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Abstract

Human-robot collaboration (HRC) integrates the
consistency and precision of robotic systems with
the dexterity and cognitive abilities of humans to
create synergy. However, human performance may
degrade due to various factors (e.g., fatigue, trust)
which can manifest unpredictably, and typically re-
sults in diminished output and reduced quality. To
address this challenge toward successful HRCs, we
present a human-aware approach to collaboration
using a novel multi-agent decision-making frame-
work. Type-based decentralized Markov decision
processes (TB-DecMDP) additionally model latent,
causal decision-making factors influencing agent
behavior (e.g., fatigue), leading to dynamic agent
types. In this framework, agents can switch be-
tween types and each maintains a belief about oth-
ers’ current type based on observed actions while
aiming to achieve a shared objective. We intro-
duce a new inverse reinforcement learning (IRL)
algorithm, TB-DecAIRL, which uses TB-DecMDP
to model complex HRCs. TB-DecAIRL learns a
type-contingent reward function and correspond-
ing vector of policies from team demonstrations.
Our evaluations in a realistic HRC problem set-
ting establish that modeling human types in TB-
DecAIRL improves robot behavior on the default
of ignoring human factors, by increasing through-
put in a human-robot produce sorting task.

1 INTRODUCTION

Advances in agent-based decision making are making robots
that can take decisions under uncertainty increasingly real.
Such intelligence allows platforms such as collaborative
robots (cobots) to work safely with humans to effectively
contribute to several aspects of human endeavors. Such

human-robot collaboration (HRC) enables a paradigm shift
in key domains such as healthcare, manufacturing, and
other industries by combining the diverse complementary
strengths of human and robotic agents to optimize task effi-
ciency and throughput.

To optimize HRC, cobots must learn to adapt to the dynamic
latent factors that influence human action choice. One way
to capture these factors in learned behavior is to let (expert)
humans perform (demonstrate) the task as a team. Then,
we may learn the team’s underlying preferences for task
state and joint actions using inverse reinforcement learning
(IRL) [Ng and Russell, 2000], which is known to generalize
beyond the demonstrations. Whereas IRL has found success
in several single-expert tasks [Arora and Doshi, 2021], it
remains underexplored in multiagent tasks in contexts such
as HRC. Prior work in IRL applied to HRC [Nikolaidis,
2014, Suresh et al., 2023] assumes that the human team-
mate follows fixed rule-based behavior throughout, and fails
to account for the causal latent factors influencing human
behavior such as biases or fatigue.

To illustrate, consider a packing shed where humans stand
across each other and sort onions on a conveyor. The opti-
mal sortation discards visibly blemished onions and closely
inspects the seemingly unblemished ones before deciding
to discard or return them back to the conveyor. Prolonged
periods of sorting leads to fatigue, resulting in a decline in
sorting speed. Fatigued workers usually take a short break
to regain energy. In this HRC use case, a cobot could recog-
nize and adapt to its fatigued teammate by accelerating its
sorting speed to maintain overall throughput, This ‘indus-
trial’ mode should be maintained by the cobot only while
the human is fatigued and away from the shared workspace,
as the increased speed may not be safe for humans.

We make three key contributions in this paper:

1. We present a novel multiagent decision-making frame-
work, TB-DecMDP, which models dynamic agent types
while solving for type-contingent decentralized agent
behavior. Agents may detect their teammate’s current
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type and switch their behavior accordingly to maximize
team reward.

2. In the context of TB-DecMDP, we present a new IRL
method, TB-DecAIRL, which learns a type-contingent
team reward function and a corresponding policy vector
(one for each agent). This output, backed by a theoretical
performance guarantee, enables the cobot to adapt to the
human agent’s dynamic type, promoting seamless HRC
in shared workspaces. A type-contingent reward function
is novel to IRL.

3. Finally, we empirically establish the efficacy of TB-
DecAIRL towards successful HRC in simulation and
validate it on a produce-sorting task using a physical
HRC with a UR3e cobot.

By demonstrating enhancement in collaborative efficacy via
better average rewards per episode (on the MAGym [Koul,
2019, Brockman et al., 2016] simulated environment), and
increased throughput compared to the baseline (on the phys-
ical task), we establish the value of TB-DecAIRL over the
default of ignoring human factors. We conclude by provid-
ing avenues for future work.

2 BACKGROUND

Multiagent IRL models the expert using a variant of Markov
decision process [Puterman, 1994], which it solves opti-
mally. Since HRC is collaborative and decentralized (i.e.,
the robot may not perfectly observe all attributes of the hu-
man’s state, such as the human’s joint angles) by definition,
a Dec-MDP [Goldman and Zilberstein, 2003] is appropriate
to model the expert.

