Under review as a conference paper at ICLR 2025

OFFLINE_RL_OPE: A PYTHON PACKAGE FOR
OFF-POLICY EVALUATION OF OFFLINE RL
MODELS WITH REAL WORLD DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

offline_rl_ope is a fully unit tested and runtime type checked Python package for
performing off-policy evaluation of offline RL models. offline_rl_ope has been
designed for OPE workflows using real world data by: naturally handling uneven
trajectory lengths; including novel convergence metrics which do not rely on OPE
estimator ground truths; and providing a compute and data efficient API which
can be integrated with many offline RL frameworks. This paper motivates and
describes the core API design and functionality to enable ease of use and exten-
sion. The implementations of OPE methods have been benchmarked against exist-
ing implementations to ensure consistency and reproducibility. The offline_rl_ope
source code can be found on GitHub at: REDACTED

1 INTRODUCTION

Offline RL enables MDPs to be solved without interaction with an environment (i.e., with only a
logged (batch) dataset) and has grown in popularity recently due to the availability of such data and
the challenges of performing environment interactions in high stakes settings (Levine et al., [2020).
A core challenge however, when environment interaction is not possible (fully offline RL (ORL)) is
off-policy evaluation (OPE). OPE refers to evaluating a hypothetical target policy, 7. with access to
trajectories generated according to an alternate policy, mg. Since performing off-policy evaluations
is inherently counterfactual, OPE must be performed carefully and is still an active research area.

There still does not exist a well established and tested code base for performing OPE. Such a
codebase, which is agnostic to the implementation of the policy learning algorithm, would be
beneficial to ensure reproducibility and transparency in the application of OPE. This ambiguity
in the application of OPE estimators has been rooted in the non-uniqueness of estimators (e.g.,
weighted Per-Decision proposed by [Precup et al.|(2000) and [Kallus & Uehara (2019)) and the use
of custom implementations of estimators without declaration of changes (e.g., value clipping by
Raghu et al.[(2017)).

offline_rl_ope, is a unit tested and runtime type-checked Python library for performing off-policy
evaluation on real world data, which is agnostic to the framework used for training ORL models.
Specifically, the contributions are as follows:

* Developed for use with real world data: handles uneven trajectory lengths (section [3.1);
and includes offline OPE evaluation metrics (section [3.3.3) and common techniques (e.g.,
clipping) for importance sampling (IS) and doubly robust (DR) estimators (section[3.1));

* An API that can be easily extended for research purposes or used as plug-and-play;
* Optionally integrates with d3rlpy (Seno & Imai, 202 1)) for train-time evaluations (as a posed
to post-hoc).

The focus for the first release of offline_rl_ope has been to implement standard techniques for IS and
DR in a flexible and efficient API. The first release has focused primarily on IS and DR estimates
due to the existence of a strong implementations of FQE by |Seno & Imai| (2021). More advanced

Under review as a conference paper at ICLR 2025

IS methods (i.e., marginal state IS), model-based methods, composite methods, direct methods and
efficient influence function methods will be included in future releases. The package code base is
available at: REDACTED

The aim of this paper was to: introduce the API, enabling future work and use of offline_rl_ope; and
to motivate many of the API structure decisions and offline metrics. This document was written with
respect to version 7.0.1 of offline_rl_ope and accompanying code can be found at: REDACTED. API
usage examples are provided in appendix [C]and at REDACTED.

2 RELATED WORK

Existing OPE codebases have generally been included within a larger RL framework (Kiyohara et al.
(2023), Liang et al.| (2018)),Kiyohara et al.| (2023))) and as a result, the OPE API is tightly coupled
with a specific model training framework.

2.1 ScoPE-RL

Scope-RL (Kiyohara et al.| (2023))) was the first library to focus predominantly on OPE and is the
existing work that is most similar to offline_rl_ope. However, there exist a number of areas of
divergence between Scope-RL and offline_rl_ope, the most critical of these being audience as of-
fline_rl_ope is more appropriate for real world workflows whilst Scope-RL is tailored more towards
research. This along with other differentiating factors have been described in table [T| and are de-
scribed in greater detail in appendix

Table 1: Comparison of offline_rl_ope against Scope-RL

offline_rl_ope Scope RL
Real world analysis OPE research
ORL framework agnostic Deep integration with d3rlpy
Train time evaluations (w. d3rlpy) X
Audience Uneven trajectory lengths X
Non-oracle metrics Oracle metrics
Propensity modelling Oracle behaviour policy
Framework agnostic End-to-end ORL (w. d3rlpy)
OPE pipeline & OPE pipeline
Estimators [Basic estimators [Basic and advanced estimators
API design | Extendable through equ. [Limited extendability
Continuous Kernel smoothing of actions

. Stochastic policies only
action spaces

(Kallus & Zhou|(2018))

3 HIERARCHY OF IS METHODS

Uehara et al.| (2022) provides an overview of OPE methods for ORL, however, introduced below, is
a “hierachy of IS methods’ which was critical in the design of the offline_rl_ope IS API (including
importance sampling for DR). IS estimators have predominantly suffered from high variance, and
as such a large amount of research has been dedicated to reducing it (Kallus & Ueharal (2019)),
Thomas & Brunskill| (2016), |Precup et al.[(2000)). The line of research broadly aligns to utilising
control estimators from Monte Carlo statistics (Robert & Casellal (2004), Thomas & Brunskill
(2016), Swaminathan & Joachims|(2015)) however, since control variates are generally considered
to preserve (asymptotic) qualities of estimators, not all OPE estimators proposed for ORL can be
defined, strictly, as control variate methods i.e., not all of the aforementioned estimators preserve
such behaviours.

