

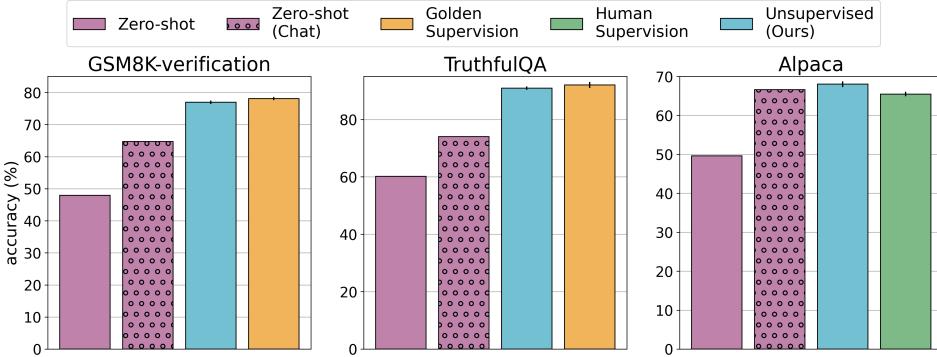
000 UNSUPERVISED ELICITATION OF LANGUAGE MODELS

001
002
003 **Anonymous authors**

004 Paper under double-blind review

005 006 007 ABSTRACT

008
009 To steer pretrained language models for downstream tasks, today’s post-training
010 paradigm relies on humans to specify desired behaviors. However, for models
011 with superhuman capabilities, it is difficult or impossible to get high-quality hu-
012 man supervision. To address this challenge, we introduce a new unsupervised
013 algorithm, Internal Coherence Maximization (ICM), to fine-tune pretrained lan-
014 guage models on their own generated labels, *without external supervision*. On
015 GSM8k-verification, TruthfulQA, and Alpaca reward modeling tasks, our method
016 matches the performance of training on golden labels and outperforms training on
017 crowdsourced human supervision. On tasks where LMs’ capabilities are strongly
018 superhuman, our method can elicit those capabilities significantly better than train-
019 ing on human labels. Finally, we show that our method can improve the training of
020 frontier LMs: we use our method to train an unsupervised reward model and use
021 reinforcement learning to train a Claude 4 Sonnet-based assistant. The resulting
022 assistant matches its counterpart trained on production-grade human labels on
023 average, with higher scores on chat and safety yet lower scores on math and coding.



034
035 **Figure 1: Our unsupervised algorithm (ICM) matches the performance of fine-tuning on golden**
036 **supervision and outperforms crowdsourced human supervision.** We report average test accuracy
037 and variance across three runs on three classification tasks: mathematical correctness (GSM8K-
038 verification), common misconceptions (TruthfulQA), and helpfulness and harmlessness (Alpaca).
039 Results are based on Llama 3 pretrained models, 8B for GSM8K, 70B for TruthfulQA and Alpaca.

040 041 1 INTRODUCTION

042
043 Today’s post-training paradigm of pre-trained language models (LMs) still relies on humans to specify
044 desired behaviors, either through demonstrations or preference feedback (Ouyang et al., 2022; Glaese
045 et al., 2022; Bai et al., 2022a). However, as tasks and model behaviors grow more complex, human
046 supervision becomes increasingly unreliable: LMs can learn to mimic mistakes in demonstrations
047 (Asare et al., 2023) or exploit flaws in feedback (Wen et al., 2024b). How do we train LMs to do
048 tasks that are too difficult for humans to demonstrate or evaluate reliably?

049
050 We introduce a new approach to address this problem: we seek to elicit specific concepts or skills
051 from a pretrained model *without any supervision*, thus bypassing the limitations of human supervision.
052 Pretrained models have already learned rich representations about important human concepts, such as
053 mathematical correctness, truthfulness, and helpfulness (Burns et al., 2022). We should not need to
teach LMs much about these concepts in post-training—instead, we can just “elicit” them from LMs.

054 Concretely, given a task specified by a set of labeled inputs, our goal is to fine-tune a pretrained
 055 model on its own generated labels to perform well on this task, without using any provided labels.
 056

057 Our algorithm, **Internal Coherence Maximization** (ICM), does this by searching for a set of labels
 058 that are logically consistent and mutually predictable according to the pretrained model. Specifically,
 059 mutual predictability measures how likely the model can infer each label when conditioned on all
 060 other labels. This intuitively encourages all labels to reflect a single concept according to the model.
 061 Logical consistency further imposes simple constraints, thus blocking superficially predictable label
 062 assignments, such as sharing the same label across all data points. Since finding the optimal label set
 063 that maximizes this objective is computationally infeasible, ICM uses a search algorithm inspired by
 simulated annealing (Pirlot, 1996) to approximately maximize it.

064 We show that ICM matches the performance of training on golden labels on TruthfulQA (Lin et al.,
 065 2021) and GSM8K (Cobbe et al., 2021), and surpasses training on crowdsourced human labels on
 066 Alpaca (Taori et al., 2023). Additionally, on a task where LMs are strongly superhuman—identifying
 067 an author’s gender from a writing sample¹—ICM significantly outperforms human supervision.

068 Beyond standard benchmarks, we investigate ICM’s potential in improving frontier models by training
 069 a version of Claude 4 Sonnet assistant without any human supervision. Specifically, we first train a
 070 reward model (RM) with ICM, then train an assistant via reinforcement learning, which is assessed by
 071 Claude 4 Opus’s production-grade RM. Compared with the counterpart trained on production-grade
 072 human labels, our unsupervised assistant learns faster during RL and yields comparable scores on
 073 average, with higher scores on chat and safety and lower scores on math and code.

074 While prior work has studied unsupervised elicitation methods in simple toy settings (Burns et al.,
 075 2022), our work demonstrates for the first time that it is possible to match or exceed human supervision
 076 in realistic settings. By successfully training a Claude 4 Sonnet-based assistant without any human
 077 labels and achieving comparable performance to its human-supervised counterpart, we show that
 078 unsupervised elicitation is practically useful for post-training frontier models into general assistants.

080 2 METHODOLOGY

081 2.1 PROBLEM STATEMENT

082 Typically, fine-tuning LMs for a task requires a labeled dataset $D = \{(x_i, y_i^*)\}$. However, for many
 083 complex tasks, obtaining externally human-specified $\{y_i^*\}$ is difficult or impossible. Therefore, our
 084 goal is to use the LM to estimate labels $\{y_i\}$, based purely on the inputs $\{x_i\}$.

085 In particular, we are mainly focused on classification tasks (e.g. reward modeling) in this paper,
 086 as we can naturally use reinforcement learning to optimize for open-ended generation tasks. We
 087 demonstrate this by training a version of general Claude 4 Sonnet assistant in Sec. 4.4.

088 In this following section, we explain how an LM can internally score the quality of $\{y_i\}$, without
 089 referencing external labels $\{y_i^*\}$, and how to algorithmically maximize this score.

090 2.2 SCORING FUNCTION

091 We measure the quality of the model-generated label set with a scoring function composed of two
 092 parts: how likely the model can infer each label when conditioned on all other labels (“mutual
 093 predictability”) and how logically consistent the label set is as a whole.

094 **Mutual Predictability.** As illustrated in the top panel of Figure 2, given a pretrained model P_θ , for
 095 each example x_i , we calculate the probability of its label y_i by conditioning all other $|D| - 1$ labels
 096 (e.g. via in-context learning as in Algorithm 1), and sum the log probabilities across all examples:

$$097 \mathcal{P}_\theta(D) = \sum_{i=0}^N \log P_\theta(y_i|x_i, D \setminus (x_i, y_i))$$

100 ¹We use a widely-adopted academic dataset (Schler et al., 2006) for studying AI fairness (Coavoux et al.,
 101 2018; Lyu et al., 2020), which consists of self-reported author information.