A two-agent Dec-MDP can be formally defined as a tuple
DM ≜ ⟨S,A, T,R⟩ where the joint state, S = Si × Sj .
Here, Si and Sj are the locally observed states of the two
agents i and j, respectively, which when combined yield
the joint state of the system; A = Ai × Aj is the set of
joint actions of the two agents; T : S × A × S → [0, 1]
is the transition function of the multiagent system; and R :
S × A → R is the common reward function.1 In IRL, the
latter is unknown, whereas the rest are usually known. As
such, the agents know their local state and any common task
attributes and act independently while optimizing a common
reward [Melo and Veloso, 2011]. LetXE be the set of expert
demonstrations and a complete trajectory XE ∈ XE is
given by,

XE = (⟨s0i , s0j ⟩, ⟨a0i , a0j ⟩, · · · , ⟨sTi , sTj ⟩, ⟨aTi , aTj ⟩). (1)

The agent’s task is to learn a reward function and a policy
profile, π = ⟨πi, πj⟩, that optimizes its return, such that the
trajectories generated by π are indistinguishable from those
in XE .

1This Dec-MDP describes a locally fully observable model
whose local states when combined yield the fully observable joint
state [Goldman and Zilberstein, 2003].

2.1 DECENTRALIZED ADVERSARIAL IRL

Decentralized adversarial IRL (Dec-AIRL) [Suresh et al.,
2023] generalizes the single-expert deep-IRL method – ad-
versarial IRL (AIRL) [Fu et al., 2018] (which works on
the principle of maximum causal entropy [Ziebart, 2010,
Gleave and Toyer, 2022]) – to learn a common reward func-
tion for the team from expert demonstrations. AIRL uses a
discriminator Dα(X) to learn a function fα(X) [Fu et al.,
2018] which at convergence approximates the expert pol-
icy’s advantage function. Dec-AIRL analytically represents
the discriminator as Dα(X) = efα(X)

efα(X)+π(X)
and the reward

is updated as

Rα(X)← logDα(X)− log(1−Dα(X)). (2)

When simplified, Eq. 2 yields fα − log(π), which is the
entropy-regularized reward formulation. In the underly-
ing Dec-MDP, each agent only has access to their local
state and some general task attributes. Dec-AIRL uses Dec-
PPO - a decentralized generalization of the popular RL
method - Proximal Policy Optimization (PPO) [Schulman
et al., 2017], for forward-rollout. Dec-PPO uses the cen-
tralized training, decentralized execution paradigm where
the centralized critic network updates its value function

as a squared-error loss: LV F
t (ω) =

(
V πω (st) − V̂ targ

t

)2

where V̂ targ
t is the per-episode discounted reward-to-go and

V πω (st) is the predicted value of joint state st and ω is the
vector of policy parameters (weights). We consider a dyadic
system with agents i and j, although our formalism and
method conceptually scale to N agents and is not limited to
a dyad. The policy loss of agent i is given by

LCLIP
i (ω) = E

πω,i

[
min

(
λi A

π, clip(λi, 1− ϵ, 1 + ϵ) Aπ
)]

,

where λi =
πω,i(ai|si)
πold
ω,i(ai|si)

is the importance sampling ratio.

LCLIP
i (ω) provides a pessimistic bound over the final objec-

tive by using a surrogate objective that picks the minimum of
the clipped and unclipped objectives. By clipping the impor-
tance sampling ratio, the incentive of moving λ outside the
interval [1−ϵ, 1+ϵ] is reduced. Advantage Aπ is calculated
using the reward estimate Rα(X) from Eq. 2. This clipped
surrogate objective, combined with the policy entropy, han-
dles the explore-exploit dilemma. The policy entropy loss
and corresponding total loss are given as: LENT

i (ω) =

σH
[
πω,i(si)

]
, Li(ω) = LCLIP

i (ω)+LENT
i (ω), where H

is the policy entropy and σ is the entropy hyperparame-
ter. These loss functions apply analogously for agent j. On
convergence, the discriminator and the generator return the
learned common reward function and the vector of policies,
respectively.
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Figure 1: TB-DecMDP graphical model of a dyadic team with agents i (blue) and j (red), for two timesteps t and t+ 1.
Local state of agent i (si) is a combination of i’s private attributes asi and common task attributes ts. Model mi holds i’s
current belief over the others’ type θj . The dotted link updates model mi using the other agent’s action at t. These apply
analogously for agent j. All agents transition jointly to the next state, as indicated by the dependence (colored links) of each
agent’s next state on the other’s previous state and action.

3 TYPE-BASED DECENTRALIZED AIRL
FOR HUMAN-ROBOT TEAMING

In this section, we formalize a novel multiagent model, Type-
Based Dec-MDP (TB-DecMDP), and present our novel IRL
method, Type-Based Dec-AIRL (TB-DecAIRL) to learn a
type-contingent reward function and the vector of policies
(one for each agent), which reason about the other agents’
behavioral changes and adapts accordingly.

We model realistic human-robot collaborative settings where
agents adjust their behavior based on latent factors (e.g.
trust, fatigue), and anticipate and adapt to others’ changes
to achieve a shared goal. Although we present this work
in the context of HRC, it extends to domains where au-
tonomous agents must adapt to changing human conditions
(e.g. healthcare and smart homes). For instance, in health-
care, such agents provide personalized care by monitoring
patient conditions and intervening as and when needed. In
smart homes, agents adjust the air conditioning system ac-
cording to human preferences, highlighting the need for
continuous monitoring and adaptation.