Equation [T| defines an empirical approximation to the generic RL objective (equation 13 in [Uehara
et al.| (2022)), however, it is expressive enough to capture the various OPE estimators which exist in

Under review as a conference paper at ICLR 2025

the literature.

Jrmmo m(d) = g2(+) Z (i ('ytr(am, si,6)91 (f({me(@itlsie) Yo, —1, {7 s (@itlsie) Yo —15),)))

t=0

(D

where d defines an offline dataset generated under g and M and n = |d|. ¢1(-) defines the nor-
malisation constant for the trajectory level importance samples and go(-) defines the normalisation
constant for the empirical averagl Equations l l E] and [5| define the hierarchy of steps for any IS
estimator:

melolst) vy o H - 1vred)
7T/3(at|5t)
f{me(atlse) biim, {7p, (atlse) hom, o) VT €d 3)
a(f,):Vred ()]
g2(-) VT ed (5)

Equation [2|is the same for all IS estimators currently implemented within offline_rl_ope however,
equation [2] could be altered for state importance sampling methods. Equation [3] can be altered to
define the per-decision IS estimator (Precup et al.| (2000)). Equations [Z_f] andE] are used to define the
various approaches to weighted IS based estimators (including DR estimators). A full breakdown
of common IS estimators is defined in table E} Let pis s+ and ppp ;¢ define the vanilla IS and per-
decision importance samples for trajectory 7 and timestep ¢, respectively:

H;
P18 it :HM :Vte0,.,.H—-1,Vred
=0 mp(ait]sie)

t
PPD,i,t = H M -Vt S O,..,H— 1,V7’ S d
oo T8lai]siv)

Note that, for a fixed ¢, pis ;¢ is constant V¢ € O, ..., H; — 1. Herein px ; ¢ = pis,s,t O PX,i,t = PPD,i,t
depending on the context. Additionally n defines the total number of trajectories and H; defines the
length of trajectory «.

Additionally to those defined in table [2| it is common practice to ’clip’ importance weights which
could conceivably be implemented at any stage of the aforementioned hierarchy. Clipping in of-
fline_rl_ope is performed in between equations [3|and @ and is defined as:

min(max(wy, w;ﬁ:’), Weiip) : YWy (6)

where wy € {f({me(at|se) 1.1, {73, (ae]s¢) }1:m,-) : V7 € d} and wp is defined a priori.

Finally, to ensure stability of the weighted importance sampling, offline_rl_ope integrates Laplacian
smoothing. Smoothing can be included in any weighted calculation, for both equations 4] and [5]and
is applied as the final stage of defining the denominator in all cases. For example, when applied to
self-normalised weights in equation [5] the calculation would be:

n —_
(6 + Z PX,i,H)
i=1

Figure [I] depicts how the various elements of a standard OPE pipeline are implemented in
offline_rl_ope. Currently, the only direct method implemented is FQE, which utilises the d3rlpy in-
tegration. As such, the proceeding primarily discusses the API with respect to IS and DR estimators.

1. here refers to arbitrary parameters defined later

Under review as a conference paper at ICLR 2025

Table 2: Mapping of estimator definitions to Equation and literature references

Name Equ. Implementation Reference
st [Precup et al.| (2000)
Vanilla one step | Equ. |3 ot Kallus & Uehara/(2019)
vteo,...HViecl, . ,n Tiang & L1 (2016)

. PPD,it |Precup et al.| (2000)
Per-decision | Equ.|3 Ve, HYiel, . n Kallus & Uehara (2019)
Identity Equ.[[px.::Vt€0,. . HYViel, ..,n Precup et al[(2000)

Vanilla norm _ . .
of Equ. [Equ.i | n':Vte0,.,HViel,..,n |[Thomas & Brunskill (2016)
Point in Time Equ. 4 (ne) =100 1y, s0(px,it)Px it Kallus & Uehara (2019)
self-normalised) vte0,.,H,Viel,..,n 'Thomas & Brunskill (2016)
. |Precup et al.| (2000)
Vi‘)‘;lgal?om Equls|| n':Vte0,. HViel,.,n [Kallus & Uehara (2019)
qau- Tiang & Li[(2016)
=T
Self-normalised | Equ.|[5 (Zi=1 PX.i.H) : Precup et al.| (2000
Viel,..,n
Cumulative n H-1 -
(discount) Equ. [5 (Zi:l 20 pXW) : Precup et al.| (2000
self-normalised vVte0,.,HViel,...n

Behaviour

Propensity
model

Metrics

ISWeightOrchestrator -l 1k

Evaluation

policy policy

Offline RL
algorithm

Dataset (states, actions, rewards)

(IS, DR)

Figure 1: Flowchart of components for performing OPE with IS based estimators in offline_rl_ope.
Key: green squares define classes within offline_rl_ope that perform a calculation; blue squares
define helper classes within offline_rl_ope; orange squares defined fixed external inputs; grey
squares define changing external inputs; black arrows defines changing information; orange arrows
define fixed information (conditional on the fixed input); blue arrows define helper funtionality

3.1

ESTIMATION API

relationships, not information flow.

