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ABSTRACT

To steer pretrained language models for downstream tasks, today’s post-training
paradigm relies on humans to specify desired behaviors. However, for models
with superhuman capabilities, it is difficult or impossible to get high-quality hu-
man supervision. To address this challenge, we introduce a new unsupervised
algorithm, Internal Coherence Maximization (ICM), to fine-tune pretrained lan-
guage models on their own generated labels, without external supervision. On
GSMS8k-verification, TruthfulQA, and Alpaca reward modeling tasks, our method
matches the performance of training on golden labels and outperforms training on
crowdsourced human supervision. On tasks where LMs’ capabilities are strongly
superhuman, our method can elicit those capabilities significantly better than train-
ing on human labels. Finally, we show that our method can improve the training of
frontier LMs: we use our method to train an unsupervised reward model and use
reinforcement learning to train a Claude 4 Sonnet-based assistant. The resulting
assistant matches its counterpart trained on production-grade human labels on
average, with higher scores on chat and safety yet lower scores on math and coding.
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Figure 1: Our unsupervised algorithm (ICM) matches the performance of fine-tuning on golden
supervision and outperforms crowdsourced human supervision. We report average test accuracy
and variance across three runs on three classification tasks: mathematical correctness (GSM8K-
verification), common misconceptions (TruthfulQA), and helpfulness and harmlessness (Alpaca).
Results are based on Llama 3 pretrained models, 8B for GSM8K, 70B for Truthful QA and Alpaca.

1 INTRODUCTION

Today’s post-training paradigm of pre-trained language models (LMs) still relies on humans to specify
desired behaviors, either through demonstrations or preference feedback (Ouyang et al., 2022; Glaese
et al., 2022; Bai et al., 2022a). However, as tasks and model behaviors grow more complex, human
supervision becomes increasingly unreliable: LMs can learn to mimic mistakes in demonstrations
(Asare et al., 2023) or exploit flaws in feedback (Wen et al., 2024b). How do we train LMs to do
tasks that are too difficult for humans to demonstrate or evaluate reliably?

We introduce a new approach to address this problem: we seek to elicit specific concepts or skills
from a pretrained model without any supervision, thus bypassing the limitations of human supervision.
Pretrained models have already learned rich representations about important human concepts, such as
mathematical correctness, truthfulness, and helpfulness (Burns et al., 2022). We should not need to
teach LMs much about these concepts in post-training—instead, we can just “elicit” them from LMs.
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Concretely, given a task specified by a set of labeled inputs, our goal is to fine-tune a pretrained
model on its own generated labels to perform well on this task, without using any provided labels.

Our algorithm, Internal Coherence Maximization (ICM), does this by searching for a set of labels
that are logically consistent and mutually predictable according to the pretrained model. Specifically,
mutual predictability measures how likely the model can infer each label when conditioned on all
other labels. This intuitively encourages all labels to reflect a single concept according to the model.
Logical consistency further imposes simple constraints, thus blocking superficially predictable label
assignments, such as sharing the same label across all data points. Since finding the optimal label set
that maximizes this objective is computationally infeasible, ICM uses a search algorithm inspired by
simulated annealing (Pirlot, 1996) to approximately maximize it.

We show that ICM matches the performance of training on golden labels on TruthfulQA (Lin et al.,
2021) and GSM8K (Cobbe et al., 2021), and surpasses training on crowdsourced human labels on
Alpaca (Taori et al., 2023). Additionally, on a task where LMs are strongly superhuman—identifying
an author’s gender from a writing sample! —ICM significantly outperforms human supervision.

Beyond standard benchmarks, we investigate ICM’s potential in improving frontier models by training
a version of Claude 4 Sonnet assistant without any human supervision. Specifically, we first train a
reward model (RM) with ICM, then train an assistant via reinforcement learning, which is assessed by
Claude 4 Opus’s production-grade RM. Compared with the counterpart trained on production-grade
human labels, our unsupervised assistant learns faster during RL and yields comparable scores on
average, with higher scores on chat and safety and lower scores on math and code.

While prior work has studied unsupervised elicitation methods in simple toy settings (Burns et al.,
2022), our work demonstrates for the first time that it is possible to match or exceed human supervision
in realistic settings. By successfully training a Claude 4 Sonnet-based assistant without any human
labels and achieving comparable performance to its human-supervised counterpart, we show that
unsupervised elicitation is practically useful for post-training frontier models into general assistants.

2 METHODOLOGY

2.1 PROBLEM STATEMENT

Typically, fine-tuning LMs for a task requires a labeled dataset D = {(z;,y})}. However, for many
complex tasks, obtaining externally human-specified {y;} is difficult or impossible. Therefore, our
goal is to use the LM to estimate labels {y; }, based purely on the inputs {x;}.

In particular, we are mainly focused on classification tasks (e.g. reward modeling) in this paper,
as we can naturally use reinforcement learning to optimize for open-ended generation tasks. We
demonstrate this by training a version of genreal Claude 4 Sonnet assistant in Sec. 4.4.

In this following section, we explain how an LM can internally score the quality of {y;}, without
referencing external labels {y; }, and how to algorithmically maximize this score.

2.2  SCORING FUNCTION

We measure the quality of the model-generated label set with a scoring function composed of two
parts: how likely the model can infer each label when conditioned on all other labels (“mutual
predictability”’) and how logically consistent the label set is as a whole.

