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Abstract

Large language models remain prone to gener-
ating toxic content, posing challenges for safe
deployment. We propose CAUSALDETOX, a
detoxification framework that identifies and in-
tervenes on attention heads causally linked to
toxic generation. Using the probability of ne-
cessity and sufficiency, a causally grounded
criterion, CAUSALDETOX selects heads most
responsible for toxicity and modifies only
these components at inference time. At in-
ference time, we steer model outputs to-
ward non-toxic continuations by modifying
only these selected components. We evaluate
CAUSALDETOX on ToxiGen and ImplicitHate,
and introduce PARATOX, a benchmark of para-
phrased toxic—non-toxic sentence pairs gener-
ated with Vicuna-13B for controlled evaluation.
CAUSALDETOX achieves up to 38.08% greater
toxicity reduction over baseline methods while
preserving fluency, and offers a 7x speedup
in head selection. Beyond detoxification, the
causal principles underlying CAUSALDETOX
and PARATOX provide a scalable foundation
for safer, controllable language generation
across other safety-critical tasks.

1 Introduction

Large language models (LLMs) have significantly
advanced natural language generation, achieving
state-of-the-art performance across a wide range
of tasks. Despite their advancements, LLMs con-
tinue to pose serious safety concerns due to their
propensity for generating toxic, biased, or other-
wise harmful content (Gehman et al., 2020; Welbl
etal., 2021). Addressing these issues is crucial for
the responsible and ethical deployment of LLMs in
real-world applications.

Previous detoxification approaches have pri-
marily involved lexical filtering, adversarial train-
ing, reinforcement learning from human feedback
(RLHF), and supervised fine-tuning using care-
fully curated datasets (Bai et al., 2022; Ouyang

et al., 2022). While these methods achieve varying
degrees of success, each presents notable limita-
tions. Lexical filtering often disrupts semantic co-
herence and can fail to account for subtle, context-
dependent toxicity (Welbl et al., 2021). Methods
based on RLHF or supervised fine-tuning require
extensive human annotation, which is costly and
can lead to the inadvertent suppression of nuanced
language or subtle concepts (Xu et al., 2021). More
recent model-based approaches, such as direct pref-
erence optimization (Lee et al., 2024) or activation
patching (Rodriguez et al., 2024), typically involve
extensive modification of model parameters, poten-
tially degrading unrelated model capabilities and
reducing overall model generalization.

To overcome these challenges, we propose a
novel detoxification method inspired by causal rep-
resentation learning principles (Suter et al., 2019;
Locatello et al., 2020; Scholkopf et al., 2021). Our
method identifies model components that causally
contribute to toxic content generation, enabling
precise and targeted interventions. Specifically, we
first extract output activations from all attention
heads in the language models during the forward
pass. Unlike prior work that relies on correlation-
based head selection (Rajendran et al., 2024b; Li
et al., 2024), we apply a causal criterion—the prob-
ability of necessity and sufficiency (PNS)—to quan-
tify each head’s influence on toxicity. This yields a
compact subset of attention heads that are most re-
sponsible for encoding toxic content. At inference
time, we apply inference-time intervention Li et al.
(2024) to shift these activations away from the toxic
directions. We evaluate our method on the Toxi-
Gen (Hartvigsen et al., 2022) dataset and construct
PARATOX, a new benchmark of toxic—non-toxic
sentence pairs by paraphrasing ToxiGen examples
using Vicuna-13B (Chiang et al., 2023). Each pair
consists of toxic and non-toxic paraphrases, allow-
ing for fine-grained evaluation. PARATOX will be
released for future research.



Empirical results show that the proposed PNS-
based head selection method outperforms the base-
line accuracy-based selection by up to 38.08% in
toxicity reduction over the previous method after
intervention (Li et al., 2024), while preserving high
fluency in generated text.

In summary, our main contributions are:

* A causal criterion for head selection: We
propose a novel head selection criterion based
on the probability of necessity and sufficiency,
which identifies attention heads that causally
contribute to toxicity. Prior work primarily
relies on correlation-based metrics, such as ac-
tivation magnitudes or accuracy-driven heuris-
tics (Rajendran et al., 2024b), which may
capture spurious associations rather than true
causal drivers. These methods often result in
redundant or less interpretable head selections.
In contrast, our PNS-based approach provides
a principled, causally grounded mechanism
to select a compact and interpretable set of
heads. This leads to more targeted interven-
tions, enabling higher toxicity reduction with
minimal impact on language fluency.