The estimation API defines the calculation mechanics of all the estimators described in section 3] as
well as DR, DM and any additional methods added in future releases. This hierarchy described in
section [3]is utilised to: improve computation time when using multiple IS estimators (since reused
outputs can be cached); to enable custom estimators to be implemented with minimal additional
code; and to streamline testing and code maintenance. The core elements of the API are described
below and notable attributes/methods are described in table 3]

Under review as a conference paper at ICLR 2025

ISWeightCalculator A single ISWeightCalculator object is defined per behaviour policy. The
ISWeightCalculator class handles querying the evaluation and behaviour policy; calculating
the one-step importance ratios (equation [2)); and caching of weights to be used across multiple
estimators, reducing computation. Additionally, the ISWeightCalculator automatically defines and
caches the lengths of each trajectory, ensuring datasets with uneven trajectory lengths can be used
without preprocessing from the user.

ImportanceSampler Child classes of ImportanceSampler implement equation [3] e.g., the Vanil-
lalS class defines Vanilla one step importance sampling whilst PerDecisionlS implements the
Per-decision estimator. When using multiple different ImportanceSampler objects for a single
behaviour policy (e.g., when performing vanilla IS and per-decision importance sampling) the
ISWeightOrchestrator (which is a child class of ISWeightCalculator) can be used to facilitate the
sharing of one-step weights across multiple instances of ImportanceSampler. This ensures the be-
haviour and evaluation policies are only queried once, thus reducing computation.

ISEstimatorBase/WeightDenomBase The ISEstimatorBase class implements the mechanics of
estimating the reward of a single trajectory whilst child classes, (e.g., ISEstimator and DREstima-
tor) implement the specific calculation (as per equation [I). Critically, any ISEstimatorBase object
requires WeightDenomBase for instantiation where child classes of WeightDenomBase implement
equation [4]

OPEEstimatorBase/EmpiricalMeanDenomBase The OPEEstimatorBase implements the me-
chanics of summarising the trajectory level rewards (defined by ISEstimatorBase) across an entire
dataset. This broadly requires summing the trajectory level rewards and applying variations of equa-
tion [5} defined by child classes of EmpiricalMeanDenomBase, which are required to instantiate an
OPEEstimatorBase object.

Table 3: Notable classes and associated methods and attributes.

Class g/t[t? ll:::;:: Description
i< weichts Tensor of dimension (n,max[H;])
. 15-weig of one-step importance ratios
ISWeightCalculator & - - .
. . Tensor of dimension (n,max[H;]) with
ISWeightOrchestrator weight_msk . .
. value O after a trajectory has terminated
(Equation Uodates Ts-weishis usi
date pdates is_weights using
up the evaluation policy provided
trai i oht Tensor of dimension (n,max H.)
ImportanceSampler raj-1s-welghts of trajectory importance ratios.
(Equation . Abstract method requiring child classes
get-traj_weight_array to implement variations of equation
ISEstimatorBase . Appllez IE wellghtl cl.1pp1(rj1gﬁ(E<(qiu. @
(EquationE]) process_weights and the calcu ation define
by WeightDenomBase
WeightDenomBase 1 Abstract method requiring child classes
(EquationEl]) —call-- to implement variations of equation
Abstract method requiring child
. . classes to implement estimator
OPEEstimatorBase predict.traj rewards mechanics i.e., doubly robust
(Equation vs pure importance sampling
dict Core public method for
predic calculating the dataset estimate
EmpiricalMeanDenomBase call Abstract method requiring child classes
(Equation [5)) —call—- to implement variations of equation 3]

Under review as a conference paper at ICLR 2025

3.2 PoLIcy

The BasePolicy class defines a standardised API for obtaining state-action probabilities under a
given policy. Shipped with offline_rl_ope are the Policy and GreedyDeterministic classes which
define framework agnostic wrappers for stochastic and greedy deterministic polices, respectively,
for functions returning both Pytorch tensors and numpy arrays. The irl_example.py script in the
code accompanying this paper provides an example of how the Stable Baselines3 (Raffin et al.
(2021)) policy API can be made compatible with offline_rl_ope through a simple wrapper class. To
enable ease of debugging and monitoring, the BasePolicy class optionally allows policy outputs to
be easily cached, similarly to the ISWeightCalculator and ImportanceSampler APIs.

3.3 ADDITIONAL NOTABLE FUNCTIONALITY

3.3.1 PROPENSITY MODELS

The majority of recent OPE applications entail large state (and action) spaces and as such, require
defining the behaviour policy via function approximation (Hanna et al| (2019)). offline_rl_ope
provides an API for defining propensity models with Pytorch (Paszke et al.|(2019)) and scikit-learn
(Pedregosa et al.| (2011)).

3.3.2 APIs

3rd Party Integration Whilst the focus of offline_rl_ope was on defining a standalone OPE frame-
work, providing optional integrations with popular ORL workflows was deemed a necessity. Cur-
rently offline_rl_ope is (optionally) tightly integrated with d3rlpy (Seno & Imai|(2021)). The existing
implementation allows any OPE estimator defined with offline_rl_ope to be used to assess d3rlpy
models both post and during training. In particular the ’during training” API aligns with the rec-
ommendations of [Tang & Wiens| (2021])) as it enables an early stopping type workflow. Running this
workflow is further aided by the caching of reusable computations discussed in section [3.1]

Plug and play offline_rl_.ope has been designed to be trivally extendable by defining low level
modules for constructing OPE estimators (section[3.1). However, in order to address the consistency
issues described in section[I} a plug and play API has been additionally provided.