3.1 TYPE-BASED COLLABORATION MODEL

In addition to shared task attributes, each agent i has its
private attributes (which may include mental attributes and
thus are not observable by other agents). Each agent also
maintains a model of all other agents, including a belief
about their joint types. Agent i’s initial belief is based on
prior knowledge of these types. The combination of i’s
private attributes and the common task attributes constitutes
i’s local state (si). Agent i makes decisions based on si and
its belief about the other agents’ types. At each timestep,
agent i observes other agents’ actions noisily and updates
its belief accordingly (see Fig. 1). All agents collaborate in

a decentralized manner to optimize a common task-centric
reward. Since each agent has perfect access to its own local
state and only maintains a belief about the other agents’
types, our TB-DecMDP can be considered a decentralized
variant of a mixed-observability MDP [Ong et al., 2010].

A TB-DecMDP is formally defined as:

T B − DM ≜
〈
Ag, S,A, T,R,M

〉
• Ag represents the set of all agent identifiers within the

system. Each agent is uniquely identified, allowing for
individual tracking and interaction within the environment.
The total number of agents in the system is denoted by N ,
where N = |Ag|.

• The joint state space S is defined as the Cartesian product
of the individual local states of all agents, i.e., S = S1 ×
S2 × . . .× SN . The local state Si is further decomposed
into:

– The task-state tS, which is common across all
agents. It encapsulates the shared aspects of the en-
vironment or task that all agents are aware of and
interact with.

– The agent-specific state aSi, containing private at-
tributes unique to agent i. Note that aSi is not ob-
servable by others. This includes θ ∈Θi: The type
of agent i, representing its inherent characteristics,
capabilities, or roles within the system.

Then, Si = tS × aSi, allowing each agent to maintain
both shared and private information.

• The joint action space A is the Cartesian product of the
individual action sets of all agents, expressed as A =
A1 ×A2 × . . .×AN . Each agent i has a local action set
Ai, which includes all actions available to that agent.

• The state transition function T : S × A × S → [0, 1]
defines the probability of transitioning from one joint
state to another, given a particular joint action.



• It is important to note that an agent type θ ∈ Θi tran-
sitions exogenously, meaning external factors govern its
transition and this is not influenced by the state transition
function T . This separation ensures that while agents can
act and influence the environment, their inherent types
remain consistent unless altered by external dynamics.

• The reward function R : S × A → R assigns a real-
valued reward to each state-joint action pair. This reward
is common to all agents, implying that it reflects a shared
objective or goal that all agents are collectively trying to
optimize.

• The set of agent models M = M1 ×M2 × . . . ×MN

encapsulates the internal representations and beliefs each
agent holds about the other agents.

• Each agent i’s model Mi is defined as: Mi =(
Θ−i, bi, Fi

)
. This includes:

– Θ−i =
∏

j ̸=i Θj represents the combined set of types
for all agents except i.

– bi ∈ ∆(Θ−i) denotes agent i’s current belief distribu-
tion over the types of other agents.

– Fi : Θ−i×A−i×Θ−i → [0, 1] defines the probabilistic
transition of others’ types in the next time step given
observed action and current types.

This formulation can be broadly seen as an ex interim ex-
pected utility formalism of Bayesian games [Shoham and
Leyton-Brown, 2008] where each agent has perfect knowl-
edge of its own type and has a mixed strategy of the others’
type. For a dyadic team with agents i and j, the joint policy
is given as π = ⟨πi, πj⟩ where πi : Si ×∆(Θ−i)→ Ai.

3.2 IRL FROM TEAM DEMONSTRATIONS

The belief update equation for agent i in a dyad is given as:

b′i(θ
′
j | aj , bi) = β

∑
θj∈Θj

Pr(θ′j | aj , θj) Pr(θj)

= β
∑

θj∈Θj

Fi(θ
′
j | aj , θj) bi(θj). (3)

The experts’ joint demonstrations contain state-action pairs
as defined in (1) and a single belief trajectory corresponding
to the expert trajectory:

b̂Eθ = (⟨θ0i , θ0j ⟩, ⟨θ1i , θ1j ⟩, ..., ⟨θTi , θTj ⟩⟩). (4)

The belief update of Eq. 3 and generation of the trajectory
above occur in the belief module of TB-DecAIRL’s archi-
tecture, which is shown in Fig. 2. For implementing this
module, we use a GRU-cell [Cho et al., 2020] as it has been
empirically demonstrated to have an equivalent representa-
tion as the analytical update.

The discriminator takes in the pooled states, pooled actions,
and pooled types to distinguish expert and learned samples.

This discriminator is then used to obtain the common task-
centric reward as defined in Eq. 2. The (joint) discriminator
optimization objective is now defined as:

DKL(ρπω
(s, bθ,a) ∥ ρXE (s, bθ,a)) ≈

max
α

E(s,bθ,a)∼XE ,b̂Eθ

[
logDα(s, bθ,a)

]
+

E(s,bθ,a)∼πω

[
log

(
1−Dα(s, bθ,a)

)]
. (5)

where ρ gives the occupancy measure as in AIRL. Note
that divergence DKL is dependent on the belief module
parameters ϕ through its dependence on the belief states.

Then, the IRL’s objective is to optimize the policy vector,
which is written as:

min
ω
DKL ≈ min

ω
max
α

E(s,bθ,a)∼XE ,b̂Eθ

[
logDα(s, bθ,a)

]
+

(6)

E(s,bθ,a)∼πω

[
log

(
1−Dα(s, bθ,a)

)]
.