Mutual Predictability. As illustrated in the top panel of Figure 2, given a pretrained model Py, for
each example x;, we calculate the probability of its label y; by conditioning all other | D| — 1 labels
(e.g. via in-context learning as in Algorithm 1), and sum the log probabilities across all examples:

N
Py(D) = Zlog Py(yilxi, D\ (24, v:))

=0

'We use a widely-adopted academic dataset (Schler et al., 2006) for studying Al fairness (Coavoux et al.,
2018; Lyu et al., 2020), which consists of self-reported author information.
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Figure 2: ICM optimizes labels for logical consistency and mutual predictability. Top: an illustrative
example of mutual predictability scoring. Bottom: the searching process for labeling a new example.

Intuitively, this yields a high score if {(z;,y;)} collectively specify a single coherent concept
according to Py, i.e. a labeling scheme where P, can confidently infer any label y; from the others.
Figure 2 bottom shows a simple illustrative example: the second labeling scheme is more mutually
predictable under the concept of mathematical correctness. See Appendix C for another example.

However, mutual predictability alone allows some degenerate solutions, e.g. assigning the same label
to all data points can artificially inflate Py(D) as well.

Logical Consistency. To rule out degenerate solutions when maximizing mutual predictability alone,
we further enforce simple logical consistency on the label set. Specifically, we are given a logical
consistency function ¢(x;, y;, z;,y,) € {0,1}, which is an indicator function that checks whether
the labels y; and ¥; on data points x; and x; are logically consistent with each other. We use it to
measure inconsistencies in our labels:

|D| | D]

(D) = Z ZC(M, Yis Tj5 Y;)

i=1 j=1

Determining fine-grained logical consistency between each example is non-trivial; however, empirical
evidence suggests that even simple and general logical constraints suffice. For example, when judging
mathematical correctness, two different answers cannot both be True. Another general logical
constraint is asymmetry: when comparing two LM outputs, A > B and B > A cannot both be True.

Overall Scoring Function. Combining the two terms, our scoring function is defined as follows:
U(D) = a-Py(D) —Z(D)

where « is a hyperparameter to balance the strength of mutual predictability and logical consistency.

2.3 OUR ALGORITHM

Finding the optimal label set that maximizes our scoring function is an integer programming problem,
which is computationally infeasible for realistic dataset sizes (|D| > 10%). ICM thus proposes an
efficient approximate algorithm 1, which is inspired by simulated annealing.

Starting from an empty labeled set, ICM initializes the search process with K randomly labeled
examples, then iteratively adds labels, one at a time. To add a label, ICM executes three steps: 1)
sample a new example, 2) decide its label while fixing any introduced inconsistencies, and 3) decide
whether to accept this new label based on the scoring function. In this way, ICM incrementally
expands the label set and improves the score. The bottom of Figure 2 illustrates this iterative process.
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Algorithm 1 Internal Coherence Maximization (ICM)

Require: Unlabeled Dataset Duniapel = {5 }. Labeled Dataset D = {). Pretrained model . Initial temperature
To. Final temperature Tnin. Cooling rate 5.
Ensure: Labeled Dataset {z;, y; }.
1: Randomly select and label K examples; update D. > Initialization
2: D + consistencyfix(D) > Resolve initial inconsistencies via Alg. 2
3:forn=1,--- ,Ndo

T + max(Tm Lo )

i) T B log(n) > Update temperature
Sample example z; ~ {z1, - , N}, > Input selection

4
5:
6:  Assign label j; = arg max Py (yilzi, D\ {(zi,:)})
y
7 Temporarily update D < D U {(zi, 5:)}

g 3 .

: D + consistencyfix(D) > Resolve inconsistencies via Alg. 2
9:  A=U(D)-U(D)
10: if A > 0 then > Accept new label
11: D+« D
12: else
13: if random(0,1) < exp(A/T) then > Reject new label by probability
14: D+« D
15: end if
16: end if
17: end for

Initialization. We initialize the searching process with K randomly labeled examples. The choice
of K presents a trade-off. A large K introduces significant initial noise that hinders subsequent
convergence. Preliminary results show that initializing all X' = |D| examples with random labels
or zero-shot predictions often traps the model in a poor initialization. Conversely, KX = 0 reduces
to a zero-shot setting, where the model lacks sufficient context to understand the task and achieves
near-random performance. Empirically, we find that a small number (e.g., K = 8) often strikes a
good balance by providing sufficient demonstrations while reducing initial noise (Min et al., 2022).

Choose a New Example to Label. At each iteration, we select an example to label, which could
be either unlabeled or previously labeled. This allows us to dynamically correct earlier mistakes.
To fully leverage logical consistency, unlabeled examples that share consistency relationships with
existing labeled ones are prioritized by increasing their sampling weights (e.g., by a factor of 100).

Fix Inconsistencies. Although U (D)
explicitly penalizes logical inconsis- - - —
tencies, simply maximizing U( D) Require: Labeled Dataset D. Pretrained model 6. Max iteration M.
Ensure: Updated Labeled Dataset D.

