Under review as a conference paper at ICLR 2024

REP-ADAPTER: PARAMETER-FREE AUTOMATIC
ADAPTATION OF PRE-TRAINED CONVNETS VIA RE-
PARAMETERIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in visual pre-training have demonstrated the advantage of trans-
ferring pre-trained models to target tasks. However, different transfer learning
protocols have distinctive advantages regarding target tasks, and are nontrivial
to choose without repeated trial and error. This paper presents a parameter-free
automatic model adaptation protocol for ConvNets, aiming at automatically bal-
ancing between fine-tuning and linear probing, by using adaptive learning rate for
each convolution filters on target tasks. First, we propose Rep-Adapter, an adapter
module with re-parameterization scheme, which can achieve soft balancing be-
tween the pre-trained and fine-tuned filters, and can be equivalently converted to
a single weight layer, without introducing additional parameters to the inference
phase. We show by theoretical analysis that Rep-Adapter can simulate a ConvNet
layer with each filter fine-tuning at different learning rate. We present a simple
adapter tuning protocol with Rep-Adapter to achieve automatic adaptation of pre-
trained models without additional search cost. Extensive experiments on various
datasets with ResNet and CLIP demonstrate the superiority of our Rep-Adapter
on semi-supervised, few-shot and full dataset transfer learning scenarios.

1 INTRODUCTION

Recent advances in both computer vision and neural language processing field have demonstrated
the advantage of transferring large-scale pre-trained models to downstream tasks. To leverage the
information of the pre-trained models, there emerges different transfer learning protocols such as
fine-tuning directly on the new task (Girshick et al.l 2014), feature-based methods (Turian et al.,
2010) that only update the parameters of the task-specific head, and adapter tuning (Houlsby et al.,
2019) that introduces new learnable modules to adapt some layers in the original model.

The most suitable choice of the protocols depends on many factors, including target dataset size,
label fraction, efc. For instance, fine-tuning is usually more powerful on fully-supervised ImageNet,
while linear probing are sometimes better on semi-supervised ImageNet (Zhou et al.l [2022a). We
also observe a similar trend on Caltech101 dataset. As in shown in Figure[l} fine-tuning outperforms
linear probing for full dataset transfer on Caltech101 (dataset B in the figure), while linear probing
performs better for low-shot (1000 examples) scenario. Moreover, when taking partial fine-tuning
and layer-wise learning rate adjustment into consideration, the option space becomes computation-
ally prohibitive for an extensive search. Therefore, we believe there is an urgent need of designing
an automatic transfer learning protocol that can combine the advantages of these protocols without
tediously searching for hyper-parameter settings.

There exists some preliminary attempts to avoid manually tuning layer-wise and filter-wise hyper-
parameter settings. SpotTune (Guo et all 2019) and AdaFilter (Guo et al. [2020b) dynamically
route between frozen and learnable weights, at a cost of having more than twice the original model
size during inference. AutoLR (Ro & Choil 2021)) searches for layer-wise fine-tuning learning rate
via repeated trial. However, these methods introduce either policy networks or repeated training
loops, increasing the training or inference cost. We thus explore a simple model adaptation method,
without introducing extra training steps or extra parameters during inference.

In this paper, we introduce Rep-Adapter, a novel adapter module that achieves soft balancing be-
tween the pre-trained and fine-tuned filters. Each adapter module has two branches, a frozen branch

Under review as a conference paper at ICLR 2024

. . Full dataset 1000 |
with the pre-trained parameters, and a learnable branch 10— 100 SRS

that adapts on the target tasks. During inference, we lever- " / 90
age the re-parameterization scheme to equivalently con- 80
vert the two branches into one, avoiding the increase in 20
model size and computational cost.

—Linear
Fine-tuning
—Ours

In addition, we prove that, during training, our Rep- A 8 ¢ A 8 ¢
Adapter is equivalent to a layer fine-tuned by a fine- parasets patasets
grained transfer learning protocol with different learning Figure 1: Comparison of fine-tuning,
rate for each filter. This eliminates the need of tedious linear probing and our proposed Rep-
hyper-parameter search for learning rate configurations Adapter. Dataset A: DTD for texture
like previous methods. By optimizing a network stacked ~classification; B: Caltech101 for object
by Rep-Adapter, the pre-trained model can be transferred identification; C: EuroSAT for satel-
with adaptive learning rate for each filter. As such, fine- lite image classification. Models are
tuning and linear probing can be achieved by learning the ~Pre-trained on ImageNet with a self-
learning rate to a certain value or zero. supervised method, PIRL.

Top-1 Accuracy (%)

We conduct extensive experiments to evaluate and analysis our method. We use VISSL (Goyal
et al.| 2021)) library to evaluate the effectiveness of our approach on full dataset and low-shot (1000
examples) transfer learning scenarios. We adapt models from several different pre-training proto-
cols (fully-supervised pre-training and three state-of-the-art self-supervised pre-training methods on
ImageNet, CLIP pre-training with text supervision), to various downstream datasets, and on full-
shot, low-shot (1000 examples) or few-shot (16-shot) scenarios. We also perform experiments on
semi-supervised ImageNet, by adapting models pre-trained by 3 different self-supervised learning
methods to ImageNet with 1% and 10% label fraction. Moreover, we explore the transferability to
VOC object detection and Cityscapes, COCO instance segmentation tasks. Our Rep-Adapter tuning
protocol consistently surpasses the baselines across tasks and scenarios, which clearly evidences the
effectiveness and generalization ability of our method.

Overall, our contributions can be summarized as follows:

* We present a novel adapter module that has two advantages: 1) the module keeps the pre-trained
model intact, avoiding the issue of catastrophic forgetting, preserving all the general knowledge
learnt during pre-training; 2) in contrast to previous adapter-based tuning approach, our module
can be merged into a single layer during inference to achieve a parameter-free tuning.

* We theoretically prove that, in Rep-Adapter tuning, each module achieves an automatic learning
rate adjustment to avoid manual hyper-parameter search.

* Our Rep-Adapter tuning protocol surpasses the state-of-the-art transfer learning protocols by a
significant margin in extensive experiments. Rep-Adapter tuning consistently outperforms fine-
tuning and linear probing protocols, on different tasks and scenarios (Figure[I)).

2 RELATED WORK

Transfer Learning via Model Adaptation. Model adaptation methods modify a pre-trained
model to achieve higher performance on a target task. Figure|2|illustrates popular model adaptation
methods in computer vision field. Feature-based methods (Figure[2](a)), including linear classifica-
tion, directly learn task specific head on frozen features (Turian et al.||2010). Fine-tuning (Girshick
et al.,[2014) is the most generally used transfer learning protocol (Figure[2|(b)). Some works regular-
ize the distance between the fine-tuned model and the pretrained model on the network parameters
(e.g., L2-SP (Li et al| [2018)) or the output features (e.g., DELTA (Li et al., 2019)) to improve
the performance, but the weight of the regularization comes a hand-crafted hyper-parameter. Some
works (Furlanello et al.| 2018} |Huang et al.l 2017) use network ensemble to boost the performance
by combining the frozen and learnable weights, at a cost of using M x model size (M is the number
of ensemble models) during inference. Adapter tuning (Yin et al.l 2023; Hu et al.| 2023 [Zhang
et al.,2023; Houlsby et al.,|2019; Yuan et al.,|2020) (Figure[Z] (c)) adds light-weight modules on the
pre-trained network to adapt the model without changing its original parameters. Previous works
on convolution adapter modules (Rebuffi et al.l 2017; |2018}; |Rosenfeld & Tsotsos, |2018)) perform
incremental learning by adding small point-wise convolution adapter modules, at a cost of about
11% increase in model size for each tasks. Our Rep-Adapter is also related to ensemble meth-
ods. However, an ensemble of models can not be directly converted to a single model due to the
non-linearity in the models and thus much larger than us in terms of parameters and computation
complexity. Different from previous methods, Rep-Adapter does not increase inference model size,
which accelerates the deployment and removes the size constraint of the adapter modules.