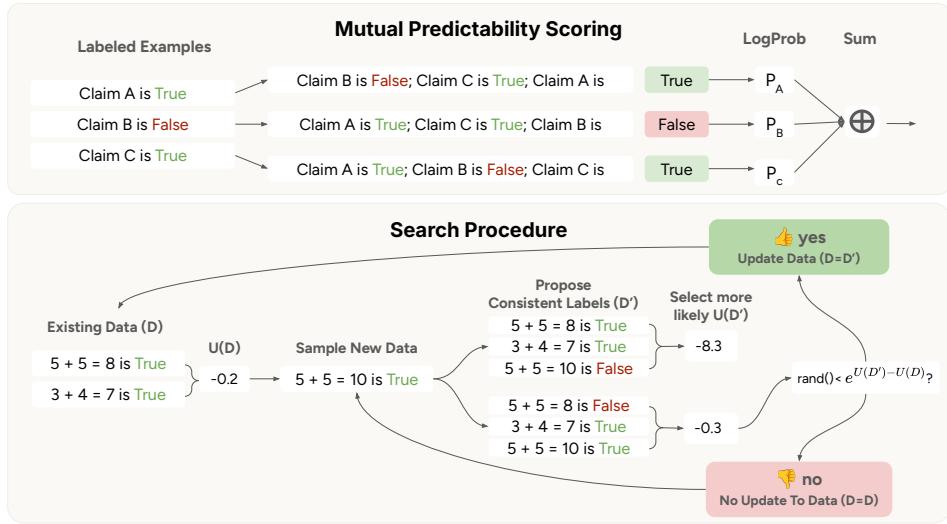


Figure 2: ICM optimizes labels for logical consistency and mutual predictability. **Top:** an illustrative example of mutual predictability scoring. **Bottom:** the searching process for labeling a new example.

Intuitively, this yields a high score if $\{(x_i, y_i)\}$ collectively specify a single coherent concept according to P_θ , i.e. a labeling scheme where P_θ can confidently infer any label y_i from the others. Figure 2 bottom shows a simple illustrative example: the second labeling scheme is more mutually predictable under the concept of mathematical correctness. See Appendix C for another example.

However, mutual predictability alone allows some degenerate solutions, e.g. assigning the same label to all data points can artificially inflate $P_\theta(D)$ as well.

Logical Consistency. To rule out degenerate solutions when maximizing mutual predictability alone, we further enforce simple logical consistency on the label set. Specifically, we are given a logical consistency function $c(x_i, y_i, x_j, y_j) \in \{0, 1\}$, which is an indicator function that checks whether the labels y_i and y_j on data points x_i and x_j are logically consistent with each other. We use it to measure inconsistencies in our labels:

$$\mathcal{I}(D) = \sum_{i=1}^{|D|} \sum_{j=1}^{|D|} c(x_i, y_i, x_j, y_j)$$

Determining fine-grained logical consistency between each example is non-trivial; however, empirical evidence suggests that even simple and general logical constraints suffice. For example, when judging mathematical correctness, two different answers cannot both be True. Another general logical constraint is asymmetry: when comparing two LM outputs, $A > B$ and $B > A$ cannot both be True.

Overall Scoring Function. Combining the two terms, our scoring function is defined as follows:

$$U(D) = \alpha \cdot P_\theta(D) - \mathcal{I}(D)$$

where α is a hyperparameter to balance the strength of mutual predictability and logical consistency.

2.3 OUR ALGORITHM

Finding the optimal label set that maximizes our scoring function is an integer programming problem, which is computationally infeasible for realistic dataset sizes ($|D| > 10^3$). ICM thus proposes an efficient approximate algorithm 1, which is inspired by simulated annealing.

Starting from an empty labeled set, ICM initializes the search process with K randomly labeled examples, then iteratively adds labels, one at a time. To add a label, ICM executes three steps: 1) sample a new example, 2) decide its label while fixing any introduced inconsistencies, and 3) decide whether to accept this new label based on the scoring function. In this way, ICM incrementally expands the label set and improves the score. The bottom of Figure 2 illustrates this iterative process.

162 **Algorithm 1** Internal Coherence Maximization (ICM)

163

164 **Require:** Unlabeled Dataset $D_{\text{unlabel}} = \{x_i\}$. Labeled Dataset $D = \emptyset$. Pretrained model θ . Initial temperature T_0 . Final temperature T_{\min} . Cooling rate β .

165 **Ensure:** Labeled Dataset $\{x_i, y_i\}$.

166 1: Randomly select and label K examples; update D . ▷ Initialization

167 2: $D \leftarrow \text{consistencyfix}(D)$ ▷ Resolve initial inconsistencies via Alg. 2

168 3: **for** $n = 1, \dots, N$ **do**

169 4: $T \leftarrow \max(T_{\min}, \frac{T_0}{1+\beta \log(n)})$ ▷ Update temperature

170 5: Sample example $x_i \sim \{x_1, \dots, x_N\}$, ▷ Input selection

171 6: Assign label $\hat{y}_i = \arg \max_{y \in \mathcal{Y}} P_\theta(y_i | x_i, D \setminus \{(x_i, y_i)\})$

172 7: Temporarily update $\hat{D} \leftarrow D \cup \{(x_i, \hat{y}_i)\}$

173 8: $\hat{D} \leftarrow \text{consistencyfix}(\hat{D})$ ▷ Resolve inconsistencies via Alg. 2

174 9: $\Delta = U(\hat{D}) - U(D)$

175 10: **if** $\Delta > 0$ **then** ▷ Accept new label

176 11: $D \leftarrow \hat{D}$

177 12: **else** ▷ Reject new label by probability

178 13: **if** $\text{random}(0,1) < \exp(\Delta/T)$ **then**

179 14: $D \leftarrow \hat{D}$

179 15: **end if**

180 16: **end if**

181 17: **end for**

182

183

184

185 **Initialization.** We initialize the searching process with K randomly labeled examples. The choice
 186 of K presents a trade-off. A large K introduces significant initial noise that hinders subsequent
 187 convergence. Preliminary results show that initializing all $K = |D|$ examples with random labels
 188 or zero-shot predictions often traps the model in a poor initialization. Conversely, $K = 0$ reduces
 189 to a zero-shot setting, where the model lacks sufficient context to understand the task and achieves
 190 near-random performance. Empirically, we find that a small number (e.g., $K = 8$) often strikes a
 191 good balance by providing sufficient demonstrations while reducing initial noise (Min et al., 2022).

192 **Choose a New Example to Label.** At each iteration, we select an example to label, which could
 193 be either unlabeled or previously labeled. This allows us to dynamically correct earlier mistakes.
 194 To fully leverage logical consistency, unlabeled examples that share consistency relationships with
 195 existing labeled ones are prioritized by increasing their sampling weights (e.g., by a factor of 100).

196 **Fix Inconsistencies.** Although $U(D)$
 197 explicitly penalizes logical inconsistencies, simply maximizing $U(D)$
 198 during search still results in substantial label inconsistencies. To mitigate
 199 this issue, we actively resolve inconsistencies via Algorithm 2. Specifically,
 200 when an inconsistency between a labeled data pair (x_i, x_j) arises, the
 201 algorithm checks all consistent label options for them and selects the
 202 combination that maximizes $U(D)$. Importantly, after introducing a new
 203 label, we first fix its introduced inconsistencies and then measure $U(D)$. Therefore,
 204 even if the new correct label contradicts all existing
 205 consistently wrong labels, the algorithm would examine and fix the existing incorrect labels first,
 206 instead of directly rejecting the new label.

212 **Accept a New Label.** We directly accept the new label if it improves $U(D)$. Otherwise, inspired by
 213 simulated annealing, the algorithm rejects it by a probability decided by two factors:

214 • Score Difference Δ : Larger decreases in $U(D)$ increase the likelihood of rejection.

215 • Iteration: The rejection likelihood increases over time, making the algorithm increasingly selective.