* A benchmark for controlled detoxifica-
tion: We construct PARATOX, a new bench-
mark for controlled detoxification, consist-
ing of toxic—non-toxic sentence pairs gener-
ated by paraphrasing ToxiGen (Hartvigsen
et al., 2022) and ImplicitHate (ElSherief
etal., 2021a) using Vicuna-13B (Chiang et al.,
2023). Prior detoxification benchmarks often
lack fine-grained control or parallel structure
between toxic and non-toxic variants, making
it difficult to evaluate subtle changes intro-
duced by intervention methods. This limita-
tion hampers the assessment of both effective-
ness and unintended side effects. By provid-
ing aligned toxic/non-toxic pairs, PARATOX
enables controlled evaluation of detoxifica-
tion strategies, and facilitates future work on
intervention-based mitigation techniques.

2 Related Work
2.1 Detoxification in LLMs

Detoxification techniques for LLMs include lex-
ical, reinforcement learning, and model-editing
approaches. Early work applied lexical or rule-
based filters to remove toxic tokens, but these
risk semantic loss and fail to capture context-
dependent toxicity (Gehman et al., 2020; Welbl

et al., 2021). Reinforcement learning from human
feedback (RLHF) and supervised fine-tuning on
curated toxicity datasets improve safety but require
extensive human annotation and may inadvertently
suppress benign language, particularly minority
voices (Bai et al., 2022; Ouyang et al., 2022; Xu
etal.,2021). More recent methods perform targeted
model edits: direct preference optimization (DPO)
aligns generations towards harmlessness via modi-
fied loss functions (Lee et al., 2024; Rafailov et al.,
2023), activation patching replaces harmful activa-
tion patterns with safe ones (Rodriguez et al., 2024;
Meng et al., 2022), and subspace steering projects
hidden states onto toxicity-averse directions (Han
et al., 2024; Ko et al., 2024). Expert/anti-expert
frameworks train auxiliary models to rewrite out-
puts toward safety (Hallinan et al., 2022), while ad-
versarial safety pipelines guard against malicious
prompts (Zhao et al., 2024; Dinan et al., 2019; Up-
paal et al., 2024). However, many of these rely
on correlation-based heuristics, retraining, or fine-
tuning, thus is computationally expensive.

2.2 Causal Representation Learning for
Alignment

Causal representation learning (CRL) seeks to
identify and manipulate latent generative factors
under principled causal assumptions (Scholkopf
et al.,, 2021). A foundational desideratum for
such representations is articulated by Wang and
Jordan (2021), where the authors provided for-
malized criteria, i.e., the probability of necessity
and sufficiency, that guarantee the identification of
meaningful latent features. Recent analyses indi-
cate that transformer self-attention encodes struc-
tured causal dependencies between tokens (Ro-
hekar et al., 2024; Nichani et al., 2024), motivat-
ing causal approaches to detoxification. Causal
tracing methods locate toxicity pathways in net-
work circuits but often lack principled intervention
mechanisms (Meng et al., 2022). Concept-based
CRL relaxes strict interventional requirements by
recovering interpretable concepts through condi-
tioning rather than exhaustive interventions (Rajen-
dran et al., 2024a), yet has not been fully leveraged
for fine-grained, context-sensitive detoxification
in LLMs. In our work, we apply the PNS lower
bound criterion from Wang and Jordan (2021) to
rigorously enforce causal representation learning
and precisely identify toxicity-sensitive activation
components for targeted intervention.



2.3 Inference-Time Intervention-Based
Methods

Inference-time intervention method modifies
model behavior without weight updates. Plug-and-
Play Language Models (PPLM) use gradient-based
updates to steer hidden states toward desired at-
tributes during generation (Dathathri et al., 2019).
GeDi employs small generative discriminators as
controllers that adjust token probabilities for tar-
geted attributes (Krause et al., 2020). Direct Prefer-
ence Optimization (DPO) shows that training LMs
with certain loss modifications can be interpreted
as reward modeling, influencing inference distribu-
tions (Rafailov et al., 2023). Activation patching
and causal intervention techniques replace or per-
turb internal activations in critical layers to effect
behavioral changes (Meng et al., 2022; Rodriguez
et al., 2024). More recently, Li et al. (2023) in-
troduced Inference-Time Intervention (ITI), which
identifies linear “steering directions” in selected
activation subspaces (e.g., neuron or head outputs)
and adds controlled offsets during generation to im-
prove truthfulness or other attributes. These meth-
ods demonstrate that small, targeted adjustments to
latent activations can yield large gains in desired
behavior while preserving overall fluency, offering
a lightweight alternative to full fine-tuning.