During the forward rollout (PPO) stage, the belief over other
agents’ type is obtained from the belief module at each
timestep and factored into each agent’s policy learning to
learn a vector of policies that capture the expert’s behavioral
preferences. The gradient for policy optimization is given
by:

∇ωDKL ≈ ∇ω [Eπω
(logDα(s, bθ,a)

− log (1−Dα(s, bθ,a)))] .

Given fixed belief parameters (ϕ), the required gradient for
policy optimization for agent i is obtained as:

LCLIP
i (ω) = E

πω,i

[
min

(
λi A

π, clip(λi, 1− ϵ, 1 + ϵ) Aπ
)]

where λt
i =

πω,i(a
t
i|sti, bti)

πold
ω,i(a

t
i|sti, bti)

,

and analogously for agent j.

The advantage function is computed as Aπω = Qπω −
V πω with the action value-function Qπω given by
Qπω = Eπω

[∑∞
t′=t γ

t′−t
(
logDα(s

t′ , bt
′

θ ,a
t′)− log

(
1−

Dα(s
t′ , bt

′

θ ,a
t′)

))]
and the state-value function V πω is

given as V πω (b) = V (s, bθ) = maxα∈Γθ(s)(α×bθ) where
α = ⟨V (s, θ1), V (s, θ2), V (s, θ3) . . . V (s, θn)⟩.

3.3 ALGORITHM

The TB-DecAIRL algorithm (Algorithm 1) uses the new
model T B − DM without the reward and transition func-
tions (as TB-DecAIRL is model-free) and the expert trajec-
tories XE (see Eq. 1) to learn the task’s common reward
function R. It starts by generating a random decentralized
policy vector πL with generator Gω (line 1), loading the
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Figure 2: The TB-DecAIRL architecture for a dyadic team with agents i and j, and simulated human-human expert
trajectories (XE). Agent i’s belief module uses agent j’s actions to generate belief states of j’s type, and vice versa, creating
joint b̂Eθ trajectories. Similarly, TB-DecPPO interacts with TB-DecMDP, the type-based reward function R, and the belief
module to generate ⟨X̂ , b̂θ⟩. Both ⟨XE , b̂Eθ ⟩ and ⟨X̂ , b̂θ⟩ train the discriminator Dα to update R until convergence. The
learned policy π is then applied in HRC, where the robot follows its learned policy and the human continues to perform as
previously in the demonstration. Here, h denotes the hidden state of the GRU and b denotes the normalized belief.

pre-trained belief module Bϕ, and initializing the discrimi-
nator Dα with random weights ϕ and α (see Fig. 3). b̂Eθ is
then obtained by passing XE through Bϕ to obtain expert
belief trajectories (see (4)). This is equivalent to performing
a belief update at each timestep as per Eq. 3 using the expert
state-action trajectories to obtain the expert’s belief states at
each timestep.

X̂ , b̂θ

XE , b̂Eθ
D∗(s,Bϕ(θ), a) log

(
D∗(·,·,·)

1−D∗(·,·,·)

)
ϕ

ω R

Figure 3: Stochastic computation graph for the expecta-
tion: EXE ,b̂Eθ

[
logD∗

]
− Eπ,b̂θ

[
log(1 − D∗)

]
where D∗

represents the maximum of Dα. Notice that both the pol-
icy parameters (ω) and the belief parameters (ϕ) influence
the joint-state, joint-action trajectories and belief trajecto-
ries (b̂θ) through environment interaction. Circles represent
stochastic nodes, rectangles represent deterministic nodes.

The algorithm iterates through updates until training con-
cludes (line 2). In each iteration, it generates joint trajec-
tories ⟨X̂ , b̂θ⟩ using the current policy vector π and belief
module Bϕ (line 3). (State, belief-state, action)-tuples are
then sampled from these trajectories and from ⟨XE , b̂Eθ ⟩
(line 5). The discriminator is trained to distinguish between
expert and learned samples using BCE loss (line 7). The
updated reward R is extracted from the trained discriminator
(line 8). The generator Gω(R) is then trained with a central-
ized critic and decentralized actors using TB-DecPPO to
produce the policy rollout vector. Finally, the learned reward

function R and the converged policy π̂L are returned.

Algorithm 1: TB-DecAIRL

Input: T B − DM sans R and T ; Exp trajs XE sans
other agent types.

