
Contamination-Resilient Anomaly Detection via Adversarial Learning on
Partially-Observed Normal and Anomalous Data

Wenxi Lv 1 Qinliang Su 1 2 Hai Wan 1 Hongteng Xu 3 Wenchao Xu 4

Abstract
Many existing anomaly detection methods assume
the availability of a large-scale normal dataset.
But for many applications, limited by resources,
removing all anomalous samples from a large un-
labeled dataset is unrealistic, resulting in contam-
inated datasets. To detect anomalies accurately
under such scenarios, from the probabilistic per-
spective, the key question becomes how to learn
the normal-data distribution from a contaminated
dataset. To this end, we propose to collect two
additional small datasets that are comprised of
partially-observed normal and anomaly samples,
and then use them to help learn the distribution
under an adversarial learning scheme. We prove
that under some mild conditions, the proposed
method is able to learn the correct normal-data
distribution. Then, we consider the overfitting
issue caused by the small size of the two addi-
tional datasets, and a correctness-guaranteed flip-
ping mechanism is further developed to alleviate
it. Theoretical results under incomplete observed
anomaly types are also presented. Extensive ex-
perimental results demonstrate that our method
outperforms representative baselines when detect-
ing anomalies under contaminated datasets.

1. Introduction
Anomalies are deemed as the instances that look consider-
ably different from the majority ones. Anomalies in real-
world applications are generally very diverse and could even
have countless types (Ruff et al., 2021). The task of anomaly

1School of Computer Science and Engineering, Sun Yat-sen
University, Guangzhou, China. 2Guangdong Key Laboratory of
Big Data Analysis and Processing, Guangzhou, China. 3Gaoling
School of Artifical Intelligence, Renmin University of China, Bei-
jing, China. 4Department of Computing, The Hong Kong Poly-
technic University, Hong Kong SAR. Correspondence to: Qinliang
Su <suqliang@mail.sysu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

detection is to identify the diverse exceptional samples from
normal ones. With the capability of discovering various
kinds of anomalous samples, anomaly detection has been
successfully applied to many different fields like disease
diagnosis, industrial defect detection, cyber-crimes defense,
financial fraud detection, etc (Chandola et al., 2009). Due
to the difficulties of collecting anomalies for their diversity
and rarity in practical applications, many existing works are
established on the availability of only a clean normal dataset,
without needing to access any anomalous samples. Under
this assumption, these methods first leverage the normal
samples to learn the normality of data and then leverage it
to determine whether a testing sample is anomalous. Typ-
ical examples include the well-known one-class classifier
method (Ruff et al., 2018), reconstruction methods (Ak-
cay et al., 2018; Gong et al., 2019) and the self-supervised
methods (Qiu et al., 2021; Shenkar & Wolf, 2022) etc.

However, for many application scenarios, assuming the
availability of a large normal dataset is also unrealistic.
What we often have is a contaminated dataset that is com-
posed of both normal and anomalous samples. Contami-
nated datasets could arise for many reasons, e.g., no labeling
or a coarse screening which only removes some obvious
anomalies due to limited labor or expertise resources. To
alleviate the detrimental impacts caused by the contamina-
tion samples (i.e., anomalies), it is proposed in (Zhou &
Paffenroth, 2017; Lai et al., 2020) to combine robust PCA
or robust projection with the normal-sample-based methods
to improve their contamination robustness. But due to the
intricate patterns of anomalies, it is often observed that the
improvement brought by these methods is limited. Later,
some works proposed to first pseudo-label some easy anoma-
lies in the contaminated dataset and then remove them from
the dataset to boost the detection accuracy (Qiu et al., 2022;
Kim et al., 2023). However, this type of pseudo-labeling
methods heavily rely on the accuracy of pseudo-labels, and
the labeling error could be accumulated into the subsequent
stages, thereby affecting their overall performance.

Instead of only leveraging the contaminated dataset, some
recent methods have proposed to further collect a small num-
ber of anomalous samples to help recognize the anomalies.
But due to the diversity nature of anomalies, the collected
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anomalies may only cover a subset of all possible types,
which distinguishes the anomaly detection problem from
the classical classification tasks. To make use of the col-
lected anomalies, Deep SAD (Ruff et al., 2020) proposed
to learn a hyper-sphere that explicitly forces the collected
anomalies to locate outside of it, while FeaWAD (Zhou et al.,
2021) proposed to directly increase their anomaly scores. In
(Tian et al., 2022), an anomaly-aware generative adversarial
network (GAN) is developed, which can explicitly avoid to
assign probabilities to the collected anomalies and thus can
be used to detect anomalies under contaminated scenarios.
Recently, (Pang et al., 2023) proposed to construct three
different types of pairs with the contaminated dataset and
collected anomalies, and then use the pairs to train an ordi-
nal regression model to output different scores for different
types of pairs, with the scores later used for detection of
anomalies. Despite remarkable gains have been observed,
only one extra dataset (i.e., the anomaly dataset) is leveraged
in these methods. But for many applications, in addition
to anomalous samples, it is also possible to obtain a small
amount of normal samples, e.g., hiring domain experts to
identify some normal samples from a large unlabeled dataset.
Obviously, it is beneficial to further exploit the additional
normal dataset for better anomaly detection. In addition, due
to the high cost of collecting normal and anomalous sam-
ples, the collected normal and anomaly datasets are often
small, probably comprised of tens or hundreds of samples at
most. However, existing works rarely take into account the
overfitting issue caused by the small size of these datasets.

In this paper, we propose to learn the distribution of normal
samples based on the contaminated dataset and two small
clean datasets, and then leverage the distribution model to
detect anomalies. Specifically, we first develop a GAN that
can make use of the three available datasets and prove that
it can converge to the distribution of normal samples. Then,
a mechanism, which randomly flips the samples between
normal and anomaly datasets by some probability, is further
developed to prevent the discriminator of GAN from easily
overfitting to the small number of normal and anomalous
samples. It is proved that even with the introducing of the
flipping mechanism, the convergence of the proposed GAN
is still guaranteed. In addition, we further show that when
the anomaly dataset does not cover all possible anomaly
types, even though the proposed GAN cannot recover the
distribution of normal samples anymore, it can still mit-
igate the negative influence from contamination samples
of observed types, while strengthening the contributions
from normal samples in the contaminated dataset. To detect
anomalies efficiently, we extend the proposed GANs to the
bidirectional paradigm and then use the combination of the
reconstruction error and the norm of latent representations
to serve as the final detection criteria. Extensive experimen-
tal results on both toy and real-world datasets demonstrate

the proposed method can effectively exploit the collected
normal and anomalous samples even if their number is small
and achieve better performance than comparable baselines
under the contamination scenarios.

2. Related Work
Due to the rarity of anomalous data, many existing anomaly
detection methods assume that the available dataset only
contains normal data. One typical paradigm is to train a deep
generative model to reconstruct the normal data and the re-
construction error is used to identify anomalies (Gong et al.,
2019; Akcay et al., 2018). Another paradigm is to learn a
one-class classification model to describe the normality of
the training dataset (Schölkopf et al., 1999; Tax & Duin,
2004; Ruff et al., 2018). Self-supervised and contrastive
learning methods are also explored to detect anomalies by
predicting the type of data transformation or maximizing
the relevance between different segments of normal sam-
ples (Qiu et al., 2021; Shenkar & Wolf, 2022; Xu et al.,
2023c). However, the assumption of the availability of a
large clean normal dataset may not hold in practice and
the performance of these methods shows degradation when
trained on contaminated datasets.

