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ABSTRACT

offline rl ope is a fully unit tested and runtime type checked Python package for
performing off-policy evaluation of offline RL models. offline rl ope has been
designed for OPE workflows using real world data by: naturally handling uneven
trajectory lengths; including novel convergence metrics which do not rely on OPE
estimator ground truths; and providing a compute and data efficient API which
can be integrated with many offline RL frameworks. This paper motivates and
describes the core API design and functionality to enable ease of use and exten-
sion. The implementations of OPE methods have been benchmarked against exist-
ing implementations to ensure consistency and reproducibility. The offline rl ope
source code can be found on GitHub at: REDACTED

1 INTRODUCTION

Offline RL enables MDPs to be solved without interaction with an environment (i.e., with only a
logged (batch) dataset) and has grown in popularity recently due to the availability of such data and
the challenges of performing environment interactions in high stakes settings (Levine et al., 2020).
A core challenge however, when environment interaction is not possible (fully offline RL (ORL)) is
off-policy evaluation (OPE). OPE refers to evaluating a hypothetical target policy, πe with access to
trajectories generated according to an alternate policy, πβ . Since performing off-policy evaluations
is inherently counterfactual, OPE must be performed carefully and is still an active research area.

There still does not exist a well established and tested code base for performing OPE. Such a
codebase, which is agnostic to the implementation of the policy learning algorithm, would be
beneficial to ensure reproducibility and transparency in the application of OPE. This ambiguity
in the application of OPE estimators has been rooted in the non-uniqueness of estimators (e.g.,
weighted Per-Decision proposed by Precup et al. (2000) and Kallus & Uehara (2019)) and the use
of custom implementations of estimators without declaration of changes (e.g., value clipping by
Raghu et al. (2017)).

offline rl ope, is a unit tested and runtime type-checked Python library for performing off-policy
evaluation on real world data, which is agnostic to the framework used for training ORL models.
Specifically, the contributions are as follows:

• Developed for use with real world data: handles uneven trajectory lengths (section 3.1);
and includes offline OPE evaluation metrics (section 3.3.3) and common techniques (e.g.,
clipping) for importance sampling (IS) and doubly robust (DR) estimators (section 3.1);

• An API that can be easily extended for research purposes or used as plug-and-play;
• Optionally integrates with d3rlpy (Seno & Imai, 2021) for train-time evaluations (as a posed

to post-hoc).

The focus for the first release of offline rl ope has been to implement standard techniques for IS and
DR in a flexible and efficient API. The first release has focused primarily on IS and DR estimates
due to the existence of a strong implementations of FQE by Seno & Imai (2021). More advanced
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IS methods (i.e., marginal state IS), model-based methods, composite methods, direct methods and
efficient influence function methods will be included in future releases. The package code base is
available at: REDACTED

The aim of this paper was to: introduce the API, enabling future work and use of offline rl ope; and
to motivate many of the API structure decisions and offline metrics. This document was written with
respect to version 7.0.1 of offline rl ope and accompanying code can be found at: REDACTED. API
usage examples are provided in appendix C and at REDACTED.

2 RELATED WORK

Existing OPE codebases have generally been included within a larger RL framework (Kiyohara et al.
(2023), Liang et al. (2018),Kiyohara et al. (2023)) and as a result, the OPE API is tightly coupled
with a specific model training framework.

2.1 SCOPE-RL

Scope-RL (Kiyohara et al. (2023)) was the first library to focus predominantly on OPE and is the
existing work that is most similar to offline rl ope. However, there exist a number of areas of
divergence between Scope-RL and offline rl ope, the most critical of these being audience as of-
fline rl ope is more appropriate for real world workflows whilst Scope-RL is tailored more towards
research. This along with other differentiating factors have been described in table 1 and are de-
scribed in greater detail in appendix A.

Table 1: Comparison of offline rl ope against Scope-RL

offline rl ope Scope RL

Audience

Real world analysis OPE research
ORL framework agnostic Deep integration with d3rlpy

Train time evaluations (w. d3rlpy) ✗
Uneven trajectory lengths ✗

Non-oracle metrics Oracle metrics
Propensity modelling Oracle behaviour policy
Framework agnostic

OPE pipeline
End-to-end ORL (w. d3rlpy)

& OPE pipeline
Estimators Basic estimators Basic and advanced estimators
API design Extendable through equ. 1 Limited extendability
Continuous

action spaces Stochastic policies only Kernel smoothing of actions
(Kallus & Zhou (2018))

3 HIERARCHY OF IS METHODS

Uehara et al. (2022) provides an overview of OPE methods for ORL, however, introduced below, is
a ’hierachy of IS methods’ which was critical in the design of the offline rl ope IS API (including
importance sampling for DR). IS estimators have predominantly suffered from high variance, and
as such a large amount of research has been dedicated to reducing it (Kallus & Uehara (2019),
Thomas & Brunskill (2016), Precup et al. (2000)). The line of research broadly aligns to utilising
control estimators from Monte Carlo statistics (Robert & Casella (2004), Thomas & Brunskill
(2016), Swaminathan & Joachims (2015)) however, since control variates are generally considered
to preserve (asymptotic) qualities of estimators, not all OPE estimators proposed for ORL can be
defined, strictly, as control variate methods i.e., not all of the aforementioned estimators preserve
such behaviours.

