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Abstract001

Large language models remain prone to gener-002
ating toxic content, posing challenges for safe003
deployment. We propose CAUSALDETOX, a004
detoxification framework that identifies and in-005
tervenes on attention heads causally linked to006
toxic generation. Using the probability of ne-007
cessity and sufficiency, a causally grounded008
criterion, CAUSALDETOX selects heads most009
responsible for toxicity and modifies only010
these components at inference time. At in-011
ference time, we steer model outputs to-012
ward non-toxic continuations by modifying013
only these selected components. We evaluate014
CAUSALDETOX on ToxiGen and ImplicitHate,015
and introduce PARATOX, a benchmark of para-016
phrased toxic–non-toxic sentence pairs gener-017
ated with Vicuna-13B for controlled evaluation.018
CAUSALDETOX achieves up to 38.08% greater019
toxicity reduction over baseline methods while020
preserving fluency, and offers a 7× speedup021
in head selection. Beyond detoxification, the022
causal principles underlying CAUSALDETOX023
and PARATOX provide a scalable foundation024
for safer, controllable language generation025
across other safety-critical tasks.026

1 Introduction027

Large language models (LLMs) have significantly028

advanced natural language generation, achieving029

state-of-the-art performance across a wide range030

of tasks. Despite their advancements, LLMs con-031

tinue to pose serious safety concerns due to their032

propensity for generating toxic, biased, or other-033

wise harmful content (Gehman et al., 2020; Welbl034

et al., 2021). Addressing these issues is crucial for035

the responsible and ethical deployment of LLMs in036

real-world applications.037

Previous detoxification approaches have pri-038

marily involved lexical filtering, adversarial train-039

ing, reinforcement learning from human feedback040

(RLHF), and supervised fine-tuning using care-041

fully curated datasets (Bai et al., 2022; Ouyang042

et al., 2022). While these methods achieve varying 043

degrees of success, each presents notable limita- 044

tions. Lexical filtering often disrupts semantic co- 045

herence and can fail to account for subtle, context- 046

dependent toxicity (Welbl et al., 2021). Methods 047

based on RLHF or supervised fine-tuning require 048

extensive human annotation, which is costly and 049

can lead to the inadvertent suppression of nuanced 050

language or subtle concepts (Xu et al., 2021). More 051

recent model-based approaches, such as direct pref- 052

erence optimization (Lee et al., 2024) or activation 053

patching (Rodriguez et al., 2024), typically involve 054

extensive modification of model parameters, poten- 055

tially degrading unrelated model capabilities and 056

reducing overall model generalization. 057

To overcome these challenges, we propose a 058

novel detoxification method inspired by causal rep- 059

resentation learning principles (Suter et al., 2019; 060

Locatello et al., 2020; Schölkopf et al., 2021). Our 061

method identifies model components that causally 062

contribute to toxic content generation, enabling 063

precise and targeted interventions. Specifically, we 064

first extract output activations from all attention 065

heads in the language models during the forward 066

pass. Unlike prior work that relies on correlation- 067

based head selection (Rajendran et al., 2024b; Li 068

et al., 2024), we apply a causal criterion—the prob- 069

ability of necessity and sufficiency (PNS)—to quan- 070

tify each head’s influence on toxicity. This yields a 071

compact subset of attention heads that are most re- 072

sponsible for encoding toxic content. At inference 073

time, we apply inference-time intervention Li et al. 074

(2024) to shift these activations away from the toxic 075

directions. We evaluate our method on the Toxi- 076

Gen (Hartvigsen et al., 2022) dataset and construct 077

PARATOX, a new benchmark of toxic–non-toxic 078

sentence pairs by paraphrasing ToxiGen examples 079

using Vicuna-13B (Chiang et al., 2023). Each pair 080

consists of toxic and non-toxic paraphrases, allow- 081

ing for fine-grained evaluation. PARATOX will be 082

released for future research. 083
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Empirical results show that the proposed PNS-084

