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ABSTRACT

Federated Learning (FL) methods are often designed for specific client participa-
tion patterns, limiting their applicability in practical deployments. We introduce
the FedSUM family of algorithms, which supports arbitrary client participation
without additional assumptions on data heterogeneity. Our framework models
participation variability with two delay metrics, the maximum delay 7,,,x and the
average delay 7,,,. The FedSUM family comprises three variants: FedSUM-B
(basic version), FedSUM (standard version), and FedSUM-CR (communication-
reduced version). We provide unified convergence guarantees demonstrating the
effectiveness of our approach across diverse participation patterns, thereby broad-
ening the applicability of FL in real-world scenarios.

1 INTRODUCTION

Federated learning (FL) is a powerful paradigm for large-scale machine learning, especially when
data and computational resources are distributed across diverse clients, such as phones, sensors,
banks, and hospitals (McMahan et al., 2017; |Yang et al., [2020; |[Kairouz et al.,[2021). FL has been
widely adopted in commercial applications, including autonomous vehicles (Chen et al.|[2021;[Zeng
et al., 2022) and natural language processing (Yang et al., 2018} |Ramaswamy et al., |2019). FL
enhances computational efficiency by enabling parallel local training across distributed clients. It
also preserves data privacy, as raw data remains on the device and is never directly transmitted to
the central server.

One challenge in FL is variable client participation. In practice, not all clients can participate in
every training round due to factors such as connectivity issues and resource constraints (Li et al.,
2020). The variability has motivated the development of various models and assumptions regarding
participation patterns (Karimireddy et al., 2020; [Huang et al., |2023; Wang & Ji, 2023} |Cho et al.,
2023} |Xiang et al., 2024), which may be either under the server’s control or beyond it, and either
homogeneous or heterogeneous across clients and rounds. Since different participation patterns can
significantly affect convergence, quantifying and addressing their impact is essential for effective
learning in practical deployments.

Another major challenge affecting FL effectiveness is data heterogeneity, where client data dis-
tributions are non-identical or highly personalized in operational environments (Zhao et al., 2018;
Kairouz et al.,|2021} [Li et al., |2022). Such heterogeneity can lead to divergence between local and
global models, particularly when multiple local updates are performed before aggregation (Mohri
et al., 2019; |L1 et al.L [2019). The effectiveness of classical approaches such as FedAvg (McMahan
et al., 2017} [Stich, |2018)) has been shown to be limited in the presence of heterogeneous data and
partial client participation, motivating a number of subsequent improvements (Karimireddy et al.,
2020; Yang et al.| 2021)).

In light of these challenges, developing FL algorithms that can simultaneously mitigate data hetero-
geneity, support efficient local updates, and remain robust to arbitrary client participation remains a
fundamental open problem in federated learning.
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1.1 MAIN RESULTS AND CONTRIBUTIONS
In this paper, we make the following key contributions to Federated Learning:

* Arbitrary Client Participation: We study FL under arbitrary client participation, cov-
ering a wide spectrum of participation patterns, including controllable or uncontrollable,
stochastic or deterministic, and homogeneous or heterogeneous. To characterize variability
in participation, we introduce two delay metrics, Tryax (maximum delay) and 7, (average
delay), which allow us to precisely quantify its impact on convergence. To the best of our
knowledge, this is the first work to analyze such diverse client participation scenarios.

* FedSUM Family of Algorithms: We propose the FedSUM family of algorithms, in-
cluding FedSUM-B (basic version), FedSUM (standard version), and FedSUM-CR
(communication-reduced version), all designed for arbitrary client participation. These
algorithms employ the Stochastic Uplink-Merge technique to address data heterogene-
ity. FedSUM achieves the same communication and memory cost as SCAFFOLD (Karim-
ireddy et al., [2020; Huang et al., |2023) through single-variable uplink communication,
whereas FedSUM-B and FedSUM-CR further achieve single-variable downlink communi-
cation to match the cost of FedAvg.

* Unified and Novel Convergence Results: We establish unified convergence rates for the
FedSUM family, showing that, under specific participation patterns, the rates recover those
of algorithms tailored to those settings. This demonstrates both the adaptability and gen-
erality of our approach. Our convergence guarantees are novel in that they hold under
arbitrary client participation while incorporating the delay metrics Tmax and Taye. In ad-
dition, the analysis requires only smoothness and bounded variance assumptions, without
imposing any additional restrictions on data heterogeneity or on the objective functions.

1.2  RELATED WORKS

Client participation patterns in FL. A variety of strategies have been proposed to model client
participation in FL. Early works such as FedAvg (McMahan et al.,[2017; L1 et al.,|2019) and SCAF-
FOLD (Karimireddy et al.,|2020; [Huang et al.l[2023)) assume that the server selects a small subset of
clients in each round, either uniformly at random or in proportion to local data volume. Later studies
address heterogeneous and time-varying response rates p!. Some works treat these rates as known
and server-controlled (e.g., determined by solving a stochastic optimization problem) (Perazzone
et al., [2022), while others model them as unknown but governed by a homogeneous Markov chain
(Ribero et al.,|2022; |Xiang et al., [2024}; |Wang & Jil, 2023).