To mitigate the negative influence of contamination in the
training dataset, (Zhou & Paffenroth, 2017; Lai et al., 2020)
proposed normality-based methods with robust PCA or ro-
bust projection which mitigate the negative impact of con-
tamination, while (Qiu et al., 2022; Kim et al., 2023) try
to remove the contamination from training dataset through
pseudo-labeling on it first. But all of these methods do not
make use of the collected anomalous data. To leverage the
collected anomalies, one strategy is to leverage collected
anomalies to learn a better description of normality. Deep
SAD (Ruff et al., 2020) proposed to learn a hyper-sphere
that explicitly forces the collected anomalies driven far away
from it. Differently, several recent works have proposed to
develop new GANs to better characterize the distribution
of normal data by equipping it with the ability of perceiv-
ing and leveraging the collected anomalies in (Sinha et al.,
2021; Tian et al., 2022; Su et al., 2024). In line with these
works, we also notice that beyond the anomaly detection
task, there are some efforts that simply attempt to learn a
clean distribution from contaminated data by making use
of auxiliary datasets (Katz-Samuels et al., 2019; Vander-
meulen et al., 2020; Tian et al., 2023). Another strategy to
make use of the collected anomalies is to train a scoring net-
work to distinguish normal and anomalous data. FeaWAD
(Zhou et al., 2021) proposed to train an anomaly scoring
network to directly assign high scores to collected anoma-
lies. PReNet (Pang et al., 2023) trains an ordinal regression
model to output different scores for three types of pairs
constructed with the contaminated dataset and collected
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anomalies. Recently, to improve the accuracy of pseudo-
labeling, (Li et al., 2023) leverages collected anomalies to
guide the model pseudo-labeling on the contaminated train-
ing dataset. Despite remarkable gains have been observed,
in all of the current methods, only one extra dataset (i.e., the
anomaly dataset) is leveraged. For many applications, in
addition to anomalous samples, it is also possible to obtain a
small amount of normal samples. Obviously, it is beneficial
to further exploit the additional normal dataset for better
anomaly detection. Moreover, since the size of additionally
collected normal and anomaly datasets are very small due to
the constraints from limited resources, existing works rarely
take the overfitting issue caused by them into account.

3. Method
3.1. Problem Formulation

To describe the problem, we first assume the availability of
a contaminated dataset

X = {x1,x2, . . .xN},

which contains both normal and anomalous samples. We can
consider the elements in X come from the data distribution
pdata(x), which is a mixture distribution of the form

pdata(x) = πp+(x) + (1− π)p−(x), (1)

where p+(x) and p−(x) denote the distributions of normal
and anomalous samples, respectively; and π stands for the
proportion of normal samples in the contaminated dataset X .
Moreover, we also assume the availability of a pure normal
dataset X+ and a pure anomaly dataset X−, that is,

X+ = {x+
1 ,x

+
2 , . . .x

+
M}, X− = {x−

1 ,x
−
2 , . . .x

−
K},

where the normal samples x+
m and anomalous samples x−

k

are drawn from p+(x) and p−(x), respectively. Considering
the difficulties of collecting normal and anomalous samples
in practice, we generally think that the number of collected
normal and anomalous samples M and K is much smaller
than N . In this paper, our goal is to first learn the distribution
of normal data p+(x) based on the contaminated dataset
X and the two small clean datasets X+ and X− under the
GAN framework, and then leverage the GAN that only
models normal samples to detect anomalies.

3.2. Learning Normal-data Distribution from the
Contaminated Dataset

It is known that training different GANs amounts to min-
imizing different types of distribution divergence, such as
vanilla GAN (Goodfellow et al., 2014) corresponding to
the Jensen-Shannon (JS) divergence, least-squared GAN
(LSGAN) corresponding to the Pearson χ2 divergence. It is

also known that many widely used divergences like the JS,
Pearson χ2, KL, Reverse KL divergences, can be seen as a
special case of the f -divergence. Thus, before delving into
how to leverage the contaminated dataset to learn the dis-
tribution of normal samples, we first introduce the general
form of f -divergence

Df (P (x)||Q(x)) =

∫
X

Q(x)f

(
P (x)

Q(x)

)
dx, (2)

where P (x) and Q(x) are two probability distributions; and
f : R+ → R could be any convex and semi-continuous
function with f(1) = 0. By setting the function f(·) to
different forms, specific divergence can be induced. For
examples, the KL, reverse KL and Pearson χ2 divergences
correspond to setting f(u) = u log u, f(u) = − log u and
f(u) = (u− 1)2, respectively (Nowozin et al., 2016).

To learn the normal-data distribution with the available
datasets X , X+ and X−, we propose to define the P (x)
and Q(x) as follows

P (x) = (1− λ)pdata(x) + λp+(x), (3)

Q(x) = (1− β)pg(x) + βp−(x), (4)

where pg(x) stands for the generation distribution induced
by a neural network generator; and λ, β ∈ [0, 1] denote
the weights of the distributions of normal and anomalous
samples. When λ and β are set closer to 1, it means more
emphasis is put on the collected clean datasets X+ and X−.
It should be noted that in P (x) and Q(x), only the distribu-
tion pg(x) is trainable, while all other distributions are fixed.
Thus, when minimizing the f -divergence between P (x) and
Q(x), only pg(x) is changeable. Actually, it can be proved
that when minimizing the f -divergence between P (x) and
Q(x) in (3) and (4), under some mild conditions, the gen-
eration distribution pg(x) will converge to the normal-data
distribution p+(x).

Theorem 3.1. If Supp(p+(x)) ∩ Supp(p−(x)) =
∅ and β > (1 − λ)(1 − π) hold, as the function f(·) is
set as f(·) = (u− 1)2 or − log u, we have

arg min
pg(x)

Df (P ||Q) = p+(x), (5)

where Supp(·) denotes the support of a distribution.

To understand the theorem, we substitute pdata(x) =
πp+(x) + (1− π)p−(x) into P (x) in (3), yielding

P (x)=((1− λ)π + λ)p+(x)+(1−λ)(1−π)p−(x). (6)

Comparing the P (x) with Q(x) = (1−β)pg(x)+βp−(x),
we can see that the condition β > (1−λ)(1−π) in Theorem
3.1 is equivalent to ensure the ratio of p−(x) in Q(x) is
larger than that in P (x) in (6). Thus, by further taking into
account the condition of disjoint support between p+(x)
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and p−(x), we can see that under the condition β > (1 −
λ)(1−π), the trainable pg(x) will not attempt to allocate any
probabilities on the support of p−(x), but instead directly
equals to p+(x) so that the divergence between P (x) and
Q(x) can be minimized. The rigorous proof can be found
in the Appendix A.

Under the setting f(·) = (u − 1)2, as we minimize the f -
divergence Df (P ||Q), it is known that we are actually mini-
mizing the Pearson χ2 divergence between P (x) and Q(x).
As revealed in (Mao et al., 2017), minimizing the Pearson
χ2 divergence between two distributions can be achieved
via the least-squared GAN, which employs the least-squared
loss, instead of the commonly-used cross-entropy loss, to
train the discriminator and generator. Specifically, to min-
imize the Pearson χ2 divergence, we can optimize the fol-
lowing two sub-problems alternatively

min
D

V (D)=EP (x)[(D(x)−1)2]+EQ(x)[(D(x)−0)
2
], (7)

min
G

V (G)= EQ(x)[(D(x)− 0.5)
2
], (8)

where D and G denote the discriminator and generator,
respectively. Substituting P (x) in (3) and Q(x) in (4) into
the above V (D) and V (G) gives

min
D

V (D) =(1− λ)Ex∼pdata(x)[(D(x)− 1)2]

+ λEx∼p+(x)[(D(x)− 1)2]

+ (1− β)Ex∼pg(x)[(D(x)− 0)2]

+ βEx∼p−(x)[(D(x)− 0)2],

(9)

min
G

V (G) =(1− β)Ex∼pg(x)[(D(x)− 0.5)2]

+ βEx∼p−(x)[(D(x)− 0.5)2],
(10)

in which the expectation E[·] w.r.t. pdata(x), p+(x), p−(x)
and pg(x) can be approximately evaluated with samples
from X , X+, X− and the generated samples, respectively.
Therefore, the Pearson χ2 divergence between P (x) and
Q(x) can be minimized by solving the optimization prob-
lems (9) and (10) alternatively. After convergence, it is
known from Theorem 3.1 that the generation distribution
pg(x) will equal to the normal-data distribution p+(x).

3.3. Alleviating the Overfitting Caused by the Small Size
of Normal and Anomaly Datasets

As discussed before, the clean normal and anomaly datasets
X+ and X− are generally very small. Consequently, as we
use (9) to train the discriminator D, it may easily memorize
them and directly output 1 for samples from X+ and 0
for samples from X−. To alleviate the overfitting issue,
our basic idea is to prevent the discriminator from easily
memorizing the samples in X+ and X−. To this end, we

propose to modify the P (x) and Q(x) as

P̃ (x)=(1−γ)[(1−λ)pdata(x)+λp+(x)]+γp−(x), (11)

Q̃(x)=(1−γ)[(1−β)pg(x)+βp−(x)]+γp+(x), (12)

where γ ∈ [0, 1] indicates the flipping probability. Before
explaining the implications of the modification, we first
present the theoretical result that when we minimize the
f -divergence between the modified P̃ (x) and Q̃(x), under
some mild conditions, the generation distribution pg(x) can
still converge to the normal-data distribution p+(x).