Equation 1 defines an empirical approximation to the generic RL objective (equation 13 in Uehara
et al. (2022)), however, it is expressive enough to capture the various OPE estimators which exist in
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the literature.

Jτ∼πe,M(d) = g2(·)
n∑

i=1

(
Hi−1∑
t=0

(
γtr(ai,t, si,t)g1(f({πe(ai,t|si,t)}0:Hi−1, {π̂β , (ai,t|si,t)}0:Hi−1, ·), ·)

))
(1)

where d defines an offline dataset generated under πβ and M and n = |d|. g1(·) defines the nor-
malisation constant for the trajectory level importance samples and g2(·) defines the normalisation
constant for the empirical average1. Equations 2, 3, 4 and 5 define the hierarchy of steps for any IS
estimator:

πe(at|st)
πβ(at|st)

: ∀t ∈ 0, ...,H − 1,∀τ ∈ d (2)

f({πe(at|st)}1:H , {π̂β , (at|st)}1:H , ·) : ∀τ ∈ d (3)
g1(f, ·) : ∀τ ∈ d (4)
g2(·) : ∀τ ∈ d (5)

Equation 2 is the same for all IS estimators currently implemented within offline rl ope however,
equation 2 could be altered for state importance sampling methods. Equation 3 can be altered to
define the per-decision IS estimator (Precup et al. (2000)). Equations 4 and 5 are used to define the
various approaches to weighted IS based estimators (including DR estimators). A full breakdown
of common IS estimators is defined in table 2. Let ρIS,i,t and ρPD,i,t define the vanilla IS and per-
decision importance samples for trajectory i and timestep t, respectively:

ρIS,i,t =

Hi∏
t=0

πe(ai,t|si,t)
πβ(ai,t|si,t)

: ∀t ∈ 0, ..,H − 1,∀τ ∈ d

ρPD,i,t =

t∏
t′=0

πe(ai,t′ |si,t′)
πβ(ai,t′ |si,t′)

: ∀t ∈ 0, ..,H − 1,∀τ ∈ d

Note that, for a fixed i, ρIS,i,t is constant ∀t ∈ 0, ...,Hi−1. Herein ρX,i,t = ρIS,i,t or ρX,i,t = ρPD,i,t

depending on the context. Additionally n defines the total number of trajectories and Hi defines the
length of trajectory i.

Additionally to those defined in table 2, it is common practice to ’clip’ importance weights which
could conceivably be implemented at any stage of the aforementioned hierarchy. Clipping in of-
fline rl ope is performed in between equations 3 and 4 and is defined as:

min(max(wf , w
−1
clip), wclip) : ∀wf (6)

where wf ∈ {f({πe(at|st)}1:H , {π̂β , (at|st)}1:H , ·) : ∀τ ∈ d} and wclip is defined a priori.

Finally, to ensure stability of the weighted importance sampling, offline rl ope integrates Laplacian
smoothing. Smoothing can be included in any weighted calculation, for both equations 4 and 5 and
is applied as the final stage of defining the denominator in all cases. For example, when applied to
self-normalised weights in equation 5, the calculation would be:(

ϵ+

n∑
i=1

ρX,i,H

)−1

Figure 1 depicts how the various elements of a standard OPE pipeline are implemented in
offline rl ope. Currently, the only direct method implemented is FQE, which utilises the d3rlpy in-
tegration. As such, the proceeding primarily discusses the API with respect to IS and DR estimators.

1”·” here refers to arbitrary parameters defined later
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Table 2: Mapping of estimator definitions to Equation 1 and literature references

Name Equ. Implementation Reference

Vanilla one step Equ. 3 ρIS,i,t :
∀t ∈ 0, ..,H,∀i ∈ 1, ..., n

Precup et al. (2000)
Kallus & Uehara (2019)

Jiang & Li (2016)

Per-decision Equ. 3 ρPD,i,t :
∀t ∈ 0, ..,H,∀i ∈ 1, ..., n

Precup et al. (2000)
Kallus & Uehara (2019)

Identity Equ. 4 ρX,i,t : ∀t ∈ 0, ..,H,∀i ∈ 1, ..., n Precup et al. (2000)
Vanilla norm

of Equ. 4 Equ. 4 n−1 : ∀t ∈ 0, ..,H,∀i ∈ 1, ..., n Thomas & Brunskill (2016)

Point in Time
self-normalised Equ. 4 (nt)

−1
∑nt

i=1 1pi,t>0(ρX,i,t)ρX,i,t :
∀t ∈ 0, ..,H,∀i ∈ 1, ..., n

Kallus & Uehara (2019)
Thomas & Brunskill (2016)