3 Preliminaries

In this section, we first introduce notations for
transformer-based LLMs and their internal repre-
sentations. We then review the notions of proba-
bility of necessity, sufficiency, and necessity and
sufficiency as used in Wang and Jordan (2022),
which we extend to the setting of attention head
selection. Throughout, we use bold uppercase (e.g.,
X)) to denote random vectors and bold lowercase
(e.g., ) to denote feature vectors.

3.1 Large Language Models

We consider a transformer-based language model
M with /¢ layers, each comprising H self-attention
heads. Given an input token sequence x =
[z1,..., 1], the model computes contextual rep-
resentations through a sequence of transformations.
Within layer ¢, the h-th attention head outputs a
vector altM) € R?.,

The model then autoregressively generates an
output token sequence y = M(x), where each
token g is sampled based on the conditional distri-
bution P(y: | €, y¢).

3.2 Probabilities of Necessity and Sufficiency

We adopt the counterfactual formalism of Wang
and Jordan (Wang and Jordan, 2022) to measure
how necessary and/or sufficient a feature is for
predicting a target label. Let Z € {0,1} be a
binary feature extracted from a high-dimensional
input X, and Y € {0, 1} the corresponding label.
The counterfactual label had we set Z to a value z
is denoted Y (Z = z). The following definitions
measure how necessary or sufficient Z is for Y
(Wang and Jordan (2022) Definitions 1-3).

Definition 1 (Probability of Necessity (PN)).
PNL, = P(Y(Z#2) #ylZ=2Y =y)

Definition 2 (Probability of Sufficiency (PS)).
PS.y =P (Z=2)=ylZ2#2Y #y)

Definition 3 (Probability of Necessity and Suffi-
ciency (PNS)).

PNS., =P (Y(Z #2) #4,Y(Z=2) =y)

Intuitively, these scores quantify the causal im-
pact of feature Z on outcome Y:

* PN is high when changing Z = zto Z # z
changes Y = ytoY # y.

* PS is high when changing Z # zto Z = 2
changes Y £ ytoY = y.

* PNS captures when both are true—making Z
necessary and sufficient predicting Y = y.

Our method learns attention head representations
that are necessary and sufficient for toxicity. How-
ever, since PN, PS, and PNS involve counterfactu-
als, which are infeasible to compute from observa-
tional data, Wang and Jordan (2022) then proposed
a lower bound on the logarithm of PNS, which we
use as a representation learning objective.

3.3 Inference-Time Intervention

Inference-time intervention (ITI) (Li et al., 2024)
is an LLM alignment technique that modifies the
model activations during generation to elicit or sup-
press target concepts in the output. In our case, we
aim to suppress the concept of toxicity.

Let a(“") (x) denote the activation of head h in
layer ¢ for the input . In Li et al. (2024), the
authors train linear classifiers over the activations
of all attention heads to predict the presence of a
target concept in the input.



For each selected head, an intervention vector
oM jg computed to shift the activation away from
the direction associated with toxicity. Formally, the
intervention is defined as:

) = . g(bh) 4 (Eh), (1)

where « is a scaling hyperparameter, (") is the
standard deviation of the head’s activations along
the intervention direction, and v(¢") is the mean
difference of the activations between the non-toxic
and toxic pairs:
1 n
=Y (@M(@™) —a"M(@h) @

n

olbh) —

where ~ and = are the generated paraphrases
based on inputs x, and we will introduce the gener-
ation later in Section 5.
During the generation, we apply the intervention
as:
a®M () « a'"M (x) + 6N 3)

Note that in the original ITI approach, interven-
tion targets are selected based on classification ac-
curacy, which is inherently correlation-based. This
may result in redundant head selection and non-
minimal interventions. For example, if two heads
are highly collinear and one causally influences the
other, both may be selected despite only one being
causally relevant. In contrast, our method selects
attention heads based on their causal contribution,
quantified via their estimated necessity and suffi-
ciency for toxicity. This enables more focused and
effective modifications.

4 Method

We propose CAUSALDETOX, a two-stage method
for detoxifying LLMs by identifying and manip-
ulating attention heads most causally responsi-
ble for toxic generation. Given a dataset D :=
{(x;,yi)}7—,, where each x; is a sentence, i.e., a
sequence of tokens, and y; is a binary label indicat-
ing whether the x; is toxic or not, y = 1 for toxic,
y = 0 for non-toxic. we make a forward pass on

Given input x;, the model generated a sequence
of continuation Z; := M (x;). The goal is for the
model to generate sequences that are less toxic than
the input tokens.

