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ABSTRACT

Some of the hardest problems in deep learning can be solved via pooling together
computational resources of many independent parties, as is the case for scientific
collaborations and volunteer computing. Unfortunately, any single participant in
such systems can jeopardize the entire training run by sending incorrect updates,
whether deliberately or by mistake. Training in presence of such peers requires spe-
cialized distributed training algorithms with Byzantine tolerance. These algorithms
often sacrifice efficiency by introducing redundant communication or passing all
updates through a trusted server. As a result, it can be infeasible to apply such
algorithms to large-scale distributed deep learning, where models can have billions
of parameters. In this work, we propose a novel protocol for secure (Byzantine-
tolerant) decentralized training that emphasizes communication efficiency. We
rigorously analyze this protocol: in particular, we provide theoretical bounds for
its resistance against Byzantine and Sybil attacks and show that it has a marginal
communication overhead. To demonstrate its practical effectiveness, we conduct
large-scale experiments on image classification and language modeling in presence
of Byzantine attackers.

1 INTRODUCTION

Many hard scientific problems were solved through collaboration between many nations, groups and
individuals. This is especially evident in natural sciences, where researchers formed multinational
collaborations to run large-scale experiments and share compute infrastructure (Aad et al., 2012;
Ruttley et al., 2017; Abbott et al., 2016). Projects like Folding@home (Beberg et al., 2009) and
BOINC (Anderson, 2004) push this trend even further by recruiting volunteers that donate their
compute to collectively run computational experiments at an unprecedented scale (Merritt, 2020).

Similar techniques were recently proposed for machine learning. They aim to solve the challenges
related to the sheer computational complexity of many machine learning tasks, such as pretraining
transformers for NLP (Devlin et al., 2019; Brown et al., 2020; Liu et al., 2019) or learning on huge
datasets in vision (Sun et al., 2017; Kolesnikov et al., 2020; Goyal et al., 2021). Recent works
propose several systems (Kijsipongse et al., 2018; Ryabinin & Gusev, 2020; Atre et al., 2021; Diskin
et al., 2021) that can share the computation across many volunteers that donate the idle time of their
computers to train large models on public datasets.

Despite their strengths, volunteer computing systems have so far seen limited practical applica-
tions (Kijsipongse et al., 2018). A major roadblock towards the global adoption of these techniques is
trust in reliability of each participant. For distributed training, all progress made by the collaboration
can be undermined if a single peer sends incorrect outputs due to an error in computation (Smith,
2019) or malicious intent (Tolpegin et al., 2020).

Prior art in decentralized optimization proposed several optimization algorithms that are resistant to
such “Byzantine” faults. However, most Byzantine-tolerant training protocols require either passing
all updates through a trusted central server or exchanging additional messages that increase the
network load by several times (Chen et al., 2018; Rajput et al., 2019). This is a major problem for
large-scale distributed deep learning, where hundreds of peers must exchange updates for millions of
parameters at regular intervals (Li et al., 2020; Sergeev & Balso, 2018; Shoeybi et al., 2019). Thus,
in many practical scenarios, the computation and communication overhead of Byzantine-tolerant
algorithms outweighs the potential benefits of collaborating with others.
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In this work, we set out to solve this problem by proposing a novel distributed training protocol
designed for large-scale deep learning workloads. Our approach combines the scalability and
communication efficiency of modern distributed training techniques such as All-Reduce SGD (Sergeev
& Balso, 2018) with resilience against Byzantine and Sybil attackers. To achieve this, we leverage
distributed system security techniques to verify the integrity of training with minimal overhead that
does not depend on the model size. Our protocol does not require trusted peers, operating under the
assumption that anyone can be an attacker. Our contributions can be summarized as follows:

• We propose a novel strategy for decentralized Byzantine-tolerant training on data available to all
participants, where the extra communication cost does not depend on the number of parameters.

• We rigorously analyze the proposed strategy and prove convergence bounds for convex and non-
convex losses with Byzantine attackers. Furthermore, we derive accelerated convergence rates for
the same task under realistic assumptions about model gradients.

• Based on the above algorithm, we describe a system that allows multiple parties to train a shared
model with zero trust assumptions. We prove that this system is resistant to both Byzantine and
Sybil attacks from a computationally constrained attacker.

• We verify the effectiveness of our algorithm through both controlled experiments1 and actual
large-scale training runs. Specifically, we start with ResNet-18 for CIFAR-10 classification and
follow up with pretraining ALBERT-large in a setup where almost half of all peers are malicious.

2 RELATED WORK

2.1 DISTRIBUTED DEEP LEARNING

Nowadays, training neural networks often requires the amount of computation that is infeasible to
achieve on any single machine. As a result, one has to train such models on multiple machines using
specialized distributed training methods. Most of these methods fall into two groups: in data-parallel
training, each worker trains the entire model by sampling batches from the training data (Sergeev &
Balso, 2018; Goyal et al., 2017); in contrast, model-parallel training allocates parts of the model on
different workers (Huang et al., 2019; Narayanan et al., 2019; Shoeybi et al., 2019). In this study,
we consider only the first group; notably, most model-parallel systems still rely on data parallelism
between nodes at the same stage (Rajbhandari et al., 2020; Narayanan et al., 2021).

Usually, data-parallel training consists of two phases: first, each worker computes the gradients over
its data; then, all workers aggregate the gradients and run an SGD step. The simplest aggregation
strategy is known as Parameter Servers (PS) (Li, 2014; Dean et al., 2012; Recht et al., 2011): one of
the servers stores and updates the model parameters, while all others iteratively compute the gradients,
send them to the PS, and download the updated parameters. This strategy can be quite efficient
with a small number of workers; as it increases, the parameter server eventually becomes unable to
handle the load. Gradient compression (Seide et al., 2014; Lin et al., 2018; Mishchenko et al., 2019;
Koloskova et al., 2020) or local updates (Zinkevich et al., 2010) can partially alleviate this issue, but
it remains a fundamental bottleneck of the approach.

In practice, most distributed training systems leverage All-Reduce (AR) (Goyal et al., 2017; Mikami
et al., 2019; You et al., 2020) — a family of collective communication protocols that allow servers to
average their data and receive the result on each machine. The resulting method, named All-Reduce
SGD (AR-SGD), runs AR on local gradients of each peer to compute the global average. Usually,
AR-SGD uses bandwidth-optimal versions of All-Reduce (Sergeev & Balso, 2018; Patarasuk & Yuan,
2009); depending on the exact algorithm, they require each peer to transfer O(d) or O(d log n) data
when averaging a vector of size d across n peers (compared to O(dn) for PS).

2.2 BYZANTINE-TOLERANT OPTIMIZATION

Standard distributed training methods are not robust against Byzantine attacks. In the vanilla parallel
SGD, one malicious worker can break the convergence of the whole method by shifting the mean
of the resulting vector in an arbitrary way. Therefore, the research community invented specialized

1Source code for the experiments is available at https://github.com/iclr-paper/BTARD
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algorithms that can train models even in this setup. These algorithms are different in nature and
provide an extra layer of complexity on top of distributed training methods described in Section 2.1.

Parameter-server (PS) based approaches. Majority of the algorithms designed to be Byzantine-
resilient rely on the existence of a trusted parameter-server. In such approaches, the standard mean
estimator, e.g., the one used in parallel SGD, is typically substituted by a more robust aggregation rule
(Blanchard et al., 2017; Yin et al., 2018; Damaskinos et al., 2019; El Mhamdi et al., 2018; Pillutla
et al., 2019). However, recent works show that it is not enough via proposing the special types of
Byzantine attacks (Baruch et al., 2019; Xie et al., 2020) and showing that permutation-invariant
algorithms cannot converge to any predefined accuracy of the solution (Karimireddy et al., 2020).

Although several approaches aiming to circumvent this issue exist, most of them have significant
limitations such as no convergence analysis (Chen et al., 2018; Rajput et al., 2019; Rodríguez-Barroso
et al., 2020; Xu & Lyu, 2020), too restrictive assumptions in the analysis (Alistarh et al., 2018;
Allen-Zhu et al., 2021; Regatti et al., 2020), or the usage of variance-reduced estimators (Wu et al.,
2020), which are known to converge slowly in deep learning applications (Defazio & Bottou, 2019).
The only paper without such limitations is (Karimireddy et al., 2020), where the authors propose a
new aggregation rule called CENTEREDCLIP, apply it to SGD with client momentum, and prove
convergence results for the obtained method in the non-convex case under reasonable assumptions.
We provide more details on Byzantine-tolerant PS based approaches in Appendix A.1.1.

Decentralized approaches for Byzantine-tolerant optimization are studied only in a few papers.
Unfortunately, the known approaches are not well-suited for distributed deep learning since they
either rely on full gradient computations (Yang & Bajwa, 2019a;b) or use redundant communications
with multiple servers (El-Mhamdi et al., 2020), or require peer-to-peer communication of full
vectors at each step (Gupta et al., 2021; Gupta & Vaidya, 2021), which is not scalable, or provide
the convergence guarantees that are inferior to non-parallel SGD (Peng et al., 2021), which has
prohibitively slow convergence on modern deep learning tasks. Further details on Byzantine-tolerant
decentralized approaches are deferred to Appendix A.1.2.

2.3 SECURITY IN DISTRIBUTED SYSTEMS

In this work, we circumvent the restrictions of existing Byzantine-tolerant techniques using the
following approaches from the field of distributed system security.

Broadcast channels. Several key stages of our algorithm require peers to send a certain value to
all their groupmates. Since we rely exclusively on peer-to-peer connections, a malicious peer could
violate this process by deliberately sending different values to each participant. To protect against
this attack, distributed systems can use broadcast channels built on top of the protocol for Byzantine
broadcast from Dolev & Strong (1983). This protocol ensures that the peers agree on the same
broadcasted value even if some of them are malicious. We provide more details on its guarantees in
Appendix A.2.1 and review its communication cost in Appendix B.

Multi-party random number generators. To ensure that peers compute gradients honestly, our
approach verifies a random subset of all computed gradients. These verifications would not be
effective if malicious peers could predict (or influence) whether they are going to be verified. Hence,
we need to choose who is going to be checked in such a way that the attackers can neither predict nor
influence the random draw. This can be done with a multi-party random number generator (MPRNG)
based on a multi-party coin tossing protocol, such as the protocol from Blum (1983). We provide an
overview of this protocol in Appendix A.2.2 and review its communication cost in Appendix B.

3 METHOD

We consider secure distributed training on public datasets, where each peer can access the entire
training data and communicate with any other peer. In this scenario, multiple parties cooperate by
combining their computational resources for a single large-scale training run. More precisely, we
consider a data-parallel training setup with All-Reduce SGD, as described previously in Section 2.1.
We describe our strategy in several stages, progressively moving from the theoretical setup to
real-world distributed training:

• Section 3.1 outlines our approach for Byzantine-Tolerant All-Reduce (BTARD).
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Figure 1: An intuitive scheme demonstrating one step of Byzantine-Tolerant All-Reduce. This is a
part of the Algorithm 1 executed between the consecutive SGD steps. Here, t is the step number, xt
is the model weights, and ξti is a publicly known random seed for sampling a minibatch.

• In Section 3.2, we formulate the underlying optimization problem and derive convergence bounds.
• In Section 3.3, we propose a decentralized system design for distributed training with zero trust.

3.1 BYZANTINE-TOLERANT ALL-REDUCE

We assume that some workers can be malicious, i.e., they can arbitrarily deviate from our algorithm:
for instance, send arbitrary vectors instead of the stochastic gradients or violate the communication
protocol. Such workers are denoted as Byzantine nodes or just Byzantines. We assume them to be
omniscient (Karimireddy et al., 2020) (except for the honest nodes’ private keys and the internals
of MPRNG) and able to collude with each other. We denote the set of all “good” workers as G and
the set of Byzantine workers as B. We further assume that B is fixed throughout the optimization
process, and less than a half of the nodes are Byzantine: |B| ≤ δn, where δ ∈ [0, 1/2). Finally, we
assume that all workers have access to the data defining the objective function, so they can sample
minibatches from the full dataset.2

We design our algorithm in such a way so that all types of Byzantine faults have limited effect and
a chance of being discovered. Together, these properties impose a limit on the total damage that
an attacker can do over the entire training run. To control the magnitude of attacks over a single
SGD step, we modify All-Reduce with a robust aggregation technique known as CENTEREDCLIP
(Karimireddy et al., 2020). Specifically, we use Butterfly All-Reduce3 (Li et al., 2017) and apply
CENTEREDCLIP in parallel to each partition of the gradient vector. We refer to this procedure as
BUTTERFLYCLIP (Algorithm 2).

However, Byzantine peers can circumvent robust aggregation by attacking over many iterations. To
protect against this, BTARD periodically chooses random peers to serve as validators. The validators
must recalculate the gradients of other peers and report any discrepancies instead of computing their
own gradients. However, such tests are only effective if the attackers cannot predict when they will be
validated4. To ensure that, we use the multi-party random number generator described in Section 2.3.

After each training step, peers use MPRNG to choose m validators and m peers to validate (each
validator checks one peer). As a result, malicious peers cannot predict “safe” iterations before they
commit to an attack. Thus, any persistent attacker will eventually be found by an honest validator.

However, since validators can also be malicious, BTARD uses a separate accuse procedure to root
out false reports. Before each averaging round, peers broadcast the hash of their gradients for that
round. These values serve the same purpose as commitments in MPRNG. If peer i accuses peer j of
modifying gradients, all other peers must also recalculate j’s gradients. If the majority finds that j is
innocent, the accusing peer i is banned instead (Hammurabi & Harper, 1904).

The resulting algorithm is resilient to attacks made through incorrect gradients. However, malicious
peers may also harm training by violating the CENTEREDCLIP procedure for the portion of gradients
they are aggregating. Fortunately, we can design a test through which peers can verify that the vector

2He et al. (2020) show that it is impossible to achieve any predefined accuracy of the solution without this
assumption, i.e., in the heterogeneous case (see discussion in Appendix E.2).

3We choose Butterfly All-Reduce so that peers aggregate non-overlapping parts of the gradient vector. This
helps to identify the attacker if the gradients are aggregated incorrectly. Jiang et al. (2020) report that Butterfly
All-Reduce is near-optimal for distributed training over high-latency networks such as the Internet.

4Otherwise, Byzantine peers can simply defer the attack to subsequent steps when they are not validated.
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they received was indeed the output of CENTEREDCLIP. To formulate this test, we need to view
CENTEREDCLIP as a fixed-point iteration for the equation:

n∑
i=1

(~gi − ~x) min

{
1,

τ

‖~gi − ~x‖

}
= 0 (1)

The workers are not able to test whether (1) holds directly since collecting ~gi would lead to O(dn)
extra communication, defeating the purpose of our algorithm. Instead, workers should use MPRNG
to sample a random direction ~z in the space of model gradients. Then, each peer computes the inner
product (2) and sends it through the broadcast channel (as described in Section 2.3):

si=

〈
~z, (~gi − ~x) min

{
1,

τ

‖~gi − ~x‖

}〉
(2)

Finally, all peers verify that
∑n
i=1 si = 0. Similarly to our previous use of MPRNG, all aggregators

must commit to their aggregation results before they learn ~z. This ensures that a malicious aggregator
cannot modify the results in such a way that the difference would be orthogonal to ~z (this and more
complex attack vectors are reviewed and analyzed in Appendices C and D.3).

We combine all these procedures in Algorithm 1 (see its intuitive scheme in Figure 1 and a more
formal version in Algorithm 6). While gradients gi, random vector z, and some other variables are
not the same during different steps, we omit the step index t in their notation for brevity. We review
communication and computational complexity of the algorithm in Appendix B.

Algorithm 1 BTARD-SGD for peer i (informal)

Input: rank i, model x0, seed ξ0i , step count T ,
peer count n

1: for t ∈ 0, . . . , T−1 do
2: gi = COMPUTEGRADIENTS(xt, ξti)
3: ĝ = BUTTERFLYCLIP(i, gi)
4: rt = MPRNG()
5: z = GETRANDOMVECTOR(rt)
6: for j ∈ 1, . . . , n do
7: // ĝ[j] is the aggregated part from peer j
8: ∆j

i=(gi[j]− ĝ[j]) min
{

1, τ
‖gi[j]−ĝ[j]‖2

}
9: broadcast sji = 〈z[j],∆j

i 〉
10: for j ∈ 1, . . . , n do
11: // We know ∆i

j from CENTEREDCLIP

12: if sij 6= 〈z[j],∆i
j〉 then

13: ACCUSE(i, j, sij is wrong)
14: if

∑n
t s

j
t 6= 0 then

15: // Peer j verified that sj· are correct
16: ACCUSE(i, j, ĝ[j] is wrong)
17: xt+1 = SGDSTEP(xt, ĝ)
18: ξt+1

i = hash(rt||i)
19: if i ∈ CHOOSEVALIDATORS(rt) then
20: j = CHOOSETARGET(rt, i)
21: VALIDATEPEER(j, xt, ξtj , cj , h

*
j , s

*
j)

22: // ... instead of computing gradients
23: // for step t+1

24: return xT

Algorithm 2 BUTTERFLYCLIP for peer i

Input: rank i, gradients gi∈Rd
1: gi[1], ..., gi[n] = SPLIT(gi, n)

2: broadcast ∀j, hji = hash(gi[j])
3: send ∀j, gi[j]→ peerj
4: receive ∀j, gj [i]← peerj
5: verify ∀j, hash(gj [i]) = hij
6: ĝi = CENTEREDCLIP(g1[i], ..., gn[i])
7: send ∀j, ĝi → peerj
8: receive ∀j, ĝj ← peerj
9: return MERGE(ĝ1, ..., ĝn)

Algorithm 3 ACCUSE (i, j, allegation)

Input: accuser i, target j
1: gj = COMPUTEGRADIENTS(xt, ξtj)

2: if ∃k : (hash(gj [k]) 6= hkj
3: or skj 6=〈z[k],∆k

j 〉) or
∑n
k=1 s

j
k 6=0

then
4: VOTEFORBAN(peerj)
5: // ... and everyone who covered it up
6: else
7: VOTEFORBAN(peeri)
8: for k ∈ 1, . . . , n do
9: if NUMVOTES(peerk) ≥ n/2 then

10: BAN(peerk)

3.2 CONVERGENCE ANALYSIS

From the perspective of optimization theory, our task is the expectation minimization problem:

min
x∈Q⊆Rd

{f(x) := Eξ∼D [f(x, ξ)]} (3)
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Here, the objective function f is smooth and uniformly lower bounded, Q ⊆ Rd is a closed convex set
of admissible parameters and ξ is the source of stochasticity, such as minibatch indices. We assume
that the problem (3) can be solved in a distributed manner, i.e., one can use n workers performing
(mini-batched) stochastic gradients calculations in parallel and communicating according to some
protocol. For simplicity, we will define the set of workers as [n] := {1, 2, . . . , n} = G t B.

There are many ways for Byzantines to affect the training. For example, a malicious peer may
perform: (i) gradient attacks, where Byzantines modify their gki , but otherwise behave normally;
(ii) aggregation attacks, where Byzantine aggregator returns wrong ĝi and relies on others to cover it
up by misreporting si; (iii) reputation attacks such as frame-up or slander via false ACCUSE(i, j, ·);
and finally, (iv) protocol errors are any other deviations from the steps of Algorithm 1, e.g. refusing
to send any data. We elaborate on each attack type in Appendix C.

For the purpose of this analysis, the latter two attacks can be repelled with an extra policy that
allows an active worker to eliminate any other worker at the cost of also being banned. Whenever a
benign peer i encounters a protocol error from another peer j, it invokes that policy to remove both
himself and peer j from training. The design of this policy ensures that every invocation, whether by
normal or Byzantine peers, eliminates at least 1 Byzantine peer and at most 1 benign peer. Thus, if
a Byzantine minority uses this against benign peers, this will only decrease their relative numbers:
(δn− 1)/(n− 2) < δ. This leaves us with two attacks that both target the aggregated gradients.

We provide convergence guarantees for variants of BTARD-SGD with Q = Rd under different sets
of assumptions about the function f and its stochastic gradients. Our first two setups assume, that:
Assumption 3.1. There exist such constant σ ≥ 0, s0 ∈ [d] that for any set of indices S =
(i1, . . . , is), 1 ≤ i1 < i2 < . . . < is ≤ d, s ≥ s0 stochastic gradient ∇f(x, ξ) satisfy

E[∇f(x, ξ)] = ∇f(x), E
[∥∥∇[S]f(x, ξ)−∇[S]f(x)

∥∥2] ≤ sσ2

d
, (4)

where ∇[S]f(x, ξ) = (∇i1f(x, ξ), . . . ,∇isf(x, ξ))>, ∇[S]f(x) = (∇i1f(x), . . . ,∇isf(x))>, and
∇fj(x, ξ),∇jf(x) are j-th components of ∇f(x, ξ) and f(x) respectively.

Here, (4) is an extension of the classical uniformly bounded variance (UBV) assumption (Nemirovski
et al., 2009; Ghadimi & Lan, 2012; 2013) ensuring that the noise in all subvectors of large enough
dimension has the variance dependent on the ratio between the dimension of the subvector s and
the dimension of the full vector d. For example, it holds when the noise is isotropic. Moreover, one
can relax this assumption to the standard UBV assumption, if blocks for aggregation in BTARD
are chosen uniformly at random (see Appendix E.3.1 for further details). In order to further reduce
overhead from Verification 3 in the full Algorithm 6, we also assume that the stochastic gradient
distributions have sub-quadratically decreasing tails (see details in Appendix E.3.1).
Assumption 3.2. There exist such constant σ ≥ 0, s0 ∈ [d] that for any set of indices S =
(i1, . . . , is), 1 ≤ i1 < i2 < . . . < is ≤ d, s ≥ s0 stochastic gradient ∇f(x, ξ) satisfy

P


∥∥∥∥∥1

k

k∑
i=1

∇[S]f(x, ξi)−∇[S]f(x)

∥∥∥∥∥
2

>
tsσ2

kd

 <
1

t2
, ∀t > 0, (5)

where ξ1, . . . , ξk are i.i.d. samples from D, and ∇[S]f(x, ξ),∇[S]f(x) are defined in As. 3.1.

Under these assumptions, we derive the following convergence bounds for strongly convex, generally
convex, and non-convex objectives (see Table 1). The respective proofs are deferred to Appendix E.4.