1: form=1,--- , M do

Algorithm 2 ConsistencyFix

during search still results in substan-
tial label inconsistencies. To mitigate

. . . 2: if Z(D) # 0 then
thls issue, we actlvel.y resolve incon- Sample an inconsistent pair (z:, ;)
sistencies via Algorl.thm 2. Specifi- 4 Enumerate consistent label options {(yi, y;)}
cally, when an inconsistency between 5 (4i,9;) = arg _max U(D U {(zs,:), (z;,5;)})
a labeled data pair (x;, ;) arises, the {wisy)}
algorithm checks all consistent label ~ © it U(DU{(zs,7:), (25, 9;)}) ¢ U(D) then
options for them and selects the com- 7 D DU {(zi,9:), (25, 95)}
bination that maximizes U (D). Im- g en deiI;d if
portantly, after introducing a new la- 4. o4 for

bel, we first fix its introduced incon-
sistencies and then measure U (D). Therefore, even if the new correct label contradicts all existing
consistently wrong labels, the algorithm would examine and fix the existing incorrect labels first,
instead of directly rejecting the new label.

Accept a New Label. We directly accept the new label if it improves U (D). Otherwise, inspired by
simulated annealing, the algorithm rejects it by a probability decided by two factors:

* Score Difference A: Larger decreases in U (D) increase the likelihood of rejection.

* Iteration: The rejection likelihood increases over time, making the algorithm increasingly selective.
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Table 1: Dataset examples. We unify the original tasks into classification tasks.

Dataset

Example

TruthfulQA | Question: What are some cities that get less rainfall than Boston?
Claim: San Francisco and Los Angeles get less rainfall than Boston.
I think this Claim is [True/False]

GSMSK Question: Arnel had ten boxes of pencils with the same number of pencils- - -
Claim: Arnel shared 5 x 8 = 40 pencils with his friends. So, he had 10 + 40 = 50
pencils in all. Therefore, each box had 50/10 = 5 pencils inside. The answer is 5.

I think this Claim is [True/False]

Alpaca Query: Design a medium-level sudoku puzzle.

Response A: Done! Attached is a medium-level sudoku puzzle I designed.
Response B: A medium-level sudoku puzzle consists of 81 squares arranged in a 9 x
9 grid. The first step is to look for empty cells and assign the numbers 1 t0 9 ...
Claim: Response A is more helpful and harmless than Response B

I think this Claim is [True/False]

3 EXPERIMENT SETUP

3.1 DATASETS

* TruthfulQA (Truthfulness): For each question, multiple answer choices are provided in Truth-
fulQA. The task is to classify each answer choice as correct or incorrect.

* GSMBS8K-verification (Mathematical Correctness): For each question, we sample multiple
solutions from LMs. The task is to classify each solution as correct or incorrect. To determine
golden labels, we evaluate both final answers and intermediate reasoning steps. Specifically, we
prompt Claude 3.5 Sonnet to validate intermediate steps against the provided steps in GSM8K.

* Alpaca (Helpfulness and Harmlessness): For each user query, two assistant responses are
provided in Alpaca. The task is to classify which response is more helpful and harmless.

See Table 1 for dataset examples. Regarding logical consistency checks, for GSM8K and TruthfulQA,
we use “two different answers cannot both be true”. For Alpaca, we use ”A > B contradicts B > A”.
We use accuracy as the main metric, which measures the agreement between model predictions and
golden benchmark labels. In particular, for Alpaca, we establish test golden labels by doing majority
voting over four human labels.

3.2 BASELINES

We adopt the following four baselines in our main experiments. Appendix E compares ICM with
more baselines (e.g. distilling from GPT-40), and ICM consistently yields better performance.

» Zero-shot indicates zero-shot prompting on pretrained models. In particular, we use a highly
optimized prompt that has been used for Anthropic’s pretrained models (Askell et al., 2021). which
converts pretrained models into general assistants, significantly improving zero-shot performance.

» Zero-shot (Chat) indicates zero-shot prompting on commercial chat models, which have been
through heavily optimized post-training. For example, Llama 2 chat models are post-trained on
nearly 30K human demonstrations and 3 million human preference feedback (Touvron et al., 2023).

* Golden Label indicates many-shot prompting or fine-tuning with golden labels.

* Human Label indicates many-shot prompting or fine-tuning with real-world human labels, e.g.,
labels from the Alpaca training set, which contains only one human annotation per datapoint.

3.3 IMPLEMENTATION DETAILS

We use Llama 3.1 8B, Llama 3.1 70B, and Claude 4 Sonnet in our experiments. Unless stated
otherwise, we always use pretrained models that have received no additional training, i.e. no
supervised fine-tuning on demonstrations, RLHF, RL on outcomes, or any other post-training. Please
see Appendix 5 for more implementation details (e.g. training hyerparameters).


https://gist.github.com/jareddk/2509330f8ef3d787fc5aaac67aab5f11#file-hhh_prompt-txt
https://gist.github.com/jareddk/2509330f8ef3d787fc5aaac67aab5f11#file-hhh_prompt-txt
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Figure 3: Prompting or fine-tuning results with Llama 3 models, 8B for GSMS8K, 70B for the others.
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Figure 4: Scaling properties of ICM on Truthful QA. Figure 5: Results on poem ranking.

4 EXPERIMENTS

4.1 ELICITING CAPABILITIES ON COMMON NLP TASKS

Finding 1: ICM matches the ceiling performance of golden supervision. As shown in Figure 3,
even with a highly optimized prompt, the zero-shot accuracy is still often no better than random guess-
ing on all three benchmarks. In comparison, ICM matches the performance of golden supervision on
Truthful QA and GSMSK, despite not using any external labels.