3.3.3 OFFLINE OPE METRICS

Effective sample size (ESS) is a metric colloquially associated with IS methods with the intent of
describing the ”(potentially) reduced information content of a dataset given an evaluation policy”.
For example, [Liu et al.| (2022)) utilised the ESS definition in equation |/} from |(Owen|(2013).

(7

Such that:

n

sdy, = 1 1 _
;Cv(w):?;w:EZwi;sdw: (n_lz(wi—w)Q)

=1 i=

71'3(0/2'|8i)
ma(ails:)

w; =

Such a definition, along with others (such as that proposed by [Kong| (1992)) have been designed for
performing Monte Carlo Integration in a fundamentally different contexts to OPE. The diagnostics
for non OPE Monte Carlo IS have been derived under the assumption that the importance distribution
(pr, in OPE) is variable and the nominal distribution (p, in OPE) is fixed. |(Owen| (2013) derived
diagnostics by utilising the fact that the variance of a Monte Carlo IS estimator can be defined as:

wintni)= [(0T)

dr ()
{7—:;1)7rﬁ (r)>0} Prg (T)

Under review as a conference paper at ICLR 2025

where 1 = E,[Jis(me;7)]. However, focused on monitoring the p,, terms, since these could
have been altered to reduce the variance. For OPE however, the behaviour policy is fixed
and thus in order to reduce the variance and “obtain a higher effective sample size”, the de-
viations between the behaviour and evaluation policy should be reduced, as described by the

2
(pwe ()Xo Yt — 1, (T)) term. Appendix E demonstrates how the diagnostics used to
monitor the importance distribution (such as equation|7) produce undesirable results for OPE.

VWP Motivated by monitoring the symmetric deviations between the importance and nomi-
nal distribution, the metric "VWP” (valid weight proportion) is proposed. Ultilising the fact that

Yo bty o (pr (1) 2o rey' — i,y (7)), Jet:

1 n
VWP = =% " Ly, <y <um (W5) ©)
nia
where w; = >t =0%ps ¢ Or w; = Zfi o PpD,i,t depending on the context and the desirable

behaviour is for VWP — 1 as wpi, — 0 and wp,x — 0o. VWP ignores the dependence on p in
equation however, the metric does overcome the described failure modes of ESS.

WeightStd In addition to using VWP, a metric for tracking the standard deviation of weights
(WeightStd) is also implemented within offline_rl_ope. WeightStd is defined as per sd,,, above, i.e.:

WeightStd = (L > (wi — w)2) (10)

n—1
i=1

Both VWP and WeightStd measure the deviation of weights however, in contrast to VWP, WeightStd
centers around the mean deviation rather than 1. A mean deviation of 1 is significant as it represents
the minimal deviation from the behaviour policy and thus minimal additional generalisation error.
Whilst a standard deviation of 1 would also represent such a scenario, WeightStd is unable to
distinguish between a policy that systematically deviates from the behaviour policy at a constant
magnitude; and a policy which remains close to the behaviour policy but deviates significantly at a
small subset of trajectories. This is a result of the relatively larger impact that outliers can have on
the mean calculation. However, when used in conjunction with VWP, the WeightStd can identify
such scenarios since the former would present with a slow VWP convergence whilst the latter
would present with a faster rate of convergence. Further, distinguishing between these scenarios is
important as uncertainty in the latter policy can be reduced using weight clipping without greatly
affecting the overall behaviour of the policy. Table [4| provides an overview of how VWP and
WeighStd can be jointly interpreted to debug IS weights.

Table 4: Joint interpretation of VWP and WeightStd metrics

Scenario | VWP | WeightStd Interpretation

Uncertainty due to consistent divergence from the behaviour

1 =0 =0 policy. Constrain entire policy to reduce uncertainty.

Maximal uncertainty due to consistent divergence from the

2 —0 — 0 behaviour policy and the estimation is dominated by a subset
of trajectories. Constrain entire policy to reduce uncertainty.
3 — 1 — 0 Minimal uncertainty
Uncertainty due to estimate being dominated by a
4 —1 — 00 subset of trajectories. Implement weight clipping at

reasonable order of magnitude from 1.

Under review as a conference paper at ICLR 2025

4 ACCURACY OF IMPLEMENTATION

All estimators implemented within offline_rl_ope have been unit tested however, additional analysis
was conducted (where possible) to ensure consistency of implementation.

4.1 DISCRETE ACTION ESTIMATORS

The implementations of discrete action (continuous state) estimators were compared across
offline_rl_ope and Scope-RL. Table [5] demonstrates that the implementations for: IS, WIS, PD
WPD, DR and WDR estimators did not differ materially.

