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ABSTRACT

The top-k classification accuracy is one of the core metrics in machine learning.
Here, k is conventionally a positive integer, such as 1 or 5. In this work, we relax
this assumption and propose to draw k from a probability distribution for training.
Combining this with recent advances in differentiable sorting and ranking, we pro-
pose a new family of differentiable top-k cross-entropy classification losses. We
find that relaxing k does not only produce better top-5 accuracies, but also makes
models more robust, which leads to top-1 accuracy improvements. When fine-
tuning publicly available ImageNet models, we achieve a new state-of-the-art on
ImageNet for publicly available models with an 88.37% top-1 and a 98.68% top-5
accuracy.

1 INTRODUCTION

Classification is one of the core disciplines in machine learning and computer vision. With the
advent of classification problems with hundreds or even thousands of classes, the top-k classification
accuracy has established itself as an important task, i.e., an algorithm can suggest k classes and one
of them has to be the correct class. Usually, models are trained to optimize the top-1 accuracy and
top-5 etc. are used for evaluation only. Some works (Lapin et al., 2016; Berrada et al., 2018) have
challenged this idea and proposed top-k losses, such as a smooth top-5 margin loss. These methods
have demonstrated superior robustness over the established top-1 softmax cross-entropy in presence
of additional label noise (Berrada et al., 2018). In standard classification settings, however, these
methods have so far not shown improvements over the established top-1 softmax cross-entropy.

In this work, instead of selecting a single top-k metric such as top-1 or top-5 for defining the loss,
we propose to specify k to be drawn from a probability distribution PK , which may or may not
depend on the confidence of specific data points or on the class label. Examples for distributions
PK are [.5, 0, 0, 0, .5] (50% top-1 and 50% top-5), [.1, 0, 0, 0, .9] (10% top-1 and 90% top-5), and
[.2, .2, .2, .2, .2] (20% top-k for each k from 1 to 5). Note that, when k is drawn from a distribution,
this is done sampling-free as we can compute the expectation value in closed form.

Conventionally, given scores returned by a neural network, softmax produces a probability distribu-
tion over the top-1 rank. Recent advances in differentiable sorting and ranking (Grover et al., 2019;
Prillo & Eisenschlos, 2020; Cuturi et al., 2019; Petersen et al., 2021) provide methods for generaliz-
ing this to probability distributions over all ranks represented by a matrix P . Based on differentiable
ranking, multiple differentiable top-k operators have recently been proposed. They found applica-
tions in differentiable k-nearest neighbor, differentiable beam search, attention mechanisms, and
differentiable image patch selection (Cordonnier et al., 2021). In these areas, integrating differen-
tiable top-k improved results considerably by creating a more natural end-to-end learning setting.
However, to date, none of the differentiable top-k operators have been employed as neural network
losses for top-k classification learning with k > 1.

Building on differentiable sorting and ranking methods, we propose a new family of differentiable
top-k classification losses where k is drawn from a probability distribution. We find that our top-k
losses improve not only top-k accuracies, but also top-1 accuracy on multiple learning tasks.

We empirically evaluate our method using four differentiable sorting and ranking methods on the
CIFAR-100 (Krizhevsky et al., 2009), ImageNet-1K (Deng et al., 2009), and the ImageNet-21K-P
(Ridnik et al., 2021) data sets. Using CIFAR-100, we demonstrate the capabilities of our losses
to train models from scratch. On ImageNet-1K, we demonstrate that our losses are capable of
fine-tuning state-of-the-art models and achieve a new state-of-the-art for publicly available mod-
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els on both top-1 and top-5 accuracy. We benchmark our method on multiple recent models and
demonstrate that our proposed method consistently outperforms the baselines for the best two dif-
ferentiable sorting and ranking methods. With ImageNet-21K-P, where many classes overlap (but
only one is the ground truth), we demonstrate that our losses are scalable to more than 10 000 classes
and achieve improvements of over 1% with only last layer fine-tuning.

Overall, while the performance improvements on fine-tuning are rather limited (because we retrain
only the classification head), they are consistent and can be achieved without the large cost of train-
ing from scratch. The absolute 0.2% improvement that we achieve on the ResNeXt-101 32x48d
WSL top-5 accuracy corresponds to an error reduction by approximately 10%, and can be achieved
at much less than the computational cost of (re-)training the full model in the first place.

We summarize our contributions as follows:

• We derive a novel family of top-k cross-entropy losses and relax the assumption of a fixed k.
• We find that they improve both top-k and top-1 accuracy.
• We demonstrate its scalability to more than 10 000 classes.
• We propose splitter selection nets, which require fewer layers than existing selection nets.
• We achieve new state-of-the-art results (for publicly available models) on ImageNet1K.

2 BACKGROUND: DIFFERENTIABLE SORTING AND RANKING

We briefly review NeuralSort, SoftSort, Optimal Transport Sort, and Differentiable Sorting Net-
works. We omit the fast differentiable sorting and ranking method (Blondel et al., 2020b) as it does
not provide relaxed permutation matrices / probability scores, but rather only sorted / ranked vectors.

2.1 NEURALSORT & SOFTSORT

To make the sorting operation differentiable, Grover et al. (2019) proposed relaxing permutation
matrices to unimodal row-stochastic matrices. For this, they use the softmax of pairwise differ-
ences of (cumulative) sums of the top elements. They prove that this, for the temperature parameter
approaching 0, is the correct permutation matrix, and propose a variety of deep learning differen-
tiable sorting benchmark tasks. They propose a deterministic softmax based variant, as well as a
Gumbel-Softmax variant of their algorithm. Note that NeuralSort is not based on sorting networks.

Prillo & Eisenschlos (2020) build on this idea but simplify the formulation and provide SoftSort, a
faster alternative to NeuralSort. They show that it is sufficient to build on pairwise differences of
elements of the vectors to be sorted instead of the cumulative sums. They find that SoftSort performs
approximately equivalent in their experiments to NeuralSort.