Let us briefly discuss the main properties of the derived results. When δ = 0, i.e., there are no
Byzantine peers, we recover the tightest known rates for parallel SGD for strongly convex, generally
convex, and non-convex objectives with both sets of assumptions. Next, we notice that in all
complexity bounds in the known |Bak | case, the term depending on the ratio of Byzantine workers
δ (the third one in all bounds) has better dependence on the accuracy of the solution ε than the
classical variance term (the second one in all bounds). Therefore, for sufficiently small ε, the derived
complexity bounds are the same as in the case when there are no Byzantine workers and parallel
SGD is used. However, these bounds are obtained under the assumption that all participants know
the exact number of attacking Byzantine workers at each iteration, which is not realistic but helps to
better adjust clipping parameter τ in CENTEREDCLIP.
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Table 1: Summary of complexity bounds for BTARD-SGD in different scenarios. By complexity we mean
the number of iterations sufficient to find such point x̂ that E[‖∇f(x̂)‖2] ≤ ε2 for non-convex problems and
E[f(x̂) − f(x∗)] ≤ ε for convex and µ-strongly convex problems (see Def. E.2) with x∗ being the solution.
Notation: “known |Bak |” = the exact number of attacking Byzantine workers at iteration k is known to each
participant, L = smoothness constant (see Def. E.1), ∆0 = f(x0)− f∗, f∗ = uniform lower bound for f , σ2 =
variance parameter from As. 3.1, n = the initial number of peers, b = the initial number of Byzantine workers,
δ = b/n, m = number of peers checked at each iteration, R0 = ‖x0 − x∗‖.

Assumptions
Convexity of f

Non-convex Convex Strongly convex

As. 3.1+ As. 3.2 L∆0
ε2

+ L∆0σ
2

nε4
+ nδσ2

mε2
LR2

0
ε

+
σ2R2

0
nε2

+ n
√
δσR0
mε

L
µ

log
µR2

0
ε

+ σ2

nµε
+ n
√
δσ

m
√
µε+ known |Bak |

As. 3.1 + As. 3.2 L∆0
ε2

+ L∆0σ
2

nε4
+ n2δσ2

mε2
LR2

0
ε

+
σ2R2

0
nε2

+ n2δσR0
mε

L
µ

log
µR2

0
ε

+ σ2

nµε
+ n2δσ
m
√
µε

As for the more general case, the third term is much worse than the corresponding term in the
previous setup. Nevertheless, the term that depends on the ratio of Byzantine workers δ has the same
dependence on ε as in the known |Bak | case. This implies that for sufficiently small ε the derived
complexity bounds are the same as in the case when there are no Byzantine workers and parallel SGD
is used. For complete formulations, proofs and other details we refer the reader to Appendix E.3.

So far, all our convergence results rely on As. 3.2, i.e., that the stochastic gradients have not too
heavy tails. This assumption holds for many real-world neural networks. However, there are
important NLP tasks such as BERT training (Zhang et al., 2020), where the noise in the stochastic
gradient has such a heavy noise that As. 3.2 becomes unlrealistic. The third and final setup in
our analysis aims to address such heavy-tailed problems with BTARD-CLIPPED-SGD (see full
Algorithm 8 in appendix). We analyse the method under the assumption that α-th moments of
the stochastic gradients are uniformly upper-bounded for some α ∈ (1, 2]. We notice that for
α < 2 this assumption allows the variance of the stochastic gradient to be unbounded. In this
setting, we prove that BTARD-CLIPPED-SGD finds an ε-solution of the convex problem after
O
(
ε−α/(α−1)

(
1 +

(
n
√
δ/m
)α/(α−1)

))
iterations when the number of attacking Byzantine peers is

known at each iteration andO
(
ε−α/(α−1)

(
1 +

(
n2δ2/m

)α/(α−1)
))

iterations otherwise. One can find
the full statements and complete proofs of our results in Appendix E.

3.3 RESISTING SYBIL ATTACKS

The algorithm described in Section 3.1 operates with a pre-defined list of peers that can only decrease
in size. However, many real-world scenarios would benefit from new peers joining midway through
training. Unfortunately, this exposes the system to Sybil attacks (Douceur, 2002), when a single
computationally constrained attacker adopts multiple pseudonymous identities in order to establish a
dishonest majority and break the algorithm.

To handle this, one may augment BTARD with a heuristic protocol that dictates how new peers can
join. A new participant must prove that it has honestly computed enough gradients over multiple
continious iterations before it is allowed to actually contribute to the training. This ensures that the
influence of Sybil attackers is proportional to their computing power (see details in Appendix F).

4 EXPERIMENTS

4.1 CIFAR10 CLASSIFICATION

First, we evaluate our approach with a realistic image-classification workload in controlled conditions.
Our setup is a ResNet-18 (He et al., 2015) model trained to solve the CIFAR10 classification
task (Krizhevsky et al.). We train the model on 16 peers (each peer processes 8 samples per batch)
using the SGD with Nesterov (1983) momentum and the cosine annealing learning rate (Loshchilov
& Hutter, 2017). We deliberately use a tuned setup that achieves 93.5% test accuracy in order to
measure how Byzantine attacks affect this training outcome.
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Figure 2: (Upper-Left, Upper-Middle:) ResNet-18 test accuracy with different robust aggregation
techniques (without attacks). (Other plots:) Effectiveness of Byzantine attacks on BTARD-SGD.

We evaluate our method with constant τ = 10 (weaker clipping) and with τ = 1 (stronger clipping).
These values were chosen based on the maximal standard deviation of the gradient parts averaged by
the workers during normal training, so that almost no vectors are clipped for the weaker clipping and
approximately half of the vectors are clipped for the stronger clipping scenario. BTARD randomly
selects 1 validator on each step. If the validator happens to be Byzantine, it does not accuse its peers.

We compare our method to the regular All-Reduce without clipping and the baselines that use a
trusted parameter server (the original variant of CENTEREDCLIP (Karimireddy et al., 2020), the
coordinate-wise and geometric medians). Some other popular robust aggregation techniques are
omitted because they were shown to be inferior (Karimireddy et al., 2020). We run all iterative
algorithms (such as CENTEREDCLIP) to convergence with ε = 10−6, as we have found that limiting
the number of iterations can significantly decrease the final model quality (see Fig. 7 in Appendix I.1).

In addition to training convergence, we evaluate our setup in presence of malicious peers. To test
pessimistic conditions, we pick a setting where 7 of 16 peers are Byzantine (other setups can be found
in Appendix I.1). We experiment with the following attack types:

• SIGN FLIPPING: each attacker sends the opposite of its true gradient.

• RANDOM DIRECTION: all attackers send large vectors pointed at a common random direction.

• LABEL FLIPPING: each attacker computes its gradient based on the cross-entropy loss with flipped
labels. For CIFAR-10, we replace label l ∈ {0, ..., 9} with 9− l.

• DELAYED GRADIENT: attackers send their real gradients delayed by 1000 steps.

We further amplify the Byzantine gradients from the first two attacks by a large coefficient λ = 1000
so they would dominate the aggregated gradient if no clipping is used. While in practice such attacks
can be identified right away due to the large gradient norms, we deliberately avoid doing that to test
our clipping approach. We also evaluate common low-magnitude attacks (Baruch et al., 2019; Xie
et al., 2020; Allen-Zhu et al., 2021) in Appendix I.4.

For each experiment configuration, Byzantines behave honestly prior to step s, then simultaneously
attack on each subsequent step until they are banned (another setup with the Byzantines attacking
periodically is reported in Appendix I.1). We consider attacks in two training regions: early stages
(s = 1000) and closer to convergence (s = 10,000). We repeat each experiment 5 times and report
the mean and range of the test accuracy during at least 2000 steps after all Byzantines are banned. In
our experiments, this usually happened within 150 steps after s.

The results are shown in the Fig. 2. Comparing to the All-Reduce baseline, we note that our method
does not worsen the speed of convergence. On average, the final test accuracy is 0.6% worse for
τ = 1 and 0.1% better for τ = 10. The two most effective attacks (in terms of accuracy) are the
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Figure 3: (Upper-Left:) ALBERT-large training objective using AR-SGD and BTARD-Clipped-SGD
(without attacks). (Remaining plots:) Effectiveness of Byzantine attacks on BTARD.

random direction and sign flipping. The effect of label flipping is smaller, and the effect of delayed
gradients is almost undetectable.

4.2 PRE-TRAINING TRANSFORMERS

For our second experiment, we choose a more compute-intensive and hyperparameter-sensitive
model with adaptive optimizers to demonstrate that our approach may be applied to models that
are commonly used in distributed training scenarios. Our setup is pre-training the ALBERT-large
model (Lan et al., 2019) on the Wikitext 103 dataset (Merity et al., 2017) using LAMB (You et al.,
2020). Since the original ALBERT setup uses gradient clipping, we use BTARD-CLIPPED-SGD (see
Alg. 8 in Appendix). We train the model on 16 machines that jointly accumulate 4096 samples for
every batch. Similarly to the previous section, we evaluate two configurations with τ = 0.5 (weaker
clipping) and τ = 0.125 respectively, in addition to an All-Reduce baseline. To evaluate Byzantine
tolerance, we also use 7 out of 16 Byzantine workers, 1 validator and two attack regions: s = 1000
and s = 5000. We omit reporting of the delayed gradient attack as we have found it completely
ineffective. The full configuration of this experiment is provided in Appendix H.

The results shown in Figure 3 demonstrate a pattern similar to the previous section. During normal
training, both τ values had no significant effect on the training progress, reaching 1.3% larger loss in
the worst case. However, τ = 0.125 shows significantly faster recovery from all three attacks. One
important observation from these experiments is that while some attacks significantly increase the
loss function, the model returns to the previous loss value much faster than it takes to reach the same
loss when training from scratch. We further study the computation overhead of BTARD in this setup
in Appendix I.2 and provide the experiments with a larger number of peers in Appendix I.3.

5 CONCLUSION

In this work, we formulated BTARD-SGD — a Byzantine-tolerant training strategy for large neural
networks. We verified its robustness and effectiveness through rigorous theoretical analysis and
large-scale distributed training experiments. While our research is mostly algorithmical, it can open
new opportunities in many deep learning applications.

Perhaps the most important one is making it possible to train large neural networks in a cooperative
manner. BTARD-SGD could allow small research groups to host open cooperative training projects
where the training hardware is crowdsourced by volunteers around the world. Alternatively, a group
of small companies could collectively compete with larger corporations by combining their compute
clusters. While these applications also require engineering effort to become practical, our algorithm
ensures that they can run securely without the need to carefully screen every potential participant.
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A ADDITIONAL RELATED WORK

A.1 BYZANTINE-TOLERANT OPTIMIZATION: ADDITIONAL DETAILS

In this section, we provide extra details on the related work discussed in Section 2.2. The summary
of complexity results is presented in Table 2.

A.1.1 PARAMETER-SERVER (PS) BASED APPROACHES

There is a quite large number of papers on Byzantine-tolerant optimization that aim to robustify
parallel SGD in the case when a trusted parameter-server (PS) is available. Since in the classical
parallel SGD even one Byzantine worker can break the convergence of the whole method by shifting
the mean of the resulting vector in an arbitrary way, it is natural to substitute averaging of the
vectors received from the workers by a more robust aggregation rule, e.g., Krum (Blanchard et al.,
2017), coordinate-wise median, trimmed median (Yin et al., 2018), Multi-Krum (Damaskinos et al.,
2019), Bulyan (El Mhamdi et al., 2018), geometric median (Pillutla et al., 2019). However, all these
methods were shown to be brittle and not robust to special types of Byzantine attacks (Baruch et al.,
2019; Xie et al., 2020; Karimireddy et al., 2020). Moreover, Karimireddy et al. (2020) show that
all permutation-invariant algorithms cannot converge to any predefined accuracy of the solution,
meaning that simple application of some aggregation rules on top of SGD does not lead to Byzantine
tolerance.

There are several approaches to circumvent this issue. Alistarh et al. (2018) propose BYZANTINESGD
and prove the convergence results for convex problems. Allen-Zhu et al. (2021) extend this approach
to handle non-convex problems as well. In both papers, the key idea is based on applying the
concentration properties of the sums depending on the stochastic gradients as well as iterative
removing of Byzantine peers. However, theoretical guarantees from Alistarh et al. (2018); Allen-Zhu
et al. (2021) rely on the restrictive assumption that the noise in the stochastic gradients is uniformly
bounded with probability 1. Bulusu et al. (2020) propose similar approach to the one from (Allen-
Zhu et al., 2021) but analyze their method under more restrictive assumptions (boundedness of the
gradient). Next, Wu et al. (2020) propose a Byzantine-tolerant version of parallel SAGA (Defazio
et al., 2014), i.e., variance-reduced version of SGD, with geometric median as an aggregation rule —
BYRD-SAGA – and prove its convergence for strongly convex objectives. However, the authors do
not establish the convergence of BYRD-SAGA to any predefined accuracy of the solution. Moreover,
variance-reduced methods are known to converge slowly in deep learning applications (Defazio &
Bottou, 2019), which limits the practical utility of BYRD-SAGA. Finally, Karimireddy et al. (2020)
propose a new aggregation rule called CENTEREDCLIP, apply it to SGD with client momentum,
and prove convergence results for the obtained method in the non-convex case under reasonable
assumptions. Alternative lines of work achieve Byzantine-tolerant optimization through redundant
computations (Chen et al., 2018; Rajput et al., 2019) or reputation-based approaches (Rodríguez-
Barroso et al., 2020; Regatti et al., 2020; Xu & Lyu, 2020). Unfortunately, these papers either do not
contain theoretical (non-asymptotic) convergence results for the proposed methods or rely on too
restrictive assumptions in the analysis. See more references in the recent survey by Lyu et al. (2020).

A.1.2 DECENTRALIZED APPROACHES

Byzantine-tolerant optimization methods for decentralized communication architectures are studied
only in a couple of papers. Yang & Bajwa (2019a;b) consider a specific scenario when workers
compute full gradients, local loss functions on peers are heterogeneous, and the trimmed coordinate-
wise median is used as an aggregation rule. In this setup, the authors prove convergence results in the
strongly convex case to some accuracy depending on the heterogeneity level of local loss functions,
which is natural in the presence of Byzantine peers. However, these results are not applicable to
a wide range of practically important problems where stochastic gradients have to be used. This
issue was partially resolved in Peng et al. (2021), where the authors propose a version of GOSSIP
SGD applied to the equivalent reformulation of the original problem based on TV-regularization
(Ben-Ameur et al., 2013). However, the established convergence results in the strongly convex case do
not show any benefits of using communications with other workers in the homogeneous data regime
that appears in large-batch training of deep learning models. Li et al. (2019) use the same idea for a
parameter-server architecture. Next, there are approaches requiring peer-to-peer communications of
full vectors at each step (Gupta et al., 2021; Gupta & Vaidya, 2021), which is not scalable.
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Table 2: Summary of the complexity results for Parameter-Server (PS) based and distributed Byzantine-tolerant
optimization. By default, columns “Non-convex”, “Convex”, and “Strongly convex” contain the complexity
bounds for L-smooth non-convex, convex, and µ-strongly convex problems respectively. By complexity we
mean the number of iterations sufficient to find such point x̂ that E[‖∇f(x̂)‖2] ≤ ε2 for non-convex problems
and E[f(x̂)− f(x∗)] ≤ ε for convex and µ-strongly convex problems (see Def. E.2) with x∗ being the solution.
For simplicity we omit numerical factors, logarithmic terms depending on the parameters of the problem, and
factors, quantifying suboptimality of the starting point, i.e., R0 = ‖x0 − x∗‖ and f(x0) − infx∈Rd f(x).
Notation: δ = |B|/n, m = number of peers checked at each iteration. The results from (Yang & Bajwa, 2019a;b)
are not included in the table since they rely on full-gradient computations.

Non-PS? Work Non-convex Convex Strongly convex

7

(Alistarh et al., 2018)(1),(2) 7 1
ε

+ σ2

nε2
+ δ2σ2

ε2
1
µ

+ σ2

nµε
+ δ2σ2

µε

(Allen-Zhu et al., 2021)(1),(3) 1
nε4

+ δ2

ε4
7 7

(Wu et al., 2020)(4) 7 7 L2

µ2
(5)

(Karimireddy et al., 2020)(6) 1
ε2

+ σ2

nε4
+ δσ2

ε4
7 7

3

(Peng et al., 2021)(6),(7) 7 7 1
µε

+ nσ2

µ2ε
+ λ2dN

2

µ2ε

This work(8) 1
ε2

+ σ2

nε4
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mε2
1
ε
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nε2
+ n

√
δσ

mε
1
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nµε
+ n

√
δσ

m
√
µε

This work(9) 1
ε2

+ σ2

nε4
+ n2δσ2

mε2
1
ε

+ σ2

nε2
+ n2δσ

mε
1
µ

+ σ2

nµε
+ n2δσ
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√
µε

This work(10) 7
(
GΛ1
ε

) α
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(
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µε

) α
2(α−1)

This work(11) 7
(
GΛ2
ε

) α
α−1

(
G2Λ2
µε
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2(α−1)

(1) The results are proven under uniformly bounded noise assumption: ‖∇f(x, ξ)−∇f(x)‖ ≤ σ for all x and ξ.
High-probability guarantees are established, i.e., it is proven that with probability at least 1− β algorithms from
(Alistarh et al., 2018) find x̂ such that f(x̂)− f(x∗) ≤ ε and algorithms from (Allen-Zhu et al., 2021) find x̂
such that ‖∇f(x̂)‖ ≤ ε.
(2) Dependencies on β are logarithmic and, therefore, omitted. Optimization problems is assumed to be define on
a bounded set, the rates depends on the diameter of this set.
(3) The results are derived for the case σ = 1. Allen-Zhu et al. (2021) also derive convergence guarantees for
finding second-order stationary points.
(4) Wu et al. (2020) consider finite-sum case of (3), i.e., f(x) = 1

N

∑N
j=1 f(x, j). The results are derived under

uniformly bounded variance assumption: Ej [‖∇f(x, j)−∇f(x)‖2] ≤ σ2 for all x ∈ Rd, where j is sampled
uniformly at random from {1, . . . , N}. Wu et al. (2020) also derive convergence guarantees under ζ-bounded
dissimilarity assumption, i.e., when f(x) = 1

|G|
∑
i∈G fi(x), fi(x) = 1

N

∑N
j=1 fi(x, j) for all i ∈ G, and

1
|G|
∑
i∈G ‖∇fi(x)−∇f(x)‖2 ≤ ζ2.

(5) This result is obtained the main result of (Wu et al., 2020) and states that the method from (Wu et al., 2020)
finds x̂ such that f(x̂)− f(x∗) ≤ ε only for ε ≥ σ2

/µ2( 1
2
−δ)2, which can be large.

(6) The result is derived under uniformly bounded variance assumption, i.e., Eξ∼D[‖∇f(x, ξ)−∇f(x)‖2] ≤ σ2

for all x ∈ Rd.
(7) Peng et al. (2021) consider the case, when peers are allowed to communicate with their neighbors that are
defined via some communication graph. The result establishes the total number of iterations/communication
rounds needed to find x̂ such that E‖x̂− x∗‖2 ≤ ε for ε ≥ λ2d

µ2

∑
i∈G |Bi|

2, where λ ≥ 0 is any non-negative
number and Bi is the set of Byzantine peers neighboring with the i-th peer. In the complexity result, we use
the notation N

2
=
∑
i∈G(|Gi|2 + |Bi|2), where Gi is the set of good neighbors of the i-th peer. When λ = 0,

the workers do not communicate at all. Moreover, Peng et al. (2021) analyze the case of heterogeneous local
functions, composite optimization problems and time-varying setup but in that case λ is lower bounded by
a strictly positive quantity depending on the heterogeneity level and minimal non-zero singular value of the
node-edge incidence matrix, i.e., any predefined accuracy cannot be achieved.
(8) The results are derived for BTARD-SGD (in the strongly convex case, for RESTARTED-BTARD-SGD)
under Assumptions 3.1 and 3.2 in the case when the exact number of attacking Byzantine workers at iteration k
is known to each participant. See Theorems E.2, E.4, and E.6.
(9) The results are derived for BTARD-SGD (in the strongly convex case, for RESTARTED-BTARD-SGD)
under Assumptions 3.1 and 3.2. See Theorems E.3, E.5, and E.7.
(10) The results are derived for BTARD-CLIPPED-SGD (in the strongly convex case, for RESTARTED-BTARD-
CLIPPED-SGD) under Assumption E.1 without any additional assumptions on the tails of the distribution.
Moreover, it is assumed that the exact number of attacking Byzantine workers at iteration k is known to each
participant. See Theorems E.8 and E.10. In the complexity results, we use the notation Λ1 = 1 + n

√
δ

m
.

(11) The results are derived for BTARD-CLIPPED-SGD (in the strongly convex case, for RESTARTED-BTARD-
CLIPPED-SGD) under Assumption E.1 without any additional assumptions on the tails of the distribution. See
Theorems E.9 and E.11. In the complexity results, we use the notation Λ2 = 1 + n2δ

m
.
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Finally, El-Mhamdi et al. (2020) propose an algorithm based on the usage of multiple servers.
The authors assume that both workers and servers can be Byzantines, which is a realistic scenario.
However, their approach requires the workers to send their gradients to all servers at each iteration
and receive parameters from all servers as well. This leads to a significant communication overhead
in practice. Moreover, El-Mhamdi et al. (2020) do not provide non-asymptotic convergence rates,
making it problematic to provide an in-depth comparison with existing works and with our results as
well. Therefore, it is unclear whether the usage of multiple servers speeds up training or it just leads
to overhead in the communications and computations.

In contrast, our results do benefit from the communications between workers. First of all, as one can
see from Table 2, the terms depending on the fraction δ of Byzantine peers in our complexity bounds
for BTARD-SGD and RESTARTED-BTARD-SGD (the third terms) have better dependence on the
target accuracy ε than the corresponding terms in the complexity bounds from all previous works
(even from those relying on the existence of a PS). Moreover, for sufficiently small ε these terms
in our complexity results are smaller than the second terms, which correspond to the main term in
the complexity of parallel SGD. That is, BTARD-SGD/RESTARTED-BTARD-SGD applied to the
problem with Byzantine peers has convergence guarantees that are not worse than the corresponding
guarantees for parallel SGD applied to the problem without any Byzantine workers. In such regimes,
our theoretical convergence results outperform even ones derived for PS-based algorithms.