In particular, we assume access to a toxicity scor-
ing function f : X* — [0, 1] that assigns a scalar
toxicity score to tokens of variable length. The ob-
jective of detoxification is to prevent the generation

that increase toxicity:

f(@) < f(=). “4)

To achieve this, CAUSALDETOX proceeds in
two stages:

1. Causal Head Identification: We estimate the
causal contribution of each attention head to
toxicity using the probability of necessity and
sufficiency and select a targeted subset Hoxic
for intervention.

2. Inference-Time Intervention: At generation
time, we manipulate the activations of heads
in Hioxic to steer the model away from gener-
ating toxic content.

4.1 Identify Causally-Relevant Attention
Heads

To identify the subset Hoxic for intervention, we
quantify the causal influence of each attention head
on sentence toxicity by estimating a lower bound
on its probability of necessity and sufficiency, fol-
lowing Wang and Jordan (2022). The motivation is
that by concentrating toxicity-related influence in
this targeted set, we aim to modify toxic behavior
without disrupting unrelated, benign model behav-
iors. However, computing exact PNS values is
generally intractable from observational data alone.
To address this, we adapt a tractable lower bound
on log(PNSz y), where Z denotes the attention
head output and Y the toxicity label, which can
be estimated from observational data under mild
assumptions.

For head (¢, h), let {zy’h) 7_, denote the output
activations on of {z;}”"_,, we have an lower bound
on log(PNS,.n y) in eq. (5). For the ease of
notation, we omit (£, i) for the rest of this section
and use z to denote the output of an attention head.

log PNS(Z,Y)

1 n d ' '
:T‘QZ Zﬁj(zg —E[Z]])
i=1 j=1

2

d
+2 [ D8z —El]) | 7" (e; — Eley))
j=1

Here the second super script j denotes the j®
dimension of z;. 5y and 3 are estimated by a linear
model:



P(Y | Z,0)

=N ((ﬁo +B'Z + 7TC) ,02) . ©
The variable ¢; captures the hidden common cause
that gives rise to correlations among the different
dimensions of zl@’h). Since ¢ is unobserved, one
can model it with a probabilistic factor model. In
our implementation, we train a variational autoen-
coder (VAE) (Kingma et al., 2013)) to reconstruct
{zi} and treat the inferred latent mean vector
as ¢;. As our primary focus is on the application of
causal criterion to toxicity unlearning, we do not
reproduce the derivations here and instead refer the
reader to Wang and Jordan (2022) for the details.
After computing the eq. (5) for all attention
heads (¢, h), we select the top-K heads with the
highest scores for the set Hoxic for intervention.

4.2 Apply Inference-Time Intervention

During generation, we apply inference-time inter-
vention (ITT) (Li et al., 2024) as described in sec-
tion 3.3. The idea is that, by intervening on features
that are both necessary and sufficient for toxicity,
we achieve more effective toxicity mitigation with
fewer unintended effects. In contrast to applying
ITI on attention heads selected purely based on
their correlation with toxicity (e.g., via classifica-
tion accuracy), our approach targets heads with
demonstrable causal influence. We point out that
When compute the steering vector assumes that
the subset of attention heads identified as causally
responsible for toxicity—Hoxic—is fixed and does
not change across inputs, following the original
ITI paper (Li et al., 2024). In future work, the
head selection and steering vectors computation
process could be extended to operate dynamically
at inference time.

5 PARATOX Benchmark

To pinpoint the concept of toxicity in sentences and
to steer the model, as mentioned in Section 3.3, we
ideally require pairs of sentences that are semanti-
cally identical except for the presence or absence
of toxicity. In the terminology of Pearl’s causal-
ity (Pearl et al., 2021; Pearl, 2009; Peters et al.,
2015),, a toxic sentence = can be viewed as the
counterfactual of a non-toxic sentence x~, where
the latent variable “toxicity” has been set to true
while all other factors remain fixed. Formally, we

express this as:

+ .

T o= wtoxicity = True’

where the subscript denotes the counterfactual, con-
sistent with the counterfactual semantics in Wang
and Jordan (2022).

However, existing toxicity datasets such as Jig-
saw (cjadams et al., 2017), ToxiGen (Hartvigsen
et al., 2022), and ImplicitHate (ElSherief et al.,
2021a) lack such semantically aligned toxic—non-
toxic pairs. This limits their utility for causal anal-
ysis and evaluation.