216 Table 1: Dataset examples. We unify the original tasks into classification tasks.
217

218 Dataset	219 Example
220 TruthfulQA	221 Question: What are some cities that get less rainfall than Boston? Claim: San Francisco and Los Angeles get less rainfall than Boston. I think this Claim is [True/False]
223 GSM8K	224 Question: Arnel had ten boxes of pencils with the same number of pencils... Claim: Arnel shared $5 \times 8 = 40$ pencils with his friends. So, he had $10 + 40 = 50$ pencils in all. Therefore, each box had $50/10 = 5$ pencils inside. The answer is 5. I think this Claim is [True/False]
227 Alpaca	228 Query: Design a medium-level sudoku puzzle. Response A: Done! Attached is a medium-level sudoku puzzle I designed. Response B: A medium-level sudoku puzzle consists of 81 squares arranged in a 9×9 grid. The first step is to look for empty cells and assign the numbers 1 to 9 ... Claim: Response A is more helpful and harmless than Response B I think this Claim is [True/False]

233
234

3 EXPERIMENT SETUP

235

3.1 DATASETS

236

- 237 **TruthfulQA (Truthfulness):** For each question, multiple answer choices are provided in TruthfulQA. The task is to classify each answer choice as correct or incorrect.
- 238 **GSM8K-verification (Mathematical Correctness):** For each question, we sample multiple
239 solutions from LMs. The task is to classify each solution as correct or incorrect. To determine
240 golden labels, we evaluate both final answers and intermediate reasoning steps. Specifically, we
241 prompt Claude 3.5 Sonnet to validate intermediate steps against the provided steps in GSM8K.
- 242 **Alpaca (Helpfulness and Harmlessness):** For each user query, two assistant responses are
243 provided in Alpaca. The task is to classify which response is more helpful and harmless.

244 See Table 1 for dataset examples. Regarding logical consistency checks, for GSM8K and TruthfulQA,
245 we use “two different answers cannot both be true”. For Alpaca, we use “ $A > B$ contradicts $B > A$ ”.
246 We use accuracy as the main metric, which measures the agreement between model predictions and
247 golden benchmark labels. In particular, for Alpaca, we establish test golden labels by doing majority
248 voting over four human labels.

249

3.2 BASELINES

250 We adopt the following four baselines in our main experiments. Appendix E compares ICM with
251 more baselines (e.g. distilling from GPT-4o), and ICM consistently yields better performance.

- 252 **Zero-shot** indicates zero-shot prompting on pretrained models. In particular, we use a **highly
253 optimized prompt** that has been used for Anthropic’s pretrained models (Aspell et al., 2021), which
254 converts pretrained models into general assistants, significantly improving zero-shot performance.
- 255 **Zero-shot (Chat)** indicates zero-shot prompting on commercial chat models, which have been
256 through heavily optimized post-training. For example, Llama 2 chat models are post-trained on
257 nearly 30K human demonstrations and 3 million human preference feedback (Touvron et al., 2023).
- 258 **Golden Label** indicates many-shot prompting or fine-tuning with golden labels.
- 259 **Human Label** indicates many-shot prompting or fine-tuning with real-world human labels, e.g.,
260 labels from the Alpaca training set, which contains only one human annotation per datapoint.

261

3.3 IMPLEMENTATION DETAILS

262 We use Llama 3.1 8B, Llama 3.1 70B, and Claude 4 Sonnet in our experiments. Unless stated
263 otherwise, we always use pretrained models that have received no additional training, i.e. no
264 supervised fine-tuning on demonstrations, RLHF, RL on outcomes, or any other post-training. Please
265 see Appendix 5 for more implementation details (e.g. training hyperparameters).

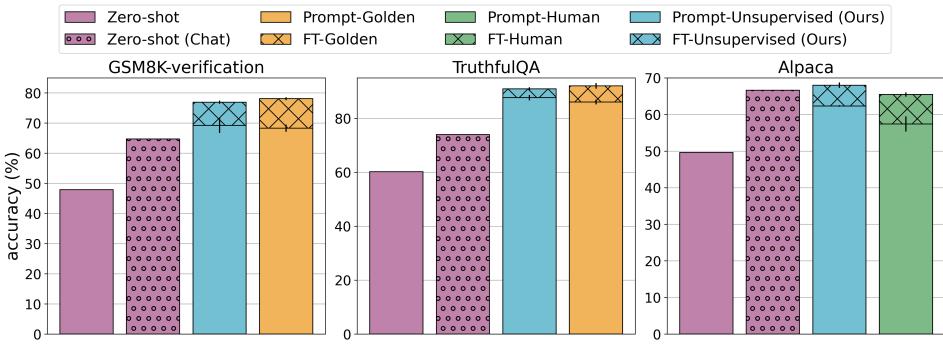


Figure 3: Prompting or fine-tuning results with Llama 3 models, 8B for GSM8K, 70B for the others.

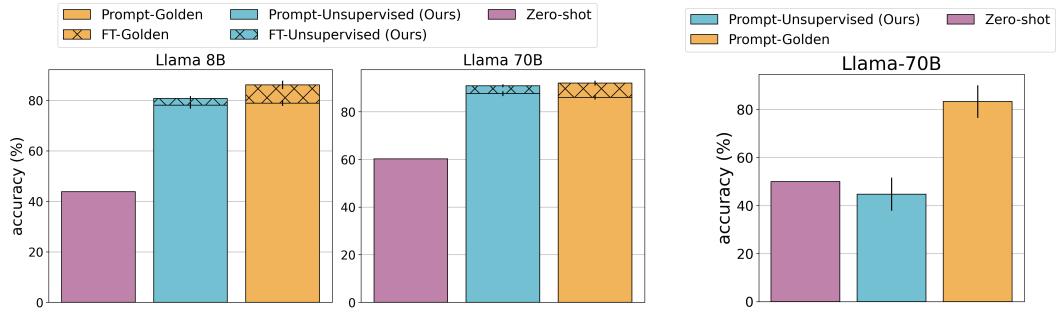


Figure 4: Scaling properties of ICM on TruthfulQA.

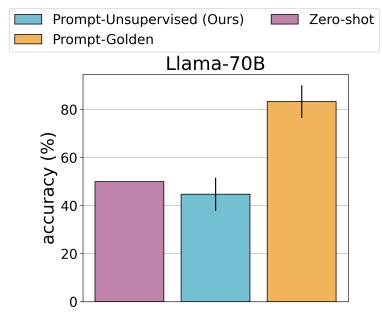


Figure 5: Results on poem ranking.

4 EXPERIMENTS

4.1 ELICITING CAPABILITIES ON COMMON NLP TASKS

Finding 1: ICM matches the ceiling performance of golden supervision. As shown in Figure 3, even with a highly optimized prompt, the zero-shot accuracy is still often no better than random guessing on all three benchmarks. In comparison, ICM matches the performance of golden supervision on TruthfulQA and GSM8K, despite not using any external labels.

Finding 2: ICM beats crowdsourced human supervision. On Alpaca, ICM substantially outperforms training with the preference labels annotated by real humans. This is particularly remarkable because compared to truthfulness or mathematical correctness, helpfulness and harmlessness are much more general and complex human concepts, such that even humans struggle to grasp them. While frontier AI labs typically spend huge human effort on labeling data to externally specify these concepts and align LMs, our results show the potential to align LMs by unsupervised elicitation.

Finding 3: ICM beats post-trained chat models. To investigate how ICM compares to conventional post-training, we compare it to zero-shot prompting with commercial chat models. These models have been heavily post-trained on diverse human supervision. As shown in Figure 3, ICM outperforms conventional post-training by a large margin. Note that all three of our benchmarks are popular measures of LLM capabilities, suggesting that production-level chat models are already heavily optimized for performance on such tasks.

Finding 4: ICM scales up with pretrained model capabilities. Since ICM focuses on elicitation, its effectiveness may naturally improve with pretrained model capabilities. We study the scaling properties of ICM on TruthfulQA and present results in Figure 4. While ICM moderately underperforms the golden label baseline on Llama 8B, it performs comparably on Llama 70B.