Theorem 3.2. If Supp(p+(x)) ∩ Supp(p−(x)) = ∅ and
(1 − γ)β > (1 − λ)(1 − π) + γ hold, as the function
f(·) is set as f(·) = (u − 1)2 or − log u, we have
arg min

pg(x)
Df (P̃ ||Q̃) = p+(x).

The theorem can be understood in a similar way as Theorem
3.1. That is, by substituting pdata(x) = πp+(x) + (1 −
π)p−(x) into P̃ (x) in (11), we obtain

P̃ (x) =(1− γ)((1− λ)π + λ)p+(x)

+ ((1− λ)(1− π) + γ) p−(x). (13)

Comparing the coefficient of p−(x) in (13) with that in
Q̃(x) in (12), we can see that the condition (1 − γ)β >
(1−λ)(1−π)+γ is equivalent to ensure the ratio of p−(x)
in Q̃(x) is larger than that in P̃ (x). Thus, given the disjoint
support condition Supp(p+(x)) ∩ Supp(p−(x)) = ∅, the
trainable distribution pg(x) will not assign any probabilities
on the support of p−(x), but directly equals to p+(x). The
rigorous proof is provided in the Appendix B.

As the function f(·) is set as (u − 1)2, the f -divergence
is reduced to the Pearson divergence. Thus, we can resort
to the LSGAN to minimize the f -divergence by solving
the two sub-problems (7) and (8), except replacing P (x)
and Q(x) with the modified distributions P̃ (x) and Q̃(x).
To see why the modified P̃ (x) and Q̃(x) can alleviate the
overfitting issue, we substitute the P̃ (x) in (11) and Q̃(x)
in (12) into the V (D) in (7), yielding

min
D

V (D) =(1−γ)(1−λ)Ex∼pdata(x)[(D(x)−1)2]

+ (1− γ)λEx∼p+(x)[(D(x)− 1)2]

+ γEx∼p−(x)[(D(x)− 1)2]

+(1−γ)(1−β)Ex∼pg(x)[(D(x)−0)2]

+ (1− γ)βEx∼p−(x)[(D(x)− 0)2]

+ γEx∼p+(x)[(D(x)− 0)2],

(14)

where the expectation E[·] w.r.t. pdata(x), p+(x), p−(x)
and pg(x) are estimated with samples from X , X+, X−

and the generated samples, respectively. Comparing the
objective function (14) to the original objective (9), we can
see that instead of simply forcing the discriminator to output
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1 for samples from X+ and 0 for samples from X−, we will
randomly select some samples from the anomaly dataset
X− with a probability γ and then require the discriminator
to output 1 for them. The same also applies to the out-
put value of 0. Obviously, the randomly selected samples
can somehow confuse the discriminator, making it harder
to memorize what to output for samples in X+ and X−,
thereby alleviating the overfitting issue. More importantly,
despite the flipping mechanism is introduced, pg(x) can still
converge to the normal-data distribution p+(x).

To ensure the satisfaction of condition (1 − γ)β > (1 −
λ)(1 − π) + γ in Theorem 3.2, the flipping probability γ
cannot be set too large. For example, we can set it to a
value like 0.05 or 0.1. But in practice, we find that the
model can work better if we can increase γ slightly if the
discriminator is deemed overfitting too much or decrease it
otherwise. Therefore, we propose to adaptively adjust the
value of γ according to the estimated overfitting degree of
discriminator as follows

γ =


1 if γ ≥ 1

γ +∆γ if γ < 1 and So > τ

γ −∆γ if γ > 0 and So ≤ τ

0 if γ ≤ 0,

(15)

where S0 is the estimated value that measures the degree
of overfitting; τ is the threshold to increase or decrease
γ, which is set to a value close to 1 in our experiments;
and ∆γ is the adjustment stepsize. In our experiments, we
estimate the overfitting degree using the difference between
the discriminator’s averaged output value for samples from
X+ and the averaged output value for samples from X−,
that is, we let S0 = Ex∼X+ [D(x)] − Ex∼X− [D(x)]. In
our experiments, only a proportion of samples are used to
estimate S0 for efficiency.

3.4. Considering X− only Covering Incomplete
Anomaly Types

So far, we assume the auxiliary anomaly dataset X− covers
all types of anomalies by default. But due to the diversity
nature of anomalous data in real-world applications, this
assumption may not hold. In this case, the anomaly dataset
X− may only represent a subset of all possible anomaly
types. To reflect this point, we assume the distribution of
the anomalous data is composed of two components

p−(x) = (1− α)p−u (x) + αp−c (x), (16)

where p−c (x) denotes the distribution of anomalies that are
observed in X−, while pu(x) represents the distribution
of anomalies unseen in the collected anomaly dataset X−;
and α ∈ [0, 1] indicates the proportion of the distribution
p−c (x). In this case, since we only the anomalous samples
drawn from p−c (x) are observed, we propose to modify the

distribution P (x) and Q(x) as following form

P̃ (x)=(1−γ)[(1−λ)pdata(x)+λp+(x)]+γp−c (x), (17)

Q̃(x)=(1−γ)[(1−β)pg(x)+βp−c (x)]+γp+(x), (18)

in which only the distribution of anomalies from observed
types p−c (x) is used. When minimizing the f-divergence
between P̃ (x) and Q̃(x), we have the following theorem.

Theorem 3.3. Denote κ1 = (1 − γ)(1 − λ)π + λ, κ2 =
(1−γ)(1−λ)(1−π)(1−α) and κ3 = (1 − γ)(1 − β) +
γ. If Supp(p+(x)) ∩ Supp(p−(x)) = ∅, Supp(p−u (x)) ∩
Supp(p−c (x)) = ∅, (1−γ)(1−α+β+απ+αλ−αλπ) > 1
and κ1κ3 > γ(κ1 + κ2) hold, as the function f(·) is set as
f(·) = (u− 1)2 or − log u, we have

argmin
pg(x)

Df (P̃ ||Q̃)=
κ1κ3 − γ(κ1 + κ2)

(1−γ)(1−β)(κ1+κ2)
p+(x)

+
κ2κ3

(1−γ)(1−β)(κ1+κ2)
p−u (x).

Please refer to Appendix C for the proof. From Theorem
3.3, we can see that under the scenario with incomplete col-
lected anomalies, the generation distribution pg(x) cannot
converge to normal-data distribution p+(x) anymore, but
instead to a mixture of p+(x) and p−u (x), which represents
the anomaly distribution of unobserved types. Therefore,
with the help of incomplete anomaly dataset X−, the model
can still mitigate the influence from anomalies of observed
types. Furthermore, if we increase the weight of normal
samples λ, due to κ2 = (1−γ)(1−λ)(1−π)(1−α), the coef-
ficient κ2κ3

(1−γ)(1−β)(κ1+κ2)
controlling the weighting of p−u (x)

will become small. Thus, although we cannot use X− to
mitigate the influence of anomalies from unobserved types,
we can still use the normal dataset X+ to dampen their in-
fluence in the final converged distribution pg(x). But due
to the small size of X+, the value of λ cannot be set as
large as we want. That is because this could easily result in
overfitting to these normal samples.

3.5. Detection Method

Despite our model is able to learn the distribution of normal
data (without considering the incompleteness of collected
anomalies), which implies that the anomalies will locate
at the low-density region, due to the high cost of directly
evaluating the density value, a surrogate metric is developed
to detect anomalies efficiently. To this end, we train our
proposed GAN under the paradigm of bidirectional GAN
(BiGAN) (Donahue et al., 2017; Li et al., 2017), which, in
addition to the generator, also includes an encoder E(·) to
encode samples into the latent space. Since the model can
capture the distribution of normal data, theoretically, the
reconstruction errors ||x−G(E(x))||22 on normal samples
should be small. Moreover, the latent representation E(x)
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of normal samples should follow a standard normal distribu-
tion, thus the norm ||E(x)||22 for normal samples should be
small, too. Thus, we can employ either of the two metrics
to detect anomalies. In this paper, we propose to compute
the anomaly score of a sample x by combining them in an
intuitive way as

S(x)=
||x−G(E(x))||22 − amin

amax − amin
+ ρ

||E(x)||22 − bmin

bmax − bmin
,

where ρ is a weight coefficient; amax and amin can be set as
the maximum and minimum value of ||x−G(E(x))||22 on
the validation set, respectively; the same applies to bmax and
bmin, which, however, is computed using ||E(x)||22. Using
this anomaly score, samples with higher scores, which imply
poor reconstruction and deviation from the prior distribution,
are more likely to be anomalies.