To address this gap, we introduce PARATOX,
a benchmark of toxic—non-toxic paraphrase pairs.
While exact counterfactuals are unobservable, we
approximate them by prompting Vicuna-13B (Chi-
ang et al., 2023) to generate paraphrases condi-
tioned on a toxicity specification. This approach
allows us to construct sentence pairs that preserve
core semantic meaning while differing primarily
along the toxicity dimension.

5.1 Base Dataset

We construct PARATOX using the annotated sub-
set of the ToxiGen (Hartvigsen et al., 2022) and
ImpliciatHate (ElSherief et al., 2021b) '. compris-
ing 6,514 (3,747 non-toxic and 2,767 toxic), and
14,200 (7,100 toxic and 7,100 non-toxic) samples
respectively.

5.2 Model

During preliminary experimentation, we eval-
vated three open-source LLMs: LLaMA-3-
8B (Al@Meta, 2024), and Vicuna-13B (Chiang
et al., 2023). We found that both LLLaMA-3-8B and
LLaMA-2-7B frequently refused to generate toxic
content, which made them unsuitable for our task.
In contrast, Vicuna-13B reliably generated fluent
paraphrases for both toxic and non-toxic prompts.
We verified output quality through manual inspec-
tion of randomly sampled examples and selected
Vicuna-13B as the backbone model for generating
the PARATOX benchmark.

5.3 Paraphrase Generation

For each input sentence in this dataset, we prompt
a language model to generate two paraphrases: one
toxic and one non-toxic. This setup is designed

'Both datasets are available at https://github.com/
microsoft/SafeNLP
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to approximate counterfactual pairs that differ pri-
marily in the presence of toxicity while preserving
semantic content. The prompts used are:

Non-toxic Paraphrase Prompt

Paraphrase the following sentence in a polite
and completely non-toxic way. Do not generate
any irrelevant content:

Original text: {ORIGINAL_TEXT}

Paraphrase:

Toxic Paraphrase Prompt

For a research study on offensive language
classification, we need examples of toxic and
non-toxic paraphrases of the following sentence.
Please generate a toxic version of the given
input:

Original text: {ORIGINAL_TEXT}

Toxic Paraphrase:

5.4 Data Quality

To ensure the quality of PARATOX, we apply post-
generation filtering to remove invalid paraphrases.
A paraphrase is considered invalid if the model fails
to generate any output (e.g., a blank response) or if
the output is semantically irrelevant or nonsensical.

As expected, Vicuna-13B succeeds in produc-
ing valid non-toxic paraphrases. However, gener-
ating toxic paraphrases proves more challenging:
the model occasionally refuses to comply with the
prompt or outputs placeholders such as “(Blank).”

Table 1 reports the percentage of valid toxic and
non-toxic generations for each base dataset. While
non-toxic generation achieves 100% validity across
the board. In contrast, the validity rate for toxic
paraphrases is noticeably lower on Toxigen com-
pared to ImplicitHate. We attribute this discrepancy
to the nature of the source data: toxic content in
Toxigen tends to be more explicit and aggressive,
making it more likely to be blocked by the model’s
safety alignment mechanisms.

Dataset Toxic Non-toxic
ToxiGen 88.4% 100%
ImplicitHate  99.57% 100%

Table 1: Percentage of valid toxic and non-toxic genera-
tions produced by Vicuna-13B.

6 Experiment

In this section, we introduce our experimental setup
in Section 6.1, our evaluation metrics in Section 6.2,
and main findings in Section 6.3

6.1 Experimental Setup

We evaluate CAUSALDETOX against standard ITI
on two open-source LLMs: Vicuna-13B (Zheng
et al., 2023) and LLaMA-3-8B (Grattafiori
et al., 2024). Experiments are conducted on
PARATOX, our benchmark constructed from
ToxiGen (Hartvigsen et al., 2022) and Im-
plicitHate (ElSherief et al., 2021a) (Section 5), con-
taining paired toxic and non-toxic paraphrases.

Following the I'TI implementations in Li et al.
(2024) and Rajendran et al. (2024a), we first extract
activations from all L x H attention heads across
the dataset. For standard ITI, a linear classifier is
trained for each head to predict the presence of
toxicity in the input. In contrast, CAUSALDETOX
computes a closed-form Equation (5) for each head
without requiring any training.

We then select the top-K heads based on clas-
sification accuracy (for ITI) or logPNS score (for
CAUSALDETOX), denoted by Hﬁﬁé and Hfgiisc, re-
spectively. These sets are the intervention targets.