We notice that Assumptions 3.1 and 3.2 used in the analysis of BTARD-SGD/RESTARTED-BTARD-
SGD are slightly stronger than uniformly bounded variance assumption used in (Wu et al., 2020;
Karimireddy et al., 2020; Peng et al., 2021). However, as we explain in Appendix E.3.1, our analysis
allows to relax Assumptions 3.1 to uniformly bounded variance assumption, and Assumption 3.2 is
reasonable for many practically important problems. Finally, we also propose and analyze BTARD-
CLIPPED-SGD and RESTARTED-BTARD-CLIPPED-SGD under Assumption E.1 that may hold
even in the case of unbounded variance of the stochastic gradient. To the best of our knowledge, this
is the first time in the literature on the Byzantine-tolerant optimization when the complexity results
are obtained without assuming boundedness of the stochastic gradient’s variance.

A.2 SECURITY IN DISTRIBUTED SYSTEMS: ADDITIONAL DETAILS

In this section, we provide extra details on the related work discussed in Section 2.3.

A.2.1 BROADCAST CHANNELS

Many distributed systems rely exclusively on direct peer-to-peer connections, avoiding any centralized
servers to increase reliability and avoid the performance bottleneck. In presence of malicious
participants, this introduces additional security challenges since an attacker can send corrupted data to
one participant and behave honestly with others. If a peer accuses another peer in sending corrupted
data, it is impossible for remaining peers to determine whether the accusation is fair since only these
two peers had access to the contents of the communication channel between them.

To overcome this, distributed systems can build secure broadcast channels over the peer-to-peer
connections using the protocols for Byzantine broadcast. These protocols guarantee that if a peer p
sends a message, (a) all honest peers receive the same message and (b) the received message coincides
with the original one if p is honest.

Pease et al. (1980) suggest such a protocol for the case when the share of malicious peers δ < 1/3,
and Dolev & Strong (1983) suggest a protocol tolerating any δ < 1 assuming the presence of a public
key infrastructure and usage of the digital signatures (Rivest et al., 1978; Goldwasser et al., 1988).

Hirt & Raykov (2014) review how the communication complexity of various Byzantine broadcast
protocols depends on the maximal tolerated δ and the length of the broadcasted message. Abraham
et al. (2019) review protocols with additional practical assumptions improving the communication
complexity.

A.2.2 MULTI-PARTY RANDOM NUMBER GENERATORS

Many distributed systems may benefit from the multi-party random number generators (MPRNG)
where a group of malicious peers would have little influence (bias) on the generator output. MPRNGs
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Figure 4: An intuitive scheme of MPRNG based on the generalization of Blum (1983). Here, ||
denotes concatenation, ⊕ denotes bitwise XOR, h(x) is a common cryptographic hash function. The
hashed values include the peer identifier i to protect from replay attacks and a large random string si
to resist dictionary attacks.

are usually based on multi-party coin tossing protocols, such as the protocol from Blum (1983).
As an example, MPRNG allows to choose a participant winning a lottery or choose a peer whose
calculations are going to be validated by other peers to detect possible cheating.

While Blum (1983) formally introduces a protocol for one bit and two parties, its generalization to
multiple bits and parties (as necessary for MPRNG) is trivial assuming the presence of the broadcast
channel. This modification is widely known in literature, e.g., described in Zhang et al. (2019).
According to this generalization, peers should execute the following protocol to obtain k random bits
(see the intuitive scheme in Figure 4):

1. Each peer generates its own random string xi made of k bits.
2. Each peer broadcasts commitment hi = h(i||xi||si), where || denotes concatenation, h(x) is a

common cryptographic hash function, i is the peer’s unique identifier (known by other peers), and
si is a large random string.

3. Peers wait until all of them finish broadcasting the commitments. After that, no peer can alter its
xi to influence the protocol output (otherwise, peers would notice that the new value x′i does not
match the commitment).

4. Each peer reveals their random string by broadcasting its xi and si.
5. Each peer verifies that all other peers revealed values xj and sj that match their commitments
hj = h(j||xj ||sj).

6. If a peer detects that peer j aborted the procedure or its commitment does not match its revealed
values, it concludes that we cannot trust peer j. Since other peers read the same broadcast channel,
all of them can make the same conclusion. In this case, the system repeats the protocol.

7. If peers do not detect any mismatches, they calculate the protocol output x = x1⊕ ...⊕xn, where
⊕ denotes the bitwise XOR operation.

In this protocol, the commitments include the peer identifier i to protect from replay attacks (when an
attacker repeats someone else’s message) and the large random string si to resist dictionary attacks
(when an attacker reverses the hash function using a large dictionary of its values).

While there are MPRNGs (Rabin & Ben-Or, 1989) with a negligible bias for the case when more
than a half parties are honest (assuming the presence of the broadcast channel), Cleve (1986) proves
that it is impossible to reach the negligible bias for the case of dishonest majority, which may be
reached in practice with the Sybil attacks.

However, we note that the bias in Blum (1983) (and its modification above) appears only in the case
when an attacker learns the result earlier than other peers and forces the protocol to be repeated. If
we are using MPRNG to choose a peer that to be checked for cheating, we may ban all peers that
aborted the procedure and restart from scratch without them, therefore eliminating the bias problem.

B NETWORK AND COMPUTE OVERHEAD OF BTARD-SGD

Communication overhead. Despite having complex structure, BTARD-SGD has only limited
communication overhead, when compared to regular All-Reduce SGD. A single step of BTARD
requires each peer to send each gradient tensor exactly once for aggregation, then download the
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results, exactly as in Butterfly All-Reduce. On top of that, peers are only required to broadcast O(n)
scalars that are independent of the total size of the trained model. This includes the communication
cost for MPRNG: as shown in Figure 4, one round of the MPRNG based on the generalization of
Blum (1983) requires each peer to only broadcast 3 scalars.

Hirt & Raykov (2014) discuss that a simple modification of the protocol from Dolev & Strong (1983)
leads to the communication complexity of O(n3 + ln2) bits for each peer in the worst case, where l
is the length of the broadcasted message. For the O(n) scalars, this gives O(n3) communication.

As a result, the communication complexity of a single BTARD-SGD step for each peer is O(d+ n3)
bits. We note that for models that benefit from distributed training, the n3 component is usually
dominated by the vector size d, as they usually contain at least tens of millions of trainable parameters.

Still, if necessary, the n3 component may be improved using the Byzantine broadcast protocols with
additional practical assumptions, such as allowing a small probability of error. Abraham et al. (2019)
review such protocols, their assumptions, and communication complexity.

We do not restrict the way of getting the data (whether the samples are downloaded on each step, the
whole dataset is distributed before the training, or the data is generated on the fly) and do not consider
it a part of our algorithm, leaving the related communication cost out of scope of this analysis.

Synchronization points. Another important aspect of BTARD performance is synchronization.
The naive implementation of Algorithm 1 would have many global synchronization “barriers” per
step: one for aggregating gradients, another for choosing a random direction z, yet another for
electing validators, etc. These frequent synchronizations could undermine the practical training
performance of BTARD in high-latency networks, such as when training over the Internet.

Fortunately, it is possible to reduce the number of synchronizations by bundling them together. For
instance, peers use a single MPRNG round for sampling z and for electing validators. Furthermore,
this MPRNG round and subsequent checks can be done in background, while a peer accumulates
gradients for the next step. The only restriction is that this “shared” MPRNG round must be performed
after all peers declare their checksums for that round.

With these optimizations, BTARD-SGD requires only two points of synchronization per round. The
first one occurs right before gradient aggregation, and the second one is in a background task that
performs verifications. Finally, there is a non-regular need for synchronization when one peer accuses
another of being Byzantine. However, as we elaborated earlier, each accusation will result in at least
one Byzantine being banned. Therefore, this additional cost will occur only a limited number of
times over the training run.

Computation overhead. In terms of computation, BTARD-SGD introduces two main overheads:
from validators and CENTEREDCLIP respectively. As we have shown empirically, both BTARD-
SGD and BTARD-CLIPPED-SGD can withstand attacks even with 1 random validator chosen from
16 peers. As such, the computation overhead for these validators is under 10% of the total compute.

As for the CENTEREDCLIP, our algorithm executes the same amount of computation as the original
CENTEREDCLIP (Karimireddy et al., 2020), except that now the extra load is distributed evenly
across all peers. We provide an empirical evaluation of such overhead in Appendix I.2.

Finally, we note that generating a shared vector z from a scalar seed rt (as defined in Algorithm 1) has
a negligible cost and can be done with any standard pseudo-random number generator. For instance,
generating z for ALBERT-large (the setup from Section 4.2) takes 30± 1.2 ms on the same T4 GPU
that we use in our experiments.

C OVERVIEW OF ATTACK VECTORS

In Section 3.2, we have outlined the 4 main types of Byzantine attacks that can affect BTARD-SGD.
Here, we analyze each of these types in detail and provide a list of attacks that fit these types.

Gradient attacks. This attack vector encompasses all attacks where Byzantine peers replace their
true gradients with something else, but otherwise act normally. With this attack, b Byzantine peers can
collectively shift the outputs of CENTEREDCLIP by up to τ · b/n in any chosen direction. However,
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since Byzantine peers will need to commit hash of their incorrect gradients, every honest validator
can accuse one of these peers with probability b/n .

Aggregation attacks. A similar, but opposite attack type can be attempted when a Byzantine peer
performs gradient aggregation. Instead of honestly computing CENTEREDCLIP, an attacker may
modify the returned vector to incorporate the same kinds of changes as in gradient attacks (see above).
This time, the maximum difference that can be applied through such attacks is larger, but it only
affects b/n of vector coordinates that are aggregated by Byzantines.

Done naively, such attacks can be detected and banned by the gradient checksum (see L15-17 in
Algorithm 1). In order to ensure that the above check passes, Byzantines can misreport their sji in
such a way that

∑
i s
j
i=0. However, since actual sji depend only on gki and ĝk, these values can be

verified by the chosen validators, and, in case of mismatch, reported via ACCUSE. We rigorously
prove this in Appendix D.3.

Furthermore, if an honest validator finds that a certain peer has broadcast incorrect sji , the validator
can simultaneously accuse the corresponding Byzantine aggregator j that should have notified about
the incorrect sji (see L12-14 in Algorithm 1).

Reputation abuse. Since BTARD-SGD provides means by which benign participants can ban
Byzantine attackers, it is important to ensure that the same means cannot be exploited by Byzantine
peers to eliminate benign ones or otherwise abuse the system. There are three potential attack vectors
that fit this description:

• Falsely accusing a benign peer,
• Persistently calling the ACCUSE procedure to slow down training,
• Automatically approving gradients without actual validation,

In BTARD-SGD, we protect against slander (issues 1. and 2.) by the design of ACCUSE protocol,
by which a peer that initiates false allegations will itself be banned. As such, Byzantines can only
invoke ACCUSE protocol a limited number of times before they are all permanently banned.

In turn, the attack vector (3.) is more effective: if one Byzantine was chosen as validator for another
Byzantine, they can automatically report successful validation without negative consequences for
either of them. However, since all validators are chosen through MPRNG, an attacker has no way of
predicting whether its validator will be benign or Byzantine. Thus, any malicious activity will always
have a chance of being caught by an honest validator.

Protocol violations. Finally, a Byzantine attacker can deviate from the protocol prescribed by
BTARD-SGD in simpler ways ways, for instance:

1. Not committing the hash of its gradient when required by 4,
2. Not sending data to a particular peer when required (or sending data twice),
3. Deliberately broadcasting a hash that mismatches the subsequently sent data,
4. Sending metadata (e.g. gradient norm) that is inconsistent with previously sent gradient part,
5. Sending si that is inconsistent with previously sent gradient,
6. Not validating when chosen as validator, validating when not chosen, or validating a different

peer than was chosen by BTARD-SGD.

For protocol deviations that are visible to all benign participants, such as in (1.) or (6.), benign peers
can ban the offender instantaneously. However, this is not the case for attacks such as (2.), where the
deviation is only visible to one or few peers.

As described earlier in Section 3.2, we address this issue with a special procedure that allows any
peer to ban any other peer at the cost of also being banned. Thus, if an attacker sends inconsistent
gradients, norms or inner products to only one benign peer, that peer can still get the attacker banned
even though it wouldn’t be able to call ACCUSE.

Protecting from attacks 3, 4 and 5 from the above list also relies on this mutual elimination procedure.
Specifically, if an attacker sends provably incorrect data to a benign peer, that peer will immediately
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trigger the mutual elimination procedure. The only exception to this rule is if one Byzantine peer
sends incorrect data to another Byzantine peer: this behavior is neither punishable nor, in itself,
harmful. In turn, the mutuality of this elimination procedure prevents potential misuse by Byzantines:
if an attacker decides to ban someone through this procedure, that attacker will also be banned.

D DETAILED ALGORITHM DESCRIPTION

In this section, we provide more formal versions of the BTARD (Alg. 4) and BTARD-SGD (Alg. 6)
algorithms, as well as auxiliary subroutines and further details. For completeness, we describe our
approach in a bottom-up manner. First, in Appendix D.1, we describe Algorithm 4 and one of its
main building block called CENTEREDCLIP (Karimireddy et al., 2020). Then, we formulate the
ACCUSE and ELIMINATE subroutines for blocking malicious peers in Algorithm 5 and comment on
them in Appendix D.2. Finally, we formulate the full BTARD-SGD in Algorithm 6 using the above
subroutines as building blocks and rigorously analyze its robustness to the violations of its steps by
Byzantine peers in Appendix D.3.

D.1 BTARD AND CENTEREDCLIP

We begin with a glossary of basic functions used in the algorithms:

• CHECKCOMPUTATIONS(j) or VALIDATEPEER — run COMPUTEGRADIENTS(xt, ξtj) and com-
pare against the cj , h*

j , s
*
j broadcasted by that peer. If there is mismatch, ACCUSE.

• VOTEFORBAN(peerj) — send a message declaring an intent to ban peer j over the broadcast
channel (the message is signed with the sender’s private key).

• NUMVOTES(peerj) — count the number of messages declaring the intent to ban peer j and
received via the broadcast channel.

• BAN(peerj) — add peer j to a local blocklist, ignore any subsequent messages from that peer, and
continue training without it.

• SPLIT(v, n) — split vector v of size d into n parts. The first d mod n parts are of size dd/ne and
the remaining parts have size bd/nc.

• MERGE(v1, . . . , vn) — concatenate vectors v1, . . . , vn into one.

Algorithm 4 defines a single gradient aggregation step (outlined earlier in Alg. 2) with additional
verifications needed to reduce the negative influence of Byzantine peers. For simplicity, we assume
that workers run each line in a synchronous manner (e.g. wait for all peers to broadcast hash(gi)
before communicating the actual gradients). In practice, this restriction can be lifted in favor of
asynchronous steps with several explicit synchronization barriers, but that would further complicate
the pseudo-code.

One of the key building blocks of BTARD is CENTEREDCLIP – a robust aggregation rule proposed
in (Karimireddy et al., 2020). Unlike a number of other aggregation rules as coordinate-wise
median, Krum, geometric median, CENTEREDCLIP is provably robust against Byzantine attacks (see
Theorem III from (Karimireddy et al., 2020) and Lemma E.1).

Let G be the set of good peers, B be the set of Byzantine workers, and, for simplicity, let [n] = G tB,
|B| = δn ≤ δ0n < n/2. Assume that we have n random vectors x1, . . . , xn, such that ∀i, j ∈ G

E[xi] = E[xj ] = x, E[‖xi − xj‖2] ≤ σ2,

and for all i ∈ B vectors xi can be arbitrary. CENTEREDCLIP works as follows: it is an iterative
procedure generating a sequence {vl}l≥0 satisfying

vl+1 = vl +
1

n

n∑
i=1

(xi − vl) min

{
1,

τl
‖xi − vl‖

}
, (CenteredClip)

where

τl = 4

√
(1− δ)

(
B2
l/3 + σ2

)
√

3δ
, B2

l+1 = 6.45δB2
l + 5σ2. (6)
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Algorithm 4 Byzantine-Tolerant All-Reduce (BTARD)

Input: number of workers n, gradient vectors on the workers g1, g2, . . . , gn ∈ Rd, d > n, ∆max > 0
– parameter for verification 3

1: for workers i = 1, . . . , n in parallel do
2: Split gi into n parts: gi = (gi(1)>, . . . , gi(n)>)>, gi(j) ∈ Rdj for all i, j ∈ [n]
3:
4: broadcast ci = hash(gi)
5: for j = 1, . . . , n do
6: broadcast ci(j) = hash(gi(j))

7:
8: Aggregate gradients (same as Alg. 2):
9: Send gi(j) to peer j for all j 6= i and receive gj(i) from peer j for all j 6= i

10: for j = 1, . . . , n do
11: if hash(gj(i)) 6= cj(i) then
12: ELIMINATE(i, j) // Signed with peeri private key
13: ĝ(i) = CENTEREDCLIP(g1(i), g2(i), . . . , gn(i))
14: broadcast ĉ(i) = hash(ĝ(i))
15: Send ĝ(i) to each worker and receive ĝ(j) for all j 6= i from other workers
16: for j = 1, . . . , n do
17: if hash(ĝ(j)) 6= ĉ(j) then
18: ELIMINATE(i, j) // Signed with peeri private key
19: ĝ = MERGE(ĝ(1), . . . , ĝ(n))
20:
21: Send metadata for verification:
22: Generate r via MPRNG
23: z = GETRANDOMVECTOR(r)
24: for j ∈ 1, ..., n do
25: ∆j

i=(gi(j)− ĝ(j)) ·min
{

1, τ
‖gi(j)−ĝ(j)‖2

}
26: broadcast sji = 〈z[j],∆j

i 〉
27: broadcast normij = ‖gi(j)− ĝ(j)‖2
28: for l = 1, . . . , n do
29: wlj = min

{
1, τ

normlj

}
30:
31: for j = 1, . . . , n do
32: Verification 1:
33: if normji 6= ‖gj(i)− ĝ(i)‖2 then
34: ACCUSE(i, j, normji does not mach cj(i))
35: Verification 2:
36: // peer i knows ∆i

j from CenteredClip
37: if sij 6= 〈zk[j],∆i

j〉 then
38: ACCUSE(i, j, sji does not match cj(i))
39: if

∑n
i s

j
i 6= 0 then

40: // peerj already verified that all sj· are correct
41: ACCUSE(i, j, ĝ(j) is wrong)
42: Verification 3:
43: broadcast checkij = [‖gi(j)− ĝ(j)‖2 > ∆max]
44: if

∑
l checklj > n

2 then
45: CHECKAVERAGING(j)

46: return ĝ

Intuitively, CENTEREDCLIP behaves like the mean for all points within the sphere of radius τ and like
the median for “outliers”. In turn, choosing different values of τ allows one to smoothly interpolate
between the mean (τ → inf) and the geometric median (τ → 0) aggregation rules.
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The goal of this procedure is natural: find good enough approximation x̂ of x = 1
|G|
∑
i∈G xi.

In (Karimireddy et al., 2020), it is shown5 that for δ ≤ 0.1 the sequence {vl}l≥0 generated by
CENTEREDCLIP satisfies

E[‖vl − x‖2] ≤ (9.7δ)l3E[‖v0 − x‖2] + 4000δσ2. (7)

Moreover, Karimireddy et al. (2020) prove that for all possible aggregation rules producing x̂ and
given δ0, σ there exists such set of vectors x1, . . . , xn and such a partition [n] = G t B that

E[‖x̂− x‖2] = Ω(δσ2).

Therefore, CENTEREDCLIP can be seen as an optimal aggregation rule neglecting numerical constants.
The usage of CENTEREDCLIP helps the good peer i to produce a good enough approximation of the
ideal average of the i-th parts of stochastic gradients among good peers in BTARD.

Moreover, since δ ≤ 0.1 we have that 6.45δ ≤ 0.645 implying that B2
l → B2 ∼ σ2 when l →∞,

and τl → τ ∼
√
σ2
/δ. These limits can be easily computed from (6). Next, for l→∞ CenteredClip

converges to the solution of the following equation:
n∑
i=1

(xi − v) min

{
1,

τ

‖xi − v‖

}
= 0. (8)

In other words, CenteredClip for large enough l approximates the fixed point iteration process of
solving (8). This property plays a key role in Verification 2 of BTARD.

Algorithm 5 ACCUSE (i, j, allegation), detailed version

Input: accuser i, target j, peer count n, all values exchanged in Algorithm 4
1: Recalculate gkj = COMPUTEGRADIENTS(xk, ξkj )

2: Split gi into n parts: gi = (gi(1)>, . . . , gi(n)>)>, gi(j) ∈ Rdj for all i, j ∈ [n]
3:
4: for l = 1 . . . n do
5: if hash(gkj ) 6= ckj or hash(gkj (l)) 6= hlj then
6: VOTEFORBAN(peerj) // For gradient attack
7:
8: ∆j

l=(gl(j)− ĝ(j)) ·min
{

1, τ
‖gl(j)−ĝ(j)‖2

}
9: if ‖gj(l)− ĝ(l)‖2 6= normjl or 〈∆j

l , zj〉 6= sjl or
∑n
l=1 s

j
l 6= 0 then

10: VOTEFORBAN(peerj) // For aggregation attack
11: for o = 1, . . . , n do
12: if peer o approved normjo or soj then
13: VOTEFORBAN(peero) // For covering up the j-th peer’s aggregation attack
14:
15: for l = 1 . . . n do
16: if NUMVOTES(peerl) ≥ n/2 then
17: BAN(peerl)

D.2 PROTOCOLS FOR BANNING BYZANTINE PEERS

ACCUSE and ELIMINATE are the two protocols by which peers ban Byzantine attackers from training.
The ACCUSE protocol is only invoked if there the malicious activity of the target peer can be proven
to others (we detail the exact mechanism in Algorithm 3). In contrast, ELIMINATE is a mechanism
that allows any peer i to ban any other peer j from training without proof — but at the cost of peer i
also being banned. We have described this protocol earlier as a countermeasure for protocol violations
(see Appendix C).

5In fact, Karimireddy et al. (2020) derive this result for two-staged version of CENTEREDCLIP. One can
derive similar result for the original CENTEREDCLIP under the assumption that for all i, j ∈ G we have
E[‖xi − xj‖4] ≤ σ4.
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Both ACCUSE(i, j) and ELIMINATE(i, j) imply that peer i uses the broadcast channel to declare
its intent to ban peer j. All peers collect such messages during a training step and process them at
the end of the step in some specific order (e.g. sorted by (type, public_keyi, public_keyj), where
type ∈ {ACCUSE, ELIMINATE} and ACCUSE < ELIMINATE). If processing one of the messages
results in banning peer p, further messages involving p are ignored regardless of the p’s role. This
way, it is impossible for a Byzantine to eliminate more than one honest peer along with itself. Peers
reach consensus since their decisions on banning someone are based solely on the messages from the
broadcast channel (sorted in the common order) and the calculations with identical results.