Wang & Ji| (2022) propose a generalized FedAvg that amplifies parameter updates every P rounds,
requiring additional assumptions such as equal client availability within each P-round window to
guarantee convergence. Similarly, (Crawshaw & Liu| (2024) design a SCAFFOLD variant that am-
plifies global parameters and local gradients every P rounds, but assume p! remains constant within
each window. |Yang et al.|(2022) study clients participating at will, but their guarantees hold only up
to a non-zero residual error. (Cho et al., 2023)) consider FedAvg with cyclic sampling, decided by
the server, to accelerate convergence. Other works |Gu et al.| (2021)); [Yan et al.[(2024) assume strictly
bounded inactive periods, a condition that often contradicts random sampling.

Algorithm design in FL. Following the popularity of FedAvg (McMahan et al.| [2017), numerous
algorithms have sought to improve performance under data heterogeneity and varying client par-
ticipation. One line of research focuses on refining the FedAvg framework. For instance, FedAWE
(Xiang et al.,|2024)) amplifies client updates to compensate for missed computation during periods of
client inactivity, and FedAU (Wang & Ji, 2023)) introduces a weighted aggregation of client updates
to mitigate the negative effects of client non-participation.

Another line of work enhances FL performance by introducing additional control variables. For
example, SCAFFOLD and its variants (Karimireddy et al,, [2020; Huang et al.| 2023} |[Crawshaw
& Liu, 2024) exchanges control variables to correct the update directions for both clients and the
server. In contrast, FedVARP (Jhunjhunwala et al. 2022) and MIFA (Gu et al) 2021) maintain
control variables on the server to adjust its update direction, but the number of these variables scales
linearly with the number of clients. FedLaAvg (Yan et al.,|2024) stores previous updates as control
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variables and transmits their differences, ensuring the server’s update direction incorporates most
recent information from all clients.

Despite these advances, many methods rely on restrictive assumptions about data distributions or
objective functions, exclude local updates, or only guarantee convergence up to a non-zero residual
error. For example, several works impose additional assumptions on data heterogeneity, typically by
bounding the divergence between local and global gradients (Wang & Ji, 2023} |Xiang et al., [2024;
Yu et al.l[2019;|[Wang et al., 2022} Yuan & Li}[2022;Wang et al.,[2020). Local updates, while useful,
often introduce bias under heterogeneous data; therefore, methods such as FedLaAvg (Yan et al.,
2024) completely eliminate them. Other approaches impose structural conditions on the objective
funtions, such as bounded stochastic gradients (Perazzone et al.|[2022;|Yan et al.,|2024) or Lipschitz
Hessians (Gu et al., [2021). SCAFFOLD (Karimireddy et al.,|2020; |Huang et al., 2023), when paired
with uniform random sampling, avoids additional assumptions on data heterogeneity, but at the cost
of increased communication and memory compared to FedAvg.

1.3 PROBLEM SETUP

Throughout the paper, ||-|| denotes the {2 vector norm, and A denotes the index set {1,..., N}.
Additionally, the expectation E[-] is taken over the randomness of the stochastic gradient.

In FL, our goal is to solve the following optimization problem:

L X
;TEHRI}) f(z) = N ;fi(x)u where f;(z) := E¢,~p, Fi(2;&:). (n

Here, F;(x;&;) denotes the local loss function evaluated at model x on sample &;, and f;(z) repre-
sents the local objective under the data distribution D;, which may vary significantly across clients.

We introduce the standing assumptions below.

Assumption 1.1. (Smoothness) Each local objective f; has L-Lipschitz continuous gradients. That
is, for any x,y € R% and 1 < i < N, it holds that

IV fi(z) =Vl < Lz =yl

Assumption 1.2. (Bounded Variance) There exists o > 0 such that for any x € Riéand1 <i<N,
we have

Ee, [VFi(2;6)] = Vfi(x), Eg, [IIVFi(w;&) - Vfi(x)Hz} <o?

where & ~ D; are i.i.d. local samples at client i.

2 ARBITRARY CLIENT PARTICIPATION IN FL

Understanding the impact of different client participation patterns is crucial in FL, as practical con-
straints often prevent all clients from joining every round. In this section, we first review several
commonly studied participation patterns, then extend the discussion to the general case of arbitrary
client participation, whether controllable or uncontrollable, stochastic or deterministic, homoge-
neous or heterogeneous. To quantify the variability among different participation patterns, we intro-
duce two delay metrics: the maximum delay 7,,,x, which measures the longest inactive period of
any client, and the average delay 7,,,, which captures the average frequency of client participation.
This broader perspective enables a unified analysis of participation heterogeneity and its effect on
convergence.

2.1 PARTICIPATION PATTERNS

Most FL methods make simplifying assumptions about client participation in the training process.
Some approaches assume uniform random sampling controlled by the server (Case 1) (Karimireddy
et al.,|2020; Huang et al.| [2023)), while others model client participation with uncertain, dynamic,
and independent client unavailability (Case 2), resulting in an uncontrollable participation pattern
(L1 et al.l 2020; [Yang et al., 2022; (Wang & Ji, {2023} Xiang et al., [2024). Another class of methods
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adopts a scheme where each client participates for a certain number of rounds and does not partici-
pate in the other rounds of a cycle, to improve convergence performance (e.g., Case 3) (Cho et al.,
2023} |Ding et al.| |2024). These assumptions may constrain the applicability of FL algorithms, as
more structured or round-correlated schemes, such as reshuffled cyclic participation (Case 4) or par-
ticipation modeled by Markov processes with non-independent and non-stationary client availability,
fall outside these assumptions.

