
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OFFLINE RL OPE: A PYTHON PACKAGE FOR
OFF-POLICY EVALUATION OF OFFLINE RL
MODELS WITH REAL WORLD DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

offline rl ope is a fully unit tested and runtime type checked Python package for
performing off-policy evaluation of offline RL models. offline rl ope has been
designed for OPE workflows using real world data by: naturally handling uneven
trajectory lengths; including novel convergence metrics which do not rely on OPE
estimator ground truths; and providing a compute and data efficient API which
can be integrated with many offline RL frameworks. This paper motivates and
describes the core API design and functionality to enable ease of use and exten-
sion. The implementations of OPE methods have been benchmarked against exist-
ing implementations to ensure consistency and reproducibility. The offline rl ope
source code can be found on GitHub at: REDACTED

1 INTRODUCTION

Offline RL enables MDPs to be solved without interaction with an environment (i.e., with only a
logged (batch) dataset) and has grown in popularity recently due to the availability of such data and
the challenges of performing environment interactions in high stakes settings (Levine et al., 2020).
A core challenge however, when environment interaction is not possible (fully offline RL (ORL)) is
off-policy evaluation (OPE). OPE refers to evaluating a hypothetical target policy, πe with access to
trajectories generated according to an alternate policy, πβ . Since performing off-policy evaluations
is inherently counterfactual, OPE must be performed carefully and is still an active research area.

There still does not exist a well established and tested code base for performing OPE. Such a
codebase, which is agnostic to the implementation of the policy learning algorithm, would be
beneficial to ensure reproducibility and transparency in the application of OPE. This ambiguity
in the application of OPE estimators has been rooted in the non-uniqueness of estimators (e.g.,
weighted Per-Decision proposed by Precup et al. (2000) and Kallus & Uehara (2019)) and the use
of custom implementations of estimators without declaration of changes (e.g., value clipping by
Raghu et al. (2017)).

offline rl ope, is a unit tested and runtime type-checked Python library for performing off-policy
evaluation on real world data, which is agnostic to the framework used for training ORL models.
Specifically, the contributions are as follows:

• Developed for use with real world data: handles uneven trajectory lengths (section 3.1);
and includes offline OPE evaluation metrics (section 3.3.3) and common techniques (e.g.,
clipping) for importance sampling (IS) and doubly robust (DR) estimators (section 3.1);

• An API that can be easily extended for research purposes or used as plug-and-play;
• Optionally integrates with d3rlpy (Seno & Imai, 2021) for train-time evaluations (as a posed

to post-hoc).

The focus for the first release of offline rl ope has been to implement standard techniques for IS and
DR in a flexible and efficient API. The first release has focused primarily on IS and DR estimates
due to the existence of a strong implementations of FQE by Seno & Imai (2021). More advanced

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

IS methods (i.e., marginal state IS), model-based methods, composite methods, direct methods and
efficient influence function methods will be included in future releases. The package code base is
available at: REDACTED

The aim of this paper was to: introduce the API, enabling future work and use of offline rl ope; and
to motivate many of the API structure decisions and offline metrics. This document was written with
respect to version 7.0.1 of offline rl ope and accompanying code can be found at: REDACTED. API
usage examples are provided in appendix C and at REDACTED.

2 RELATED WORK

Existing OPE codebases have generally been included within a larger RL framework (Kiyohara et al.
(2023), Liang et al. (2018),Kiyohara et al. (2023)) and as a result, the OPE API is tightly coupled
with a specific model training framework.

2.1 SCOPE-RL

Scope-RL (Kiyohara et al. (2023)) was the first library to focus predominantly on OPE and is the
existing work that is most similar to offline rl ope. However, there exist a number of areas of
divergence between Scope-RL and offline rl ope, the most critical of these being audience as of-
fline rl ope is more appropriate for real world workflows whilst Scope-RL is tailored more towards
research. This along with other differentiating factors have been described in table 1 and are de-
scribed in greater detail in appendix A.

Table 1: Comparison of offline rl ope against Scope-RL

offline rl ope Scope RL

Audience

Real world analysis OPE research
ORL framework agnostic Deep integration with d3rlpy

Train time evaluations (w. d3rlpy) ✗
Uneven trajectory lengths ✗

Non-oracle metrics Oracle metrics
Propensity modelling Oracle behaviour policy
Framework agnostic

OPE pipeline
End-to-end ORL (w. d3rlpy)

& OPE pipeline
Estimators Basic estimators Basic and advanced estimators
API design Extendable through equ. 1 Limited extendability
Continuous

action spaces Stochastic policies only Kernel smoothing of actions
(Kallus & Zhou (2018))

3 HIERARCHY OF IS METHODS

Uehara et al. (2022) provides an overview of OPE methods for ORL, however, introduced below, is
a ’hierachy of IS methods’ which was critical in the design of the offline rl ope IS API (including
importance sampling for DR). IS estimators have predominantly suffered from high variance, and
as such a large amount of research has been dedicated to reducing it (Kallus & Uehara (2019),
Thomas & Brunskill (2016), Precup et al. (2000)). The line of research broadly aligns to utilising
control estimators from Monte Carlo statistics (Robert & Casella (2004), Thomas & Brunskill
(2016), Swaminathan & Joachims (2015)) however, since control variates are generally considered
to preserve (asymptotic) qualities of estimators, not all OPE estimators proposed for ORL can be
defined, strictly, as control variate methods i.e., not all of the aforementioned estimators preserve
such behaviours.