Table 5: Comparison of offline_rl_ope and Scope RL estimations in a continuous state-discrete
action environment, RTBGym (Kiyohara et al.| (2023)))

Estimator Mean difference Mean difference
(Scope-RL denom) (OPO denom)
IS 0.00% 0.00%
WIS 0.00% 0.00%
PD 0.00% 0.00%
WPD 0.00% 0.00%
DR 0.00014% 0.00014%
WDR 0.0028% 0.0028%

4.2 CONTINUOUS ACTION SPACES

With respect to continuous action spaces, offline_rl_ope and Scope-RL differed significantly in their
approach and as such, could not be compared against one another. To demonstrate the efficacy
of the offline_rl_ope implementation for continuous actions spaces, the relative rankinﬂ of 3 poli-
cies were compared against the ground truth evaluations using the Pendulum environment (Towers
et al.| (2024)). In addition to a number of other expected observations, table [] suggests that broadly
speaking, estimators implemented in offline_rl_ope were able to accurately rank the performance
of policies against the ground truth performance, demonstrating the efficacy of implementation. In
addition, expected observations included:

* Pure PD estimators benefited the most from weight clipping since the bias of doubly robust
methods was already being controlled through the reward approximation;

* The pure PD estimator demonstrated the worse correlation due to the high variance of the
estimator;

* Combining the FQE method from d3rlpy with the DR and WDR methods improved the
ranking performance, despite all FQE models converging reasonably well and a reasonable
amount of hyperparameter tuning being performed (figures 3]in appendix [E).

To conclude, despite the lack of existing benchmark for performing OPE on continuous stochastic
policies, the results and observations highlighted (in addition to the unit testing performed) provided
reasonable evidence as to the efficacy of implementation within offline_rl_ope.

5 EXAMPLE USE OF VWP AND WEIGHTSTD METRICS (CONTINUOUS
ACTION SPACE)

To demonstrate the efficacy of the VWP and WeightStd metrics, these were used to integrogate
the ranking performance of OPE estimators utilising, per-decision weights, over policies from the
continuous action task described in section4.2] Table [7]compares the ranking performance of using
non-clipped estimators against an average of 6 clipped estimators (at different magnitudes). Overall,

2Since OPE estimator prediction is heavily dependant on the problem context, policy ranking was deemed
sufficient to demonstrate the implementation efficacy.

Under review as a conference paper at ICLR 2025

Table 6: Average (across 5 random seeds) correlation of policy rankings in comparison to
environment ground truth. OoM describes the order of magnitude of clipping applied.

Spearman Correlation
Estimator | No clipping | Clipping OoM 1 | Clipping OoM 2
IS Undefined Undefined Undefined
WIS Undefined Undefined Undefined
PD -0.1 04 0.3
WPD 0.5 0.8 0.7
DR 0.7 0.7 0.7
WDR 0.7 0.6 0.6
DM 0.5 NA NA
1.0 A
u 0.9
T
= 0.8 A
:
5 0.7
s
£ 061
&
=8
0.5 -
0.4 T T T T T T T T
05 1 15 2 2.5 3 4 mx

Order of magnitude from 1

Figure 2: Caption

it was clear that the sampling uncertainty of the underlying dataset effected the performance of the
OPE estimator, most notably in seed 2 (even after weight clipping) and in seed 5 where weight
clipping significantly boosted performance.

Table 7: Average (over policies) rank performance of policies against ground truth performance

Seed | Spearman’s R (no clipping) | Spearman’s R (with clipping)
1 0.88 0.88
2 -0.50 -0.29
3 0.50 0.62
4 1.00 0.92
5 0.38 0.71

Figure [2] displays the VWP metrics, averaged across policies for each seed. Notably, seed 5 had a
relatively quicker VWP convergence rate whilst seed 2 had a relatively low one. Additionally, the
mean WeightStd values (across policies) for seed 2 and seed 5 were 10.21 and 215.80, respectively
(full figures in table[J). Arguably, the policies within seed 2 aligned to scenario 1 in table d] where
the poor predictions were a result of the policies systematically diverging from the behaviour policy.
In contrast, the policies in seed 5 aligned to scenario 4, where the poor predictions were a result of
the uncertainty induced by a subset of trajectories. As such, the uncertainty in OPE estimates for
seed 5 had the potential to be reduced through weight clipping to a greater extent than for seed 2.

Utilising VWP and WeightStd to interogate the performance of OPE estimates is a probabilistic
exercise. According to figure[2] the policies in seed 4 were divergent (due to the low VWP) however,

Under review as a conference paper at ICLR 2025

the OPE rankings were very accurate. This was most likely a result of the good performance of the
OPE estimators when clipping was not applied. Table 8|describes the results of a logistic regression
model, assessing the relationship between:

* The amount of clipping and;

* The original performance of the unclipped estimator;

against the probability that an additional order of magnitude of weight clipping harmed the ranking
performance of the estimator. Notably, the higher the ranking performance of the original estimator,
the less likely that clipping was to harm the performance, providing evidence for the hypothesis
regarding the policies in seed 4.

Table 8: Coefficients and p-values (t-test), measuring the linear relationship between the magnitude
of weight clipping applied to an estimator plus the original ranking performance of the un-clipping
estimator agains the probability that the current magnitude of clipping harms the ranking

performance
Name Coefficient | P-value
Intercept 0.11 0.86
Amount of clipping -0.95 0.34

Performance of

unclipped estimator -2.11 0.00

Similar logistic regression tests were performed on combinations of WeightStd and VWP at
different orders of magnitude (table [I0]in appendix [E)). Whilst the results were encouraging with
respect to the direction of the coefficients, the significance of the effect sizes were inconclusive,
suggesting further work is required to understand the true predictive nature of the metrics.

6 NEXT STEPS

Next steps for the development of offline_rl_ope would be to implement additional OPE estimation
techniques, develop additional non-oracle metrics for assessing OPE estimations as well as further
assessing the predictive power of VWP and WeightStd. An interesting area of future research for IS
estimators with regression models would be to develop uncertainty estimates which combine both
the uncertainty in estimation of the propensity model and the resulting OPE estimation. A limita-
tion of the existing offline_rl_ope implementation is the over-reliance on PyTorch. Whilst this has
simplified integration with other PyTorch frameworks, the implementation restricts integration with
other popular frameworks such as Tensorflow and Jax. Additionally, performance improvements in
the computation of IS estimates from multi-processing could be explored.