Under review as a conference paper at ICLR 2024

([Input] [Input

Table 1: Comparison of different model
adaptation protocols. (orig. weight: accessi- (J
ble to original weight; aufo.: automatic pro-
tocol; no ext. train: no extra training steps;
no ext. infer.: no extra inference cost)

S N N
Classifier Classifier Classifier Classifier J /

Method ‘ orig. weight ‘ auto. ‘ 10 ext. train ‘ no ext. infer. Pretrained Model (a) Feature-based. (b) Fine-tuning. (c) Adapter tuning.
Fine-tuning X X . . .

Feature-based X Figure 2: Illustration of different model adapta-
/S\dathef X X ; tion protocols. Feature-based protocols train clas-
potTune
AatoLR X X sifier on top of the frozen feature.. Fine-tuning train
Rep-Adapter v v v v all the parameters. Adapter tuning adds learnable

adapters. (Orange: frozen, green: learnable)

Some methods including LoRA (Hu et al.,[2022)) and Progressive Networks (Rusu et al., 2016) also

adopt the idea of using both frozen branches and learnable branches in the network. The main
differences between Rep-Adapter and these works are summarized in Tab. 2] First, different from
LoRA and Progressive Networks, the added branch in Rep-Adapter is non-linear during training
and linear during inference. This is in line with vision re-parameterization works which benefit
from the unique property of BN layer. Second, unlike these works, we add two scaling factor layers
to the two branches and prove that our module achieves an automatic learning rate adjustment to
avoid manual hyper-parameter search. Third, different from LoRA, Rep-Adapter does not aim at
parameter-efficient tuning of large pretrained models, but aims at the transfer learning performance,

in line with works such as L2-SP (Li et al., [2018)), DELTA (Li et al.,[2019)), etc.

AutoML on transfer learning. There exists some
preliminary attempts on automating transfer learning. .
Dynamic tuning methods (Guo et al 2019} [2020b; Progressive Network and LoRA.

m m introduce more than 2 x parame- Method | train linearity | inference linearity | learnable factor

Table 2: Comparison of Rep-Adapter,

ters during inference, with additional policy networks {ﬂ;{gj\essive x X ;
. . . . 0
or gating modules to achieve dynamic routing among gep-adapter x v v

frozen and fine-tuning weights. AutoLR

presents auto-tuning of layer-wise learning rates, at a cost of performing repeated learning
rate trial during training. Different from these methods, we solve automatic model adaptation prob-
lem in a much simpler way, without introducing extra training steps, or extra model size during
inference. A comprehensive comparison of different model adaptation schemes is shown in Tab.[T}
We consider four aspects including: preservation of original weight, automatic method, no extra
training steps and no extra inference cost. Among these methods, only ours could cover all aspects.

Traditional Re-parameterization. Traditional Re-parameterization (Zagoruyko & Komodakis,
2017) parameterize weight as a combination of a set of parameters for optimization of deep neural
networks. Traditional Re-parameterization has also been used for AutoML. uses
meta kernels with re-parameterization to denote a neural architecture search space. SCC
and CondConv (Yang et al] [2019a) derive a kernel as the weighted sum of multiple
generated kernels, to perform a conditionally parameterized convolution. Differently, we focus on
automating the optimization of learning rate during transfer learning.

Structural Re-parameterization. Structural Re-parameterization, proposed by
2021c)), is a method that parameterizes a network structure with the parameters transformed from
another network structure. This method has recently been used to boost the training phase of
ConvNets (Cuo et al.} 2023} [Ding et al, 20210}, 2019 [Guo et al} 20204} [Cao et all 2020) and
MLP models (Ding et al.| 2021a)) by introducing merge-able branches with different architectures,
without changing the whole network architecture in the inference phase. In this paper, we use re-
parameterization to represent structural re-parameterization. Different from these works that merge
branches with different architecture, we use re-parameterization to merge frozen branch and tuning
branch (with the same architecture), and simulate a layer with arbitrary learning rate. This is the first
time that re-parameterization is proved to be able to represent different learning rate, and also the
first time that scaling factors are introduced to re-parameterization for learning rate optimization.

3 METHODOLOGY

In this section, we first formulate the automatic model adaptation problem and analyze the downside
of baseline methods, then introduce Rep-Adapter, a novel adapter module with re-parameterization
technique. We prove that our adapter can simulate a fine-tuning layer with arbitrary learning rate for
each filter, and further present a simple adapter tuning protocol to achieve automatic adaptation of
pre-trained models without additional search cost.

3

Under review as a conference paper at ICLR 2024

3.1 PRELIMINARIES

Model Adaptation. Let 1/ denote a pre-trained model equipped with a random initialized task
specific head. Given a target task with objective {min £}, model adaptation yields a target model
1p* by executing certain transfer protocol ¢:

Y= argﬂ{ninﬁ(%C)- (1

In computer vision field, most of the transfer learning protocols for ConvNets use the same network
architecture of the pre-trained model on the target task, where the network parameters w inherit from
the pre-trained ones wy. As discussed in Section |1} most of these protocols fall in two categories,
fine-tuning and linear probing.The essential difference between these protocols is the learning rate
of each network parameters. Without loss of generality, let 7,,, be a reference learning rate, and
1 € Rl be the learning rate multipliers () € R for all the |i| filters (where i indexes network filters
and |i| denotes total filter number). Given the hyper-parameter 7, the objective of these protocols is:

w”* = argmin L(w, 7). 2)

In this framework, the fine-tuning protocol is equivalent to setting a global n for all parameters,
while linear probing is equivalent to setting 7 = 0.

Automatic Model Adaptation. Intuitively, the optimal learning rate of each parameter is influ-
enced by factors like data distribution, model architectures. To this end, another line of work aims
to learn the proper transfer protocol ¢ for the target task in an automatic fashion. Following the
previous discussion, the objective of automatic model adaptation can be denoted as:
min L(w, n). 3)
w,n

In the following sections, we first introduce a novel parameter-free adapter module, and then present
a carefully designed tuning protocol that is equivalent to a bi-level optimization (Anandalingam &
Friesz, |1992) of the learning rate and network parameters.

3.2 PARAMETER-FREE ADAPTATION VIA REP-ADAPTER
. . : Tnput
Intuitively, a soft balancing between a frozen filter and a learning rate: learning rate:
fine-tuning filter can represent an intermediate state be- jiozen M C I
tween them, i.e., a filter tuning at a smaller learning rate.
Motivated by the intuition, we set to solve this problem by . Comerted
first proposing an adapter module to achieve this balance. e non-linear
This intuition will be further analysed in Sec.
Rep-Adapter. To make a soft balancing between a (a) Rep-Adapter. (b) Original layer.
anvNet layer with frozen filters and a ConvNet layer Figure 3: A Rep-Adapter can be equiva-
with tuned filters, we present the Rep-Adapter module - .
. . lently converted to a single weight layer,
that comprises a frozen branch and a tuning branch, both . .
R . . and can also simulate a layer fine-tuning
initialized with pre-trained network parameters. We ex- . .) .
Y . d with certain filter-wise learning rate by
plicitly introduce the scaling factors §,{ € R® for each setting the value of ¢ accordingl
filter of the two branches, where d denotes filter number g gLy
for a network layer. As shown in Figure |3|(a), Rep-Adapter can be defined as:
P (wo, ") 1= diag(8)3h(wo) + diag(¢)p(w™), @
where wp, w” denote pre-trained network parameters and parameters of the tuning branch, and
diag(-) denotes the corresponding diagonal matrix constructed from a vector. Such soft weighting
with factors {8, ¢} in the adapter would generally introduce twice model size and computation,
leading to high inference cost and model size. Accordingly, we introduce a re-parameterization
scheme to merge the two branches in Rep-Adapter.

