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ABSTRACT

Recent advances in visual pre-training have demonstrated the advantage of trans-
ferring pre-trained models to target tasks. However, different transfer learning
protocols have distinctive advantages regarding target tasks, and are nontrivial
to choose without repeated trial and error. This paper presents a parameter-free
automatic model adaptation protocol for ConvNets, aiming at automatically bal-
ancing between fine-tuning and linear probing, by using adaptive learning rate for
each convolution filters on target tasks. First, we propose Rep-Adapter, an adapter
module with re-parameterization scheme, which can achieve soft balancing be-
tween the pre-trained and fine-tuned filters, and can be equivalently converted to
a single weight layer, without introducing additional parameters to the inference
phase. We show by theoretical analysis that Rep-Adapter can simulate a ConvNet
layer with each filter fine-tuning at different learning rate. We present a simple
adapter tuning protocol with Rep-Adapter to achieve automatic adaptation of pre-
trained models without additional search cost. Extensive experiments on various
datasets with ResNet and CLIP demonstrate the superiority of our Rep-Adapter
on semi-supervised, few-shot and full dataset transfer learning scenarios.

1 INTRODUCTION

Recent advances in both computer vision and neural language processing field have demonstrated
the advantage of transferring large-scale pre-trained models to downstream tasks. To leverage the
information of the pre-trained models, there emerges different transfer learning protocols such as
fine-tuning directly on the new task (Girshick et al., 2014), feature-based methods (Turian et al.,
2010) that only update the parameters of the task-specific head, and adapter tuning (Houlsby et al.,
2019) that introduces new learnable modules to adapt some layers in the original model.

The most suitable choice of the protocols depends on many factors, including target dataset size,
label fraction, etc. For instance, fine-tuning is usually more powerful on fully-supervised ImageNet,
while linear probing are sometimes better on semi-supervised ImageNet (Zhou et al., 2022a). We
also observe a similar trend on Caltech101 dataset. As in shown in Figure 1, fine-tuning outperforms
linear probing for full dataset transfer on Caltech101 (dataset B in the figure), while linear probing
performs better for low-shot (1000 examples) scenario. Moreover, when taking partial fine-tuning
and layer-wise learning rate adjustment into consideration, the option space becomes computation-
ally prohibitive for an extensive search. Therefore, we believe there is an urgent need of designing
an automatic transfer learning protocol that can combine the advantages of these protocols without
tediously searching for hyper-parameter settings.

There exists some preliminary attempts to avoid manually tuning layer-wise and filter-wise hyper-
parameter settings. SpotTune (Guo et al., 2019) and AdaFilter (Guo et al., 2020b) dynamically
route between frozen and learnable weights, at a cost of having more than twice the original model
size during inference. AutoLR (Ro & Choi, 2021) searches for layer-wise fine-tuning learning rate
via repeated trial. However, these methods introduce either policy networks or repeated training
loops, increasing the training or inference cost. We thus explore a simple model adaptation method,
without introducing extra training steps or extra parameters during inference.

In this paper, we introduce Rep-Adapter, a novel adapter module that achieves soft balancing be-
tween the pre-trained and fine-tuned filters. Each adapter module has two branches, a frozen branch
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Figure 1: Comparison of fine-tuning,
linear probing and our proposed Rep-
Adapter. Dataset A: DTD for texture
classification; B: Caltech101 for object
identification; C: EuroSAT for satel-
lite image classification. Models are
pre-trained on ImageNet with a self-
supervised method, PIRL.

with the pre-trained parameters, and a learnable branch
that adapts on the target tasks. During inference, we lever-
age the re-parameterization scheme to equivalently con-
vert the two branches into one, avoiding the increase in
model size and computational cost.

In addition, we prove that, during training, our Rep-
Adapter is equivalent to a layer fine-tuned by a fine-
grained transfer learning protocol with different learning
rate for each filter. This eliminates the need of tedious
hyper-parameter search for learning rate configurations
like previous methods. By optimizing a network stacked
by Rep-Adapter, the pre-trained model can be transferred
with adaptive learning rate for each filter. As such, fine-
tuning and linear probing can be achieved by learning the
learning rate to a certain value or zero.

We conduct extensive experiments to evaluate and analysis our method. We use VISSL (Goyal
et al., 2021) library to evaluate the effectiveness of our approach on full dataset and low-shot (1000
examples) transfer learning scenarios. We adapt models from several different pre-training proto-
cols (fully-supervised pre-training and three state-of-the-art self-supervised pre-training methods on
ImageNet, CLIP pre-training with text supervision), to various downstream datasets, and on full-
shot, low-shot (1000 examples) or few-shot (16-shot) scenarios. We also perform experiments on
semi-supervised ImageNet, by adapting models pre-trained by 3 different self-supervised learning
methods to ImageNet with 1% and 10% label fraction. Moreover, we explore the transferability to
VOC object detection and Cityscapes, COCO instance segmentation tasks. Our Rep-Adapter tuning
protocol consistently surpasses the baselines across tasks and scenarios, which clearly evidences the
effectiveness and generalization ability of our method.

Overall, our contributions can be summarized as follows:
• We present a novel adapter module that has two advantages: 1) the module keeps the pre-trained

model intact, avoiding the issue of catastrophic forgetting, preserving all the general knowledge
learnt during pre-training; 2) in contrast to previous adapter-based tuning approach, our module
can be merged into a single layer during inference to achieve a parameter-free tuning.

• We theoretically prove that, in Rep-Adapter tuning, each module achieves an automatic learning
rate adjustment to avoid manual hyper-parameter search.

• Our Rep-Adapter tuning protocol surpasses the state-of-the-art transfer learning protocols by a
significant margin in extensive experiments. Rep-Adapter tuning consistently outperforms fine-
tuning and linear probing protocols, on different tasks and scenarios (Figure 1).

2 RELATED WORK
Transfer Learning via Model Adaptation. Model adaptation methods modify a pre-trained
model to achieve higher performance on a target task. Figure 2 illustrates popular model adaptation
methods in computer vision field. Feature-based methods (Figure 2 (a)), including linear classifica-
tion, directly learn task specific head on frozen features (Turian et al., 2010). Fine-tuning (Girshick
et al., 2014) is the most generally used transfer learning protocol (Figure 2 (b)). Some works regular-
ize the distance between the fine-tuned model and the pretrained model on the network parameters
(e.g., L2-SP (Li et al., 2018)) or the output features (e.g., DELTA (Li et al., 2019)) to improve
the performance, but the weight of the regularization comes a hand-crafted hyper-parameter. Some
works (Furlanello et al., 2018; Huang et al., 2017) use network ensemble to boost the performance
by combining the frozen and learnable weights, at a cost of using M× model size (M is the number
of ensemble models) during inference. Adapter tuning (Yin et al., 2023; Hu et al., 2023; Zhang
et al., 2023; Houlsby et al., 2019; Yuan et al., 2020) (Figure 2 (c)) adds light-weight modules on the
pre-trained network to adapt the model without changing its original parameters. Previous works
on convolution adapter modules (Rebuffi et al., 2017; 2018; Rosenfeld & Tsotsos, 2018) perform
incremental learning by adding small point-wise convolution adapter modules, at a cost of about
11% increase in model size for each tasks. Our Rep-Adapter is also related to ensemble meth-
ods. However, an ensemble of models can not be directly converted to a single model due to the
non-linearity in the models and thus much larger than us in terms of parameters and computation
complexity. Different from previous methods, Rep-Adapter does not increase inference model size,
which accelerates the deployment and removes the size constraint of the adapter modules.
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Table 1: Comparison of different model
adaptation protocols. (orig. weight: accessi-
ble to original weight; auto.: automatic pro-
tocol; no ext. train: no extra training steps;
no ext. infer.: no extra inference cost)
Method orig. weight auto. no ext. train no ext. infer.