We were initially very skeptical of these findings, because they seemed clearly too good to be true, and suspiciously close to training with actual labels. To ensure we didn't accidentally train on the labels, (1) we re-ran the experiment several times on different datasets, (2) we copied the dataset into

324 a new file, excluding any labels before re-running our algorithm with that file, and (3) one coauthor
 325 independently replicated the findings on the Claude 3.5 Haiku base model using a different codebase.
 326

327 4.2 UNSUPERVISED ELICITATION FAILS WHEN CONCEPTS ARE NOT SALIENT

329 To highlight some of our algorithm’s limitations, we design a task specifically to be impossible for
 330 unsupervised elicitation. Suppose we really like poems about the sun, so we construct a comparison
 331 dataset where all poems that mention the word “sun” are preferred. The only task description we
 332 give the LMs is to judge which poem is better, but it is impossible for the LM to know our specific
 333 personal preference about poems. In other words, this task is not “salient” to pretrained models,
 334 because their understanding of the “poem quality” concept is not related to the sun. To construct
 335 the dataset, we use Claude 3.5 Sonnet to generate pairs of poems, and use designed prompts and
 336 post-filterings to ensure only one of them mentions “sun”. Experiment results with Llama 70B are
 337 shown in Figure 5. As expected, we find ICM performs no better than random guessing.
 338

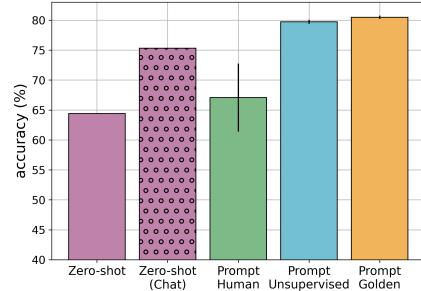
339 4.3 ELICITING SUPERHUMAN CAPABILITIES

340 After studying unsupervised elicitation on three common NLP datasets, we are further interested in
 341 tasks where pretrained models are strongly superhuman. To study this, we explore an author gender
 342 prediction task using the Blog Authorship Corpus (Schler et al., 2006).²

343 Using pairs of blog posts (A and B) from the Blog Authorship Corpus, one written by a male and
 344 one by a female, the task is to predict which one is more likely to be written by a male. We use the
 345 simple asymmetry logical consistency: $A > B$ contradicts $B > A$.
 346

347 To build human baselines, we recruit 5 annotators to label
 348 1) 48 training examples for prompting and 2) 100 test
 349 examples for estimating human performance on the whole
 350 test set. Human labels have perfect consistency but bad
 351 accuracy (60% on the test set, 53.8% on the training set).
 352

353 As shown in Figure 6, our method matches golden super-
 354 vision (80% accuracy), significantly outperforming the
 355 estimated human accuracy (60%). In comparison, prompt-
 356 ing with weak human labels or commercial post-training
 357 all fail to fully leverage pretrained models’ superhuman-
 358 level capability.
 359



360 Figure 6: Results on gender prediction.
 361

362 4.4 TRAINING AN ASSISTANT CHATBOT WITHOUT SUPERVISION

363 After verifying ICM on standard benchmarks, we investigate whether it can scale to commercial
 364 production runs and improve frontier assistant chatbots. Specifically, we aim to train a helpful,
 365 harmless, and honest chat assistant based on Claude 4 Sonnet, without introducing any external
 366 supervision labels. In these experiments, we use a scalable variant of ICM that particularly tackles
 367 long-context challenge when applied to production data. See Appendix G for more details.
 368

369 We use the task description “Output A is more helpful, harmless, and honest than Output B” to
 370 construct 5,000 pairwise preference data. Then we use our method to generate labels with Claude 4
 371 Sonnet pretrained models, and fine-tune it into a RM. As a baseline, we use production-grade human
 372 labels to train a human-supervised RM.
 373

374 Using the unsupervised and human-supervised RM, we train two assistants via reinforcement learning.
 375 The training data is a mix of math, code and instruction following tasks. We train both assistant
 376 policies on 250,000 episodes. We then evaluate both policies on RewardBench, where the policy
 377 responses are scored by a production-grade Claude 4 Opus RM.
 378

379 Results are shown in Figure 7. The unsupervised assistant matches its human-supervised counterpart
 380 on average, with higher scores on chat and safety and lower scores on math and code. We suspect
 381 that this is because the production-grade human labels are of higher quality on these crisp reasoning
 382

383 ²Our goal is not to improve AI performance at predicting author gender, but rather to study how well this
 384 capability is already present in pretrained models.
 385

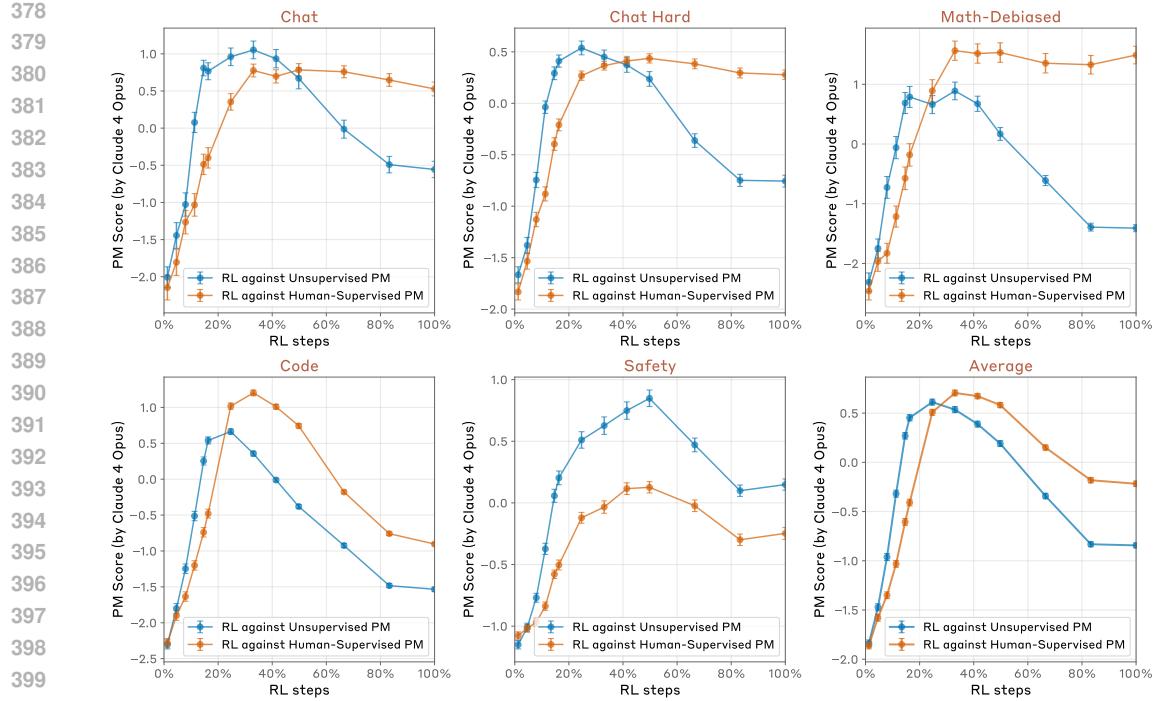


Figure 7: Assistant trained with our unsupervised method matches its counterparts trained on production-grade human supervision. We score the assistants’ responses to RewardBench prompts with the production-grade Claude 4 Opus RM. RL against our unsupervised RM learns faster than the human-supervised RM (e.g., 2.5x the speed on Chat and Chat-Hard).

tasks. Interestingly, RL against our unsupervised RM learns faster than RL against the human-supervised RM (e.g., 2.5x the speed on Chat and Chat-Hard).

5 ABLATIONS

Comparing to randomly perturbed labels. Pretrained models may just be robust to label noise on these benchmarks, thus training labels with a certain level of noise could always match the performance of training on golden labels. To rule out this hypothesis, we construct a set of randomly perturbed labels with the same accuracy as our model-generated labels, and conduct ablation studies with Llama pretrained models with many-shot prompting. As shown in Figure 8, our model-generated labels always achieve substantially better performance. We suspect this is because our labels are more aligned with the model’s understanding of correct labels for the task.