4. Experiments
4.1. Datasets and Settings

Datasets To control the number of anomaly types ob-
served in X−, we first experiment with four classification
datasets, as done in the previous semi/weakly-supervised
anomaly detection works (Ruff et al., 2020; Chen et al.,
2021; Tian et al., 2022). Specifically, we use three image
datasets (MNIST, F-MNIST and CIFAR10) and one textual
dataset (20newsgroups), in which the textual features are
extracted from a pre-trained BERT (Devlin et al., 2019) as
proposed in ADBench (Han et al., 2022). For more details
about the toy datasets, please refer to Appendix D.1. In addi-
tion, we also experiment with two real-world large anomaly
detection datasets (UNSW-NB15 and HAR), as well as other
nine classical anomaly detection datasets. For the UNSW-
NB15 dataset, we follow (Pang et al., 2023) to select the
Backdoor, DoS, Fuzzers and Reconnaissance anomaly types
to constitute the detection dataset. HAR is tabular data on
human activities. Following (Pang et al., 2021), we treat
going downstairs and upstairs activities as anomalies, while
viewing the other four activities as normal. For more details
about these datasets, please refer to Appendix D.2.

Training For the toy datasets, we treat samples from a
subset of categories as normal data, while viewing samples
from the left categories as anomalies. To obtain the con-
taminated dataset X , we randomly select a proportion of ϵp
samples from the anomaly categories and mix them with the
normal data, where ϵp denotes the ratio between the number
of selected anomalies and the total number in X . The clean
normal dataset X+ is comprised of samples randomly se-
lected from all normal categories. But to mimic the situation
that we are unable to collect all types of anomalies due to
the diversity nature of anomalies, the anomaly dataset X− is
constructed by only selecting some samples from one of the

anomaly categories randomly. The size of X+ and X− are
controlled by the parameters ϵn and ϵa, which are defined
in a similar way as ϵp. Unless specified otherwise, in our
experiments on toy datasets, the three parameters ϵp, ϵn and
ϵa are set as 20%, 5% and 1%, respectively. More normal
samples are used here because they are generally considered
to be easier to collect than anomalies in practice. As for the
datasets UNSW-NB15 and HAR, the three datasets X , X+

and X− are constructed in the same way as toy datasets. But
since these datasets contain normal and anomalous samples
by themselves, we do not need to manually specify which
categories are normal and which are abnormal. For the two
datasets, due to the scarcity of available anomalies, when
constructing the contaminated dataset X , the contamina-
tion ratio ϵp is only set to 5% and 10%, respectively, while
ϵn and ϵa are set the same as toy datasets. For each of
these datasets, a validation dataset is built to help find the
appropriate values for hyper-parameters1.

Evaluation We train the model for every anomaly type
that is observed in X−, and the averaged performance on
the testing dataset is then reported. In our paper, following
the previous works (Ruff et al., 2020; Tian et al., 2022),
the area under the receiver operating characteristic curve
(AUROC) is employed as the performance criterion. Please
refer to the Appendix E for more training details.

4.2. Baseline

For comparison, two unsupervised methods and two self-
supervised methods are used: Deep SVDD (Ruff et al.,
2018), Deep Isolation Forest (Xu et al., 2023a), Scale
Learning for Anomaly Detection (SLAD) (Xu et al., 2023c),
Internal Contrastive Learning (ICL) (Shenkar & Wolf,
2022). In addition, since auxiliary datasets are used in
our methods, we also compare with five semi-supervised
methods that all make use of an extra clean anomaly dataset:
Deep SAD (Ruff et al., 2020), FeaWAD (Zhou et al., 2021),
RoSAS (Xu et al., 2023b), PReNet (Pang et al., 2023),
AA-BiGAN (Tian et al., 2022), SOEL(Li et al., 2023).

4.3. Performance and Analyses

Performance on Datasets with Diverse Normal Data In
the experiments of previous weakly/semi-supervised de-
tection methods on toy datasets, the normal data is often
assumed to be comprised of only one type of samples (Ruff
et al., 2020; Tian et al., 2022; Jiang et al., 2023). However,
we think this setting may not be very reasonable since nor-
mal data could be more diverse than this. Thus, we first
explore the performance of our method and the baselines
when the normal data is comprised of different number of

1The code is available at https://github.com/
Vanssssry/CR-GAN.
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Table 1. AUROC performance under different numbers of normal types contained in the training dataset X . ϵp is set as 20% here.

Dataset K
Deep DIF SLAD ICL Deep Fea Ro AA-Bi OursSVDD SAD WAD SAS GAN

MNIST
1 69.7 68.6 88.8 88.5 86.6 70.7 75.2 90.8 93.7
3 65.7 56.2 74.8 71.3 70.3 66.5 72.8 82.4 90.6
5 58.7 52.9 55.6 58.7 63.6 56.1 59.4 73.7 83.5

FMNIST
1 69.3 70.8 82.1 84.3 80.8 76.4 73.3 90.2 91.1
3 62.1 69.8 79.2 80.3 71.0 66.5 67.6 80.7 85.2
5 61.3 65.2 78.9 83.6 69.8 61.7 62.0 88.7 90.0

CIFAR10
1 59.0 56.7 62.3 62.1 68.5 64.3 67.1 77.0 78.4
3 51.3 45.0 55.6 53.3 64.5 61.4 64.6 63.7 67.5
5 48.3 42.7 51.2 50.4 57.8 51.6 53.4 56.5 58.2

20NEWS
1 63.4 63.9 75.1 73.3 66.8 56.1 68.6 70.8 75.2
2 52.8 56.6 65.0 60.8 63.0 53.2 63.5 64.4 72.5
3 52.1 56.3 60.3 52.3 63.5 52.4 64.6 70.7 74.0

Table 2. AUROC under different sizes of the auxiliary dataset.

Dataset Size Deep Fea Ro AA-Bi OursSAD WAD SAS GAN

MNIST

10 65.1 64.9 55.8 75.1 87.4
20 65.9 65.2 58.1 76.9 87.9
30 66.5 64.8 58.2 78.0 90.1
50 67.8 65.3 59.1 80.8 91.4

FMNIST

10 73.1 51.2 54.5 80.6 84.2
20 73.2 52.1 55.6 81.3 85.4
30 72.6 53.7 56.1 82.7 86.1
50 72.8 54.0 56.8 83.0 86.5

CIFAR10

10 57.5 51.7 54.3 63.2 64.7
20 60.1 53.1 55.7 63.9 65.8
30 60.9 54.6 55.9 64.2 66.8
50 61.7 56.9 57.1 64.8 67.9

20NEWS

10 54.6 50.8 54.8 62.8 69.1
20 60.0 51.7 58.8 65.1 71.8
30 61.0 52.1 60.6 67.0 73.3
50 59.8 53.8 63.7 72.9 77.1

HAR

10 67.4 64.2 62.3 86.0 89.4
20 73.8 67.6 72.9 88.9 91.8
30 78.6 77.1 81.4 90.5 92.1
50 81.7 82.1 85.3 92.4 93.3

UNSW-NB15

10 64.5 82.3 65.8 79.0 83.1
20 69.1 82.4 67.5 81.8 84.8
30 73.0 83.1 69.1 82.6 85.0
50 74.2 83.6 71.3 82.7 85.3

categories. When the number of normal categories is set to
1, we follow exactly the same setting as previous work (Ruff
et al., 2020; Tian et al., 2022) to evaluate the performance.
When the number of normal categories is set to a value K
more than one, we view the first K categories as normal,
while viewing the remaining as anomalous. Table 1 shows
the performance of our method and baselines on four toy
datasets under different numbers of normal categories. It
can be seen from Table 1 that the performance of all meth-
ods decreases as the normal data becomes more diverse. But
thanks to the exploitation of a normal dataset, the results

(a) MNIST (b) Fashion-MNIST

Figure 1. AUROC performance under different numbers of col-
lected types in the clean anomalous dataset.

show that the performance of our method deteriorates more
slowly than the baselines, which makes our method more
suitable for practical scenarios. In practice, normal data
would not be as simple as comprised of just one category.
Thus, in our subsequent experiments on toy datasets, the
number of normal categories is always set to three.

Performance under Different Contamination Ratios To
study the performance of the proposed method under the
scenario with different contamination ratios, we have con-
ducted experiments with different ϵp. Table 3 demonstrates
the performance of different anomaly detection methods on
different datasets under different values of ϵp. It is worth
mentioning that due to the lack of anomalous samples in
HAR and UNSW-NB15 datasets, the contamination range
considered for these two datasets are smaller than other toy
datasets. From the table, it can be seen that the performance
of all anomaly detection methods decreases as the level of
contamination increases. But our approach drops slower
than other methods in all six datasets across. This suggests
that the introduction of two auxiliary datasets brings more
information into the modeling of normal data, thus effec-
tively resisting contamination in the training dataset.