D.3 BTARD-SGD AND DETECTING PROTOCOL VIOLATIONS

Finally, the Algorithm 6 incorporates the two above procedures into a secure decentralized SGD
training loop. This algorithm is intended as a more formal version of Alg. 1 from Section 3.1.

Algorithm 6 BTARD-SGD

Input: x0 – starting point, γ – stepsize, K – number of iterations, {si,k}n,K−1i,k=0,0 – seeds for batches
computations

1: C0 = Banned−1 = ∅
2: for k = 0, 1, . . . ,K − 1 do

3: Worker i computes gki =

{
∇f(xk, ξi,k), if i ∈ Gk \ Ck,
∗, if i ∈ Bk \ Ck,

, where ξi,k is generated via seed

si,k available to every worker
4:

(
ĝk, public_infok

)
= BTARD(gk

ik1
, gk
ik1
, . . . , gkikak

), where {ik1 , . . . , ikak} = (Gk ∪ Bk) \ Ck
5: // BTARD is described in Algorithm 4
6: Choose 2m workers ck+1

1 , . . . , ck+1
m , uk+1

1 , . . . , uk+1
m uniformly at random without replace-

ment, Ck+1 = {ck+1
1 , . . . , ck+1

m }, Uk+1 = {uk+1
1 , . . . , uk+1

m }
7: Bannedk = CHECKCOMPUTATIONS(Ck+1,Uk+1, public_infok)
8: xk+1 = projQ(xk − γĝk) := argminx∈Q ‖x− (xk − γĝk)‖
9: Gk+1 = Gk \ Bannedk−1

10: Bk+1 = Bk \ Bannedk−1

Verifications 1 and 2. While good peers always run CENTEREDCLIP, Byzantine peers can arbitrary
violate the protocol meaning that they can send an arbitrary vector instead of sending the result of
CENTEREDCLIP. Verification 1 and 2 are needed to prevent such violations and make it possible to
identify them during the check of computations.

First of all, both verifications are split into 2 rounds in order to let the aggregators of the corresponding
part accuse those peers who send inconsistent norms or inner products. Next, in theory, we assume
that all good peers find exactly the solution of CENTEREDCLIP equaition (8). Therefore, it is possible
to compute the weights from (8) for each worker i and each component j knowing only a norm of the
difference of corresponding vectors, i.e., one can compute min{1, τ

‖gi(j)−ĝ(i)‖} by ‖gi(j)− ĝ(i)‖.
That is, if Byzantine peer i sends normij 6= ‖gi(j)− ĝ(j)‖, it will be either revealed by j-th worker
if j ∈ G or it will be revealed with some probability during the subsequent checks of computations.

However, Verification 1 is insufficient to prevent malicious behavior: at iteration k Byzantine peer
can send gki (j) such that ‖gki (j)− ĝk(j)‖ = ‖∇(j)f(xk, ξi,k)− ĝk(j)‖. If j ∈ B, then it can be the
case that i-th worker commits the hash of∇(j)f(xk, ξi,k) and the check of gradient computation will
not identify the violation of the protocol. That is why, Verification 2 is required.

GETRANDOMVECTOR is a function that generates a random unit vector z in the space of model
parameters. This vector is based on a random seed r obtained from MPRNG.

The goal of Verification 2, is to check that CENTEREDCLIP equation (8) holds for the received
vector. The idea is simple: if

n∑
l=1

(gl(i)− ĝ(i)) min

{
1,

τ

‖gl(i)− ĝ(i)‖

}
= 0, (9)
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then for any zi of an appropriate dimension
n∑
l=1

〈gl(i)− ĝ(i), zi〉min

{
1,

τ

‖gl(i)− ĝ(i)‖

}
= 0. (10)

Since zi in BTARD is generated from the uniform distribution on the unit Euclidean sphere, we have
P {(9) does not hold & (10) holds} = 0. (11)

However, it is impossible to verify (10) explicitly for workers j 6= i. Therefore, in the algorithm,
good workers check

n∑
l=1

sil = 0, where sil =

{
〈gl(i)− ĝ(i), zi〉min

{
1, τ
‖gl(i)−ĝ(i)‖

}
, if l ∈ G,

∗, if l ∈ B.
(12)

Unfortunately, Byzantine peers can send arbitrary sil . This can lead to the situations when (12) holds
while (10) and, as a consequence, (9) do not. Below, we rigorously show that all possible violations
of the protocol that are not detected by verifications of BTARD can be detected by the auxiliary
check of computations with some probability.

Verification 3. This is an additional verification that serves to limit the potential scope of aggrega-
tion attacks (as described in Appendix C). If the result of CenteredClip landed far from too many
benign participants, BTARD will verify it by re-running the same aggregation across all peers. While
this procedure is costly, our analysis proves that it is has a very small probability of triggering unless
some of the peers perform aggregation attacks. In the latter case, verifying the gradient accumulation
will root out such attacks and ban the corresponding peers.

Check of computations. As we mentioned earlier, it is possible to violate the protocol without
being detected by the verifications of BTARD. Therefore, extra checks of computations are required.
In particular, after each aggregation in BTARD-SGD 2m workers are selected uniformly at random:
m workers check the computations at the previous step of other m workers. That is, each Byzantine
peer is checked at iteration k with probability∼ m/n by some good worker (see the proof of Thm. E.2).
Consider an arbitrary Byzantine peer j and all possible violations of the protocol at iteration k that
are not detected by verifications of BTARD.

First of all, we notice that if cj(i) 6= hash(∇(i)f(xk, ξj,k)), then it will be detected during the
check of computations with some probability6. Moreover, if i ∈ G, then j-th worker has to send
cj(i) = hash(gj(i)) to avoid ban.

Therefore, the only non-trivial case is when i ∈ B as well. In this case, j-th worker can com-
mit cj(i) = hash(∇(i)f(xk, ξj,k)) since it is meaningless for i-th worker to accuse j-th one.
Since normij , s

j
i and ĝ(i) are known for all i and j, j-th worker has to broadcast normji =

‖∇(i)f(xk, ξj,k) − ĝ(i)‖ and sij = 〈∇(i)f(xk, ξj,k) − ĝ(i), zi〉min
{

1, τ
‖∇(i)f(xk,ξj,k)−ĝ(i)‖

}
to

avoid the ban during the check of the computations. Therefore, regardless to the choice gj(i), to pass
Verification 2 i-th worker should send such ĝ(i) that∑

l∈G∪{j}

〈∇(i)f(xk, ξl,k)− ĝ(i), zi〉min

{
1,

τ

‖∇(i)f(xk, ξl,k)− ĝ(i)‖

}
+

∑
l∈B\{j}

sil = 0.

In this case, the behavior of the j-th worker along i-th component is equivalent to the behavior
of the good one. It means, that to avoid ban during the check of computations, each Byzan-
tine worker l should broadcast normli = ‖∇(i)f(xk, ξl,k) − ĝ(i)‖ and sil = 〈∇(i)f(xk, ξl,k) −
ĝ(i), zi〉min

{
1, τ
‖∇(i)f(xk,ξl,k)−ĝ(i)‖

}
implying that i-th worker should send such ĝ(i) that

n∑
l=1

〈∇(i)f(xk, ξl,k)− ĝ(i), zi〉min

{
1,

τ

‖∇(i)f(xk, ξl,k)− ĝ(i)‖

}
= 0.

In view of (11), it implies that
ĝ(i) = CENTEREDCLIP(∇(i)f(xk, ξ1,k),∇(i)f(xk, ξ2,k), . . . ,∇(i)f(xk, ξ2,k)),

i.e., there are no violations of the protocol along the i-th component.
6Here and below, this means that the attack/violation will be detected iff a non-Byzantine peer is chosen to

validate the perpetrator.
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E CONVERGENCE ANALYSIS: MISSING PROOFS AND EXTRA DETAILS

E.1 PRELIMINARIES

For convenience, we provide the classical definitions and facts on smooth and strongly convex
functions below.

Definition E.1 (L-smoothness). We say that function f : Q → R, Q ⊆ Rd is L-smooth if it is
differentiable and

∀x, y ∈ Q ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (13)

One can show (Nesterov, 2003) that L-smoothness implies

∀x, y ∈ Q f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2, (14)

∀x ∈ Q ‖∇f(x)‖2 ≤ 2L (f(x)− f∗) , (15)

where f∗ is a uniform lower bound for f .

Definition E.2 (µ-strong convexity). Differentiable function f : Q→ R,Q ⊆ Rd is called µ-strongly
convex if

∀x, y ∈ Q f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2. (16)

E.2 IMPOSSIBILITY OF BYZANTINE-TOLERANT LEARNING IN HETEROGENEOUS CASE

Several papers on Byzantine-tolerant optimization consider non-homogeneous setup, when good
workers have different local functions (Wu et al., 2020; He et al., 2020). Formally, it means that
instead of solving

min
x∈Q⊆Rd

{f(x) := Eξ∼D [f(x, ξ)]} , (17)

where good peers sample stochastic gradients from the full dataset (i.e., they can sample ξ from D),
the following problem is considered:

min
x∈Q⊆Rd

{
f(x) :=

1

|G|
∑
i∈G

fi(x)

}
, (18)

where fi(x) = Eξi∼Di [f(x, ξi)] and there exists ζ ≥ 0 such that for all x ∈ Q

1

|G|
∑
i∈G
‖∇fi(x)−∇f(x)‖2 ≤ ζ2. (19)

However, under ζ-bounded heterogeneity assumption (19) it is impossible in general to solve (18)
with any predefined accuracy in the presence of Byzantine peers (He et al., 2020). Moreover, this is
true even when trusted Parameter-Server is available.

Theorem E.1 (Theorem III from (He et al., 2020)). For any optimization method Alg there exist
n functions f1(x), . . . , fn(x) such that at least (1− δ)n of them are good (corresponding workers
belong to G), 1-smooth, µ-strongly convex and satisfy (19) such that the output x̂ of Alg given the
access to these n functions has an error at least

E
[
f(x̂)− min

x∈Rd
f(x)

]
≥ Ω

(
δζ2

µ

)
and E

[
‖∇f(x̂)‖2

]
≥ Ω

(
δζ2
)
, (20)

where the expectation is taken w.r.t. the randomness of Alg.

The intuition behind this negative result is as following: since the only assumption on the similarity
of “good” functions is (19), Byzantine peers can shift the gradients by a vector with a norm ∼ ζ
without being detected. In this case, it is impossible to distinguish good peers from Byzantines but
the solution of (18) depends on which workers are good and which are bad. Therefore, the best one
can hope for is the convergence to some neighborhood of the solution.
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The lower bounds from (20) are proportional to δζ2 and cannot be made arbitrary small for given
δ and ζ2. It means that the convergence to any predefined accuracy of the solution is impossible to
achieve when local loss functions are ζ-heterogeneous. In this sense, Byzantine-tolerant learning is
impossible in the heterogeneous case. Moreover, in some practical applications (e.g., in Federated
Learning (McMahan et al., 2017)), ζ from (19) can be large implying that one cannot achieve
reasonable accuracy of the solution when δ is not too small (e.g., δ ≥ 0.01). Finally, strong convexity
parameter µ is typically much smaller than 1 (assuming that the smoothness parameter is 1). In these
cases, δζ2/µ can be too large and, as a result, all methods are not converging at all.

E.3 CONVERGENCE GUARANTEES FOR BTARD-SGD

E.3.1 ON ASSUMPTIONS 3.1 AND 3.2

First of all, Assumption 3.1 holds whenever standard uniformly bounded variance (UBV) assumption
is satisfied. Indeed, if Eξ∼D[‖∇f(x, ξ)−∇f(x)‖2] ≤ σ̂2, then Eξ∼D[(∇if(x, ξ)−∇if(x))2] ≤ σ̂2

for all i = 1, . . . , d, since ‖∇f(x, ξ) − ∇f(x)‖2 =
∑d
i=1(∇if(x, ξ) − ∇if(x))2. This implies

that Assumption 3.1 holds with σ2 ≤ dσ̂2. However, σ2 can be significantly smaller than dσ̂2. For
example, if the noise in stochastic gradients is isotropic, e.g., Gaussian, then

Eξ∼D[(∇1f(x, ξ)−∇1f(x))2] = . . . = Eξ∼D[(∇df(x, ξ)−∇df(x))2],

implying that

Eξ∼D[(∇if(x, ξ)−∇if(x))2] =
1

d
Eξ∼D[(∇f(x, ξ)−∇f(x))2] ≤ σ̂2

d

for all i = 1, . . . , d. Therefore, in this case, Asssumption 3.1 holds with σ2 = σ̂2.

Next, it is possible to relax Assumption 3.1 to the classical UBV assumption. Indeed, in our proofs, we
use Assumption 3.1 to bound the variance in the blocks of the stochastic gradients, where the blocks
of components are chosen for workers to execute BTARD. If these blocks are chosen uniformly at
random, i.e., the vector is split into several parts of the given sizes uniformly at random, then it is
enough to have

E
[
‖∇f[S](x, ξ)−∇[S]f(x)‖2

]
≤ sσ2

d
(21)

for a random subset S of {1, . . . , d} such that |S| = s, where expectation is taken w.r.t. ξ and S.
To derive inequality (21) from UBV assumption Eξ∼D[‖∇f(x, ξ)−∇f(x)‖2] ≤ σ̂2 we use tower
property of the expectation:

E
[
‖∇f[S](x, ξ)−∇[S]f(x)‖2

]
= Eξ∼D

[
ES
[
‖∇f[S](x, ξ)−∇[S]f(x)‖2

]]
= Eξ∼D

[
d∑
i=1

P{i ∈ S}(∇if(x, ξ)−∇if(x))2

]

=
s

d
Eξ∼D

[
d∑
i=1

(∇if(x, ξ)−∇if(x))2

]

=
s

d
Eξ∼D

[
‖∇f(x, ξ)−∇f(x)‖2

]
≤ sσ̂2

d
,

i.e., (21) holds for σ2 = σ̂2.

Finally, as we show in Lemmas E.2 and E.4, under As. 3.2 Verification 3 at BTARD leads to extra
checking of computations with probability ∼ 1/n at each iteration when all workers honestly follow
the protocol and under a proper choice of ∆max. Therefore, extra computations either appear due to
malicious manipulations of Byzantine peers, and lead eventually to the ban for the Byzantine peers
who deviate from the protocol, or, when all workers honestly follow the protocol, only once per
n iterations on average. There are a number of important machine learning tasks, such as training
ResNet-50 on Imagenet (Zhang et al., 2020) and many others image classification problems, where
the noise in the stochastic gradient has much “lighter” (sub-Gaussian) tails. That is, As. 3.2 is
reasonable for a large class of practically important problems. Moreover, in Appendix E.4, we also
provide an analysis of BTARD-CLIPPED-SGD and RESTARTED-BTARD-CLIPPED-SGD without
any assumptions on the tails of the stochastic gradients distribution.
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E.3.2 QUALITY OF THE AGGREGATION

The quality of the aggregation at each iteration of BTARD-SGD significantly affects the rate of
the method. That is, properties of g̃k are highly important for the convergence of BTARD-SGD.
This aggregator is obtained via BTARD that requires to know a tight estimate of the total number
of Byzantine workers violating the protocol at iteration k – clipping parameter τ depends on this
quantity. Therefore, it is natural to start with relatively simple setup when the number of Byzantine
workers violating the protocol is known at each iteration.

Before we formulate the first result we introduce some useful notations. Let nk be the total number
of peers at iteration k, bk be the total number of Byzantine peers at iteration k, b̂k be the total number
of Byzantine peers violating the protocol at iteration k, and δk = bk

nk
, δ̂k = b̂k

nk−m . In view of new

notation, we start with the ideal situation when b̂k is known for each worker at each iteration k. First
of all, it is needed to to estimate the quality of the aggregation for good workers.

Lemma E.1 (Theorem IV from Karimireddy et al. (2020)). Let As. 3.1 hold, δ ≤ 0.1(n−m), and
i ∈ Gk \ Ck. Assume that b̂k is known for each worker at iteration k and δ = δ̂k is used to compute
clipping parameter τl for CenteredClip. If the total number of iterations T of CenteredClip satisfies
T ≥ log9.7δ

δσ2

3E[‖v0−gk‖2] , then

E
[
‖ĝk(i)− gk(i)‖2 | xk

]
≤ 4001δ̂k

σ2

nk −m
, (22)

where gk(i) = 1
|Gk\Ck|

∑
j∈Gk\Ck

gkj (i).

Proof. The proof follows directly from (7).

Unlike the good peers, Byzantine workers can cooperate and shift the result of CENTEREDCLIP in
the components they aggregate without being revealed at Verification 2 of BTARD. However, they
cannot produce an arbitrary large shifts due to Verification 3. The next lemma estimates the maximal
possible magnitude of a shift together with probability of triggering CHECKAVERAGING at iteration
k for at least one worker.

Lemma E.2. Let As. 3.1 and 3.2 hold, b ≤ 0.1(n − m), and i ∈ Bk \ Ck. Assume that b̂k
is known for each worker at iteration k, ∆k

max = (1+
√
3)
√
2σ√

nk−m
and δ = δ̂k is used to compute

clipping parameter τl for CenteredClip. If the total number of iterations T of CenteredClip satisfies
T ≥ log9.7δ

δσ2

3E[‖v0−gk‖2] and CHECKAVERAGING(i) is not triggered, then

E
[
‖ĝk(i)− gk(i)‖2 | xk

]
≤

4
(
(1 +

√
3)2 + 4

)
σ2

nk −m
, (23)

where gk(i) = 1
|Gk\Ck|

∑
j∈Gk\Ck

gkj (i). Moreover, if b̂k = 0 and nk −m ≥ 170, then ĝk(i) = gk(i)

and

P
{

CHECKAVERAGING is triggered for ≥ 1 peer | xk
}
≤ 149

49(nk −m)
. (24)

Proof. If CHECKAVERAGING(i) is not triggered at iteration k, then for rk ≥ nk−m
2 good workers

i1, i2, . . . , irk ∈ Gk \ Ck we have ‖gkij (i)− ĝ
k(i)‖ ≤ ∆k

max. Therefore, due to the independence of
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gki , i ∈ Gk \ Ck for fixed xk we have

E
[∥∥ĝk(i)− gk(i)

∥∥2 | xk] ≤ 2E


∥∥∥∥∥∥ĝk(i)− 1

rk

rk∑
j=1

gkij (i)

∥∥∥∥∥∥
2

| xk


+2E


∥∥∥∥∥∥ 1

rk

rk∑
j=1

gkij (i)− g
k(i)

∥∥∥∥∥∥
2

| xk


≤ 2E

 1

rk

rk∑
j=1

‖ĝk(i)− gkij (i)‖
2

+ 4E
[
‖∇(i)f(xk)− gk(i)‖2 | xk

]

4E


∥∥∥∥∥∥ 1

rk

rk∑
j=1

gkij (i)−∇(i)f(xk)

∥∥∥∥∥∥
2

| xk


≤ 2(∆k

max)2 +
4σ2

|Gk \ Ck|
+

8σ2

nk −m

≤
4
(
(1 +

√
3)2 + 4

)
σ2

nk −m
,

where we use |Gk \ Ck| ≥ rk ≥ nk−m
2 and ∇f(i)(xk) = E[gkij | x

k]. Finally, let us estimate the
probability of triggering CHECKAVERAGING when all workers follow the protocol. In this case,
ĝ(i) = gk(i). Next, due to As. 3.2 and b ≤ 0.1(n−m) we have

P

‖gk(i)−∇f(i)(xk)‖2 >

√
σ2

nk −m
| xk

 ≤ 1

|Gk \ Ck|2
≤ 100

49(nk −m)2

and for all j ∈ Gk \ Ck

P

‖gkj (i)−∇f(i)(xk)‖2 >

√
3σ2

nk −m
| xk

 ≤ 1

9
.

Consider the independent random variables ηj , j ∈ Gk \ Ck, where

ηj =

{
1, if ‖gkj (i)−∇f(i)(xk)‖2 ≤

√
3σ2

nk−m ,

0, otherwise,

where xk is fixed. Then, ηj is a Bernoulli random variable with parameter of “success” q ≥ 8/9.
Applying Hoeffding’s inequality we get that

P

 ∑
j∈Gk\Ck

ηj ≤
nk −m

2
| xk

 ≤ exp

(
−2(nk −m)

(
q − nk −m

2|Gk \ Ck|

)2
)

≤ exp

(
−2(nk −m)

(
8

9
− n−m

1.4(n−m)

)2
)

= exp

(
−242(nk −m)

3969

)
.

Since for all j ∈ Gk \Ck we have ‖gk(i)−gkj (i)‖2 ≤ ‖gk(i)−∇(i)f(xk)‖2 +‖∇(i)f(xk)−gkj (i)‖2
the obtained bounds imply that CHECKAVERAGING is triggered for at least one worker at iteration k
with probability not greater than

100

49(nk −m)
+ (nk −m) exp

(
−242(nk −m)

3969

)
≤ 149

49(nk −m)
,

where we use that exp
(
− 242x

3969

)
≤ 1

x2 for all x ≥ 170.
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We notice that Byzantine peers can trigger CHECKAVERAGING by violating the protocol. However,
each Byzantine is checked at iteration k with probability p ∼ m/n (see Thm. E.2). Therefore,
Byzantine workers can trigger only O (bn/m) extra rounds of communications and computations on
average via triggering CHECKAVERAGING. In contrast, when there are no Byzantine workers or all
workers follow the protocol CHECKAVERAGING is triggered only once per O(n−m) iterations that
is a negligible communication an computation overhead when n is large.

Combining two previous lemmas we get the following result.

Lemma E.3. Let As. 3.1 hold and b ≤ 0.1(n − m). Assume that b̂k is known for each worker
at iteration k, ∆k

max = (1+
√
3)
√
2σ√

nk−m
and δ = δ̂k is used to compute clipping parameter τl for

CenteredClip. If the total number of iterations T of CenteredClip satisfies T ≥ log9.7δ
δσ2

3E[‖v0−gk‖2]
and CHECKAVERAGING is not triggered for any worker, then

E
[
‖ĝk − gk‖2 | xk

]
≤ Cδ̂kσ2, (25)

E
[
‖ĝk‖2 | xk

]
≤ 2Cδ̂kσ

2 + 2‖∇f(xk)‖2 +
2σ2

n− 2b−m
, (26)

where gk = 1
|Gk\Ck|

∑
j∈Gk\Ck

gkj and C = 4001 + 4
(
(1 +

√
3)2 + 4

)
.