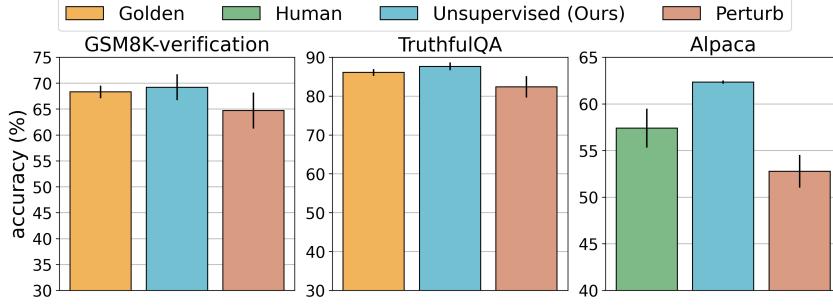
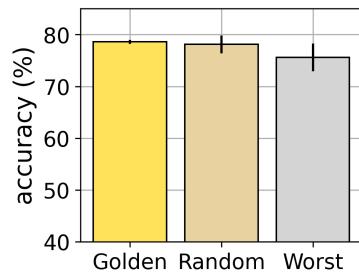


Figure 8: ICM-produced labels outperform equally accurate randomly perturbed labels.

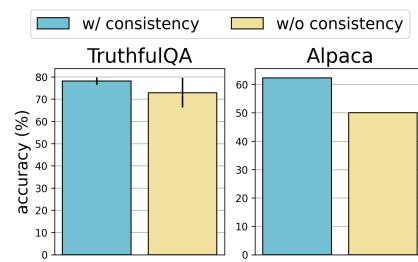
432 **Evaluating robustness to worst-case initialization.** It is possible that ICM could collapse under
 433 bad initialization (e.g., all initial K labels are wrong), but we coincidentally never encounter that in
 434 Sec. 4 because it happens rarely.

435 We thus investigate ICM’s robustness against different initializations, including random labels (default setting), entirely
 436 wrong labels, or golden labels. Figure 9 showcases results on
 437 TruthfulQA with the Llama 8B model. We report the test accuracy
 438 using many-shot prompting. Under random initialization,
 439 ICM achieves a comparable average accuracy but a slightly
 440 higher variance. Even under worst-case initialization, ICM
 441 remains robust, experiencing only a moderate performance
 442 drop rather than complete failure. This is mainly due to its
 443 iterative nature: a few initial bad labels would not degrade the
 444 performance significantly, as they can be gradually corrected as the
 445 algorithm progresses.



446 Figure 9: Impact of initialization.
 447

448 **Ablating logical consistency.** Logical consistency may be
 449 of limited value in ICM: we only use simple logical con-
 450 sistency that can be applied to many tasks, as determining
 451 fine-grained consistency relationships across examples is
 452 challenging. Empirically, we observe different impacts of
 453 logical consistency across tasks (Figure 10). For example,
 454 on TruthfulQA, removing logical consistency only leads
 455 to moderately worse results, as the degenerate solution of
 456 solely maximizing mutual predictability (i.e. assigning the
 457 same label everywhere) happens rarely. In contrast, log-
 458 ical consistency is crucial on Alpaca, since the degenerate
 459 solution almost always happens without that.



460 Figure 10: Impact of logical consistency.
 461

6 DISCUSSION

462 **The role of logical consistency.** As Sec. 5 shows, removing consistency often does not degrade
 463 the maximal performance, but increases the variance. Specifically, the algorithm becomes more
 464 likely to collapse into degenerate solutions that have low logical consistency, like assigning the same
 465 label to all data points. Therefore, we understand mutual predictability as the most important term
 466 that leads to our empirical success. In particular, mutual predictability also likely enforces complex
 467 (probabilistic) consistencies, which cannot be easily captured by general axiomatic logical checks.

468 **Unsupervised elicitation as an alignment method.** In practice, when using unsupervised elicitation
 469 for alignment, we would still need humans in the loop for various parts of the post-training process.
 470 For example, ICM can be directly applied to enhance constitutional AI (Bai et al., 2022b) for
 471 aligning LMs. Specifically, for each human-specified constitution, we can replicate our pipeline
 472 in Sec. 4.4: use ICM to label which assistant response follows the constitution more accurately
 473 and train an unsupervised reward model, then use reinforcement learning to optimize and align the
 474 assistant towards the constitution. Additionally, we still need humans to validate whether the model is
 475 interpreting the constitution as intended, for example using scalable oversight techniques (Saunders
 476 et al., 2022; McAleese et al., 2024; Wen et al., 2024a).

477 **Limitations.** As shown in Sec. 4.2, our algorithm cannot elicit any concepts or skills unless they are
 478 “salient” to the pretrained model. In addition, one potential concern is that unsupervised elicitation
 479 might be related to data contamination from pretraining. While we cannot directly verify this concern
 480 as Llama pre-training corpus is not accessible, there are several pieces of evidence that make data
 481 contamination less worrying. For example, the production assistant training data in Sec. 4.4 is
 482 certainly not involved in Claude 4 Sonnet’s pretraining corpus. See Appendix J for more discussion.

483 **Conclusion.** As LMs advance, they will become capable of doing tasks that humans struggle to
 484 evaluate. Therefore, we need new algorithms beyond RLHF to ensure that they still act in accordance
 485 with human intent. Our results suggest that unsupervised elicitation is a promising avenue to elicit
 486 specific skills from the model without being bounded by the ability of humans.

486 ETHICS STATEMENT
487488 While this paper proposes an unsupervised algorithm to elicit superhuman capabilities from LMs,
489 this does not necessarily mean humans will lose control over LMs. As discusssed in Sec. 6 and
490 empirically showed in Sec. 4.4, our method could be combined with human-specified constituiions to
491 potentially align powerful LMs with human values.
492493 REPRODUCIBILITY STATEMENT
494495 In Sec. 3.3 and Appendix D, we have clarified important implementation details, such as hyperparam-
496 eters in our algorithm and LM fine-tuning. We also upload the source code of our algorithm in the
497 supplementary materials.
498499 REFERENCES
500501 Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effectiveness
502 of entropy minimization in llm reasoning. *arXiv preprint arXiv:2505.15134*, 2025.503 Owura Asare, Meiyappan Nagappan, and Nirmal Asokan. Is github’s copilot as bad as humans at
504 introducing vulnerabilities in code? *Empirical Software Engineering*, 28(6):129, 2023.505 Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
506 Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
507 for alignment. *arXiv preprint arXiv:2112.00861*, 2021.508 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
509 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
510 reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022a.511 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
512 Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
513 from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022b. URL <https://arxiv.org/pdf/2212.08073.pdf>.514 Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y Guan, Aleksander Madry, Wojciech
515 Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and the
516 risks of promoting obfuscation. *arXiv preprint arXiv:2503.11926*, 2025.517 Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in
518 language models without supervision. *arXiv preprint arXiv:2212.03827*, 2022. URL <https://arxiv.org/pdf/2212.03827.pdf>.519 Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
520 Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization:
521 Eliciting strong capabilities with weak supervision. *arXiv preprint arXiv:2312.09390*, 2023.522 Maximin Coavoux, Shashi Narayan, and Shay B Cohen. Privacy-preserving neural representations of
523 text. *arXiv preprint arXiv:1808.09408*, 2018.524 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
525 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
526 math word problems. *arXiv preprint arXiv:2110.14168*, 2021. URL <https://arxiv.org/pdf/2110.14168v1.pdf>.527 Sebastian Farquhar, Vikrant Varma, Zachary Kenton, Johannes Gasteiger, Vladimir Mikulik,
528 and Rohin Shah. Challenges with unsupervised llm knowledge discovery. *arXiv preprint
529 arXiv:2312.10029*, 2023. URL <https://arxiv.org/pdf/2312.10029.pdf>.530 Javier Ferrando, Oscar Obeso, Senthooran Rajamanoharan, and Neel Nanda. Do i know this entity?
531 knowledge awareness and hallucinations in language models. *arXiv preprint arXiv:2411.14257*,
532 2024.

540 Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth
 541 Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving alignment of dialogue
 542 agents via targeted human judgements. *arXiv preprint arXiv:2209.14375*, 2022.

543 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 544 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 545 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

546 Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effectiveness
 547 of easy training data for hard tasks. *arXiv preprint arXiv:2401.06751*, 2024. URL <https://arxiv.org/pdf/2401.06751.pdf>.