based head selection method outperforms the base-085

line accuracy-based selection by up to 38.08% in086

toxicity reduction over the previous method after087

intervention (Li et al., 2024), while preserving high088

fluency in generated text.089

In summary, our main contributions are:090

• A causal criterion for head selection: We091

propose a novel head selection criterion based092

on the probability of necessity and sufficiency,093

which identifies attention heads that causally094

contribute to toxicity. Prior work primarily095

relies on correlation-based metrics, such as ac-096

tivation magnitudes or accuracy-driven heuris-097

tics (Rajendran et al., 2024b), which may098

capture spurious associations rather than true099

causal drivers. These methods often result in100

redundant or less interpretable head selections.101

In contrast, our PNS-based approach provides102

a principled, causally grounded mechanism103

to select a compact and interpretable set of104

heads. This leads to more targeted interven-105

tions, enabling higher toxicity reduction with106

minimal impact on language fluency.107

• A benchmark for controlled detoxifica-108

tion: We construct PARATOX, a new bench-109

mark for controlled detoxification, consist-110

ing of toxic–non-toxic sentence pairs gener-111

ated by paraphrasing ToxiGen (Hartvigsen112

et al., 2022) and ImplicitHate (ElSherief113

et al., 2021a) using Vicuna-13B (Chiang et al.,114

2023). Prior detoxification benchmarks often115

lack fine-grained control or parallel structure116

between toxic and non-toxic variants, making117

it difficult to evaluate subtle changes intro-118

duced by intervention methods. This limita-119

tion hampers the assessment of both effective-120

ness and unintended side effects. By provid-121

ing aligned toxic/non-toxic pairs, PARATOX122

enables controlled evaluation of detoxifica-123

tion strategies, and facilitates future work on124

intervention-based mitigation techniques.125

2 Related Work126

2.1 Detoxification in LLMs127

Detoxification techniques for LLMs include lex-128

ical, reinforcement learning, and model-editing129

approaches. Early work applied lexical or rule-130

based filters to remove toxic tokens, but these131

risk semantic loss and fail to capture context-132

dependent toxicity (Gehman et al., 2020; Welbl133

et al., 2021). Reinforcement learning from human 134

feedback (RLHF) and supervised fine-tuning on 135

curated toxicity datasets improve safety but require 136

extensive human annotation and may inadvertently 137

suppress benign language, particularly minority 138

voices (Bai et al., 2022; Ouyang et al., 2022; Xu 139

et al., 2021). More recent methods perform targeted 140

model edits: direct preference optimization (DPO) 141

aligns generations towards harmlessness via modi- 142

fied loss functions (Lee et al., 2024; Rafailov et al., 143

2023), activation patching replaces harmful activa- 144

tion patterns with safe ones (Rodriguez et al., 2024; 145

Meng et al., 2022), and subspace steering projects 146

hidden states onto toxicity-averse directions (Han 147

et al., 2024; Ko et al., 2024). Expert/anti-expert 148

frameworks train auxiliary models to rewrite out- 149

puts toward safety (Hallinan et al., 2022), while ad- 150

versarial safety pipelines guard against malicious 151

prompts (Zhao et al., 2024; Dinan et al., 2019; Up- 152

paal et al., 2024). However, many of these rely 153

on correlation-based heuristics, retraining, or fine- 154

tuning, thus is computationally expensive. 155

2.2 Causal Representation Learning for 156

Alignment 157

Causal representation learning (CRL) seeks to 158

identify and manipulate latent generative factors 159

under principled causal assumptions (Schölkopf 160

et al., 2021). A foundational desideratum for 161

such representations is articulated by Wang and 162

Jordan (2021), where the authors provided for- 163

malized criteria, i.e., the probability of necessity 164

and sufficiency, that guarantee the identification of 165

meaningful latent features. Recent analyses indi- 166

cate that transformer self-attention encodes struc- 167

tured causal dependencies between tokens (Ro- 168

hekar et al., 2024; Nichani et al., 2024), motivat- 169

ing causal approaches to detoxification. Causal 170

tracing methods locate toxicity pathways in net- 171

work circuits but often lack principled intervention 172

mechanisms (Meng et al., 2022). Concept-based 173

CRL relaxes strict interventional requirements by 174

recovering interpretable concepts through condi- 175

tioning rather than exhaustive interventions (Rajen- 176

dran et al., 2024a), yet has not been fully leveraged 177

for fine-grained, context-sensitive detoxification 178

in LLMs. In our work, we apply the PNS lower 179

bound criterion from Wang and Jordan (2021) to 180

rigorously enforce causal representation learning 181

and precisely identify toxicity-sensitive activation 182

components for targeted intervention. 183
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2.3 Inference-Time Intervention-Based184