Equation 1 defines an empirical approximation to the generic RL objective (equation 13 in Uehara
et al. (2022)), however, it is expressive enough to capture the various OPE estimators which exist in

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the literature.

Jτ∼πe,M(d) = g2(·)
n∑

i=1

(
Hi−1∑
t=0

(
γtr(ai,t, si,t)g1(f({πe(ai,t|si,t)}0:Hi−1, {π̂β , (ai,t|si,t)}0:Hi−1, ·), ·)

))
(1)

where d defines an offline dataset generated under πβ and M and n = |d|. g1(·) defines the nor-
malisation constant for the trajectory level importance samples and g2(·) defines the normalisation
constant for the empirical average1. Equations 2, 3, 4 and 5 define the hierarchy of steps for any IS
estimator:

πe(at|st)
πβ(at|st)

: ∀t ∈ 0, ...,H − 1,∀τ ∈ d (2)

f({πe(at|st)}1:H , {π̂β , (at|st)}1:H , ·) : ∀τ ∈ d (3)
g1(f, ·) : ∀τ ∈ d (4)
g2(·) : ∀τ ∈ d (5)

Equation 2 is the same for all IS estimators currently implemented within offline rl ope however,
equation 2 could be altered for state importance sampling methods. Equation 3 can be altered to
define the per-decision IS estimator (Precup et al. (2000)). Equations 4 and 5 are used to define the
various approaches to weighted IS based estimators (including DR estimators). A full breakdown
of common IS estimators is defined in table 2. Let ρIS,i,t and ρPD,i,t define the vanilla IS and per-
decision importance samples for trajectory i and timestep t, respectively:

ρIS,i,t =

Hi∏
t=0

πe(ai,t|si,t)
πβ(ai,t|si,t)

: ∀t ∈ 0, ..,H − 1,∀τ ∈ d

ρPD,i,t =

t∏
t′=0

πe(ai,t′ |si,t′)
πβ(ai,t′ |si,t′)

: ∀t ∈ 0, ..,H − 1,∀τ ∈ d

Note that, for a fixed i, ρIS,i,t is constant ∀t ∈ 0, ...,Hi−1. Herein ρX,i,t = ρIS,i,t or ρX,i,t = ρPD,i,t

depending on the context. Additionally n defines the total number of trajectories and Hi defines the
length of trajectory i.

Additionally to those defined in table 2, it is common practice to ’clip’ importance weights which
could conceivably be implemented at any stage of the aforementioned hierarchy. Clipping in of-
fline rl ope is performed in between equations 3 and 4 and is defined as:

min(max(wf , w
−1
clip), wclip) : ∀wf (6)

where wf ∈ {f({πe(at|st)}1:H , {π̂β , (at|st)}1:H , ·) : ∀τ ∈ d} and wclip is defined a priori.

Finally, to ensure stability of the weighted importance sampling, offline rl ope integrates Laplacian
smoothing. Smoothing can be included in any weighted calculation, for both equations 4 and 5 and
is applied as the final stage of defining the denominator in all cases. For example, when applied to
self-normalised weights in equation 5, the calculation would be:(

ϵ+

n∑
i=1

ρX,i,H

)−1

Figure 1 depicts how the various elements of a standard OPE pipeline are implemented in
offline rl ope. Currently, the only direct method implemented is FQE, which utilises the d3rlpy in-
tegration. As such, the proceeding primarily discusses the API with respect to IS and DR estimators.

1”·” here refers to arbitrary parameters defined later

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 2: Mapping of estimator definitions to Equation 1 and literature references

Name Equ. Implementation Reference

Vanilla one step Equ. 3 ρIS,i,t :
∀t ∈ 0, ..,H,∀i ∈ 1, ..., n

Precup et al. (2000)
Kallus & Uehara (2019)

Jiang & Li (2016)

Per-decision Equ. 3 ρPD,i,t :
∀t ∈ 0, ..,H,∀i ∈ 1, ..., n

Precup et al. (2000)
Kallus & Uehara (2019)

Identity Equ. 4 ρX,i,t : ∀t ∈ 0, ..,H,∀i ∈ 1, ..., n Precup et al. (2000)
Vanilla norm

of Equ. 4 Equ. 4 n−1 : ∀t ∈ 0, ..,H,∀i ∈ 1, ..., n Thomas & Brunskill (2016)

Point in Time
self-normalised Equ. 4 (nt)

−1
∑nt

i=1 1pi,t>0(ρX,i,t)ρX,i,t :
∀t ∈ 0, ..,H,∀i ∈ 1, ..., n

Kallus & Uehara (2019)
Thomas & Brunskill (2016)

Vanilla norm
of Equ. 5 Equ. 5 n−1 : ∀t ∈ 0, ..,H,∀i ∈ 1, ..., n

Precup et al. (2000)
Kallus & Uehara (2019)

Jiang & Li (2016)

Self-normalised Equ. 5

(∑n
i=1 ρX,i,H

)−1

:

∀i ∈ 1, ..., n
Precup et al. (2000)

Cumulative
(discount)

self-normalised
Equ. 5

(∑n
i=1

∑H−1
t=0 ρX,i,t

)−1

:

∀t ∈ 0, ..,H,∀i ∈ 1, ..., n
Precup et al. (2000)

Figure 1: Flowchart of components for performing OPE with IS based estimators in offline rl ope.
Key: green squares define classes within offline rl ope that perform a calculation; blue squares
define helper classes within offline rl ope; orange squares defined fixed external inputs; grey

squares define changing external inputs; black arrows defines changing information; orange arrows
define fixed information (conditional on the fixed input); blue arrows define helper funtionality

relationships, not information flow.