We formally define the participation patterns (Case 1 to 4) below:

Case 1: Uniform Random Sampling. In each round ¢, the server uniformly and randomly samples
asubset Sy C N with |§;| = S.

Case 2: Probability-Based Independent Participation. Each client ¢ independently participates
in round ¢ with a probability p! € (0, 1], where pt > § > 0.

Case 3: Deterministic Cyclic Participation. Clients are arranged in a fixed order, and a block of S
consecutive clients is selected in each round. The process continues sequentially and wraps around
at the end, cycling deterministically through all clients.

Case 4: Reshuffled Cyclic Participation. Clients are arranged in a random order at the beginning
of each epoch, and a block of S consecutive clients is selected in each round. The process continues
sequentially and wraps around at the end, cycling through all clients.

The variability in participation patterns motivates a unified treatment of arbitrary client participation
and its characterization.

2.2  ARBITRARY CLIENT PARTICIPATION AND TWO DELAY METRICS

We consider an arbitrary client participation sequence {St}tT:_Ol, where S; C N denotes the set
of active clients at round t. This sequence may vary arbitrarily from round to round or follow a
predetermined schedule. A key challenge is to quantify the variability of participation patterns. We
address this by introducing two metrics, the maximum delay 7., and the average delay 7.y, which
offer a concise means of quantifying client participation and facilitate our theoretical analysis.

We begin with defining the last-selection time for each client : € N at round ¢ as follows:

a;;:=max{j <t:i€S;}. 2)
In other words, a; ; denotes the most recent round (up to ¢) in which client 7 was active. By conven-
tion, a;; = —1 if client ¢ has never participated before round ¢ + 1. Equivalently, a; ; records the

last round client ¢ was included in the active set, and can be expressed recursively as:

_ fait-1 ifclienti ¢ S, h _ 3
Tt = if clienti € &, BT T T )

The per-round delay at round ¢ is then defined as:
Ty = Iax {t —ais} >0. 4)

Here, 7 represents the largest gap between the current round and the last time any client participated.
We focus on this gap because, due to data heterogeneity, a single client’s behavior can significantly
influence overall performance. Accordingly, we define the two delay metrics as follows:

* The maximum delay is given by

Tmax = OgltaéXT {Tt} 3

which represents the largest per-round delay observed over the entire training process.
* The average delay is given by

=
Tavg = Z Tt,
r t=0
which captures the average per-round delay across all rounds.

Remark 2.1. (Intuition Behind the Delay Metrics.) The metrics Tmax and Ta, offer a concise
means of quantifying client participation. Smaller values indicate more frequent participation,
which generally promotes faster convergence and better global model performance. In Sectiond} we
evaluate the performance of the proposed algorithms in light of these metrics, demonstrating their
effectiveness in addressing varying client participation patterns in FL.
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3 THE FEDSUM FAMILY

In this section, we introduce the FedSUM family (Federated Learning with Stochastic Uplink-
Merge), which includes FedSUM-B (basic version), FedSUM (standard version), and FedSUM-
CR (communication-reduced version). These algorithms address various challenges in FL under
arbitrary client participation, without requiring additional assumptions on data heterogeneity.

3.1 FEDSUM-B: A SIMPLE FLL. APPROACH WITHOUT LOCAL UPDATES

We first propose FedSUM-B (see Algorithm|[T), a simple FL approach that employs a single variable
for both uplink and downlink communication in each round, and omits local updates.

The algorithm maintains local control variables {hgt)}ﬁvzl on clients and a global control variable
y® on the server. In each round ¢, each active client i € S, computes the stochastic gradient over

K mini-batches fgt’k) evaluated at the current received model 2(*). The subscript i refers to the
client index, while the superscript (¢, k) denotes the ¢-th round and the k-th mini-batch. After local

computations, clients update their control variables {hl(-t)} N | as follows:

K-1 K-1
1 F)N e 1 . @iy .
BHD _ e Z VFi(x(t)§§£t' )), ifi € S, % Z VE;(:C(“”);fg ""k)), ifa;; >0,
i - k=0 - k=0
hgt), otherwise, 0, ifa;s =—1.
&)

The first expression in Equation (] corresponds to the standard update rule in Algorithm[I] whereas
the second offers a high-level interpretation: hEt) represents the aggregated stochastic gradient com-
puted by client ¢ during its most recent selection round prior to round .