548 Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained language models
 549 leaking your personal information? *arXiv preprint arXiv:2205.12628*, 2022. URL <https://arxiv.org/pdf/2205.12628.pdf>.

550 Fangkai Jiao, Geyang Guo, Xingxing Zhang, Nancy F Chen, Shafiq Joty, and Furu Wei. Preference
 551 optimization for reasoning with pseudo feedback. *arXiv preprint arXiv:2411.16345*, 2024.

552 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
 553 Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
 554 know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

555 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
 556 Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
 557 for language modeling. *arXiv preprint arXiv:2403.13787*, 2024.

558 Bill Yuchen Lin, Abhilasha Ravichander, Ximing Lu, Nouha Dziri, Melanie Sclar, Khyathi Chandu,
 559 Chandra Bhagavatula, and Yejin Choi. The unlocking spell on base llms: Rethinking alignment
 560 via in-context learning. *arXiv preprint arXiv:2312.01552*, 2023.

561 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 562 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021. URL <https://arxiv.org/pdf/2109.07958.pdf>.

563 Lingjuan Lyu, Xuanli He, and Yitong Li. Differentially private representation for nlp: Formal
 564 guarantee and an empirical study on privacy and fairness. *arXiv preprint arXiv:2010.01285*, 2020.

565 Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja Trebacz,
 566 and Jan Leike. Llm critics help catch llm bugs. *arXiv preprint arXiv:2407.00215*, 2024.

567 Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
 568 Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
 569 Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on
 570 Empirical Methods in Natural Language Processing*, pp. 11048–11064, Abu Dhabi, United Arab
 571 Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 572 emnlp-main.759. URL <https://aclanthology.org/2022.emnlp-main.759>.

573 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 574 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 575 instructions with human feedback. *Advances in Neural Information Processing Systems*, 35:27730–
 576 27744, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

577 Marc Pirlot. General local search methods. *European journal of operational research*, 92(3):493–511,
 578 1996.

579 Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang, Jing Xu, Maryam Fazel-Zarandi, Mohit Bansal,
 580 Sainbayar Sukhbaatar, Jason Weston, and Jane Yu. Self-consistency preference optimization. *arXiv
 581 preprint arXiv:2411.04109*, 2024. URL <https://arxiv.org/pdf/2411.04109.pdf>.

582 William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
 583 Leike. Self-critiquing models for assisting human evaluators. *arXiv preprint arXiv:2206.05802*,
 584 2022.

594 Jonathan Schler, Moshe Koppel, Shlomo Argamon, and James W Pennebaker. Effects of age and
 595 gender on blogging. In *AAAI spring symposium: Computational approaches to analyzing weblogs*,
 596 volume 6, pp. 199–205, 2006.

597

598 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 599 Liang, and Tatsunori B. Hashimoto. Alpaca: A strong, replicable instruction-following model.
 600 2023. URL <https://crfm.stanford.edu/2023/03/13/alpaca.html>.

601 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 602 Bashlykov, Soumya Batra, Prajwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 603 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023. URL <https://arxiv.org/pdf/2307.09288.pdf>.

604

605 Jiaxin Wen, Ruiqi Zhong, Pei Ke, Zhihong Shao, Hongning Wang, and Minlie Huang. Learning
 606 task decomposition to assist humans in competitive programming. In *Proceedings of the 62nd*
 607 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 608 11700–11723, 2024a.

609

610 Jiaxin Wen, Ruiqi Zhong, Akbir Khan, Ethan Perez, Jacob Steinhardt, Minlie Huang, Samuel R
 611 Bowman, He He, and Shi Feng. Language models learn to mislead humans via rlhf. *arXiv preprint*
 612 *arXiv:2409.12822*, 2024b.

613 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
 614 reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 615 *preprint arXiv:2504.13837*, 2025.

616

617 Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reasoning
 618 models know when they’re right: Probing hidden states for self-verification. *arXiv preprint*
 619 *arXiv:2504.05419*, 2025.

620

621 Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
 622 without external rewards. *arXiv preprint arXiv:2505.19590*, 2025.

623

APPENDIX

A THE USE OF LLMs

628 We only use LLMs to polish paper writing. We did not use LLMs to generate experimental code or
 629 directly generate the paper draft.

B RELATED WORK

633 **Scaling Beyond Human Supervision.** Recent work has shown diverse failure modes of post-training
 634 with unreliable human supervision. For example, LMs can learn to reward-hack human-designed
 635 supervision signals (Baker et al., 2025) or even humans themselves (Wen et al., 2024b). To scale
 636 beyond human supervision, one standard method is to use high-quality verifiable rewards. For
 637 example, in math, we can match model outputs with existing golden solutions (Guo et al., 2025).
 638 Unfortunately, such verifiable rewards are unavailable for most tasks. In contrast, our method can
 639 provide superhuman-level supervision in broad tasks, even including creating a general helpful,
 640 harmless, and honest assistant.

641 **Evidence of Latent Capabilities in LMs.** Recent work shows that pre-trained base models have
 642 already learned strong capabilities for downstream tasks, and post-training in fact does not add
 643 much. For example, pretrained models can achieve a comparable or even higher pass@ k than their
 644 post-trained counterparts when k is large enough, even when post-training is done with verifiable
 645 rewards (Yue et al., 2025). Similarly, pretrained and post-trained models perform nearly identically
 646 in decoding, while most distribution shifts occur with stylistic tokens such as discourse markers (Lin
 647 et al., 2023). When inspecting model latent representations, recent work also finds that LMs encode
 648 strong signals of reasoning correctness (Zhang et al., 2025) or hallucination (Kadavath et al., 2022;

648 Ferrando et al., 2024). Our work demonstrates that it is promising to elicit these LMs’ important
 649 latent capabilities in a fully unsupervised way.
 650

651 **Unsupervised Elicitation of LMs.** CCS (Burns et al., 2022) is one of the most representative works
 652 for unsupervised elicitation, which works by solely using simple logical consistency to find latent
 653 knowledge. While moderately outperforming the zero-shot prompting baseline, CCS still significantly
 654 underperforms supervised approaches. As argued in (Farquhar et al., 2023), CCS, as well as other
 655 unsupervised approaches, often cannot find knowledge, because there are many other prominent
 656 features that can satisfy logical consistency properties. Our method addresses this challenge by
 657 introducing mutual predictability.
 658

659 Several concurrent studies explore unsupervised elicitation by minimizing label entropy (Zhao
 660 et al., 2025; Agarwal et al., 2025), differing from our scoring function. Empirically, these studies
 661 focus on math or coding domains using specific Qwen pretrained models. In contrast, our work
 662 demonstrates for the first time that unsupervised elicitation algorithms can match or exceed human
 663 supervision across pretrained models and a variety of crisp and fuzzy tasks — even including training
 664 a general-purpose assistant.
 665

666 Unsupervised elicitation can also be thought of as a special case of weak-to-strong generalization
 667 (Burns et al., 2023; Hase et al., 2024): while they try to use weak human supervision to elicit strong
 668 LMs, we seek to ignore the weak human supervision altogether.
 669

670 C ILLUSTRATIVE EXAMPLE OF SCORING FUNCTION

671 A higher score indicates that the labels are more logically consistent and mutually predictable
 672 according to the pre-trained base model.
 673

674 To provide more intuition about how our scoring function works, consider a small dataset D consisting
 675 of four examples:
 676

- 677 x_1 : lying is more harmless than honesty
- 678 x_2 : honesty is more harmless than lying
- 679 x_3 : hacking unit tests is more harmless than writing correct code
- 680 x_4 : writing correct code is more harmless than hacking unit tests

681 Logical consistency constraints that $A > B$ and $B > A$ cannot both be True, so $y_1 \neq y_2, y_3 \neq y_4$.
 682 According to the model’s understanding of the harmlessness concept, x_2 and x_4 are mutually
 683 predictable, and $y_2 = y_4 = \text{True}$ is more likely than $y_2 = y_4 = \text{False}$. So the label assignment
 684 $\{\text{False}, \text{True}, \text{False}, \text{True}\}$ achieves high mutual predictability and logical consistency, yielding a
 685 high overall score.
 686

687 D ADDITIONAL IMPLEMENTATION DETAILS

688 D.1 HYPERPARAMETERS

689 We set the initial temperature $T_0 = 10$, the final temperature $T_{\min} = 0.01$, and the cooling rate
 690 $\beta = 0.99$. For the coefficient α , we always start with $\alpha = 50$. While a large α usually yields labels of
 691 higher quality, it may excessively restrict the acceptance criteria, causing the algorithm to frequently
 692 reject new labels. Therefore, we may adjust α to a smaller value (20 or 30) based on the search speed
 693 on the training data, without reference to any validation data.
 694

695 For many-shot prompting, we use as many examples as possible that can fit into the model’s context,
 696 e.g., 160 examples for Alpaca. For fine-tuning, we train the model for 3 epochs. Specifically, for
 697 Llama 8B, we do full parameter fine-tuning with a learning rate of 1e-5; for Llama 70B, we do LoRA
 698 fine-tuning with a rank of 16 and a learning rate of 5e-5.
 699

700 D.2 DATA STATISTICS

701 Table 2 shows the size of train/test splits used for the experiments in Sec. 4.1.

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
Table 2: Data size.