Proof. We have

E
[
‖ĝk − gk‖2 | xk

]
=

∑
i∈Gk\Ck

E
[
‖ĝk(i)− gk(i)‖2 | xk

]
+

∑
i∈Bk\Ck

E
[
‖ĝk(i)− gk(i)‖2 | xk

]
(22),(23)
≤ (1− δ̂k)(nk −m) · 4001δ̂k

σ2

nk −m
+ δ̂k(nk −m) ·

4
(
(1 +

√
3)2 + 4

)
σ2

nk −m
= Cδ̂kσ

2.

Next, using the independence of gkj for j ∈ Gk \ Ck and fixed xk we derive

E
[
‖ĝk‖2 | xk

]
≤ 2E

[
‖ĝk − gk‖2 | xk

]
+ 2E

[
‖gk‖2 | xk

]
(25)
≤ 2Cδ̂kσ

2 + 2‖∇f(xk)‖2 + 2E
[
‖gk −∇f(xk)‖2 | xk

]
≤ 2Cδ̂kσ

2 + 2‖∇f(xk)‖2 +
2σ2

|Gk \ Ck|

≤ 2Cδ̂kσ
2 + 2‖∇f(xk)‖2 +

2σ2

n− 2b−m
.

In view of the definition of (δ, c)-robust aggregator from Karimireddy et al. (2020), the result of
BTARD at iteration k is (δ̂k, C)-robust. However, we derive this property under assumption that b̂k
is known to all workers at each iteration k, which is impractical.

When b̂k is unknown the situation changes dramatically: in general, good peers can only know some
upper bound for the fraction of Byzantine peers at iteration k. Unfortunately, if used without bans,
this is not enough to converge to any accuracy of the solution since BTARD-SGD is a permutation-
invariant algorithm in terms of Karimireddy et al. (2020). Therefore, in this case, we always use
CENTEREDCLIP with τl = ∞ for all l ≥ 0, i.e., good peers compute an exact average. In this
settings, even 1 Byzantine worker can significantly shift the average in all parts of the vector. The
next lemma quantifies the negative effect of Byzantine workers in this case.
Lemma E.4. Let As. 3.1 and 3.2 hold, b ≤ 0.1(n − m), m ≤ (n−2b)/2. Assume that
∆k

max = (1+
√
3)
√
2σ√

nk−m
and δ = 0 is used to compute clipping parameter τl for CenteredClip. If

CHECKAVERAGING is not triggered for any worker, then

E
[
‖ĝk − gk‖2 | xk

]
≤ Cσ2

1k,v, (27)
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E
[
‖ĝk‖2 | xk

]
≤ 2Cσ2

1k,v + 2‖∇f(xk)‖2 +
2σ2

n− 2b−m
, (28)

where gk = 1
|Gk\Ck|

∑
j∈Gk\Ck

gkj , C = 4
(
(1 +

√
3)2 + 4

)
, and 1k,v is an indicator function of the

event that at least 1 Byzantine peer violates the protocol at iteration k. Moreover, if b̂k = 0 and
nk −m ≥ 170, then ĝk(i) = gk(i) and

P
{

CHECKAVERAGING is triggered for ≥ 1 peer | xk
}
≤ 149

49(nk −m)
. (29)

Proof. If CHECKAVERAGING is not triggered for any worker, then ‖ĝk(i)−gk(i)‖2 ≤ (∆k
max)21k,v

for all i ∈ (Gk ∪ Ck) \ Ck implying

E
[
‖ĝk − gk‖2 | xk

]
=

∑
i∈(Gk∪Ck)\Ck

E
[
‖ĝk(i)− gk(i)‖2 | xk

]
≤ (nk −m) ·

2
(
(1 +

√
3)2 + 8

)
σ2

nk −m
1k,v ≤ Cσ2

1k,v.

Next, using the independence of gkj for j ∈ Gk \ Ck and fixed xk we derive

E
[
‖ĝk‖2 | xk

]
≤ 2E

[
‖ĝk − gk‖2 | xk

]
+ 2E

[
‖gk‖2 | xk

]
(27)
≤ 2Cσ2

1k,v + 2‖∇f(xk)‖2 + 2E
[
‖gk −∇f(xk)‖2 | xk

]
≤ 2Cσ2

1k,v + 2‖∇f(xk)‖2 +
2σ2

|Gk \ Ck|

≤ 2Cσ2
1k,v + 2‖∇f(xk)‖2 +

2σ2

n− 2b−m
.

The proof of the final part of the lemma is identical to the proof of the same result from Lemma E.2.

E.3.3 NON-CONVEX CASE

In this section, we provide the complete statements and the full proofs of the convergence results for
BTARD-SGD when the objective function f is smooth, but can be non-convex. We start with the
case when the number of attacking Byzantine workers is known at each iteration.

Theorem E.2. Let As. 3.1 and As. 3.2 hold,Q = Rd, and f be L-smooth (see Def. E.1) and uniformly
lower bounded by f∗. Moreover, assume that b ≤ 0.1(n−m), m ≤ (n−2b)/2, and the exact number
of attacking Byzantine peers is known to all good peers at each iteration. Next, assume that

γ = min

{
1

4L
,

√
∆0n

Lσ2K

}
, ∆k

max =
(1 +

√
3)
√

2σ√
nk −m

, (30)

where ∆0 = f(x0)−f∗ and ∆k
max is the parameter for verification 3 at iteration k of BTARD-SGD.

Then, we have E[‖∇f(xK)‖2] ≤ ε2 after K iterations of BTARD-SGD, where

K = O
(
L∆0

ε2
+
L∆0σ

2

nε4
+
nδσ2

mε2

)
(31)

and xK is picked uniformly at random from {x0, x1, . . . , xK−1}.

Proof. From L-smoothness of f we have

f(xk+1)
(14)
≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+

L

2
‖xk+1 − xk‖2

= f(xk)− γ〈∇f(xk), ĝk〉+
Lγ2

2
‖ĝk‖2.
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Taking the conditional expectation E[· | xk] from the both sides of the previous inequality we obtain

E
[
f(xk+1) | xk

]
≤ f(xk)− γ‖∇f(xk)‖2 − γ

〈
∇f(xk),E

[
ĝk − gk | xk

]〉
+
Lγ2

2
E
[
‖ĝk‖2 | xk

]
(26)
≤ f(xk)− γ

2
‖∇f(xk)‖2 +

γ

2

∥∥E [ĝk − gk | xk]∥∥2
+CLγ2δ̂kσ

2 + Lγ2‖∇f(xk)‖+
Lγ2σ2

n− 2b−m
≤ f(xk)− γ

2
(1− 2Lγ) ‖∇f(xk)‖2 +

γ

2
E
[
‖ĝk − gk‖2 | xk

]
+CLγ2δ̂kσ

2 +
Lγ2σ2

n− 2b−m
.

Since γ ≤ 1
4L we continue our derivations as

E
[
f(xk+1) | xk

]
≤ f(xk)− γ

4
‖∇f(xk)‖2 + γCσ2(1 + Lγ)δ̂k +

Lγ2σ2

n− 2b−m

≤ f(xk)− γ

4
‖∇f(xk)‖2 + 2γCσ2δ̂k +

Lγ2σ2

n− 2b−m
.

Taking the full expectation from the both sides of the obtained inequality and summing up the results
for k = 0, 1, . . . ,K − 1 we get

1

K

K−1∑
k=0

E
[
‖∇f(xk)‖2

]
≤ 4

γK

K−1∑
k=0

E
[
f(xk)− f(xk+1)

]
+

8Cσ2

K
E

[
K−1∑
k=0

δ̂k

]
+

4Lγσ2

n− 2b−m

=
4
(
f(x0)− E[f(xK)]

)
γK

+
8Cσ2

K
E

[
K−1∑
k=0

b̂k
nk −m

]
+

4Lγσ2

n− 2b−m

≤ 4(f(x0)− f∗)
γK

+
8Cσ2

K(n− 2b−m)
E

[
K−1∑
k=0

b̂k

]
+

4Lγσ2

n− 2b−m
.

If a Byzantine peer deviates from the protocol at iteration k, it will be detected with some probability
pk during the next iteration. One can lower bound this probability as

pk ≥ m ·
|Gk|
nk
· 1

nk
=
m(1− δk)

nk
≥ m

n
.

Therefore, each individual Byzantine worker can violate the protocol no more than 1/p times on
average implying that

1

K

K−1∑
k=0

E
[
‖∇f(xk)‖2

]
≤ 4(f(x0)− f∗)

γK
+

8Cnbσ2

Km(n− 2b−m)
+

4Lγσ2

n− 2b−m

≤ 4(f(x0)− f∗)
γK

+
16Cnbσ2

Km(n− 2b)
+

8Lγσ2

n− 2b

≤ 4(f(x0)− f∗)
γK

+
160Cnδσ2

7Km
+

80Lγσ2

7n
.

Since xK is picked uniformly at random from {x0, x1, . . . , xK−1} we have

E
[
‖∇f(xK)‖2

]
≤ 4(f(x0)− f∗)

γK
+

160Cnδσ2

7Km
+

80Lγσ2

7n
.

Using the stepsize rule

γ = min

{
1

4L
,

√
∆0n

Lσ2K

}
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we derive

E
[
‖∇f(xK)‖2

]
= O

(
L∆0

K
+

√
L∆0σ√
nK

+
nδσ2

mK

)
meaning that after

K = O
(
L∆0

ε2
+
L∆0σ

2

nε4
+
nδσ2

mε2

)
iterations BTARD-SGD guarantees E

[
‖∇f(xK)‖2

]
≤ ε2.

In the main part of the paper, we notice that the rate of BTARD-SGD in the presence of bad workers
is asymptotically the same as for SGD without Byzantine peers when ε is sufficiently small7. This
phenomenon has a clear intuition. When the target accuracy ε is small, the stepsize γ is also needed
to be small enough. However, as we show in Lemmas E.3 and E.4, Byzantine workers can produce
only a bounded shift independent of the stepsize. Moreover, they can violate the protocol at only
∼ n/m iterations on average. Therefore, the overall impact of Byzantine workers on the convergence
of BTARD-SGD decreases when the stepsize γ decreases.

Next, we derive the result without assuming that b̂k is known to all peers at each iteration.
Theorem E.3. Let As. 3.1 and 3.2 hold, Q = Rd, and f be L-smooth (see Def. E.1) and uniformly
lower bounded by f∗. Moreover, assume that b ≤ 0.1(n−m), m ≤ (n−2b)/2, and δ = 0 is used to
compute clipping parameter τl for CenteredClip. Next, assume that

γ = min

{
1

4L
,

√
∆0n

Lσ2K

}
, ∆k

max =
(1 +

√
3)
√

2σ√
nk −m

, (32)

where ∆0 = f(x0)−f∗ and ∆k
max is the parameter for verification 3 at iteration k of BTARD-SGD.

Then, we have E[‖∇f(xK)‖2] ≤ ε2 after K iterations of BTARD-SGD, where

K = O
(
L∆0

ε2
+
L∆0σ

2

nε4
+
nbσ2

mε2

)
(33)

and xK is picked uniformly at random from {x0, x1, . . . , xK−1}.

Proof. The proof is almost identical to the proof of Theorem E.2. Following the same steps and using
(27) and (28) instead of (25) and (26) respectively we obtain the same sequence of inequalities up to
the following change: instead of δ̂k we should use 1k,v . Therefore, we have

1

K

K−1∑
k=0

E
[
‖∇f(xk)‖2

]
≤ 4(f(x0)− f∗)

γK
+

8Cσ2

K
E

[
K−1∑
k=0

1k,v

]
+

4Lγσ2

n− 2b−m
.

If a Byzantine peer deviates from the protocol at iteration k, it will be detected with some probability
pk during the next iteration. One can lower bound this probability as

pk ≥ m ·
|Gk|
nk
· 1

nk
=
m(1− δk)

nk
≥ m

n
.

That is, each individual Byzantine worker can violate the protocol no more than 1/p times on average.
However, even one Byzantine peer can create a shift of the order ∆k

max at each part of the resulting
vector. Therefore, all Byzantine peers can violate the protocol no more than b/p times on average
implying that

1

K

K−1∑
k=0

E
[
‖∇f(xk)‖2

]
≤ 4(f(x0)− f∗)

γK
+

8Cnbσ2

Km
+

4Lγσ2

n− 2b−m

≤ 4(f(x0)− f∗)
γK

+
8Cnbσ2

Km
+

8Lγσ2

n− 2b

≤ 4(f(x0)− f∗)
γK

+
8Cnbσ2

Km
+

80Lγσ2

7n
.

7This is true for convex and strongly convex cases as well.
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Since xK is picked uniformly at random from {x0, x1, . . . , xK−1} we have

E
[
‖∇f(xK)‖2

]
≤ 4(f(x0)− f∗)

γK
+

8Cnbσ2

Km
+

80Lγσ2

7n
.

Using the stepsize rule

γ = min

{
1

4L
,

√
∆0n

Lσ2K

}
we derive

E
[
‖∇f(xK)‖2

]
= O

(
L∆0

K
+

√
L∆0σ√
nK

+
nbσ2

mK

)
meaning that after

K = O
(
L∆0

ε2
+
L∆0σ

2

nε4
+
nbσ2

mε2

)
iterations BTARD-SGD guarantees E

[
‖∇f(xK)‖2

]
≤ ε2.

As we notice in the main part of the paper, the third term of the obtained complexity result is
significantly worse than in (31): it is proportional to b instead of δ = b/n. However, (33) is derived
without assuming that b̂k is known for all workers at each iteration. Moreover, as in (31), the third
term in (33) has better dependence on ε than the second term implying that for small enough ε the
rate of BTARD-SGD in the presence of bad workers without assuming that b̂k is known at each
iteration is asymptotically the same as for SGD without Byzantine peers8.

E.3.4 CONVEX CASE

In this section, we provide the complete statements and the full proofs of the convergence results for
BTARD-SGD when the objective function f is smooth and convex. We start with the case when the
number of attacking Byzantine workers is known at each iteration.

Theorem E.4. Let As. 3.1 and 3.2 hold, Q = Rd, f be L-smooth (see Def. E.1), convex, and x∗ be
some optimum of f . Moreover, assume that b ≤ 0.1(n−m), m ≤ (n−2b)/2, and the exact number of
attacking Byzantine peers is known to all good peers at each iteration. Next, assume that

γ = min

{
1

4L
,

√
7nR2

0

120σ2K
,

√
m2R2

0

1440Cσ2n2δ

}
, ∆k

max =
(1 +

√
3)
√

2σ√
nk −m

, (34)

where R0 ≥ ‖x0− x∗‖ and ∆k
max is the parameter for verification 3 at iteration k of BTARD-SGD.

Then, we have E[f(xK)− f(x∗)] ≤ ε after K iterations of BTARD-SGD, where

K = O

(
LR2

0

ε
+
σ2R2

0

nε2
+
n
√
δσR0

mε

)
(35)

and xK = 1
K

∑K−1
k=0 .

Proof. Lemma E.3 implies

E
[
‖xk+1 − x∗‖2 | xk

]
= E

[
‖xk − x∗ − γĝk‖2 | xk

]
= ‖xk − x∗‖2 − 2γE

[
〈xk − x∗, ĝk〉 | xk

]
+ γ2E

[
‖ĝk‖2 | xk

]
(26)
≤ ‖xk − x∗‖2 − 2γ〈xk − x∗,∇f(xk)〉+ 2γ2‖∇f(xk)‖2

−2γE
[
〈xk − x∗, ĝk − gk〉 | xk

]
+ 2γ2Cδ̂kσ

2 +
2γ2σ2

n− 2b−m
.

8This is true for convex and strongly convex cases as well.
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Next, we use convexity (see (16) with µ = 0) and L-smoothness of f :

E
[
‖xk+1 − x∗‖2 | xk

] (15),(16)
≤ ‖xk − x∗‖2 − 2γ (1− 2Lγ)

(
f(xk)− f(x∗)

)
−2γE

[
〈xk − x∗, ĝk − gk〉 | xk

]
+ 2γ2Cσ2 b̂k

nk −m
+

2γ2σ2

n− 2b−m
.

To estimate the inner product in the right-hand side we apply Cauchy-Schwarz inequality:

−2γE
[
〈xk − x∗, ĝk − gk〉 | xk

]
≤ 2γ‖xk − x∗‖E

[
‖ĝk − gk‖ | xk

]
≤ 2γ‖xk − x∗‖

√
E
[
‖ĝk − gk‖2 | xk

]
(25)
≤ 2γ

√
Cσ‖xk − x∗‖

√
δ̂k ≤

2γ
√
Cσ√

nk −m
‖xk − x∗‖

√
b̂k

≤ 2γ
√
Cσ√

n− 2b−m
‖xk − x∗‖

√
b̂k.

Putting all together and using b ≤ 0.1(n−m), m ≤ (n−2b)/2, γ ≤ 1/4L, nk −m ≥ n− 2b−m, we
obtain

E
[
‖xk+1 − x∗‖2 | xk

]
≤ ‖xk − x∗‖2 − γ

(
f(xk)− f(x∗)

)
+

4γ
√

5Cσ√
n
‖xk − x∗‖

√
b̂k +

40γ2Cσ2

7n
b̂k +

40γ2σ2

7n
.

Taking the full expectation from the both sides of the above inequality and summing up the results
for k = 0, 1, . . . ,K − 1 we derive

γ

K

K−1∑
k=0

E[f(xk)− f(x∗)] ≤ 1

K

K−1∑
k=0

(
E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

])
+

40γ2σ2

7n

+
4γ
√

5Cσ√
nK

K−1∑
k=0

E
[
‖xk − x∗‖

√
b̂k

]
+

40γ2Cσ2

7nK

K−1∑
k=0

E[̂bk]

≤ ‖x0 − x∗‖2 − E[‖xK − x∗‖2]

K
+

40γ2σ2

7n

+
4γ
√

5Cσ√
nK

K−1∑
k=0

√
E [‖xk − x∗‖2]E[̂bk] +

40γ2Cσ2

7nK

K−1∑
k=0

E[̂bk].

From Jensen’s inequality we have f(xK) ≤ 1
K

∑K−1
k=0 f(xk), where xK = 1

K

∑K−1
k=0 xk. Using this

and new notation Rk = ‖xk − x∗‖, k > 0, R0 ≥ ‖x0 − x∗‖ we get

0 ≤ γE
[
f(xK)− f(x∗)

]
≤ R2

0 − E[R2
K ]

K
+

40γ2σ2

7n

+
4γ
√

5Cσ√
nK

K−1∑
k=0

√
E [R2

k]E[̂bk] +
40γ2Cσ2

7nK

K−1∑
k=0

E[̂bk](36)

implying (after changing the indices) that

E[R2
k] ≤ R2

0 +
40γ2σ2k

7n
+

4γ
√

5Cσ√
n

k−1∑
l=0

√
E [R2

l ]E[̂bl] +
40γ2Cσ2

7n

k−1∑
l=0

E[̂bl] (37)

holds for all k ≥ 0. In the remaining part of the proof we derive by induction that

R2
0 +

40γ2σ2k

7n
+

4γ
√

5Cσ√
n

k−1∑
l=0

√
E [R2

l ]E[̂bl] +
40γ2Cσ2

7n

k−1∑
l=0

E[̂bl] ≤ 2R2
0 (38)
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for all k = 0, . . . ,K. For k = 0 this inequality trivially holds. Next, assume that it holds for all
k = 0, 1, . . . , T − 1, T ≤ K − 1. Let us show that it holds for k = T as well. From (37) and (38)
we have that E[R2

k] ≤ 2R2
0 for all k = 0, 1, . . . , T − 1. Therefore,

E[R2
T ] ≤ R2

0 +
40γ2σ2T

7n
+

4γ
√

5Cσ√
n

T−1∑
l=0

√
E [R2

l ]E[̂bl] +
40γ2Cσ2

7n

T−1∑
l=0

E[̂bl]

≤ R2
0 +

40γ2σ2T

7n
+

4γ
√

10CσR0√
n

T−1∑
l=0

√
E[̂bl] +

40γ2Cσ2

7n

T−1∑
l=0

E[̂bl].

If a Byzantine peer deviates from the protocol at iteration k, it will be detected with some probability
pk during the next iteration. One can lower bound this probability as

pk ≥ m ·
|Gk|
nk
· 1

nk
=
m(1− δk)

nk
≥ m

n
.

Therefore, each individual Byzantine worker can violate the protocol no more than 1/p times on
average implying that

E[R2
T ] ≤ R2

0 +
40γ2σ2T

7n
+

4nγ
√

10CbσR0

m
√
n

+
40γ2Cσ2nb

7nm

= R2
0 +

40γ2σ2T

7n
+

4nγ
√

10CδσR0

m
+

40γ2Cσ2nδ

7m
.

Taking

γ = min

{
1

4L
,

√
7nR2

0

120σ2K
,

√
m2R2

0

1440Cσ2n2δ

}
we ensure that

40γ2σ2T

7n
+

4nγ
√

10CδσR0

m
+

40γ2Cσ2nδ

7m
≤ R2

0

3
+
R2

0

3
+
R2

0

3
= R2

0,

and, as a result, we get E[R2
T ] ≤ 2R2

0. Therefore, (38) holds for all k = 0, 1, . . . ,K. Together with
(36) it implies

E
[
f(xK)− f(x∗)

]
≤ 2R2

0

γK
.

Next, from our stepsize rule (34) it follows that

E
[
f(xK)− f(x∗)

]
= O

(
LR2

0

K
+

σR0√
nK

+
n
√
δσR0

mK

)
meaning that after

K = O

(
LR2

0

ε
+
σ2R2

0

nε2
+
n
√
δσR0

mε

)
iterations BTARD-SGD guarantees E[f(xK)− f(x∗)] ≤ ε.

In the convex case, similar observations hold as in the non-convex case. Next, we derive the result
without assuming that b̂k is known to all peers at each iteration.
Theorem E.5. Let As. 3.1 and 3.2 hold, Q = Rd, f be L-smooth (see Def. E.1), convex, and x∗ be
some optimum of f . Moreover, assume that b ≤ 0.1(n −m), m ≤ (n−2b)/2, and δ = 0 is used to
compute clipping parameter τl for CenteredClip. Next, assume that

γ = min

{
1

4L
,

√
7nR2

0

120σ2K
,

√
m2R2

0

72Cσ2n2b2

}
, ∆k

max =
(1 +

√
3)
√

2σ√
nk −m

, (39)

where R0 ≥ ‖x0− x∗‖ and ∆k
max is the parameter for verification 3 at iteration k of BTARD-SGD.