Re-parameterization. Considering a pre-trained ConvNet, a Rep-Adapter 4™ for the ConvNet
contains a frozen branch and an adapting branch, both of which consist of a convolution (Conv)
layer and a batch normalization (BN) layer. The weights and optional bias of a Conv layer can be
denoted by w and b. A BN layer performs per-channel normalization and scaling. Let p and o
denote running mean and variance of training samples, and let < and 3 be the channel-wise scaling
factor and bias. A Conv-BN branch can be converted to a single Conv layer as:

Y@ =(wrz-pL+B=(w Dxa+(B-pl),)

w’ b’

Under review as a conference paper at ICLR 2024

where x denotes convolution operator, w’ and b’ are the equivalent weights and bias after the merge.

After merging Conv-BN, we consider to merge the two Conv branches in Rep-Adapter. When the
outputs of two or more Conv layers with the same configurations are added up, we can merge them
into a single Conv. Let wy, by be the pre-trained weights and bias of a merged Conv-BN branch,
and w”, b be the merged weights and bias of the tuning Conv-BN branch in Rep-Adapter. The
adapter, i.e., weighted sum of two branches, can be converted as:

PR (x) = diag(8)(wo * = + bo) + diag(¢) (w™ « x + b7). (6)

Thus, the adapter can be merged to a single convolution layer by setting:
w = diag(8)wo + diag(¢)w™, b = diag(6)bo + diag(¢)b”. ™)

In this way, a Rep-Adapter 1™ with two branches can be converted to a single weight layer (@)
during inference (Figure [3), enabling parameter-free model adaptation.

3.3 SIMULATION OF LAYERS FINE-TUNING AT ANY LEARNING RATE VIA REP-ADAPTER

In Sec.[3.2]we intuitively use our proposed Rep-Adapter as a balance between fine-tuning and frozen
weights. Here we show by theoretical analysis that Rep-Adapter can indeed simulate a layer fine-
tuning at a different learning rate.

Proposition 3.1. Given a pre-trained linear network layer 1 (wy). Let 1™ (x) = diag(§)(wo) +
diag(¢)p(w™) denotes this layer under adapter tuning scheme at learning rate 1,,, and 7 (w)
denotes this layer with each of the d filters fine-tuning at a certain learning rate n € R%. Suppose
the network functions of the two schemes are identical before tuning step t, then there always exists
scaling factor ¢ € R for each filter such that after one step of tuning, ¥” () = ¥ (x) still holds.

Proof. Suppose the network functions of the two schemes are identical at step t. We have 1] (z) =
Y (x) and 0L, /0P = OL, /O . First, we calculate the weight change of w™ in the adapter:

R_ o 0L () 2L
Awy™ = —nm awzg = —TNm dlag(C) 81/’;,2 . (3
Let @; = diag(8)wy + diag(¢)w?, this layer function after one-step adapter tuning is:
BT () = diag(8)wow + diag(C) (W + AwR)z
~ . 0L ©))
= (@ — N - diag(¢2,. .., 23—).
(Wt —n iag(¢j Cd)a,lpza)z
As for the fine-tuned case: or
Y (@) = wipix = (w; — diag(n) -7). (10)
0Py

Recall that 1] (z) = ¥ (x), and 9L, /OPY]F = 0L, /017 . Thus, there exists:

d
¢= (\/;I> , such that wtfﬂ(w) = wﬁl(w), an
m /=1

which proves that after one step of tuning, 17 (z) = 1% (=) still holds. O

Based on Proposition [3.1] we have two corollaries. First, as in Figure [3] if a Rep-Adapter and a
network layer with filter-wise fine-tuning Ir are identical before training (17 (z) = ¥y (x)), by
properly setting scaling factors ¢ in Rep-Adapter based on the filter-wise learning rate 77, the Rep-
Adapter can represent this layer in every steps (17 (x) = ¥ (x)). Second, when using the optimal
scaling factors ¢ at each training step, the Rep-Adapter represents a layer fine-tuning with optimal
filter-wise [r. Therefore, the optimization of /r can be relaxed to the optimization of ¢

'Note that BN layer during training generally uses batch statistics to simulate the data distribution. This
causes non-linearity in BN and could make Proposition[3.1]not strictly true. However, we empirically find that
using batch-wise statistics are better than using frozen statistics loaded from pretrained model (see Sec.[4.§](c)).
This is probably because BN with batch-wise statistics acts very similar to a linear layer. Rep-Adapter using
BN with batch-wise statistics performs consistently good even when training with extremely low batchsize (i.e.,
batchsize=2, see Sec. . To align with previous works, we use batch-wise BN statistics during training.

Under review as a conference paper at ICLR 2024

3.4 AUTOMATIC MODEL ADAPTATION VIA REP-ADAPTER TUNING
Rep-Adapter tuning. We present a simple Rep-Adapter tuning scheme, by adding the Rep-
Adapter to every layer of a pre-trained model, and making the factors § and ¢ in the adapters

learnable. In Rep-Adapter tuning protocol, adapter parameters w’™ and factors {6} = {4 (l)}yz‘o,

¢} = {¢W) \ll:IO of all the layers are jointly optimized. Based on Proposition we have
w = diag(§)wp + diag(¢)w™, n = diag(¢?)n,,. Thus, the original objective of automatic model
adaptation in Equation (3) can be converted to:
. R

WRT?;?,{C} E(wo,w ,{5},{(},177”), (12)
where pre-trained wg and reference learning rate 7,,, are task-agnostic hyper-parameters. Since
participates in loss calculation, it can be simply optimized by back-propagation together with wné
Thus, Rep-Adapter tuning simulates a model fine-tuning with adaptive learning rate for each filter
without introducing additional training loops or searching phase. In practice, the weight v of BN
layer of the two branches have the same shape and play a similar role to the scaling factors § and ¢.
Thus, we directly use « as the scaling factor for convenience in our implementation.

After the tuning phase, the model can be deployed efficiently by re-parameterization following the
scheme in Sec.[3.2] The model size and computation complexity are exactly the same as in fine-
tuning scheme, without introducing any additional parameters during inference. This scheme avoids
the issue of catastrophic forgetting during training, and the tuned model can also be used for further
transfer as the original weights are not modified.

4 EXPERIMENTS

We evaluate our Rep-Adapter on various settings to demonstrate its effectiveness, including many-
shot and low-shot transfer learning with supervised and unsupervised ImageNet pre-training, few-
shot transfer learning of CLIP, and semi-supervised learning.

4.1 IMPLEMENTATION DETAILS

We implement the cross-domain transferring with the popular computer vision library VISSL (Goyal
et al.l |2021), which is inspired by the Visual Task Adaptation Benchmark (VTAB) (Zhai et al.,
2020). VISSL contains 14 diverse classification downstream datasets, and two settings for tuning
phase, 1) many shot transfer learning setting, where all training labels of the downstream tasks are
used; 2) low-shot transfer learning setting that only trains on 1000 labeled images sampled from
the downstream datasets. For few-shot learning with CLIP, we adopt 16-shot settings on 10 transfer
learning datasets. See the supplementary for more details.

Pre-Training Protocol. We evaluate Rep-Adapter on self-supervised models, fully super-
vised models, and text-supervised models. We use two representative self-supervised methods,
PIRL (Misra & Maaten, |2020), MoCoV2 (Chen et al.l 2020b) on cross domain transfer learning
and an additional self-supervised learning method SwAV (Caron et al.| [2020) for semi-supervised
learning on ImageNet, and use CLIP (Radford et al.l 2021) for experiments with text-supervised
pre-training.Please check the supplementary for more details.

Baseline methods. As our method aims to combine the advantage of the prevalent feature-based
methods, e.g. linear probing, and fine-tuning. we choose these two method as our baseline methods.
value for the classification layer, while fine-tuning is setting a same 7 for all the network parameters.