Methods185

Inference-time intervention method modifies186

model behavior without weight updates. Plug-and-187

Play Language Models (PPLM) use gradient-based188

updates to steer hidden states toward desired at-189

tributes during generation (Dathathri et al., 2019).190

GeDi employs small generative discriminators as191

controllers that adjust token probabilities for tar-192

geted attributes (Krause et al., 2020). Direct Prefer-193

ence Optimization (DPO) shows that training LMs194

with certain loss modifications can be interpreted195

as reward modeling, influencing inference distribu-196

tions (Rafailov et al., 2023). Activation patching197

and causal intervention techniques replace or per-198

turb internal activations in critical layers to effect199

behavioral changes (Meng et al., 2022; Rodriguez200

et al., 2024). More recently, Li et al. (2023) in-201

troduced Inference-Time Intervention (ITI), which202

identifies linear “steering directions” in selected203

activation subspaces (e.g., neuron or head outputs)204

and adds controlled offsets during generation to im-205

prove truthfulness or other attributes. These meth-206

ods demonstrate that small, targeted adjustments to207

latent activations can yield large gains in desired208

behavior while preserving overall fluency, offering209

a lightweight alternative to full fine-tuning.210

3 Preliminaries211

In this section, we first introduce notations for212

transformer-based LLMs and their internal repre-213

sentations. We then review the notions of proba-214

bility of necessity, sufficiency, and necessity and215

sufficiency as used in Wang and Jordan (2022),216

which we extend to the setting of attention head217

selection. Throughout, we use bold uppercase (e.g.,218

X) to denote random vectors and bold lowercase219

(e.g., x) to denote feature vectors.220

3.1 Large Language Models221

We consider a transformer-based language model222

M with ℓ layers, each comprising H self-attention223

heads. Given an input token sequence x =224

[x1, . . . , xt−1], the model computes contextual rep-225

resentations through a sequence of transformations.226

Within layer ℓ, the h-th attention head outputs a227

vector a(ℓ,h) ∈ Rd.228

The model then autoregressively generates an229

output token sequence y = M(x), where each230

token yt is sampled based on the conditional distri-231

bution P (yt | x,y<t).232

3.2 Probabilities of Necessity and Sufficiency 233

We adopt the counterfactual formalism of Wang 234

and Jordan (Wang and Jordan, 2022) to measure 235

how necessary and/or sufficient a feature is for 236

predicting a target label. Let Z ∈ {0, 1} be a 237

binary feature extracted from a high-dimensional 238

input X , and Y ∈ {0, 1} the corresponding label. 239

The counterfactual label had we set Z to a value z 240

is denoted Y (Z = z). The following definitions 241

measure how necessary or sufficient Z is for Y 242

(Wang and Jordan (2022) Definitions 1-3). 243

Definition 1 (Probability of Necessity (PN)).

PNz,y := P (Y (Z ̸= z) ̸= y |Z = z, Y = y) 244

Definition 2 (Probability of Sufficiency (PS)).

PSz,y := P (Y (Z = z) = y |Z ̸= z, Y ̸= y) 245

Definition 3 (Probability of Necessity and Suffi- 246

ciency (PNS)).

PNSz,y := P (Y (Z ̸= z) ̸= y, Y (Z = z) = y) 247

Intuitively, these scores quantify the causal im- 248

pact of feature Z on outcome Y : 249

• PN is high when changing Z = z to Z ̸= z 250

changes Y = y to Y ̸= y. 251

• PS is high when changing Z ̸= z to Z = z 252

changes Y ̸= y to Y = y. 253

• PNS captures when both are true—making Z 254

necessary and sufficient predicting Y = y. 255

Our method learns attention head representations 256

that are necessary and sufficient for toxicity. How- 257

ever, since PN, PS, and PNS involve counterfactu- 258

als, which are infeasible to compute from observa- 259

tional data, Wang and Jordan (2022) then proposed 260

a lower bound on the logarithm of PNS, which we 261

use as a representation learning objective. 262

3.3 Inference-Time Intervention 263

Inference-time intervention (ITI) (Li et al., 2024) 264

is an LLM alignment technique that modifies the 265

model activations during generation to elicit or sup- 266

press target concepts in the output. In our case, we 267

aim to suppress the concept of toxicity. 268

Let a(ℓ,h)(x) denote the activation of head h in 269

layer ℓ for the input x. In Li et al. (2024), the 270

authors train linear classifiers over the activations 271

of all attention heads to predict the presence of a 272

target concept in the input. 273
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For each selected head, an intervention vector274