3.1 ESTIMATION API

The estimation API defines the calculation mechanics of all the estimators described in section 3 as
well as DR, DM and any additional methods added in future releases. This hierarchy described in
section 3 is utilised to: improve computation time when using multiple IS estimators (since reused
outputs can be cached); to enable custom estimators to be implemented with minimal additional
code; and to streamline testing and code maintenance. The core elements of the API are described
below and notable attributes/methods are described in table 3.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ISWeightCalculator A single ISWeightCalculator object is defined per behaviour policy. The
ISWeightCalculator class handles querying the evaluation and behaviour policy; calculating
the one-step importance ratios (equation 2); and caching of weights to be used across multiple
estimators, reducing computation. Additionally, the ISWeightCalculator automatically defines and
caches the lengths of each trajectory, ensuring datasets with uneven trajectory lengths can be used
without preprocessing from the user.

ImportanceSampler Child classes of ImportanceSampler implement equation 3 e.g., the Vanil-
laIS class defines Vanilla one step importance sampling whilst PerDecisionIS implements the
Per-decision estimator. When using multiple different ImportanceSampler objects for a single
behaviour policy (e.g., when performing vanilla IS and per-decision importance sampling) the
ISWeightOrchestrator (which is a child class of ISWeightCalculator) can be used to facilitate the
sharing of one-step weights across multiple instances of ImportanceSampler. This ensures the be-
haviour and evaluation policies are only queried once, thus reducing computation.

ISEstimatorBase/WeightDenomBase The ISEstimatorBase class implements the mechanics of
estimating the reward of a single trajectory whilst child classes, (e.g., ISEstimator and DREstima-
tor) implement the specific calculation (as per equation 1). Critically, any ISEstimatorBase object
requires WeightDenomBase for instantiation where child classes of WeightDenomBase implement
equation 4.

OPEEstimatorBase/EmpiricalMeanDenomBase The OPEEstimatorBase implements the me-
chanics of summarising the trajectory level rewards (defined by ISEstimatorBase) across an entire
dataset. This broadly requires summing the trajectory level rewards and applying variations of equa-
tion 5, defined by child classes of EmpiricalMeanDenomBase, which are required to instantiate an
OPEEstimatorBase object.

Table 3: Notable classes and associated methods and attributes.

Class Methods
attribute Description

ISWeightCalculator &
ISWeightOrchestrator

(Equation 2)

is weights Tensor of dimension (n,max[Hi])
of one-step importance ratios

weight msk Tensor of dimension (n,max[Hi]) with
value 0 after a trajectory has terminated

update Updates is weights using
the evaluation policy provided

ImportanceSampler
(Equation 3)

traj is weights Tensor of dimension (n,maxHτ )
of trajectory importance ratios.

get traj weight array Abstract method requiring child classes
to implement variations of equation 3

ISEstimatorBase
(Equation 4) process weights

Applies IS weight clipping (Equ. 6)
and the calculation defined

by WeightDenomBase
WeightDenomBase

(Equation 4) call Abstract method requiring child classes
to implement variations of equation 4

OPEEstimatorBase
(Equation 5)

predict traj rewards

Abstract method requiring child
classes to implement estimator
mechanics i.e., doubly robust
vs pure importance sampling

predict Core public method for
calculating the dataset estimate

EmpiricalMeanDenomBase
(Equation 5) call Abstract method requiring child classes

to implement variations of equation 5

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 POLICY

The BasePolicy class defines a standardised API for obtaining state-action probabilities under a
given policy. Shipped with offline rl ope are the Policy and GreedyDeterministic classes which
define framework agnostic wrappers for stochastic and greedy deterministic polices, respectively,
for functions returning both Pytorch tensors and numpy arrays. The irl example.py script in the
code accompanying this paper provides an example of how the Stable Baselines3 (Raffin et al.
(2021)) policy API can be made compatible with offline rl ope through a simple wrapper class. To
enable ease of debugging and monitoring, the BasePolicy class optionally allows policy outputs to
be easily cached, similarly to the ISWeightCalculator and ImportanceSampler APIs.

3.3 ADDITIONAL NOTABLE FUNCTIONALITY

3.3.1 PROPENSITY MODELS

The majority of recent OPE applications entail large state (and action) spaces and as such, require
defining the behaviour policy via function approximation (Hanna et al. (2019)). offline rl ope
provides an API for defining propensity models with Pytorch (Paszke et al. (2019)) and scikit-learn
(Pedregosa et al. (2011)).

3.3.2 APIS

3rd Party Integration Whilst the focus of offline rl ope was on defining a standalone OPE frame-
work, providing optional integrations with popular ORL workflows was deemed a necessity. Cur-
rently offline rl ope is (optionally) tightly integrated with d3rlpy (Seno & Imai (2021)). The existing
implementation allows any OPE estimator defined with offline rl ope to be used to assess d3rlpy
models both post and during training. In particular the ”during training” API aligns with the rec-
ommendations of Tang & Wiens (2021) as it enables an early stopping type workflow. Running this
workflow is further aided by the caching of reusable computations discussed in section 3.1.

Plug and play offline rl ope has been designed to be trivally extendable by defining low level
modules for constructing OPE estimators (section 3.1). However, in order to address the consistency
issues described in section 1, a plug and play API has been additionally provided.