Vanilla norm
of Equ. 5 Equ. 5 n−1 : ∀t ∈ 0, ..,H,∀i ∈ 1, ..., n

Precup et al. (2000)
Kallus & Uehara (2019)

Jiang & Li (2016)

Self-normalised Equ. 5

(∑n
i=1 ρX,i,H

)−1

:

∀i ∈ 1, ..., n
Precup et al. (2000)

Cumulative
(discount)

self-normalised
Equ. 5

(∑n
i=1

∑H−1
t=0 ρX,i,t

)−1

:

∀t ∈ 0, ..,H,∀i ∈ 1, ..., n
Precup et al. (2000)

Figure 1: Flowchart of components for performing OPE with IS based estimators in offline rl ope.
Key: green squares define classes within offline rl ope that perform a calculation; blue squares
define helper classes within offline rl ope; orange squares defined fixed external inputs; grey

squares define changing external inputs; black arrows defines changing information; orange arrows
define fixed information (conditional on the fixed input); blue arrows define helper funtionality

relationships, not information flow.

3.1 ESTIMATION API

The estimation API defines the calculation mechanics of all the estimators described in section 3 as
well as DR, DM and any additional methods added in future releases. This hierarchy described in
section 3 is utilised to: improve computation time when using multiple IS estimators (since reused
outputs can be cached); to enable custom estimators to be implemented with minimal additional
code; and to streamline testing and code maintenance. The core elements of the API are described
below and notable attributes/methods are described in table 3.
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ISWeightCalculator A single ISWeightCalculator object is defined per behaviour policy. The
ISWeightCalculator class handles querying the evaluation and behaviour policy; calculating
the one-step importance ratios (equation 2); and caching of weights to be used across multiple
estimators, reducing computation. Additionally, the ISWeightCalculator automatically defines and
caches the lengths of each trajectory, ensuring datasets with uneven trajectory lengths can be used
without preprocessing from the user.

ImportanceSampler Child classes of ImportanceSampler implement equation 3 e.g., the Vanil-
laIS class defines Vanilla one step importance sampling whilst PerDecisionIS implements the
Per-decision estimator. When using multiple different ImportanceSampler objects for a single
behaviour policy (e.g., when performing vanilla IS and per-decision importance sampling) the
ISWeightOrchestrator (which is a child class of ISWeightCalculator) can be used to facilitate the
sharing of one-step weights across multiple instances of ImportanceSampler. This ensures the be-
haviour and evaluation policies are only queried once, thus reducing computation.

ISEstimatorBase/WeightDenomBase The ISEstimatorBase class implements the mechanics of
estimating the reward of a single trajectory whilst child classes, (e.g., ISEstimator and DREstima-
tor) implement the specific calculation (as per equation 1). Critically, any ISEstimatorBase object
requires WeightDenomBase for instantiation where child classes of WeightDenomBase implement
equation 4.

OPEEstimatorBase/EmpiricalMeanDenomBase The OPEEstimatorBase implements the me-
chanics of summarising the trajectory level rewards (defined by ISEstimatorBase) across an entire
dataset. This broadly requires summing the trajectory level rewards and applying variations of equa-
tion 5, defined by child classes of EmpiricalMeanDenomBase, which are required to instantiate an
OPEEstimatorBase object.

Table 3: Notable classes and associated methods and attributes.

Class Methods
attribute Description

ISWeightCalculator &
ISWeightOrchestrator

(Equation 2)

is weights Tensor of dimension (n,max[Hi])
of one-step importance ratios

weight msk Tensor of dimension (n,max[Hi]) with
value 0 after a trajectory has terminated

update Updates is weights using
the evaluation policy provided

ImportanceSampler
(Equation 3)

traj is weights Tensor of dimension (n,maxHτ )
of trajectory importance ratios.

get traj weight array Abstract method requiring child classes
to implement variations of equation 3

ISEstimatorBase
(Equation 4) process weights

Applies IS weight clipping (Equ. 6)
and the calculation defined

by WeightDenomBase
WeightDenomBase

(Equation 4) call Abstract method requiring child classes
to implement variations of equation 4

OPEEstimatorBase
(Equation 5)

predict traj rewards

Abstract method requiring child
classes to implement estimator
mechanics i.e., doubly robust
vs pure importance sampling

predict Core public method for
calculating the dataset estimate

EmpiricalMeanDenomBase
(Equation 5) call Abstract method requiring child classes

to implement variations of equation 5

5
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3.2 POLICY

The BasePolicy class defines a standardised API for obtaining state-action probabilities under a
given policy. Shipped with offline rl ope are the Policy and GreedyDeterministic classes which
define framework agnostic wrappers for stochastic and greedy deterministic polices, respectively,
for functions returning both Pytorch tensors and numpy arrays. The irl example.py script in the
code accompanying this paper provides an example of how the Stable Baselines3 (Raffin et al.
(2021)) policy API can be made compatible with offline rl ope through a simple wrapper class. To
enable ease of debugging and monitoring, the BasePolicy class optionally allows policy outputs to
be easily cached, similarly to the ISWeightCalculator and ImportanceSampler APIs.