δ(ℓ,h) is computed to shift the activation away from275

the direction associated with toxicity. Formally, the276

intervention is defined as:277

δ(ℓ,h) = α · σ(ℓ,h) · v(ℓ,h), (1)278

where α is a scaling hyperparameter, σ(ℓ,h) is the279

standard deviation of the head’s activations along280

the intervention direction, and v(ℓ,h) is the mean281

difference of the activations between the non-toxic282

and toxic pairs:283

v(ℓ,h) =
1

n

n∑
(a(ℓ,h)(x−)− a(ℓ,h)(x+)) (2)284

where x− and x+ are the generated paraphrases285

based on inputs x, and we will introduce the gener-286

ation later in Section 5.287

During the generation, we apply the intervention288

as:289

a(ℓ,h)(x)← a(ℓ,h)(x) + δ(ℓ,h). (3)290

Note that in the original ITI approach, interven-291

tion targets are selected based on classification ac-292

curacy, which is inherently correlation-based. This293

may result in redundant head selection and non-294

minimal interventions. For example, if two heads295

are highly collinear and one causally influences the296

other, both may be selected despite only one being297

causally relevant. In contrast, our method selects298

attention heads based on their causal contribution,299

quantified via their estimated necessity and suffi-300

ciency for toxicity. This enables more focused and301

effective modifications.302

4 Method303

We propose CAUSALDETOX, a two-stage method304

for detoxifying LLMs by identifying and manip-305

ulating attention heads most causally responsi-306

ble for toxic generation. Given a dataset D :=307

{(xi, yi)}ni=1, where each xi is a sentence, i.e., a308

sequence of tokens, and yi is a binary label indicat-309

ing whether the xi is toxic or not, y = 1 for toxic,310

y = 0 for non-toxic. we make a forward pass on311

Given input xi, the model generated a sequence312

of continuation x̂i :=M(xi). The goal is for the313

model to generate sequences that are less toxic than314

the input tokens.315

In particular, we assume access to a toxicity scor-316

ing function f : X ∗ → [0, 1] that assigns a scalar317

toxicity score to tokens of variable length. The ob-318

jective of detoxification is to prevent the generation319

that increase toxicity: 320

f(x̂) ≤ f(x). (4) 321

To achieve this, CAUSALDETOX proceeds in 322

two stages: 323

1. Causal Head Identification: We estimate the 324

causal contribution of each attention head to 325

toxicity using the probability of necessity and 326

sufficiency and select a targeted subsetHtoxic 327

for intervention. 328

2. Inference-Time Intervention: At generation 329

time, we manipulate the activations of heads 330

inHtoxic to steer the model away from gener- 331

ating toxic content. 332

4.1 Identify Causally-Relevant Attention 333

Heads 334

To identify the subset Htoxic for intervention, we 335

quantify the causal influence of each attention head 336

on sentence toxicity by estimating a lower bound 337

on its probability of necessity and sufficiency, fol- 338

lowing Wang and Jordan (2022). The motivation is 339

that by concentrating toxicity-related influence in 340

this targeted set, we aim to modify toxic behavior 341

without disrupting unrelated, benign model behav- 342

iors. However, computing exact PNS values is 343

generally intractable from observational data alone. 344

To address this, we adapt a tractable lower bound 345

on log(PNSZ,Y ), where Z denotes the attention 346

head output and Y the toxicity label, which can 347

be estimated from observational data under mild 348

assumptions. 349

For head (ℓ, h), let {z(ℓ,h)
i }ni=1 denote the output 350

activations on of {xi}ni=1, we have an lower bound 351

on log(PNSZ(ℓ,h),Y ) in eq. (5). For the ease of 352

notation, we omit (ℓ, h) for the rest of this section 353

and use z to denote the output of an attention head. 354

log PNS(Z, Y )

=
1

2σ2

n∑
i=1

[ d∑
j=1

βj(z
j
i − E[zji ])

2

+2

 d∑
j=1

βj(z
j
i − E[zji ])

γ⊤(ci − E[ci])

] (5) 355

Here the second super script j denotes the jth 356

dimension of zi. β0 and β are estimated by a linear 357

model: 358
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P (Y | Z,C)

=N
((

β0 + β⊤Z + γ⊤C
)
, σ2

)
.

(6)359

The variable ci captures the hidden common cause360

that gives rise to correlations among the different361

dimensions of z(ℓ,h)
i . Since c is unobserved, one362

can model it with a probabilistic factor model. In363

our implementation, we train a variational autoen-364

coder (VAE) (Kingma et al., 2013)) to reconstruct365

{zi}ni=1 and treat the inferred latent mean vector366

as ci. As our primary focus is on the application of367

causal criterion to toxicity unlearning, we do not368

reproduce the derivations here and instead refer the369

reader to Wang and Jordan (2022) for the details.370

After computing the eq. (5) for all attention371

heads (ℓ, h), we select the top-K heads with the372

highest scores for the setHtoxic for intervention.373

4.2 Apply Inference-Time Intervention374

During generation, we apply inference-time inter-375

vention (ITI) (Li et al., 2024) as described in sec-376

tion 3.3. The idea is that, by intervening on features377

that are both necessary and sufficient for toxicity,378

we achieve more effective toxicity mitigation with379

fewer unintended effects. In contrast to applying380

ITI on attention heads selected purely based on381

their correlation with toxicity (e.g., via classifica-382

tion accuracy), our approach targets heads with383

demonstrable causal influence. We point out that384

When compute the steering vector assumes that385

the subset of attention heads identified as causally386

responsible for toxicity—Htoxic—is fixed and does387

not change across inputs, following the original388

ITI paper (Li et al., 2024). In future work, the389

head selection and steering vectors computation390

process could be extended to operate dynamically391

at inference time.392

5 PARATOX Benchmark393

To pinpoint the concept of toxicity in sentences and
to steer the model, as mentioned in Section 3.3, we
ideally require pairs of sentences that are semanti-
cally identical except for the presence or absence
of toxicity. In the terminology of Pearl’s causal-
ity (Pearl et al., 2021; Pearl, 2009; Peters et al.,
2015)„ a toxic sentence x+ can be viewed as the
counterfactual of a non-toxic sentence x−, where
the latent variable “toxicity” has been set to true
while all other factors remain fixed. Formally, we

express this as:

x+ := x−
toxicity = True,

where the subscript denotes the counterfactual, con- 394

sistent with the counterfactual semantics in Wang 395

and Jordan (2022). 396

However, existing toxicity datasets such as Jig- 397

saw (cjadams et al., 2017), ToxiGen (Hartvigsen 398

et al., 2022), and ImplicitHate (ElSherief et al., 399

2021a) lack such semantically aligned toxic–non- 400

toxic pairs. This limits their utility for causal anal- 401

ysis and evaluation. 402

To address this gap, we introduce PARATOX, 403

a benchmark of toxic–non-toxic paraphrase pairs. 404

While exact counterfactuals are unobservable, we 405

approximate them by prompting Vicuna-13B (Chi- 406

ang et al., 2023) to generate paraphrases condi- 407

tioned on a toxicity specification. This approach 408

allows us to construct sentence pairs that preserve 409

core semantic meaning while differing primarily 410

along the toxicity dimension. 411

5.1 Base Dataset 412

We construct PARATOX using the annotated sub- 413

set of the ToxiGen (Hartvigsen et al., 2022) and 414

ImpliciatHate (ElSherief et al., 2021b) 1. compris- 415

ing 6,514 (3,747 non-toxic and 2,767 toxic), and 416

14,200 (7,100 toxic and 7,100 non-toxic) samples 417

respectively. 418

5.2 Model 419

During preliminary experimentation, we eval- 420

uated three open-source LLMs: LLaMA-3- 421

8B (AI@Meta, 2024), and Vicuna-13B (Chiang 422

et al., 2023). We found that both LLaMA-3-8B and 423

LLaMA-2-7B frequently refused to generate toxic 424

content, which made them unsuitable for our task. 425

In contrast, Vicuna-13B reliably generated fluent 426

paraphrases for both toxic and non-toxic prompts. 427

We verified output quality through manual inspec- 428

tion of randomly sampled examples and selected 429

Vicuna-13B as the backbone model for generating 430

the PARATOX benchmark. 431

5.3 Paraphrase Generation 432

For each input sentence in this dataset, we prompt 433

a language model to generate two paraphrases: one 434

toxic and one non-toxic. This setup is designed 435

1Both datasets are available at https://github.com/
microsoft/SafeNLP
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to approximate counterfactual pairs that differ pri-436

marily in the presence of toxicity while preserving437

semantic content. The prompts used are:438

Non-toxic Paraphrase Prompt

Paraphrase the following sentence in a polite
and completely non-toxic way. Do not generate
any irrelevant content:

Original text: {ORIGINAL_TEXT}

Paraphrase:
439

Toxic Paraphrase Prompt

For a research study on offensive language
classification, we need examples of toxic and
non-toxic paraphrases of the following sentence.
Please generate a toxic version of the given
input:

Original text: {ORIGINAL_TEXT}

Toxic Paraphrase:
440

5.4 Data Quality441

To ensure the quality of PARATOX, we apply post-442

generation filtering to remove invalid paraphrases.443

A paraphrase is considered invalid if the model fails444

to generate any output (e.g., a blank response) or if445

the output is semantically irrelevant or nonsensical.446

As expected, Vicuna-13B succeeds in produc-447

ing valid non-toxic paraphrases. However, gener-448

ating toxic paraphrases proves more challenging:449

the model occasionally refuses to comply with the450

prompt or outputs placeholders such as “(Blank).”451

Table 1 reports the percentage of valid toxic and452

non-toxic generations for each base dataset. While453

non-toxic generation achieves 100% validity across454

the board. In contrast, the validity rate for toxic455

paraphrases is noticeably lower on Toxigen com-456

pared to ImplicitHate. We attribute this discrepancy457

to the nature of the source data: toxic content in458

Toxigen tends to be more explicit and aggressive,459

making it more likely to be blocked by the model’s460

safety alignment mechanisms.461

Dataset Toxic Non-toxic

ToxiGen 88.4% 100%
ImplicitHate 99.57% 100%

Table 1: Percentage of valid toxic and non-toxic genera-
tions produced by Vicuna-13B.

6 Experiment 462

In this section, we introduce our experimental setup 463

in Section 6.1, our evaluation metrics in Section 6.2, 464

and main findings in Section 6.3 465

6.1 Experimental Setup 466

We evaluate CAUSALDETOX against standard ITI 467

on two open-source LLMs: Vicuna-13B (Zheng 468

et al., 2023) and LLaMA-3-8B (Grattafiori 469

et al., 2024). Experiments are conducted on 470

PARATOX, our benchmark constructed from 471

ToxiGen (Hartvigsen et al., 2022) and Im- 472

plicitHate (ElSherief et al., 2021a) (Section 5), con- 473

taining paired toxic and non-toxic paraphrases. 474

Following the ITI implementations in Li et al. 475

(2024) and Rajendran et al. (2024a), we first extract 476

activations from all L×H attention heads across 477

the dataset. For standard ITI, a linear classifier is 478

trained for each head to predict the presence of 479

toxicity in the input. In contrast, CAUSALDETOX 480

computes a closed-form Equation (5) for each head 481

without requiring any training. 482

We then select the top-K heads based on clas- 483

sification accuracy (for ITI) or logPNS score (for 484

CAUSALDETOX), denoted byHAcc.
toxic andHPNS

toxic, re- 485

spectively. These sets are the intervention targets. 486

Finally, we prompt the LLM with each input 487

sentence and apply the corresponding steering vec- 488

tors—computed as described in Section 3.3—to the 489

selected heads: HAcc.
toxic for standard ITI, andHPNS

toxic 490

for CAUSALDETOX, during generation. 491

6.2 Evaluation 492

For each generated text, we measure its toxicity and 493

fluency and compare these metrics against those of 494

the corresponding input sentence. Our evaluation 495

relies on the following metrics: 496

• Toxicity Reduction We use Detoxify (Hanu 497

and Unitary team, 2020), a publicly available 498

and widely used toxicity detection model2, 499

which outputs a toxicity score between 0 and 500

1 indicating the likelihood of toxic content. 501

We measure the average reduction in Detoxify 502

scores between the input and generated text 503

as an indicator of intervention effectiveness. 504

• Preservation of Fluency: We assess fluency 505

using perplexity (Jelinek et al., 1977), com- 506

puted from the same language model used 507

for generation (LLaMA-3-8B or Vicuna-13B), 508

2https://github.com/unitaryai/detoxify
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Dataset Model #Heads Method Toxicity Red. ↑ Perplexity ↓

