequences across 32 sub-datasets (e.g., US Births, Bitcoin, Air Passengers). Furthermore, we
also investigate an even stronger form of generalisation: from a model trained on synthetic data only
to testing on real-world data. Thus, we train the following models:

* Real (all): Trained on a random 80% of all sequences across all sub-datasets. The remaining
20% is held out for testing.

* Real (5 fold): We partition the dataset into 5 folds such that, in each fold, one model is
trained on 80% of the sub-datasets and evaluated on the remaining 20%. This ensures that each
sub-dataset appears in the test fold of exactly one out of 5 models trained.

» Synth: A model trained on the combination of the 4 synthetic dataset from the previous sections
with scales 1.0, 10.0, 1000.0 and 10000.0.

At test time, the above models face increasingly stronger distribution shifts. In terms of generalisation
performance to previously unseen data distributions, we can view the Real (all) model as a baseline
for Real (5 fold) and Synth.

Table 2: Coverage of the Cl intervals on previ- Firstly, in Table 2 we report the average coverage of

ously unseen testing inputs. the CI across all training types. We observe that the

Real (all) model demonstrates good performance,

Model a 50% 90% 95% with the empirical coverage of LLM samples closely
ode.

matching the expected coverage. The Real (5 fold)
Real (all) 53.1+05 89.4+0.3 93.3+0.3 model demonstrates a slight downgrade in perfor-
Real (5 fold) 46.6+0.2 83.7+0.1 89.0+0.1 mance. Interestingly, while the Synth model under-
Synth 40.7+05 564+0.6 674%0.6 performs it still demonstrates good generalisation
for some of the sub-datasets as we can see on Fig-
ure 7. This figure shows the distribution of the Absolute Error of the predicted median vs. the median
of LLM samples across all sub-datasets. The x-axis is sorted by increasing order of magnitude of the
datasets defined by the average of the median of LLM samples. We note that the sub-datasets in our
collection cover widely varying ranges of values (with individual LLM samples varying in magnitude
from 1072 to 10'3). We suspect that this is the main reason for our probing model struggling to
generalise across some datasets.

©Q Key Insights.
» The probing model exhibit some, albeit limited, generalisation across context lengths.

* When applied to real-world datasets, the model achieves accurate empirical coverage and
demonstrates partial transferability to unseen data distributions. Cross-dataset generalisation
is possible, but challenged by large variation in scale and distribution.
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Figure 7: Absolute Error on the Median across different sub-dataset. Comparison of generalisation
across models trained on different data.

6 Discussion, Limitations and Further Work

Discussion Our findings demonstrate that LLMs internally encode rich numerical information about
their intended predictions, well before any autoregressive decoding occurs. By training lightweight
probes on hidden states, we can recover both point estimates (mean, median, greedy outputs) as well
as informations about the uncertainty of the model’s predictive distribution. This suggests that much
of the LLM’s “reasoning” over numeric outputs is already complete at the point of processing the input
sequence, and that decoding primarily serves as a mechanism for surfacing the LLM’s predictions.
Beyond shedding light on the internal mechanics of LLMs in regression settings, these results open
up a practical direction: enabling uncertainty-aware numerical prediction without incurring the high
cost of repeated sampling.

Limitations Despite these promising findings, several limitations remain. First, while our approach
applies to pre-trained model and does not require any fine-tuning, we assume access to internal model
activations. Second, while our probing models exhibit some generalisation abilities, they are still
trained per-model and require retraining for new architectures or tokenization schemes. Third, for
training and evaluation purposes, we approximate the LLM’s predictive distribution using empirical
sampling, which is itself a noisy and computationally costly proxy.