Finally, we prompt the LLM with each input
sentence and apply the corresponding steering vec-
tors—computed as described in Section 3.3—to the
selected heads: HA< for standard ITI, and HENS

toxic toxic

for CAUSALDETOX, during generation.

6.2 Evaluation

For each generated text, we measure its toxicity and
fluency and compare these metrics against those of
the corresponding input sentence. Our evaluation
relies on the following metrics:

* Toxicity Reduction We use Detoxify (Hanu
and Unitary team, 2020), a publicly available
and widely used toxicity detection model?,
which outputs a toxicity score between 0 and
1 indicating the likelihood of toxic content.
We measure the average reduction in Detoxify
scores between the input and generated text
as an indicator of intervention effectiveness.

Preservation of Fluency: We assess fluency
using perplexity (Jelinek et al., 1977), com-
puted from the same language model used
for generation (LLaMA-3-8B or Vicuna-13B),

https://github.com/unitaryai/detoxify
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Dataset Model #Heads Method Toxicity Red. T  Perplexity |
- Baseline 02513 £0.31  9.45+34.62
18 ITIT 0.2263 £ 0.30 9.69 +8.13
Vicuna-13B CAUSALDETOX  0.2341 £ 0.31 8.91 £8.52
36 ITI 02187 £0.31 10.12+21.88
ToxiGen CAUSALDETOX  0.3020 +0.33  10.88 +8.69
- Baseline 0.1729+ 0.31 8.88 £16.31
18 ITIT 0.2007 £ 0.32 8.76 £ 59.19
LLaMA-3-8B CAUSALDETOX  0.1708 £ 0.31  9.36 £28.96
36 ITI 0.2265 £ 032  7.65+22.35
CAUSALDETOX  0.2382 +0.32  7.56 +£17.32
- Baseline 0.3463 £ 0.30  13.26 £20.02
18 ITI 0.3141 £0.30 14.51 £27.00
Vicuna-13B CAUSALDETOX  0.3487 £ 0.30  13.77 £20.93
36 ITI 0.3156 £ 0.30  13.60 +23.42
ImplicitHate CAUSALDETOX  0.32444+0.30 13.11 +21.74
- Baseline 0.2575+£0.30 17.32+£28.99
13 ITIT 0.2740 £0.30  13.86 £ 16.76
LLaMA-3-8B CAUSALDETOX 02799 £0.30 16.86 +32.34
36 ITIT 0.2940 + 0.30 8.22 +14.59
CAUSALDETOX 029194+ 0.30  8.17 £15.35

Table 2: Evaluation of toxicity reduction (%) and perplexity (mean = std) for Baseline (no intervention), ITI, and
CAUSALDETOX across two datasets (ToxiGen and ImplicitHate), two models (Vicuna-13B and LLaMA-3-8B),
and two head selection sizes (18 and 36). Results are grouped by dataset and model. CAUSALDETOX (PNS-based)
and ITI (correlation-based) are compared under matched conditions. Best values in each block are bolded. Lower
perplexity and higher toxicity reduction indicate better performance.

where lower scores indicate higher fluency.
We compare perplexity before and after inter-
vention to ensure that the intervention does
not impair linguistic quality.

6.3 Results

Superior Toxicity Reduction Table 2 presents
the performance of CAUSALDETOX, standard ITI,
and a no-intervention baseline (i.e., the original
model without any steering) on Vicuna-13B and
LLaMA-3-8B, evaluated across the ToxiGen and
ImplicitHate datasets. We report average toxicity
reduction (higher is better) and perplexity (lower
is better) for each configuration. CAUSALDETOX
achieves the highest toxicity reduction in 3 out of
the 4 model—dataset combinations, demonstrating
its effectiveness over correlation-based approaches.
Additionally, it maintains perplexity scores compa-
rable to the baseline, indicating that the interven-
tion preserves the fluency of the generated text.

Efficiency of CAUSALDETOX In addition to ef-
fectiveness, we also compare the efficiency of the
head selection procedures. For a model with 40
layers and 40 attention heads per layer, the tradi-

tional logistic regression approach requires around
42 seconds, while our PNS-based scoring method
completes head selection in 6 seconds on a single
GPU, achieving a 7x speedup. This overhead of
the accuracy-based method arises from the need to
train L x H separate classifiers, one per attention
head. This highlights the computational advantage
of our causal scoring framework. As language mod-
els grow larger, the relative cost of traditional head
selection methods increases rapidly, while our ap-
proach remains lightweight and scalable. These
efficiency gains make CAUSALDETOX not only
principled and interpretable, but also practical for
real-world deployment in large-scale model detoxi-
fication pipelines.