4.2 MANY-SHOT TRANSFER LEARNING

We first evaluate our method on many-shot transfer learning setting. We use all training data with
labels from all 14 target datasets during the tuning phase. Results are presented in Tab. Our
Rep-Adapter generally outperforms the baseline methods, on 37 out of 42 scenarios. For example,
our method improve over linear probing and fine-tuning by 16.1% and 1.4% with PIRL on average.
It is worth mentioning that on the target datasets such as CIFAR-100, DTD, Flowers102, SUN397,
Camelyon, Clevr-Dist, etc., Rep-Adapter surpasses the other two methods by a large margin whether
using supervised or self-supervised pre-training models (e.g., up to +46.7% on dSpr-Ori with PIRL,
compared to linear probing).

*In Proposition ¢ is fixed when updating w. Therefore, the basic version of Rep-Adapter tuning is
to update ¢ and w iteratively. To save the training cost, we further explore an approximated version of Rep-
Adapter, by simultaneously updating ¢ and w in the same step. We empirically find that this version yields
comparable results with the basic version (see Sec. @](b)). By default, we use the approximated version.

Under review as a conference paper at ICLR 2024

Table 3: Results of many-shot and low-shot transfer learning. We report the Top-1 Accuracy.
The best and the second best results are marked with bold and underline.

s 8 g < E 7
= - - ~ o) (] o 2 Qo = 5
Dataset S &~ 3 3 Z 5 = ? Q;L ’3 Q = =
£ £ B & g &2 £ £ & 5 5 &2 &2 EI|S
O =} a @ & 2 »n O A @) @) 3 3 & =
Many-shot Transfer Learning
Linear 842 665 713 887 781 646 625 836 952 768 635 73.0 498 737|737
PIRL Fine-tuning | 854 81.8 67.7 952 857 679 957 874 977 994 937 1000 96.0 84.2 | 834
Rep-Adapter | 88.0 83.7 725 95.6 883 70.7 965 88.6 980 99.9 941 1000 96.5 853 | 89.8
Linear 87.1 709 724 917 784 659 709 84.1 958 777 677 833 552 743|768

MoCoV2 Fine-tuning | 87.7 81.6 73.0 94.0 887 632 96.1 878 984 99.6 93.7 1000 964 84.1 | 839
Rep-Adapter | 88.3 845 733 96.0 88.6 702 96.8 892 98.7 999 945 1000 96.5 84.5 | 90.1

Linear 885 736 712 857 915 660 693 854 954 657 620 81.8 609 722|764
Supervised Fine-tuning | 941 83.8 74.0 937 919 707 97.0 839 988 99.8 92.1 1000 964 80.7 | 89.8
Rep-Adapter | 91.1 857 752 969 941 722 963 88.8 987 99.7 923 1000 96.5 843 | 90.8

Low-shot Transfer Learning

Linear 77.6 38.0 593 81.8 654 220 39.1 81.0 906 43.1 450 446 263 68.6 | 559
PIRL Fine-tuning | 74.0 459 555 893 714 199 88.0 854 945 520 59.7 79.8 482 704 | 66.7
Rep-Adapter | 789 457 61.3 892 76.0 20.1 882 864 957 569 625 864 478 70.6 | 69.0
Linear 793 447 641 858 674 255 46.0 833 922 467 505 53.0 270 689 | 59.6

MoCoV2 Fine-tuning | 77.3 422 60.7 878 76.8 13.8 87.7 844 963 709 628 92,6 46.0 703 | 69.3
Rep-Adapter | 80.0 464 622 91.1 748 17.6 88.7 862 965 73.7 658 923 50.7 713 | 71.2

Linear 849 531 626 877 899 309 437 80.9 90.8 389 42.0 425 292 66.0 | 60.2
Supervised Fine-tuning | 85.3 545 64.8 884 894 287 81.0 799 96.0 552 576 856 51.6 728 70.8
Rep-Adapter | 85.8 599 66.1 927 917 298 83.6 847 960 59.6 570 91.0 510 715|729

4.3 LOW-SHOT TRANSFER LEARNING

In the experiment of low-shot transfer learning, we follow the protocol in (Zhai et al., 2020) and
only randomly reserve 1000 training data for each dataset. As shown in Tab. 3] the results show that
Rep-Adatpter still outperforms the other two methods in general, with an average gain of 13.1% and
2.3% using PIRL pre-training. In addition, it can be seen from the experimental results that finetune
performs better than linear probing in many-shot transfer learning, but in low-shot transfer learning,
the conclusion is the opposite in some cases (e.g., Caltech101 with PIRL and MoCoV2 and DTD
with all the 3 self-supervised method).

4.4 COMPARISON WITH OTHER FINE-GRAINED MODEL ADAPTATION METHODS

In previous sections, we mainly compare our Table 4: Comparison with other model adaptation
methods with the most representative fine- methods on low-shot & many-shot settings.

tunlng and hnear prOblng basehnes' Here, we Supervised VTAB-1k ‘ Natural ~ Specialized ~ Structured ‘ Mean
further compare with other fine-grained model Fine.taning 703 76 27| 02
adaptation methods. We first compare Rep- R T 72 T4 23 ol
. . 1sual Frompt luning .3 . S ..
Adapter with LoRA (Hu et al.,[2022)) and Visual Rep-Adapter 728 80.6 567 67.6
Prompt Tuning (Jla et al., 2022) on the low-shot Supervised |CUBS Stanford Cars Flowers102 WikiArt Sketches | Mean
(1000 exampleS) VTAB-1k benchmark with su- Linear 74.07 70.81 8567 61.60 7550 |73.53
: traing . _ Fine-tuning | 81.67 89.34 93.67 7328 7793 |83.18
p eerseq pre-training Welghts' The_n’ we com L2-sP 8129 89.67 9510 7354 80.67 |84.05
pare with the following fine-grained model DELTA | 8240 89.50 9533 7499 79.40 |84.32
. . . . AutoLR | 8178 89.10 9406 7634 8032 |84.32
adaptation methods in many-shot setting with S:(l):)Tunc 8403 92.40 9634 7577 8020 |85.75
supervised and PIRL pre-training weights: (a) Rep-Adapter | 84.61 9191 96.88 7701 80.77 |86.24
LQ_SP (Ll et al 2018) Using an L2 penalty PIRL ‘Callech]Ol CIFAR-100 DTD Flowers102 Pets ‘Mean
J :
- _ Linear 84.2 65 713 887 781 | 778
t(? encourage the fine tgned network to be con Fine-tuning | 85.4 818 677 952 857 |832
sistent with the pre-trained model on network L2.sp 91.9 788 687 937 852 |836
3 v . . DELTA collapse collapse collapse 64.7 collapse| -
weights, (b) DELTA (Li et al., 2019): using a AutoLR 92.0 779 695 932 842 |834
penalty to encourage the fine-tuned network to Rep-Adapter| 88.6 837 725 956 833 |857

be consistent with the pre-trained model on output features, (c) AutoLR (Ro & Choil |2021): auto-
tuning of layer-wise learning rates, (d) SpotTune (Guo et al., 2019): adaptively selecting between
the fine-tuned and the pre-trained layers for each image.

Low-shot. As shown in Tab.] our method outperforms LoRA and Visual Prompt Tuning (VPT)
by a large gap in low-shot setting. Remarkably, Rep-Adapter surpasses VPT by up to 19.15% on
structured datasets of VTAB-1k benchmark.

Many-shot. As shown in Tab. 4] our method clearly surpasses previous methods on many-shot
settings. With both supervised and unsupervised (PIRL) pre-training, Rep-Adapter consistently

Under review as a conference paper at ICLR 2024

Table 5: Top-1 Accuracy of Few-shot (16-shot) transfer learning with CLIP. {: Zero-shot CLIP
results are also listed for reference.