Then, we have E[f(xK)− f(x∗)] ≤ ε after K iterations of BTARD-SGD, where

K = O
(
LR2

0

ε
+
σ2R2

0

nε2
+
nbσR0

mε

)
(40)

and xK = 1
K

∑K−1
k=0 .
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Proof. The proof is almost identical to the proof of Theorem E.4. Following the same steps and using
(27) and (28) instead of (25) and (26) respectively we obtain the same sequence of inequalities up to
the following change: instead of δ̂k we should use 1k,v . Therefore, we have

E
[
‖xk+1 − x∗‖2 | xk

]
≤ ‖xk − x∗‖2 − 2γ (1− 2Lγ)

(
f(xk)− f(x∗)

)
−2γE

[
〈xk − x∗, ĝk − gk〉 | xk

]
+ 2γ2Cσ2

1k,v +
2γ2σ2

n− 2b−m
,

−2γE
[
〈xk − x∗, ĝk − gk〉 | xk

]
≤ 2γ

√
Cσ‖xk − x∗‖1k,v,

that result in

E
[
‖xk+1 − x∗‖2 | xk

]
≤ ‖xk − x∗‖2 − γ

(
f(xk)− f(x∗)

)
+2γ
√
Cσ‖xk − x∗‖1k,v + 2γ2Cσ2

1k,v +
40γ2σ2

7n
.

Taking the full expectation from the both sides of the above inequality and summing up the results
for k = 0, 1, . . . ,K − 1 we derive

γ

K

K−1∑
k=0

E[f(xk)− f(x∗)] ≤ 1

K

K−1∑
k=0

(
E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

])
+

40γ2σ2

7n

+
2γ
√
Cσ

K

K−1∑
k=0

E
[
‖xk − x∗‖1k,v

]
+

2γ2Cσ2

K

K−1∑
k=0

E[1k,v]

≤ ‖x0 − x∗‖2 − E[‖xK − x∗‖2]

K
+

40γ2σ2

7n

+
2γ
√
Cσ

K

K−1∑
k=0

√
E [‖xk − x∗‖2]E[1k,v] +

2γ2Cσ2

K

K−1∑
k=0

E[1k,v].

From Jensen’s inequality we have f(xK) ≤ 1
K

∑K−1
k=0 f(xk), where xK = 1

K

∑K−1
k=0 xk. Using this

and new notation Rk = ‖xk − x∗‖, k ≥ 0 we get

0 ≤ γE
[
f(xK)− f(x∗)

]
≤ R2

0 − E[R2
K ]

K
+

40γ2σ2

7n

+
2γ
√
Cσ

K

K−1∑
k=0

√
E [R2

k]E[1k,v] +
2γ2Cσ2

K

K−1∑
k=0

E[1k,v](41)

implying (after changing the indices) that

E[R2
k] ≤ R2

0 +
40γ2σ2k

7n
+ 2γ

√
Cσ

k−1∑
l=0

√
E [R2

l ]E[1l,v] + 2γ2Cσ2
k−1∑
l=0

E[1l,v] (42)

holds for all k ≥ 0. In the remaining part of the proof we derive by induction that

R2
0 +

40γ2σ2k

7n
+ 2γ

√
Cσ

k−1∑
l=0

√
E [R2

l ]E[1l,v] + 2γ2Cσ2
k−1∑
l=0

E[1l,v] ≤ 2R2
0 (43)

for all k = 0, . . . ,K. For k = 0 this inequality trivially holds. Next, assume that it holds for all
k = 0, 1, . . . , T − 1, T ≤ K − 1. Let us show that it holds for k = T as well. From (42) and (43)
we have that E[R2

k] ≤ 2R2
0 for all k = 0, 1, . . . , T − 1. Therefore,

E[R2
T ] ≤ R2

0 +
40γ2σ2k

7n
+ 2γ

√
Cσ

T−1∑
l=0

√
E [R2

l ]E[1l,v] + 2γ2Cσ2
T−1∑
l=0

E[1l,v]

≤ R2
0 +

40γ2σ2k

7n
+ 2γ

√
2CσR0

T−1∑
l=0

√
E[1l,v] + 2γ2Cσ2

T−1∑
l=0

E[1l,v].
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If a Byzantine peer deviates from the protocol at iteration k, it will be detected with some probability
pk during the next iteration. One can lower bound this probability as

pk ≥ m ·
|Gk|
nk
· 1

nk
=
m(1− δk)

nk
≥ m

n
.

That is, each individual Byzantine worker can violate the protocol no more than 1/p times on average.
However, even one Byzantine peer can create a shift of the order ∆k

max at each part of the resulting
vector. Therefore, all Byzantine peers can violate the protocol no more than b/p times on average
implying that

E[R2
T ] ≤ R2

0 +
40γ2σ2T

7n
+

2γnb
√

2CσR0

m
+

2γ2nbCσ2

m
.

Taking

γ = min

{
1

4L
,

√
7nR2

0

120σ2K
,

√
m2R2

0

72Cσ2n2b2

}
we ensure that

40γ2σ2T

7n
+

2γnb
√

2CσR0

m
+

2γ2nbCσ2

m
≤ R2

0

3
+
R2

0

3
+
R2

0

3
= R2

0,

and, as a result, we get E[R2
T ] ≤ 2R2

0. Therefore, (43) holds for all k = 0, 1, . . . ,K. Together with
(41) it implies

E
[
f(xK)− f(x∗)

]
≤ 2R2

0

γK
.

Next, from our stepsize rule (39) it follows that

E
[
f(xK)− f(x∗)

]
= O

(
LR2

0

K
+

σR0√
nK

+
nbσR0

mK

)
meaning that after

K = O
(
LR2

0

ε
+
σ2R2

0

nε2
+
nbσR0

mε

)
iterations BTARD-SGD guarantees E[f(xK)− f(x∗)] ≤ ε.

E.3.5 STRONGLY CONVEX CASE: RESTARTED-BTARD-SGD

In this section, we provide the complete statements and the full proofs of the convergence results
for the restarted version of BTARD-SGD (RESTARTED-BTARD-SGD, Alg. 7) when the objective
function f is smooth and strongly convex.

Algorithm 7 RESTARTED-BTARD-SGD

Input: x0 – starting point, r – number of restarts, {γt}rt=1 – stepsizes for BTARD-SGD, {Kt}rt=1 –
number of iterations for BTARD-SGD, {si,k,t}n,K−1,ri,k,t=0,0,0 – seeds for batches computations

1: x̂0 = x0

2: for t = 1, 2, . . . , r do
3: Run BTARD-SGD (Alg. 6) for Kt iterations with stepsize γt, starting point x̂t−1, and

seeds for batches computations {si,k,t}n,K−1i,k=0,0. Define x̂t as x̂t = 1
Kt

Kt∑
k=0

xk,t, where

x0,t, x1,t, . . . , xKt,t are the iterates produced by BTARD-SGD.
Output: x̂r

We start with the case when the number of attacking Byzantine workers is known at each iteration.
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Theorem E.6. Let As. 3.1 and 3.2 hold, Q = Rd, f be L-smooth (see Def. E.1), µ-strongly convex
(see Def. E.2), and x∗ be some optimum of f . Moreover, assume that b ≤ 0.1(n−m), m ≤ (n−2b)/2,
and the exact number of attacking Byzantine peers is known to all good peers at each iteration. Next,
assume that

γt = min

 1

4L
,

√
7nR2

0

120 · 2tσ2Kt
,

√
m2R2

0

1440 · 2tCσ2n2δ

 , ∆k,t
max =

(1 +
√

3)
√

2σ√
ntk −m

, (44)

Kt =

⌈
max

{
16L

µ
,

32σ22t

µ2R2
0

,
48
√

10Cn
√
δσ2

t
2

mµR0

}⌉
, r =

⌈
log2

µR2
0

ε

⌉
− 1 (45)

where R0 ≥ ‖x0 − x∗‖, ∆k,t
max is the parameter for verification 3 at iteration k of BTARD-SGD

during the t-th restart, ntk is the total number of workers at iteration k of t-th restart. Then, we have
E[f(x̂r)− f(x∗)] ≤ ε after r restarts of BTARD-SGD and the total number of executed iterations
of BTARD-SGD is

r∑
t=1

Kt = O

(
L

µ
log

µR2
0

ε
+

σ2

nµε
+
n
√
δσ

m
√
µε

)
. (46)

Proof. Theorem E.4 implies that BTARD-SGD with

γ = min

{
1

4L
,

√
7nR2

0

120σ2K
,

√
m2R2

0

1440Cσ2n2δ

}
guarantees

E
[
f(xK)− f(x∗)

]
≤ 2R2

0

γK

after K iterations. Therefore, after the first restart we have

E[f(x̂1)− f(x∗)] ≤ 2R2
0

γ1K1
≤ µR2

0

4
.

From µ-strong convexity of f and ∇f(x∗) = 0 we have

µ

2
‖x̂1 − x∗‖2 ≤ f(x̂1)− f(x∗) =⇒ E[‖x̂1 − x∗‖2] ≤ R2

0

2
.

Next, assume that we have E[f(x̂t) − f(x∗)] ≤ µR2
0

2t+1 , E[‖x̂t − x∗‖2] ≤ R2
0

2t for some t ≤ r − 1.
Then, Theorem E.4 implies that

E[f(x̂t+1)− f(x∗) | xt] ≤ 2‖x̂t − x∗‖2

γtKt
.

Taking the full expectation from the both sides of previous inequality we get

E[f(x̂t+1)− f(x∗)] ≤ 2E[‖x̂t − x∗‖2]

γtKt
≤ 2R2

0

2tγtKt
≤ µR2

0

2t+2
.

From µ-strong convexity of f and ∇f(x∗) = 0 we have

µ

2
‖x̂t+1 − x∗‖2 ≤ f(x̂t+1)− f(x∗) =⇒ E[‖x̂t+1 − x∗‖2] ≤ R2

0

2t+1
.

Therefore, by mathematical induction we have that for all t = 1, . . . , r

E[f(x̂t)− f(x∗)] ≤ µR2
0

2t+1
, E

[
‖x̂t − x∗‖2

]
≤ R2

0

2t
.
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Then, after r =
⌈
log2

µR2
0

ε

⌉
− 1 restarts of BTARD-SGD we have E[f(x̂r)− f(x∗)] ≤ ε. The total

number of iterations executed by BTARD-SGD is
r∑
t=1

Kt = O

(
r∑
t=1

max

{
L

µ
,
σ22t

µ2R2
0

,
n
√
δσ2

t
2

mµR0

})

= O

(
L

µ
r +

σ22r

µ2R2
0

+
n
√
δσ2

r
2

mµR0

)

= O

(
L

µ
log

µR2
0

ε
+

σ2

µ2R2
0

· µR
2
0

ε
+
n
√
δσ

mµR0
·
√
µR2

0

ε

)

= O

(
L

µ
log

µR2
0

ε
+

σ2

nµε
+
n
√
δσ

m
√
µε

)
.

In the strongly convex case, similar observations hold as in the non-convex case. Next, we derive the
result without assuming that b̂k is known to all peers at each iteration.
Theorem E.7. Let As. 3.1 and 3.2 hold, Q = Rd, f be L-smooth (see Def. E.1), µ-strongly convex
(see Def. E.2), and x∗ be some optimum of f . Moreover, assume that b ≤ 0.1(n−m), m ≤ (n−2b)/2,
and δ = 0 is used to compute clipping parameter τl for CenteredClip. Next, assume that

γt = min

 1

4L
,

√
7nR2

0

120 · 2tσ2Kt
,

√
m2R2

0

72 · 2tCσ2n2b2

 , ∆k,t
max =

(1 +
√

3)
√

2σ√
ntk −m

, (47)

Kt =

⌈
max

{
16L

µ
,

32σ22t

µ2R2
0

,
24
√

2Cnbσ2
t
2

mµR0

}⌉
, r =

⌈
log2

µR2
0

ε

⌉
− 1 (48)

where R0 ≥ ‖x0 − x∗‖, ∆k,t
max is the parameter for verification 3 at iteration k of BTARD-SGD

during the t-th restart, ntk is the total number of workers at iteration k of t-th restart. Then, we have
E[f(x̂r)− f(x∗)] ≤ ε after r restarts of BTARD-SGD and the total number of executed iterations
of BTARD-SGD is

r∑
t=1

Kt = O
(
L

µ
log

µR2
0

ε
+

σ2

nµε
+

nbσ

m
√
µε

)
. (49)

Proof. Theorem E.5 implies that BTARD-SGD with

γ = min

{
1

4L
,

√
7nR2

0

120σ2K
,

√
m2R2

0

72Cσ2n2b2

}
guarantees

E
[
f(xK)− f(x∗)

]
≤ 2R2

0

γK

after K iterations. Therefore, after the first restart we have

E[f(x̂1)− f(x∗)] ≤ 2R2
0

γ1K1
≤ µR2

0

4
.

From µ-strong convexity of f and ∇f(x∗) = 0 we have

µ

2
‖x̂1 − x∗‖2 ≤ f(x̂1)− f(x∗) =⇒ E[‖x̂1 − x∗‖2] ≤ R2

0

2
.

Next, assume that we have E[f(x̂t) − f(x∗)] ≤ µR2
0

2t+1 , E[‖x̂t − x∗‖2] ≤ R2
0

2t for some t ≤ r − 1.
Then, Theorem E.5 implies that

E[f(x̂t+1)− f(x∗) | xt] ≤ 2‖x̂t − x∗‖2

γtKt
.
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Taking the full expectation from the both sides of previous inequality we get

E[f(x̂t+1)− f(x∗)] ≤ 2E[‖x̂t − x∗‖2]

γtKt
≤ 2R2

0

2tγtKt
≤ µR2

0

2t+2
.

From µ-strong convexity of f and ∇f(x∗) = 0 we have

µ

2
‖x̂t+1 − x∗‖2 ≤ f(x̂t+1)− f(x∗) =⇒ E[‖x̂t+1 − x∗‖2] ≤ R2

0

2t+1
.

Therefore, by mathematical induction we have that for all t = 1, . . . , r

E[f(x̂t)− f(x∗)] ≤ µR2
0

2t+1
, E

[
‖x̂t − x∗‖2

]
≤ R2

0

2t
.

Then, after r =
⌈
log2

µR2
0

ε

⌉
− 1 restarts of BTARD-SGD we have E[f(x̂r)− f(x∗)] ≤ ε. The total

number of iterations executed by BTARD-SGD is
r∑
t=1

Kt = O

(
r∑
t=1

max

{
L

µ
,
σ22t

µ2R2
0

,
nbσ2

t
2

mµR0

})

= O
(
L

µ
r +

σ22r

µ2R2
0

+
nbσ2

r
2

mµR0

)
= O

(
L

µ
log

µR2
0

ε
+

σ2

µ2R2
0

· µR
2
0

ε
+

nbσ

mµR0
·
√
µR2

0

ε

)

= O
(
L

µ
log

µR2
0

ε
+

σ2

nµε
+

nbσ

m
√
µε

)
.

E.4 CONVERGENCE GUARANTEES FOR BTARD-CLIPPED-SGD

The results for BTARD-SGD and RESTARTED-BTARD-SGD rely on As. 3.2 that the stochastic
gradients have not too heavy tails, i.e., sub-quadratically decreasing tails. The main reason why it
is needed in the analysis is to prevent too often extra computations because of Verification 3 from
BTARD when all workers honestly follow the protocol. However, in many important NLP tasks such
as BERT training (Zhang et al., 2020), the noise in the stochastic gradient has such a heavy noise that
As. 3.2 becomes unnatural.

Algorithm 8 BTARD-CLIPPED-SGD

Input: x0 – starting point, γ – stepsize, K – number of iterations, {si,k}n,K−1i,k=0,0 – seeds for batches
computations, {λk}K−1k=0 – gradient clipping parameter

1: C0 = Banned−1 = ∅
2: for k = 0, 1, . . . ,K − 1 do

3: Worker i computes g̃ki =

{
min

{
1, λk
‖∇f(xk,ξi,k)‖

}
∇f(xk, ξi,k), if i ∈ Gk \ Ck,

∗, if i ∈ Bk \ Ck,
, where

ξi,k is generated via seed si,k available to every worker
4:

(
ĝk, public_infok

)
= BTARD(g̃k

ik1
, gk
ik1
, . . . , g̃kikak

), where {ik1 , . . . , ikak} = (Gk ∪ Bk) \ Ck
5: Choose 2m workers ck+1

1 , . . . , ck+1
m , uk+1

1 , . . . , uk+1
m uniformly at random without replace-

ment, Ck+1 = {ck+1
1 , . . . , ck+1

m }, Uk+1 = {uk+1
1 , . . . , uk+1

m }
6: Bannedk = CHECKCOMPUTATIONS(Ck+1,Uk+1, public_infok)
7: xk+1 = projQ(xk − γĝk) := argminx∈Q ‖x− (xk − γĝk)‖
8: Gk+1 = Gk \ Bannedk−1
9: Bk+1 = Bk \ Bannedk−1

To handle the problems with heavy-tailed noise distributions we consider BTARD-CLIPPED-SGD
(see Alg. 8 in Appendix) applied to solve (3) such that Q is bounded. Essentially, this algorithm
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coincides with BTARD-SGD up to the following change: all good peers i ∈ Gk \ Ck use clipped
stochastic gradients g̃ki = (g̃ki (1)>, . . . , g̃ki (nk − m)>)>, where g̃ki (l) = min

{
1, λk
‖gki (l)‖

}
gki (l),

l = 1, . . . , nk −m, and gki is the stochastic gradient. Next, we introduce the following assumption.

Assumption E.1. There exist such constant G > 0, s0 ∈ [d], and α ∈ (1, 2] that for any set of
indices S = (i1, . . . , id), 1 ≤ i1 < i2 < . . . < is ≤ d, s ≥ s0 and arbitrary x ∈ Q stochastic
gradient∇f(x, ξ) satisfy

E[∇f(x, ξ)] = ∇f(x), E
[∥∥∇[S]f(x, ξ)

∥∥α] ≤ (√sG√
d

)α
, (50)

where∇[S]f(x, ξ) is defined in As. 3.1.

This is a modified version of the assumption used in Zhang et al. (2020). When α < 2 the variance
of the stochastic gradient can be unbounded. One can show that in such a regime vanilla SGD can
diverge (Zhang et al., 2020).

Under As. E.1 we derive the convergence results for convex and strongly convex problems.

E.4.1 QUALITY OF THE AGGREGATION

Since now we have As. E.1 instead of As. 3.1 and 3.2 it is needed to derive new guarantees for the
quality of the aggregation. We start with the following useful lemma about the properties of clipped
stochastic gradeints.

Lemma E.5 (See also Lemma 9 from Zhang et al. (2020)). Let As. E.1 holds and i, j ∈ Gk \ Ck.
Then, for all l = 1, 2, . . . , nk −m we have√

E
[
‖g̃ki (l)− g̃kj (l)‖4 | xk

]
≤ 4λ

4−α
2

k

(
G√

nk −m

)α
2

, (51)

E
[
‖gk(l)‖2 | xk

]
≤

Gαλ2−αk

(nk −m)
α
2
, (52)

∥∥E[gk(l) | xk]−∇(l)f(xk)
∥∥2 ≤ G2α

(nk −m)αλ
2(α−1)
k

, (53)

where gk(l) = 1
|Gk\Ck|

∑
i∈Gk\Ck

g̃ki (l) for all l = 1, . . . , nk −m.

Proof. First of all, we derive

E
[
‖g̃ki (l)− g̃kj (l)‖4 | xk

]
= E

[
‖g̃ki (l)− g̃kj (l)‖α‖g̃ki (l)− g̃kj (l)‖4−α | xk

]
≤ 8λ4−αk E

[
‖∇(l)f(xk, ξi,k)‖α + ‖∇(l)f(xk, ξj,k)‖α | xk

]
(50)
≤ 16λ4−αk

(
G√

nk −m

)α
implying (51). Next, for all i ∈ Gk \ Ck we have

E
[
‖g̃ki (l)‖2 | xk

]
= E

[
‖g̃ki (l)‖α‖g̃ki (l)‖2−α | xk

]
≤ λ2−αk E

[
‖∇(l)f(xk, ξi,k)‖α | xk

]
(50)
≤

Gαλ2−αk

(nk −m)
α
2

implying

E
[
‖gk(l)‖2 | xk

]
≤ 1

|Gk \ Ck|
∑

i∈Gk\Ck

E
[
‖g̃ki (l)‖2 | xk

]
≤

Gαλ2−αk

(nk −m)
α
2
.
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Finally, for all i ∈ Gk \ Ck we derive∥∥E[g̃ki (l) | xk]−∇(l)f(xk)
∥∥ =

∥∥E[g̃ki (l)−∇(l)f(xk, ξi,k) | xk]
∥∥

≤ E
[∥∥g̃ki (l)−∇(l)f(xk, ξi,k)

∥∥ | xk]
= E

[∥∥g̃ki (l)−∇(l)f(xk, ξi,k)
∥∥1{‖∇(l)f(xk,ξi,k)‖≥λk} | x

k
]

≤ E
[∥∥∇(l)f(xk, ξi,k)

∥∥1{‖∇(l)f(xk,ξi,k)‖≥λk} | x
k
]

≤
E
[∥∥∇(l)f(xk, ξi,k)

∥∥α 1{‖∇(l)f(xk,ξi,k)‖≥λk} | x
k
]

λα−1k

(50)
≤ Gα

(nk −m)
α
2 λα−1k

implying∥∥E[gk(l) | xk]−∇(l)f(xk)
∥∥2 ≤ 1

|Gk \ Ck|
∑

i∈Gk\Ck

E
[
‖g̃ki (l)−∇(l)f(xk)‖2 | xk

]
≤ G2α

(nk −m)αλ
2(α−1)
k

.

Next, we derive the guarantees for the quality of the aggregation in the case when the number of
Byzantine peers violating the protocol b̂k is known at each iteration.

Lemma E.6. Let As. E.1 hold and b ≤ 0.15(n −m). Assume that b̂k is known for each worker
at iteration k, ∆k

max = 2λk = 2λ√
nk−m

and δ = δ̂k is used to compute clipping parameter τl for

CenteredClip. If the total number of iterations T of CenteredClip satisfies T ≥ log0.94
2δσ2

E[‖v0−gk‖2]
and CHECKAVERAGING is not triggered for any worker, then

E
[
‖ĝk − gk‖2 | xk

]
≤ δ̂k(C1λ

4−α
2 G

α
2 + C2λ

2), (54)

E
[
‖ĝk‖2 | xk

]
≤ 2δ̂k(C1λ

4−α
2 G

α
2 + C2λ

2) + 2Gαλ2−α, (55)

where gk = 1
|Gk\Ck|

∑
j∈Gk\Ck

gkj , C1 = 384, and C2 = 4.