2.2 OPTIMAL TRANSPORT / SINKHORN SORT

Cuturi et al. (2019) propose an entropy regularized optimal transport formulation of the sorting
operation. They solve this by applying the Sinkhorn algorithm (Cuturi, 2013) and produce gradients
via automatic differentiation rather than the implicit function theorem, which resolves the need of
solving a linear equation system. As the Sinkhorn algorithm produces a relaxed permutation matrix,
we can also apply the Sinkhorn sort to top-k classification learning.

2.3 DIFFERENTIABLE SORTING NETWORKS

Petersen et al. (2021) propose differentiable sorting networks, a continuous relaxation of sorting
networks. Sorting networks are a kind of sorting algorithm that consist of wires carrying the values
and comparators, which swap the values on two wires if they are not in the desired order. Sorting
networks can be made differentiable by perturbing the values on the wires of the sorting network in
each layer of the sorting network by a logistic distribution, i.e., instead of min and max they use
softmin and softmax. Similar to the methods above, this method produces a relaxed permutation
matrix, which allows us to apply it to top-k classification learning. Note that sorting networks are a
classic algorithmic concept (Knuth, 1998a) are not neural networks nor refer to differentiable sort-
ing. Differentiable sorting networks are one of multiple differentiable sorting and ranking methods.
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Figure 1: Overview of the proposed architecture: A CNN predicts scores for an image, which are
then ranked by a differentiable ranking algorithm returning the probability distribution for each rank
in matrix P . The rows of this distribution correspond to ranks, and the columns correspond to the
respective classes. In the example, we use a 50% top-1 and 50% top-2 loss, i.e., PK = [.5, .5, 0, 0, 0].
Here, the kth value refers to the top-k component, which is satisfied if the prediction is at any of
rank-1 to rank-k. Thus, the weights for the different ranks can be computed via a cumulative sum and
are [1, .5, 0, 0, 0]. The correspondingly weighted sum of rows of P yields the probability distribution
p, which can then be used in a cross-entropy loss. Photo by Chris Curry on Unsplash.

3 TOP-k LEARNING

In this section, we start by introducing our objective, elaborate its exact formulation, and then build
on differentiable sorting principles to efficiently approximate the objective. A visual overview over
the loss architecture is also given in Figure 1.

The goal of top-k learning is to extend the learning criterion from only accepting exact (top-1)
predictions to accepting k predictions among which the correct class has to be. In its general form,
for top-k learning, k may differ for each application, class, data point, or a combination thereof. For
example, one practitioner may want to rank 5 predictions and assign a score that depends on the rank
of the true class among these ranked predictions, while, on the other hand, another practitioner may
want to obtain 5 predictions but does not care about their order. Yet another practitioner in image
classification may want to enforce a top-1 accuracy on images from the “person” super-class, but
resign to a top-3 accuracy for the “animal” super-class, as it may have more ambiguities in class-
labels. We model this by a random variableK, following a distribution PK that describes the relative
importance of different values k. The discrete distribution PK is either a marginalized distribution
for a given setting (such as the uniform distribution), or a conditional distribution for each class, data
point, etc. This allows the practitioner to specify a marginalized / conditional distribution k ∼ PK .
This generalizes the ideas of conventional top-1 supervision (usually softmax cross-entropy) and
top-k supervision for a k like k = 5 (usually based on surrogate top-k margin/hinge losses like
(Lapin et al., 2016; Berrada et al., 2018)) and unifies them.

The objective of top-k learning is maximizing the probability of accepted predictions of the model
fΘ on data X, y ∼ D given marginal distribution PK (or conditional PK|X,y if it depends on the
class y and/or data point X). In the following, Pk,y is the predicted probability of y being the
kth-best prediction for data point X .

argmax
Θ

EX,y∼D

[
log
(
Ek∼PK

[∑k
m=1Pm,y

])]
(1)

To evaluate the probability of y to be the top-1 prediction, we can simply use softmaxy(fΘ(X)).
However, k > 1 requires more consideration. Here, we require probability scores Pk,c for the
kth prediction over classes c ∈ C, where

∑n
c=1 Pk,c = 1 (i.e., it P is row stochastic) and ideally

additionally
∑n

k=1 Pk,c = 1 (i.e., it P is also column stochastic and thus doubly stochastic.) With
this, we can optimize our model by minimizing the following loss

Ltop−k(X, y) = − log

(
n∑

k=1

PK(k) ·

(
k∑

m=1

Pm,y(fΘ(X))

))
(2)

which is the cross entropy over the probabilities that the true class is among the top-k class for each
possible k. Note that

∑n
k=1 PK(k) = 1.
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To compute Pk,c, we require a function mapping from a vector of real-valued scores to an (ideally)
doubly stochastic matrix P . The most suitable for this are the differentiable relaxations of the sorting
and ranking functions, which produce differentiable permutation matrices P , which we introduced
in Section 2. We build on these approximations to propose instances of top-k learning losses and
extend differentiable sorting networks to differentiable top-k networks, as just finding the top-k
scores is computationally cheaper than sorting all elements and reduces the approximation error.

3.1 TOP-k PROBABILITY MATRICES

The discussed differentiable sorting algorithms produce relaxed permutation matrices of size n×n.
However, for top-k classification learning, we require only the top k rows for the number k of top-
ranked classes to consider. Here, k is the largest k that is considered for the objective, i.e., where
PK(k) > 0. As n� k, producing a k × n matrix instead of a n× n matrix is much faster.

For NeuralSort and SoftSort, it is possible to simply compute only the top rows, as the algorithm is
defined row-wise.

For the differentiable Sinkhorn sorting algorithm, it is not directly possible to improve the runtime,
as in each Sinkhorn iteration the full matrix is required.