ToxiGen

Vicuna-13B

– Baseline 0.2513 ± 0.31 9.45 ± 34.62

18 ITI 0.2263 ± 0.30 9.69 ± 8.13
CAUSALDETOX 0.2341 ± 0.31 8.91 ± 8.52

36 ITI 0.2187 ± 0.31 10.12 ± 21.88
CAUSALDETOX 0.3020 ± 0.33 10.88 ± 8.69

LLaMA-3-8B

– Baseline 0.1729± 0.31 8.88 ± 16.31

18 ITI 0.2007 ± 0.32 8.76 ± 59.19
CAUSALDETOX 0.1708 ± 0.31 9.36 ± 28.96

36 ITI 0.2265 ± 0.32 7.65 ± 22.35
CAUSALDETOX 0.2382 ± 0.32 7.56 ± 17.32

ImplicitHate

Vicuna-13B

– Baseline 0.3463 ± 0.30 13.26 ± 20.02

18 ITI 0.3141 ± 0.30 14.51 ± 27.00
CAUSALDETOX 0.3487 ± 0.30 13.77 ± 20.93

36 ITI 0.3156 ± 0.30 13.60 ± 23.42
CAUSALDETOX 0.3244± 0.30 13.11 ± 21.74

LLaMA-3-8B

– Baseline 0.2575 ± 0.30 17.32 ± 28.99

18 ITI 0.2740 ± 0.30 13.86 ± 16.76
CAUSALDETOX 0.2799 ± 0.30 16.86 ± 32.34

36 ITI 0.2940 ± 0.30 8.22 ± 14.59
CAUSALDETOX 0.2919 ± 0.30 8.17 ± 15.35

Table 2: Evaluation of toxicity reduction (%) and perplexity (mean ± std) for Baseline (no intervention), ITI, and
CAUSALDETOX across two datasets (ToxiGen and ImplicitHate), two models (Vicuna-13B and LLaMA-3-8B),
and two head selection sizes (18 and 36). Results are grouped by dataset and model. CAUSALDETOX (PNS-based)
and ITI (correlation-based) are compared under matched conditions. Best values in each block are bolded. Lower
perplexity and higher toxicity reduction indicate better performance.

where lower scores indicate higher fluency.509

We compare perplexity before and after inter-510

vention to ensure that the intervention does511

not impair linguistic quality.512

6.3 Results513

Superior Toxicity Reduction Table 2 presents514

the performance of CAUSALDETOX, standard ITI,515

and a no-intervention baseline (i.e., the original516

model without any steering) on Vicuna-13B and517

LLaMA-3-8B, evaluated across the ToxiGen and518

ImplicitHate datasets. We report average toxicity519

reduction (higher is better) and perplexity (lower520

is better) for each configuration. CAUSALDETOX521

achieves the highest toxicity reduction in 3 out of522

the 4 model–dataset combinations, demonstrating523

its effectiveness over correlation-based approaches.524

Additionally, it maintains perplexity scores compa-525

rable to the baseline, indicating that the interven-526

tion preserves the fluency of the generated text.527

Efficiency of CAUSALDETOX In addition to ef-528

fectiveness, we also compare the efficiency of the529

head selection procedures. For a model with 40530

layers and 40 attention heads per layer, the tradi-531

tional logistic regression approach requires around 532

42 seconds, while our PNS-based scoring method 533

completes head selection in 6 seconds on a single 534

GPU, achieving a 7× speedup. This overhead of 535

the accuracy-based method arises from the need to 536

train L×H separate classifiers, one per attention 537

head. This highlights the computational advantage 538

of our causal scoring framework. As language mod- 539

els grow larger, the relative cost of traditional head 540

selection methods increases rapidly, while our ap- 541

proach remains lightweight and scalable. These 542

efficiency gains make CAUSALDETOX not only 543

principled and interpretable, but also practical for 544

real-world deployment in large-scale model detoxi- 545

fication pipelines. 546

Optimal Number of Intervention Heads We 547

observe that increasing the number of intervention 548

heads from 18 to 36 improves toxicity reduction 549

for CAUSALDETOX, but yields limited gains for 550

ITI. A potential explanation is that the additional 551

heads selected by CAUSALDETOX remain causally 552

relevant, providing complementary, non-redundant 553

information about toxicity. In contrast, the extra 554

heads chosen by ITI are likely correlated with those 555

7
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Figure 1: Visualization of the top 36 attention heads selected by ITI and CAUSALDETOX on ToxiGen for (a)
Vicuna-13B and (b) LLaMA-3-8B. Blue circles denote ITI-selected heads; red squares denote CAUSALDETOX-
selected heads. Color intensity reflects head rank, with darker shades indicating higher importance. CAUSALDETOX
exhibits strong layer-wise concentration—around layer 5 in Vicuna-13B and layer 10 in LLaMA-3-8B, highlighting
the method’s ability to isolate causally relevant substructures. In contrast, ITI-selected heads are more uniformly
distributed, suggesting that the correlation-based criterion does not find a localized representation to specific layers.