Finding 2: ICM beats crowdsourced human supervision. On Alpaca, ICM substantially outper-
forms training with the preference labels annotated by real humans. This is particularly remarkable
because compared to truthfulness or mathematical correctness, helpfulness and harmlessness are
much more general and complex human concepts, such that even humans struggle to grasp them.
While frontier Al labs typically spend huge human effort on labeling data to externally specify these
concepts and align LMs, our results show the potential to align LMs by unsupervised elicitation.

Finding 3: ICM beats post-trained chat models. To investigate how ICM compares to conventional
post-training, we compare it to zero-shot prompting with commercial chat models. These models have
been heavily post-trained on diverse human supervision. As shown in Figure 3, ICM outperforms
conventional post-training by a large margin. Note that all three of our benchmarks are popular
measures of LLM capabilities, suggesting that production-level chat models are already heavily
optimized for performance on such tasks.

Finding 4: ICM scales up with pretrained model capabilities. Since ICM focuses on elicitation,
its effectiveness may naturally improve with pretrained model capabilities. We study the scaling prop-
erties of ICM on Truthful QA and present results in Figure 4. While ICM moderately underperforms
the golden label baseline on Llama 8B, it performs comparably on LLama 70B.

We were initially very skeptical of these findings, because they seemed clearly too good to be true,
and suspiciously close to training with actual labels. To ensure we didn’t accidentally train on the
labels, (1) we re-ran the experiment several times on different datasets, (2) we copied the dataset into



Under review as a conference paper at ICLR 2026

a new file, excluding any labels before re-running our algorithm with that file, and (3) one coauthor
independently replicated the findings on the Claude 3.5 Haiku base model using a different codebase.

4.2 UNSUPERVISED ELICITATION FAILS WHEN CONCEPTS ARE NOT SALIENT

To highlight some of our algorithm’s limitations, we design a task specifically to be impossible for
unsupervised elicitation. Suppose we really like poems about the sun, so we construct a comparison
dataset where all poems that mention the word ”sun” are preferred. The only task description we
give the LMs is to judge which poem is better, but it is impossible for the LM to know our specific
personal preference about poems. In other words, this task is not “salient” to pretrained models,
because their understanding of the “poem quality” concept is not related to the sun. To construct
the dataset, we use Claude 3.5 Sonnet to generate pairs of poems, and use designed prompts and
post-filterings to ensure only one of them mentions “sun”. Experiment results with Llama 70B are
shown in Figure 5. As expected, we find ICM performs no better than random guessing.

4.3 ELICITING SUPERHUMAN CAPABILITIES

After studying unsupervised elicitation on three common NLP datasets, we are further interested in
tasks where pretrained models are strongly superhuman. To study this, we explore an author gender
prediction task using the Blog Authorship Corpus (Schler et al., 2006).>

Using pairs of blog posts (A and B) from the Blog Authorship Corpus, one written by a male and
one by a female, the task is to predict which one is more likely to be written by a male. We use the
simple asymmetry logical consistency: A > B contradicts B > A.

To build human baselines, we recruit 5 annotators to label 80
1) 48 training examples for prompting and 2) 100 test 75
examples for estimating human performance on the whole 70 |

test set. Human labels have perfect consistency but bad

accuracy (60% on the test set, 53.8% on the training set).  E
As shown in Figure 6, our method matches golden super- ©
vision (80% accuracy), significantly outperforming the *
. . 45 00000
estimated human accuracy (60%). In comparison, prompt-
ing with weak human labels or commercial post-training 0 Zero'shot Zerostot pompt | pomet_ pramet
all fail to fully leverage pretrained models’ superhuman-
level capability. Figure 6: Results on gender prediction.

4.4 TRAINING AN ASSISTANT CHATBOT WITHOUT SUPERVISION

After verifying ICM on standard benchmarks, we investigate whether it can scale to commercial
production runs and improve frontier assistant chatbots. Specifically, we aim to train a helpful,
harmless, and honest chat assistant based on Claude 4 Sonnet, without introducing any external
supervision labels. In these experiments, we use a scalable variant of ICM that particularly tackles
long-context challenge when applied to proudction data. See Appendix G for more details.

We use the task description “Output A is more helpful, harmless, and honest than Output B” to
construct 5,000 pairwise preference data. Then we use our method to generate labels with Claude 4
Sonnet pretrained models, and fine-tune it into a RM. As a baseline, we use proudction-grade human
labels to train a human-supervised RM.

Using the unsupervised and human-supervised RM, we train two assistants via reinforcement learning.
The training data is a mix of math, code and instruction following tasks. We train both assistant
policies on 250,000 episodes. We then evaluate both policies on RewardBench, where the policy
responses are scored by a production-grade Claude 4 Opus RM.

Results are shown in Figure 7. The unsupervised assistant matches its human-supervised counterpart
on average, with higher scores on chat and safety and lower scores on math and code. We suspect
that this is because the production-grade human labels are of higher quality on these crisp reasoning

2Qur goal is not to improve Al performance at predicting author gender, but rather to study how well this
capability is already present in pretrained models.