Impact of the Number of Types of Collected Anoma-
lies The aforementioned experimental results all assume
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Table 3. AUROC under different ratios of contamination ϵp.

Dataset ϵp
Deep DIF SLAD ICL Deep Fea Ro AA-Bi OursSVDD SAD WAD SAS GAN

MNIST

0.05 71.3 57.1 84.8 85.1 75.6 73.1 81.8 89.5 94.9
0.1 69.7 58.7 81.2 82.8 73.7 68.9 76.7 86.8 93.0
0.2 65.8 56.2 74.8 71.4 70.4 66.5 72.9 82.5 90.6
0.3 63.8 54.9 67.7 63.8 67.5 63.1 69.1 79.9 87.8

FMNIST

0.05 63.5 71.7 83.4 85.8 77.9 69.0 71.0 83.5 88.0
0.1 62.5 70.3 80.4 85.0 74.7 67.2 68.4 83.0 86.1
0.2 61.5 69.8 79.2 84.3 71.0 66.5 67.6 80.7 85.2
0.3 59.8 68.6 78.1 83.5 68.3 63.2 64.3 80.1 84.6

CIFAR10

0.05 58.4 50.9 60.3 58.7 65.8 64.3 67.0 65.3 68.4
0.1 54.4 49.1 59.6 56.2 64.9 63.7 65.8 64.5 67.9
0.2 51.3 45.0 55.6 53.3 64.5 61.4 64.6 63.7 67.5
0.3 51.1 47.3 53.8 52.0 63.0 57.8 62.7 62.1 66.2

20NEWS

0.05 54.7 57.9 64.1 59.9 69.0 55.8 72.0 74.7 77.6
0.1 53.4 57.1 63.9 56.7 65.3 53.2 66.4 73.0 76.1
0.2 52.1 56.3 60.3 52.3 63.5 52.4 64.6 70.7 74.0
0.3 50.9 56.2 59.2 51.1 62.7 51.6 61.1 69.7 72.3

HAR

0.01 85.4 85.9 89.9 90.8 90.4 88.2 92.7 95.2 97.1
0.05 81.3 84.1 86.6 87.5 85.7 84.8 86.2 91.4 93.2
0.1 77.6 83.1 85.1 81.5 79.5 82.4 85.9 89.9 91.6
0.2 62.4 75.5 82.3 80.9 70.0 76.6 72.9 88.3 89.3

UNSW-NB15

0.025 65.5 75.8 75.4 72.9 87.5 83.7 85.6 88.8 93.8
0.05 63.2 74.8 71.3 66.5 87.3 82.4 84.0 88.0 92.7

0.075 60.6 73.4 67.3 58.2 84.7 81.5 83.2 84.0 92.0
0.1 58.4 71.8 65.5 54.8 82.3 80.6 79.3 83.6 91.7

Table 4. AUROC of our method under different γ.
Dataset γ = 0 γ = 0.05 γ = 0.1 Adaptive

MNIST 88.2 89.6 89.9 90.6
FMNIST 83.7 84.9 84.3 85.2
20NEWS 72.3 72.4 70.8 74.0
HAR 91.8 92.4 92.2 92.6
UNSW-NB15 90.0 92.1 92.4 92.7

the dataset X− is built from only one type of anomalous
data. Figure 1 shows that how the performance varies as the
number of types of collected anomalies varies from 1 to 4 on
MNIST and F-MNIST datasets. Obviously, as the number
of collected anomalous types increases, the performance of
all the methods improves, but our method remains the best
over all number of types considered.

Impact of the Number of Collected Samples To validate
the effectiveness of the proposed flipping mechanism, exper-
iments have been conducted with varying sizes of auxiliary
datasets. Table 2 shows that given a limited amount of col-
lected data, varying from 10 to 50, our method with the pro-
posed flipping mechanism outperforms other weakly/semi-
supervised methods. Specifically, the averaged performance
gains of our method over the best baseline in MNIST, FM-
NIST and 20NEW are 11.5%, 3.7% and 5.9% respectively.
This confirms that slightly flipping the labels to confuse the
discriminator can alleviate the overfitting issue of discrimi-

nator and thereby help the model exploit the small amount
of collected samples more effectively.

Impact of Flipping Probability γ We conduct experi-
ments under different fixed values of γ as well as adaptive
values adjusted according to (15). When γ is fixed at 0,
labels of two clean datasets will not flip at all. From Table
4, our method with the fixed γ = 0.05 achieves better per-
formance than the non-flipping one. We can also see that by
using the proposed adaptive probability adjusting scheme,
the best performance can be achieved. This indicates that
slightly flipping the labels of auxiliary datasets is helpful
when collected clean datasets are small. However, the fixed
γ should be set carefully to avoid the negative impacts.

Performance on Classical Anomaly Detection Datasets
Our method is also evaluated on nine other classic anomaly
detection datasets. Due to the scarcity of anomalous data
in these datasets, ϵa and ϵn both are fixed at 1%, and ϵp
is also fixed at 1% if anomalous data are adequacy. From
Table 5, we can see that our method achieves the best per-
formance on seven of the nine datasets, and the second-best
performance on the Shuttle dataset. This result indicates that
our method still works well without critical contamination,
demonstrating the competitiveness of our method.
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Table 5. AUROC on nine classic anomaly detection datasets.

Dataset Deep Fea Ro PRe AA-Bi SO OursSAD WAD SAS Net GAN EL

Arrhythmia 78.5 73.8 61.2 64.4 79.9 83.6 84.8
Cardio 96.1 73.9 91.7 90.7 97.6 95.7 99.4
Satellite 83.8 89.6 86.3 78.5 85.4 85.9 91.8
Satimage-2 96.0 99.9 99.2 99.1 99.7 99.7 99.9
Shuttle 99.4 97.9 98.6 99.1 99.0 99.7 99.5
Thyroid 99.6 65.6 99.6 96.2 99.1 99.1 99.6
Bank 75.5 61.1 89.8 62.6 87.5 89.9 90.7
Amazon 89.9 58.2 85.5 76.2 85.7 90.5 89.7
Yelp 90.5 55.9 92.2 79.0 89.3 91.3 92.6

Table 6. Ablation Study.

Dataset Additional Dataset Flipping AUROCLeveraging Mechanism

MNIST
× × 84.0
✓ × 88.2
✓ ✓ 90.6

FMNIST
× × 80.6
✓ × 83.7
✓ ✓ 85.2

Ablation Study We have further conducted an ablation
study to investigate the effectiveness of different modules in
the model, including the module using the additionally col-
lected normal and anomaly datasets and the module flipping
mechanism used to alleviate overfitting. From the Table
6, we can clearly observe that by using the additionally
collected normal and anomaly datasets, the performance
can be improved substantially. Furthermore, by using the
theoretically supported flipping mechanism, a further im-
provement can be observed due to the mechanism’s ability
to alleviate the overfitting problem caused by the small size
of the additional collected datasets.

Sensitivity Analysis of Parameter λ and β : From the
Theorem 3.2, the condition (1− γ)β > (1− λ)(1− π) + γ
should be fulfilled. To study the sensitivity of our model
to the parameters λ and β, we conduct experiments with
various values of λ and β. Table 7 shows that λ and β
could be roughly set in the range [0.6, 0.8] to better resist
the contamination.

Sensitivity Analysis of Parameter ρ To study the sen-
sitivity of our model to the parameter ρ used as a weight
coefficient in Eq.19, we conduct experiments with various
values of ρ. From the Table 8, we can see that the perfor-
mance of our method is quite robust to the choice of the
value of ρ. As long as it is chosen within the range [1, 8],
the performance does not have too much difference on the
considered datasets. In our experiments, we simply set it to
4 for all experiments.