REFERENCES

Ahmed M. Alaa and Mihaela van der Schaar. Limits of estimating heterogeneous treatment effects:
Guidelines for practical algorithm design. In 35th International Conference on Machine Learning,
ICML 2018, volume 1, 2018.

Josiah P. Hanna, Scott Niekum, and Peter Stone. Importance sampling policy evaluation with an
estimated behavior policy. volume 2019-June, 2019.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning.
volume 2, 2016.

Nathan Kallus and Masatoshi Uehara. Intrinsically efficient, stable, and bounded off-policy eval-

uation for reinforcement learning. In Advances in Neural Information Processing Systems, vol-
ume 32, 2019.

10

Under review as a conference paper at ICLR 2025

Nathan Kallus and Angela Zhou. Policy evaluation and optimization with continuous treatments. In
International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 2018.

Haruka Kiyohara, Ren Kishimoto, Kosuke Kawakami, Ken Kobayashi, Kazuhide Nakata, and Yuta
Saito. Scope-rl: A python library for offline reinforcement learning and off-policy evaluation. 11
2023.

Augustine Kong. A note on importance sampling using standardized weights. 7 1992.

Hoang M. Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. volume
2019-June, 2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. 5 2020.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael 1. Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. volume 7, 2018.

Yao Liu, Yannis Flet-Berliac, and Emma Brunskill. Offline policy optimization with eligible actions.
In Proceedings of Machine Learning Research, volume 180, 2022.

Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/
mc/, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. volume 32, 2019.

Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12,
2011. ISSN 15324435.

Doina Precup, Richard S Sutton, and Satinder P Singh. Eligibility traces for off-policy policy evalu-
ation. ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning,
2000.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22,2021. ISSN 15337928.

Aniruddh Raghu, Matthieu Komorowski, Imran Ahmed, Leo Celi, Peter Szolovits, and Marzyeh
Ghassemi. Deep reinforcement learning for sepsis treatment. 11 2017.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer New York,
2004. ISBN 978-1-4419-1939-7. doi: 10.1007/978-1-4757-4145-2.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library. 11 2021.

Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual learn-
ing. In Advances in Neural Information Processing Systems, volume 2015-January, 2015.

Shengpu Tang and Jenna Wiens. Model selection for offline reinforcement learning: Practical con-
siderations for healthcare settings. 7 2021.

Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. volume 5, 2016.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

11

https://artowen.su.domains/mc/
https://artowen.su.domains/mc/

Under review as a conference paper at ICLR 2025

Masatoshi Uehara, Chengchun Shi, and Nathan Kallus. A review of off-policy evaluation in rein-
forcement learning. 12 2022.

Cameron Voloshin, Hoang Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy
policy evaluation for reinforcement learning. In Proceedings of the Neural Informa-
tion Processing Systems Track on Datasets and Benchmarks, 2021. URL https:
//datasets—-benchmarks-proceedings.neurips.cc/paper_files/paper/
2021/file/a5e00132373a7031000fd987a3c9f87b—Paper—roundl .pdf.

A OFFLINE_RL_OPE/SCOPE-RL DISCUSSION

Table [I] provides an overview of the differentiating factors between offline_rl_ope and Scope-RL
however, these are discussed in greater detail below. The primary difference is audience” which is
a result of a number of features being included in offline_rl_ope, not included in Scope-RL.

A.1 AUDIENCE

Uneven trajectory lengths The Scope-RL API requires trajectories to be a constant length, an
assumption which is certainly not always satisfied in real world applications. Whilst trajectories
could be padded prior to running OPE, this would render the calculation of self-normalised
estimates incorrect. In comparison, offline_rl_ope can handle trajectories of differing lengths and
does not require the user to perform any pre-processing in order to do so (see section [3.1] for a
further explanation).

Generic workflow specifically for real world data In addition to supporting uneven trajectory
lengths, the offline_rl_ope API enables real world applications in several other ways. offline_rl_ope
supports arbitrary evaluation and behaviour policies through the Policy class (section [3.2)) whilst
providing functionality to trivially define Pytorch and sklearn behaviour estimators through the
PropensityModels API (section [3.3.1). In contrast, Scope-RL is deeply integrated with d3rlpy
and does not provide any functionality for defining behaviour propensity estimates outside of the
generation of synthetic datasets. Additionally, the OPE evaluation metrics included in Scope-RL
require an oracle measure of performance. In contrast, offline_rl_ope focuses on defining a workflow
for real world data by introducing metrics (section [3.3.3)) such as VWP and enabling stages of the
OPE pipeline to be easily cached for debugging and post-hoc analysis.

Off-policy selection with d3rlpy Despite having a generic API, offline_rl_ope ships, natively,
with a deep integration with d3rlpy. In particular, offline_rl_.ope enables OPE metrics to be run
during training (see section [3.3.2) thus enabling early stopping to be performed.

A.2 ESTIMATORS, API AND IMPLEMENTATION

In addition to audience, Scope-RL differs in the number of other areas. The number of esti-
mators currently implemented within Scope-RL far exceeds that of offline_rl_ope in particular,
state marginal IS estimators, double reinforcement learning and the DICE family of estimators.
Whilst these estimators will be implemented within offline_rl_ope in the future, users looking for
implementations as of the time of writing this document are referred to Scope-RL.