3.3 ADDITIONAL NOTABLE FUNCTIONALITY

3.3.1 PROPENSITY MODELS

The majority of recent OPE applications entail large state (and action) spaces and as such, require
defining the behaviour policy via function approximation (Hanna et al. (2019)). offline rl ope
provides an API for defining propensity models with Pytorch (Paszke et al. (2019)) and scikit-learn
(Pedregosa et al. (2011)).

3.3.2 APIS

3rd Party Integration Whilst the focus of offline rl ope was on defining a standalone OPE frame-
work, providing optional integrations with popular ORL workflows was deemed a necessity. Cur-
rently offline rl ope is (optionally) tightly integrated with d3rlpy (Seno & Imai (2021)). The existing
implementation allows any OPE estimator defined with offline rl ope to be used to assess d3rlpy
models both post and during training. In particular the ”during training” API aligns with the rec-
ommendations of Tang & Wiens (2021) as it enables an early stopping type workflow. Running this
workflow is further aided by the caching of reusable computations discussed in section 3.1.

Plug and play offline rl ope has been designed to be trivally extendable by defining low level
modules for constructing OPE estimators (section 3.1). However, in order to address the consistency
issues described in section 1, a plug and play API has been additionally provided.

3.3.3 OFFLINE OPE METRICS

Effective sample size (ESS) is a metric colloquially associated with IS methods with the intent of
describing the ”(potentially) reduced information content of a dataset given an evaluation policy”.
For example, Liu et al. (2022) utilised the ESS definition in equation 7, from Owen (2013).

ESS =
n

1 + cv(w)2
(7)

Such that:

wi =
πe(ai|si)
πβ(ai|si)

; cv(w) =
sdw
w̄

; w̄ =
1

n

n∑
i=1

wi; sdw =

√√√√( 1

n− 1

n∑
i=1

(wi − w̄)2
)

Such a definition, along with others (such as that proposed by Kong (1992)) have been designed for
performing Monte Carlo Integration in a fundamentally different contexts to OPE. The diagnostics
for non OPE Monte Carlo IS have been derived under the assumption that the importance distribution
(pπβ

in OPE) is variable and the nominal distribution (pπe
in OPE) is fixed. Owen (2013) derived

diagnostics by utilising the fact that the variance of a Monte Carlo IS estimator can be defined as:

Var[JIS(πe; τ)] =

∫
{τ :pπβ

(τ)>0}

(
pπe

(τ)
∑∞

t=0 rtγ
t − µpπβ

(τ)
)2

pπβ
(τ)

dτ (8)

6
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where µ = Eτ [JIS(πe; τ)]. However, focused on monitoring the pπβ
terms, since these could

have been altered to reduce the variance. For OPE however, the behaviour policy is fixed
and thus in order to reduce the variance and ”obtain a higher effective sample size”, the de-
viations between the behaviour and evaluation policy should be reduced, as described by the(
pπe(τ)

∑∞
t=0 rtγ

t − µpπβ
(τ)
)2

term. Appendix D demonstrates how the diagnostics used to
monitor the importance distribution (such as equation 7) produce undesirable results for OPE.

VWP Motivated by monitoring the symmetric deviations between the importance and nomi-
nal distribution, the metric ”VWP” (valid weight proportion) is proposed. Utilising the fact that∑∞

t=0
pπe (st,at)
pπβ

(st,at)
∝ (pπe

(τ)
∑∞

t=0 rtγ
t − µpπβ

(τ))2, let:

VWP =
1

n

n∑
i=1

1wmin≤wi≤wmax(wi) (9)

where wi =
∑

t = 0∞ρIS,i,t or wi =
∑∞

t=0 ρPD,i,t depending on the context and the desirable
behaviour is for VWP → 1 as wmin → 0 and wmax → ∞. VWP ignores the dependence on µ in
equation 8 however, the metric does overcome the described failure modes of ESS.

WeightStd In addition to using VWP, a metric for tracking the standard deviation of weights
(WeightStd) is also implemented within offline rl ope. WeightStd is defined as per sdw, above, i.e.:

WeightStd =

√√√√( 1

n− 1

n∑
i=1

(wi − w̄)2
)

(10)

Both VWP and WeightStd measure the deviation of weights however, in contrast to VWP, WeightStd
centers around the mean deviation rather than 1. A mean deviation of 1 is significant as it represents
the minimal deviation from the behaviour policy and thus minimal additional generalisation error.
Whilst a standard deviation of 1 would also represent such a scenario, WeightStd is unable to
distinguish between a policy that systematically deviates from the behaviour policy at a constant
magnitude; and a policy which remains close to the behaviour policy but deviates significantly at a
small subset of trajectories. This is a result of the relatively larger impact that outliers can have on
the mean calculation. However, when used in conjunction with VWP, the WeightStd can identify
such scenarios since the former would present with a slow VWP convergence whilst the latter
would present with a faster rate of convergence. Further, distinguishing between these scenarios is
important as uncertainty in the latter policy can be reduced using weight clipping without greatly
affecting the overall behaviour of the policy. Table 4 provides an overview of how VWP and
WeighStd can be jointly interpreted to debug IS weights.