Output: Learned joint type-based reward function R.
1 Initialize generator (Gω) with policy vector πL,

Discriminator Dα, and pre-trained belief module Bϕ.
2 for iter ← 0 to train_iters do
3 Use πL and Bϕ to step through the environment

and generate joint trajectories ⟨X̂ , b̂θ⟩
4 Obtain expert state-action and belief trajectories

tuple ⟨XE , b̂Eθ ⟩ by passing XE through Bϕ

5 Sample joint (s, bθ, a, s′, b′θ) pairs from ⟨X̂ , b̂θ⟩
and ⟨XE , b̂θ⟩, respectively

6 for ep← 0 to discriminator_epochs do
7 Train discriminator Dα via BCE loss to classify

⟨XE , b̂Eθ ⟩ from ⟨X̂ , b̂θ⟩
8 Update reward: R← log(Dα(...)/(1−Dα(...))
9 for ep← 0 to generator_epochs do

10 Train generator Gω(R)← TB-Dec-PPO.
11 Get updated policy πL ← Gω(R).
12 return R, πL

3.4 THEORETICAL ANALYSIS

Type transition kernel Fi(θ
′
j |aj , θj) forms a Markov chain

with state θj and edges guarded by aj . Under the assumption
that Fi is irreducible and aperiodic, the type distribution bi



given by Eq. 3 will converge to a limiting distribution. Let
the joint beliefs, bt(θ) =

∏
i b

t
i(θ−i). Then, after sufficient

time t elapses, DTV (b
t+1, bt) ≤ δ · DTV (b

t, bt−1) where
0 ≤ δ < 1 and DTV denotes the total variation distance.
Then, the following holds (proof is in the Appendix):

Theorem 1. If the i-th agent’s discriminator error com-
pared to the i-th expert is small, that is, ∥Dt

i − DE
i ∥ ≤

ϵ ∀i = 1, . . . , N , then the difference in conditional log-
likelihood (LL) of data is bounded:

LL(X|RE)− LL(X|Rt) ≤ 8Nϵ

1− γ(1− δ/2)
,

where RE and Rt are the true (expert) and learned common
reward functions at iteration t.

As adversarial inverse learning algorithms have a conver-
gence rate of O

(
1

(1−γ)3
√
t

)
[Guan et al., 2021], it follows

that as ϵ decreases at that rate, the average error in log-
likelihood approaches 0.

4 EXPERIMENTS

We implemented TB-DecAIRL in Python and evaluate its
performance on a use-inspired human-robot collaborative
onion sorting domain. Our implementation of the method
is available at https://github.com/thinclab/
TB-Dec-AIRL. The objective is to have a human and a
UR3e cobot stand across each other and sort onions on a
line conveyor. In this collaborative produce sorting domain,
the optimal sorting behavior involves quickly assessing each
onion on the conveyor. If it is blemished, it should be picked
up and discarded into a bin. If it appears unblemished, it
should be picked up for a closer inspection. If it is still seen
as unblemished, it is returned to the conveyor; otherwise,
it is discarded into the bin. Both the human and the cobot
operate in a shared workspace and work in a decentralized
manner, while the cobot must adapt to changes in the hu-
man’s sortation behavior due to fatigue.

4.1 SIMULATION IN MA-GYM

The simulated environment for the collaborative sorting
domain was developed as a discrete state-action domain in
MA-Gym [Koul, 2019] based on domain knowledge [Suresh
et al., 2023].2 In this environment, each agent’s state con-
tains 5 discrete variables: Onion location (takes one of 4
values based on the current onion location); End-effector
location (takes one of 4 values based on the current end-
effector location); Prediction (takes one of 3 values: blem-
ished, unblemished, or unknown prediction label of the

2It is available for download at https://github.com/
prasuchit/ma-gym/tree/master/ma_gym/envs/
dec_huro_sorting.

onion in focus); Self-type (the subject agent’s type); Indi-
cation (true if the subject agent’s type change has been
communicated otherwise false).

Each agent has 9 discrete actions: No-op (no operation), De-
tect (choose any onion on the conveyor), Pick (pick up the
chosen onion from the conveyor), Detect-pick (combined ac-
tion to choose any onion on the conveyor and immediately
pick it up), Inspect (inspect the picked onion), PlaceOn-
Conveyor (place the held onion back on the conveyor), and
PlaceInBin (place the held onion in the discard bin). The last
two actions for the human are Thumbs-up (gesture indicating
unfatigued type to the robot), and Thumbs-down (indicating
fatigued type to the robot). Similarly, the robot’s last two
actions are Speed-up (increase movement speed to main-
tain throughput and enter industrial mode) and Slow-down
(reduce movement speed to return to regular collaborative
mode).

Expert trajectories were recorded using a hand-coded pol-
icy vector derived from observing real human-human team
demonstrations, which was run in the MA-Gym environ-
ment. In the demonstration, one of the humans in the human-
human team rests every so often and the other human speeds
up during this time to maintain throughput. Otherwise, both
humans sort the onions simultaneously as described pre-
viously.3 This allowed us to repeatedly generate a large
number of trajectories from different start states. We used
a total of 106 timesteps (same for the baseline) and trained
the methods for 109 iterations. Rest of the hyperparameters
and training error are provided in the Appendix.

Figure 4: The receiver operating characteristic (ROC) plot
comparing the pretrained GRU module predictions, a clas-
sical Bayesian belief module predictions, and the ground
truth, for 100 episodes.