3.3.3 OFFLINE OPE METRICS

Effective sample size (ESS) is a metric colloquially associated with IS methods with the intent of
describing the ”(potentially) reduced information content of a dataset given an evaluation policy”.
For example, Liu et al. (2022) utilised the ESS definition in equation 7, from Owen (2013).

ESS =
n

1 + cv(w)2
(7)

Such that:

wi =
πe(ai|si)
πβ(ai|si)

; cv(w) =
sdw
w̄

; w̄ =
1

n

n∑
i=1

wi; sdw =

√√√√( 1

n− 1

n∑
i=1

(wi − w̄)2
)

Such a definition, along with others (such as that proposed by Kong (1992)) have been designed for
performing Monte Carlo Integration in a fundamentally different contexts to OPE. The diagnostics
for non OPE Monte Carlo IS have been derived under the assumption that the importance distribution
(pπβ

in OPE) is variable and the nominal distribution (pπe
in OPE) is fixed. Owen (2013) derived

diagnostics by utilising the fact that the variance of a Monte Carlo IS estimator can be defined as:

Var[JIS(πe; τ)] =

∫
{τ :pπβ

(τ)>0}

(
pπe

(τ)
∑∞

t=0 rtγ
t − µpπβ

(τ)
)2

pπβ
(τ)

dτ (8)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where µ = Eτ [JIS(πe; τ)]. However, focused on monitoring the pπβ
terms, since these could

have been altered to reduce the variance. For OPE however, the behaviour policy is fixed
and thus in order to reduce the variance and ”obtain a higher effective sample size”, the de-
viations between the behaviour and evaluation policy should be reduced, as described by the(
pπe(τ)

∑∞
t=0 rtγ

t − µpπβ
(τ)
)2

term. Appendix D demonstrates how the diagnostics used to
monitor the importance distribution (such as equation 7) produce undesirable results for OPE.

VWP Motivated by monitoring the symmetric deviations between the importance and nomi-
nal distribution, the metric ”VWP” (valid weight proportion) is proposed. Utilising the fact that∑∞

t=0
pπe (st,at)
pπβ

(st,at)
∝ (pπe

(τ)
∑∞

t=0 rtγ
t − µpπβ

(τ))2, let:

VWP =
1

n

n∑
i=1

1wmin≤wi≤wmax(wi) (9)

where wi =
∑

t = 0∞ρIS,i,t or wi =
∑∞

t=0 ρPD,i,t depending on the context and the desirable
behaviour is for VWP → 1 as wmin → 0 and wmax → ∞. VWP ignores the dependence on µ in
equation 8 however, the metric does overcome the described failure modes of ESS.

WeightStd In addition to using VWP, a metric for tracking the standard deviation of weights
(WeightStd) is also implemented within offline rl ope. WeightStd is defined as per sdw, above, i.e.:

WeightStd =

√√√√( 1

n− 1

n∑
i=1

(wi − w̄)2
)

(10)

Both VWP and WeightStd measure the deviation of weights however, in contrast to VWP, WeightStd
centers around the mean deviation rather than 1. A mean deviation of 1 is significant as it represents
the minimal deviation from the behaviour policy and thus minimal additional generalisation error.
Whilst a standard deviation of 1 would also represent such a scenario, WeightStd is unable to
distinguish between a policy that systematically deviates from the behaviour policy at a constant
magnitude; and a policy which remains close to the behaviour policy but deviates significantly at a
small subset of trajectories. This is a result of the relatively larger impact that outliers can have on
the mean calculation. However, when used in conjunction with VWP, the WeightStd can identify
such scenarios since the former would present with a slow VWP convergence whilst the latter
would present with a faster rate of convergence. Further, distinguishing between these scenarios is
important as uncertainty in the latter policy can be reduced using weight clipping without greatly
affecting the overall behaviour of the policy. Table 4 provides an overview of how VWP and
WeighStd can be jointly interpreted to debug IS weights.

Table 4: Joint interpretation of VWP and WeightStd metrics

Scenario VWP WeightStd Interpretation

1 → 0 → 0
Uncertainty due to consistent divergence from the behaviour

policy. Constrain entire policy to reduce uncertainty.

2 → 0 → ∞
Maximal uncertainty due to consistent divergence from the

behaviour policy and the estimation is dominated by a subset
of trajectories. Constrain entire policy to reduce uncertainty.

3 → 1 → 0 Minimal uncertainty

4 → 1 → ∞
Uncertainty due to estimate being dominated by a

subset of trajectories. Implement weight clipping at
reasonable order of magnitude from 1.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 ACCURACY OF IMPLEMENTATION

All estimators implemented within offline rl ope have been unit tested however, additional analysis
was conducted (where possible) to ensure consistency of implementation.

4.1 DISCRETE ACTION ESTIMATORS

The implementations of discrete action (continuous state) estimators were compared across
offline rl ope and Scope-RL. Table 5 demonstrates that the implementations for: IS, WIS, PD
WPD, DR and WDR estimators did not differ materially.