Under review as a conference paper at ICLR 2026

Chat Chat Hard Math-Debiased
1.0 P—o—9
A 4 4
2 05 2 2
o o o
<+ < <+
o 0.0 o °
=l =y T 0
E > E
2 o pl
GC 05 o o
> > >
2 2 El
o —1.0 ° o -1
2 2 2
o o o
o 153 o
@O 15 o 12
= = =
o o o2t
-2.0 —&— RL against Unsupervised PM —4— RL against Unsupervised PM —4— RL against Unsupervised PM
4— RL against Human-Supervised PM ¢ —4- RL against Human-Supervised PM 4— RL against Human-Supervised PM
-2.0
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
RL steps RL steps RL steps
Code Safety Average
1.0
3
10 ¥ n 05
z T 2
S 0.5 E 0.5 &
< < <+ 00
o 0.0 () @
3 32 32
[} 3 0.0 3
G 05 [} G 08
> > >
E E 2
-1.0
° o o
5 5 -0.5 5 -0
i3 S S
0 -15 7] n
= = =
x @ a -15
-2.0 —&— RL against Unsupervised PM -0 —&— RL against Unsupervised PM —3§— RL against Unsupervised PM
#— RL against Human-Supervised PM 4~ RL against Human-Supervised PM 4— RL against Human-Supervised PM
-2.5 -2.0
0% 20%  40%  60%  80% 100% 0% 20%  40%  60% 80% 100% 0% 20%  40%  60% 80% 100%
RL steps RL steps RL steps

Figure 7: Assistant trained with our unsupervised method matches its counterparts trained on
production-grade human supervision. We score the assistants’ responses to RewardBench prompts
with the production-grade Claude 4 Opus RM. RL against our unsupervised RM learns faster than
the human-supervised RM (e.g., 2.5x the speed on Chat and Chat-Hard).

tasks.Interestingly, RL against our unsupervised RM learns faster than RL against the human-
supervised RM (e.g., 2.5x the speed on Chat and Chat-Hard).

5 ABLATIONS

Comparing to randomly perturbed labels. Pretrained models may just be robust to label noise
on these benchmarks, thus training labels with a certain level of noise could always match the
performance of training on golden labels. To rule out this hypothesis, we construct a set of randomly
perturbed labels with the same accuracy as our model-generated labels, and conduct ablation studies
with Llama pretrained models with many-shot prompting. As shown in Figure 8, our model-generated
labels always achieve substantially better performance. We suspect this is because our labels are
more aligned with the model’s understanding of correct labels for the task.
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Figure 8: ICM-produced labels outperform equally accurate randomly perturbed labels.
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Evaluating robustness to worst-case initialization. It is possible that ICM could collapse under
bad initialization (e.g., all initial K labels are wrong), but we coincidentally never encounter that in
Sec. 4 because it happens rarely.

o]
o
L

We thus investigate ICM’s robustness against different ini-
tializations, including random labels (default setting), entirely
wrong labels, or golden labels. Figure 9 showcases results on
Truthful QA with the Llama 8B model. We report the test accu-
racy using many-shot prompting. Under random initialization,
ICM achieves a comparable average accuracy but a slightly
higher variance. Even under worst-case initialization, ICM . i .
remains robust, experiencing only a moderate performance Golden Random Worst
drop rather than complete failure. This is mainly due to its

iterative nature: a few initial bad labels would not degrade the =~ Figure 9: Impact of initialization.
performance significantly, as they can be gradually corrected as the algorithm progresses.
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Ablating logical consistency. Logical consistency may be
of limited value in ICM: we only use simple logical con-
sistency that can be applied to many tasks, as determining
fine-grained consistency relationships across examples is
challenging. Empirically, we observe different impacts of
logical consistency across tasks (Figure 10). For example,
on TruthfulQA, removing logical consistency only leads
to moderately worse results, as the degenerate solution of
solely maximizing mutual predictability (i.e. assigning the
same label everywhere) happens rarely. In contrast, log-
ical consistency is crucial on Alpaca, since the degenerate  Figure 10: Impact of logical consistency.
solution almost always happens without that.
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6 DISCUSSION

The role of logical consistency. As Sec. 5 shows, removing consistency often does not degrade
the maximal performance, but increases the variance. Specifically, the algorithm becomes more
likely to collapse into degenerate solutions that have low logical consistency, like assigning the same
label to all data points. Therefore, we understand mutual predictability as the most important term
that leads to our empirical success. In particular, mutual predictability also likely enforces complex
(probabilistic) consistencies, which cannot be easily captured by general axiomatic logical checks.

Unsupervised elicitation as an alignment method. In practice, when using unsupervised elicitation
for alignment, we would still need humans in the loop for various parts of the post-training process.
For example, ICM can be directly applied to enhance constitutional Al (Bai et al., 2022b) for
aligning LMs. Specifically, for each human-specified constitution, we can replicate our pipeline
in Sec. 4.4: use ICM to label which assistant response follows the constitution more accurately
and train an unsupervised reward model, then use reinforcement learning to optimize and align the
assistant towards the constitution. Additionally, we still need humans to validate whether the model is
interpreting the constitution as intended, for example using scalable oversight techniques (Saunders
et al., 2022; McAleese et al., 2024; Wen et al., 2024a).

Limitations. As shown in Sec. 4.2, our algorithm cannot elicit any concepts or skills unless they are
“salient” to the pretrained model. In addition, one potential concern is that unsupervised elicitation
might be related to data contamination from pretraining. While we cannot directly verify this concern
as Llama pre-training corpus is not accessible, there are several pieces of evidence that make data
contamination less worrying. For example, the production assistant training data in Sec. 4.4 is
certainly not involved in Claude 4 Sonnet’s pretraining corpus. See Appendix J for more discussion.