Architecture \Method \Caltecthl DTD Flowers102 Pets SUN397 Cars Aircraft Food101 EuroSAT UCF101 \Mean
Zero-shot ' 86.3 42.3 66.1 858 585 556 173 713 37.6 61.5 58.8
CLIP-R50 CoOp 91.8 63.6 94.5 87.0 693 734 313 74.7 83.5 7577 | 745
Tip-Adapter 90.9 60.9 89.9 88.1 669 668 29.8 77.8 70.5 706 | 71.2

Tip-Adapter-F 93.0 66.6 94.8 89.7 715 757 356 794 84.5 780 | 76.9
Rep-Adapter 93.9 68.0 95.5 89.6 718 764 36.2 79.0 85.9 793 | 77.6

Zero-shot ' 90.9 44.0 67.0 875 619 606 192 80.5 452 62.0 | 619
CLIP-ViT-B/32 | CoOp 94.6 65.4 95.0 88.7 724 761 332 785 83.4 787 | 76.6
Rep-Adapter 95.4 67.1 95.7 898 735 774 363 81.3 85.8 80.0 | 78.2

outperforms L2-SP, DELTA, AutoLR by a large margin. Our method can even outperforms the
dynamic model adaptation method, SpotTune, by 0.49% on average. Note that SpotTune uses an
additional policy network, and has more than 2x model size during inference. In contrast, the
improvement of Rep-Adapter comes for free.

4.5 FEW-SHOT TRANSFER LEARNING WITH CLIP

To further evaluate the effectiveness of our Rep-Adapter, we conduct experiments of few-shot (16-
shot) transfer learning with CLIP (Radford et al., [2021), and compare the results with Zero-shot
CLIP (Radford et al., 2021)), CoOp (Zhou et al.| [2022b)), Tip-Adapter (Zhang et al.,|2022). For CLIP
models, we only apply our Rep-Adapter on the visual encoder. In addition to CLIP-ResNet50, we
also apply our method to CLIP-ViT-B/32 to explore its generalization ability on transformer. For
transformers, we apply Rep-Adapter on every fully-connected layers. More implementation details
can be found in the supplementary material.

As shown in Tab. 5| Rep-Adapter generally outperforms previous methods. On average, Rep-
Adapter improves over CoOp (Zhou et al.| 2022b) by 3.1% with ResNet50 and by 1.6% with ViT-
B/32. It is noteworthy that Rep-Adapter does not introduce any extra model parameter during in-
ference, in contrast to prompt tuning methods and previous adapter-based methods. These results
suggest that Rep-Adapter is effective on vision-language pretrained models and vision transformers.

4.6 SEMI-SUPERVISED IMAGENET Table 6: Results on semi-supervised Image-Net.

Top-1 (%) Top-5 (%)
Models pretrained with Self_supervised learn- Method Protocol Label fraction Label fraction
. . 1% 10% 1% 10%
ing achieves strong performance when adapted _

with small fraction of labeled data. Fol- Finear oo e el
N N R . PIRL Fine-tuning 40.2 62.4 67.6 85.0
lowing the semi-supervised protocol of (Chen Rep-Adapter | 415 635 692 861
et al., [2020a)), we conduct experiments on the Linear 248 403 531 694
. MoCoV2 Fine-tuning 39.1 61.8 68.3 85.1
same fixed splits, 1% and 10% labeled Ima- e o M A——
ggNet training d'flta. We use models pret.ramed Cinenr 4 s 714 w0
with self-supervised methods PIRL (Misra & SwAV Fine-tuning 519 696 782 898
Rep-Ada 52.6 70.0 79.0 89.8

Maatenl, 2020), MoCoV?2 (Chen et al.| [2020b) ep-Adapter

and SwAV (Caron et al.,[2020). As shown in Tab. @, Rep-Adapter consistently outperforms the other
two generally used methods. On MoCoV2, Rep-Adapter improves over the standard fine-tuning by
4.3% and 2.2% with 1% and 10% label fraction, respectively.

4.7 OBJECT DETECTION & INSTANCE SEGMENTATION

To further explore the transferability of Rep-
Adapter, we evaluate it on object detec-
tion and instance segmentation. We use

Table 7: Results on object detection and in-
stance segmentation.

F: Fine-tuning, PIRL | MoCoV2 | SwAV | Supervised
Faster-RCNN (Ren et al} 2015) on PAS- wamame | o ow | %% | &% |5y
CAL VOC (Evermgham et al), 2010) dataset voC APB | 523 563|538 564|529 558|538 55.6

and Mask-RCNN (He et all 2017) on
Cityscapes (Cordts et all 2016) and COCO
2017 (Lin et al| 2014) datasets. We report coco ig;‘ik
the bounding box mAP (APB°*) and mask mAP

(APM#K) in Tab. [7 Rep-Adapter consistently outperforms the generally used fine-tuning (by up to
4.0 AP on VOC). Besides, these results also demonstrate that our method is not limited by the batch
size, because these experiments are performed with extremely low batch size (2 on each GPU).

Cityscapes APM®* | 333 36,0 | 339 37.3[353 382332 354

345 357|354 36.0 367 37.0 356 362

379 389 ‘ 388 39.4 ‘ 400 40.3 ‘ 39.0 39.5

Under review as a conference paper at ICLR 2024

Table 8: Ablation Study. A: Effect of the scaling factor §; B: Effect of joint optimization of §, ¢
with w.; C: Effect of the batch-wise statistics o, p; D: Effect of the BN position; E: Effect of wy
weight initialization; F: Effect of weight frozen in frozen branch. Results are shown in “mean (std)”

of multiple trial results.

Parameters BN Conv
Study on init w/ learnable iteratively frozen branch | fi Caltech101 CIFAR-100 DTD Flowers102 Pets
mit w/ wq . ,B trained with w o u 1n branc rozen
Ours N v] x X V| /| 847(04) 59.6(02) 642(24) 927(0.3) 90.3(2.6)
() BN & X 83.8(14) 59.6(0.1) 63.1(3.0) 925(02) 87.1(28)
(b)BN 8,¢ v 842(1.6) 59.5(02) 63.8(28) 92.5(04) 90.0(25)
(©)BNo,p v 825(22) 593(04) 619(0.7) 923(02) 88.1(2.0)
(d) BN Pre-add. X 82.1(35) 59.6(0.2) 61.6(3.1) 91.8(04) 85.9(5.4)
() Weight init. X 266(62) 112(0.9) 184(3.1) 39.7(8.3) 17.0(1.1)
(f) Weight frozen X || 81.8(3.6) 589(02) 60.9(34) 91.8(0.7) 855(5.3)
Fine-tuning || | | x | 816(G5.1) 57.8(1.6) 60.2(54) 91.5(1.6) 83.5(7.7)

4.8 ABLATION STUDY

In this section, we perform ablation study on different components of Rep-Adapter.

(a) Effect of the scaling factor §. As learnable weights «v of BN is used as the scaling factor in
our implementation, the effect of the scaling factor § of the frozen branch can be ablated by frozen ~y
of the BN in the frozen branch. As shown in Tab. B], enabling learnable weight of BN, i.e., learnable
4 in Rep-Adapter, slightly increase network performance on all the five datasets. Thus, we enabling
it be default, though it does not affect the simulated learning rate of Rep-Adapter.

(b) Effect of joint optimization of §, ¢ with w. In Sec. we discussed Rep-Adapter under the
situation when the scaling factors §, ¢ of the frozen branch and the fine-tuning branch are fixed when
updating w, i.e., d, ¢ and network parameter w are updated iteratively in separate steps. To save
the training cost and simplify the pipeline, we jointly optimize §, ¢ and w in each single step as in
Equation (I2). As shown in Tab.[8] joint and iterative optimization achieve comparable performance.
(c) Effect of the batch-wise statistics o, n. In Sec. [3.3] we discussed Rep-Adapter on linear
case, which covers using BN with running statistics o, . However, its a common practice in re-
parameterization literature to enable the batch-wise statistics in BN during training (Ding et al.,
2021cib). Here, we explore how will the non-linearity and stochasticity brought by batch-wise
statistics affect the performance. As shown in Tab. [§] enabling the batch-wise statistics (ours) con-
sistently outperforms the case using frozen o, p.