Further Work Future research could explore extending this framework to broader classes of
structured data and more diverse prediction tasks, including multivariate time series, univariate
or multivariate regression tasks. A deeper investigation into the mechanistic basis of numerical
encoding—i.e., how and where numerical quantities are represented across LLLM layers—could also
reveal connections to known computational circuits or arithmetic operations within the model. Finally,
motivated by our generalisation results, an important next step is the development of a universal
probing model which, for a given LLM, can be applied off-the-shelf across diverse tasks and data
domains. This would eliminate the need for repeated retraining—an important consideration given
the cost of training high-capacity probes at scale.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claim that our results suggest that LLM embeddings carry informative
signals about summary statistics of their predictive distributions is justified in Section
The claim that our results suggest that LLM embeddings carry informative signals about
numerical uncertainty is justified by experimental results in Section 4. The empirical results
that justify that our results might lead to reduced computational overhead are presented in
Figure

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper focuses on experimental results, with no novel theoretical results
introduced.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Most important details of the experiments are presented in Sections 3-5, in a
dedicated Method of Investigation section. Further details are provided in the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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601 5. Open access to data and code

602 Question: Does the paper provide open access to the data and code, with sufficient instruc-
603 tions to faithfully reproduce the main experimental results, as described in supplemental
604 material?

605 Answer: [Yes]

606 Justification: The code to reproduce the experiments can be found at https://anonymous.
607 4open.science/r/guess_1lm-811B/.

608 Guidelines:

609 » The answer NA means that paper does not include experiments requiring code.

610 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
611 public/guides/CodeSubmissionPolicy) for more details.

612 * While we encourage the release of code and data, we understand that this might not be
613 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
614 including code, unless this is central to the contribution (e.g., for a new open-source
615 benchmark).

616 * The instructions should contain the exact command and environment needed to run to
617 reproduce the results. See the NeurIPS code and data submission guidelines (https:
618 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

619 * The authors should provide instructions on data access and preparation, including how
620 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
621 * The authors should provide scripts to reproduce all experimental results for the new
622 proposed method and baselines. If only a subset of experiments are reproducible, they
623 should state which ones are omitted from the script and why.

624 * At submission time, to preserve anonymity, the authors should release anonymized
625 versions (if applicable).

626 * Providing as much information as possible in supplemental material (appended to the
627 paper) is recommended, but including URLSs to data and code is permitted.

628 6. Experimental setting/details

629 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
630 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
631 results?

632 Answer: [Yes]

633 Justification: Details of the data splits, hyperparameters, and optimization process can be
634 found in the provided code, and are also described in the Appendix.

635 Guidelines:

636 » The answer NA means that the paper does not include experiments.

637 » The experimental setting should be presented in the core of the paper to a level of detail
638 that is necessary to appreciate the results and make sense of them.

639 * The full details can be provided either with the code, in appendix, or as supplemental
640 material.

641 7. Experiment statistical significance

642 Question: Does the paper report error bars suitably and correctly defined or other appropriate
643 information about the statistical significance of the experiments?

644 Answer: [Yes]

645 Justification: Where relevant, the plots include the necessary error bars (e.g. Figure 11,
646 Figure 6).

647 Guidelines:

648 * The answer NA means that the paper does not include experiments.

649 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
650 dence intervals, or statistical significance tests, at least for the experiments that support
651 the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information about the computer resources used can be found in the
Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper does not involve human subjects or participants. No new real-world
datasets are released as a part of this project. The project does not raise any significant
ethical considerations listed in the ‘Societal Impact’ section.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper provides an investigation into the numerical predictive distributions
of the LLMs, and whether they can be approximated using LLM’s internal representations
and as such, it does not have a significant societal impact.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release new datasets or pre-trained models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Any existing assets are listed and credited in the Appendix.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The research does not involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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806 * Depending on the country in which research is conducted, IRB approval (or equivalent)

807 may be required for any human subjects research. If you obtained IRB approval, you
808 should clearly state this in the paper.

809 * We recognize that the procedures for this may vary significantly between institutions
810 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
811 guidelines for their institution.

812 * For initial submissions, do not include any information that would break anonymity (if
813 applicable), such as the institution conducting the review.