Table 4: Joint interpretation of VWP and WeightStd metrics

Scenario VWP WeightStd Interpretation

1 → 0 → 0
Uncertainty due to consistent divergence from the behaviour

policy. Constrain entire policy to reduce uncertainty.

2 → 0 → ∞
Maximal uncertainty due to consistent divergence from the

behaviour policy and the estimation is dominated by a subset
of trajectories. Constrain entire policy to reduce uncertainty.

3 → 1 → 0 Minimal uncertainty

4 → 1 → ∞
Uncertainty due to estimate being dominated by a

subset of trajectories. Implement weight clipping at
reasonable order of magnitude from 1.

7
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4 ACCURACY OF IMPLEMENTATION

All estimators implemented within offline rl ope have been unit tested however, additional analysis
was conducted (where possible) to ensure consistency of implementation.

4.1 DISCRETE ACTION ESTIMATORS

The implementations of discrete action (continuous state) estimators were compared across
offline rl ope and Scope-RL. Table 5 demonstrates that the implementations for: IS, WIS, PD
WPD, DR and WDR estimators did not differ materially.

Table 5: Comparison of offline rl ope and Scope RL estimations in a continuous state-discrete
action environment, RTBGym (Kiyohara et al. (2023))

Estimator Mean difference
(Scope-RL denom)

Mean difference
(OPO denom)

IS 0.00% 0.00%
WIS 0.00% 0.00%
PD 0.00% 0.00%

WPD 0.00% 0.00%
DR 0.00014% 0.00014%

WDR 0.0028% 0.0028%

4.2 CONTINUOUS ACTION SPACES

With respect to continuous action spaces, offline rl ope and Scope-RL differed significantly in their
approach and as such, could not be compared against one another. To demonstrate the efficacy
of the offline rl ope implementation for continuous actions spaces, the relative ranking2 of 3 poli-
cies were compared against the ground truth evaluations using the Pendulum environment (Towers
et al. (2024)). In addition to a number of other expected observations, table 6 suggests that broadly
speaking, estimators implemented in offline rl ope were able to accurately rank the performance
of policies against the ground truth performance, demonstrating the efficacy of implementation. In
addition, expected observations included:

• Pure PD estimators benefited the most from weight clipping since the bias of doubly robust
methods was already being controlled through the reward approximation;

• The pure PD estimator demonstrated the worse correlation due to the high variance of the
estimator;

• Combining the FQE method from d3rlpy with the DR and WDR methods improved the
ranking performance, despite all FQE models converging reasonably well and a reasonable
amount of hyperparameter tuning being performed (figures 3 in appendix E).

To conclude, despite the lack of existing benchmark for performing OPE on continuous stochastic
policies, the results and observations highlighted (in addition to the unit testing performed) provided
reasonable evidence as to the efficacy of implementation within offline rl ope.

5 EXAMPLE USE OF VWP AND WEIGHTSTD METRICS (CONTINUOUS
ACTION SPACE)

To demonstrate the efficacy of the VWP and WeightStd metrics, these were used to integrogate
the ranking performance of OPE estimators utilising, per-decision weights, over policies from the
continuous action task described in section 4.2. Table 7 compares the ranking performance of using
non-clipped estimators against an average of 6 clipped estimators (at different magnitudes). Overall,

2Since OPE estimator prediction is heavily dependant on the problem context, policy ranking was deemed
sufficient to demonstrate the implementation efficacy.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Average (across 5 random seeds) correlation of policy rankings in comparison to
environment ground truth. OoM describes the order of magnitude of clipping applied.

Spearman Correlation
Estimator No clipping Clipping OoM 1 Clipping OoM 2

IS Undefined Undefined Undefined
WIS Undefined Undefined Undefined
PD -0.1 0.4 0.3

WPD 0.5 0.8 0.7
DR 0.7 0.7 0.7

WDR 0.7 0.6 0.6
DM 0.5 NA NA

Figure 2: Caption

it was clear that the sampling uncertainty of the underlying dataset effected the performance of the
OPE estimator, most notably in seed 2 (even after weight clipping) and in seed 5 where weight
clipping significantly boosted performance.

Table 7: Average (over policies) rank performance of policies against ground truth performance

Seed Spearman’s R (no clipping) Spearman’s R (with clipping)
1 0.88 0.88
2 -0.50 -0.29
3 0.50 0.62
4 1.00 0.92
5 0.38 0.71

Figure 2 displays the VWP metrics, averaged across policies for each seed. Notably, seed 5 had a
relatively quicker VWP convergence rate whilst seed 2 had a relatively low one. Additionally, the
mean WeightStd values (across policies) for seed 2 and seed 5 were 10.21 and 215.80, respectively
(full figures in table 9). Arguably, the policies within seed 2 aligned to scenario 1 in table 4, where
the poor predictions were a result of the policies systematically diverging from the behaviour policy.
In contrast, the policies in seed 5 aligned to scenario 4, where the poor predictions were a result of
the uncertainty induced by a subset of trajectories. As such, the uncertainty in OPE estimates for
seed 5 had the potential to be reduced through weight clipping to a greater extent than for seed 2.