The FedSUM family employs a technique called Stochastic Uplink-Merge, in which each active

client ¢ € S; transmits only the difference 52@ between its current aggregated gradient and the most
recent gradient it computed. Specifically, if the client ¢ € S; has not participated before, the sending

message 5. = LS VE (2 ¢y otherwise, 6\ is given by:
| K-l | K-l
0 = 2 3 VR M) - 2 3T VE gt ), ©)
k=0 k=0

The server then updates its control variable %) by incorporating 5§t) from all active clients. Specif-
ically, denoting A; := U;<;S;, the update rule for y® is given by:
t

t K-1
I SHIL LD o) Y CITNE S o o SR S

j=0i€S; i€A: j=0 i€A; k=0

Since y® is formed from gradients received from each client with delays, more frequent client
participation keeps y(*) closer to the current globally aggregated gradient. This directly motivates
the use of the delay metrics Tiyax and 7Taye for analyzing arbitrary client participation.

Benefits of Stochastic Uplink-Merge. Since y(*) represents the sum of aggregated gradients from
the most recent participation of each previously active client and serves as the server’s update di-
rection. This design allows the FedSUM family to address data heterogeneity by incorporating
information from each client’s latest participation round. Similar idea has been explored in earlier
works (Gu et al.,[2021}; |Yan et al., [2024).

Note that although FedSUM-B operates without local updates, it achieves competitive convergence
and accuracy under sufficiently large batch sizes (see Figure [3]in Appendix[G).

3.2 FEDSUM: ENHANCING FL WITH LOCAL UPDATES

Building on FedSUM-B, we introduce the standard algorithm FedSUM (see Algorithm [2), which
also employs the Stochastic Uplink-Merge technique but supports local updates. Compared to
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Algorithm 1 FedSUM-B: Basic FL Without Local Updates

1: Input: initial model (%), control variables y(~1) {h(o)} —, with value 0; global learning rate

745 local learning rate 7;; batch size K; client participation {St}t:O .
2: fort=0,1,--- ,T—1do

3 Send z® to all clients i € S;.
4 for client i € S, in parallel do
5: Receive z(?) and initialize local model x(t 0 = z®,
6: for k=0, —1do
7 Compute a mini-batch gradient g(t * = VF, (x; (t.0), ﬁ(t k))
8 end for
9 Update a:(t D _ (t’o) —mn ZkK 01 glt (t.k)
O _ 2®—al (®)
10: Compute §; " = —_2— — h;* and send 0; * to the server.
2 _ (f 1)
11: Update hgtﬂ) — i (fori ¢ S, h(tH) = h(t))
12: end for
13:  Update y®) = yt=1 + 37 o ") and 2+ = g0 — 20K (1)
14: end for

15: Server outputs (7).

FedSUM-B, it requires additional communication of () to compute the correction direction of
local updates.

The control variables in FedSUM are similar to those in FedSUM-B, except that they correspond to
client models with local updates rather than a single global model. Specifically, at each round ¢, the

control variables {hl(-t) }N | and the global variable y*) are updated as follows:

K—1
1 a4k @ . .
hgtﬂ) = E VFZ(xE ”’k);fi( “’k)), ifa;; > 0, and 0, otherwise.
k=0

K-—1
1 ) .
(t) _ oo (aiesk) | g(ase,k)
y e E E V Fi(; S )-

i€ Ay k=0

(®)

(@.0:5) denotes the local model of client i at round a; ¢ during the k-th local update.

(t)

Here, z;

Correction direction y,~ of local updates. A key challenge when performing local updates is that

the gradient VF; ( (¢, k), & (¢, k)) computed on client 7’s local data can be biased due to data hetero-

®

geneity. To mitigate this bias, we introduce the correction direction 3, ’ by sending the previous

round’s aggregated gradient (‘1) from the server to each client i € S;. By subtracting the client’s

own previous gradient, hgt), we obtain a correction direction that incorporates the gradients of other
clients. Formally,

K—-1
_ 1 ait—1.k) (@ o1,k
g = eyt = o YT Y VR gt ), ©)
jeAN{i} k=0

where xg-aj =1K) §s client j’s local model from its last participation round a; ;1 at the k-th update

step. This correction direction reflects the most recent aggregated gradients from other previously
active clients, helping to align client ¢’s updates with the global descent direction.

3.3 FEDSUM-CR: REDUCING COMMUNICATION COST IN FEDSUM

We further introduce FedSUM-CR (see Algorithm[3|in Appendix|D)), to enhance the communication
efficiency of FedSUM and achieve single-variable communication for both uplink and downlink.

(t

In each round ¢ of FedSUM-CR, instead of computing the correction direction y; ) by receiving

(t

y*=1 from the server as in FedSUM, each active client i € S, compute y,

i ) locally using its
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Algorithm 2 FedSUM: FL with Local Updates

1: Input: initial model (%), control variables y(~1) {h(o)} —, with value 0; global learning rate

7g; local learning rate 1;; local steps K; client participation {St}tzo .
2: fort=0,1,--- , T —1do

3 Send z(®) and y =Y to all clients i € S;.

4 for client ¢ € S; in parallel do

5 Receive () and (*~1) and initialize local model x(-t’o) =2,

6: Compute local update correction direction y( ) hl(t) +yt=b,

7 for k=0,--- ,K—1do

8 Compute a mini-batch gradient 92 = VF;(x; (t.k) ,§ (t’k)).

9: Locally update m(t D) = Ef k) _ Ul ( (tk) 4 y(t))
10: end for
11: Compute 61(“ = % - ygt) - hl(.t) and send 61@ to the server.
12: Update h{"Y) = 9””;7“2“ — 4 (fori ¢ S, KITY = (D),

13: end for

14: Update y®) = y(t=1) 4 Yies, 0 ®) and £+ = (&) — %y(ﬂ.
15: end for

16: Server outputs (7).