Table 5: Comparison of offline rl ope and Scope RL estimations in a continuous state-discrete
action environment, RTBGym (Kiyohara et al. (2023))

Estimator Mean difference
(Scope-RL denom)

Mean difference
(OPO denom)

IS 0.00% 0.00%
WIS 0.00% 0.00%
PD 0.00% 0.00%

WPD 0.00% 0.00%
DR 0.00014% 0.00014%

WDR 0.0028% 0.0028%

4.2 CONTINUOUS ACTION SPACES

With respect to continuous action spaces, offline rl ope and Scope-RL differed significantly in their
approach and as such, could not be compared against one another. To demonstrate the efficacy
of the offline rl ope implementation for continuous actions spaces, the relative ranking2 of 3 poli-
cies were compared against the ground truth evaluations using the Pendulum environment (Towers
et al. (2024)). In addition to a number of other expected observations, table 6 suggests that broadly
speaking, estimators implemented in offline rl ope were able to accurately rank the performance
of policies against the ground truth performance, demonstrating the efficacy of implementation. In
addition, expected observations included:

• Pure PD estimators benefited the most from weight clipping since the bias of doubly robust
methods was already being controlled through the reward approximation;

• The pure PD estimator demonstrated the worse correlation due to the high variance of the
estimator;

• Combining the FQE method from d3rlpy with the DR and WDR methods improved the
ranking performance, despite all FQE models converging reasonably well and a reasonable
amount of hyperparameter tuning being performed (figures 3 in appendix E).

To conclude, despite the lack of existing benchmark for performing OPE on continuous stochastic
policies, the results and observations highlighted (in addition to the unit testing performed) provided
reasonable evidence as to the efficacy of implementation within offline rl ope.

5 EXAMPLE USE OF VWP AND WEIGHTSTD METRICS (CONTINUOUS
ACTION SPACE)

To demonstrate the efficacy of the VWP and WeightStd metrics, these were used to integrogate
the ranking performance of OPE estimators utilising, per-decision weights, over policies from the
continuous action task described in section 4.2. Table 7 compares the ranking performance of using
non-clipped estimators against an average of 6 clipped estimators (at different magnitudes). Overall,

2Since OPE estimator prediction is heavily dependant on the problem context, policy ranking was deemed
sufficient to demonstrate the implementation efficacy.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Average (across 5 random seeds) correlation of policy rankings in comparison to
environment ground truth. OoM describes the order of magnitude of clipping applied.

Spearman Correlation
Estimator No clipping Clipping OoM 1 Clipping OoM 2

IS Undefined Undefined Undefined
WIS Undefined Undefined Undefined
PD -0.1 0.4 0.3

WPD 0.5 0.8 0.7
DR 0.7 0.7 0.7

WDR 0.7 0.6 0.6
DM 0.5 NA NA

Figure 2: Caption

it was clear that the sampling uncertainty of the underlying dataset effected the performance of the
OPE estimator, most notably in seed 2 (even after weight clipping) and in seed 5 where weight
clipping significantly boosted performance.

Table 7: Average (over policies) rank performance of policies against ground truth performance

Seed Spearman’s R (no clipping) Spearman’s R (with clipping)
1 0.88 0.88
2 -0.50 -0.29
3 0.50 0.62
4 1.00 0.92
5 0.38 0.71

Figure 2 displays the VWP metrics, averaged across policies for each seed. Notably, seed 5 had a
relatively quicker VWP convergence rate whilst seed 2 had a relatively low one. Additionally, the
mean WeightStd values (across policies) for seed 2 and seed 5 were 10.21 and 215.80, respectively
(full figures in table 9). Arguably, the policies within seed 2 aligned to scenario 1 in table 4, where
the poor predictions were a result of the policies systematically diverging from the behaviour policy.
In contrast, the policies in seed 5 aligned to scenario 4, where the poor predictions were a result of
the uncertainty induced by a subset of trajectories. As such, the uncertainty in OPE estimates for
seed 5 had the potential to be reduced through weight clipping to a greater extent than for seed 2.

Utilising VWP and WeightStd to interogate the performance of OPE estimates is a probabilistic
exercise. According to figure 2, the policies in seed 4 were divergent (due to the low VWP) however,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the OPE rankings were very accurate. This was most likely a result of the good performance of the
OPE estimators when clipping was not applied. Table 8 describes the results of a logistic regression
model, assessing the relationship between:

• The amount of clipping and;

• The original performance of the unclipped estimator;

against the probability that an additional order of magnitude of weight clipping harmed the ranking
performance of the estimator. Notably, the higher the ranking performance of the original estimator,
the less likely that clipping was to harm the performance, providing evidence for the hypothesis
regarding the policies in seed 4.

Table 8: Coefficients and p-values (t-test), measuring the linear relationship between the magnitude
of weight clipping applied to an estimator plus the original ranking performance of the un-clipping

estimator agains the probability that the current magnitude of clipping harms the ranking
performance

Name Coefficient P-value
Intercept 0.11 0.86

Amount of clipping -0.95 0.34
Performance of

unclipped estimator -2.11 0.00

Similar logistic regression tests were performed on combinations of WeightStd and VWP at
different orders of magnitude (table 10 in appendix E). Whilst the results were encouraging with
respect to the direction of the coefficients, the significance of the effect sizes were inconclusive,
suggesting further work is required to understand the true predictive nature of the metrics.

6 NEXT STEPS

Next steps for the development of offline rl ope would be to implement additional OPE estimation
techniques, develop additional non-oracle metrics for assessing OPE estimations as well as further
assessing the predictive power of VWP and WeightStd. An interesting area of future research for IS
estimators with regression models would be to develop uncertainty estimates which combine both
the uncertainty in estimation of the propensity model and the resulting OPE estimation. A limita-
tion of the existing offline rl ope implementation is the over-reliance on PyTorch. Whilst this has
simplified integration with other PyTorch frameworks, the implementation restricts integration with
other popular frameworks such as Tensorflow and Jax. Additionally, performance improvements in
the computation of IS estimates from multi-processing could be explored.