Each agent’s belief update is represented using a pre-trained
GRUcell, which is trained with ground-truth labels from the
Gym environment and hand coded policy actions. It learns to
predict what could be the next type of the other based on the
observed action, not when the type will transition. We use

3These policies can be accesssed at https://github.
com/thinclab/TB-Dec-AIRL/blob/main/utils/
tb_sorting_simulated_policy.py.
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Figure 5: (a) HRC sorting setup with a Realsense D435 behind the robot detecting objects on the conveyor and the OAK-D
S2 camera to the left of the human monitoring their actions. (b) and (c) a human sorter signaling fatigue and recovery to the
robot.

tanh activation, 64 hidden nodes, Adam optimizer, and cross-
entropy loss for each GRUcell. We use batch training until
convergence with data collected from complete episodes.
Each episode is reset after an arbitrary limit of 100 timesteps.
As shown in Fig. 4, upon convergence, the GRU model is
near-identical to a classical Bayesian belief update.

Performance comparison with default. We use a reward
function for evaluation which assigns a +1 reward for suc-
cessfully sorting an onion and a −1 penalty for incorrect
sorting (e.g., placing a bad onion back on the conveyor). Our
baseline is a decentralized policy vector learned using a pre-
vious method Dec-AIRL [Suresh et al., 2023], which does
not model types and therefore the cobot’s policy is not type
contingent. Dec-AIRL serves as an ablation of TB-DecAIRL
for disabled beliefs and helps measure the benefit gained by
TB-DecAIRL from the belief component alone.

Table 1: HRC performance comparison on MA-Gym simula-
tion. Expert performance should be seen as an upper bound.
Each episode lasts 100 timesteps.

Average of 1, 000 episodes
Method Onions Sorted Per Eps Eps Reward
Expert 64± 1 64± 1

TB-DecAIRL 56± 2 55.7± 0.78

Dec-AIRL 45± 2 43.2± 0.65

As depicted in Table 1, the decentralized policy vector
learned by TB-DecAIRL scores a significantly higher aver-
age episode reward compared to the decentralized policies
from Dec-AIRL and performs closer to expert behavior. TB-
DecAIRL learns to use the belief over the human’s type to
adjust robot behavior accordingly. Notice that this adjusted
behavior differs from the robot simply defaulting to a single
sortation mode as in Dec-AIRL. The decision making learns
that when the human is fatigued, fewer onions are sorted,
thereby reducing the team’s overall reward. This understand-
ing makes the robot choose Speed-up action, which in turn
increases the team’s throughput. Although both methods

operate within the same Dec-MDP framework for HRC,
the baseline policy relies solely on an agent’s local state
attributes to decide actions. In contrast, TB-DecAIRL’s pol-
icy accounts for both the agent’s local state and their belief
about the other agent(s)’ type. This enables the cobot to
use faster “industrial-mode” actions at the appropriate times
leading to higher rewards.

4.2 PHYSICAL HRC EXPERIMENTS

Human processing behaviors may diverge slightly from that
observed in the demonstration and sim2real challenges exist
for the cobot in this domain. Consequently, we validate the
simulation results using physical human-cobot experiments
with five different human sorters to account for any variabil-
ity. To sort with the human, we utilize a Universal Robots
UR3e 6-DOF cobot equipped with a Realsense D435 RGB-
D camera for onion detection and an OAK-D S2 RGB-D
camera for human action estimation (see Fig. 5). The raw
RGB frames from the Realsense camera are processed using
a pre-trained object detection model YOLOv7, which gen-
erates bounding boxes around the onions on the conveyor.
By combining these bounding boxes with their correspond-
ing depth information, we compute the real-world 3D lo-
cations of the onions using rigid transforms and a pinhole
camera model. Concurrently, we employ a hand-tracking
method [Zhang et al., 2020], fine-tuned for our application,
on the RGB input from the OAK-D camera. This output
is similarly processed to determine the 3D location of the
human hand to assess the human’s actions. Whereas TB-
DecAIRL yields a policy for each agent, only the cobot uses
one of the type-contingent policies in the vector to control
its behavior. This learned policy, exported to a CSV file, is
loaded into a finite-state machine which is used to control
the cobot via ROS Noetic.

Validation of simulation results. Five University students
(not involved in this paper) played the role of the human
sorter in the collaboration with small natural variability, and
engaged in six rounds of onion sorting each across from
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Figure 6: Key frames from a human-robot collaborative sort. In Fig. 6a, the human and cobot begin sorting with the human
inspecting an unblemished onion while the cobot attempts to pick an onion. Fig. 6b captures the the human placing an onion
back on the conveyor while the cobot inspects the picked onion. In Fig. 6c, the human indicates fatigue with a thumbs-down
gesture to the OAK-D camera. The cobot responds by entering industrial mode in Fig. 6d, moving faster while the human
performs NoOp. Finally, in Eq. 6e, the human signals recovery with a thumbs-up gesture, and both agents collaboratively
complete the sort in Fig. 6f.

the cobot. The team was required to sort fifteen randomly
placed onions on a conveyor in each round while the human
indicates fatigue no more than two times. During the first
three rounds, the cobot followed the policy learned from
TB-DecAIRL, and for the remaining three rounds, it adhered
to the Dec-AIRL policy. All trials were successful with no
cobot failure in any round (an example sortation is shown
in Fig. 6). In Fig. 7, we show the average time taken per
round, under the two conditions of the cobot using the TB-
DecAIRL policy and the baseline policy. The HRC where
the cobot is aware of human factors and adapts accordingly
took significantly less time to sort the onions compared to
one which is not cognizant.