Fine-tuning ✗ ✗ ✓ ✓
Feature-based ✓ ✗ ✓ ✓
Adapter ✓ ✗ ✓ ✗
SpotTune ✓ ✓ ✗ ✗
AutoLR ✗ ✓ ✗ ✓
Rep-Adapter ✓ ✓ ✓ ✓
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Figure 2: Illustration of different model adapta-
tion protocols. Feature-based protocols train clas-
sifier on top of the frozen feature. Fine-tuning train
all the parameters. Adapter tuning adds learnable
adapters. (Orange: frozen, green: learnable)

Some methods including LoRA (Hu et al., 2022) and Progressive Networks (Rusu et al., 2016) also
adopt the idea of using both frozen branches and learnable branches in the network. The main
differences between Rep-Adapter and these works are summarized in Tab. 2. First, different from
LoRA and Progressive Networks, the added branch in Rep-Adapter is non-linear during training
and linear during inference. This is in line with vision re-parameterization works which benefit
from the unique property of BN layer. Second, unlike these works, we add two scaling factor layers
to the two branches and prove that our module achieves an automatic learning rate adjustment to
avoid manual hyper-parameter search. Third, different from LoRA, Rep-Adapter does not aim at
parameter-efficient tuning of large pretrained models, but aims at the transfer learning performance,
in line with works such as L2-SP (Li et al., 2018), DELTA (Li et al., 2019), etc.

Table 2: Comparison of Rep-Adapter,
Progressive Network and LoRA.

Method train linearity inference linearity learnable factor

Progressive ✗ ✗ ✗
LoRA ✓ ✓ ✗
Rep-Adapter ✗ ✓ ✓

AutoML on transfer learning. There exists some
preliminary attempts on automating transfer learning.
Dynamic tuning methods (Guo et al., 2019; 2020b;
Yang et al., 2021) introduce more than 2× parame-
ters during inference, with additional policy networks
or gating modules to achieve dynamic routing among
frozen and fine-tuning weights. AutoLR (Ro & Choi,
2021) presents auto-tuning of layer-wise learning rates, at a cost of performing repeated learning
rate trial during training. Different from these methods, we solve automatic model adaptation prob-
lem in a much simpler way, without introducing extra training steps, or extra model size during
inference. A comprehensive comparison of different model adaptation schemes is shown in Tab. 1.
We consider four aspects including: preservation of original weight, automatic method, no extra
training steps and no extra inference cost. Among these methods, only ours could cover all aspects.
Traditional Re-parameterization. Traditional Re-parameterization (Zagoruyko & Komodakis,
2017) parameterize weight as a combination of a set of parameters for optimization of deep neural
networks. Traditional Re-parameterization has also been used for AutoML. (Chen et al., 2019) uses
meta kernels with re-parameterization to denote a neural architecture search space. SCC (Yang
et al., 2019b) and CondConv (Yang et al., 2019a) derive a kernel as the weighted sum of multiple
generated kernels, to perform a conditionally parameterized convolution. Differently, we focus on
automating the optimization of learning rate during transfer learning.
Structural Re-parameterization. Structural Re-parameterization, proposed by (Ding et al.,
2021c), is a method that parameterizes a network structure with the parameters transformed from
another network structure. This method has recently been used to boost the training phase of
ConvNets (Luo et al., 2023; Ding et al., 2021b; 2019; Guo et al., 2020a; Cao et al., 2020) and
MLP models (Ding et al., 2021a) by introducing merge-able branches with different architectures,
without changing the whole network architecture in the inference phase. In this paper, we use re-
parameterization to represent structural re-parameterization. Different from these works that merge
branches with different architecture, we use re-parameterization to merge frozen branch and tuning
branch (with the same architecture), and simulate a layer with arbitrary learning rate. This is the first
time that re-parameterization is proved to be able to represent different learning rate, and also the
first time that scaling factors are introduced to re-parameterization for learning rate optimization.
3 METHODOLOGY
In this section, we first formulate the automatic model adaptation problem and analyze the downside
of baseline methods, then introduce Rep-Adapter, a novel adapter module with re-parameterization
technique. We prove that our adapter can simulate a fine-tuning layer with arbitrary learning rate for
each filter, and further present a simple adapter tuning protocol to achieve automatic adaptation of
pre-trained models without additional search cost.
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3.1 PRELIMINARIES
Model Adaptation. Let ψ denote a pre-trained model equipped with a random initialized task
specific head. Given a target task with objective {minL}, model adaptation yields a target model
ψ⋆ by executing certain transfer protocol ζ:

ψ⋆ = argmin
ψ

L(ψ, ζ). (1)

In computer vision field, most of the transfer learning protocols for ConvNets use the same network
architecture of the pre-trained model on the target task, where the network parametersω inherit from
the pre-trained ones ω0. As discussed in Section 1, most of these protocols fall in two categories,
fine-tuning and linear probing.The essential difference between these protocols is the learning rate
of each network parameters. Without loss of generality, let ηm be a reference learning rate, and
η ∈ R|i| be the learning rate multipliers η(i) ∈ R for all the |i| filters (where i indexes network filters
and |i| denotes total filter number). Given the hyper-parameter η, the objective of these protocols is:

ω⋆ = argmin
ω

L(ω,η). (2)

In this framework, the fine-tuning protocol is equivalent to setting a global η for all parameters,
while linear probing is equivalent to setting η = 0.

Automatic Model Adaptation. Intuitively, the optimal learning rate of each parameter is influ-
enced by factors like data distribution, model architectures. To this end, another line of work aims
to learn the proper transfer protocol ζ for the target task in an automatic fashion. Following the
previous discussion, the objective of automatic model adaptation can be denoted as:

min
ω,η

L(ω,η). (3)

In the following sections, we first introduce a novel parameter-free adapter module, and then present
a carefully designed tuning protocol that is equivalent to a bi-level optimization (Anandalingam &
Friesz, 1992) of the learning rate and network parameters.

3.2 PARAMETER-FREE ADAPTATION VIA REP-ADAPTER
Input

Output

Rep-Adapter.(a) 

Input

Output

Original layer.(b) 

frozen
learning rate:learning rate:

Converted
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Figure 3: A Rep-Adapter can be equiva-
lently converted to a single weight layer,
and can also simulate a layer fine-tuning
with certain filter-wise learning rate by
setting the value of ζ accordingly.