REFERENCES

Ahmed M. Alaa and Mihaela van der Schaar. Limits of estimating heterogeneous treatment effects:
Guidelines for practical algorithm design. In 35th International Conference on Machine Learning,
ICML 2018, volume 1, 2018.

Josiah P. Hanna, Scott Niekum, and Peter Stone. Importance sampling policy evaluation with an
estimated behavior policy. volume 2019-June, 2019.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning.
volume 2, 2016.

Nathan Kallus and Masatoshi Uehara. Intrinsically efficient, stable, and bounded off-policy eval-
uation for reinforcement learning. In Advances in Neural Information Processing Systems, vol-
ume 32, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Nathan Kallus and Angela Zhou. Policy evaluation and optimization with continuous treatments. In
International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 2018.

Haruka Kiyohara, Ren Kishimoto, Kosuke Kawakami, Ken Kobayashi, Kazuhide Nakata, and Yuta
Saito. Scope-rl: A python library for offline reinforcement learning and off-policy evaluation. 11
2023.

Augustine Kong. A note on importance sampling using standardized weights. 7 1992.

Hoang M. Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. volume
2019-June, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. 5 2020.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael I. Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. volume 7, 2018.

Yao Liu, Yannis Flet-Berliac, and Emma Brunskill. Offline policy optimization with eligible actions.
In Proceedings of Machine Learning Research, volume 180, 2022.

Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/
mc/, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. volume 32, 2019.

Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12,
2011. ISSN 15324435.

Doina Precup, Richard S Sutton, and Satinder P Singh. Eligibility traces for off-policy policy evalu-
ation. ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning,
2000.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22, 2021. ISSN 15337928.

Aniruddh Raghu, Matthieu Komorowski, Imran Ahmed, Leo Celi, Peter Szolovits, and Marzyeh
Ghassemi. Deep reinforcement learning for sepsis treatment. 11 2017.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer New York,
2004. ISBN 978-1-4419-1939-7. doi: 10.1007/978-1-4757-4145-2.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. 11 2021.

Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual learn-
ing. In Advances in Neural Information Processing Systems, volume 2015-January, 2015.

Shengpu Tang and Jenna Wiens. Model selection for offline reinforcement learning: Practical con-
siderations for healthcare settings. 7 2021.

Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. volume 5, 2016.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

11

https://artowen.su.domains/mc/
https://artowen.su.domains/mc/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Masatoshi Uehara, Chengchun Shi, and Nathan Kallus. A review of off-policy evaluation in rein-
forcement learning. 12 2022.

Cameron Voloshin, Hoang Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy
policy evaluation for reinforcement learning. In Proceedings of the Neural Informa-
tion Processing Systems Track on Datasets and Benchmarks, 2021. URL https:
//datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/
2021/file/a5e00132373a7031000fd987a3c9f87b-Paper-round1.pdf.

A OFFLINE RL OPE/SCOPE-RL DISCUSSION

Table 1 provides an overview of the differentiating factors between offline rl ope and Scope-RL
however, these are discussed in greater detail below. The primary difference is ”audience” which is
a result of a number of features being included in offline rl ope, not included in Scope-RL.

A.1 AUDIENCE

Uneven trajectory lengths The Scope-RL API requires trajectories to be a constant length, an
assumption which is certainly not always satisfied in real world applications. Whilst trajectories
could be padded prior to running OPE, this would render the calculation of self-normalised
estimates incorrect. In comparison, offline rl ope can handle trajectories of differing lengths and
does not require the user to perform any pre-processing in order to do so (see section 3.1 for a
further explanation).

Generic workflow specifically for real world data In addition to supporting uneven trajectory
lengths, the offline rl ope API enables real world applications in several other ways. offline rl ope
supports arbitrary evaluation and behaviour policies through the Policy class (section 3.2) whilst
providing functionality to trivially define Pytorch and sklearn behaviour estimators through the
PropensityModels API (section 3.3.1). In contrast, Scope-RL is deeply integrated with d3rlpy
and does not provide any functionality for defining behaviour propensity estimates outside of the
generation of synthetic datasets. Additionally, the OPE evaluation metrics included in Scope-RL
require an oracle measure of performance. In contrast, offline rl ope focuses on defining a workflow
for real world data by introducing metrics (section 3.3.3) such as VWP and enabling stages of the
OPE pipeline to be easily cached for debugging and post-hoc analysis.

Off-policy selection with d3rlpy Despite having a generic API, offline rl ope ships, natively,
with a deep integration with d3rlpy. In particular, offline rl ope enables OPE metrics to be run
during training (see section 3.3.2) thus enabling early stopping to be performed.

A.2 ESTIMATORS, API AND IMPLEMENTATION

In addition to audience, Scope-RL differs in the number of other areas. The number of esti-
mators currently implemented within Scope-RL far exceeds that of offline rl ope in particular,
state marginal IS estimators, double reinforcement learning and the DICE family of estimators.
Whilst these estimators will be implemented within offline rl ope in the future, users looking for
implementations as of the time of writing this document are referred to Scope-RL.

The offline rl ope API utilises equation 1 to enable an array of IS based estimators to be imple-
mented, relying on significant class inheritance. This has resulted in an API which is easy to extend
and maintain and is in contrast to the individually defined discrete and continuous estimators within
the Scope-RL API. The implementation deatils of this API are discussed in section 3.1.