Utilising VWP and WeightStd to interogate the performance of OPE estimates is a probabilistic
exercise. According to figure 2, the policies in seed 4 were divergent (due to the low VWP) however,

9
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the OPE rankings were very accurate. This was most likely a result of the good performance of the
OPE estimators when clipping was not applied. Table 8 describes the results of a logistic regression
model, assessing the relationship between:

• The amount of clipping and;

• The original performance of the unclipped estimator;

against the probability that an additional order of magnitude of weight clipping harmed the ranking
performance of the estimator. Notably, the higher the ranking performance of the original estimator,
the less likely that clipping was to harm the performance, providing evidence for the hypothesis
regarding the policies in seed 4.

Table 8: Coefficients and p-values (t-test), measuring the linear relationship between the magnitude
of weight clipping applied to an estimator plus the original ranking performance of the un-clipping

estimator agains the probability that the current magnitude of clipping harms the ranking
performance

Name Coefficient P-value
Intercept 0.11 0.86

Amount of clipping -0.95 0.34
Performance of

unclipped estimator -2.11 0.00

Similar logistic regression tests were performed on combinations of WeightStd and VWP at
different orders of magnitude (table 10 in appendix E). Whilst the results were encouraging with
respect to the direction of the coefficients, the significance of the effect sizes were inconclusive,
suggesting further work is required to understand the true predictive nature of the metrics.

6 NEXT STEPS

Next steps for the development of offline rl ope would be to implement additional OPE estimation
techniques, develop additional non-oracle metrics for assessing OPE estimations as well as further
assessing the predictive power of VWP and WeightStd. An interesting area of future research for IS
estimators with regression models would be to develop uncertainty estimates which combine both
the uncertainty in estimation of the propensity model and the resulting OPE estimation. A limita-
tion of the existing offline rl ope implementation is the over-reliance on PyTorch. Whilst this has
simplified integration with other PyTorch frameworks, the implementation restricts integration with
other popular frameworks such as Tensorflow and Jax. Additionally, performance improvements in
the computation of IS estimates from multi-processing could be explored.
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A OFFLINE RL OPE/SCOPE-RL DISCUSSION

Table 1 provides an overview of the differentiating factors between offline rl ope and Scope-RL
however, these are discussed in greater detail below. The primary difference is ”audience” which is
a result of a number of features being included in offline rl ope, not included in Scope-RL.

A.1 AUDIENCE

Uneven trajectory lengths The Scope-RL API requires trajectories to be a constant length, an
assumption which is certainly not always satisfied in real world applications. Whilst trajectories
could be padded prior to running OPE, this would render the calculation of self-normalised
estimates incorrect. In comparison, offline rl ope can handle trajectories of differing lengths and
does not require the user to perform any pre-processing in order to do so (see section 3.1 for a
further explanation).

Generic workflow specifically for real world data In addition to supporting uneven trajectory
lengths, the offline rl ope API enables real world applications in several other ways. offline rl ope
supports arbitrary evaluation and behaviour policies through the Policy class (section 3.2) whilst
providing functionality to trivially define Pytorch and sklearn behaviour estimators through the
PropensityModels API (section 3.3.1). In contrast, Scope-RL is deeply integrated with d3rlpy
and does not provide any functionality for defining behaviour propensity estimates outside of the
generation of synthetic datasets. Additionally, the OPE evaluation metrics included in Scope-RL
require an oracle measure of performance. In contrast, offline rl ope focuses on defining a workflow
for real world data by introducing metrics (section 3.3.3) such as VWP and enabling stages of the
OPE pipeline to be easily cached for debugging and post-hoc analysis.

Off-policy selection with d3rlpy Despite having a generic API, offline rl ope ships, natively,
with a deep integration with d3rlpy. In particular, offline rl ope enables OPE metrics to be run
during training (see section 3.3.2) thus enabling early stopping to be performed.

A.2 ESTIMATORS, API AND IMPLEMENTATION

In addition to audience, Scope-RL differs in the number of other areas. The number of esti-
mators currently implemented within Scope-RL far exceeds that of offline rl ope in particular,
state marginal IS estimators, double reinforcement learning and the DICE family of estimators.
Whilst these estimators will be implemented within offline rl ope in the future, users looking for
implementations as of the time of writing this document are referred to Scope-RL.

The offline rl ope API utilises equation 1 to enable an array of IS based estimators to be imple-
mented, relying on significant class inheritance. This has resulted in an API which is easy to extend
and maintain and is in contrast to the individually defined discrete and continuous estimators within
the Scope-RL API. The implementation deatils of this API are discussed in section 3.1.
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The final difference between Scope-RL and offline rl ope is the handling of continuous action
spaces. offline rl ope can only (reasonably) evaluate stochastic policies learnt over a continuous
action spaces whilst, in Scope-RL, all policies over continuous actions spaces are evaluated through
kernel smoothing of actions (Kallus & Zhou (2018)).