Conclusion. As LMs advance, they will become capable of doing tasks that humans struggle to
evaluate. Therefore, we need new algorithms beyond RLHF to ensure that they still act in accordance
with human intent. Our results suggest that unsupervised elicitation is a promising avenue to elicit
specific skills from the model without being bounded by the ability of humans.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

While this paper proposes an unsupervised algorithm to elicit superhuman capabilities from LMs,
this does not necessarily mean humans will lose control over LMs. As discusssed in Sec. 6 and
empirically showed in Sec. 4.4, our method could be combined with human-specified constituions to
potentially align powerful LMs with human values.

REPRODUCIBILITY STATEMENT

In Sec. 3.3 and Appendix D, we have clarified important implementation details, such as hyperparam-
eters in our algorithm and LM fine-tuning. We also upload the source code of our algorithm in the
supplementary materials.
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APPENDIX

A THE USE OF LLMS

We only use LLMs to polish paper writing. We did not use LLMs to generate experimental code or
directly generate the paper draft.

B RELATED WORK

Scaling Beyond Human Supervision. Recent work has shown diverse failure modes of post-training
with unreliable human supervision. For example, LMs can learn to reward-hack human-designed
supervision signals (Baker et al., 2025) or even humans themselves (Wen et al., 2024b). To scale
beyond human supervision, one standard method is to use high-quality verifiable rewards. For
example, in math, we can match model outputs with existing golden solutions (Guo et al., 2025).
Unfortunately, such verifiable rewards are unavailable for most tasks. In contrast, our method can
provide superhuman-level supervision in broad tasks, even including creating a general helpful,
harmless, and honest assistant.

Evidence of Latent Capabilities in LMs. Recent work shows that pre-trained base models have
already learned strong capabilities for downstream tasks, and post-training in fact does not add
much. For example, pretrained models can achieve a comparable or even higher pass @k than their
post-trained counterparts when k is large enough, even when post-training is done with verifiable
rewards (Yue et al., 2025). Similarly, pretrained and post-trained models perform nearly identically
in decoding, while most distribution shifts occur with stylistic tokens such as discourse markers (Lin
et al., 2023). When inspecting model latent representations, recent work also finds that LMs encode
strong signals of reasoning correctness (Zhang et al., 2025) or hallucination (Kadavath et al., 2022;
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Ferrando et al., 2024). Our work dmeonstrates that it is promising to elicit these LMs’ important
latent capabilities in a fully unsupervised way.

Unsupervised Elicitation of LMs. CCS (Burns et al., 2022) is one of the most representative works
for unsupervised elicitation, which works by solely using simple logical consistency to find latent
knowledge. While moderately outperforming the zero-shot prompting baseline, CCS still significantly
underperforms supervised approaches. As argued in (Farquhar et al., 2023), CCS, as well as other
unsupervised approaches, often cannot find knowledge, because there are many other prominent
features that can satisfy logical consistency properties. Our method addresses this challenge by
introducing mutual predictability.

Several concurrent studies explore unsupervised elicitation by minimizing label entropy (Zhao
et al., 2025; Agarwal et al., 2025), differing from our scoring function. Empirically, these studies
focus on math or coding domains using specific Qwen pretrained models. In contrast, our work
demonstrates for the first time that unsupervised elicitation algorithms can match or exceed human
supervision across pretrained models and a variety of crisp and fuzzy tasks — even including training
a general-purpose assistant.

Unsupervised elicitation can also be thought of as a special case of weak-to-strong generalization
(Burns et al., 2023; Hase et al., 2024): while they try to use weak human supervision to elicit strong
LMs, we seek to ignore the weak human supervision altogether.

C ILLUSTRATIVE EXAMPLE OF SCORING FUNCTION

A higher score indicates that the labels are more logically consistent and mutually predictable
according to the pre-trained base model.

To provide more intuition about how our scoring function works, consider a small dataset D consisting
of four examples:

x1: lying is more harmless than honesty
x2: honesty is more harmless than lying
x3: hacking unit tests is more harmless than writing correct code

x4: writing correct code is more harmless than hacking unit tests

Logical consistency constraints that A > B and B > A cannot both be True, so y1 # Y2, Y3 7 Y4.
According to the model’s understanding of the harmlessness concept, x2 and x4 are mutually
predictable, and yo = y4 = T'rue is more likely than yo = y4 = F'alse. So the label assignment
{False, True, False, True} achieves high mutual predictability and logical consistency, yielding a
high overall score.

D ADDITIONAL IMPLEMENTATION DETAILS

D.1 HYPERPARAMETERS

We set the initial temperature Ty = 10, the final temperature T1,;, = 0.01, and the cooling rate
B = 0.99. For the coefficient o, we always start with o = 50. While a large « usually yields labels of
higher quality, it may excessively restrict the acceptance criteria, causing the algorithm to frequently
reject new labels. Therefore, we may adjust o to a smaller value (20 or 30) based on the search speed
on the training data, without reference to any validation data.

For many-shot prompting, we use as many examples as possible that can fit into the model’s context,
e.g., 160 examples for Alpaca. For fine-tuning, we train the model for 3 epochs. Specifically, for
Llama 8B, we do full parameter fine-tuning with a learning rate of le-5; for Llama 70B, we do LoRA
fine-tuning with a rank of 16 and a learning rate of Se-5.

D.2 DATA STATISTICS

Table 2 shows the size of train/test splits used for the experiments in Sec. 4.1.
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Table 2: Data size.

Dataset # Train  # Test
Truthful QA 2,560 1,000
GSMS8K-verification 2,560 2,971
Alpaca 2,048 933

E ADDITIONAL BASELINES

In this section, we compare ICM to several additional baselines.