For differentiable sorting networks, it is (via a bi-directional evaluation) possible to reduce the cost
from O(n2 log2(n)) to O(nk log2(n)). Here, it is important to note the shape and order of multi-
plications for obtaining P . As we only need those elements, which are (after the last layer of the
sorting network) at the top k ranks that we want to consider, we can omit all remaining rows of the
permutation matrix of the last layer (layer t) and thus it is only of size (k × n).

(k × n)︸ ︷︷ ︸
P

= (k × n)︸ ︷︷ ︸
layer t

(n× n)︸ ︷︷ ︸
layer t− 1

... (n× n)︸ ︷︷ ︸
layer 1

(3)

Note that during execution of the sorting network, P is conventionally computed from layer 1 to
layer t, i.e., from right to left. If we computed it in this order, we would only save a tiny fraction of
the computational cost and only during the last layer. Thus, we propose to execute the differentiable
sorting network, save the values that populate the (sparse) n × n layer-wise permutation matrices,
and compute P in a second pass from the back to the front, i.e., from layer t to layer 1, or from left
to right in Equation 3. This allows executing t dense-sparse matrix multiplications with dense k×n
matrices and sparse n× n matrices instead of dense n× n and sparse n× n matrices. With this, we
reduce the asymptotic complexity from O(n2 log2(n)) to O(nk log2(n)).

3.1.1 DIFFERENTIABLE TOP-k NETWORKS

As only the top-k rows of a relaxed permutation matrix are required for top-k classification learning,
it is possible to improve the efficiency of computing the top-k probability distribution via differen-
tiable sorting networks by reducing the number of differentiable layers and comparators. Thus, we
propose differentiable top-k networks, which relax selection networks in analogy to how differen-
tiable sorting networks relax sorting networks. Selection networks are networks that select only the
top-k out of n elements (Knuth, 1998b). We propose splitter selection networks (SSN), a novel
class of selection networks that requires only O(log n) layers (instead of the O(log2 n) layers for
sorting networks) which makes top-k supervision with differentiable top-k networks more efficient
and reduces the error (which is introduced in each layer.) SSNs follow the idea that the input is
split into locally sorted sublists and then all wires that are not candidates to be among the global
top-k can be eliminated. For example, for n = 1024, k = 5, SSNs require only 22 layers, while the
best previous selection network requires 34 layers and full sorting (with a bitonic network) requires
even 55 layers. For n = 10450, k = 5 (i.e., for ImageNet-21K-P), SNNs require 27 layers, the best
previous requires 50 layers, and full sorting requires 105 layers. In addition, the layers of SSNs are
less computationally expensive than those of the bitonic sorting network. Details on SSNs, as well
as their full construction, can be found in Supplementary Material B. Concluding, the contribution
of differentiable top-k networks is two-fold: first, we propose a novel kind of selection networks
that needs fewer layers, and second, we relax those similarly to differentiable sorting networks.
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3.2 IMPLEMENTATION DETAILS

Despite those performance improvements, evaluating the differentiable ranking operators still re-
quires a considerable amount of computational effort for large numbers of classes. Especially if the
number n of elements to be ranked is n = 1000 (ImageNet-1K) or even n > 10 000 (ImageNet-
21K-P), the differentiable ranking operators can dominate the overall computational costs. In addi-
tion, for large numbers n of elements to be ranked, the performance of differentiable ranking op-
erators decreases as differentially ranking more elements naturally introduces larger errors (Grover
et al., 2019; Prillo & Eisenschlos, 2020; Cuturi et al., 2019; Petersen et al., 2021). Thus, we reduce
the number of outputs to be ranked differentially by only considering those classes (for each input)
that have a score among the top-m scores. For this, we make sure that the ground truth class is
among those top-m scores, by replacing the lowest of the top-m scores by the ground truth class, if
necessary. For n = 1000, we choose m = 16, and for n > 10 000, we choose m = 50. We find that
this greatly improves training performance.

Because the differentiable ranking operators are (by their nature of being differentiable) only ap-
proximations to the hard ranking operator, they each have their characteristics and inconsistencies.
Thus, for training models from scratch, we replace the top-1 component of the loss by the regular
softmax, which has a better and more consistent behavior. This guides the other loss if the differen-
tiable ranking operator behaves inconsistently. To avoid the top-k components affecting the guiding
softmax component and avoid probabilities greater than 1 in p, we can separate the cross-entropy
into a mixture of the softmax cross-entropy (for the top-1 component) and the top-k cross-entropy
(for the top-k ≥ 2 components) as follows:

Lsm+top−k(X, y) = PK(1) · SoftmaxCrossEntropyLoss(fΘ(X), y) (4)

− (1− PK(1)) · log

(
n∑

k=2

PK(k) ·

(
k∑

m=1

Pm,y(fΘ(X))

))

4 RELATED WORK

We structure the related work into three broad sections: works that derive and apply differentiable
top-k operators, works that use ranking and top-k training objectives in general, and works that
present classic selection networks.

4.1 DIFFERENTIABLE TOP-k OPERATORS

Grover et al. (2019) include an experiment where they use the NeuralSort differentiable top-k oper-
ator for kNN learning. Cuturi et al. (2019), Blondel et al. (2020b), and Petersen et al. (2021) each
apply their differentiable sorting and ranking methods to top-k supervision with k = 1.

Xie et al. (2020b) propose a differentiable top-k operator based on optimal transport and the
Sinkhorn algorithm (Cuturi, 2013). They apply their method to k-nearest-neighbor learning (kNN),
differential beam search with sorted soft top-k, and top-k attention for machine translation. Cor-
donnier et al. (2021) use perturbed optimizers (Blondel et al., 2020a) to derive a differentiable top-k
operator, which they use for differentiable image patch selection. Lee et al. (2021) propose using
NeuralSort for a differentiable top-k operator to produce differentiable ranking metrics for recom-
mender systems. Goyal et al. (2018) propose a continuous top-k operator for differentiable beam
search. Pietruszka et al. (2020) propose the differentiable successive halving top-k operator to ap-
proximate the normalized Chamfer Cosine Similarity (nCCS@k).