B MOTIVATING THE USE OF IS ESTIMATORS

The objective of OPE is to evaluate the expected discounted reward of a policy πe,
Eτ∼pπe

[
∑∞

i=0 riγ
i]. Pure IS estimators refer to any OPE estimator defined as per equation

1. DR estimators considered in offline rl ope can also be defined similarly to equation 1 however,
for an estimator to be doubly robust, certain bias conditions must also be met. Generally speaking
DR estimators incorporate a (direct) approximation of the policy value under πe i.e., Q̂πe

(s, a) in
addition to the IS estimates. In contrast, direct methods (DM) solely utilise the aforementioned
value function estimate.

Within ORL, the FQE DM method (Le et al. (2019)) is often cited as a ”go-to” method for
performing OPE (Voloshin et al. (2021)). However, theoretical and empirical evidence suggests
that the selection of OPE estimator is problem specific. Theoretically, the decision of whether to
use an IS estimator or a direct method estimator is a function of the complexity of the propensity
and reward (outcome) model, respectively (Alaa & van der Schaar (2018)). Voloshin et al. (2021)
observed this empirically as well as noting additional factors such as: evaluation policy/behaviour
policy mass-match and horizon length.

There also exists practical differences in estimators, in terms of complexity of hyperparameter
tuning and computation time. For pure IS methods, the aforementioned complexities are a result of
the behaviour policy estimation and as such, need to only be performed once per behaviour policy
(rather than per evaluation policy as in the case of direct and DR methods), pure IS methods are
more suited for rapid model experimentation. Tang & Wiens (2021) leveraged this observation,
proposing a two stage model development pipeline, where IS methods are used for initial model
assessment.

The above observations clearly motivate the development of a robust code base for performing a
range of OPE estimation.

C DEFINING IS/DR ESTIMATORS IN OFFLINE RL OPE

Using the definitions provided in section 3, sudo code for defining different IS estimators is
provided below. The vanilla IS estimator has been defined using the low level API whilst the WIS
and WDR estimators have been defined using the plug and play API. The ”rewards”, ”states” and
”actions” parameters except lists of PyTorch Tensors, the discount parameter excepts a float value
and the behav policy and eval policy except classes of type offline rl ope.components.Policy.Policy.

from o f f l i n e r l o p e . components i m p o r t I S W e i g h t O r c h e s t r a t o r
from o f f l i n e r l o p e . OPEEs t imato rs i m p o r t I S E s t i m a t o r
from o f f l i n e r l o p e . OPEEs t imato rs i m p o r t (

I S E s t i m a t o r , EmpiricalMeanDenom ,
PassWeightDenom , WeightedEmpiricalMeanDenom
)

from o f f l i n e r l o p e . a p i . S t a n d a r d E s t i m a t o r s i m p o r t (
Van i l l a ISPDIS , WIS , WDR)

v a n i l l a e s t = I S E s t i m a t o r (
e m p i r i c a l d e n o m =WeightedEmpiricalMeanDenom ( ) ,

13
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weight denom=PassWeightDenom ( )
)

w e s t = WIS ( )
s m t h d w e s t = WIS( smoo th eps =0 .0000001)

w d r e s t = WDR(
dm model = .

)

i s c a l c = I S W e i g h t O r c h e s t r a t o r (
” v a n i l l a ” ,
” p e r d e c i s i o n ”
b e h a v p o l i c y = .
)

i s c a l c . u p d a t e (
s t a t e s = . ,
a c t i o n s = . ,
e v a l p o l i c y = .

)

v a n i l l a i s = v a n i l l a e s t . p r e d i c t (
r e w a r d s = . ,
d i s c o u n t = . ,
w e i g h t s = i s c a l c [ ” v a n i l l a ” ] . t r a j i s w e i g h t s ,
i s m s k = i s c a l c . weight msk ,
s t a t e s = . ,
a c t i o n s = . ,

)

v a n i l l a p d = v a n i l l a e s t . p r e d i c t (
r e w a r d s = . ,
d i s c o u n t = . ,
w e i g h t s = i s c a l c [ ” p e r d e c i s i o n ” ] . t r a j i s w e i g h t s ,
i s m s k = i s c a l c . weight msk ,
s t a t e s = . ,
a c t i o n s = . ,

)

v a n i l l a w i s = w e s t . p r e d i c t (
r e w a r d s = . ,
d i s c o u n t = . ,
w e i g h t s = i s c a l c [ ” p e r d e c i s i o n ” ] . t r a j i s w e i g h t s ,
i s m s k = i s c a l c . weight msk ,
s t a t e s = . ,
a c t i o n s = . ,

)

smoo thed wis = s m t h d w e s t . p r e d i c t (
r e w a r d s = . ,
d i s c o u n t = . ,
w e i g h t s = i s c a l c [ ” p e r d e c i s i o n ” ] . t r a j i s w e i g h t s ,
i s m s k = i s c a l c . weight msk ,
s t a t e s = . ,
a c t i o n s = . ,