®

stored variables a; (¢

and z; ), thereby reducing communication overhead. Specifically, each client

(t) (®)

maintains additional control variables a;”” and z; ", updated as

a; ",

t+y _ . ifieS, @ _ JaW, ifie sy, (i)
ai = (t) . = ai,t, Zi = (t) . =T T (10)
otherwise, z; 7, otherwise,
with 21 := 29 for convenience. Here, agt)
selected prior to round ¢, and z( ) = 2(aie-1) gtores the most recent model it received from the
server before round ¢. Using these Variables, the correction direction for client 7 € S; at round ¢ is

given by

® _ ()
W._ N oz ol e ait ) gt
Yy, : —h, Z Z Z VF § )
i (t) v - VK
77977ZK t—a; (t ait-1) p=ai,i—1jeA,/{i} k=0
(IT)

which represents the average aggregated gradient from other active clients between client ¢’s last
selection round and round ¢ — 1. This correction direction aligns client ¢’s update with the global de-
scent direction by incorporating gradients from other active clients during these intervening rounds.

The correction direction in FedSUM-CR (Equation|[TT)) is similar to that in FedSUM (Equation[9), as
both adjust local updates by incorporating the influence of other clients. Whether using the averaged
gradients from intervening rounds (as in FedSUM-CR) or the most recent aggregated gradient (as
in FedSUM) yields no significant theoretical distinction, since both approaches align the correction
with the global descent direction. This equivalence is reflected in the convergence rates presented in
Section [l

Comparison among the FedSUM family. The main difference between FedSUM-B, FedSUM,
and FedSUM-CR lies in how the correction direction yi(t) is obtained. FedSUM-B omits local
updates and thus does not require y( ) resulting in reduced communication overhead. FedSUM
introduces additional communication by sending the aggregated gradient y(*) from the server to

clients for computing y( ). FedSUM-CR achieves the same correction with reduced communication
)

= a;4—1 records the last round when client 7 was

by requiring extra memory to store the most recently received model z;
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Table 1: Convergence behavior of the FedSUM family under different participation patterns, com-
pared with related works. Here O hides logarithmic factors.

Pattern Convergence Rate Related Works
Case 1 A [ /Lo2A; " N(LA;+Fy) Matches SCALLION without communication

ase SKT ST compression (Huang et al., [2023) (up to log factors).
Case2 O (YISl LAt F“) Matches FedAWE (Xiang et al., 2024).
Case3 O [Lo2A; | N(LA;+Fy) Not directly comparable to the CyCP framework

ase VSKT ST (Cho et al.} 2023)), which requires the PL condition on f.
Case4 O~ Lo?2; + N@A+F) None to the best of our knowledge.

SKT ST &

4 CONVERGENCE RESULTS

In this section, we present the unified convergence result for the FedSUM family, summarized in
Theorem[A.1] and characterize their behavior under different client participation patterns.
Theorem 4.1. Suppose Assumptions [I.1] and [I.2] hold. Under an arbitrary client participation

sequence {St}tT:_Ol characterized by Tiax and Ta,, suppose the learning rates for FedSUM-B, Fed-

SUM, and FedSUM-CR are set as

and m; = min { ! , Tmax } .
10/Tmax N KL \/N max{1, 74, } KT Lo?

Then all three algorithms achieve the following convergence rate:

T—1
1 30/ (1 + Type ) Lo2 A 20T max (LA ¢ + F
*ZE[HVf(x(t))HQ} < ( g) f+ ( f O)
t=0

T £ - NKT T ’

(12)

where Ay := () — f* and Fy := £ SN |V fi(z@)]]2.

Remark 4.1. When the participation sequence {St}f:_ol involves randomness, we can further take

full expectation with respect to {St}tT;Ol on both sides of Equation (12)). This allows us to character-
ize the average performance for the FedSUM family, where E[Tyax| and E[T,,,] quantify the impact
of participation patterns on the convergence rate.

Remark 4.2. The upper bound in Theoremshows that, smaller values of 74,4 and Tax, or their
expectations under a random participation pattern, lead to faster convergence rates. This result is
consistent with the intuition that smaller delays that indicates more frequent client participation,
improve overall convergence.

Remark 4.3. Moreover, the FedSUM family remains convergent even when the inactive period
grows with T (e.g., log(T')), which is a significant improvement compared to|Yan et al.|(2024)); \Gu
et al.|(2021), where convergence requires the inactive period to be strictly bounded.

The convergence guarantees in Theorem apply directly to the participation patterns introduced
in Section 2] As summarized in Table [I} our analysis not only unifies existing results but also
extends them in scope. These results indicate that the delay metrics Timax and T,ye accurately capture
participation heterogeneity under arbitrary client participation schemes, while the FedSUM family
achieves state-of-the-art efficiency across diverse participation regimes.