E.1 DISTILLATION

We use zero-shot prompting with commericial LMs to generate labels and train models. Note that
this baseline has unfair advantages in paramter size and access to external supervision (since these
commercial LMs are heavily post-trained on human labels).

Specifically, following prior work (Huang et al., 2022; Prasad et al., 2024; Jiao et al., 2024), for each
example, we use GPT-4o to sample K = 10 labels and do majority-voting to decide the final label.
We then fine-tune Llama models on these labels. We show the results in Table 3.

On all benchmarks, fine-tuning on GPT-40 generated labels underperforms our unsupervised algo-
rithm. In particular, on Alpaca, it achieves similar performance to fine-tuning on real human labels,
potentially suggesting that commericial post-trained models’ capability in judging helpfulness and
harmlessness is bottlenecked by its post-training human data.

Table 3: Our unsupervised algorithm that is solely based on Llama models outperforms model
distillation from GPT-4o.

Benchmark Method Accuracy
Golden Label 78.14+0.5
GSMSK GPT-40 generated label 75.1 0.7
Ours 77.0£0.8
Golden Label 92.0£1.0
Truthful QA GPT-40 generated label 81.9 + 1.6
Ours 90.9£0.6
Human Label 65.5 £ 0.6
Alpaca GPT-40 generated label 65.2 + 0.5
Ours 68.0 = 0.7
Golden Label 80.5£0.3
Gender Prediction GPT-40 generated label 77.0 £ 0.0
Ours 79.7+ 0.4

E.2 CCS

For each benchmark, we train a linear probe on model activations using CCS (Burns et al., 2022) with
the same hyperparameters as in the original paper. Because the CCS loss function does not specify
which probe direction corresponds to true or false, we report the maximum accuracy between the two
possible directions for each dataset, as in (Burns et al., 2022).

As shown in Table 4, on three benchmarks, ICM outperforms CCS by a large margin.

The performance of CCS is also sensitive to the layer from which activations are taken. We show the
benchmark performance for different layers in Figurel 1.
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Table 4: Our unsupervised algorithm outperforms CCS by a large margin. For each benchmark, we
report the maximum CCS probe accuracy across layers and between the two possible probe directions.

Benchmark Method Accuracy
CCS 67.0 £0.001

GSMSK Ours 77.0+0.8
CCS 63.0 4+ 0.001
TruthfulQA  Ours 90.9+ 0.6
CCS 53.0 £ 0.003
Alpaca Ours 68.0 = 0.7
100 GSM8K-verification 100 TruthfulQA 100 Alpaca
g 80 g 80 g 80
“ //{\/ ) \!\I/\/’\\/\/< . e

2 8 14 20 26 32 2 8 1420 26 32 38 44 50 56 62 63 74 80 2 8 1420 26 32 38 44 50 56 62 68 74 80
Llama 8B layer Llama 70B layer Llama 70B layer

Figure 11: CCS probe performance varies significantly by layer. We report the maximum CCS probe
accuracy between the two possible probe directions.

F CoMPUTE COSTS
ICM is one form of inference-time scaling. We thus investigate how many iterations we need to label
each datapoint on average. Specifically, we report the statistics based on labeling n = 128 datapoints.

As shown in Table 5, ICM often requires 2 to 3 iterations to label each datapoint.

Table 5: The average number of iterations required to label each datapoint with ICM.

Dataset Avg. # Iteration
Truthful QA 25
GSMS8K-verification 39
Alpaca 2.0

G SCALABLE ICM

Our algorithm 1 has two scalability limitations. First, it measures mutual predictability with in-context
learning and thus requires all labeled examples to fit in the model’s context window. However, for
production assitant training data, each example could take thousands of tokens. Second, it sequentially
labels one example at a time, which is inefficient. To overcome these limitations, we propose a
scalable variant of ICM (Algorithm 3): it uses fine-tuning to measure mutual predictability, and
labels examples in parallel batches.

Measure mutual predictability. First, to overcome the context window limitation, we replace
in-context learning with fine-tuning. However, since mutual predictability is based on the probability
of each label conditioned on all other | D| — 1 labels, measuring it directly would require fine-tuning
| D| individual models, which is expensive as we scale up D. To improve efficiency, we approximate
conditioning on all but one label with conditioning on all but a few labels. This allows multiple labels
to share the same set of conditioned examples, and thus the same fine-tuned model when measuring
mutual predictabilility.
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Algorithm 3 Scalable Internal Coherence Maximization

Require: Unlabeled Dataset Duniavel = {; }. Labeled Dataset D = (). Pretrained model . Number of folds F'.
Number of iterations G.
Ensure: Labeled Dataset {z;, y; }.
1: Label Dyniaber With 0: D <— 0( Dyniabel )- > Initialize
2: D + consistencyfixmaxprob(D) > Resolve initial inconsistencies via Alg. 4
3:forg=1,--- ,Gdo

4 Partition D randomly into F disjoint folds { D} such that consistency groups remain in the same fold.
5 for f=1,---,Fdo
6: 0 < Train(d, D \ Dy).
7: Relabel Dy = 6;(Dy). > Increase mutual predictability
8: Dj = consistencyfixmaxprob(Dy). > Resolve relabeling inconsistency
9: end for .
10: Merge new labels from different folds: D + | ¢ Ds. > Update labels
11: Train 6 on updated labels: 6 < Train(6, D).
12: end for

Algorithm 4 ConsistencyFix-MaxProb

Require: Labeled Dataset D. Pretrained model 6. Consistency groups {C) }, which is a partition of D.
Ensure: Updated Labeled Dataset D.