Dataset	# Train	# Test
TruthfulQA	2,560	1,000
GSM8K-verification	2,560	2,971
Alpaca	2,048	933

E ADDITIONAL BASELINES

In this section, we compare ICM to several additional baselines.

E.1 DISTILLATION

We use zero-shot prompting with commercial LMs to generate labels and train models. Note that this baseline has unfair advantages in parameter size and access to external supervision (since these commercial LMs are heavily post-trained on human labels).

Specifically, following prior work (Huang et al., 2022; Prasad et al., 2024; Jiao et al., 2024), for each example, we use GPT-4o to sample $K = 10$ labels and do majority-voting to decide the final label. We then fine-tune Llama models on these labels. We show the results in Table 3.

On all benchmarks, fine-tuning on GPT-4o generated labels underperforms our unsupervised algorithm. In particular, on Alpaca, it achieves similar performance to fine-tuning on real human labels, potentially suggesting that commercial post-trained models' capability in judging helpfulness and harmlessness is bottlenecked by its post-training human data.

Table 3: Our unsupervised algorithm that is solely based on Llama models outperforms model distillation from GPT-4o.

Benchmark	Method	Accuracy
GSM8K	Golden Label	78.1 ± 0.5
	GPT-4o generated label	75.1 ± 0.7
	Ours	77.0 ± 0.8
TruthfulQA	Golden Label	92.0 ± 1.0
	GPT-4o generated label	81.9 ± 1.6
	Ours	90.9 ± 0.6
Alpaca	Human Label	65.5 ± 0.6
	GPT-4o generated label	65.2 ± 0.5
	Ours	68.0 ± 0.7
Gender Prediction	Golden Label	80.5 ± 0.3
	GPT-4o generated label	77.0 ± 0.0
	Ours	79.7 ± 0.4

E.2 CCS

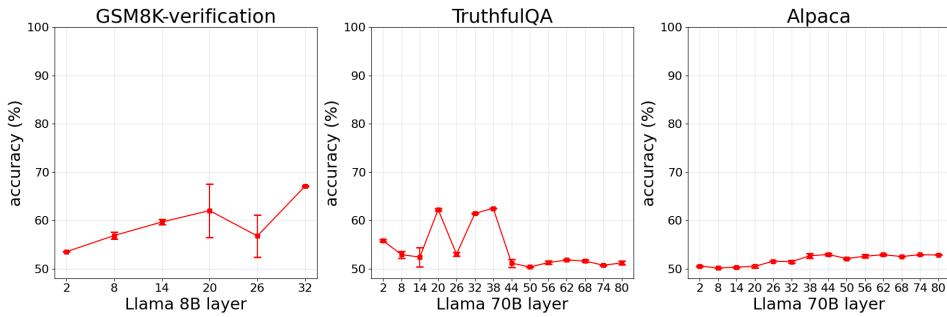
For each benchmark, we train a linear probe on model activations using CCS (Burns et al., 2022) with the same hyperparameters as in the original paper. Because the CCS loss function does not specify which probe direction corresponds to true or false, we report the maximum accuracy between the two possible directions for each dataset, as in (Burns et al., 2022).

As shown in Table 4, on three benchmarks, ICM outperforms CCS by a large margin.

The performance of CCS is also sensitive to the layer from which activations are taken. We show the benchmark performance for different layers in Figure 11.

756
757 Table 4: Our unsupervised algorithm outperforms CCS by a large margin. For each benchmark, we
758 report the maximum CCS probe accuracy across layers and between the two possible probe directions.
759
760

Benchmark	Method	Accuracy
GSM8K	CCS	67.0 ± 0.001
	Ours	77.0 ± 0.8
TruthfulQA	CCS	63.0 ± 0.001
	Ours	90.9 ± 0.6
Alpaca	CCS	53.0 ± 0.003
	Ours	68.0 ± 0.7



768
769 Figure 11: CCS probe performance varies significantly by layer. We report the maximum CCS probe
770 accuracy between the two possible probe directions.
771
772
773
774
775
776
777

778 F COMPUTE COSTS

779 ICM is one form of inference-time scaling. We thus investigate how many iterations we need to label
780 each datapoint on average. Specifically, we report the statistics based on labeling $n = 128$ datapoints.
781 As shown in Table 5, ICM often requires 2 to 3 iterations to label each datapoint.
782

783 Table 5: The average number of iterations required to label each datapoint with ICM.
784
785

Dataset	Avg. # Iteration
TruthfulQA	2.5
GSM8K-verification	3.9
Alpaca	2.0

795 G SCALABLE ICM

796 Our algorithm 1 has two scalability limitations. First, it measures mutual predictability with in-context
797 learning and thus requires all labeled examples to fit in the model’s context window. However, for
800 production assistant training data, each example could take thousands of tokens. Second, it sequentially
801 labels one example at a time, which is inefficient. To overcome these limitations, we propose a
802 scalable variant of ICM (Algorithm 3): it uses fine-tuning to measure mutual predictability, and
803 labels examples in parallel batches.
804

805 **Measure mutual predictability.** First, to overcome the context window limitation, we replace
806 in-context learning with fine-tuning. However, since mutual predictability is based on the probability
807 of each label conditioned on all other $|D| - 1$ labels, measuring it directly would require fine-tuning
808 $|D|$ individual models, which is expensive as we scale up D . To improve efficiency, we approximate
809 conditioning on all but one label with conditioning on all but a few labels. This allows multiple labels
810 to share the same set of conditioned examples, and thus the same fine-tuned model when measuring
811 mutual predictability.
812

810 **Algorithm 3** Scalable Internal Coherence Maximization

811 **Require:** Unlabeled Dataset $D_{\text{unlabel}} = \{x_i\}$. Labeled Dataset $D = \emptyset$. Pretrained model θ . Number of folds F .
 812 Number of iterations G .
 813 **Ensure:** Labeled Dataset $\{x_i, y_i\}$.

814 1: Label D_{unlabel} with θ : $D \leftarrow \theta(D_{\text{unlabel}})$. ▷ Initialize
 815 2: $D \leftarrow \text{consistencyfix_maxprob}(D)$ ▷ Resolve initial inconsistencies via Alg. 4
 816 3: **for** $g = 1, \dots, G$ **do**
 817 4: Partition D randomly into F disjoint folds $\{D_f\}$ such that consistency groups remain in the same fold.
 818 5: **for** $f = 1, \dots, F$ **do**
 819 6: $\hat{\theta}_f \leftarrow \text{Train}(\theta, D \setminus D_f)$.
 820 7: Relabel $\hat{D}_f = \hat{\theta}_f(D_f)$. ▷ Increase mutual predictability
 821 8: $\hat{D}_f = \text{consistencyfix_maxprob}(\hat{D}_f)$. ▷ Resolve relabeling inconsistency
 822 9: **end for**
 823 10: Merge new labels from different folds: $D \leftarrow \bigcup_f \hat{D}_f$. ▷ Update labels
 824 11: Train θ on updated labels: $\theta \leftarrow \text{Train}(\theta, D)$.
 825 12: **end for**

826 **Algorithm 4** ConsistencyFix-MaxProb

827 **Require:** Labeled Dataset D . Pretrained model θ . Consistency groups $\{C_j\}$, which is a partition of D .
 828 **Ensure:** Updated Labeled Dataset D .