already selected, offering little new information556

and thus limited additional impact. This highlights557

the advantage of causality-guided selection in cap-558

turing diverse and informative signals.559

In early experiments, we found that intervening560

on 72 heads led to severe degradation in language561

quality, often resulting in incoherent or nonsensical562

output, while yielding only marginal gains in tox-563

icity reduction. This suggests that a modest num-564

ber of heads is sufficient to capture the key causal565

mechanisms behind toxic generation. Intervening566

on 36 heads, in particular, strikes a strong balance:567

it effectively mitigates toxicity while preserving568

the model’s linguistic fluency and coherence.569

Concentration of PNS-selected Heads In Fig-570

ures 1a and 1b, we visualize the head selection571

for different models and find structural patterns.572

Specifically, for the Vicuna-13B model, heads573

selected via eq. (5) criteria predominantly clus-574

ter around layer 5. In contrast, the LLaMA-3-8B575

model exhibits a concentration of CAUSALDETOX-576

selected heads around layer 10. This layer-specific577

clustering contrasts with the ITI-selected heads,578

which display a more uniform and dispersed distri-579

bution across various layers and heads.580

7 Conclusions 581

We have introduced CAUSALDETOX, a causally 582

grounded detoxification framework that identifies 583

and intervenes on attention heads responsible for 584

toxic generation in LLMs. Using the probability of 585

necessity and sufficiency, we select only the most 586

causally impactful heads to enable efficient and 587

precise inference-time intervention. Experiments 588

on Vicuna-13B and LLaMA-3-8B across two real- 589

world toxicity datasets show that CAUSALDETOX 590

reduces toxicity while maintaining fluency. In addi- 591

tion to its effectiveness, CAUSALDETOX is highly 592

efficient, achieving a 7× speedup over the tra- 593

ditional correlation-based head selection method. 594

These results highlight CAUSALDETOX as a prac- 595

tical, interpretable, and scalable approach to safer 596

language generation. 597

We believe this work opens a promising direc- 598

tion for inference-time intervention by integrating 599

causal criteria into both head selection and manip- 600

ulation. While this paper focuses on detoxification, 601

the underlying framework,CAUSALDETOX, and 602

the data construction principles behind PARATOX 603

are broadly applicable to other generative behavior 604

modifications, such as reducing social biases and 605

preventing harmful outputs. 606
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8 Limitations607