814 16. Declaration of LLLM usage

815 Question: Does the paper describe the usage of LLMs if it is an important, original, or
816 non-standard component of the core methods in this research? Note that if the LLM is used
817 only for writing, editing, or formatting purposes and does not impact the core methodology,
818 scientific rigorousness, or originality of the research, declaration is not required.

819 Answer: [Yes]

820 Justification: The relevant description of the way that the LLMs are used in the experiments
821 presented in this paper is included in the Appendix as well as in the provided code.

822 Guidelines:

823 * The answer NA means that the core method development in this research does not
824 involve LLMs as any important, original, or non-standard components.

825 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
826 for what should or should not be described.
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A Details of the Experimental Setup

A.0.1 Assets and Licensing Information
The following existing assets were used to produce the experimental results:

¢ Monash dataset Godahewa et al. [2021]

¢ Darts dataset Herzen et al. [2022]

¢ Llama-2-7B model Touvron et al. [2023]

¢ Llama-3-8B model Grattafiori et al. [2024]
* Phi-3.5-mini model Abdin et al. [2024]

A.1 Computer infrastructure used

Hardware. All experiments were conducted using 2 separate NC24rs_v3 instances and one
NC80adis_H100_v5 instance on the Microsoft Azure cloud platform. This instances are a part
of Azure’s GPU-optimised virtual machine series, with their hardware specifications summarised in
Table 3.

Table 3: Azure Virtual Machine Specifications

Specification NC24rs_v3 NC80adis_H100_v5
vCPUs 24 80

System Memory (GiB) 448 640

GPU Model 4x NVIDIA Tesla V100 2x NVIDIA H100 NVL
GPU Memory (per GPU) 16 GiB 94 GiB

Total GPU Memory 64 GiB 188 GiB

GPU Architecture Volta Hopper

CUDA Version 11.x 12.x

CPU Model Intel Xeon E5-2690 v4 AMD EPYC Genoa
Local Storage 29TB 7.1 TB

Generating the synthetic dataset for one scaling factor ¢ € {1, 10, 1000, 10000} took no more than
10h. Training one probe model took no more than 4h.

A.2 Details of the datasets
A.2.1 Details of the synthetic time series dataset

We generate a synthetic dataset comprising time series derived from a family of parametric functions,
each evaluated over a fixed domain and perturbed with controlled noise. The purpose is to simulate
diverse temporal patterns, inducing varying levels of uncertainty in the LLM’s predictions.

We use a set of base functions defined over the interval z € [0, 60], discretized into 120 equidistant
points. The functions are summarised in Table 4. For each function and value of a, we generate a
clean series y = f(a - ), and then apply:

* Additive Gaussian noise with variance o2 € {0.0,0.01,0.05,0.1}.
* Vertical scaling by b ~ U(0, £)
* Vertical translation by d ~ U(—¢, ¢)

From each transformed series, we sample 10 different subsequences for each of the lengths n €
{3,5,7,10,13,15,17, 20, 25, 30, 35,40}, with each subsequence starting at a random offset. Each
sequence becomes a training input. Inputs are serialized as floating-point strings with a user-defined
number of decimal places p (weuse p = 4 for { = 1.0, p = 3 for £ = 10.0, p = 2 for £ = 1000.0
and p = 1 for ¢ = 10000.0). This results in 33600 generated time series for each value of £.

Concatenated dataset. Having constructed the individual dataset for each scaling factor ¢ €
{1, 10,1000, 10000}, we also construct one concatenated dataset. In doing that, we limit the number
of datapoints to 80000 and ensure that the .5 values of the generated time series are equally
distributed on the log scale, from 102 to 10%. This is to ensure a balanced distribution of the train
and test examples.
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Dataset filtering. Before using the generated datasets for training the probing models, we apply
dataset filtering to exclude any potential outliers. Namely, we ensure that the mean, median and
greedy LLM prediction lie in [—Z, ¢].