Intuitively, a soft balancing between a frozen filter and a
fine-tuning filter can represent an intermediate state be-
tween them, i.e., a filter tuning at a smaller learning rate.
Motivated by the intuition, we set to solve this problem by
first proposing an adapter module to achieve this balance.
This intuition will be further analysed in Sec. 3.3.

Rep-Adapter. To make a soft balancing between a
ConvNet layer with frozen filters and a ConvNet layer
with tuned filters, we present the Rep-Adapter module
that comprises a frozen branch and a tuning branch, both
initialized with pre-trained network parameters. We ex-
plicitly introduce the scaling factors δ, ζ ∈ Rd for each
filter of the two branches, where d denotes filter number
for a network layer. As shown in Figure 3 (a), Rep-Adapter can be defined as:

ψR(ω0,ω
R) := diag(δ)ψ(ω0) + diag(ζ)ψ(ωR), (4)

where ω0, ωR denote pre-trained network parameters and parameters of the tuning branch, and
diag(·) denotes the corresponding diagonal matrix constructed from a vector. Such soft weighting
with factors {δ, ζ} in the adapter would generally introduce twice model size and computation,
leading to high inference cost and model size. Accordingly, we introduce a re-parameterization
scheme to merge the two branches in Rep-Adapter.

Re-parameterization. Considering a pre-trained ConvNet, a Rep-Adapter ψR for the ConvNet
contains a frozen branch and an adapting branch, both of which consist of a convolution (Conv)
layer and a batch normalization (BN) layer. The weights and optional bias of a Conv layer can be
denoted by w and b. A BN layer performs per-channel normalization and scaling. Let µ and σ
denote running mean and variance of training samples, and let γ and β be the channel-wise scaling
factor and bias. A Conv-BN branch can be converted to a single Conv layer as:

ψ(x) = (w ⋆ x− µ)γ
σ

+ β = (w · γ
σ︸ ︷︷ ︸

w′

) ⋆ x+ (β − µγ
σ︸ ︷︷ ︸

b′

), (5)
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where ⋆ denotes convolution operator,w′ and b′ are the equivalent weights and bias after the merge.

After merging Conv-BN, we consider to merge the two Conv branches in Rep-Adapter. When the
outputs of two or more Conv layers with the same configurations are added up, we can merge them
into a single Conv. Let w0, b0 be the pre-trained weights and bias of a merged Conv-BN branch,
and wR, bR be the merged weights and bias of the tuning Conv-BN branch in Rep-Adapter. The
adapter, i.e., weighted sum of two branches, can be converted as:

ψR(x) = diag(δ)(w0 ⋆ x+ b0) + diag(ζ)(wR ⋆ x+ bR). (6)

Thus, the adapter can be merged to a single convolution layer by setting:

w̃ = diag(δ)w0 + diag(ζ)wR, b̃ = diag(δ)b0 + diag(ζ)bR. (7)

In this way, a Rep-Adapter ψR with two branches can be converted to a single weight layer ψ(ω̃)
during inference (Figure 3), enabling parameter-free model adaptation.

3.3 SIMULATION OF LAYERS FINE-TUNING AT ANY LEARNING RATE VIA REP-ADAPTER

In Sec. 3.2 we intuitively use our proposed Rep-Adapter as a balance between fine-tuning and frozen
weights. Here we show by theoretical analysis that Rep-Adapter can indeed simulate a layer fine-
tuning at a different learning rate.
Proposition 3.1. Given a pre-trained linear network layer ψ(ω0). Let ψR(x) = diag(δ)ψ(ω0) +
diag(ζ)ψ(ωR) denotes this layer under adapter tuning scheme at learning rate ηm, and ψF (ω)
denotes this layer with each of the d filters fine-tuning at a certain learning rate η ∈ Rd. Suppose
the network functions of the two schemes are identical before tuning step t, then there always exists
scaling factor ζ ∈ Rd for each filter such that after one step of tuning, ψF (x) = ψR(x) still holds.

Proof. Suppose the network functions of the two schemes are identical at step t. We have ψF
t (x) =

ψR
t (x) and ∂Lt/∂ψ

R
t = ∂Lt/∂ψ

F
t . First, we calculate the weight change of ωR in the adapter:

∆ωR
t = −ηm

∂Lt

∂ωR
t

= −ηm · diag(ζ)
∂Lt

∂ψR
t

. (8)

Let ω̃t = diag(δ)ω0 + diag(ζ)ωR
t , this layer function after one-step adapter tuning is:

ψR
t+1(x) = diag(δ)ω0x+ diag(ζ)(ωR +∆ωR)x

= (ω̃t − ηm · diag(ζ21 , . . . , ζ
2
d)

∂Lt

∂ψR
t

)x.
(9)

As for the fine-tuned case:
ψF

t+1(x) = ωt+1x = (ωt − diag(η)
∂Lt

∂ψF
t

)x. (10)

Recall that ψF
t (x) = ψR

t (x), and ∂Lt/∂ψ
R
t = ∂Lt/∂ψ

F
t . Thus, there exists:

ζ =

(√
ηi
ηm

)d

i=1

, such that ψF
t+1(x) = ψ

R
t+1(x), (11)

which proves that after one step of tuning, ψF (x) = ψR(x) still holds.

Based on Proposition 3.1, we have two corollaries. First, as in Figure 3, if a Rep-Adapter and a
network layer with filter-wise fine-tuning lr are identical before training (ψF

0 (x) = ψR
0 (x)), by

properly setting scaling factors ζ in Rep-Adapter based on the filter-wise learning rate η, the Rep-
Adapter can represent this layer in every steps (ψF (x) = ψR(x)). Second, when using the optimal
scaling factors ζ at each training step, the Rep-Adapter represents a layer fine-tuning with optimal
filter-wise lr. Therefore, the optimization of lr can be relaxed to the optimization of ζ.1

1Note that BN layer during training generally uses batch statistics to simulate the data distribution. This
causes non-linearity in BN and could make Proposition 3.1 not strictly true. However, we empirically find that
using batch-wise statistics are better than using frozen statistics loaded from pretrained model (see Sec. 4.8 (c)).
This is probably because BN with batch-wise statistics acts very similar to a linear layer. Rep-Adapter using
BN with batch-wise statistics performs consistently good even when training with extremely low batchsize (i.e.,
batchsize=2, see Sec. 4.7). To align with previous works, we use batch-wise BN statistics during training.
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3.4 AUTOMATIC MODEL ADAPTATION VIA REP-ADAPTER TUNING
Rep-Adapter tuning. We present a simple Rep-Adapter tuning scheme, by adding the Rep-
Adapter to every layer of a pre-trained model, and making the factors δ and ζ in the adapters
learnable. In Rep-Adapter tuning protocol, adapter parameters ωR and factors {δ} = {δ(l)}|l|l=0,
{ζ} = {ζ(l)}|l|l=0 of all the layers are jointly optimized. Based on Proposition 3.1, we have
ω = diag(δ)ω0 + diag(ζ)ωR, η = diag(ζ2)ηm. Thus, the original objective of automatic model
adaptation in Equation (3) can be converted to:

min
ωR,{δ},{ζ}

L(ω0,ω
R, {δ}, {ζ}, ηm), (12)

where pre-trained ω0 and reference learning rate ηm are task-agnostic hyper-parameters. Since ζ
participates in loss calculation, it can be simply optimized by back-propagation together with ωR.2
Thus, Rep-Adapter tuning simulates a model fine-tuning with adaptive learning rate for each filter
without introducing additional training loops or searching phase. In practice, the weight γ of BN
layer of the two branches have the same shape and play a similar role to the scaling factors δ and ζ.
Thus, we directly use γ as the scaling factor for convenience in our implementation.