The offline_rl_ope API utilises equation] to enable an array of IS based estimators to be imple-
mented, relying on significant class inheritance. This has resulted in an API which is easy to extend
and maintain and is in contrast to the individually defined discrete and continuous estimators within
the Scope-RL API. The implementation deatils of this API are discussed in section[3.1]

12

https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5e00132373a7031000fd987a3c9f87b-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5e00132373a7031000fd987a3c9f87b-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5e00132373a7031000fd987a3c9f87b-Paper-round1.pdf

Under review as a conference paper at ICLR 2025

The final difference between Scope-RL and offline_rl_ope is the handling of continuous action
spaces. offline_rl_ope can only (reasonably) evaluate stochastic policies learnt over a continuous
action spaces whilst, in Scope-RL, all policies over continuous actions spaces are evaluated through
kernel smoothing of actions (Kallus & Zhou| (2018)).

B MOTIVATING THE USE OF IS ESTIMATORS

The objective of OPE is to evaluate the expected discounted reward of a policy e,
Erpr, [Xieo riv']. Pure IS estimators refer to any OPE estimator defined as per equation
[I] DR estimators considered in offline_rl_ope can also be defined similarly to equation [T] however,
for an estimator to be doubly robust, certain bias conditions must also be met. Generally speaking

DR estimators incorporate a (direct) approximation of the policy value under . i.e., @, (s,a) in
addition to the IS estimates. In contrast, direct methods (DM) solely utilise the aforementioned
value function estimate.

Within ORL, the FQE DM method (Le et al| (2019)) is often cited as a “go-to” method for
performing OPE (Voloshin et al.| (2021)). However, theoretical and empirical evidence suggests
that the selection of OPE estimator is problem specific. Theoretically, the decision of whether to
use an IS estimator or a direct method estimator is a function of the complexity of the propensity
and reward (outcome) model, respectively (Alaa & van der Schaar| (2018))). |Voloshin et al.| (2021)
observed this empirically as well as noting additional factors such as: evaluation policy/behaviour
policy mass-match and horizon length.

There also exists practical differences in estimators, in terms of complexity of hyperparameter
tuning and computation time. For pure IS methods, the aforementioned complexities are a result of
the behaviour policy estimation and as such, need to only be performed once per behaviour policy
(rather than per evaluation policy as in the case of direct and DR methods), pure IS methods are
more suited for rapid model experimentation. [Tang & Wiens| (2021)) leveraged this observation,
proposing a two stage model development pipeline, where IS methods are used for initial model
assessment.

The above observations clearly motivate the development of a robust code base for performing a
range of OPE estimation.

C DEFINING IS/DR ESTIMATORS IN OFFLINE_RL_OPE

Using the definitions provided in section 3] sudo code for defining different IS estimators is
provided below. The vanilla IS estimator has been defined using the low level API whilst the WIS
and WDR estimators have been defined using the plug and play API. The “rewards”, states” and
“actions” parameters except lists of PyTorch Tensors, the discount parameter excepts a float value

and the behav_policy and eval_policy except classes of type offline_rl_ope.components.Policy.Policy.

from offline_rl_ope.components import ISWeightOrchestrator
from offline_rl_ope.OPEEstimators import ISEstimator
from offline_rl_ope.OPEEstimators import (
ISEstimator , EmpiricalMeanDenom,
PassWeightDenom , WeightedEmpiricalMeanDenom
)
from offline_rl_ope.api.StandardEstimators import (
VanillalSPDIS , WIS, WDR)

vanilla_est = ISEstimator (
empirical_denom=WeightedEmpiricalMeanDenom () ,

13

Under review as a conference paper at ICLR 2025

weight_.denom=PassWeightDenom ()
)

w_est = WIS()
smthd_w_est = WIS(smooth_eps=0.0000001)

w_dr_est = WDR(
dm_model =.

)

is_calc = ISWeightOrchestrator (
“vanilla™,
”per_decision”
behav_policy =.
)

is_calc .update(
states =.,
actions =.,
eval_policy =.

)

vanilla_is = vanilla_est.predict(
rewards =.,
discount=.,
weights=is_calc[” vanilla™]. traj_is_weights ,
is_msk=is_calc .weight_msk ,
states =.,
actions =.,

)

vanilla_pd = vanilla_est.predict(
rewards =.,
discount=.,
weights=is_calc[” per_decision ”].traj_is_weights ,
is_msk=is_calc .weight_msk,
states =.,
actions =.,

)

vanilla_wis = w_est.predict(
rewards =.,
discount=.,
weights=is_calc[” per_decision ”]. traj_is_weights ,
is_msk=is_calc .weight_msk,
states =.,
actions =.,

)

smoothed_wis = smthd_w_est. predict(
rewards =.,
discount=.,
weights=is_calc[” per_decision ”].traj_is_weights ,
is_msk=is_calc .weight_msk,
states =.,
actions =.,

)

w_dr = w_dr_est.predict(

14

Under review as a conference paper at ICLR 2025

rewards =.,

discount=.,

weights=is_calc[” vanilla”]. traj_is_weights ,
is_msk=is_calc .weight_msk,

states =.,

actions =.,

D FAILURE MODES OF IS METRICS FOCUSED ON THE IMPORTANCE
DISTRIBUTION

For simplicity, consider two evaluation policies 7., and m.,. Let w1 = {wi; = ¢4 : @
mod 2=1Vie 1l,...,n}U{w; = cy4 : i mod 2 =0Vi € 1,...,n} define the set of importance
sample weights for n trajectories associated with evaluation policy m.,. Let wo = {w1; = ¢4 : ¢
mod2 = 1Vi € 1,...,n} U{wi; = ¢, : i mod 2 = OVi € 1,...,n} define the set of impor-
tance sample weights for n trajectories associated with evaluation policy m.,. Additionally let
Ciyp = Cq + € and Cy = (CS’_ -+ 6)71.