Table 7. Sensitivity analysis w.r.t λ and β, where λ = β.
Dataset 0.2 0.4 0.6 0.8 0.9

MNIST 87.6 88.7 87.1 90.2 89.5
FMNIST 84.6 84.3 84.9 85.8 84.7
20NEWS 72.4 72.6 73.4 71.6 71.7
HAR 91.5 91.9 92.1 92.6 91.5
UNSW-NB15 92.3 92.0 92.7 92.6 92.6

Table 8. Sensitivity Analysis of ρ.
Dataset ρ = 1 ρ = 4 ρ = 8

MNIST 90.5 90.8 90.4
FMNIST 84.5 85.9 85.6
20news 70.3 74.0 73.7
HAR 91.5 91.7 91.0
UNSW-NB15 91.8 92.8 93.0

5. Conclusion
In this paper, we studied the problem of anomaly detection
when the training dataset is contaminated and the sizes of
available clean datasets are small. To alleviate the negative
impact of contamination in training datasets, a novel GANs,
which can exploit partially observed normal and anomalous
data, is developed to learn the normal-data distribution. We
theoretically prove that the proposed GANs can recover
the distribution of normal data from the distribution of con-
taminated dataset. Furthermore, we introduced a flipping
mechanism to alleviate the overfitting issue caused by the
small size of two clean datasets. The case that the observed
anomalous data only covers incomplete anomaly types is
considered and the proposed method can still mitigate the
influence of observed anomalies. Extensive experimental
results demonstrate that our method can effectively leverage
the observed normal and anomalous data and outperform
the comparable baselines on vast datasets.
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A. Proof of Theorem 3.1
Theorem A.1. If Supp(p+(x)) ∩ Supp(p−(x)) = ∅ and β > (1 − λ)(1 − π), as the function f(·) is set as f(·) =
(u− 1)2 or − log u, we have

arg min
pg(x)

Df (P ||Q) = p+(x), (19)

where Supp(·) denotes the support of a distribution.

Proof. For simplicity, we use pdata, p
+, p−, pg to denote the probability density function pdata(x), p

+(x), p−(x), pg(x),
respectively. Replacing P (x) and Q(x) with Eq. (3) and (4). Then we have the following:

Df ((1− λ)pdata + λp+||(1− β)pg + βp−)

=

∫
X

((1− β)pg + βp−)f(
(1− λ)pdata + λp+

(1− β)pg + βp−
)dx

=

∫
X

(1− β)pgf(
(1− λ)[πp+ + (1− π)p−] + λp+

(1− β)pg + βp−
)dx

+

∫
X

βp−f(
(1− λ)[πp+ + (1− π)p−] + λp+

(1− β)pg + βp−
)dx

(20)

Because of Supp(p+)∩Supp(p−) = ∅, it implies that both p+ and p− cannot be greater than 0 at the same time. We denote∫
X− pgdx = t,

∫
X+ pgdx = 1− t. With the face that f is convex and Jensen’s inequality, Eq.(20) can be transformed as

follows:

=

∫
X+

(1− β)pgf(
(1− λ)πp+ + λp+

(1− β)pg
)dx+ [(1− β)t+ β]

∫
X−

1

(1− β)t+ β
[(1− β)pg + βp−]f(

(1− λ)(1− π)p−

(1− β)pg + βp−
)dx

≥
∫
X+

(1− β)pgf(
(1− λ)πp+ + λp+

(1− β)pg
)dx+ [(1− β)t+ β]f(

1

(1− β)t+ β

∫
X−

[(1− β)pg + βp−]
(1− λ)(1− π)p−

(1− β)pg + βp−
dx)

=(1− β)(1− t)

∫
X+

pg
1− t

f(
(1− λ)πp+ + λp+

(1− β)pg
)dx+ [(1− β)t+ β]f(

(1− λ)(1− π)

(1− β)t+ β
)

≥(1− β)(1− t)f(

∫
X+

pg
1− t

(1− λ)πp+ + λp+

(1− β)pg
dx) + [(1− β)t+ β]f(

(1− λ)(1− π)

(1− β)t+ β
)

=(1− β)(1− t)f(
(1− λ)π + λ

(1− β)(1− t)
) + [(1− β)t+ β]f(

(1− λ)(1− π)

(1− β)t+ β
)

(21)

In order to facilitate the study of the properties of Eq. (21), is there a set of values for λ and β such that the corresponding
function f is monotonically increasing with respect to t? f is set as (u− 1)2 which is the f-divergence corresponding to
LS-GAN (Mao et al., 2017). Then we have the derivative of Eq. (21):

(Q2
1 − (1− β)2(1− t)2)(1− β)

(1− β)2(1− t)2
− (Q2

2 − ((1− β)t+ β)2)(1− β)

((1− β)t+ β)2
, (22)

where the Q1 denotes (1− λ)π + λ while the Q2 denotes (1− λ)(1− π). In order to keep Eq. (22) larger than zero, it is
equivalent to:

(Q2
1 − (1− β)2(1− t)2)((1− β)t+ β)2 > (Q2

2 − ((1− β)t+ β)2)(1− β)2(1− t)2 (23)

Then we have:

(Q1 +Q2)(1− β)t > Q2(1− β)−Q1β (24)

12
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Due to domain of Q1, Q2, β, t, to make the inequality 24 hold equal to:

Q2(1− β)−Q1β < 0 (25)

Then we have:

(1− λ)π + β + λ > 1 (26)

We also study the case when f is set as −logu which is one of f-divergence, So we have another form for the derivative of
Eq. (21):

(1− β)log(
(1− β)t+ β

(1− λ)(1− π)
)− (1− β)log(

(1− β)(1− t)

(1− λ)π + λ
) (27)

It is easy to obtain that Eq. (27) is a monotonically increasing function with respect to t ∈ [0, 1] Its minimum value can be
obtained as t = 0, and Eq. (27) equal to:

(1− β)log(
β

(1− λ)(1− π)
)− (1− β)log(

(1− β)

(1− λ)π + λ
) = log(

β[(1− λ)π + λ]

(1− β)(1− λ)(1− π)
) (28)

To make the minimum value of Eq. (27) greater than 0. It is equivalent to:

β[(1− λ)π + λ]

(1− β)(1− λ)(1− π)
> 1 (29)

Then we have:

(1− λ)π + β + λ > 1 (30)

As long as (1− λ)π + β + λ > 1, Eq. (27) and Eq. (22) greater than 0 for all t ∈ [0, 1]. It indicates that there is a set of
values for λ and β such that Eq. (21) is a monotonically increasing function with respect to t ∈ [0, 1]. Its minimum value
can be obtained as t = 0, and Eq. (21) equal to:

(1− β)f(
(1− λ)π + λ

1− β
) + βf(

(1− λ)(1− π)

β
) (31)

Substituting pg for p+ in the Eq .(20), we have:

D((1− λ)pdata + λp+||(1− β)p+ + βp−)

=

∫
X

((1− β)p+ + βp−)f(
(1− λ)pdata + λp+

(1− β)p+ + βp−
)dx

=

∫
X

((1− β)p+ + βp−)f(
(1− λ)[πp+ + (1− π)p−] + λp+

(1− β)p+ + βp−
)dx

=

∫
X+

(1− β)p+f(
(1− λ)πp+ + λp+

(1− β)p+
)dx+

∫
X−

βp−f(
(1− λ)(1− π)p−

βp−
)dx

=(1− β)f(
(1− λ)π + λ

1− β
) + βf(

(1− λ)(1− π)

β
)

(32)

Thus, the inequality in Eq .(32) will be equality only when pg = p+, indicating that the generator distribution will recover
the normal-data distribution upon convergence.
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B. Proof of Theorem 3.2
Theorem B.1. If Supp(p+(x)) ∩ Supp(p−(x)) = ∅ and (1− γ)β > (1− λ)(1− π) + γ hold, as the function f(·) is set
as f(·) = (u− 1)2 or − log u, we have arg min

pg(x)
Df (P̃ ||Q̃) = p+(x).

Proof. For simplicity, we use pdata, p
+, p−, pg to denote the probability density function pdata(x), p

+(x), p−(x), pg(x),
respectively. To optimize the f-divergence of P̃ (x) and Q̃(x) of Eq. (11) and Eq. (12), we have:

argmin
pg

Df (P̃ ||Q̃) = argmin
pg

Df ((1− γ)[(1− λ)pdata + λp+] + γp−||(1− γ)[(1− β)pg + βp−] + γp+) (33)

where the Df refers to the f-divergence. Then we have the following:

Df ((1− γ)[(1− λ)pdata + λp+] + γp−||(1− γ)[(1− β)pg + βp−] + γp+)

=

∫
X

((1− γ)[(1− β)pg + βp−] + γp+)f(
(1− γ)[(1− λ)pdata + λp+] + γp−

(1− γ)[(1− β)pg + βp−] + γp+
)dx

=

∫
X

(1− γ)(1− β)f(
(1− γ)[(1− λ)pdata + λp+] + γp−

(1− γ)[(1− β)pg + βp−] + γp+
)dx

+

∫
X

(1− γ)βp−f(
(1− γ)[(1− λ)pdata + λp+] + γp−

(1− γ)[(1− β)pg + βp−] + γp+
)dx

+

∫
X

γp+f(
(1− γ)[(1− λ)pdata + λp+] + γp−

(1− γ)[(1− β)pg + βp−] + γp+
)dx

(34)