After the tuning phase, the model can be deployed efficiently by re-parameterization following the
scheme in Sec. 3.2. The model size and computation complexity are exactly the same as in fine-
tuning scheme, without introducing any additional parameters during inference. This scheme avoids
the issue of catastrophic forgetting during training, and the tuned model can also be used for further
transfer as the original weights are not modified.

4 EXPERIMENTS

We evaluate our Rep-Adapter on various settings to demonstrate its effectiveness, including many-
shot and low-shot transfer learning with supervised and unsupervised ImageNet pre-training, few-
shot transfer learning of CLIP, and semi-supervised learning.

4.1 IMPLEMENTATION DETAILS

We implement the cross-domain transferring with the popular computer vision library VISSL (Goyal
et al., 2021), which is inspired by the Visual Task Adaptation Benchmark (VTAB) (Zhai et al.,
2020). VISSL contains 14 diverse classification downstream datasets, and two settings for tuning
phase, 1) many shot transfer learning setting, where all training labels of the downstream tasks are
used; 2) low-shot transfer learning setting that only trains on 1000 labeled images sampled from
the downstream datasets. For few-shot learning with CLIP, we adopt 16-shot settings on 10 transfer
learning datasets. See the supplementary for more details.

Pre-Training Protocol. We evaluate Rep-Adapter on self-supervised models, fully super-
vised models, and text-supervised models. We use two representative self-supervised methods,
PIRL (Misra & Maaten, 2020), MoCoV2 (Chen et al., 2020b) on cross domain transfer learning
and an additional self-supervised learning method SwAV (Caron et al., 2020) for semi-supervised
learning on ImageNet, and use CLIP (Radford et al., 2021) for experiments with text-supervised
pre-training.Please check the supplementary for more details.

Baseline methods. As our method aims to combine the advantage of the prevalent feature-based
methods, e.g. linear probing, and fine-tuning. we choose these two method as our baseline methods.
value for the classification layer, while fine-tuning is setting a same η for all the network parameters.

4.2 MANY-SHOT TRANSFER LEARNING

We first evaluate our method on many-shot transfer learning setting. We use all training data with
labels from all 14 target datasets during the tuning phase. Results are presented in Tab. 3. Our
Rep-Adapter generally outperforms the baseline methods, on 37 out of 42 scenarios. For example,
our method improve over linear probing and fine-tuning by 16.1% and 1.4% with PIRL on average.
It is worth mentioning that on the target datasets such as CIFAR-100, DTD, Flowers102, SUN397,
Camelyon, Clevr-Dist, etc., Rep-Adapter surpasses the other two methods by a large margin whether
using supervised or self-supervised pre-training models (e.g., up to +46.7% on dSpr-Ori with PIRL,
compared to linear probing).

2In Proposition 3.1, ζ is fixed when updating ω. Therefore, the basic version of Rep-Adapter tuning is
to update ζ and ω iteratively. To save the training cost, we further explore an approximated version of Rep-
Adapter, by simultaneously updating ζ and ω in the same step. We empirically find that this version yields
comparable results with the basic version (see Sec. 4.8 (b)). By default, we use the approximated version.
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Table 3: Results of many-shot and low-shot transfer learning. We report the Top-1 Accuracy.
The best and the second best results are marked with bold and underline.
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Many-shot Transfer Learning

PIRL
Linear 84.2 66.5 71.3 88.7 78.1 64.6 62.5 83.6 95.2 76.8 63.5 73.0 49.8 73.7 73.7
Fine-tuning 85.4 81.8 67.7 95.2 85.7 67.9 95.7 87.4 97.7 99.4 93.7 100.0 96.0 84.2 88.4
Rep-Adapter 88.0 83.7 72.5 95.6 88.3 70.7 96.5 88.6 98.0 99.9 94.1 100.0 96.5 85.3 89.8

MoCoV2
Linear 87.1 70.9 72.4 91.7 78.4 65.9 70.9 84.1 95.8 77.7 67.7 83.3 55.2 74.3 76.8
Fine-tuning 87.7 81.6 73.0 94.0 88.7 63.2 96.1 87.8 98.4 99.6 93.7 100.0 96.4 84.1 88.9
Rep-Adapter 88.3 84.5 73.3 96.0 88.6 70.2 96.8 89.2 98.7 99.9 94.5 100.0 96.5 84.5 90.1

Supervised
Linear 88.5 73.6 71.2 85.7 91.5 66.0 69.3 85.4 95.4 65.7 62.0 81.8 60.9 72.2 76.4
Fine-tuning 94.1 83.8 74.0 93.7 91.9 70.7 97.0 83.9 98.8 99.8 92.1 100.0 96.4 80.7 89.8
Rep-Adapter 91.1 85.7 75.2 96.9 94.1 72.2 96.3 88.8 98.7 99.7 92.3 100.0 96.5 84.3 90.8

Low-shot Transfer Learning

PIRL
Linear 77.6 38.0 59.3 81.8 65.4 22.0 39.1 81.0 90.6 43.1 45.0 44.6 26.3 68.6 55.9
Fine-tuning 74.0 45.9 55.5 89.3 71.4 19.9 88.0 85.4 94.5 52.0 59.7 79.8 48.2 70.4 66.7
Rep-Adapter 78.9 45.7 61.3 89.2 76.0 20.1 88.2 86.4 95.7 56.9 62.5 86.4 47.8 70.6 69.0

MoCoV2
Linear 79.3 44.7 64.1 85.8 67.4 25.5 46.0 83.3 92.2 46.7 50.5 53.0 27.0 68.9 59.6
Fine-tuning 77.3 42.2 60.7 87.8 76.8 13.8 87.7 84.4 96.3 70.9 62.8 92.6 46.0 70.3 69.3
Rep-Adapter 80.0 46.4 62.2 91.1 74.8 17.6 88.7 86.2 96.5 73.7 65.8 92.3 50.7 71.3 71.2

Supervised
Linear 84.9 53.1 62.6 87.7 89.9 30.9 43.7 80.9 90.8 38.9 42.0 42.5 29.2 66.0 60.2
Fine-tuning 85.3 54.5 64.8 88.4 89.4 28.7 81.0 79.9 96.0 55.2 57.6 85.6 51.6 72.8 70.8
Rep-Adapter 85.8 59.9 66.1 92.7 91.7 29.8 83.6 84.7 96.0 59.6 57.0 91.0 51.0 71.5 72.9

4.3 LOW-SHOT TRANSFER LEARNING

In the experiment of low-shot transfer learning, we follow the protocol in (Zhai et al., 2020) and
only randomly reserve 1000 training data for each dataset. As shown in Tab. 3, the results show that
Rep-Adatpter still outperforms the other two methods in general, with an average gain of 13.1% and
2.3% using PIRL pre-training. In addition, it can be seen from the experimental results that finetune
performs better than linear probing in many-shot transfer learning, but in low-shot transfer learning,
the conclusion is the opposite in some cases (e.g., Caltech101 with PIRL and MoCoV2 and DTD
with all the 3 self-supervised method).