Optimal Number of Intervention Heads We
observe that increasing the number of intervention
heads from 18 to 36 improves toxicity reduction
for CAUSALDETOX, but yields limited gains for
ITI. A potential explanation is that the additional
heads selected by CAUSALDETOX remain causally
relevant, providing complementary, non-redundant
information about toxicity. In contrast, the extra
heads chosen by ITI are likely correlated with those
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Figure 1: Visualization of the top 36 attention heads selected by ITI and CAUSALDETOX on ToxiGen for (a)
Vicuna-13B and (b) LLaMA-3-8B. Blue circles denote ITI-selected heads; red squares denote CAUSALDETOX-
selected heads. Color intensity reflects head rank, with darker shades indicating higher importance. CAUSALDETOX
exhibits strong layer-wise concentration—around layer 5 in Vicuna-13B and layer 10 in LLaMA-3-8B, highlighting
the method’s ability to isolate causally relevant substructures. In contrast, ITI-selected heads are more uniformly
distributed, suggesting that the correlation-based criterion does not find a localized representation to specific layers.

already selected, offering little new information
and thus limited additional impact. This highlights
the advantage of causality-guided selection in cap-
turing diverse and informative signals.

In early experiments, we found that intervening
on 72 heads led to severe degradation in language
quality, often resulting in incoherent or nonsensical
output, while yielding only marginal gains in tox-
icity reduction. This suggests that a modest num-
ber of heads is sufficient to capture the key causal
mechanisms behind toxic generation. Intervening
on 36 heads, in particular, strikes a strong balance:
it effectively mitigates toxicity while preserving
the model’s linguistic fluency and coherence.

Concentration of PNS-selected Heads In Fig-
ures la and 1b, we visualize the head selection
for different models and find structural patterns.
Specifically, for the Vicuna-13B model, heads
selected via eq. (5) criteria predominantly clus-
ter around layer 5. In contrast, the LLaMA-3-8B
model exhibits a concentration of CAUSALDETOX-
selected heads around layer 10. This layer-specific
clustering contrasts with the ITI-selected heads,
which display a more uniform and dispersed distri-
bution across various layers and heads.

7 Conclusions

We have introduced CAUSALDETOX, a causally
grounded detoxification framework that identifies
and intervenes on attention heads responsible for
toxic generation in LLMs. Using the probability of
necessity and sufficiency, we select only the most
causally impactful heads to enable efficient and
precise inference-time intervention. Experiments
on Vicuna-13B and LLaMA-3-8B across two real-
world toxicity datasets show that CAUSALDETOX
reduces toxicity while maintaining fluency. In addi-
tion to its effectiveness, CAUSALDETOX is highly
efficient, achieving a 7x speedup over the tra-
ditional correlation-based head selection method.
These results highlight CAUSALDETOX as a prac-
tical, interpretable, and scalable approach to safer
language generation.

We believe this work opens a promising direc-
tion for inference-time intervention by integrating
causal criteria into both head selection and manip-
ulation. While this paper focuses on detoxification,
the underlying framework, CAUSALDETOX, and
the data construction principles behind PARATOX
are broadly applicable to other generative behavior
modifications, such as reducing social biases and
preventing harmful outputs.



8 Limitations

Our work relies on several assumptions that limit
its generalizability and robustness.

Limitations of Fixed, Mean-Based Intervention
Directions. In our current approach, intervention
vectors 6 ") are computed once per attention head
in Hioxic and remain fixed throughout inference.
These vectors are derived from the mean activation
differences between toxic and non-toxic examples,
as defined in eq. (2). While effective in practice,
this fixed and mean-based direction may fail to
capture input-specific nuances and can be sensitive
to high variance or skewed distributions in the un-
derlying activations. In such cases, the mean may
not serve as a reliable or representative summary
statistic, potentially leading to suboptimal or in-
accurate interventions. A promising direction for
future work is to treat the activation differences
a(x™) — a(x™) as samples from a distribution,
e.g., a multivariate Gaussian with a learned or es-
timated covariance matrix, enabling probabilistic
steering strategies that better reflect the uncertainty
and diversity in toxicity-associated features.
Assumptions on Linearity and Fixed Head Se-
lection. Our method is grounded in the assumption
that toxicity can be causally localized to a fixed,
small subset of attention heads via a linear represen-
tation, as quantified by PNS scores. This simplifies
analysis and enables efficient intervention, but may
overlook important nuances of toxicity encoding.
In practice, toxic behavior may emerge through
nonlinear, distributed, or context-dependent inter-
actions across multiple heads and layers. Addi-
tionally, we follow the original ITI framework in
assuming that the selected subset of relevant heads,
Hioxic, 1S static across all inputs, determined once
during training and reused during inference. While
this global selection has shown strong empirical
performance, it may not fully reflect the dynamic
nature of toxicity expression. Future work could
explore adaptive, input-dependent head selection
and nonlinear causal modeling to better capture the
complexity of toxicity in language models.
Limited model and language coverage Our ex-
periments are carried out on two models, Vituna-
13B and LLaMA3-8B, and primarily on English-
language datasets (ToxiGen, ImplicitHate, and our
constructed PARATOX). The performance and gen-
eralizability of our approach in other languages,
cultural settings, and LLM architectures remain
untested. Given the sociolinguistic variability in