12

https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5e00132373a7031000fd987a3c9f87b-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5e00132373a7031000fd987a3c9f87b-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5e00132373a7031000fd987a3c9f87b-Paper-round1.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

The final difference between Scope-RL and offline rl ope is the handling of continuous action
spaces. offline rl ope can only (reasonably) evaluate stochastic policies learnt over a continuous
action spaces whilst, in Scope-RL, all policies over continuous actions spaces are evaluated through
kernel smoothing of actions (Kallus & Zhou (2018)).

B MOTIVATING THE USE OF IS ESTIMATORS

The objective of OPE is to evaluate the expected discounted reward of a policy πe,
Eτ∼pπe

[
∑∞

i=0 riγ
i]. Pure IS estimators refer to any OPE estimator defined as per equation

1. DR estimators considered in offline rl ope can also be defined similarly to equation 1 however,
for an estimator to be doubly robust, certain bias conditions must also be met. Generally speaking
DR estimators incorporate a (direct) approximation of the policy value under πe i.e., Q̂πe

(s, a) in
addition to the IS estimates. In contrast, direct methods (DM) solely utilise the aforementioned
value function estimate.

Within ORL, the FQE DM method (Le et al. (2019)) is often cited as a ”go-to” method for
performing OPE (Voloshin et al. (2021)). However, theoretical and empirical evidence suggests
that the selection of OPE estimator is problem specific. Theoretically, the decision of whether to
use an IS estimator or a direct method estimator is a function of the complexity of the propensity
and reward (outcome) model, respectively (Alaa & van der Schaar (2018)). Voloshin et al. (2021)
observed this empirically as well as noting additional factors such as: evaluation policy/behaviour
policy mass-match and horizon length.

There also exists practical differences in estimators, in terms of complexity of hyperparameter
tuning and computation time. For pure IS methods, the aforementioned complexities are a result of
the behaviour policy estimation and as such, need to only be performed once per behaviour policy
(rather than per evaluation policy as in the case of direct and DR methods), pure IS methods are
more suited for rapid model experimentation. Tang & Wiens (2021) leveraged this observation,
proposing a two stage model development pipeline, where IS methods are used for initial model
assessment.

The above observations clearly motivate the development of a robust code base for performing a
range of OPE estimation.

C DEFINING IS/DR ESTIMATORS IN OFFLINE RL OPE

Using the definitions provided in section 3, sudo code for defining different IS estimators is
provided below. The vanilla IS estimator has been defined using the low level API whilst the WIS
and WDR estimators have been defined using the plug and play API. The ”rewards”, ”states” and
”actions” parameters except lists of PyTorch Tensors, the discount parameter excepts a float value
and the behav policy and eval policy except classes of type offline rl ope.components.Policy.Policy.

from o f f l i n e r l o p e . components i m p o r t I S W e i g h t O r c h e s t r a t o r
from o f f l i n e r l o p e . OPEEs t imato rs i m p o r t I S E s t i m a t o r
from o f f l i n e r l o p e . OPEEs t imato rs i m p o r t (

I S E s t i m a t o r , EmpiricalMeanDenom ,
PassWeightDenom , WeightedEmpiricalMeanDenom
)

from o f f l i n e r l o p e . a p i . S t a n d a r d E s t i m a t o r s i m p o r t (
Van i l l a ISPDIS , WIS , WDR)

v a n i l l a e s t = I S E s t i m a t o r (
e m p i r i c a l d e n o m =WeightedEmpiricalMeanDenom ( ) ,

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

weight denom=PassWeightDenom ( )
)

w e s t = WIS ( )
s m t h d w e s t = WIS( smoo th eps =0 .0000001)

w d r e s t = WDR(
dm model = .

)

i s c a l c = I S W e i g h t O r c h e s t r a t o r (
” v a n i l l a ” ,
” p e r d e c i s i o n ”
b e h a v p o l i c y = .
)

i s c a l c . u p d a t e (
s t a t e s = . ,
a c t i o n s = . ,
e v a l p o l i c y = .

)

v a n i l l a i s = v a n i l l a e s t . p r e d i c t (
r e w a r d s = . ,
d i s c o u n t = . ,
w e i g h t s = i s c a l c [ ” v a n i l l a ” ] . t r a j i s w e i g h t s ,
i s m s k = i s c a l c . weight msk ,
s t a t e s = . ,
a c t i o n s = . ,

)

v a n i l l a p d = v a n i l l a e s t . p r e d i c t (
r e w a r d s = . ,
d i s c o u n t = . ,
w e i g h t s = i s c a l c [ ” p e r d e c i s i o n ” ] . t r a j i s w e i g h t s ,
i s m s k = i s c a l c . weight msk ,
s t a t e s = . ,
a c t i o n s = . ,

)

v a n i l l a w i s = w e s t . p r e d i c t (
r e w a r d s = . ,
d i s c o u n t = . ,
w e i g h t s = i s c a l c [ ” p e r d e c i s i o n ” ] . t r a j i s w e i g h t s ,
i s m s k = i s c a l c . weight msk ,
s t a t e s = . ,
a c t i o n s = . ,

)

smoo thed wis = s m t h d w e s t . p r e d i c t (
r e w a r d s = . ,
d i s c o u n t = . ,
w e i g h t s = i s c a l c [ ” p e r d e c i s i o n ” ] . t r a j i s w e i g h t s ,
i s m s k = i s c a l c . weight msk ,
s t a t e s = . ,
a c t i o n s = . ,