Because of Supp(p+) ∩ Supp(p−) = ∅, it implies that p+p− = 0. We have:

=

∫
X+

[(1− γ)(1− β)pg + γp+]f(
(1− γ)[(1− λ)πp+ + λp+]

(1− γ)(1− β)pg + γp+
)dx

+

∫
X−

[(1− γ)(1− β)pg + (1− γ)βp−]f(
(1− γ)(1− λ)(1− π)p− + γp−

(1− γ)[(1− β)pg + βp−]
)dx

(35)

We denote
∫
X− pgdx = t,

∫
X+ pgdx = 1 − t. With the fact that f is convex and Jensen’s inequality, Eq .(35) can be

transformed as follows:

= [(1− γ)(1− β)(1− t) + γ]

∫
X+

(1− γ)(1− β)pg + γp+

(1− γ)(1− β)(1− t) + γ
f(

(1− γ)[(1− λ)πp+ + λp+]

(1− γ)(1− β)pg + γp+
)dx

+ [(1− γ)(1− β)t+ (1− γ)β]

∫
X−

(1− γ)[(1− β)pg + βp−]

(1− γ)(1− β)t+ (1− γ)β
f(

(1− γ)(1− λ)(1− π)p− + γp−

(1− γ)[(1− β)pg + βp−]
)dx

≥ [(1− γ)(1− β)(1− t) + γ]f(

∫
X+

(1− γ)(1− β)pg + γp+

(1− γ)(1− β)(1− t) + γ

(1− γ)[(1− λ)πp+ + λp+]

(1− γ)(1− β)pg + γp+
dx)

+ [(1− γ)(1− β)t+ (1− γ)β]f(

∫
X−

(1− γ)[(1− β)pg + βp−]

(1− γ)(1− β)t+ (1− γ)β

(1− γ)(1− λ)(1− π)p− + γp−

(1− γ)[(1− β)pg + βp−]
dx)

= [(1− γ)(1− β)(1− t) + γ]f(
(1− γ)[(1− λ)π + λ]

(1− γ)(1− β)(1− t) + γ
)

+ [(1− γ)(1− β)t+ (1− γ)β]f(
(1− γ)(1− λ)(1− π) + γ

(1− γ)(1− β)t+ (1− γ)β
)

(36)

In order to facilitate the study of the properties of Eq. (36), is there a set of values for λ and β such that the corresponding
function f is monotonically increasing with respect to t? f is set as (u− 1)2 corresponding to LS-GAN (Mao et al., 2017).
Then we have the derivative of Eq. (36):

(1− β)(1− γ)

[(
Q1

(1− β)(1− γ)(1− t) + γ

)2

− 1

]
− (1− β)(1− γ)

[(
Q2

(1− γ)[(1− β)t+ β]

)2

− 1

]
, (37)
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where the Q1 denotes (1− γ)((1− λ)π + λ) while the Q2 denotes (1− γ)(1− λ)(1− π) + γ. In order to keep Eq. (37)
larger than zero, it is equivalent to:

Q1(1− γ)[(1− β)t+ β] > Q2((1− β)(1− γ)(1− t) + γ) (38)

Then we have:

(Q1 +Q2)(1− γ)(1− β)t > Q2(1− β)(1− γ)−Q1β + γQ2 (39)

Due to domain of Q1, Q2, β, t, to make the Inequality (39) hold equal to:

Q2(1− β)(1− γ)−Q1β + γQ2 < 0 (40)

Then we have:

(1− γ)((1− λ)π + β + λ) > 1 (41)

We also study the case when f is set as −logu which is one of f-divergence. So we have another form for the derivative of
Eq. (36):

(1− γ)(1− β)log(
(1− γ)[(1− β)t+ β]

γ + (1− λ)(1− π)(1− γ)
)− (1− β)(1− γ)log(

(1− β)(1− γ)(1− t) + γ

[(1− λ)π + λ](1− γ)
) (42)

It is easy to obtain that Eq. (42) is a monotonically increasing function with respect to t ∈ [0, 1] Its minimum value can be
obtained as t = 0, and Eq. (42) equal to:

(1− γ)(1− β)log(
(1− γ)β

γ + (1− λ)(1− π)(1− γ)
)− (1− β)(1− γ)log(

(1− β)(1− γ) + γ

[(1− λ)π + λ](1− γ)
) (43)

To make the minimum value of Eq. (27) greater than 0. It is equivalent to:

(1− γ)2β[(1− λ)π + λ]

[γ + (1− λ)(1− π)(1− γ)][(1− β)(1− γ) + γ]
> 1 (44)

Then we have the following:

(1− γ)((1− λ)π + β + λ) > 1 (45)

Due to γ indicates the probability of labels flipping under the overall which is a small value and π > 0.5, inequality (44) is
easily satisfied, i.e., when π = 0.8, γ = 0.1, λ+ β = 1. Therefore, Eq. (42) and Eq. (37) is greater than 0 for all t ∈ [0, 1].
It indicates that there is a set of values for λ and β such that Eq. (21) is a monotonically increasing function with respect to
t ∈ [0, 1]. Its minimum value can be obtained as t = 0, and Eq. (36) equal to:

[(1− γ)(1− β) + γ]f(
(1− γ)[(1− λ)π + λ]

(1− γ)(1− β) + γ
) + (1− γ)βf(

(1− γ)(1− λ)(1− π) + γ

(1− γ)β
) (46)

Substituting pg for p+ in the Eq .(34), we have:

D((1− γ)[(1− λ)pdata + λp+] + γp−||(1− γ)[(1− β)pg + βp−] + γp+)

=

∫
X

((1− γ)[(1− β)p+ + βp−] + γp+)f(
(1− γ)[(1− λ)pdata + λp+] + γp−

(1− γ)[(1− β)p+ + βp−] + γp+
)dx

=

∫
X+

[(1− γ)(1− β)p+ + γp+]f(
(1− γ)[(1− λ)πp+ + λp+]

(1− γ)(1− β)p+ + γp+
)dx

+

∫
X−

(1− γ)βp−f(
(1− γ)(1− λ)(1− π)p− + γp−

(1− γ)βp−
)dx

=[(1− γ)(1− β) + γ]f(
(1− γ)[(1− λ)π + λ]

(1− γ)(1− β) + γ
) + (1− γ)βf(

(1− γ)(1− λ)(1− π) + γ

(1− γ)β
)

(47)

Thus, the inequality in Eq .(36) will be equality only when pg = p+, indicating that the generator distribution will recover
the normal-data distribution upon convergence.
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C. Proof of Theorem 3.3
Theorem C.1. Denote κ1 = (1 − γ)(1 − λ)π + λ, κ2 = (1−γ)(1−λ)(1−π)(1−α) and κ3 =(1 − γ)(1 − β) + γ. If
Supp(p+(x)) ∩ Supp(p−(x)) = ∅, Supp(p−u (x)) ∩ Supp(p−c (x)) = ∅, (1− γ)(1− α+ β + απ + αλ− αλπ) > 1 and
κ1κ3 > γ(κ1 + κ2) hold, as the function f(·) is set as f(·) = (u− 1)2 or − log u, we have

argmin
pg(x)

Df (P̃ ||Q̃)=
κ1κ3 − γ(κ1 + κ2)

(1−γ)(1−β)(κ1+κ2)
p+(x)

+
κ2κ3

(1−γ)(1−β)(κ1+κ2)
p−u (x).

Based on Theorem 3.2, we can easily analyse to obtain Theorem 3.3.

Proof. For simplicity, we use pdata, p
+, p−, p−u , p

−
c , pg to denote the probability density function

pdata(x), p
+(x), p−(x), p−u (x), p

−
c (x), pg(x), respectively. To optimize the f-divergence of P̃ and Q̃ of Eq. (17)

and Eq. (18), we have:

argmin
pg

Df (P̃ ||Q̃) = argmin
pg

Df ((1− γ)[(1− λ)pdata + λp+] + γp−c ||(1− γ)[(1− β)pg + βp−c ] + γp+) (48)

The target of Eq. (48) is to find an appropriate pg to minimize the f-divergence between distribution P̃ (x) : (1− γ)[(1−
λ)pdata + λp+] + γp−c and distribution Q̃(x) : (1− γ)[(1− β)pg + βp−c ] + γp+.