4.4 COMPARISON WITH OTHER FINE-GRAINED MODEL ADAPTATION METHODS

Table 4: Comparison with other model adaptation
methods on low-shot & many-shot settings.

Supervised VTAB-1k Natural Specialized Structured Mean

Fine-tuning 70.3 77.6 42.7 60.2
LoRA 72.0 78.4 52.5 65.1
Visual Prompt Tuning 66.3 77.3 37.5 56.5
Rep-Adapter 72.8 80.6 56.7 67.6

Supervised CUBS Stanford Cars Flowers102 WikiArt Sketches Mean

Linear 74.07 70.81 85.67 61.60 75.50 73.53
Fine-tuning 81.67 89.34 93.67 73.28 77.93 83.18
L2-SP 81.29 89.67 95.10 73.54 80.67 84.05
DELTA 82.40 89.50 95.33 74.99 79.40 84.32
AutoLR 81.78 89.10 94.06 76.34 80.32 84.32
SpotTune 84.03 92.40 96.34 75.77 80.20 85.75
Rep-Adapter 84.61 91.91 96.88 77.01 80.77 86.24

PIRL Caltech101 CIFAR-100 DTD Flowers102 Pets Mean

Linear 84.2 66.5 71.3 88.7 78.1 77.8
Fine-tuning 85.4 81.8 67.7 95.2 85.7 83.2
L2-SP 91.9 78.8 68.7 93.7 85.2 83.6
DELTA collapse collapse collapse 64.7 collapse -
AutoLR 92.0 77.9 69.5 93.2 84.2 83.4
Rep-Adapter 88.6 83.7 72.5 95.6 88.3 85.7

In previous sections, we mainly compare our
methods with the most representative fine-
tuning and linear probing baselines. Here, we
further compare with other fine-grained model
adaptation methods. We first compare Rep-
Adapter with LoRA (Hu et al., 2022) and Visual
Prompt Tuning (Jia et al., 2022) on the low-shot
(1000 examples) VTAB-1k benchmark with su-
pervised pre-training weights. Then, we com-
pare with the following fine-grained model
adaptation methods in many-shot setting with
supervised and PIRL pre-training weights: (a)
L2-SP (Li et al., 2018): using an L2 penalty
to encourage the fine-tuned network to be con-
sistent with the pre-trained model on network
weights, (b) DELTA (Li et al., 2019): using a
penalty to encourage the fine-tuned network to
be consistent with the pre-trained model on output features, (c) AutoLR (Ro & Choi, 2021): auto-
tuning of layer-wise learning rates, (d) SpotTune (Guo et al., 2019): adaptively selecting between
the fine-tuned and the pre-trained layers for each image.
Low-shot. As shown in Tab. 4, our method outperforms LoRA and Visual Prompt Tuning (VPT)
by a large gap in low-shot setting. Remarkably, Rep-Adapter surpasses VPT by up to 19.15% on
structured datasets of VTAB-1k benchmark.
Many-shot. As shown in Tab. 4, our method clearly surpasses previous methods on many-shot
settings. With both supervised and unsupervised (PIRL) pre-training, Rep-Adapter consistently
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Table 5: Top-1 Accuracy of Few-shot (16-shot) transfer learning with CLIP. †: Zero-shot CLIP
results are also listed for reference.

Architecture Method Caltech101 DTD Flowers102 Pets SUN397 Cars Aircraft Food101 EuroSAT UCF101 Mean

CLIP-R50

Zero-shot† 86.3 42.3 66.1 85.8 58.5 55.6 17.3 77.3 37.6 61.5 58.8
CoOp 91.8 63.6 94.5 87.0 69.3 73.4 31.3 74.7 83.5 75.7 74.5
Tip-Adapter 90.9 60.9 89.9 88.1 66.9 66.8 29.8 77.8 70.5 70.6 71.2
Tip-Adapter-F 93.0 66.6 94.8 89.7 71.5 75.7 35.6 79.4 84.5 78.0 76.9
Rep-Adapter 93.9 68.0 95.5 89.6 71.8 76.4 36.2 79.0 85.9 79.3 77.6

CLIP-ViT-B/32
Zero-shot† 90.9 44.0 67.0 87.5 61.9 60.6 19.2 80.5 45.2 62.0 61.9
CoOp 94.6 65.4 95.0 88.7 72.4 76.1 33.2 78.5 83.4 78.7 76.6
Rep-Adapter 95.4 67.1 95.7 89.8 73.5 77.4 36.3 81.3 85.8 80.0 78.2

outperforms L2-SP, DELTA, AutoLR by a large margin. Our method can even outperforms the
dynamic model adaptation method, SpotTune, by 0.49% on average. Note that SpotTune uses an
additional policy network, and has more than 2× model size during inference. In contrast, the
improvement of Rep-Adapter comes for free.

4.5 FEW-SHOT TRANSFER LEARNING WITH CLIP

To further evaluate the effectiveness of our Rep-Adapter, we conduct experiments of few-shot (16-
shot) transfer learning with CLIP (Radford et al., 2021), and compare the results with Zero-shot
CLIP (Radford et al., 2021), CoOp (Zhou et al., 2022b), Tip-Adapter (Zhang et al., 2022). For CLIP
models, we only apply our Rep-Adapter on the visual encoder. In addition to CLIP-ResNet50, we
also apply our method to CLIP-ViT-B/32 to explore its generalization ability on transformer. For
transformers, we apply Rep-Adapter on every fully-connected layers. More implementation details
can be found in the supplementary material.

As shown in Tab. 5, Rep-Adapter generally outperforms previous methods. On average, Rep-
Adapter improves over CoOp (Zhou et al., 2022b) by 3.1% with ResNet50 and by 1.6% with ViT-
B/32. It is noteworthy that Rep-Adapter does not introduce any extra model parameter during in-
ference, in contrast to prompt tuning methods and previous adapter-based methods. These results
suggest that Rep-Adapter is effective on vision-language pretrained models and vision transformers.