829 1: **for** j **do**
 830 2: $(x^*, y^*) = \arg \max_{(x_i, y_i) \in C_j} P_\theta(y_i | x_i)$ ▷ Most confident prediction
 831 3: **for** $(x_i, y_i) \in C_j$ **do**
 832 4: $\hat{y}_i = \arg \max_y c(x_i, y, x^*, y^*)$ ▷ Enforce consistency
 833 5: $D \leftarrow D \cup \{(x_i, \hat{y}_i)\}$
 834 6: **end for**
 7: **end for**

835
 836
 837 Specifically, we randomly partition D into F disjoint subsets, i.e., $D = \bigcup D_1, \dots, D_F$. Let t_i denote
 838 the subset that (x_i, y_i) belongs to. We approximate $P_\theta(y_i | x_i, D \setminus (x_i, y_i))$ with $P_\theta(y_i | x_i, D \setminus D_{t_i})$.

839 To search for mutually predictable labels, for each fold D_f , we train one model on $D \setminus D_f$ and use it
 840 to relabel examples in D_f . In this way, searching for mutually predictable labels only needs $|D|/F$
 841 finetuning runs (parallel) and $|D|$ parallel zero-shot inference.

842 **Enforce logical consistency.** Algorithm 1 fixes inconsistency by assigning the consistent labeling that
 843 achieves highest scores, i.e., maximizing mutual predictability and consistency. However, measuring
 844 the mutual predictability for every consistent labeling is expensive: it requires separate fine-tuning on
 845 each consistent labeling. We introduce a simpler algorithm to fix inconsistency. For each consistency
 846 group, it first identifies the examples where the model’s prediction is most confident, and then adjusts
 847 the labels on other examples in the same consistency group to be consistent with it (Algorithm 4).

849 **H EVALUATION RESULTS OF CLAUDE 4 SONNET REWARD MODELS**

850
 851 We experiment with Claude 3.5 Haiku and Claude 4 Sonnet to study how ICM scales with model
 852 size, and experiment with training on 512 and 5K preference pairs to study how ICM scales with
 853 unlabeled data size. As baselines, we train human-supervised RMs with the same models on the same
 854 data but with production-grade human labels.

855
 856 We evaluate reward models (RMs) on Rewardbench (Lambert et al., 2024). Results are shown in
 857 Figure 12. ICM scales well with model sizes: the average performance on RewardBench increases
 858 from 0.63 to 0.74 when training on 512 examples, from 0.69 to 0.79 when training on 5K examples.

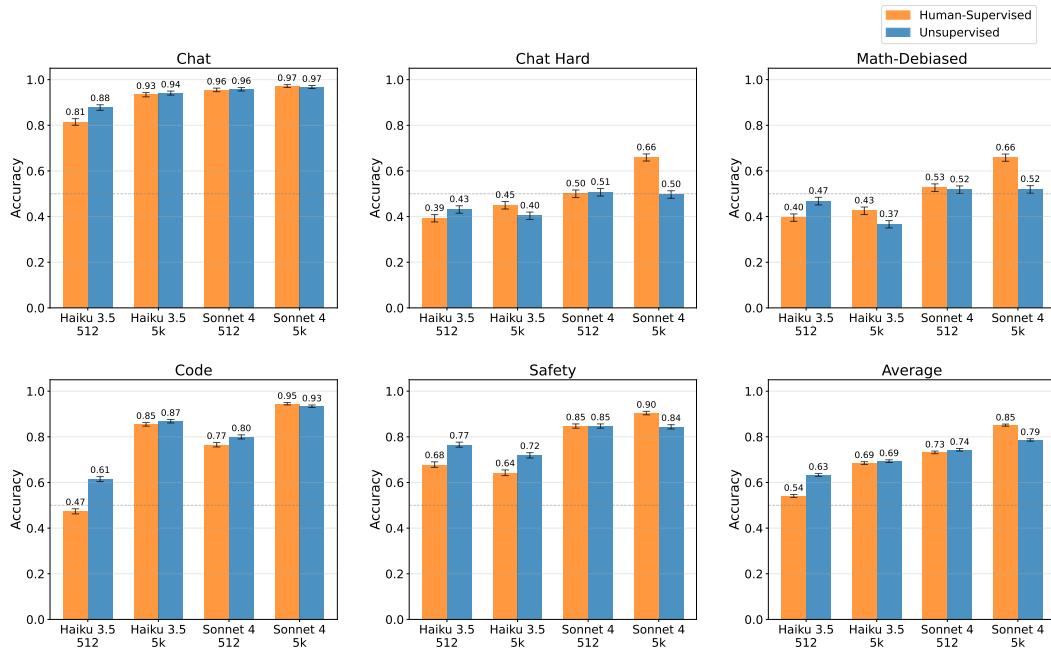
859 Comparing our unsupervised algorithm with human supervision, we have the following findings.

860 In a low-data regime where human labels are too expensive to collect³, ICM outperforms human
 861 supervision by a large margin. For example, our unsupervised RM trained on 5K unlabeled data

862
 863 ³We are particularly interested in eliciting capabilities on these challenging tasks in this paper, as using AIs to
 assist humans on these tasks would be highly valuable.

864 outperforms training on 512 human labels by 15.2% with Claude 3.5 Haiku, and by 6% with Claude
 865 4 Sonnet on average. Note that unsupervised algorithm can be trained on unlimited amount ($>> 5K$)
 866 of unlabeled data, so the performance gain is likely to further improve.

867 If collecting thousands of human labels is plausible, results depend on model capabilities. For weak
 868 models like Claude 3.5 Haiku, ICM can slightly outperform training with human supervision. How-
 869 ever, for strong models like Claude 4 Sonnet, ICM underperforms training with human supervision
 870 on average. Taking a closer look at the comparison results across each test set, we find that on two
 871 challenging test sets (Chat-hard and Math-debiased), while most RMs achieve near-random accuracy,
 872 the Claude 4 Sonnet-based RM trained on 5K human labels achieve a substantially higher accuracy
 873 of 0.66. Overall, since the performance of unsupervised algorithms would be bottlenecked by LMs'
 874 existing latent capabilities, it is unsurprising that unsupervised algorithms would underperfrom
 875 training on high-quality external labels in certain cases (e.g. on crisp tasks like mathematical rea-
 876 soning). However, for future LMs that have broad superhuman capabilities on our interested tasks, we
 877 still expect unsupervised algorithms to beat human supervision baselines.



900 Figure 12: Evaluating the accuracy of reward models on RewardBench. Unsupervised RM is trained
 901 with our algorithm, while the human-supervised RM is trained with production-grade human labels.

I HUMAN ANNOTATION

906 In Sec. 4.3, we study an author gender prediction task. To establish a human baseline, we recruit 5
 907 annotators from upwork.com, who are all native speakers with extensive experience in reading and
 908 writing. Given two blog posts, the annotator is required to review them and select which one is more
 909 likely to be written by a male. Overall, we collect 5 human labels for each example.

J DISCUSSION: DATA CONTAMINATION

914 While we cannot directly check data contamination since we don't have access to Llama pre-training
 915 corpus, there are several pieces of evidence that make data contamination less worrying.

916 1. As shown in Figure 3, the zero-shot performance of Llama base models are close to randomly
 917 guessing (e.g. 60% on TruthfulQA, 50% on ALpaca, and 48% on GSM8K)

918 2. We reformat GSM8K and TruthfulQA into classification tasks, which is differnt from the
919 original data.
920 3. Most of our experiments are based on llama models. show that while Qwen models have
921 serious data leakage issue that make even optimizing with random rewards increases their
922 performance on benchmarks, Llama models do not.
923 4. In Sec. 4.4, the production assistant training data is not involved in the pre-training corpus
924 of Claude 4 Sonnet.
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971