4.2 RANKING AND TOP-k TRAINING OBJECTIVES

Fan et al. (2017) propose the “average top-k” loss, an aggregate loss that averages over the k largest
individual losses of a training data set. They apply this aggregate loss to SVMs for classification
tasks. Note that this is not a differentiable top-k loss in the sense of this work. Instead, the top-k is
not differentiable and used for deciding which data points’ losses are aggregated into the loss.

Lapin et al. (2015; 2016) propose relaxed top-k surrogate error functions for multiclass SVMs. In-
spired by learning-to-rank losses, they propose top-k calibration, a top-k hinge loss, a top-k entropy
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loss, as well as a truncated top-k entropy loss. They apply their method to multiclass SVMs and
learn via stochastic dual coordinate ascent (SDCA).

Berrada et al. (2018) build on these ideas and propose smooth loss functions for deep top-k classifi-
cation. Their surrogate top-k loss achieves good performance on the CIFAR-100 and ImageNet1K
tasks. While their method does not improve performance on the raw data sets in comparison to the
strong Softmax Cross-Entropy baseline, in settings of label noise and data set subsets, they improve
classification accuracy. Specifically, with label noise of 20% or more on CIFAR-100, they improve
top-1 and top-5 accuracy and for subsets of ImageNet1K of up to 50% they improve top-5 accuracy.
This work is closest to ours in the sense that our goal is to improve learning of neural networks.
However, in contrast to (Berrada et al., 2018), our method improves classification accuracy in un-
modified settings. In our experiments, for the special case of k being a concrete integer and not
being drawn from a distribution, we provide comparisons to the smooth top-k surrogate loss.

Yang & Koyejo (2020) provide a theoretical analysis of top-k surrogate losses as well as produce a
new surrogate top-k loss, which they evaluate in synthetic data experiments.

A related idea is set-valued classification, where a set of labels is predicted. We refer to Chzhen et al.
(2021) for an extensive overview. We note that our goal is not to predict a set of labels, but instead
we return a score for each class corresponding to a ranking, where only one class can correspond to
the ground truth.

4.3 SELECTION NETWORKS

Previous selection networks have been proposed by, i.a., (Wah & Chen, 1984; Zazon-Ivry & Codish,
2012; Karpiński & Piotrów, 2015). All of these are based on classic divide-and-conquer sorting net-
works, which recursively sort subsequences and merge them. In selection networks, during merg-
ing, only the top-k elements are merged instead of the full (sorted) subsequences. In comparison
to those earlier works, we propose a new class of selection networks, which achieve tighter bounds
(for k � n), and additionally we continuously relax them.

5 EXPERIMENTS

5.1 SETUP

We evaluate the proposed top-k classification loss for four differentiable ranking operators on
CIFAR-100, ImageNet-1K, as well as the winter 2021 edition of ImageNet-21K-P. CIFAR-100 may
be considered a small-scale data set with only 100 classes. We use CIFAR-100 to train a ResNet18
model (He et al., 2016) from scratch and show the impact of the proposed loss function on the top-1
and top-5 accuracy. In comparison, ImageNet-1K and ImageNet-21K-P provide rather large-scale
data sets with 1 000 and 10 450 classes, respectively. To avoid the unreasonable carbon-footprint
of training many models from scratch, we decided to exclusively use publicly available backbones
for all ImageNet experiments. This has the additional benefit of allowing more settings, making
our work easily reproducible, and allowing to perform multiple runs on different seeds to improve
the statistical significance of the results. For ImageNet-1K, we use two publicly available state-of-
the-art architectures as backbones: First, the (four) ResNeXt-101 WSL architectures by Mahajan
et al. (2018), which were pretrained in a weakly-supervised fashion on a billion-scale data set from
Instagram. Second, the Noisy Student EfficientNet-L2 (Xie et al., 2020a), which was pretrained
on the unlabeled JFT-300M data set (Sun et al., 2017). For ResNeXt-101 WSL, we extract 2 048-
dimensional embeddings and for the Noisy Student EfficientNet-L2, we extract 5 504-dimensional
embeddings of ImageNet-1K and fine-tune on them.

We apply the proposed loss in combination with various available differentiable sorting and ranking
approaches, namely NeuralSort, SoftSort, SinkhornSort, and DiffSortNets. The most important
hyperparameter for each method is the temperature (or reparameterized as the inverse temperature).
To determine the optimal temperature for each approach via grid search at a resolution of factor
2. For training, we use the Adam optimizer (Kingma & Ba, 2015). For training on CIFAR-100
from scratch, we train for up to 200 epochs with a batch size of 100 at a learning rate of 10−3. For
ImageNet-1K, we train for up to 100 epochs at a batch size of 500 and a learning rate of 10−4.5. For
ImageNet-21K-P, we train for up to 40 epochs at a batch size of 500 and a learning rate of 10−4.
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Method Public Top-1 acc. Top-5 acc.

ResNet50 (He et al., 2015) 3 79.26 94.75
ResNet152 (He et al., 2015) 3 80.62 95.51
ResNeXt-101 32x48d WSL (Mahajan et al., 2018) 3 85.43 97.57
ViT-L/16 (Dosovitskiy et al., 2021) 3 87.76 —
Noisy Student EfficientNet-L2 (Xie et al., 2020a) 3 88.3588.3588.35 98.6598.6598.65

BiT-L (Kolesnikov et al., 2020) 7 87.54 98.46
CLIP (w/ Noisy Student EffNet-L2) (Radford et al., 2021) 7 ≈ 88.4 —
ViT-H/14 (Dosovitskiy et al., 2021) 7 88.55 —
ALIGN (EfficientNet-L2) (Jia et al., 2021) 7 88.64 98.6798.6798.67
Meta Pseudo Labels (EfficientNet-L2) (Pham et al., 2021) 7 90.20 ≈ 98.8
ViT-G/14 (Zhai et al., 2021) 7 90.45 —
CoAtNet-7 (Dai et al., 2021) 7 90.8890.8890.88 —