4.6 SEMI-SUPERVISED IMAGENET Table 6: Results on semi-supervised Image-Net.

Method Protocol
Top-1 (%) Top-5 (%)

Label fraction Label fraction
1% 10% 1% 10%

PIRL
Linear 35.0 49.9 61.1 75.7
Fine-tuning 40.2 62.4 67.6 85.0
Rep-Adapter 41.5 63.5 69.2 86.1

MoCoV2
Linear 24.8 40.3 53.1 69.4
Fine-tuning 39.1 61.8 68.3 85.1
Rep-Adapter 43.4 64.0 72.5 86.6

SwAV
Linear 51.4 65.5 77.4 87.0
Fine-tuning 51.9 69.6 78.2 89.8
Rep-Adapter 52.6 70.0 79.0 89.8

Models pretrained with self-supervised learn-
ing achieves strong performance when adapted
with small fraction of labeled data. Fol-
lowing the semi-supervised protocol of (Chen
et al., 2020a), we conduct experiments on the
same fixed splits, 1% and 10% labeled Ima-
geNet training data. We use models pretrained
with self-supervised methods PIRL (Misra &
Maaten, 2020), MoCoV2 (Chen et al., 2020b)
and SwAV (Caron et al., 2020). As shown in Tab. 6, Rep-Adapter consistently outperforms the other
two generally used methods. On MoCoV2, Rep-Adapter improves over the standard fine-tuning by
4.3% and 2.2% with 1% and 10% label fraction, respectively.

4.7 OBJECT DETECTION & INSTANCE SEGMENTATION

Table 7: Results on object detection and in-
stance segmentation.

(F: Fine-tuning, PIRL MoCoV2 SwAV Supervised
R: Rep-Adapter) F R F R F R F R

VOC APBox 52.3 56.3 53.8 56.4 52.9 55.8 53.8 55.6

Cityscapes APMask 33.3 36.0 33.9 37.3 35.3 38.2 33.2 35.4

COCO APBox 37.9 38.9 38.8 39.4 40.0 40.3 39.0 39.5
APMask 34.5 35.7 35.4 36.0 36.7 37.0 35.6 36.2

To further explore the transferability of Rep-
Adapter, we evaluate it on object detec-
tion and instance segmentation. We use
Faster-RCNN (Ren et al., 2015) on PAS-
CAL VOC (Everingham et al., 2010) dataset
and Mask-RCNN (He et al., 2017) on
Cityscapes (Cordts et al., 2016) and COCO
2017 (Lin et al., 2014) datasets. We report
the bounding box mAP (APBox) and mask mAP
(APMask) in Tab. 7. Rep-Adapter consistently outperforms the generally used fine-tuning (by up to
4.0 AP on VOC). Besides, these results also demonstrate that our method is not limited by the batch
size, because these experiments are performed with extremely low batch size (2 on each GPU).
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Table 8: Ablation Study. A: Effect of the scaling factor δ; B: Effect of joint optimization of δ, ζ
with ω.; C: Effect of the batch-wise statistics σ,µ; D: Effect of the BN position; E: Effect of ω0

weight initialization; F: Effect of weight frozen in frozen branch. Results are shown in “mean (std)”
of multiple trial results.

Study on
Parameters BN Conv

Caltech101 CIFAR-100 DTD Flowers102 Petsinit w/ ω0
learnable iteratively frozen in branch frozenγ,β trained with ω σ,µ

Ours ✓ ✓ ✗ ✗ ✓ ✓ 84.7 (1.4) 59.6 (0.2) 64.2 (2.4) 92.7 (0.3) 90.3 (2.6)

(a) BN δ ✓ ✗ ✗ ✗ ✓ ✓ 83.8 (1.4) 59.6 (0.1) 63.1 (3.0) 92.5 (0.2) 87.1 (2.8)
(b) BN δ, ζ ✓ ✓ ✓ ✗ ✓ ✓ 84.2 (1.6) 59.5 (0.2) 63.8 (2.8) 92.5 (0.4) 90.0 (2.5)
(c) BN σ,µ ✓ ✓ ✗ ✓ ✓ ✓ 82.5 (2.2) 59.3 (0.4) 61.9 (0.7) 92.3 (0.2) 88.1 (2.0)
(d) BN Pre-add. ✓ ✓ ✗ ✗ ✗ ✓ 82.1 (3.5) 59.6 (0.2) 61.6 (3.1) 91.8 (0.4) 85.9 (5.4)

(e) Weight init. ✗ ✓ ✗ ✗ ✓ ✓ 26.6 (6.2) 11.2 (0.9) 18.4 (3.1) 39.7 (8.3) 17.0 (1.1)
(f) Weight frozen ✓ ✓ ✗ ✗ ✓ ✗ 81.8 (3.6) 58.9 (0.2) 60.9 (3.4) 91.8 (0.7) 85.5 (5.3)

Fine-tuning ✓ ✓ ✗ ✗ - ✗ 81.6 (5.1) 57.8 (1.6) 60.2 (5.4) 91.5 (1.6) 83.5 (7.7)

4.8 ABLATION STUDY

In this section, we perform ablation study on different components of Rep-Adapter.
(a) Effect of the scaling factor δ. As learnable weights γ of BN is used as the scaling factor in
our implementation, the effect of the scaling factor δ of the frozen branch can be ablated by frozen γ
of the BN in the frozen branch. As shown in Tab. 8, enabling learnable weight of BN, i.e., learnable
δ in Rep-Adapter, slightly increase network performance on all the five datasets. Thus, we enabling
it be default, though it does not affect the simulated learning rate of Rep-Adapter.
(b) Effect of joint optimization of δ, ζ with ω. In Sec. 3.3, we discussed Rep-Adapter under the
situation when the scaling factors δ, ζ of the frozen branch and the fine-tuning branch are fixed when
updating ω, i.e., δ, ζ and network parameter ω are updated iteratively in separate steps. To save
the training cost and simplify the pipeline, we jointly optimize δ, ζ and ω in each single step as in
Equation (12). As shown in Tab. 8, joint and iterative optimization achieve comparable performance.
(c) Effect of the batch-wise statistics σ,µ. In Sec. 3.3, we discussed Rep-Adapter on linear
case, which covers using BN with running statistics σ,µ. However, its a common practice in re-
parameterization literature to enable the batch-wise statistics in BN during training (Ding et al.,
2021c;b). Here, we explore how will the non-linearity and stochasticity brought by batch-wise
statistics affect the performance. As shown in Tab. 8, enabling the batch-wise statistics (ours) con-
sistently outperforms the case using frozen σ,µ.
(d) Effect of the BN position. In Rep-Adapter, we use BN in both branches, before adding the
output of the branches together. Alternatively, the BN can also be used after addition, where only
Conv layers are in the branches. The results of the two cases is shown in Tab. 8. Using BN in the
branches clearly improves the performance of Rep-Adapter.
(e) Effect of ω0 weight initialization. In Rep-Adapter, the weight of the frozen branch is initial-
ized with the pretrained weight ω0. As shown in Tab. 8, random initializing the frozen branch would
drastically damage the performance of Rep-Adapter (e.g., from 90.3% to 17.0% on Pets), demon-
strating that Rep-Adapter do make use of the information in the frozen branch and the importance
of pretrained weight initialization in the frozen branch.
(f) Effect of weight frozen in frozen branch. Tab. 8 also shows the result of not freezing the
weight in the frozen branch of Rep-Adapter. The performance drop considerably on all the five
datasets (up to 4.8% on Pets) when making the frozen branch learnable, and is comparable to fine-
tuning baseline. This demonstrate that the performance gain achieved by Rep-Adapter over fine-
tuning is not caused by re-parameterization and not by increasing the network complexity during
training. The frozen weights are critical for Rep-Adapter to achieve the performance improvement.