how toxicity manifests, further evaluation on mul-
tilingual and cross-cultural benchmarks is essential
to assess robustness and fairness across deployment
scenarios.

Evaluation with automatic metrics. Our evalu-
ation relies primarily on automatic metrics such
as toxicity scores and perplexity. While effective
for large-scale assessment, these metrics may fail
to capture subtle semantic distortions, shifts in in-
tent, or social biases introduced by the intervention.
They also do not account for human judgment or
contextual appropriateness. To better assess real-
world detoxification quality and societal impacts,
future studies should incorporate more structured
human evaluations.

Ethical Considerations

Our detoxification framework carries risks of mis-
use or unintended consequences. There is potential
for misuse to suppress legitimate content under the
pretext of reducing toxicity, thereby hindering the
freedom of expression or censoring marginalized
voices. Additionally, while explicit toxicity might
be effectively mitigated, implicit biases and subtler
harmful outputs might persist, which our method
currently may not adequately detect or rectify.

Furthermore, datasets like ToxiGen and Im-
plicitHate, despite careful curation, inherently carry
biases that could reinforce cultural stereotypes or
propagate normative judgments on what constitutes
toxicity. This issue may disproportionately impact
certain communities and cultural contexts, rein-
forcing or marginalizing particular viewpoints or
identities.

Finally, while our proposed technique is in-
tended for harm reduction, it could potentially be
exploited to subtly manipulate or distort LLM out-
puts maliciously. It is essential to monitor deploy-
ments rigorously, establish transparency and ac-
countability protocols, and explore proactive mea-
sures to prevent misuse.
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A Computational Resources and Model
Parameters

Our experiments primarily involve two large-scale
language models: Vicuna-13B (Chiang et al.,
2023), comprising approximately 13 billion pa-
rameters with 40 layers and 40 heads per layer,
and LLaMA-3-8B (Al@Meta, 2024), consisting of
around 8 billion parameters with 32 layers and 32
heads per layer.

Each fine-tuning run was performed using
NVIDIA A100 GPUs (each with 40GB of mem-
ory). Specifically, the computational cost for each
step of our experiments is detailed as follows:

* Activation extraction: Approximately 1
GPU hour per model and dataset configura-
tion.

* Head selection and fine-tuning: Approxi-
mately 3 GPU hours per configuration.
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* Intervention experiments (evaluation and
inference): Ranged from approximately 3 to
8 GPU hours, depending on the model and
number of selected heads.

B Implementation and Software Packages

Our experiments were conducted using Python
3.9 and the Hugging Face Transformers (Wolf
et al., 2020) library version 4.32.1. Tokeniza-
tion was handled via AutoTokenizer and
LlamaForCausalLM, with default settings and
configurations provided by the respective model
authors. For inference-time interventions, our im-
plementation is directly adapted from the pub-
licly available codebase of Li et al. (2023), avail-
able at https://github.com/likenneth/
honest_1lama. We did not modify the original
inference-time intervention code significantly be-
yond minor adaptations to integrate it seamlessly
into our experimental pipeline.

Dataset Sensitivity and Model Stability We
also find that the ImplicitHate dataset generally
saw greater toxicity reductions (35-38% in the
best cases) than ToxiGen (25-31%). This suggests
the interventions were more effective at reducing
overt hate content, whereas ToxiGen’s adversar-
ial/offensive examples were harder to detoxify. Ad-
ditionally, models fine-tuned on Hate maintained
relatively low perplexity (Vicuna-13B’s perplex-
ity stayed < 20 for ACC methods), but ToxiGen
fine-tuning often caused larger perplexity spikes.
For instance, Vicuna-13B fine-tuned on ToxiGen
with PNS (36 heads) reached only 28% detox but
became highly unstable.
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