ResNeXt-101 32x48d WSL (used as backbone below) 86.06 97.80
Top-k SinkhornSort 86.2986.2986.29 97.97
Top-k SinkhornSort (Top-5 focussed) 86.18 97.99
Top-k SinkhornSort (Equal focus on ks from 1 to 5) 86.22 97.99
Top-k DiffSortNets 86.24 97.94
Top-k DiffSortNets (Top-5 focussed) 86.04 97.98
Top-k DiffSortNets (Equal focus on ks from 1 to 5) 86.21 98.0098.0098.00

Noisy Student EfficientNet-L2 (used as backbone below) 88.33 98.65
Top-k SinkhornSort 88.32 98.66
Top-k DiffSortNets 88.3788.3788.37 98.6898.6898.68

Table 1: ImageNet-1K result comparison to state-of-the-art. Among the overall best performing
differentiable sorting / ranking methods, almost all results in reasonable settings outperform their
respective baseline on Top-1 and Top-5 accuracy. For publicly available models / backbones, we
achieve a new state-of-the-art for top-1 and top-5 accuracy. Our results are averaged over 10 runs.

We use early stopping and found that these settings lead to convergence in all settings. As baselines,
we use the respective original models, softmax cross-entropy, as well as learning with the smooth
surrogate top-k loss (Berrada et al., 2018).

5.2 COMPARISON TO THE STATE-OF-THE-ART
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Figure 2: ImageNet-1K accuracy improvements
for all ResNeXt-101 WSL model sizes (32x8d,
32x16d, 32x32d, 32x48d). Blue is the original
model and orange is with top-k fine-tuning.

We compare the proposed results to current state-
of-the-art methods in Table 1. We focus on meth-
ods that are publicly available and build upon two of
the best performing models, namely Noisy Student
EfficientNet-L2 (Xie et al., 2020a), and ResNeXt-
101 32x48d WSL (Mahajan et al., 2018). Using
both backbones, we achieve improvements on both
metrics, and when fine-tuning on the Noisy Student
EfficientNet-L2, we achieve a new state-of-the-art for
publicly available models.

In Figure 2, we demonstrate our improvements on
the four model sizes of ResNeXt-101 WSL (32x8d,
32x16d, 32x32d, 32x48d). Our method improves the
model in all settings.

Significance Tests. To evaluate the significance of the results, we perform a t-test (with significance
level of 0.01). We find that our model is significantly better than the original model on both top-1
and top-5 accuracy metrics. Comparing to the observed accuracies of the baseline (88.33 | 98.65),
DiffSortNets are significantly better (p=0.00001 | 0.00005). Comparing to the reported accuracies
of the baseline (88.35 | 98.65), DiffSortNets are also significantly better (p=0.00087 | 0.00005).

5.3 IMPACT OF THE DISTRIBUTION PK AND DIFFERENTIABLE SORTING METHODS

We start by demonstrating the impact of PK , which is the distribution from which we draw k. Let
us first consider the case where k is 5 with probability α and 1 with probability 1 − α, i.e., PK =
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Figure 3: Effects of varying the ratio between top-1 and top-5 (left) and varying the size of dif-
ferentially ranked subset m. Both experiments are done with the differentiable Sinkhorn ranking
algorithm (Cuturi et al., 2019). On the left, m = 16, on the right, α = 0.75. Averaged over 5 runs.

[1 − α, 0, 0, 0, α]. In Figure 3 (left), we demonstrate the impact that changing α, i.e., transitioning
from a pure top-1 loss to a pure top-5 loss, has on fine-tuning ResNeXt-101 WSL with our loss using
the SinkhornSort algorithm. Increasing the weight of the top-5 component does not only increase
the top-5 accuracy but also improves the top-1 accuracy up to around 60% top-5; when using only
k = 5, the top-1 accuracy drastically decays as the incentive for the true class to be at the top-1
position vanishes (or is only indirectly given by being among the top-5.) While the top-5 accuracy
in this plot is largest for a pure top-5 loss, this generally only applies to the Sinkhorn algorithm and
overall training is stable if a pure top-5 is avoided. This can also be seen on the left of Table 2.

In Table 2, we consider more additional settings with all diff. ranking methods. Specifically, we
compare four notable settings: [.5, 0, 0, 0, .5], i.e., equally weighted top-1 and top-5; [.25, 0, 0, 0, .75]
and [.1, 0, 0, 0, .9], i.e., top-5 has larger weights; [.2, .2, .2, .2, .2], i.e., the case of having an equal
weight of 0.2 for top-1 to top-5. The [.5, 0, 0, 0, .5] setting is a rather canonical setting which usually
performs well on both metrics, while the others tend to favor top-5. In the [.5, 0, 0, 0, .5] setting,
all sorting methods improve upon the softmax baseline on both top-1 and top-5 accuracy. When
increasing the weight of the top-5 component, the top-5 generally improves while top-1 decays.

Here we find the main insight of this paper: the best performance cannot be achieved by optimizing
top-k for only a single k, but instead relaxing this constraint improves performance for all metrics.

ImageNet-1K / PK [1, 0, 0, 0, 0] [0, 0, 0, 0, 1] [.5, 0, 0, 0, .5] [.25, 0, 0, 0, .75] [.1, 0, 0, 0, .9] [.2, .2, .2, .2, .2]

Softmax (baseline) 86.06 | 97.795 — — — — —
Smooth top-k loss (Berrada et al., 2018) 85.15 | 97.540 — — — —
NeuralSort — 33.37 | 94.748 86.30 | 97.896 34.26 | 95.410 34.32 | 94.889 85.75 | 97.865
SoftSort — 18.23 | 94.965 86.26 | 97.963 86.16 | 97.954 27.30 | 95.915 86.18 | 97.979
SinkhornSort — 85.65 | 97.991 86.2986.2986.29 | 97.971 86.24 | 97.989 86.18 | 97.987 86.22 | 97.989
DiffSortNets — 69.05 | 97.389 86.24 | 97.937 86.15 | 97.936 86.04 | 97.980 86.21 |98.00398.00398.003

Table 2: ImageNet-1K results for fine-tuning the head of ResNeXt-101 32x48d WSL (Mahajan
et al., 2018) averaged over 10 runs. The displayed metrics are Top-1 |Top-5 accuracies.