Distribution P̃ (x) and Q̃(x) can be rewritten as

P̃ (x) =((1− γ)(1− λ)π + λ)p+ + (1− γ)(1− λ)(1− π)p− + γp−c

Q̃(x) =(1− γ)(1− β)pg + γp+ + (1− γ)βp−c

Because p− = (1− α)p−u + αp−c , we have:

P̃ (x) =((1− γ)(1− λ)π + λ)p+ + (1− γ)(1− λ)(1− π)(1− α)p−u + [(1− γ)(1− λ)(1− π)α+ γ]p−c

Q̃(x) =(1− γ)(1− β)pg + γp+ + (1− γ)βp−c

Let p̂data = ((1 − γ)(1 − λ)π + λ)p+ + (1 − γ)(1 − λ)(1 − π)(1 − α)p−u and p̂g = (1 − γ)(1 − β)pg + γp+. Then,
distribution P̃ (x) and Q̃(x) can be rewritten as:

P̃ (x) = p̂data + [(1− γ)(1− λ)(1− π)α+ γ]p−c

Q̃(x) = p̂g + (1− γ)βp−c

Based on Theorem 3.1, when (1−γ)(1−α+β+απ+αλ−αλπ) > 1 holds, we have (1−γ)β > (1−γ)(1−λ)(1−π)α+γ.
It indicates that no more density from pg will be assigned to p−c . Therefore, the seen contamination is erased from the
generator distribution. With κ1 denotes (1− γ)(1− λ)π + λ, κ2 denotes (1− γ)(1− λ)(1− π)(1− α), and κ3 denotes
(1− γ)(1− β) + γ, we have:

p̂g = (1− γ)(1− β)pg + γp+ =

∫
X
(1− γ)(1− β)pg + γp+dx∫

X
κ1p+ + κ2p

−
u dx

(κ1p
+ + κ2p

−
u ) =

κ3

κ1 + κ2
(κ1p

+ + κ2p
−
u ) (49)

Then we can obtain the generator distribution as follow:

pg =
κ1κ3 − γ(κ1 + κ2)

(1− γ)(1− β)(κ1 + κ2)
p+(x) +

κ2κ3

(1− γ)(1− β)(κ1 + κ2)
p−u (x) (50)

With κ1κ3 > γ(κ1 + κ2), we can preserve the normal-data distribution in the generator. Therefore, Theorem 3.3 is
proved.
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D. Details of Dataset
D.1. Details of Toy Data

MNIST A dataset of 60000 training and 10000 testing 28×28 handwritten digits from 10 classes. The first three classes are
chosen as normal data while the rest seven classes are viewed as anomalies.

Fashion-MNIST A dataset of 60000 training and 10000 testing 28×28 clothing images from 10 classes. The first three
classes are chosen as normal data while the rest seven classes are viewed as anomalies.

CIFAR10 A dataset of 50000 training and 10000 testing 32×32×3 RGB images from 10 classes. The first three classes are
chosen as normal data while the rest seven classes are viewed as anomalies.

20NEWS From ADBench (Han et al., 2022), we use the anomaly detection consist of 20news features extracted by
BERT(Devlin et al., 2019). The details of this dataset are shown in Table 9

Table 9. The details of 20NEWS anomaly detection dataset

Label Category #Features #Samples

Normal
Computer 768 3090
Recreation 768 2514

Science 768 2497

Anomaly
Miscellaneous 768 615

Politics 768 1657
Religion 768 1532

D.2. Details of Anomaly Datasets

UNSW-NB15 This dataset is about cyber defense containing nine types of network attacks. We select four of them to form
this anomaly detection dataset as same as (Pang et al., 2023). The details of this dataset are shown in Table 10.

Table 10. The details of UNSW-NB15
Category #Features #Samples #Anomaly %Anomaly

Backdoor 196 95329 2329 2.44%
DoS 196 109353 16353 14.95%
Fuzzers 196 96000 3000 3.13%
Reconnaissance 196 106987 13987 13.07%

HAR This dataset is from human activity recognition. The details of this dataset are shown in Table 11.

Table 11. The details of 20NEWS anomaly detection dataset

Label Category #Features #Samples

Normal

Walking 561 1226
Sitting 561 1286
Laying 561 1407

Standing 561 1374

Anomaly Downstairs 561 986
Upstairs 561 1073

Classic Anomaly Datasets The details of classical anomaly datasets are shown in Table 12. Yelp and Amazon datasets are
from ADBench (Han et al., 2022), whose features are extracted by BERT (Devlin et al., 2019).
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Table 12. The details of nine classical datasets
Dataset #Features #Samples #Anomaly %Anomaly

Arrhythmia 274 452 66 14.60%
Cardio 21 1831 176 9.61%
Satellite 36 6435 2036 31.6%
Satimage-2 36 5803 71 1.22%
Shuttle 9 49097 3511 7.15%
Thyroid 6 3772 93 2.47%
Bank 62 41188 4640 11.27%
Amazon 768 10000 500 5.00%
Yelp 768 10000 500 5.00%

E. Training Details
For the image benchmarks: MNIST and FMNIST, we employ DCGAN architecture, which is implemented on Pytorch.
Adam optimizer is selected for optimization during training. The learning rate of generator and encoder is set as 0.001, while
the learning rate of discriminator is set as 0.0001. For the tabular anomaly detection datasets, 3-layer MLP architecture is
employed. The test dataset is splitted into validation and test datasets with a proportion of 20% and 80%.

For the baselines, except for the results of AA-BiGAN, which are reported by running its source code, the above methods
are all implemented in DeepOD.

F. Additional Experimental Results
F.1. Complete Tables of Experimental Results

Table 13 demonstrates the complete experimental results under different numbers of collected anomalous types on four
datasets. Due to the HAR dataset only having two anomalous types, we have not conducted this experiment on the HAR
dataset. The setting of ϵp is fixed at 20% for toy datasets and 5% for UNSW-NB15, while ϵa and ϵn are fixed at 5% and 1%
for all of them. From Table 13, our method outperforms other baselines in all levels.

Table 13. AUROC performance under different numbers of collected types in the auxiliary anomalous dataset.
Dataset k DeepSAD FeaWAD RoSAS PReNet AA-BiGAN Ours

MNIST

1 70.3 66.5 72.8 56.1 84.8 90.6
2 73.4 67.7 76.4 57.2 86.6 92.1
3 75.2 68.7 78.5 57.9 87.8 94.2
4 81.1 69.0 80.0 59.4 90.4 95.0

FMNIST

1 71.0 66.5 67.6 55.1 80.7 85.2
2 71.7 66.7 68.1 55.7 82.3 88.0
3 79.1 71.8 72.4 57.2 86.7 89.2
4 86.2 77.5 80.6 62.8 87.5 90.0

20NEWS
1 63.5 52.4 64.6 52.9 70.7 74.0
2 67.2 53.6 67.8 54.0 71.2 75.2
3 64.2 54.4 72.1 53.1 72.7 76.7

UNSW

1 87.3 82.4 84.0 60.7 88.0 92.0
2 91.7 87.3 94.8 66.1 88.7 95.3
3 92.6 91.2 95.1 71.9 92.7 95.6
4 93.0 92.8 96.2 74.2 94.2 96.8
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Table 14 demonstrates the complete experimental results on nine tabular anomaly detection datasets, including the unsu-
pervised methods and self-supervised method. From Table 14, our method still outperforms other baselines. This result
indicates the superiority of our method.

Table 14. AUROC on nine classic anomaly detection datasets.

Dataset Deep DIF SLAD ICL Deep Fea Ro PRe AA-Bi SOEL OursSVDD SAD WAD SAS Net GAN

Arrhythmia 73.5 79.4 78.1 77.7 78.5 73.8 61.2 64.4 79.9 83.6 84.8
Cardio 87.7 96.1 96.8 89.5 96.1 73.9 91.7 90.7 97.6 95.7 99.4
Satellite 71.9 76.4 80.5 81.5 83.8 89.6 86.3 78.5 85.4 85.9 91.8
Satimage-2 65.4 99.6 97.7 75.3 96.0 99.9 99.2 99.1 99.7 99.7 99.9
Shuttle 73.0 99.1 99.3 94.5 99.4 97.9 98.6 99.1 99.0 99.7 99.5
Thyroid 89.0 94.9 98.7 59.8 99.6 65.6 99.6 96.2 99.1 99.1 99.6
Bank 55.6 67.0 73.0 69.4 75.5 61.1 89.8 62.6 87.5 89.9 90.7
Amazon 53.9 56.5 62.6 59.4 89.9 58.2 85.5 76.2 85.7 90.5 89.7
Yelp 59.3 60.9 65.8 63.4 90.5 55.9 92.2 79.0 89.3 91.3 92.6
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