1: for j do

2: (z*,y") = argmax(q,,y,)ec; Po(yi | ©:) > Most confident prediction
3 for (z;,y:) € C; do

4: 9i = arg maxy c(xi,y,x",y") > Enforce consistency
5: D(—DU{(ZL’“@,)}

6 end for

7: end for

Specifically, we randomly partition D into F' disjoint subsets, i.e., D = UD,--- Dp. Let t; denote
the subset that (z;, ;) belongs to. We approximate Py (y;|z;, D \ (x;,y;)) with Py(y;|x;, D\ Dy,).

To search for mutually predictable labels, for each fold D, we train one model on D \ D + and use it
to relabel examples in Dy. In this way, searching for mutually predictable labels only needs | D|/F'
finetuning runs (parallel) and | D| parallel zero-shot inference.

Enforce logical consistency. Algorithm 1 fixes inconsistency by assigning the consistent labeling that
achieves highest scores, i.e., maximizing mutual predictability and consistency. However, measuring
the mutual predictability for every consistent labeling is expensive: it requires separate fine-tuning on
each consistent labeling. We introduce a simpler algorithm to fix inconsistency. For each consistency
group, it first identifies the examples where the model’s prediction is most confident, and then adjusts
the labels on other examples in the same consistency group to be consistent with it (Algorithm 4).

H EVALUATION RESULTS OF CLAUDE 4 SONNET REWARD MODELS

We experiment with Claude 3.5 Haiku and Claude 4 Sonnet to study how ICM scales with model
size, and experiment with training on 512 and 5K preference pairs to study how ICM scales with
unlabeled data size. As baselines, we train human-supervised RMs with the same models on the same
data but with production-grade human labels.

We evaluate reward models (RMs) on Rewardbench (Lambert et al., 2024). Results are shown in
Figure 12. ICM scales well with model sizes: the average performance on RewardBench increases
from 0.63 to 0.74 when training on 512 examples, from 0.69 to 0.79 when training on 5K examples.

Comparing our unsupervised algorithm with human supervision, we have the following findings.

In a low-data regime where human labels are too expensive to collect’, ICM outperforms human
supervision by a large margin. For example, our unsupervised RM trained on 5K unlabeled data

3We are particularly interested in eliciting capabilites on these challenging tasks in this paper, as using Als to
assist humans on these tasks would be highly valuable.
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outperforms training on 512 human labels by 15.2% with Claude 3.5 Haiku, and by 6% with Claude
4 Sonnet on average. Note that unsupervised algorithm can be trained on unlimited amount (>> 5K)
of unlabeled data, so the performance gain is likely to further improve.

If collecting thousands of human labels is plausible, results depend on model capabilities. For weak
models like Claude 3.5 Haiku, ICM can slightly outperform training with human supervision. How-
ever, for strong models like Claude 4 Sonnet, ICM underpeforms training with human supervision
on average. Taking a closer look at the comparison results across each test set, we find that on two
challenging test sets (Chat-hard and Math-debiased), while most RMs achieve near-random accuracy,
the Claude 4 Sonnet-based RM trained on 5K human labels achieve a substantially higher accuracy
of 0.66. Overall, since the performance of unsupervised algorithms would be bottlenecked by LMs’
existing latent capababilities, it is unsurprising that unsupervised algorithms would underpeform
training on high-quality external labels in certain cases (e.g. on crisp tasks like mathematical reason-
ing). However. for future LMs that have broad superhuman capabilities on our interested tasks, we
still expect unsupervised algorithms to beat human supervision baselines.

= Human-Supervised
I Unsupervised

Chat Chat Hard Math-Debiased

0.96 0.96 0.97 0.97 1.0 1.0
=

1.0 0.93 0.94
=

0.50 0.51 0.50 °§3 0.52 0.52

Accuracy
Accuracy
Accuracy

. .0
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512 5k 512 5k 512 5k 512 5k 512 5k 512 5k

Code Safety Average
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Figure 12: Evaluating the accuracy of reward models on RewardBench. Unsupervised RM is trained
with our algorithm, while the human-supervised RM is trained with production-grade human labels.

I HUMAN ANNOTATION

In Sec. 4.3, we study an author gender prediction task. To establish a human baseline, we recruit 5
annotators from upwork . com, who are all native speakers with extensive experience in reading and
writing. Given two blog posts, the annotator is required to review them and select which one is more
likely to be written by a male. Overall, we collect 5 human labels for each example.

J DISCUSSION: DATA CONTAMINATION

While we cannot directly check data contamination since we don’t have access to Llama pre-training
corpus, there are several pieces of evidence that make data contamination less worrying.

1. As shown in Figure 3, the zero-shot performance of Llama base models are close to randomly
guessing (e.g. 60% on TruthfulQA, 50% on ALpaca, and 48% on GSM8K)
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2. We reformat GSMS8K and Truthful QA into classification tasks, which is differnt from the
original data.

3. Most of our experiments are based on llama models. show that while Qwen models have
serious data leakage issue that make even optimizing with random rewards increases their
performance on benchmarks, Llama models do not.

4. In Sec. 4.4, the production assistant training data is not involved in the pre-training corpus
of Claude 4 Sonnet.
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