The human sorter held his or her thumb up or thumb down
until it was recognized by the hand tracking application.
This recognition was not instantaneous and the humans held
their thumbs for slightly varying amounts of time across the
6 rounds. Indeed, this variability in gesture recognition is
responsible in part for the variability of the sortation times
of the 6 human-robot teams shown in Fig. 7. However, the
two gestures (thumb-up and thumb-down) are quite distinct
and the hand tracking application did not make any mistakes
in distinguishing them.

5 RELATED WORK

Modeling teammates to enhance decision making is com-
mon in fields such as game theory, multiagent planning, and
multiagent reinforcement learning. Although previous work

Figure 7: Average collaborative sort time for 15 onions with
a UR3e cobot. Each human-robot team performed 3 rounds
with the TB-DecAIRL policy and 3 rounds with the Dec-
AIRL policy.

in teammate modeling has had success in toy simulated
environments, e.g., SMAC [Samvelyan et al., 2019] and
level-based foraging [Albrecht and Ramamoorthy, 2015],
the body of research in this area is limited. A prominent
approach in modeling other agents is interactive POMDPs
(I-POMDPs) [Gmytrasiewicz and Doshi, 2005], which recur-
sively updates beliefs about other agents’ types while solv-
ing for their policies. A key distinction between I-POMDPs
and game theory-based models as compared to ours is that
the former is often tailored for non-cooperative contexts,
not collaborative systems with shared goals.



Unhelkar [2020] uses an agent Markov model (AMM) to
capture an agent’s mental states, allowing learners to infer
the AMM through variational Bayesian inference. Following
up on this, recently Seo and Unhelkar [2024] learns the
expert’s policy and hidden intent (both part of the AMM)
using expectation-maximization and IQ-Learn [Garg et al.,
2021]. Unlike our multiagent collaborative HRC scenario,
this method models the human as a single-agent MDP and
whose type does not change.

Nikolaidis et al. [2015b] treats different expert behav-
iors as partially observable variables and uses expectation-
maximization to cluster demonstrations, leading to differ-
ent reward functions for each expert type through single-
agent IRL. However, the model assumes that agent types
remain constant throughout task execution, whereas our
scenario accounts for dynamic types. Another prior thread
uses a bounded-memory model combined with a mixed-
observability MDP to estimate human adaptability [Niko-
laidis et al., 2015a, 2017a,b], enabling the robot to adjust its
actions accordingly. In contrast, TB-DecMDP adopts an ob-
jective perspective to capture the nuances of collaboration,
allowing agents to adjust their behaviors as needed, to maxi-
mize team rewards. Peternel et al. [2018] develops a method
to adapt the robot’s physical behavior online to account
for human motor fatigue, using techniques like dynamical
movement primitives and adaptive frequency oscillators.

Another prior technique uses Trust-POMDP [Chen et al.,
2020] model that maintains a belief over trust as a latent
variable, allowing the robot to adapt its policy in response
to human interruptions based on their trust in the robot’s
abilities. This work aligns more closely with active learn-
ing [Settles, 2009] than with traditional HRC. Recent studies
by Yuan et al. [2022] and Jiang et al. [2024] apply variational
inference models with mutual information maximization in
decentralized settings to learn a random variable z that in-
forms each agent about others. These works are similar
to Wang et al. [2022], in that they assume a shared latent
strategy space that remains constant throughout execution,
whereas the TB-DecMDP allows for diverse and dynamic
agent types during task execution.

More recently van der Spaa et al. [2024] focuses on learning
both the human’s hidden intent and task preferences for ef-
fective human-robot collaboration using maximum entropy
IRL. They employ a multi-agent MDP model akin to Wang
et al. [2022] to derive the marginalized policy, transition
function, and reward function necessary for the robot to
maintain a belief over human intent. This uses a central-
ized framework where all agents are aware of the joint state,
and hence is not applicable to realistic scenarios that tend
to be naturally decentralized. Prasad et al. [2024] utilizes
a mixture of Gaussians to model the interactions between
humans and robots and to learn the latent space of robot
actions. However, the policy is conditioned solely on hu-
man movements, meaning the robot reacts to human actions

rather than actively collaborating to solve tasks as part of a
team.

6 CONCLUDING REMARKS

Motivated by the understanding that human behavior
changes over time due to latent decision-making factors,
we introduced a novel multi-agent model and an associated
IRL method. This approach learns from human-human team
demonstrations, enabling a collaborative robot (cobot) to
work effectively with a human by accommodating changes
in the human’s type, thereby enhancing collaboration within
a shared workspace. Supported by a conditional bound on
performance loss, our experimental results indicate that TB-
DecAIRL outperforms a previous decentralized IRL method
in which the cobot does not reason about human types.
Although TB-DecMDP is designed for HRC, it generally
applies to any multiagent decision making in similar prob-
lem settings. TB-DecAIRL brings robot learning to HRC
and its deployment a step closer to real-world collaborative
environments.