Function name Formula a-range
sin sin(x) [0.5, 6.0]
linear_sin 0.2 -sin(x) + 455 [0.5, 6.0]
sinc sinc(z) [0.05,0.2]
xsine 2230 . sin(z — 30) 0.5, 1.3]
beat sin(z) - sin (%) [0.1, 6.0]
. 2
gaussian_wave e~ = cos(10m(x — 2)) [0.01,0.1]
random Uu-1,1) (0.0, 1.0]

Table 4: Functions used to generate time series data, their mathematical forms, and the range of the
time-scaling parameter a.

A.2.2 Monash dataset

» Data Loading: We use the data from the Monash dataset, preprocessed by Gruver et al.
[2024] and available from https://drive.google.com/file/d/1sKrpWbD3LvLQ_
e51WgX3wJqTh0sTdlaZ/view7usp=sharing. Each sub-dataset file contains tuples of
the form (train,test), which are concatenated to form full univariate time series.

* Resampling: To ensure computational tractability, each series is subsampled (via strided
slicing) to contain at most 1000 time steps.

¢ Series Selection: For each dataset, a maximum of 50 time series are selected at random to
control the number of examples used during training.

* Subsequence Generation: From each selected series, we extract multiple training subse-
quences of varying lengths n € {3,5,7,10,13, 15,17, 20, 25, 30, 35, 40}. For each length,
we generate up to 10 training subsequences, sampled at different offsets.

A.2.3 Darts dataset

» Data Loading: We use the data from the Darts dataset, available from the darts python
package. We use the following sub-datasets: AirPassengersDataset, AusBeerDataset,
GasRateCO2Dataset, MonthlyMilkDataset, SunspotsDataset, WineDataset, WoolyDataset,
HeartRateDataset.

* Resampling: To ensure computational tractability, the series for the datasets Sunspots-
Dataset and HeartRateDataset are subsampled (via strided slicing).

» Series Selection: For each dataset, all available time series are selected.

* Subsequence Generation: From each selected series, we extract multiple training subse-
quences of varying lengths n € {3,5, 7,10, 13,15,17, 20, 25, 30, 35, 40}. For each length,
we generate up to 10 training subsequences, sampled at different offsets.

A.2.4 LLM generation settings

We generate the LLM hidden states from a Llama-2-7B model, available through the huggingface
library. Each of the generated time series, we obtain 100 samples from the LLM, generated auto-
regressively, as well as the greedy generation. As the Llama-2 tokenizer encodes each digit separately,
during generation we narrow down the generated tokens to digits, decimal point and +/— signs. For
obtaining the random samples, we use temperature=1.0 and top_p=0.95. We exclude from the
final dataset samples for which generation failed at least once (i.e. the obtained generation was not a
valid number), such that each time series in the final dataset has exactly 100 LLM samples.

A.2.5 Train-validation-test split

Before training, we split each of the datasets in 80% training dataset, 10% validation dataset and 10%
test dataset. Unless otherwise stated (in the generalisation experiments), these splits are random. We
do not apply any scaling or transformation to either the LLM embeddings (which are inputs to our
model) or the outputs.
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902 A.3 Details of the magnitude-factorised regression model

903 Our magnitude-factorised regression models, used both for the purpose of point prediction and for
904 the purpose of quantile regression, has the following hyperparameters. We report the default values
905 of the hyperparameters used in Table 5 and Table 6, and then report any deviations from these values
906 for specific experiments below. We train the model using the ADAM optimiser. For a detailed
907 implementation of the magnitude-factorised regression models, see the provided code.

Hyperparameter Description Default Value
min_mag Minimum exponent for base-10 magnitude scaling (as used by forder) -3

max_mag Maximum exponent for base-10 magnitude scaling logi0f
use_arctan Apply 10 - arctan(0.5 - 2) to bound output of fy, True

beta Weight for regression loss component 10.0

K Top- K exponents taken into consideration (see Equation 4) 3
hidden_layers Number of hidden layers in feature extractor 1

hidden_dim Dimensionality of hidden feature representation 512
hidden_states_list A list of the hidden states 7 to use as input [25,...,32]
quantile_weights Weights of each of the quantiles in the quantile regression loss function [1,1,2,5,2,1,1]

Table 5: Model-specific hyperparameters for the magnitude-factorised regression model.