Proof. Consider the i-th part of ĝk, i.e., consider ĝk(i). If i ∈ Gk \ Ck, then, in view of (51), we can
directly apply Lemma E.1 and get

E
[
‖ĝk(i)− gk(i)‖2 | xk

]
≤ 384δ̂kλ

4−α
2

k

G
α
2

(nk −m)
α
4

=
384δ̂kλ

4−α
2 G

α
2

nk −m
.

Next, if i ∈ Bk \ Ck, then

E
[
‖ĝk(i)− gk(i)‖2 | xk

]
≤ (∆k

max)2 = 4λ2k =
4λ2

nk −m
.

Putting all together, we derive

E
[
‖ĝk − gk‖2 | xk

]
=

∑
i∈Gk\Ck

E
[
‖ĝk(i)− gk(i)‖2 | xk

]
+

∑
i∈Bk\Ck

E
[
‖ĝk(i)− gk(i)‖2 | xk

]
≤ (1− δ̂k)(nk −m) · 384δ̂kλ

4−α
2 G

α
2

nk −m
+ δ̂k(nk −m) · 4λ2

nk −m
≤ δ̂k(C1λ

4−α
2 G

α
2 + C2λ

2).
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Using (52) we obtain

E
[
‖ĝk‖2 | xk

]
≤ 2E

[
‖ĝk − gk‖2 | xk

]
+ 2E

[
‖gk‖2 | xk

]
(54)
≤ 2δ̂k(C1λ

4−α
2 G

α
2 + C2λ

2) + 2
∑

i∈(Gk∪Bk)\Ck

Gαλ2−αk

(nk −m)
α
2

= 2δ̂k(C1λ
4−α
2 G

α
2 + C2λ

2) + 2Gαλ2−α.

We notice that Verification 3 can be simplified in the following way: if at least on good peer i notices
that ‖g̃ki (j) − ĝk(j)‖ > ∆k

max = 2λk, then peer i should accuse j-th peer and both are removed
from the training process. In this scenario, there is no sense for Byzantine workers in triggering to
deviate significantly from the clipped stochastic gradients of the good peers.

As for BTARD-SGD, when b̂k is unknown we always use CENTEREDCLIP with τl = ∞ for all
l ≥ 0, i.e., good peers compute an exact average. In this settings, even 1 Byzantine worker can
significantly shift the average in all parts of the vector. The next lemma quantifies the negative effect
of Byzantine workers in this case.

Lemma E.7. Let As. E.1 hold and b ≤ 0.15(n −m). Assume that b̂k is known for each worker
at iteration k, ∆k

max = 2λk = 2λ√
nk−m

and δ = δ̂k is used to compute clipping parameter τl for

CenteredClip. If the total number of iterations T of CenteredClip satisfies T ≥ log0.94
2δσ2

E[‖v0−gk‖2]
and CHECKAVERAGING is not triggered for any worker, then

E
[
‖ĝk − gk‖2 | xk

]
≤ C2λ

2
1k,v, (56)

E
[
‖ĝk‖2 | xk

]
≤ 2C2λ

2
1k,v + 2Gαλ2−α, (57)

where gk = 1
|Gk\Ck|

∑
j∈Gk\Ck

gkj , C2 = 4, and 1k,v is an indicator function of the event that at least 1

Byzantine peer violates the protocol at iteration k.

Proof. For all i ∈ (Gk ∪ Bk) \ Ck we have

E
[
‖ĝk(i)− gk(i)‖2 | xk

]
≤ (∆k

max)21k,v = 4λ2k1k,v =
4λ2

nk −m
1k,v

implying

E
[
‖ĝk − gk‖2 | xk

]
=

∑
i∈(Gk∪Bk)\Ck

E
[
‖ĝk(i)− gk(i)‖2 | xk

]
≤ (nk −m) · 4λ2

nk −m
1k,v = C2λ

2
1k,v.

Using (52) we obtain

E
[
‖ĝk‖2 | xk

]
≤ 2E

[
‖ĝk − gk‖2 | xk

]
+ 2E

[
‖gk‖2 | xk

]
(54)
≤ 2C2λ

2
1k,v + 2

∑
i∈(Gk∪Bk)\Ck

Gαλ2−αk

(nk −m)
α
2

= 2C2λ
2
1k,v + 2Gαλ2−α.

E.4.2 CONVEX CASE

In this section, we provide the complete statements and the full proofs of the convergence results for
BTARD-CLIPPED-SGD when the objective function f is smooth and convex. We start with the case
when the number of Byzantine peers violating the protocol b̂k is known at each iteration.
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Theorem E.8. Let As. E.1 hold, Q is bounded, f be convex, x∗ be some optimum of f , and
∇f(x∗) = 0. Moreover, assume that b ≤ 0.15(n −m), m ≤ (n−2b)/2, and the exact number of
attacking Byzantine peers is known to all good peers at each iteration. Next, assume that

γ = min

 R0√
6GK

1
α

,
mR0

12Gn

√
10δ(C1K

4−α
2α + C2K

2
α )

 , ∆k
max = 2λk =

2λ√
nk −m

, (58)

λ = GK
1
α , (59)

where R0 ≥ ‖x0 − x∗‖ and ∆k
max is the parameter for verification 3 at iteration k of BTARD-

CLIPPED-SGD. Then, we have E[f(xK)−f(x∗)] ≤ ε afterK iterations of BTARD-CLIPPED-SGD,
where

K = O

(GR0

ε

) α
α−1

+

(
n
√
δGR0

mε

) α
α−1

 (60)

and xK = 1
K

∑K−1
k=0 .

Proof. Non-expansiveness of the projection operator and convexity of f imply

‖xk+1 − x∗‖2 =
∥∥projQ(xk − γĝk)− projQ(x∗)

∥∥2
≤ ‖xk − x∗ − γĝk‖2

= ‖xk − x∗‖2 − 2γ〈xk − x∗, ĝk〉+ γ2‖ĝk‖2

= ‖xk − x∗‖2 − 2γ〈xk − x∗,∇f(xk)〉 − 2γ〈xk − x∗, ĝk −∇f(xk)〉+ γ2‖ĝk‖2

≤ ‖xk − x∗‖2 − 2γ
(
f(xk)− f(x∗)

)
− 2γ〈xk − x∗, ĝk −∇f(xk)〉+ γ2‖ĝk‖2.

Taking conditional expectation E[· | xk] from the both sides of previous inequality we derive

E
[
‖xk+1 − x∗‖2 | xk

]
≤ ‖xk − x∗‖2 − 2γ

(
f(xk)− f(x∗)

)
−2γE

[
〈xk − x∗, ĝk −∇f(xk)〉 | xk

]
+ γ2E

[
‖ĝk‖2 | xk

]
(55)
≤ ‖xk − x∗‖2 − 2γ

(
f(xk)− f(x∗)

)
+ 2γ2Gαλ2−α

−2γ
〈
xk − x∗,E

[
ĝk − gk | xk

]〉
+ 2γ2δ̂k(C1λ

4−α
2 G

α
2 + C2λ

2)

= ‖xk − x∗‖2 − 2γ
(
f(xk)− f(x∗)

)
+ 2γ2G2K

2−α
α

−2γ
〈
xk − x∗,E

[
ĝk − gk | xk

]〉
+

2γ2G2(C1K
4−α
2α + C2K

2
α )

nk −m
b̂k.

To estimate the inner product in the right-hand side we apply Cauchy-Schwarz inequality:

−2γ
〈
xk − x∗,E

[
ĝk − gk | xk

]〉
≤ 2γ‖xk − x∗‖ ·

∥∥E [ĝk − gk | xk]∥∥
≤ 2γ‖xk − x∗‖E

[
‖ĝk − gk‖ | xk

]
≤ 2γ‖xk − x∗‖

√
E
[
‖ĝk − gk‖2 | xk

]
(54)
≤ 2γ‖xk − x∗‖

√
δ̂k(C1λ

4−α
2 G

α
2 + C2λ2)

=
2γG‖xk − x∗‖

√
C1K

4−α
2α + C2K

2
α

√
nk −m

√
b̂k

≤
2γG‖xk − x∗‖

√
20(C1K

4−α
2α + C2K

2
α )

√
7n

√
b̂k,
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where in the last inequality we use b ≤ 0.15(n−m),m ≤ (n−2b)/2, γ ≤ 1/4L, nk−m ≥ n−2b−m ≥
7
20n. Putting all together we obtain

E
[
‖xk+1 − x∗‖2 | xk

]
≤ ‖xk − x∗‖2 − 2γ

(
f(xk)− f(x∗)

)
+ 2γ2G2K

2−α
α

+
2γG‖xk − x∗‖

√
20(C1K

4−α
2α + C2K

2
α )

√
7n

√
b̂k

+
40γ2G2(C1K

4−α
2α + C2K

2
α )

7n
b̂k.

Taking the full expectation from the both sides of the above inequality and summing up the results
for k = 0, 1, . . . , T − 1 we derive

2γ

T

T−1∑
k=0

E[f(xk)− f(x∗)] ≤ 1

T

T−1∑
k=0

(
E
[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

])
+ 2γ2G2K

2−α
α

+
4γG

√
5(C1K

4−α
2α + C2K

2
α )

√
nT

T−1∑
k=0

E
[
‖xk − x∗‖

√
b̂k

]

+
40γ2G2(C1K

4−α
2α + C2K

2
α )

7nT

T−1∑
k=0

E[̂bk]

≤ ‖x0 − x∗‖2 − E[‖xK − x∗‖2]

K
+ 2γ2G2K

2−α
α

+
4γG

√
5(C1K

4−α
2α + C2K

2
α )

√
nT

T−1∑
k=0

√
E [‖xk − x∗‖2]E

[
b̂k

]
+

40γ2G2(C1K
4−α
2α + C2K

2
α )

7nT

T−1∑
k=0

E[̂bk].

From Jensen’s inequality we have f(xT ) ≤ 1
T

∑T−1
k=0 f(xk), where xT = 1

T

∑T−1
k=0 x

k. Using this
and new notation Rk = ‖xk − x∗‖, k > 0, R0 ≥ ‖x0 − x∗‖ we get

0 ≤ 2γE
[
f(xT )− f(x∗)

]
≤ R2

0 − E[R2
T ]

T
+ 2γ2G2K

2−α
α

+
4γG

√
5(C1K

4−α
2α + C2K

2
α )

√
nT

T−1∑
k=0

√
E [R2

k]E
[
b̂k

]
+

40γ2G2(C1K
4−α
2α + C2K

2
α )

7nT

T−1∑
k=0

E[̂bk] (61)

implying (after changing the indices) that

E[R2
k] ≤ R2

0 + 2γ2G2kK
2−α
α +

4γG

√
5(C1K

4−α
2α + C2K

2
α )

√
n

k−1∑
l=0

√
E [R2

l ]E
[
b̂l

]
+

40γ2G2(C1K
4−α
2α + C2K

2
α )

7n

k−1∑
l=0

E[̂bl] (62)

holds for all k ≥ 0. In the remaining part of the proof we derive by induction that

R2
0 + 2γ2G2kK

2−α
α +

4γG

√
5(C1K

4−α
2α + C2K

2
α )

√
n

k−1∑
l=0

√
E [R2

l ]E
[
b̂l

]
+

40γ2G2(C1K
4−α
2α + C2K

2
α )

7n

k−1∑
l=0

E[̂bl] ≤ 2R2
0 (63)
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for all k = 0, . . . ,K. For k = 0 this inequality trivially holds. Next, assume that it holds for all
k = 0, 1, . . . , T − 1, T ≤ K − 1. Let us show that it holds for k = T as well. From (37) and (38)
we have that E[R2

k] ≤ 2R2
0 for all k = 0, 1, . . . , T − 1. Therefore,

E[R2
T ] ≤ R2

0 + 2γ2G2TK
2−α
α +

4γG

√
5(C1K

4−α
2α + C2K

2
α )

√
n

T−1∑
l=0

√
E [R2

l ]E
[
b̂l

]
+

40γ2G2(C1K
4−α
2α + C2K

2
α )

7n

T−1∑
l=0

E[̂bl]

≤ R2
0 + 2γ2G2TK

2−α
α +

4γGR0

√
10(C1K

4−α
2α + C2K

2
α )

√
n

T−1∑
l=0

√
E
[
b̂l

]
+

40γ2G2(C1K
4−α
2α + C2K

2
α )

7n

T−1∑
l=0

E[̂bl]

If a Byzantine peer deviates from the protocol at iteration k, it will be detected with some probability
pk during the next iteration. One can lower bound this probability as

pk ≥ m ·
|Gk|
nk
· 1

nk
=
m(1− δk)

nk
≥ m

n
.

Therefore, each individual Byzantine worker can violate the protocol no more than 1/p times on
average implying that

E[R2
T ] ≤ R2

0 + 2γ2G2TK
2−α
α +

4γGR0n

√
10(C1K

4−α
2α + C2K

2
α )b

m
√
n

+
40γ2G2(C1K

4−α
2α + C2K

2
α )nb

7nm

T≤K
≤ R2

0 + 2γ2G2K
2
α +

4γGR0n

√
10(C1K

4−α
2α + C2K

2
α )δ

m

+
40γ2G2(C1K

4−α
2α + C2K

2
α )nδ

7m
.

Taking

γ = min

 R0√
6GK

1
α

,
mR0

12Gn

√
10δ(C1K

4−α
2α + C2K

2
α )


we ensure that

2γ2G2K
2
α +

4γGR0n

√
10(C1K

4−α
2α + C2K

2
α )δ

m

+
40γ2G2(C1K

4−α
2α + C2K

2
α )nδ

7m
≤ R2

0

3
+
R2

0

3
+
R2

0

3
= R2

0

and, as a result, we get E[R2
T ] ≤ 2R2

0. Therefore, (63) holds for all k = 0, 1, . . . ,K. Together with
(61) it implies

E
[
f(xK)− f(x∗)

]
≤ R2

0

γK
.

Next, from our stepsize rule (58) it follows that

E
[
f(xK)− f(x∗)

]
= O

(
GR0

K
1−α
α

+
n
√
δGR0

mK
1−α
α

)
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meaning that after

K = O

(GR0

ε

) α
α−1

+

(
n
√
δGR0

mε

) α
α−1


iterations BTARD-CLIPPED-SGD guarantees E[f(xK)− f(x∗)] ≤ ε.

If there are no Byzantine peers (δ = 0), the theorem establishes new result for the convergence of
CLIPPED-SGD for convex objectives. In the strongly convex case, the theorem recovers the rates
that are optimal in this setting as shown in Zhang et al. (2020). Next, when the number of attacking
Byzantines is known at each iteration and n

√
δ/m = O(1), the complexity bound is the same as in the

case when δ = 0. This means that the negative impact of Byzantine workers is negligible. Finally,
the derived theoretical guarantees do not benefit from the increase of the total number of peers n.
However, the result holds even for non-smooth problems and it is known that parallelization does
not help to improve the complexity bounds in such generality. Nevertheless, our results show that
BTARD-CLIPPED-SGD provably converges to any predefined accuracy ε > 0. This is a property
that the majority of previous methods does not have (Karimireddy et al., 2020).

Next, we derive the result without assuming that b̂k is known to all peers at each iteration.

Theorem E.9. Let As. E.1 hold, Q is bounded, f be convex, x∗ be some optimum of f , and
∇f(x∗) = 0. Moreover, assume that b ≤ 0.15(n−m), m ≤ (n−2b)/2, and δ = 0 is used to compute
clipping parameter τl for CenteredClip. Next, assume that

γ = min

{
R0√

6GK
1
α

,
mR0

12
√

2C2GnbK
1
α

}
, ∆k

max = 2λk =
2λ√
nk −m

, (64)

λ = GK
1
α , (65)

where R0 ≥ ‖x0 − x∗‖ and ∆k
max is the parameter for verification 3 at iteration k of BTARD-

CLIPPED-SGD. Then, we have E[f(xK)−f(x∗)] ≤ ε afterK iterations of BTARD-CLIPPED-SGD,
where

K = O

((
GR0

ε

) α
α−1

+

(
nbGR0

mε

) α
α−1

)
(66)

and xK = 1
K

∑K−1
k=0 .

Proof. The proof is almost identical to the proof of Theorem E.8. Following the same steps and using
(56) and (57) instead of (54) and (55) respectively we obtain the same sequence of inequalities up to
the following change: instead of δ̂k we should use 1k,v . Therefore, we have

E
[
‖xk+1 − x∗‖2 | xk

]
≤ ‖xk − x∗‖2 − 2γ

(
f(xk)− f(x∗)

)
+ 2γ2G2K

2−α
α

−2γ
〈
xk − x∗,E

[
ĝk − gk | xk

]〉
+ 2γ2C2G

2K
2
α1k,v.

−2γ
〈
xk − x∗,E

[
ĝk − gk | xk

]〉
≤ 2γG‖xk − x∗‖

√
C2K

1
α1k,v,

and

E
[
‖xk+1 − x∗‖2 | xk

]
≤ ‖xk − x∗‖2 − 2γ

(
f(xk)− f(x∗)

)
+ 2γ2G2K

2−α
α

+2γG
√
C2K

1
α ‖xk − x∗‖1k,v + 2γ2C2G

2K
2
α1k,v.
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Taking the full expectation from the both sides of the above inequality and summing up the results
for k = 0, 1, . . . , T − 1 we derive

2γ

T

T−1∑
k=0

E[f(xk)− f(x∗)] ≤ 1

T

T−1∑
k=0

(
E
[
‖xk − x∗‖2

]
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[
‖xk+1 − x∗‖2

])
+ 2γ2G2K
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α

+
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√
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α

T

T−1∑
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E
[
‖xk − x∗‖1k,v

]
+

2γ2C2G
2K

2
α

T

T−1∑
k=0

E[1k,v]

≤ ‖x0 − x∗‖2 − E[‖xK − x∗‖2]

K
+ 2γ2G2K

2−α
α

+
2γG
√
C2K

1
α

T

T−1∑
k=0

√
E [‖xk − x∗‖2]E [1k,v]

+
2γ2C2G

2K
2
α

T

T−1∑
k=0

E[1k,v].

From Jensen’s inequality we have f(xT ) ≤ 1
T

∑T−1
k=0 f(xk), where xT = 1

T

∑T−1
k=0 x

k. Using this
and new notation Rk = ‖xk − x∗‖, k > 0, R0 ≥ ‖x0 − x∗‖ we get

0 ≤ 2γE
[
f(xT )− f(x∗)

]
≤ R2

0 − E[R2
T ]

T
+ 2γ2G2K

2−α
α

+
2γG
√
C2K

1
α

T

T−1∑
k=0

√
E [R2

k]E [1k,v]

+
2γ2C2G

2K
2
α

T

T−1∑
k=0

E[1k,v] (67)

implying (after changing the indices) that

E[R2
k] ≤ R2

0 + 2γ2G2kK
2−α
α + 2γG

√
C2K

1
α
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l=0

√
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l ]E [1l,v]

+2γ2C2G
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2
α
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l=0

E[1l,v] (68)

holds for all k ≥ 0. In the remaining part of the proof we derive by induction that
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0 + 2γ2G2kK
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α + 2γG

√
C2K

1
α
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l=0

√
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l ]E [1l,v]

+2γ2C2G
2K

2
α

k−1∑
l=0

E[1l,v] ≤ 2R2
0 (69)

for all k = 0, . . . ,K. For k = 0 this inequality trivially holds. Next, assume that it holds for all
k = 0, 1, . . . , T − 1, T ≤ K − 1. Let us show that it holds for k = T as well. From (42) and (43)
we have that E[R2

k] ≤ 2R2
0 for all k = 0, 1, . . . , T − 1. Therefore,

E[R2
T ] ≤ R2

0 + 2γ2G2TK
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1
α
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52



Under review as a conference paper at ICLR 2022

If a Byzantine peer deviates from the protocol at iteration k, it will be detected with some probability
pk during the next iteration. One can lower bound this probability as

pk ≥ m ·
|Gk|
nk
· 1

nk
=
m(1− δk)

nk
≥ m

n
.

That is, each individual Byzantine worker can violate the protocol no more than 1/p times on average.
However, even one Byzantine peer can create a shift of the order ∆k

max at each part of the resulting
vector. Therefore, all Byzantine peers can violate the protocol no more than b/p times on average
implying that

E[R2
T ] ≤ R2

0 + 2γ2G2TK
2−α
α +

2γGR0

√
2C2K

1
αnb

m
+

2γ2C2G
2K

2
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m
.

Taking

γ = min

{
R0√

6GK
1
α

,
mR0

12
√

2C2GnbK
1
α

}
we ensure that

2γ2G2TK
2−α
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2γ2C2G
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2
αnb

m
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0

3
+
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0

3
+
R2

0

3
= R2

0

and, as a result, we get E[R2
T ] ≤ 2R2

0. Therefore, (69) holds for all k = 0, 1, . . . ,K. Together with
(67) it implies

E
[
f(xK)− f(x∗)

]
≤ R2

0

γK
.

Next, from our stepsize rule (64) it follows that

E
[
f(xK)− f(x∗)

]
= O

(
GR0

K
1−α
α

+
nbGR0

mK
1−α
α

)
meaning that after

K = O

((
GR0

ε

) α
α−1

+

(
nbGR0

mε

) α
α−1

)
iterations BTARD-CLIPPED-SGD guarantees E[f(xK)− f(x∗)] ≤ ε.

That is, when the number of attacking Byzantines is unknown the complexity bound becomes
(nb/m)

α/(α−1) times worse in comparison to (60).

E.4.3 STRONGLY CONVEX CASE: RESTARTED-BTARD-CLIPPED-SGD

In this section, we provide the complete statements and the full proofs of the convergence results for
the restarted version of BTARD-CLIPPED-SGD (RESTARTED-BTARD-CLIPPED-SGD, Alg. 7)
when the objective function f is smooth and strongly convex.

Algorithm 9 RESTARTED-BTARD-CLIPPED-SGD

Input: x0 – starting point, r – number of restarts, {γt}rt=1 – stepsizes for BTARD-CLIPPED-SGD,
{Kt}rt=1 – number of iterations for BTARD-CLIPPED-SGD, {si,k,t}n,K−1,ri,k,t=0,0,1 – seeds for
batches computations, {λk,t}Kt,rk,t=0,1 – gradient clipping parameters

1: x̂0 = x0

2: for t = 1, 2, . . . , r do
3: Run BTARD-CLIPPED-SGD (Alg. 8) for Kt iterations with stepsize γt, starting point x̂t−1,

gradient clipping parameters {λk,t}K−1k=0 , and seeds for batches computations {si,k,t}n,K−1i,k=0,0.