(d) Effect of the BN position. In Rep-Adapter, we use BN in both branches, before adding the
output of the branches together. Alternatively, the BN can also be used after addition, where only
Conv layers are in the branches. The results of the two cases is shown in Tab. |8} Using BN in the
branches clearly improves the performance of Rep-Adapter.

(e) Effect of w, weight initialization. In Rep-Adapter, the weight of the frozen branch is initial-
ized with the pretrained weight wy. As shown in Tab. 8] random initializing the frozen branch would
drastically damage the performance of Rep-Adapter (e.g., from 90.3% to 17.0% on Pets), demon-
strating that Rep-Adapter do make use of the information in the frozen branch and the importance
of pretrained weight initialization in the frozen branch.

(f) Effect of weight frozen in frozen branch. Tab. [§| also shows the result of not freezing the
weight in the frozen branch of Rep-Adapter. The performance drop considerably on all the five
datasets (up to 4.8% on Pets) when making the frozen branch learnable, and is comparable to fine-
tuning baseline. This demonstrate that the performance gain achieved by Rep-Adapter over fine-
tuning is not caused by re-parameterization and not by increasing the network complexity during
training. The frozen weights are critical for Rep-Adapter to achieve the performance improvement.

5 CONCLUSION

Model adaptation is a long-standing problem in transfer learning. We notice the fact that most pre-
vious model adaptation baselines have several downsides, such as tedious manual tuning of learning
rate and extra computational cost during inference phase. To the best of our knowledge, we are
the first to formulate automatic model adaptation into a bi-level optimization problem. We propose
a parameter-free protocol that can jointly optimize the learning rate and model parameters during
tuning phase with a theoretical basis. Our experiments empirically evidence the effectiveness and
generalization ability of our method. We hope our work can benefit future works on model adapta-
tion and reduce the human effort to manually tuning the hyper-parameters during transfer learning.

Under review as a conference paper at ICLR 2024

REFERENCES

G Anandalingam and Terry L Friesz. Hierarchical optimization: An introduction. Annals of Opera-
tions Research, 34(1):1-11, 1992.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101-mining discriminative compo-
nents with random forests. In ECCV, 2014.

Jinming Cao, Yangyan Li, Mingchao Sun, Ying Chen, Dani Lischinski, Daniel Cohen-Or, Baoquan
Chen, and Changhe Tu. Do-conv: Depthwise over-parameterized convolutional layer. arXiv
preprint arXiv:2006.12030, 2020.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. In NeurIPS, 2020.

Shoufa Chen, Yunpeng Chen, Shuicheng Yan, and Jiashi Feng. Efficient differentiable neural archi-
tecture search with meta kernels. ArXiv, abs/1912.04749, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework for
Contrastive Learning of Visual Representations. In /ICML, 2020a.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Mircea Cimpoi, Subhransu Maji, lasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3606-3613, 2014.

MMSelfSup Contributors. MMSelfSup: Openmmlab self-supervised learning toolbox and bench-
mark. https://github.com/open-mmlab/mmsel fsup, 2021.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3213-3223, 2016.

Xiaohan Ding, Yuchen Guo, Guiguang Ding, and J. Han. Acnet: Strengthening the kernel skeletons
for powerful cnn via asymmetric convolution blocks. /CCV, pp. 1911-1920, 2019.

Xiaohan Ding, Chunlong Xia, Xiangyu Zhang, Xiaojie Chu, Jungong Han, and Guiguang Ding.
Repmlp: Re-parameterizing convolutions into fully-connected layers for image recognition. arXiv
preprint arXiv:2105.01883, 2021a.

Xiaohan Ding, Xiangyu Zhang, Jungong Han, and Guiguang Ding. Diverse branch block: Building
a convolution as an inception-like unit. In CVPR, pp. 10886—10895, 2021b.

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg:
Making vgg-style convnets great again. In CVPR, pp. 13733-13742, 2021c.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303-338, 2010.

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE transactions
on pattern analysis and machine intelligence, 28(4):594-611, 2006.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In International Conference on Machine Learning, pp. 1607-1616,
2018.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,

and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. International
Journal of Computer Vision, pp. 1-15, 2023.

10

https://github.com/open-mmlab/mmselfsup

Under review as a conference paper at ICLR 2024

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:

Long Papers), pp. 3816-3830, 2021.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 32(11):1231-1237, 2013.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In CVPR, pp. 580-587, 2014.

Priya Goyal, Quentin Duval, Jeremy Reizenstein, Matthew Leavitt, Min Xu, Benjamin Lefaudeux,
Mannat Singh, Vinicius Reis, Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Ishan
Misra. Vissl. https://github.com/facebookresearch/vissl, 2021.

Shuxuan Guo, Jose M Alvarez, and Mathieu Salzmann. Expandnets: Linear over-parameterization
to train compact convolutional networks. In NeurIPS, 2020a.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris.
Spottune: transfer learning through adaptive fine-tuning. In CVPR, pp. 4805-4814, 2019.

Yunhui Guo, Yandong Li, Ligiang Wang, and Tajana Rosing. Adafilter: Adaptive filter fine-tuning
for deep transfer learning. In AAAI 2020b.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross B. Girshick. Mask r-cnn. Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2017.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 12(7):2217-2226, 2019.

Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737, 2017.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In ICML, pp. 2790-2799. PMLR, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYfO.

Zhigiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei Lee, Lidong Bing,
and Soujanya Poria. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. arXiv preprint arXiv:2304.01933,2023.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger. Snap-
shot ensembles: Train 1, get m for free. In International Conference on Learning Representations,
2017.

Yunhun Jang, Hankook Lee, Sung Ju Hwang, and Jinwoo Shin. Learning what and where to transfer.
In ICML, pp. 3030-3039. PMLR, 2019.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In ECCV, pp. 709-727. Springer, 2022.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 2901-2910, 2017.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
CVPR, pp. 2661-2671, 2019.

11

https://github.com/facebookresearch/vissl
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

Under review as a conference paper at ICLR 2024

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In ICCV-W, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In NeurIPS, 2012.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In EMNLP, 2021.

Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, Zeyu Chen, and Jun Huan.
Delta: Deep learning transfer using feature map with attention for convolutional networks. In
ICLR, 2019.

Xuhong Li, Yves Grandvalet, and Franck Davoine. Explicit Inductive Bias for Transfer Learning
with Convolutional Networks. In ICML, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740-755. Springer, 2014.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117-2125, 2017.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning. ArXiv, abs/2102.01386, 2021.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In CVPR, pp. 3431-3440, 2015.

Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun, Guannan Jiang, Zhiyu Wang, and Ron-
grong Ji. Towards efficient visual adaption via structural re-parameterization. arXiv preprint
arXiv:2302.08106, 2023.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dSprites: Dis-
entanglement testing sprites dataset, 2017. URL https://github.com/deepmind/
dsprites—dataset!

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representa-
tions. In CVPR, pp. 6707-6717, 2020.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722-729, 2008.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498-3505, 2012.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, pp. 8748-8763. PMLR, 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100, 000+ questions
for machine comprehension of text. In EMNLP, 2016.

12

https://github.com/deepmind/dsprites-dataset
https://github.com/deepmind/dsprites-dataset

Under review as a conference paper at ICLR 2024

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. In NeurIPS, 2017.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In CVPR, pp. 8119-8127, 2018.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,

2015.

Youngmin Ro and Jin Young Choi. Autolr: Layer-wise pruning and auto-tuning of learning rates in
fine-tuning of deep networks. In AAAZ 2021.

Amir Rosenfeld and John K Tsotsos. Incremental learning through deep adaptation. IEEE transac-
tions on pattern analysis and machine intelligence, 42(3):651-663, 2018.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general method
for semi-supervised learning. In ACL, pp. 384-394, 2010.