Hyperparameter Description Default Value
learning_rate Learning rate for the optimizer 10~4
weight_decay L2 regularization weight 0.1
scheduler_step_size Learning rate scheduler step size 100
scheduler_gamma Learning rate scheduler step size 0.5
batch_size Number of samples per training batch 1024
max_epochs Number of training epochs 500
patience Patience for the early stopping 200

Table 6: Optimizer and training-related hyperparameters.

908 A.3.1 Experiment-specific hyperparameter settings

909 Figure 2. We use max_mag = 4.

ot0 Figure 3 and Figure 1. We use 1r = 10~%, max_epochs = 2000.
911 Figure 4 and Table 1. We use max_mag = 13.

912 Figure 7. We use batch_size = 2048, 1r = 1075 and max_mag = 13.

o3 B Additional Experimental Results

914 B.1 Results with other LLMs

915 We provide results for the key experiments in the main paper with two other LLMs: Llama-3-8B
ot6 and Phi-3.5-mini-instruct. As the tokenizers of these models do not encode digits separately, we do
917 not narrow down the generated tokens during decoding. For obtaining the random samples, we use
918 temperature=1.0 and top_p=0.95. We perform repeated sampling until for each time series, we

919 obtain 100 LLM samples yf ~ pLm(+]%:)-
920 B.2 Sample Efficiency Results

921 Infig || we provide sample efficiency results across all dataset scales and across the three statistics:
922 the median, the first quartile (Q1) and the third quartile (Q3). Results are presented for the quantile
923 regression model as described in section
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Figure 8: Predicted vs. sample mean, median and greedy prediction (on log, scale).

Table 7: MSE for the predictions on the dataset with scale ¢ = 1.0, reported for all models.
(a) Llama-2-7B

(b) Llama-3-8B

target ¢ (ours) X X; Tin target ¢ (ours) X X; Tin
mean 0.009 0.256 0.035 0.085 mean 0.014 0.253 0.047 0.093
median  0.009 0.260 0.041 0.087 median  0.025 0.264 0.061 0.106
greedy 0.024 0.273 0.065 0.109 greedy 0.033 0.255 0.072 0.122

(c) Phi-3.5-mini-instruct

target ¢ (ours) X X; Tin
mean 0.007 0.248 0.042 0.100
median  0.010 0.252 0.047 0.104
greedy 0.021 0.270 0.060 0.113
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Figure 9: Predicted vs. sample mean, median and greedy prediction on the dataset with scale ¢ = 1.0.

Table 8: Coverage of the CI for all models.

(a) Llama-2-7B (b) Llama-3-8B
« 50% 90% 95% « 50% 90% 95%
dataset dataset
1.0 473+0.6 882+04 933+0.3 1.0 48.1+£0.6 882+04 934+0.3

10.0 523+0.6 89.5+04 93.8+03 10.0 50.6+0.6 89.3+04 939+03
1000.0 489+0.6 872+04 92.7+0.3 1000.0 489+0.6 872+04 92.7+0.3
10000.0 46.5+0.6 86.0+0.5 91304 10000.0 455+0.6 857+05 91.2+04

(c) Phi-3.5-mini-instruct

« 50% 90% 95%
dataset
1.0 51.1£05 89.5+04 94.7+03

10.0 49.0+05 89.1+04 93.6+0.3
1000.0 49.1+0.5 885+04 93.0+0.3
10000.0 49.2+0.5 87.6+04 93.0+03
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Figure 10: Predicted IQR vs. Sample IQR (median adjusted).
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Figure 11: Sample efficiency of estimating the median, the first (Q1) and the third (Q3) quartiles.
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