)

w dr = w d r e s t . p r e d i c t (
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r e w a r d s = . ,
d i s c o u n t = . ,
w e i g h t s = i s c a l c [ ” v a n i l l a ” ] . t r a j i s w e i g h t s ,
i s m s k = i s c a l c . weight msk ,
s t a t e s = . ,
a c t i o n s = . ,

)

D FAILURE MODES OF IS METRICS FOCUSED ON THE IMPORTANCE
DISTRIBUTION

For simplicity, consider two evaluation policies πe1 and πe2 . Let w1 = {w1,i = c+ : i
mod 2 = 1∀i ∈ 1, ..., n} ∪ {w1,i = c++ : i mod 2 = 0∀i ∈ 1, ..., n} define the set of importance
sample weights for n trajectories associated with evaluation policy πe1 . Let w2 = {w1,i = c+ : i
mod 2 = 1∀i ∈ 1, ..., n} ∪ {w1,i = c′+ : i mod 2 = 0∀i ∈ 1, ..., n} define the set of impor-
tance sample weights for n trajectories associated with evaluation policy πe2 . Additionally let
c++ = c+ + ϵ and c+ = (c′+ + ϵ)−1.

In words, policy πe1 and πe2 deviate to equal extents from πβ , the difference being πe2 is symmetric.
Let ESS be defined as per equation 7 then the metric is defined by the value of cv(w)2. For πe1 and
πe2 this equals:

cv(w1)
2 =

(√ n
4n−1ϵ

2

c+ + 1
2ϵ

)2

cv(w2)
2 =

(√ n
n−1 (

1
2c+ + 1

nϵ )
2

2(nϵ)−1

)2

And therefore, as c+ → ∞, cv(w1)
2 → 0 and cv(w2)

2 → ∞. Following from this, as c+ → ∞,
ESS(w1) → m whilst ESS(w2) → 0. However, regardless of the value of c+, both policies πe1 and
πe2 should be defined equally in terms of the ”(potentially) reduced information content of a dataset
given an evaluation policy”.

E SUPPORTING FIGURES FOR CONTINUOUS CONTROL EXPERIMENT

The following section contains a number of supporting figures for the experiment discussed in sec-
tions 4.2 and ??.
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Figure 3: TD error for FQE (DM) models for each of the policies trained. The error bars are
defined by the min and max TD error. The orange dotted line defines the 10 step moving average.

Table 9: WeightStd and VWP metric values for all policies (1875,5000 and 9375) across all seeds

Seed Policy WeightStd VWP 1 VWP 2 VWP 3 VWP 4 VWP 5 VWP Max
1 1875 85.36 0.54 0.54 0.67 0.68 0.69 1
1 5000 49.73 0.55 0.55 0.68 0.69 0.69 1
1 9375 21.3 0.57 0.57 0.67 0.68 0.69 1
2 1875 10.92 0.54 0.54 0.68 0.68 0.68 1
2 5000 10.28 0.53 0.53 0.68 0.68 0.68 1
2 9375 9.43 0.52 0.52 0.67 0.67 0.68 1
3 1875 20.22 0.54 0.54 0.69 0.71 0.71 1
3 5000 29.43 0.54 0.54 0.69 0.71 0.71 1
3 9375 53.71 0.57 0.57 0.69 0.71 0.71 1
4 1875 776.37 0.5 0.5 0.62 0.62 0.62 1
4 5000 62.48 0.5 0.5 0.62 0.63 0.63 1
4 9375 11.46 0.55 0.55 0.62 0.63 0.63 1
5 1875 104.99 0.6 0.6 0.69 0.73 0.73 1
5 5000 105.6 0.6 0.6 0.7 0.73 0.73 1
5 9375 436.81 0.58 0.58 0.71 0.72 0.73 1
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Table 10: Coefficients and p-values (t-test), measuring the linear relationship between the
magnitude of weight clipping applied to an estimator plus the VWP and WeightStd estimates
against the probability that the current magnitude of clipping harms the ranking performance

VWP Order of Magnitude Name Coefficient P-value

0.5

Intercept 41.77 0.02
Amount of clipping -0.74 0.39

WeightStd -0.00 0.16
VWP -95.61 0.02

1

Intercept 52.04 0.00
Amount of clipping -0.78 0.38

WeightStd -0.02 0.00
VWP -95.59 0.00

1.5

Intercept -15.11 0.31
Amount of clipping -0.62 0.44

WeightStd -0.00 0.46
VWP 22.95 0.32

2

Intercept 31.65 0.14
Amount of clipping -0.63 0.43

WeightStd -0.02 0.02
VWP -46.48 0.14

2.5

Intercept 27.64 0.05
Amount of clipping -0.66 0.42

WeightStd -0.02 0.00
VWP -40.13 0.05

3

Intercept 33.40 0.02
Amount of clipping -0.68 0.41

WeightStd -0.02 0.00
VWP -48.21 0.02
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