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equiv-
ariant cnns for digital pathology. In International Conference on Medical image computing and
computer-assisted intervention, pp. 210-218, 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
ICLR, 2019.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485-3492, 2010.

Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan Ngiam. Condconv: Conditionally parame-
terized convolutions for efficient inference. In NeurIPS, 2019a.

Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan Ngiam. Soft conditional computation.
ArXiv, abs/1904.04971, 2019b.

Xiangli Yang, Qing Liu, Rong Su, Ruiming Tang, Zhirong Liu, and Xiuqiang He. Autoft: Automatic
fine-tune for parameters transfer learning in click-through rate prediction. ArXiv, abs/2106.04873,
2021.

Dongshuo Yin, Xueting Han, Bin Li, Hao Feng, and Jing Bai. Parameter-efficient is not sufficient:
Exploring parameter, memory, and time efficient adapter tuning for dense predictions. arXiv
preprint arXiv:2306.09729, 2023.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In NeurIPS, 2014.

Fajie Yuan, Xiangnan He, Alexandros Karatzoglou, and Liguang Zhang. Parameter-efficient transfer
from sequential behaviors for user modeling and recommendation. In SIGIR, pp. 1469—-1478,
2020.

Sergey Zagoruyko and Nikos Komodakis. Diracnets: Training very deep neural networks without
skip-connections. ArXiv, abs/1706.00388, 2017.

13

https://github.com/facebookresearch/detectron2

Under review as a conference paper at ICLR 2024

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer,
Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, and
Neil Houlsby. A Large-scale Study of Representation Learning with the Visual Task Adaptation
Benchmark. arXiv:1910.04867 [cs, stat], 2020.

Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In ECCV, pp.
493-510. Springer, 2022.

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li, Peng
Gao, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init atten-
tion. arXiv preprint arXiv:2303.16199, 2023.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. In /CLR, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision (IJCV), 2022b.

L Zhu, S Arik, Y Yang, and T Pfister. Learning to transfer learn: Reinforcement learning-based
selection for adaptive transfer learning. In ECCV, 2020.

Xizhou Zhu, Jinguo Zhu, Hao Li, Xiaoshi Wu, Xiaogang Wang, Hongsheng Li, Xiaohua Wang, and
Jifeng Dai. Uni-perceiver: Pre-training unified architecture for generic perception for zero-shot
and few-shot tasks. In CVPR, 2022.

A APPENDIX

A.1 A SIMPLIFIED CASE OF PROPOSITION 3.1

Proposition A.1. Given a pre-trained linear network layer (w°®). Let Y™ (x) = (W) +
diag(¢)p(w™) denotes this layer under adapter tuning scheme at learning rate 1,,,, and 7 (w)
denotes this layer with each of its filters fine-tuning at a certain learning rate. Suppose the network
functions of the two schemes are identical at tuning step t, for one of its filters, fine-tuning at a
certain learning rate 1 € R, then there always exists scaling factor (€ R for this filter such that
after one step of tuning, " (x) = Y™ () still holds.

Proof. Letu be one of the filters of 17 (z), ug be the corresponding filter of the pre-trained weight,
and v be the corresponding filter of ¥ (x). Suppose the network functions of the two schemes are
identical at step t. We have ¥} (x) = ¥*(x) and L, /OPp]X = OL, /O] . First, we calculate the
weight change of v in the adapter:

oL oL

Let u; = ug + Cvy, this layer function after one-step adapter tuning is:

wzil(a:) =uox + ((v + Av)z

_ 0L (14)
- (ut - 7]”:,(7/)73-
Pl
As for the fine-tuned case: or
Yl (@) = @ = (w — 0o 5). (15)
Oy

Recall that ©] (z) = X (x), and 0L, /0¥ = OL; /0] . Thus, there exists:

¢ =, /ni, such that 97, (z) = Y&, (), (16)
which proves that after one step of tuning, 17 () = 1™ (x) still holds. O

14

Under review as a conference paper at ICLR 2024

A.2 IMPLEMENTATION DETAILS

Datasets. For full-shot and few-shot learning experiments, we perform all of pre-training on
ImageNet (Krizhevsky et al., 2012), a benchmark for image classification including around 128
million training images from 1,000 categories. We adopt 14 Visual Task Adaptation Benchmark
(VTAB) tasks which cover a broad spectrum of domains and semantics, containing object identifi-
cation (Caltech101 (Fei-Fei et al., |2006), CIFAR-100 (Krizhevsky et al.l [2009), Flowers102 (Nils-
back & Zisserman, [2008)), and Pets (Parkhi et al., |2012)), texture classification (DTD (Cim-
poi et all 2014))), scene classification (SUN397 (Xiao et al.l 2010), and SVHN (Netzer et al.,
2011)), pathology detection (Patch Camelyon (Veeling et al.l 2018)), satellite image classifica-
tion (EuroSAT (Helber et al., 2019)), counting(Clevr/count (Johnson et al., [2017)), localization
(dSprites/location (Matthey et al., 2017))), orientation (dSprites/orientation (Matthey et al., 2017)),
and 3D geometry (Clevr/distance (Johnson et al.,|2017), and KITTI-Dist (Geiger et al., 2013)). We
set the same train/test splits as (Zhai et al.l 2020) and also use the regular test sets for the low-shot
(1000 examples) tasks.

For CLIP transfer learning, we benchmark on 10 publicly available image classification datasets used
in CLIP: Caltech101 (Fei-Fei et al., 2006)), OxfordPets (Parkhi et al., [2012)), StanfordCars (Krause
et al.,[2013)), Flowers102 (Nilsback & Zisserman, [2008)), Food101 (Bossard et al.,[2014)), FGVCA:ir-
craft (Mayji et al., |2013), SUN397 (Xiao et al.,[2010), DTD (Cimpoi et al.| 2014), EuroSAT (Helber,
et al.,|2019) and UCF101 (Soomro et al.,[2012).

We provide the licenses of the datasets mentioned above if known. ImageNet is available for free
to researchers for non-commercial use. Pets is under the CC BY-SA 4.0 license. DTD is made
available to the computer vision community for research purposes. SVHN is for non-commercial
use only. Patch Camelyon is under the CCO license. Clevr/count and Clevr/distance are under the
CC BY 4.0 license. KITTI-Dist is under the CC BY-NC-SA 3.0 license. The datasets we use are
publicly available, so that we obtain consent to use them by default. These datasets do not contain
personally identifiable information or offensive content.

Self-supervised training protocols. We adopt three self-supervised training protocols to pre-train
the model in our experiment section, here are the details of each method.

* PIRL levages pre-tasks, learning representations that are invariant to the transformations
and retaining semantic information;

* MoCoV2 establishes a strong contrastive unsupervised learning baseline with a memory
bank to restore negative samples.

* SwWAV simultaneously clusters the data while enforcing consistency between cluster as-
signments produced for different augmentations of the same image, instead of comparing
features directly as in contrastive learning.

Training Settings. For the VTAB downstream tasks, we set the total batch size of 256 on 8
NVIDIA GTX 2080Ti GPUs and use SGD with momentum of 0.9 without weight decay. We resize
all images to 224 x 224. We decay the learning rate by a factor of 10 after % and % of the training
time. We train 2500 training steps for low-shot (1000 examples) transfer tasks. For each many-shot

transfer task we try {2500, 5000, 10000} training steps and select the best one.

For CLIP transfer learning, we only apply Rep-Adapter on the visual encoder. We use AdamW
optimizer and cosine learning rate scheduler. We train the model for 20 epochs on all the datasets
except EuroSAT, for which we use 100 epochs.