5 CONCLUSION

Model adaptation is a long-standing problem in transfer learning. We notice the fact that most pre-
vious model adaptation baselines have several downsides, such as tedious manual tuning of learning
rate and extra computational cost during inference phase. To the best of our knowledge, we are
the first to formulate automatic model adaptation into a bi-level optimization problem. We propose
a parameter-free protocol that can jointly optimize the learning rate and model parameters during
tuning phase with a theoretical basis. Our experiments empirically evidence the effectiveness and
generalization ability of our method. We hope our work can benefit future works on model adapta-
tion and reduce the human effort to manually tuning the hyper-parameters during transfer learning.
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A APPENDIX

A.1 A SIMPLIFIED CASE OF PROPOSITION 3.1

Proposition A.1. Given a pre-trained linear network layer ψ(ω0). Let ψR(x) = ψ(ω0) +
diag(ζ)ψ(ωR) denotes this layer under adapter tuning scheme at learning rate ηm, and ψF (ω)
denotes this layer with each of its filters fine-tuning at a certain learning rate. Suppose the network
functions of the two schemes are identical at tuning step t, for one of its filters, fine-tuning at a
certain learning rate η ∈ R, then there always exists scaling factor ζ ∈ R for this filter such that
after one step of tuning, ψF (x) = ψR(x) still holds.

Proof. Let u be one of the filters ofψF (x), u0 be the corresponding filter of the pre-trained weight,
and v be the corresponding filter of ψR(x). Suppose the network functions of the two schemes are
identical at step t. We have ψF

t (x) = ψR
t (x) and ∂Lt/∂ψ

R
t = ∂Lt/∂ψ

F
t . First, we calculate the

weight change of v in the adapter:

∆vt = −ηm
∂Lt

∂vt
= −ηmζ

∂Lt

∂ψR
t

. (13)

Let ũt = u0 + ζvt, this layer function after one-step adapter tuning is:

ψR
t+1(x) = u0x+ ζ(v +∆v)x

= (ũt − ηmζ
∂Lt

∂ψR
t

)x.
(14)

As for the fine-tuned case:
ψF

t+1(x) = ut+1x = (ut − η
∂Lt

∂ψF
t

)x. (15)

Recall that ψF
t (x) = ψR

t (x), and ∂Lt/∂ψ
R
t = ∂Lt/∂ψ

F
t . Thus, there exists:

ζ =

√
η

ηm
, such that ψF

t+1(x) = ψ
R
t+1(x), (16)

which proves that after one step of tuning, ψF (x) = ψR(x) still holds.
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A.2 IMPLEMENTATION DETAILS

Datasets. For full-shot and few-shot learning experiments, we perform all of pre-training on
ImageNet (Krizhevsky et al., 2012), a benchmark for image classification including around 128
million training images from 1,000 categories. We adopt 14 Visual Task Adaptation Benchmark
(VTAB) tasks which cover a broad spectrum of domains and semantics, containing object identifi-
cation (Caltech101 (Fei-Fei et al., 2006), CIFAR-100 (Krizhevsky et al., 2009), Flowers102 (Nils-
back & Zisserman, 2008), and Pets (Parkhi et al., 2012)), texture classification (DTD (Cim-
poi et al., 2014)), scene classification (SUN397 (Xiao et al., 2010), and SVHN (Netzer et al.,
2011)), pathology detection (Patch Camelyon (Veeling et al., 2018)), satellite image classifica-
tion (EuroSAT (Helber et al., 2019)), counting(Clevr/count (Johnson et al., 2017)), localization
(dSprites/location (Matthey et al., 2017)), orientation (dSprites/orientation (Matthey et al., 2017)),
and 3D geometry (Clevr/distance (Johnson et al., 2017), and KITTI-Dist (Geiger et al., 2013)). We
set the same train/test splits as (Zhai et al., 2020) and also use the regular test sets for the low-shot
(1000 examples) tasks.

For CLIP transfer learning, we benchmark on 10 publicly available image classification datasets used
in CLIP: Caltech101 (Fei-Fei et al., 2006), OxfordPets (Parkhi et al., 2012), StanfordCars (Krause
et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), FGVCAir-
craft (Maji et al., 2013), SUN397 (Xiao et al., 2010), DTD (Cimpoi et al., 2014), EuroSAT (Helber
et al., 2019) and UCF101 (Soomro et al., 2012).

We provide the licenses of the datasets mentioned above if known. ImageNet is available for free
to researchers for non-commercial use. Pets is under the CC BY-SA 4.0 license. DTD is made
available to the computer vision community for research purposes. SVHN is for non-commercial
use only. Patch Camelyon is under the CC0 license. Clevr/count and Clevr/distance are under the
CC BY 4.0 license. KITTI-Dist is under the CC BY-NC-SA 3.0 license. The datasets we use are
publicly available, so that we obtain consent to use them by default. These datasets do not contain
personally identifiable information or offensive content.

Self-supervised training protocols. We adopt three self-supervised training protocols to pre-train
the model in our experiment section, here are the details of each method.

• PIRL levages pre-tasks, learning representations that are invariant to the transformations
and retaining semantic information;

• MoCoV2 establishes a strong contrastive unsupervised learning baseline with a memory
bank to restore negative samples.

• SwAV simultaneously clusters the data while enforcing consistency between cluster as-
signments produced for different augmentations of the same image, instead of comparing
features directly as in contrastive learning.

Training Settings. For the VTAB downstream tasks, we set the total batch size of 256 on 8
NVIDIA GTX 2080Ti GPUs and use SGD with momentum of 0.9 without weight decay. We resize
all images to 224 × 224. We decay the learning rate by a factor of 10 after 1

3 and 2
3 of the training

time. We train 2500 training steps for low-shot (1000 examples) transfer tasks. For each many-shot
transfer task we try {2500, 5000, 10000} training steps and select the best one.

For CLIP transfer learning, we only apply Rep-Adapter on the visual encoder. We use AdamW
optimizer and cosine learning rate scheduler. We train the model for 20 epochs on all the datasets
except EuroSAT, for which we use 100 epochs.

For semi-supervised ImageNet tasks with self-supervised pretrained models, we train for 20 epochs
with a total batch size of 256 on 4 NVIDIA GTX 2080Ti GPUs and use SGD optimizer with a
momentum of 0.9, and a weight decay of 5e-4. The learning rate decays by 0.2 at 12 and 16 epochs.
Only random resize&crop to 224 × 224, horizontal flip are used for data augmentation.