ImageNet-21K-P / PK [1, 0, 0, 0, 0] [0, 0, 0, 0, 1] [.5, 0, 0, 0, .5] [.25, 0, 0, 0, .75] [.1, 0, 0, 0, .9] [.2, .2, .2, .2, .2]

Softmax (baseline) 39.29 | 69.63 — — — — —
Smooth top-k loss (Berrada et al., 2018) 34.03 | 65.56 — — — —
NeuralSort — 15.87 | 33.81 37.85 | 68.08 36.16 | 67.60 33.02 | 67.29 37.09 | 67.90
SoftSort — 33.61 | 69.82 39.93 | 70.63 39.08 | 70.27 37.78 | 70.07 39.68 | 70.57
SinkhornSort — 36.93 | 69.80 39.85 | 70.56 39.21 | 70.41 38.42 | 70.12 39.22 | 70.49
DiffSortNets — 35.96 | 69.76 40.22 | 70.8840.22 | 70.8840.22 | 70.88 39.56 | 70.58 38.48 | 70.25 39.69 | 70.69

Table 3: ImageNet-21K-P results for fine-tuning the head of ResNeXt-101 32x48d WSL (Mahajan
et al., 2018). The metrics are Top-1 |Top-5 accuracy averaged over 2 seeds.
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CIFAR-100 / PK [1, 0, 0, 0, 0] [0, 0, 0, 0, 1] [.5, 0, 0, 0, .5] [.25, 0, 0, 0, .75] [.1, 0, 0, 0, .9] [.2, .2, .2, .2, .2]

Softmax (baseline) 61.27 | 85.31 — — — — —
Smooth top-k loss (Berrada et al., 2018) 53.07 | 85.23 — — — —
NeuralSort — 22.58 | 84.41 61.12 | 86.47 61.07 | 87.23 52.57 | 85.76 61.46 | 86.03
SoftSort — 1.01 | 5.09 61.17 | 83.95 61.05 | 83.10 58.16 | 79.26 61.53 | 82.39
SinkhornSort — 55.62 | 87.04 61.34 | 86.38 61.50 | 86.68 57.35 | 86.34 61.89 | 86.94
DiffSortNets — 52.81 | 84.21 60.07 | 86.44 61.57 | 86.51 61.74 |87.2287.2287.22 62.0062.0062.00 | 86.73

Table 4: CIFAR-100 results for training a ResNet18 from scratch averaged over 2 seeds.

Comparing the differentiable ranking methods, we can find the overall trend that SoftSort outper-
forms NeuralSort, and that SinkhornSort as well as DiffSortNets perform best. We can see that some
sorting algorithms are more sensitive to the overall PK than others: Whereas SinkhornSort (Cuturi
et al., 2019) and DiffSortNets (Petersen et al., 2021) continuously outperform the softmax baseline,
NeuralSort (Grover et al., 2019) and SoftSort (Prillo & Eisenschlos, 2020) tend to collapse when
over-weighting the top-5 components.

Comparing the performance on the medium-scale ImageNet-1K to the larger ImageNet-21K-P in
Table 3 we observe a similar pattern. Here, again, using the top-k loss alone is not enough to
significantly increase accuracy, but combining both, top-1 and top-k loss helps to improve accuracy
on both reported metrics. While NeuralSort struggles with a good loss for this large-scale ranking
problem and stays below the softmax baseline, DiffSortNets (Petersen et al., 2021) provide the best
top-1 and top-5 accuracy with 40.22% and 70.88%, respectively.

We note that we do not claim that all settings (especially all differentiable sorting methods) im-
prove the classification performance. Instead, we include all methods and also additional settings to
demonstrate the capabilities and limitations of each differentiable sorting method.

It is notable that SinkhornSort overall achieves the most robust training behavior, while also being
by far the slowest sorting method and thus potentially slowing down training drastically, especially
when the task is only fine-tuning. SinkhornSort tends to require more Sinkhorn iterations towards
the end of training. DiffSortNets are considerably faster, especially it is possible to only compute
the top-k probability matrices and because of our advances for more efficient selection networks.

5.4 DIFFERENTIABLE RANKING SET SIZE m

We consider how accuracy is affected by varying the number of scoresm to be differentially ranked.
Generally, the runtime of differentiable top-k operators depends between linearly and cubic on m;
thus it is important to choose an adequate value for m. The choice of m between 10 and 40 has
only a moderate impact on the accuracy as can be seen in Figure 3 (right). However, when setting
m to large values such as 1 000 or larger, we observe that the differentiable sorting methods tend to
become unstable. We note that we did not specifically tune m, and that better performance can be
achieved by fine-tuning m, as displayed in the plot.

5.5 TRAINING FROM SCRATCH

Finally, we demonstrate that the proposed loss can also be used to train a network from scratch. As
reference baseline, we train a ResNet18 from scratch on CIFAR-100, considering the same settings
as above. The results are shown in Table 4. Again, we find that training with top-k alone slightly
improves the top-5 but not the top-1 accuracy, whereas a weighted combination of both losses can
significantly improve the performance on both metrics. Notably, here, [.2, .2, .2, .2, .2] with Diff-
SortNets yields the best results on top-1 accuracy.

In Supplementary Material A, an extension to learning with top-10 and top-20 components on
ImageNet-21K-P can be found.