For semi-supervised ImageNet tasks with self-supervised pretrained models, we train for 20 epochs
with a total batch size of 256 on 4 NVIDIA GTX 2080Ti GPUs and use SGD optimizer with a
momentum of 0.9, and a weight decay of 5e-4. The learning rate decays by 0.2 at 12 and 16 epochs.
Only random resize&crop to 224 x 224, horizontal flip are used for data augmentation.

For object detection and instance segmentation downstream tasks, we train with the FPN (Lin et al.,
2017) backbone on 8 NVIDIA GTX 2080Ti GPUs, follow the training settings in MMSelfSup (Con-
tributors}, [2021)) and implement in Detectron2 (Wu et al., [2019) library.

Code will be released.

15

Under review as a conference paper at ICLR 2024

A.3 ADDITIONAL RELATED WORK

Model Adaptation. Fine-tuning (Girshick et all, 2014} [Yosinski et al, [2014) has achieved state-
of-the-art performance on many computer vision tasks and NLP tasks, including image classifica-
tion (Kornblith et al.| 2019} [Hermans et al.,[2017), object detection (Girshick et al.}[2014), semantic
segmentation (Long et al.,[2015), text classification (Wang et al.} and question answering
jpurkar et al, 2016). Adapter tuning (Houlsby et al.l [2019; [Yuan et all, 2020) adds light-weight
modules on the pre-trained network to adapt the model without changing its original parameters.
Clip-adapter and Tip-adapter 2022) adopt residual adapter mod-

ules for few-shot transfer learning of CLIP (Radford et al.|2021). Similarly, prompt tuning
in NLP field learns input prompt tokens for a frozen Transformer network to achieve

transfer learning. Prompt tuning is proved to perform better than fine-tuning in few-shot scenar-
ios (Gao et al|, 202T). Recently, CoOp (Zhou et all, [2022b) applies prompt tuning to improve the
few-shot transfer learning performance of visual-linguistic pre-trained models, e.g., CLIP

2021)). Uni-perceiver (Zhu et al.} [2022)) uses prompt tuning for few-shot transfer of a generic
multi-modal perception architecture. Visual Prompt Tuning (Jia et al.,2022)) uses prompt tuning for

visual transfer learning tasks.

Other AutoML works related to transfer learning. Apart from the works we introduced in
the main text, there exists a few other works on transfer learning that are relevant to AutoML.
AutoFreeze accelerates fine-tuning by automatically freezing layers. L2TL
2020) jointly trains the model on source and target dataset and uses adaptive weights to balance
between losses. Other automated methods using a new target network include L2T-ww

2019).
A.4 EXPERIMENTS ON LARGER BACKBONES

To evaluate Rep-Adapter on larger backbones, we performs experiments with ResNet101 on su-
pervised, many-shot settings. The results are shown in Table 0] Comparing to ResNet50, Rep-
Adapter with ResNet101 achieves higher performance (+0.57%). It achieves remarkable perfor-
mance improvement comparing to previous transfer learning method. For example, Rep-Adapter
with ResNet101 outperforms fine-tuning by 1.87% on average.

Table 9: Results of ResNet101 with supervised pre-training, on many-shot settings.

| CUBS | Stanford Cars | Flowers | WikiArt | Sketchs | Mean

Fine-tuning 84.26 92.13 94.80 | 73.14 | 80.37 |84.94
L2-SP (Lietal | 2018) | 82.27 90.50 9436 | 7428 | 81.06 |84.49
DELTA (Li et al | 2019) | 84.05 91.47 95.09 | 75.63 | 81.64 |8558
Rep-Adapter 85.05 91.88 97.03 | 7830 | 8181 |86.81

A.5 ADDITIONAL ABLATION STUDY

Ablation on scaling factors. The scaling factors are the crucial components of the proposed Rep-
Adapter.However, using scaling factors without other components in Rep-Adapter (two branches,
BN in the branch) or using Rep-Adapter without scaling factors are both inferior to our proposed
Rep-Adapter. We have performed Ablation study by using scaling factors without other components
in Rep-Adapter to demonstrate the effectiveness. The results are shown in As shown in Tab.[I0}. The
result of w/o scaling and w/o BN is the result of case (a) and (d) in Tab.[8] By comparing the results
of Rep-Adapter with (b) w/o scaling, we can see that scaling is an important component of Rep-
Adapter. Results of (a) only scaling shows that the scaling needs the other design of Rep-Adapter
to be effective. Results of (c) w/o BN shows that the BN in the branch is also an important factor to
achieve good results with Rep-Adapter.

Ablation on initialization of the tuning branch. We perform experiment by randomly initial-
izing. As shown in Tab. [T0} random initializing the tuning branch would clearly damage the per-
formance of Rep-Adapter, demonstrating that the pretrained initialization is important to the tuning
branch.

16

Under review as a conference paper at ICLR 2024

Table 10: Additional Ablation Study. (a):Only scaling factor, without other architecture of Rep-
Adapter; (b) Rep-Adapter without scaling factor; (c) BN not included in Rep-Adapter; (d) Random
initialize frozen branch; (e) Random initialize tuning branch. Results are shown in “mean (std)” of
multiple trial results.

Study on | Caltech101 ~CIFAR-100 DTD Flowers102 Pets
Ours 84.7 (1.4) 59.6 (0.2) 64.2(24) 92.7(0.3) 90.3(2.6)

817 (44) 58.1(1.6) 605(3.1) 91.3(1.3) 84.0(.1)
(b) w/o scaling 83.8(1.4) 59.6(0.1) 63.1(3.0) 925(02) 87.1(2.8)
(¢) w/o BN 82.1(3.5) 59.6(02) 61.6(3.1) 91.8(0.4) 859(5.4)

|
(d)Randominit.F.‘ 266(6.2) 11.2(09) 184(3.1) 39.7(83) 17.0(1.1)
T
|

(a) Only scaling

(e) Random init. 74.8 (5.9) 525(1.4) 539@3.6) 881(l.1) 79.1(4.5)
81.6 (5.1) 57.8(1.6) 60.2(54) 91.5(1.6) 83.5(7.7)

Fine-tuning

A.6 ADDITIONAL ANALYSIS ON EXTREME CASE

We noticed that our model is inferior to linear probing on a specific scenario, low-shot SUN397,
with less than 3 samples per class. Although our Rep-Adapter has the theoretical potential to decay
to complete linear probing, this may not hold in this extreme case, as the scaling factor 7 simulating
learning rate may also over-fit. We provide an additional exploration on this dataset. We select the
pre-trained protocol, SWAV, where our method has a significant gap between linear probing. We
increase the number of sampled images to repeat the low-shot experiment, and report the results in
Table[IT} We can observe our method performance increases while the images increase, consistently
outperforms fine-tuning. When using 7940 traing samples (20 per class), our method performs
comparably with linear probing and eventually surpasses it when sampling 40 images per class.

Table 11: Increasing number of sampled images on SUN397. The gap between our method and
linear probing shrinks while sampling number increases, and eventually surpasses it.

Samples ‘ 1000 3970 7940 11910 15880

Linear 22 515 5441 589 60.1
Fine-tuning | 22.4 453 51.1 56.9 57.9
Rep-Adapter | 24.3° 70 46.6°*° 53.6°%° 58.6°%° 60.40*°3

17

	Introduction
	Related Work
	Methodology
	Preliminaries
	Parameter-free Adaptation via Rep-Adapter
	Simulation of Layers Fine-tuning at Any Learning Rate via Rep-Adapter
	Automatic Model Adaptation via Rep-Adapter Tuning

	Experiments
	Implementation Details
	Many-shot Transfer Learning
	Low-shot Transfer Learning
	Comparison with other fine-grained model adaptation methods
	Few-shot Transfer Learning with CLIP
	Semi-supervised ImageNet
	Object Detection & Instance Segmentation
	Ablation Study

	Conclusion
	Appendix
	A Simplified Case of Proposition 3.1
	Implementation Details
	Additional Related Work
	Experiments on Larger Backbones
	Additional Ablation Study
	Additional Analysis on Extreme Case