)

w dr = w d r e s t . p r e d i c t (

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

r e w a r d s = . ,
d i s c o u n t = . ,
w e i g h t s = i s c a l c [ ” v a n i l l a ” ] . t r a j i s w e i g h t s ,
i s m s k = i s c a l c . weight msk ,
s t a t e s = . ,
a c t i o n s = . ,

)

D FAILURE MODES OF IS METRICS FOCUSED ON THE IMPORTANCE
DISTRIBUTION

For simplicity, consider two evaluation policies πe1 and πe2 . Let w1 = {w1,i = c+ : i
mod 2 = 1∀i ∈ 1, ..., n} ∪ {w1,i = c++ : i mod 2 = 0∀i ∈ 1, ..., n} define the set of importance
sample weights for n trajectories associated with evaluation policy πe1 . Let w2 = {w1,i = c+ : i
mod 2 = 1∀i ∈ 1, ..., n} ∪ {w1,i = c′+ : i mod 2 = 0∀i ∈ 1, ..., n} define the set of impor-
tance sample weights for n trajectories associated with evaluation policy πe2 . Additionally let
c++ = c+ + ϵ and c+ = (c′+ + ϵ)−1.

In words, policy πe1 and πe2 deviate to equal extents from πβ , the difference being πe2 is symmetric.
Let ESS be defined as per equation 7 then the metric is defined by the value of cv(w)2. For πe1 and
πe2 this equals:

cv(w1)
2 =

(√ n
4n−1ϵ

2

c+ + 1
2ϵ

)2

cv(w2)
2 =

(√ n
n−1 (

1
2c+ + 1

nϵ )
2

2(nϵ)−1

)2

And therefore, as c+ → ∞, cv(w1)
2 → 0 and cv(w2)

2 → ∞. Following from this, as c+ → ∞,
ESS(w1) → m whilst ESS(w2) → 0. However, regardless of the value of c+, both policies πe1 and
πe2 should be defined equally in terms of the ”(potentially) reduced information content of a dataset
given an evaluation policy”.

E SUPPORTING FIGURES FOR CONTINUOUS CONTROL EXPERIMENT

The following section contains a number of supporting figures for the experiment discussed in sec-
tions 4.2 and ??.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 3: TD error for FQE (DM) models for each of the policies trained. The error bars are
defined by the min and max TD error. The orange dotted line defines the 10 step moving average.

Table 9: WeightStd and VWP metric values for all policies (1875,5000 and 9375) across all seeds

Seed Policy WeightStd VWP 1 VWP 2 VWP 3 VWP 4 VWP 5 VWP Max
1 1875 85.36 0.54 0.54 0.67 0.68 0.69 1
1 5000 49.73 0.55 0.55 0.68 0.69 0.69 1
1 9375 21.3 0.57 0.57 0.67 0.68 0.69 1
2 1875 10.92 0.54 0.54 0.68 0.68 0.68 1
2 5000 10.28 0.53 0.53 0.68 0.68 0.68 1
2 9375 9.43 0.52 0.52 0.67 0.67 0.68 1
3 1875 20.22 0.54 0.54 0.69 0.71 0.71 1
3 5000 29.43 0.54 0.54 0.69 0.71 0.71 1
3 9375 53.71 0.57 0.57 0.69 0.71 0.71 1
4 1875 776.37 0.5 0.5 0.62 0.62 0.62 1
4 5000 62.48 0.5 0.5 0.62 0.63 0.63 1
4 9375 11.46 0.55 0.55 0.62 0.63 0.63 1
5 1875 104.99 0.6 0.6 0.69 0.73 0.73 1
5 5000 105.6 0.6 0.6 0.7 0.73 0.73 1
5 9375 436.81 0.58 0.58 0.71 0.72 0.73 1

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 10: Coefficients and p-values (t-test), measuring the linear relationship between the
magnitude of weight clipping applied to an estimator plus the VWP and WeightStd estimates
against the probability that the current magnitude of clipping harms the ranking performance

VWP Order of Magnitude Name Coefficient P-value

0.5

Intercept 41.77 0.02
Amount of clipping -0.74 0.39

WeightStd -0.00 0.16
VWP -95.61 0.02

1

Intercept 52.04 0.00
Amount of clipping -0.78 0.38

WeightStd -0.02 0.00
VWP -95.59 0.00

1.5

Intercept -15.11 0.31
Amount of clipping -0.62 0.44

WeightStd -0.00 0.46
VWP 22.95 0.32

2

Intercept 31.65 0.14
Amount of clipping -0.63 0.43

WeightStd -0.02 0.02
VWP -46.48 0.14

2.5

Intercept 27.64 0.05
Amount of clipping -0.66 0.42

WeightStd -0.02 0.00
VWP -40.13 0.05

3

Intercept 33.40 0.02
Amount of clipping -0.68 0.41

WeightStd -0.02 0.00
VWP -48.21 0.02

17


	Introduction
	Related work
	Scope-RL

	Hierarchy of IS methods
	Estimation API
	Policy
	Additional notable functionality
	Propensity models
	APIs
	Offline OPE metrics


	Accuracy of implementation
	Discrete action estimators
	Continuous action spaces

	Example use of VWP and WeightStd metrics (continuous action space)
	Next steps
	offline_rl_ope/Scope-RL discussion
	Audience
	Estimators, API and implementation

	Motivating the use of IS estimators
	Defining IS/DR estimators in offline_rl_ope
	Failure modes of IS metrics focused on the importance distribution
	Supporting figures for continuous control experiment