6 CONCLUSION

In this work, we presented a novel loss, which relaxes the assumption of using a fixed k for top-k
classification learning. For this, we leveraged recent differentiable sorting and ranking operators.
We performed an array of experiments to explore different top-k classification learning settings and
achieved a state-of-the-art on ImageNet for publicly available models.
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REPRODUCIBILITY STATEMENT

The source code for the experiments will be made available upon publication. We only use publicly
available resources, and each experiment can be reproduced using small-scale hardware. We used
(wherever possible) multiple seeds for our experiments.
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A EXTENSION TO TOP-10 AND TOP-20

We further extend the training settings, measuring the impact of top-10 and top-20 components on
the large-scale ImageNet-21K-P dataset. The results are diplayed in Table 5, where we report top-1,
top-5, top-10, and top-20 accuracy for all configurations. Again, we observe that 50% top-1 and
50% top-k produces the overall best performance and that training with top-5 yields the best top-1,
top-5, and top-10 accuracy. We observe that the performance decays for top-20 components because
(even among 10 450 classes) there are virtually no top-20 ambiguities, and artifacts of differentiable
sorting methods can cause adverse effects. Note that top-10 ambiguities do exist in ImageNet-21K-P,
e.g., there are 11 class hierarchy levels Ridnik et al. (2021).

IN-21K-P / PK (@5) [1, 0, ...]︸ ︷︷ ︸
len=5

[.5, 0, ..., 0, .5]︸ ︷︷ ︸
len=5

[.25, 0, ..., 0, .75]︸ ︷︷ ︸
len=5

[.1, 0, ..., 0, .9]︸ ︷︷ ︸
len=5

Softmax (baseline) 39.29 | 69.63 | 78.55 | 85.33 — — —
NeuralSort — 37.85 | 68.08 | 77.22 | 84.21 36.16 | 67.60 | 76.96 | 84.08 33.02 | 67.29 | 76.88 | 84.05
SoftSort — 39.93 | 70.63 | 79.45 | 85.96 39.08 | 70.27 | 79.29 | 85.94 37.78 | 70.07 | 79.19 | 85.87
SinkhornSort — 39.85 | 70.56 | 79.53 | 86.13 39.21 | 70.41 | 79.54 | 86.18 38.42 | 70.12 | 79.44 | 86.12
DiffSortNets — 40.2240.2240.22 |70.8870.8870.88 |79.5479.5479.54 | 86.03 39.56 | 70.58 | 79.44 | 86.01 38.48 | 70.25 | 79.29 | 85.90

IN-21K-P / PK (@10) [1, 0, ...]︸ ︷︷ ︸
len=10

[.5, 0, ..., 0, .5]︸ ︷︷ ︸
len=10

[.25, 0, ..., 0, .75]︸ ︷︷ ︸
len=10

[.1, 0, ..., 0, .9]︸ ︷︷ ︸
len=10

Softmax (baseline) 39.33 | 69.62 | 78.55 | 85.36 — — —
NeuralSort — 37.22 | 67.02 | 76.75 | 84.10 34.59 | 66.09 | 76.46 | 84.01 29.60 | 65.16 | 76.26 | 84.01
SoftSort — 39.26 | 69.52 | 79.13 | 85.93 37.71 | 68.56 | 78.71 | 85.78 33.68 | 67.35 | 78.43 | 85.70
SinkhornSort — 39.65 | 70.25 | 79.47 | 86.22 38.90 | 69.91 | 79.41 |86.2586.2586.25 37.98 | 69.57 | 79.33 | 86.16
DiffSortNets — 39.92 | 70.13 | 79.38 | 86.02 39.10 | 69.60 | 79.21 | 86.03 37.88 | 69.07 | 79.04 | 85.91

IN-21K-P / PK (@20) [1, 0, ...]︸ ︷︷ ︸
len=20

[.5, 0, ..., 0, .5]︸ ︷︷ ︸
len=20

[.25, 0, ..., 0, .75]︸ ︷︷ ︸
len=20

[.1, 0, ..., 0, .9]︸ ︷︷ ︸
len=20

Softmax (baseline) 39.33 | 69.62 | 78.55 | 85.36 — — —
NeuralSort — 36.32 | 65.33 | 75.82 | 83.99 33.00 | 62.99 | 74.84 | 83.83 27.35 | 60.34 | 74.02 | 83.77
SoftSort — 38.04 | 65.98 | 77.17 | 85.45 34.30 | 62.89 | 76.03 | 85.19 24.02 | 56.35 | 74.32 | 84.82
SinkhornSort — 39.76 | 69.76 | 79.17 | 86.17 38.77 | 69.18 | 78.99 | 86.20 37.71 | 68.68 | 78.86 | 86.16
DiffSortNets — 39.54 | 68.59 | 77.95 | 85.49 38.62 | 67.62 | 77.43 | 85.37 37.46 | 66.80 | 77.01 | 85.17

Table 5: ImageNet 21K with top-5, top-10 and top-20 components. The displayed metrics per
column are (Top-1 |Top-5 |Top-10 |Top-20).

B SPLITTER SELECTION NETWORKS

Similar to a sorting network, a selection network is generally a comparator network and hence it
consists of wires (or lanes) carrying values and comparators (or conditional swap devices) connect-
ing pairs of wires. A comparator swaps the values on the wires it connects if they are not in a
desired order. However, in contrast to a sorting network, which sorts all the values carried by its
wires, a (k, n) selection network, which has n wires, moves the k ≤ n largest (or, alternatively, the
k smallest) values to a specific set of wires (Knuth, 1998b), most conveniently consecutive wires on
one side of the wire array. Note that the notion of a selection network usually does not require that
the selected values are sorted. However, in our context it is preferable that they are, so that PK can
easily be applied, and the selection networks discussed below all have this property.

Clearly, any sorting network could be used as a selection network, namely by focusing only on the
top k (or bottom k) wires. However, especially if k is small compared to n, it is possible to construct
selection networks with smaller size (i.e. fewer comparators) and often lower depth (i.e. a smaller
number of layers, where a layer is a set of comparators that can be executed in parallel).