Our work relies on several assumptions that limit608

its generalizability and robustness.609

Limitations of Fixed, Mean-Based Intervention610

Directions. In our current approach, intervention611

vectors δ(ℓ,h) are computed once per attention head612

in Htoxic and remain fixed throughout inference.613

These vectors are derived from the mean activation614

differences between toxic and non-toxic examples,615

as defined in eq. (2). While effective in practice,616

this fixed and mean-based direction may fail to617

capture input-specific nuances and can be sensitive618

to high variance or skewed distributions in the un-619

derlying activations. In such cases, the mean may620

not serve as a reliable or representative summary621

statistic, potentially leading to suboptimal or in-622

accurate interventions. A promising direction for623

future work is to treat the activation differences624

a(x−) − a(x+) as samples from a distribution,625

e.g., a multivariate Gaussian with a learned or es-626

timated covariance matrix, enabling probabilistic627

steering strategies that better reflect the uncertainty628

and diversity in toxicity-associated features.629

Assumptions on Linearity and Fixed Head Se-630

lection. Our method is grounded in the assumption631

that toxicity can be causally localized to a fixed,632

small subset of attention heads via a linear represen-633

tation, as quantified by PNS scores. This simplifies634

analysis and enables efficient intervention, but may635

overlook important nuances of toxicity encoding.636

In practice, toxic behavior may emerge through637

nonlinear, distributed, or context-dependent inter-638

actions across multiple heads and layers. Addi-639

tionally, we follow the original ITI framework in640

assuming that the selected subset of relevant heads,641

Htoxic, is static across all inputs, determined once642

during training and reused during inference. While643

this global selection has shown strong empirical644

performance, it may not fully reflect the dynamic645

nature of toxicity expression. Future work could646

explore adaptive, input-dependent head selection647

and nonlinear causal modeling to better capture the648

complexity of toxicity in language models.649

Limited model and language coverage Our ex-650

periments are carried out on two models, Vituna-651

13B and LLaMA3-8B, and primarily on English-652

language datasets (ToxiGen, ImplicitHate, and our653

constructed PARATOX). The performance and gen-654

eralizability of our approach in other languages,655

cultural settings, and LLM architectures remain656

untested. Given the sociolinguistic variability in657

how toxicity manifests, further evaluation on mul- 658

tilingual and cross-cultural benchmarks is essential 659

to assess robustness and fairness across deployment 660

scenarios. 661

Evaluation with automatic metrics. Our evalu- 662

ation relies primarily on automatic metrics such 663

as toxicity scores and perplexity. While effective 664

for large-scale assessment, these metrics may fail 665

to capture subtle semantic distortions, shifts in in- 666

tent, or social biases introduced by the intervention. 667

They also do not account for human judgment or 668

contextual appropriateness. To better assess real- 669

world detoxification quality and societal impacts, 670

future studies should incorporate more structured 671

human evaluations. 672

Ethical Considerations 673

Our detoxification framework carries risks of mis- 674

use or unintended consequences. There is potential 675

for misuse to suppress legitimate content under the 676

pretext of reducing toxicity, thereby hindering the 677

freedom of expression or censoring marginalized 678

voices. Additionally, while explicit toxicity might 679

be effectively mitigated, implicit biases and subtler 680

harmful outputs might persist, which our method 681

currently may not adequately detect or rectify. 682

Furthermore, datasets like ToxiGen and Im- 683

plicitHate, despite careful curation, inherently carry 684

biases that could reinforce cultural stereotypes or 685

propagate normative judgments on what constitutes 686

toxicity. This issue may disproportionately impact 687

certain communities and cultural contexts, rein- 688

forcing or marginalizing particular viewpoints or 689

identities. 690

Finally, while our proposed technique is in- 691

tended for harm reduction, it could potentially be 692

exploited to subtly manipulate or distort LLM out- 693

puts maliciously. It is essential to monitor deploy- 694

ments rigorously, establish transparency and ac- 695

countability protocols, and explore proactive mea- 696

sures to prevent misuse. 697
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A Computational Resources and Model 903

Parameters 904

Our experiments primarily involve two large-scale 905

language models: Vicuna-13B (Chiang et al., 906

2023), comprising approximately 13 billion pa- 907

rameters with 40 layers and 40 heads per layer, 908

and LLaMA-3-8B (AI@Meta, 2024), consisting of 909

around 8 billion parameters with 32 layers and 32 910

heads per layer. 911

Each fine-tuning run was performed using 912

NVIDIA A100 GPUs (each with 40GB of mem- 913

ory). Specifically, the computational cost for each 914

step of our experiments is detailed as follows: 915

• Activation extraction: Approximately 1 916

GPU hour per model and dataset configura- 917

tion. 918

• Head selection and fine-tuning: Approxi- 919

mately 3 GPU hours per configuration. 920

11

https://doi.org/10.48550/arXiv.1501.01332
https://doi.org/10.48550/arXiv.1501.01332
https://doi.org/10.48550/arXiv.1501.01332
https://openreview.net/forum?id=r5nev2SHtJ
https://openreview.net/forum?id=r5nev2SHtJ
https://openreview.net/forum?id=r5nev2SHtJ
https://doi.org/10.1109/JPROC.2021.3058954
https://doi.org/10.1109/JPROC.2021.3058954
https://doi.org/10.1109/JPROC.2021.3058954
https://arxiv.org/abs/1811.00007
https://arxiv.org/abs/1811.00007
https://arxiv.org/abs/1811.00007
https://arxiv.org/abs/1811.00007
https://arxiv.org/abs/1811.00007
https://doi.org/10.48550/arXiv.2109.03795
https://doi.org/10.48550/arXiv.2109.03795
https://doi.org/10.48550/arXiv.2109.03795


• Intervention experiments (evaluation and921

inference): Ranged from approximately 3 to922

8 GPU hours, depending on the model and923

number of selected heads.924

B Implementation and Software Packages925

Our experiments were conducted using Python926

3.9 and the Hugging Face Transformers (Wolf927

et al., 2020) library version 4.32.1. Tokeniza-928

tion was handled via AutoTokenizer and929

LlamaForCausalLM, with default settings and930

configurations provided by the respective model931

authors. For inference-time interventions, our im-932

plementation is directly adapted from the pub-933

licly available codebase of Li et al. (2023), avail-934

able at https://github.com/likenneth/935

honest_llama. We did not modify the original936

inference-time intervention code significantly be-937

yond minor adaptations to integrate it seamlessly938

into our experimental pipeline.939

Dataset Sensitivity and Model Stability We940

also find that the ImplicitHate dataset generally941

saw greater toxicity reductions (35–38% in the942

best cases) than ToxiGen (25–31%). This suggests943

the interventions were more effective at reducing944

overt hate content, whereas ToxiGen’s adversar-945

ial/offensive examples were harder to detoxify. Ad-946

ditionally, models fine-tuned on Hate maintained947

relatively low perplexity (Vicuna-13B’s perplex-948

ity stayed < 20 for ACC methods), but ToxiGen949

fine-tuning often caused larger perplexity spikes.950

For instance, Vicuna-13B fine-tuned on ToxiGen951

with PNS (36 heads) reached only 28% detox but952

became highly unstable.953
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