5 EXPERIMENTS

Overview. We evaluate the FedSUM family on real-world datasets to corroborate our theoreti-
cal analysis and compare against state-of-the-art baselines, including comparisons between Fed-
SUM variants. Specifically, we consider a federated learning system with one parameter server and
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N = 100 clients, where clients become available intermittently. We consider three image classi-
fication tasks using the MNIST (LeCun et al., 2010), SVHN (Netzer et al., 2011), and CIFAR-10
(Krizhevsky et al.,|2009) datasets, each containing 10 classes. For these tasks, we train convolutional
neural network (CNN) models with slightly different architectures. To simulate highly heteroge-
neous local data distributions, the image class distribution at client ¢ follows a Dirichlet distribution
with parameter = 0.1 (Xiang et al., 2024; |Crawshaw & Liu, 2024; Wang & Jil [2023); see Fig-
ure[2]in Appendix [G]for a visualization. Additional specifications and experimental results are also

included in Appendix [G]

Client participation patterns. We evaluate the FedSUM family under three participation patterns
inspired by real-world FL scenarios and prior work: (i) P1: The server randomly selects S = 20
clients per round, a controllable pattern (Karimireddy et al., 2020; Huang et al., |2023). (ii) P2:
Each client participates independently with a fixed probability S/N, a stationary and uncontrollable
pattern (Wang & Ji, [2023; Xiang et al.| 2024). (iii) P3: Each client participates with a time-varying
probability p! from a sine trajectory, representing a non-stationary, uncontrollable pattern (Bonawitz
et al.,[2019).

Baselines. We compare FedSUM (standard version) against several baseline algorithms that operate
without prior knowledge of client participation patterns during training. These baselines are grouped
into two categorizes: (i) methods that refine the FedAvg framework, including FedAvg applied to
active clients (McMahan et al., 2017), FedAU (Wang & Ji,[2023)), and FedAWE (Xiang et al., |2024)).
(i1) methods that enhance FL performance by incorporating additional control variables, including
FedVARP (Jhunjhunwala et al.;|2022), MIFA (Gu et al., 2021)), and SCAFFOLD (Karimireddy et al.|
2020; [Huang et al., [2023)). For fairness, all algorithms use the same local and global learning rates,
selected via grid search based on the optimal performance of FedAvg (see Appendix [G]for details).

Figure[T]presents the training loss and test accuracy curves for the three datasets. FedSUM achieves
faster convergence faster and greater stability than the baseline algorithms, which we attribute to its
stochastic uplink-merge technique combined with the correction direction.
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Figure 1: Training loss and test accuracy curves for CNN models trained using different FL algo-
rithms on three datasets, evaluated under various client participation patterns.

6 CONCLUSION

This work presents the first comprehensive analysis of federated learning under arbitrary client par-
ticipation. We introduce two delay metrics that quantify the impact of participation variability and
propose the FedSUM family of algorithms, which achieve both efficiency and robustness through
the stochastic uplink-merge technique. Our unified convergence guarantees recover known rates
in special cases and extend to arbitrary participation patterns under only standard smoothness and
bounded variance assumptions. These contributions position the FedSUM family as a practical and
theoretically grounded framework for federated learning across diverse participation scenarios.
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A NOTATIONS AND PRELIMINARY RESULTS

Define FCU = ¢, FP = 4 (UOSJ,S,C {ggnﬂ} U ;(t—l)), and let FO =
o (UieN)OSkSK_l]:i(t’k) U{S; };zo) if the participation sequence {St}tT:_Ul is random; otherwise,

FO = ¢ (Uie/\/,ongK_lfi(t’k)), where o(-) denotes the o-algebra generated by the random
variables within the parentheses. We use E[] to denote the expectation over the stochastic gradient.
Additionally, each a; ¢, T¢, Tmax and Tuy, are functions of S;, where ¢ = 0,...,T — 1. These can be
directly used and evaluated by taking the full expectation.

We define S; := |S;| < N and A; := |A¢| < N. The stochastic gradient of client ¢ € S; at round
t and the k-th local update is denoted as g;(x; (t, O),f (8.k) ) VF; ( (£:0) §(t k) ) in FedSUM-B, and
gz( (8.k) f(t k) ):=VEF; ( (t.k) §(t k) ) in FedSUM and FedSUM-CR for simplicity.
Lemma [A.T]| provides a basic variance upper bound for the aggregated stochastic gradient, which is

crucial for analyzing the convergence of the FedSUM family, and holds obviously since each client
draws independent samples in every round and local update.

Lemma A.1. Suppose Assumption[I.2|holds. Then, for any active set A, of clients, it holds that

Z Z |: l'(al t,k) f(al t,k) ) _ Vfi(m(ai’t’k))}

€Ay k=0

2
< NKo2.

Proof. By the independently and randomly sampled {¢&;}, it implies that

|| Z[ (aleneh), gt )—Vfi<x<“i=“’“>)]|

€A k=0
Ko 2
R[S et 600) vt
1€A; k=0
K= 2
o
€Ay k=
K-
Z Ko? < NKo2.
€A, k=0

O

LemmalA.2]establishes a basic relationship between the minimum last-selection round among clients
and the maximum delay 7y ax.