For object detection and instance segmentation downstream tasks, we train with the FPN (Lin et al.,
2017) backbone on 8 NVIDIA GTX 2080Ti GPUs, follow the training settings in MMSelfSup (Con-
tributors, 2021) and implement in Detectron2 (Wu et al., 2019) library.

Code will be released.
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A.3 ADDITIONAL RELATED WORK

Model Adaptation. Fine-tuning (Girshick et al., 2014; Yosinski et al., 2014) has achieved state-
of-the-art performance on many computer vision tasks and NLP tasks, including image classifica-
tion (Kornblith et al., 2019; Hermans et al., 2017), object detection (Girshick et al., 2014), semantic
segmentation (Long et al., 2015), text classification (Wang et al., 2019) and question answering (Ra-
jpurkar et al., 2016). Adapter tuning (Houlsby et al., 2019; Yuan et al., 2020) adds light-weight
modules on the pre-trained network to adapt the model without changing its original parameters.
Clip-adapter (Gao et al., 2023) and Tip-adapter (Zhang et al., 2022) adopt residual adapter mod-
ules for few-shot transfer learning of CLIP (Radford et al., 2021). Similarly, prompt tuning (Lester
et al., 2021) in NLP field learns input prompt tokens for a frozen Transformer network to achieve
transfer learning. Prompt tuning is proved to perform better than fine-tuning in few-shot scenar-
ios (Gao et al., 2021). Recently, CoOp (Zhou et al., 2022b) applies prompt tuning to improve the
few-shot transfer learning performance of visual-linguistic pre-trained models, e.g., CLIP (Radford
et al., 2021). Uni-perceiver (Zhu et al., 2022) uses prompt tuning for few-shot transfer of a generic
multi-modal perception architecture. Visual Prompt Tuning (Jia et al., 2022) uses prompt tuning for
visual transfer learning tasks.

Other AutoML works related to transfer learning. Apart from the works we introduced in
the main text, there exists a few other works on transfer learning that are relevant to AutoML.
AutoFreeze (Liu et al., 2021) accelerates fine-tuning by automatically freezing layers. L2TL (Zhu
et al., 2020) jointly trains the model on source and target dataset and uses adaptive weights to balance
between losses. Other automated methods using a new target network include L2T-ww (Jang et al.,
2019).

A.4 EXPERIMENTS ON LARGER BACKBONES

To evaluate Rep-Adapter on larger backbones, we performs experiments with ResNet101 on su-
pervised, many-shot settings. The results are shown in Table 9. Comparing to ResNet50, Rep-
Adapter with ResNet101 achieves higher performance (+0.57%). It achieves remarkable perfor-
mance improvement comparing to previous transfer learning method. For example, Rep-Adapter
with ResNet101 outperforms fine-tuning by 1.87% on average.

Table 9: Results of ResNet101 with supervised pre-training, on many-shot settings.

CUBS Stanford Cars Flowers WikiArt Sketchs Mean

Fine-tuning 84.26 92.13 94.80 73.14 80.37 84.94
L2-SP (Li et al., 2018) 82.27 90.50 94.36 74.28 81.06 84.49
DELTA (Li et al., 2019) 84.05 91.47 95.09 75.63 81.64 85.58
Rep-Adapter 85.05 91.88 97.03 78.30 81.81 86.81

A.5 ADDITIONAL ABLATION STUDY

Ablation on scaling factors. The scaling factors are the crucial components of the proposed Rep-
Adapter.However, using scaling factors without other components in Rep-Adapter (two branches,
BN in the branch) or using Rep-Adapter without scaling factors are both inferior to our proposed
Rep-Adapter. We have performed Ablation study by using scaling factors without other components
in Rep-Adapter to demonstrate the effectiveness. The results are shown in As shown in Tab. 10,. The
result of w/o scaling and w/o BN is the result of case (a) and (d) in Tab. 8. By comparing the results
of Rep-Adapter with (b) w/o scaling, we can see that scaling is an important component of Rep-
Adapter. Results of (a) only scaling shows that the scaling needs the other design of Rep-Adapter
to be effective. Results of (c) w/o BN shows that the BN in the branch is also an important factor to
achieve good results with Rep-Adapter.

Ablation on initialization of the tuning branch. We perform experiment by randomly initial-
izing. As shown in Tab. 10, random initializing the tuning branch would clearly damage the per-
formance of Rep-Adapter, demonstrating that the pretrained initialization is important to the tuning
branch.
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Table 10: Additional Ablation Study. (a):Only scaling factor, without other architecture of Rep-
Adapter; (b) Rep-Adapter without scaling factor; (c) BN not included in Rep-Adapter; (d) Random
initialize frozen branch; (e) Random initialize tuning branch. Results are shown in “mean (std)” of
multiple trial results.

Study on Caltech101 CIFAR-100 DTD Flowers102 Pets

Ours 84.7 (1.4) 59.6 (0.2) 64.2 (2.4) 92.7 (0.3) 90.3 (2.6)
(a) Only scaling 81.7 (4.4) 58.1 (1.6) 60.5 (3.1) 91.3 (1.3) 84.0 (5.1)
(b) w/o scaling 83.8 (1.4) 59.6 (0.1) 63.1 (3.0) 92.5 (0.2) 87.1 (2.8)
(c) w/o BN 82.1 (3.5) 59.6 (0.2) 61.6 (3.1) 91.8 (0.4) 85.9 (5.4)

(d) Random init. F. 26.6 (6.2) 11.2 (0.9) 18.4 (3.1) 39.7 (8.3) 17.0 (1.1)
(e) Random init. T. 74.8 (5.9) 52.5 (1.4) 53.9 (3.6) 88.1 (1.1) 79.1 (4.5)

Fine-tuning 81.6 (5.1) 57.8 (1.6) 60.2 (5.4) 91.5 (1.6) 83.5 (7.7)

A.6 ADDITIONAL ANALYSIS ON EXTREME CASE

We noticed that our model is inferior to linear probing on a specific scenario, low-shot SUN397,
with less than 3 samples per class. Although our Rep-Adapter has the theoretical potential to decay
to complete linear probing, this may not hold in this extreme case, as the scaling factor η simulating
learning rate may also over-fit. We provide an additional exploration on this dataset. We select the
pre-trained protocol, SwAV, where our method has a significant gap between linear probing. We
increase the number of sampled images to repeat the low-shot experiment, and report the results in
Table 11. We can observe our method performance increases while the images increase, consistently
outperforms fine-tuning. When using 7940 traing samples (20 per class), our method performs
comparably with linear probing and eventually surpasses it when sampling 40 images per class.

Table 11: Increasing number of sampled images on SUN397. The gap between our method and
linear probing shrinks while sampling number increases, and eventually surpasses it.

Samples 1000 3970 7940 11910 15880

Linear 32.2 51.5 54.1 58.9 60.1
Fine-tuning 22.4 45.3 51.1 56.9 57.9
Rep-Adapter 24.3 - 7.9 46.6 - 4.9 53.6 - 0.5 58.6 - 0.3 60.40 + 0.3
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