A core idea of constructing selection networks was proposed in (Wah & Chen, 1984), based on
the odd-even merge and bitonic sorting networks (Batcher, 1968): partition the n wires into sub-
sets of at least k wires (preferably 2dlog2(k)e wires per subset) and sort each subset with odd-even
mergesort. Then merge the (sorted) top k elements of each subsets with bitonic merge, thus halv-
ing the number of (sorted) subsets. Repeat merging pairs of (sorted) subsets until only a single
(sorted) subset remains, the top k elements of which are the desired selection. This approach re-
quires 1

2dlog2(k)e(dlog2(k)e+ 1) + (dlog2(n)e − dlog2(k)e)(dlog2(k)e+ 1) layers.
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Figure 4: Minimum ranks after a splitter cascade resulting from the transitive closure of the swaps.
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Figure 5: A (5, 16) selection network constructed with the method described in the text. The num-
bers on the wires are the minimum ranks (starting at 0) that can be occupied by the values on these
wires. Red crosses mark where wires can be excluded, green check marks where a top rank is de-
termined. Swaps in blocks of equal color belong to the same splitter cascade. Swaps in gray boxes
would be needed for full splitter cascades, but are not needed to determine the top 5 ranks.

Improvements to this basic scheme were developed in (Zazon-Ivry & Codish, 2012; Karpiński &
Piotrów, 2015) and either rely entirely on odd-even merge (Batcher, 1968) or entirely on pairwise
sorting networks (Parberry, 1992). Especially selection networks based on pairwise sorting networks
have advantages in terms of the size of the resulting network (i.e. number of needed comparators).
However, these improvements do not change the depth of the networks, that is, the number of layers,
which is most important in the context considered here.

Our own selection network construction draws on this work by focussing on a specific ingredient
of pairwise sorting networks, namely a so-called splitter (which happens to be identical to a single
bitonic merge layer, but for our purposes it is more comprehensible to refer to it as a splitter).
A splitter for a list of m wires having indices [`0, . . . , `m−1] has comparators connecting wires `i
and `i+s where s = dlog2(m)e − 1 for i ∈ {0, . . . ,m− 1− 2dlog2(m)e)−1}.
A pairwise sorting network starts with what we call a splitter cascade. That is, an initial splitter
partitions the input wires into subsets of (roughly) equal size. Each subset is split recursively until
wire singletons result (Zazon-Ivry & Codish, 2012). An example of such a splitter cascade is shown
in Figure 4 for 8 wires and in purple color for 16 wires in Figure 5 (arrows point to where the larger
value is desired).

After a splitter cascade, the value carried by wire `i has a minimum rank of r = 2b(i)−1, where b(i)
counts the number of set bits in the binary number representation of i. This minimum rank results
from the transitivity of the swap operations in the splitter cascade, as is illustrated in Figure 4 for
8 wires: By following upward paths (in splitters to the left) through the splitter cascade, one can find
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k full odd-even/pairwise/bitonic selection splitter selection
n sort 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

16 10 4 7 9 9 10 10 10 10 4 6 7 8 10 11 12 13
1024 55 10 19 27 27 34 34 34 34 10 14 16 18 22 25 27 29

10450 105 14 27 39 39 50 50 50 50 14 18 20 23 27 30 32 34
65536 136 16 31 45 45 58 58 58 58 16 20 22 25 29 32 34 36

Table 6: Depths of sorting networks and selection networks (which are equal for odd-even, pairwise,
or bitonic networks) compared to selection networks constructed with our splitter-based approach.
Note that for small n and comparatively large k an odd-even/pairwise/bitonic selection network
or even a full sorting network may be preferable (e.g. n = 16 and k > 5), but that for larger n
considerable savings can be obtained for small k, even compared to other selection networks.

for each wire `i exactly r = 2b(i)−1 wires with smaller indices that must carry values no less than
the value carried by wire `i. This yields the minimum ranks shown in Figure 4 on the right.

The core idea of our selection network construction is to use splitter cascades to increase the mini-
mum ranks of (the values carried by) wires. If such a minimum rank exceeds k (or equals k, since
we work with zero-based ranks and hence are interested in ranks {0, . . . , k−1}), a wire can be dis-
carded, since its value is certainly not among the top k. On the other hand, if there is only one wire
with minimum rank 0, the top 1 value has been determined. More generally, if all minimum ranks
no greater than some value r occur for one wire only, the top r + 1 values have been determined.

We exploit this as follows: Initially all wires are assigned a minimum rank of 0, since at the begin-
ning we do not know anything about the values they carry. We then repeat the following construction:
traversing the values r = k−1, . . . , 0 descendingly, we collect for each r all wires with minimum
rank r and apply a splitter cascade to them (provided there are at least two such wires). Suppose the
wires collected for a minimum rank r have indices [`0, . . . , `m(r)−1]. After the splitter cascade we
can update the minimum rank of wire `i to r + 2b(i)−1, because before the splitter cascade there is
no known relationship between wires with the same minimum rank, while the splitter cascade es-
tablishes relationships between them, increasing their ranks by 2b(i)−1. The procedure of traversing
the minimum ranks k−1, . . . , 0 descendingly, collecting wires with the same minimum rank and
applying splitter cascades to them is repeated until all minimum ranks 0, . . . , k−1 occur only once.

As an example, Figure 5 shows a (5, 16) selection network constructed is this manner, in which
the minimum ranks of the wires are indicated after certain layers as well as when certain wires
can be discarded (red crosses) and when certain top ranks are determined (green check marks).
Comparators belonging to the same splitter cascade are shown in the same color.

While selection networks resulting from adaptations of sorting networks (see above) have the ad-
vantage that they guarantee that their number of layers is never greater than that of a full sorting
network, our approach may produce networks with more layers. However, if k is sufficiently small
compared to n (in particular, if k ≤ log2(n)), our approach can produce selection networks with
considerably fewer layers, as is demonstrated in Table 6. Since in the context we consider here we
can expect k ≤ log2(n), splitter-based selection networks are often superior.
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