In words, policy 7, and 7., deviate to equal extents from g, the difference being 7., is symmetric.
Let ESS be defined as per equation 7| then the metric is defined by the value of cv(w)?. For 7., and

Te, this equals:
n 2\ 2
2 In-1°€
ev(wy)® = | ———
C+ + 56

, g (pes + 57\
cv(weg)® =

2(ne)—!
And therefore, as ¢, — 00, cv(w;)? — 0 and cv(wz)? — oco. Following from this, as ¢, — oo,
ESS(wy) — m whilst ESS(ws) — 0. However, regardless of the value of ¢, both policies 7, and

e, should be defined equally in terms of the ”(potentially) reduced information content of a dataset
given an evaluation policy”.

E SUPPORTING FIGURES FOR CONTINUOUS CONTROL EXPERIMENT

The following section contains a number of supporting figures for the experiment discussed in sec-
tions.2land ??.

15

Under review as a conference paper at ICLR 2025

Offline Model Steps: 1875 Offline Model Steps: 5000 Offline Model Steps: 9375

1.8 2.25 2.01

1.6 2.00 181

1.4 L1751] r\./'\,\/\\j\,
12 \ﬂj\%‘h R | 1791 /\\,\//J\'\/ e

1.25 4 121
1.0 Lod

TD Error

1.00 1

0.8 0.8 1
0.75 4

0.6 0.6

1] 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 3: TD error for FQE (DM) models for each of the policies trained. The error bars are
defined by the min and max TD error. The orange dotted line defines the 10 step moving average.

Table 9: WeightStd and VWP metric values for all policies (1875,5000 and 9375) across all seeds

Seed | Policy | WeightStd | VWP1 | VWP2 | VWP3 | VWP4 | VWP 5 | VWP Max
1 1875 85.36 0.54 0.54 0.67 0.68 0.69 1
1 5000 49.73 0.55 0.55 0.68 0.69 0.69 1
1 9375 21.3 0.57 0.57 0.67 0.68 0.69 1
2 1875 10.92 0.54 0.54 0.68 0.68 0.68 1
2 5000 10.28 0.53 0.53 0.68 0.68 0.68 1
2 9375 9.43 0.52 0.52 0.67 0.67 0.68 1
3 1875 20.22 0.54 0.54 0.69 0.71 0.71 1
3 5000 29.43 0.54 0.54 0.69 0.71 0.71 1
3 9375 53.71 0.57 0.57 0.69 0.71 0.71 1
4 1875 776.37 0.5 0.5 0.62 0.62 0.62 1
4 5000 62.48 0.5 0.5 0.62 0.63 0.63 1
4 9375 11.46 0.55 0.55 0.62 0.63 0.63 1
5 1875 104.99 0.6 0.6 0.69 0.73 0.73 1
5 5000 105.6 0.6 0.6 0.7 0.73 0.73 1
5 9375 436.81 0.58 0.58 0.71 0.72 0.73 1

16

Under review as a conference paper at ICLR 2025

Table 10: Coefficients and p-values (t-test), measuring the linear relationship between the
magnitude of weight clipping applied to an estimator plus the VWP and WeightStd estimates
against the probability that the current magnitude of clipping harms the ranking performance

VWP Order of Magnitude Name Coefficient | P-value
Intercept 41.77 0.02
05 Amount of clipping -0.74 0.39
’ WeightStd -0.00 0.16
VWP -95.61 0.02
Intercept 52.04 0.00
1 Amount of clipping -0.78 0.38
WeightStd -0.02 0.00
VWP -95.59 0.00
Intercept -15.11 0.31
15 Amount of clipping -0.62 0.44
) WeightStd -0.00 0.46
VWP 22.95 0.32
Intercept 31.65 0.14
> Amount of clipping -0.63 0.43
WeightStd -0.02 0.02
VWP -46.48 0.14
Intercept 27.64 0.05
25 Amount of clipping -0.66 0.42
’ WeightStd -0.02 0.00
VWP -40.13 0.05
Intercept 33.40 0.02
3 Amount of clipping -0.68 0.41
WeightStd -0.02 0.00
VWP -48.21 0.02

17

	Introduction
	Related work
	Scope-RL

	Hierarchy of IS methods
	Estimation API
	Policy
	Additional notable functionality
	Propensity models
	APIs
	Offline OPE metrics

	Accuracy of implementation
	Discrete action estimators
	Continuous action spaces

	Example use of VWP and WeightStd metrics (continuous action space)
	Next steps
	offline_rl_ope/Scope-RL discussion
	Audience
	Estimators, API and implementation

	Motivating the use of IS estimators
	Defining IS/DR estimators in offline_rl_ope
	Failure modes of IS metrics focused on the importance distribution
	Supporting figures for continuous control experiment