Define x̂t as x̂t = 1
Kt

Kt∑
k=0

xk,t, where x0,t, x1,t, . . . , xKt,t are the iterates produced by BTARD-

CLIPPED-SGD.
Output: x̂r

We start with the case when the number of attacking Byzantine workers is known at each iteration.
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Theorem E.10. Let As. E.1 hold, Q is bounded, f be µ-strongly convex (see Def. E.2), x∗ be some
optimum of f , and ∇f(x∗) = 0. Moreover, assume that b ≤ 0.15(n −m), m ≤ (n−2b)/2, and the
exact number of attacking Byzantine peers is known to all good peers at each iteration. Next, assume
that

γ = min

 R0
√

6 · 2 t2GK
1
α
t

,
mR0

12 · 2 t2Gn
√

10δ(C1K
4−α
2α
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 , ∆k,t
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,

(70)

Kt = max


(

2
√

6G · 2 t2
µR0

) α
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,

(
24Gn

√
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t
2

mµR0

) α
α−1

 , λt = GK
1
α
t , (71)

r =

⌈
log2

µR2
0

ε

⌉
− 1, (72)

where R0 ≥ ‖x0 − x∗‖ and ∆k,t
max is the parameter for verification 3 at iteration k of BTARD-

CLIPPED-SGD, ntk is the total number of workers at iteration k of t-th restart. Then, we have
E[f(x̂r)− f(x∗)] ≤ ε after r restarts of BTARD-CLIPPED-SGD and the total number of executed
iterations of BTARD-CLIPPED-SGD is

r∑
t=1

Kt = O

(G2

µε

) α
2(α−1

)

+

(
n
√
δ

m

) α
α−1 (

G2

µε

) α
2(α−1)

 (73)

Proof. Theorem E.8 implies that BTARD-CLIPPED-SGD with

γ = min
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From µ-strong convexity of f and ∇f(x∗) = 0 we have
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Next, assume that we have E[f(x̂t) − f(x∗)] ≤ µR2
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Taking the full expectation from the both sides of previous inequality we get
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Therefore, by mathematical induction we have that for all t = 1, . . . , r
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In the strongly convex case, similar observations hold as in the convex case. Next, we derive the
result without assuming that b̂k is known to all peers at each iteration.
Theorem E.11. Let As. E.1 hold, Q is bounded, f be µ-strongly convex (see Def. E.2), x∗ be some
optimum of f , and∇f(x∗) = 0. Moreover, assume that b ≤ 0.15(n−m), m ≤ (n−2b)/2, and δ = 0
is used to compute clipping parameter τl for CenteredClip. Next, assume that
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where R0 ≥ ‖x0 − x∗‖ and ∆k,t
max is the parameter for verification 3 at iteration k of BTARD-

CLIPPED-SGD, ntk is the total number of workers at iteration k of t-th restart. Then, we have
E[f(x̂r)− f(x∗)] ≤ ε after r restarts of BTARD-CLIPPED-SGD and the total number of executed
iterations of BTARD-CLIPPED-SGD is
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Proof. Theorem E.9 implies that BTARD-CLIPPED-SGD with
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Next, assume that we have E[f(x̂t) − f(x∗)] ≤ µR2
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F REPUTATION SYSTEM FOR PUBLIC COLLABORATIONS

In this section, we address Byzantine-tolerant training in a setup where new participants can join or
leave collaboration midway through training. This requirement arises naturally if a given training run
relies on volunteers or an open pool of paid participants (Kijsipongse et al., 2018; Ryabinin & Gusev,
2020; Atre et al., 2021; Diskin et al., 2021). In addition to all existing concerns from Section 3, this
new setup allows Byzantine attackers to assume new identity each time they are blocked. Further
yet, Byzantine participants can simultaneously use multiple identities in order to obtain majority in
the voting procedure, which is known as Sybil attacks (Douceur, 2002; Trifa & Khemakhem, 2014;
Wang & Kangasharju, 2012).

In this analysis9, we consider a training run where Byzantine peers collectively possess δ < δmax
of all compute resources (we explore the role of δmax < 1/2 later in this section). Intuitively, one
can think of this setting as distributed training with n identical computers, bδ · nc of which are
controlled by Byzantines. The “Byzantine GPUs” can be allocated between an arbitrary number of
identities. For instance, one accelerator can run full BTARD-SGD protocol for one peer or drop some
of the computation and use the freed “compute cycles” to run computation for another participant.
Theoretically, a device can run computation for an arbitrarily large number of peers, as long as it
actually computes as many gradients as one benign participant does in the same time-frame.

To protect against this new attack type, we augment BTARD-SGD with a reputation system designed
to limit the impact of pseudonymous identities with the actual underlying compute. We base this
system on the following three assumptions:

1. Unique and optimal computations: the gradients computed by peer i at step k cannot be
circumvented or reused from other peers and/or previous steps.

2. Public key infrastructure: peers have unique public/private key pairs and know each other’s
public keys.

3. Cryptographic hash: peers have access to a hash function such that finding a vector x satisfying
hash(x) = y is infeasible for bδ · nc compute over the entire training duration.

We associate each participant with a public record that is used to verify that peer’s legitimacy. These
records can be securely stored in a Distributed Hash Table (see Appendix G). When a new peer
joins the network, it begins with an empty record and is therefore “untrusted”. Untrusted peers
compute gradients normally, but cannot aggregate vectors from others and cannot serve as validators.
More importantly, other peers exclude untrusted gradients from aggregation, using them only for the
purpose of validating those peers.

Each time a peer computes gradients gki over publicly known batch ξki , it must write hash(gki ) to its
own public record and sign it with its private key. As in the original BTARD-SGD, some of those
entries will be validated by other peers chosen by MPRNG. In turn, the chosen validators will either
approve their entry or invoke ACCUSE to ban the peer.

In order to become trusted, a given peer must report consecutive gradients until it accumulates T
entries approved by (provably) random peers. Here, T is a hyperparameter that should be large enough
for the training to recover from any previous attacks and make some progress before previously
banned malicious peers can earn trust again. In practice, T may be chosen experimentally by
observing the number of iterations it takes to improve the loss upon its pre-attack value in case of the
most effective attacks, as reported in Section 4.

While T may be application-dependent, we note that its minimal value is small in terms of the relative
training time in all our experiments. T corresponding to the 10% of total training time is more than 3
times larger than the worst “recovery time” for both setups considered in Section 4, where almost a
half of the peers are Byzantine. Moreover, Appendix I.1 suggests that recovery from the worst-case
attack may happen even faster in case of a smaller share of Byzantines. In that setup (with ≈ 20% of
peers being Byzantine), T corresponding to the 1% of training time is already enough.

Once a peer becomes trusted, it must continue reporting gradient hashes to maintain trust. Even
a single missing or invalidated hash breaks the chain and results in the corresponding peer being

9Note that we only provide rigorous convergence guarantees for the case of the Byzantine attacks. However,
a heuristic described in this section helps with resisting the Sybil attacks in practice.
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banned. To maintain this invariant, peers chosen as a validators add the recalculated hashes into their
own record instead of the skipped iteration.

To protect against dilution attacks, a cooperative training run can simultaneously consider at most as
many “untrusted” peers as there are trusted ones: all subsequent peers wait in a queue until one of the
untrusted peers becomes either trusted or banned.

Analysis. Under this formalism, a Sybil attacker will attempt to maximize the number of trusted
identities it can control with a limited amount of compute. In the simplest case, an attacker has
exactly one GPU that can be used to either run all computations for identity or partial computation
for multiple identities.

In the latter case, an attacker can honestly compute gradients for identity A with probability p ∈ [0, 1]
and for identity B with probability 1− p. To breaking the chain, the identity that does not compute
gradients at a given step can report arbitrary (e.g. random) entries instead of hash(gki ).

Consider the expected number of “trusted” identities after enough steps for T validations by honest
validators (on average, T · n

k·(1−δ) steps). Identity A becomes trusted with probability pT , otherwise
it is banned. Similarly, identitiy B survives with probability (1− p)T . Thus, the expected number of
trusted identities after T steps is pT + (1− p)T .

For T > 1, this expectation is maximal iff p ∈ {0, 1}. Thus, if a peer needs more than one validation
to become trusted, the “optimal strategy” for a Sybil attacker is to fully support one identity instead of
spreading the resources between multiple ones. This observation can be generalized for distributing
bδ · nc over an m ≥ bδ · nc pseudonymous identities, where maximizing the expected number of
trusted identities requires fully supporting any bδ · nc identities and disregarding the rest (for T > 1,
as before).

Overhead computation. When training without Byzantine participants, this modified version of
BTARD-SGD requires, on average, T · nk additional gradient computations per participant at the
very beginning. However, once all peers become trusted, the algorithm computes exactly the same
number of gradients as regular BTARD-SGD, effectively training at n−kn efficiency of AR-SGD,
plus the same communication overhead.

Remark 1: Temporary majority. Despite the fact that spreading 1 “compute unit” across multiple
identities reduces the expected number of trusted identities, it may still be useful to establish a
temporary majority, albeit with a small probability. For instance, splitting one compute unit evenly
among m identities (each with p=1/m) may result in both m identities temporarily gaining trust
with probability:

P (peer1 ∧ · · · ∧ peerm) =

m∏
i=1

1

mT
= m−Tm (78)

A Sybil attacker can simply repeat this procedure on every step until it can establish a temporary
majority and use this majority to harm training (e.g. ban non-malicious peers). A natural way to
remedy this is to increase T to such an extent that (78) becomes negligibly small.

Remark 2: Extra compute for Byzantine nodes. Unlike benign peers, Byzantine attackers do
not need to honestly validate each other. When a Byzantine peer is chosen as validator, it can approve
its target without actually computing the gradients. In turn, the freed compute resources can be used
to support additional Byzantine identities.

Thus, if a given training run has n trusted peers and chooses k validators on each step, Sybil attackers
can control slightly more than bδ ·nc of all identities by using the free compute cycles from validation
to support additional peers. Thus, the proposed reputation system requires that the total computational
power Bmax available to Byzantines is less than 1

2 by a (typically small) margin that depends on n,
k, and T .

Remark 3: Perpetual attacks. When training in open collaborations, one cannot ban the Byzantine
peers entirely: a Byzantine attacker will always be able to assume a new identity at the cost of running
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honestly for T · n
k·(1−δ) gradient steps. Thus, unlike in Appendix E, we cannot make BTARD-SGD

unbiased by increasing τ . However, as we demonstrated in Section 4, the biased variant of BTARD-
SGD with constant τ can still train real-world deep learning models with the same or virtually the
same learning curves as regular SGD.

G SECURE DISTRIBUTED HASH TABLES

Distributed Hash Tables (DHT) are protocols that establish a decentralized key-value storage over
decentralized unreliable participants (Maymounkov & Mazieres, 2002; Balakrishnan et al., 2003;
Zhao et al., 2003; Rowstron & Druschel, 2001). To determine which DHT peers are responsible for
a given key-value pair, each participant samples a unique binary identifier (ID) sampled uniformly
from the space of hash function outputs. When “storing a (key, value)” on the DHT, one finds k
peers whose IDs are nearest to hash(key) and sends the data to each one of those peers. In turn, a
peer that wants to read the value or a given key will also search for neighbors whose IDs are close
to hash(key) and request the data from those peers. Thus, the data can be accessed as long as at
least one o k chosen peers remains active, with some DHT variants introducing additional replication
protocols.

Our specific implementation is based on Kademlia (Maymounkov & Mazieres, 2002), a popular DHT
variant that determines nearest neighbors based on XOR distance function or their IDs: d(x, y) =
int(x⊕ y). More importantly, Kademlia protocol organizes nodes in such a way that each individual
peer only “knows” a small subset of O(log2 n) direct neighbors, however, it is possible to navigate
the neighborhood graph to find the globally nearest neighbors in O(log2N) network requests.

DHT protocols were originally designed for large-scale distributed systems such as BitTorrent, IPFS
and several cryptocurrencies. To maintain integrity in these applications, modern DHT protocols also
employ security measures that make them resistant to Byzantine and Sybil attacks (Urdaneta et al.,
2011).

In our specific scenario, the most sensitive DHT entries are personal records that determine whether
or not a given peer is trusted. We protect thee records by enforcing that every value stored in the
DHT must be signed by their author’s digital signature (Rivest et al., 1978). Thus, if a malicious peer
attempts to modify a record it was not supposed to, all other peers will be able to detect that and
eliminate such peers from the collective.

However, digital signature are known to be vulnerable to replay attacks: every time a non-Byzantine
peer stores an given key-value pair signed with its private key, a Byzantine eavesdropper can record
the signed entry and replay it in future. For ordinary DHTs, this would allow an attacker to revert any
key-value pair to its previous state by replaying such pre-recorded messages.

Our algorithm protects against replay attacks by associating each key-value pair with a third value
denoted as expiration time. Given two entries for the same key, DHT nodes will now prioritize the
ones with the latest expiration time and consider it valid up to that time. Furthermore, in order to
store a new entry to the DHT, a peer must now sign the entire key-value-expiration tuple. Thus, if a
Byzantine peer replays a pre-recorded message, it will not be able to overwrite newer DHT entries
that were signed for a more recent expiration time.

H ALBERT EXPERIMENT SETUP

In Section 4.2, we pretrain ALBERT (Lan et al., 2019) — a self-supervised Transformer model for
learning representations of language data. We deliberately choose ALBERT instead of other models
like BERT (Devlin et al., 2019) due to its high communication efficiency, which is caused by layerwise
weight sharing and embedding layer factorization. In particular, we focus on a communication-
efficient model, because the connection speed between the workers can become a noticeable constraint
when averaging gradients of models with hundreds of millions of parameters. We train ALBERT-
large on sequences of 512 tokens from the WikiText-103 (Merity et al., 2017) dataset. The training
procedure starts from a random initialization, but the subword vocabulary (Sennrich et al., 2016) is
the same as created by the authors of the original ALBERT models.
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Figure 5: Effectiveness of attacks against BTARD-SGD for the case when 3 of 16 participants are
Byzantine.

This model is trained with two objectives: masked language modeling (given a sentence with several
masked tokens, predict the tokens that were masked) and sentence order prediction (given two
segments from the same document, determine if they were swapped). We use LAMB optimizer (You
et al., 2020) with batches that contain 4,096 examples, training with a peak learning rate equal to
0,00176 and a warmup of 5,000 gradient descent steps. In addition, we use gradient clipping with a
maximum norm of 1 and weight decay regularization with the weight of 0,01. We run distributed
training on 16 cloud instances, each equipped with a single Tesla T4 GPU. Each training run takes
2–3 days, depending on the instance availability.

I ADDITIONAL EXPERIMENTS

I.1 EXTRA EVALUATIONS ON THE CIFAR10 CLASSIFICATION TASK

In this section, we perform several additional experiments with BTARD-SGD used to train the
ResNet-18 model to solve the CIFAR10 classification task.

To better explore the space of possible attack vectors, we also evaluate two alternative settings.
First, we consider a situation where Byzantine peers are less numerous. For this experiment, we
use the same configuration as in Section 4.1, but with only 3 Byzantine peers out of 16 (just under
20%). Figure 5 demonstrates similar behavior to our original setup, but with significantly weaker in
magnitude across all attacks.

Next, we explore a situation where Byzantine peers send incorrect gradients periodically, e.g. once
per T iterations. This reduces the attack intensity, but allows them to stay undetected for longer. In
this setting, we consider 7 Byzantine peers and reuse all parameters from the original setup, except
for the new attack period. We consider T = 10 for both scenarios (early and late attacks). The attacks
are performed at steps s + k · T, k ∈ N until the attacker is eventually banned. As expected, this
setup increases the duration of each attack by a factor of T , but decreases the peak attack influence
(see Figure 6).

Finally, we evaluate the convergence and the final test accuracy of the less computationally intensive
variants of BTARD-SGD that limit the maximal number of iterations in the CenteredClip procedure
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Figure 6: Effectiveness of attacks against BTARD-SGD for the case when Byzantines send incorrect
gradients once per T = 10 steps.
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Figure 7: Convergence of BTARD-SGD with τ = 1 depending on the maximal number of iterations
M in the CenteredClip procedure.

to M , where M varies from 1 to 50. In the setup with τ = 1, we observe that M = 50 iterations
are always enough for CenteredClip to converge with ε = 10−6 in absence of the attacks. Figure 7
demonstrates that stopping the procedure earlier has negative effect on the final test accuracy. The
effect becomes more significant for the smaller values of M .

I.2 EVALUATING COMPUTATION OVERHEAD IN TERMS OF WALL TIME

For this analysis, we consider the ALBERT-large training setup from Section 4.2. Our training
“swarm” contains 16 peers with T4 GPUs and 1 GiB/s network bandwidth. On average over 1000
training steps, the full training step for this model takes up 28.56 seconds. Of this, approximately
23.96 seconds were used up for communication and the remaining 4.60 seconds were spent for
gradient aggregation CENTEREDCLIP.

Since MPRNG is running in the background, the only part of BTARD that affects the training time
is Algorithm 2 (BUTTERFLYCLIP). Thus, we measure the time complexity of this algorithm with
different numbers of internal iterations. During “normal” epochs where all Byzantines remained
passive, the algorithm converged in 2–3 iterations for τ = 0.25 and 5–10 iterations with τ = 0.125.
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Table 3: Computation overhead of BTARD in terms of wall time.

No. of iterations Wall time (CPU), sec Wall time (GPU), sec
3 0.362 ± 0.003 0.040 ± 0.002
5 0.430 ± 0.002 0.042 ± 0.002

10 0.601 ± 0.003 0.056 ± 0.005
20 0.943 ± 0.002 0.085 ± 0.009

We also noticed that this value has temporarily increased by 2–3 times while Byzantine peers were
performing their attack.

In Table 3, we report the average wall time of our algorithm with a different number of iterations in
two hardware setups: running on a 8-core VM with 3.1Ghz Intel Xeon 6148 CPU and on a single
1080 Ti GPU. We report the average wall time and the standard deviation over 10 runs.

Thus, even the worst case overhead (τ = 0.125, CPU) is less than the 3% of the total step time
without attacks and less than the 4% when the attack is active. One important consideration here
is that the overhead is constant with respect to the number of peers due to the scaling properties of
All-Reduce. Thus, if we train with hundreds of peers, the 0.3–0.6 second overhead can eventually
become significant. However, it can be easily offset by moving the CENTEREDCLIP execution to
GPU, which at this stage is waiting for the CENTEREDCLIP results anyway.

I.3 EXPERIMENTS AT A LARGER SCALE

In this section, we evaluate the most effective attacks against BTARD-SGD in case of a larger
number of peers to ensure that our algorithm scales well.

We still consider the ALBERT-large training setup from Section 4.2 and increase the number of peers
to 64 (the largest hardware setup available to us), setting up 31 of them to be Byzantine. To balance
for the increased number of peers, we divide the individual batch size of each peer by 4 and set the
number of validators to be 4 as well.

Due to the large computation costs, we only evaluate the two most effective strategies for Byzantines
based on Figure 3, making only one training run for each of them. We choose the random direction
attack starting at the step 1000 and the sign flipping attack starting at the step 5000.

The results are shown in the Figure 8. Similarly to our previous experiments, the Byzantine peers
managed to temporarily offset the training loss. As in the case with 16 peers, the sign flipping attack
at the step 5000 obtains the "peak" distortion approximately 20 steps into the attack, and the random
direction attack at the step 1000 has longer but less intensive effect. However, BTARD-SGD is able
to quickly detect and ban the attackers, banning all 31 Byzantines in 100–150 steps and catching up
with the original learning curve after approximately 150 steps (it is fair to take the original curves
from Figure 3 since the aggregation results in the vanilla All-Reduce do not depend on the number of
workers). We conclude that BTARD-SGD maintains its efficiency even at this scale.
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Figure 8: Effectiveness of attacks against BTARD-SGD for the case when 31 of 64 participants are
Byzantine.
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Figure 9: Effectiveness of the “A LITTLE IS ENOUGH” (ALIE) attack (Baruch et al., 2019) against
BTARD-SGD.
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Figure 10: Effectiveness of the INNER PRODUCT MANIPULATION (IPM) attack (Xie et al., 2020;
Allen-Zhu et al., 2021) against BTARD-SGD.
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I.4 EXPERIMENTS WITH LOW-MAGNITUDE ATTACKS

In this section, we evaluate several low-magnitude attacks against BTARD-SGD used for training the
ResNet-18 model to solve the CIFAR10 classification task. We use the configuration from Section 4.1
and consider the following attacks:

• “A LITTLE IS ENOUGH” (ALIE): attackers collude to move the coordinate-wise median while still
sending values inside the population variance. Baruch et al. (2019) show that this attack is effective
against TrimmedMean (Yin et al., 2018) and Krum (Blanchard et al., 2017).

• INNER PRODUCT MANIPULATION (IPM): attackers send the average of all honest peers’ gradients
multiplied by −ε. We test ε = 0.1 (Xie et al. (2020) demonstrate its efficiency against the
coordinate-wise median and Krum) and ε = 0.6 (Allen-Zhu et al. (2021) state that it is the most
efficient attack against their method among the reported ones).

As in Section 4.1, we report the mean and range of the test accuracy over 5 runs for τ ∈ {1, 10}.
Regarding the ALIE attack (see Figure 9), we note that BTARD-SGD needs either two validators, or
one validator and the weaker clipping (τ = 10) to guarantee the fast recovery in the worst case (with
7 out of 16 peers being Byzantine).

This observation coincides with Baruch et al. (2019) demonstrating that the ALIE attack is more
harmful against median-based and clipping approaches than to the usual mean aggregation without any
defenses. Indeed, since τ in CENTEREDCLIP allows to smoothly interpolate between the geometric
median (τ → 0) and the mean (τ → inf) aggregation rules (as explained in Appendix D.1), it is
natural to expect that the setups where τ is too small are more sensitive to the ALIE attack.

In turn, the IPM attack (see Figure 10) has a short negative effect for τ = 1 (it increases for a larger
ε) and an almost unnoticeable effect for τ = 10. One validator is enough to combat all variants of
this attack.

We conclude that BTARD-SGD remains practical in case of the considered low-magnitude attacks.
It is able to defend the training from the worst-case attacks (with almost half of the peers being
Byzantine) while requiring no more than ≈ 13% of the compute to be dedicated for validation.
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