Limitations. We assume that expert trajectories are avail-
able as state-action pairs (a common assumption in IRL).
While the task attributes of the state can be captured using
sensors like RGB-D cameras, certain hidden attributes such
as the agent’s own type are mental states. We leveraged
simulated human-human trajectories to seamlessly gener-
ate expert trajectories. However, future work may reframe
the state definition to attributes that can be fully captured
through observable traits, and investigate the impact (e.g.,
on throughput) of errors and noise in observed actions that
could lead to poor belief estimation of others’ types. Future
studies could also test on larger teams and accommodate
asynchronous, durative actions, e.g., using a variant of the
Dec-semi-MDP [Sutton et al., 1999, Goldman and Zilber-
stein, 2008] model.
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APPENDIX

PROOF OF THEOREM 1

Proof. We use max-norms ∥.∥ over the sets of states, ac-
tions and next states. We refer to joint beliefs bt(. . .) =∏

i b
t
i(. . .). As in Dec-AIRL, we distinguish interactive

states (SI ) from non-interactive states (SNI ) where the re-
ward function is given as:

R(s,a, s′) =


R(s,a, s′), if s ∈ SI∑

i

Ri(si, ai, s
′
i), if s ∈ SNI

(7)

Type transition kernel Fi(θ
′
j |aj , θj) forms a Markov chain

with state θj and edges guarded by aj . Under the assumption
that Fi is irreducible and aperiodic, the type distribution bi
given by Eq. 3 will converge to a limiting distribution. Let
the joint beliefs, bt(θ) =

∏
i b

t
i(θ−i). Then, after sufficient

time t elapses,

DTV (b
t+1, bt) ≤ δ · DTV (b

t, bt−1) (8)

where 0 ≤ δ < 1 and DTV denotes the total variation
distance.

First, we note the definition and upper-bound of
DTV (b

t, bt−1) = 1
2

∑
θ |bt(θ|ht−1) − bt−1(θ|ht−2)| ≤ 1,

and the fact that if DTV (P,Q) ≤ ϵ then for any event A,
P (A) ≥ Q(A)(1− ϵ/2). Applying these to the property of
belief updates (Eq. 8) we get

bt+1(θ|ht) ≥ bt(θ|ht−1)(1− δDTV (b
t, bt−1)/2)

≥ bt(θ|ht−1)(1− δ/2)

Therefore, bt+1(θ|...)
bt(θ|...) ≥ (1− δ

2 ),∀θ, t when t is sufficiently
large. Note that this applies to both the expert and generated
trajectories. Now, the estimates of joint rewards in non-
interactive (NI) states is

Rt =
∑
i

Rt
i

=
∑
i

log

(
Dt

i

1−Dt
i

)

Similarly, the expert rewards in non-interactive states are
RE =

∑
i log

(
DE

i

1−DE
i

)
. Now, the i-th agent’s discriminator

error is ∥Dt
i −DE

i ∥ ≤ ϵ, and the i-th expert’s discriminator

value 4 is 0.5, therefore

∥Rt −RE∥ = ∥
∑
i

log

(
Dt

i

1−Dt
i

)
−

∑
i

log

(
DE

i

1−DE
i

)
∥

= ∥
∑
i

log

(
Dt

i

DE
i

)
−

∑
i

log

(
1−Dt

i

1−DE
i

)
∥

≤

∣∣∣∣∣∑
i

log

(
1/2 + ϵ

1/2− ϵ

)
−

∑
i

log

(
1/2− ϵ

1/2 + ϵ

)∣∣∣∣∣
= 2

∑
i

log

(
1/2 + ϵ

1/2− ϵ

)
≤ 8Nϵ (9)

when ϵ is small enough and N is the number of agents.
For interactive states, the same arguments apply to the joint
discriminator, but the bound corresponding to Eq. 9 would
just be 8ϵ. Therefore, we use Eq. 9 as the dominant form of
this bound.

The log-likelihood of a trajectory (X) given the reward
estimate Rt is

logP (X|Rt) ∝
∑
t

γt
∑
θ

Rt(st, at, θ)bt(θ|ht)

≥
∑
t

(γ(1− δ/2))t
∑
θ

Rt(. . . , θ)ρ1(θ)

≥
∑
t

(γ(1− δ/2))t
∑
θ

∣∣∣RE(. . . , θ)− 8Nϵ
∣∣∣ ρ1(θ)

≥ logP (X|RE)−
∑
t

(γ(1− δ/2))t8Nϵ

Here, ht is the history of states-actions preceding step t and
ρ1 is the initial belief. Thus,

LL(X|RE)− LL(X|Rt) ≤
∑
t

(γ(1− δ/2))t8Nϵ

≤ 8Nϵ

1− γ(1− δ/2)

HYPERPARAMETERS OF THE METHODS

For both TB-DecAIRL and Dec-AIRL, we used 256 hidden
nodes for the 2 hidden layers in both the g and h networks
within the discriminator, a batchsize of 128, learning rate for
both the discriminator and the actors as 0.0003, discount fac-
tor and generalized advantage estimator both as 0.95, max
gradient normalization as 0.5, and a random seed between 1
and 100. For Dec-PPO, we used the same hyperparameters
as mentioned in gSDE [Raffin et al., 2022] because it has
been tuned and tested on multiple pybullet environments.
During our training, we observed discriminator errors of
about 14% at termination for TB-DecAIRL.

4An expert’s discriminator attempts to distinguish between
expert trajectories and those produced by the expert’s policy, which
are indistinguishable.
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