Lemma A.2. Forany k > 0, it holds that
i 7 Tmse > k .
WD {3 ot 1} 2
Proof. First, by the definition of 7,4y, for any client 7 € A/, it should be updated during the iteration

from k to k + Tmax. Otherwise, there exists &’ < T and client 7 € N such that client 7 is not selected
during the iteration from &’ to &’ 4+ Tiax. Then, it implies that

/ . /
Tmax Z k + Tmax — n’élﬁ {aj,k’Jr'rmax} Z k + Tmax — i k! +Tmax
J
! /
Ek + Tmax — ai,k’+7,,,ax Z k + Tmax — ai,k/—l
/
=Tmax + 1 + (k -1- ai,k’fl) Z Tmax + ]-7

where we use the facts that a; y—1 = a; 17 = - -+ = @ '+, i0 the fourth inequality and t —a; ; >
0 in the last inequality. It conducts to a contradiction.
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Thus, for any k and for any client i € N, client i should be selected at least once during the iteration
from k to k + Tiax €. there exists k* € {k,k+ 1, -,k + Timax} such that a; ;» = k*. Asa
result, we have
i ot > Gilr = K* > k.
Therefore, we have
min {a; > k.
iEN { Z-,kJrTmax} =

O
B CONVERGENCE ANALYSIS FOR FEDSUM-B
In this section, we get the convergence result of FedSUM-B.
We begin with the update direction 3*) of server in FedSUM-B shown as follows.
1 K-1 ( :
t) — — . (ai,t) ai,t,k
v =4 Z > gi(alend) gree), (13)
ic Ay k=0
Lemma B.1. Suppose Assumption[I.1|and[I.2] hold. Then, we have
-1 2,2 [ K2 T-1
(t+1) _ 4t Nl 27 o ’79"! ()
Z]EH:,; z 22— ZE Y Viie
t=0 1€EA,L
Proof. Tnvoking Equation (T3), we have
77 77; 2 it = (@i k) ’
Hx“*” O < R = B | X X e
i€ Ay k=0
i i AR
[ x(‘“ +) g(m mk)) Vfi(x(ai’t))] ’ g l Z V fi(z%)
€Ay k=0 i€A;
(14)
Invoking Assumption[I.2} we have, by taking expectation on both sides of Equation (T4),
2
B Hx(tJrl) _2® 77g7h 3 Z 779771 E| S vyt
i€ Ay k=0 i€ AL (15)
2,2
ik ngnl (@)
<2-— 242 ; Vfi(x
K t

We get the desired result by summing over ¢ from 0 to 7' — 1 on the both sides of Equation (T13). I
Lemma B.2. Suppose Assumption[I.1|and @ hold. Then, we have

T-1 t—-1
ST E|DYD V@) <TmaXZE > Vil

t=0 p=t—7¢ JEA, i€A;

2

Proof. Invoking Lemma we have t — 7, > min {0, ¢ — Tinax } and hence,

T—1 t-1 2 o t—1
; Z E Z ij(l'(aj'p)) < Z Z Z Vf (aj, P)
=0 p

St ||jea, t=0 p=min{0,t—Tmax} |[FEAp

2

2
T—1t=p+Tmax

SZ Z E vaj(m(aj,p)) <7’maxZE va (agr)

p=0 t=p+1 JEA, JEAL

which gives the desired result. O
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Corollary [B3]holds directly by Lemma[B.2]
Corollary B.3. Suppose Assumption[I.1|and[I.2|hold. Then, we have

2

ZTt Z = ZVf a]p)) - maxZE

p=t—T¢ JEA, t=0

2

AT

1€EA,

Lemma B.4. Suppose Assumption[I.1|and[I.2)hold. Then, we have

T n 9
D EIY VW)=Y Vi)
=1

t=0 1€AL
- 2
§4n§77127'max7—avgNKTL20'2 + 477_277?7'131&([(2[/2 Z E Z Vfi(x(ai’t)) + ZNQTmaXFO’
t=0 1€A;
where Fy := % Zivzl vai(m(o))HQ'
Proof. 1t holds that
2
Y VhiED) = Y Vi)
ieN i€ A,
2
=3 [VAED) - VaE@)] + Y Vi
iEN PEN /Ay (16)
2
<N Z [v5:a®) - vaEe)|| r2v a0 ¥ [viE®)|
1EN /Ay
9 2
§2NL2 Z Hx(t) _ x(ai,t) +2 (N — At) Z HVfZ(;E(O))H .
iEN ieEN /A

Invoking Equation (T3), we have, by taking full expectation, that
t—1 2 2,2 172 :
— Mg K
— E.A:/E 3 {xwl) _ x(p)} _ 9N2 SE|Y @
S p=ai,t =ai,

2

ZE Hx(t — glaie)

iEN

t—1 K-
77g771 ZE Z Z Z (a” Jp,k))

ieEN p=ait jEA, k=

K-1
<¥WHE:E 2: E:E:[ ﬂjﬁgwm,)7VEQWMU

iEN p=a;,t jEA, k=0

77977l ZE Z va7 (%p

1EN p=ai,t jEA,

2

2

a7)
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We can bound the first term in Equation (@4) as follows:

77977l ZE Z Z Z { aj,p)7§§ajvp7k))7vfj(z(ajyp)):|

€N p=ait jEA, k=0

2

o = ~ 2
<2 nggl ~ais) Y E Z [ (o), Lok >_vfj(x(aj,p>)}
zGN P=ai,t €A, k=0
779771 (a ) elajpk (aj.p) ?
S S Y ZEHg 2, o) vt
ieEN p=a;t jEA, k=0
77 n; Tmax 111} Timax K n 17 Tnax K
o e ZZZqu“ I =200 Y (a0
1€EN p=ait jEA, k=0 €N p=ai, 1EN
SQngn?KTtTnlax02~
(18)
For the second term in Equation (@4), we have
NAR C K -
WY E S S v <2BEE S eman ¥ |5 vhet)
ieN p=a; . jEAy ieN p=a; JEA,
2 2
N nl SR
9 ZTt Z Z Vf aJp) —9 QN Z E Z ij(fﬂ(aj’p))
€N  p=t—7; JEA, p:tfn JEA,
19)
Summing over ¢ from 0 to 7" — 1 and invoking Lemma B.2]and Corollary [B.3] we have
S sl e
t=0 ieN
2
T-1 2 771 K2 -1
S K rmax0® ) 7o+ 27— ) > 5| Y v 20)
t=0 p=t—T¢ je_A
2.2 2 77g77l (a7 .
<201 TavgTmax KT'0” + 2 T2 s ZE Z V fi(z
1€A;
Furthermore, we can bound the second term in Equatlon (]E[) as follows:
T-1
2 -4) Y[R <2Z N - Ay ZHW )|
t=0 1EN /Ay
T-1 N o ) (21
=Y ¥ S [vaE) 333 ﬂ{amt}ZHVf )|
t=0 jeN /A, i=1 t=0 jeN
§2N 7_InaxF‘Ov

2 .
where Fy = + Zfil |V fi(z@)]|” and we use DN Z;F:O Tijgay < Zfil Tmax = N Tmax in
the last inequality.

Finally, we can combine Equation (I7), (T8), (T9), (20) and (ZI) to get the desired result:

iE Z Vfi(z®) - Z V fi(al@)

t=0 ieEN 1€A;L

) (22)

+ 2N 1ax Fo.

T
§47]§nl27max7avgNKTL20'2 + 477377[27}%&)([(2112 Z E
t=0

PORVACERD

1E€EA
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Lemma B.5. Suppose Assumption[I.1|and[I.2)hold. Then, we have

W”ZE<W ) Zz[gz g0 ) - Vfila a”>}>

i€A; k=0
Z V fi( x(“”

€A

nen; K

gL+ 2 Z E

Proof. By the independently and randomly sampled fi(ai’t), we have, for eachi € A;, and 0 < k <
K -1,

E(Vf(atmmertond)) g (@b, gft) ~ v fialen)) 0. 23)

‘We then derive that

K-1
- Bly <vf(:c(“ ) 9@, ) = V()| >
i€A; k=0 (24)
Ll () (t=7) S (ai,e) glaiek) (ai,e)
= BEE( V) - VI@t), 9@, ) = (@) ).
i€A; k=0

Then, if 7, > 0, it holds by picking o = T%L in the Cauchy-Schwarz inequality (a,b) < « ||a|® +

K—1
Mg t 2= (as,¢) a7,, (@i
e 5 5 e e

i€A; k=0
1 = ’
- )y _ (t=1) 779”! (@) g(@s0k) (i)
thLIEHVf(:v )~ Vi )H 7 LE 2,; ]; [ N B L )}
(25
With the fact that, by taking full expectation,
K-1 2
R (|33 [ual), €0 - fiaten)]
i€ Ay k=0
K—1 9
< 303 Elgi( @0, 6 — v i) < KNro®,
i€ Ay k=0
and
2 2 ,’72772 t—1 K—1 .
EHVf(:v(t))—Vf(gc(t‘”))H gL?Equ)_xu_m = o gy (o), gltam b))
p=t—7¢ jeA, k=0
2
77 72 t—1 K—1
o VE| Y 030, €057 ) = ¥ gy a5
p=t—7¢ jEA, k=0
e Wi P K? — :
g 2 e )
+ 20— L°E > Vfj (x4
p=t—Ty jEA,
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we have
2
t—1 K-1 B
El S [gj(xmj,p)’ gloaw )_vfj(a;(aj,p))}
p=t—T7¢ jEA, k=0
2
t—1 K—-1
S E { (alos0), gloank )_vfj(xmp))}
p=t—7 ||j€A, k=0
t—1 K-1 ( K 2
> 5 S Efuteten ) - vaen)| < Nt
p=t—T¢ jEA, k=0
and

2 2
t—1 -1
E| Y D Vf@Ee))| <n Y B> Vi)

p=t—T jEA, p=t—Ty JjEA,

Thus, summing over ¢ from 0 to 7" on both sides of Equation (23)) and invoking Corollary [C.3] we
have the following bound holds no matter whether 7; < ¢ or not:

- ZE <Vf ©), 3" [gi(atesn, gl)) - Vfi<x(aw))}>

t=0 i€ A

Mg = M N>

<o D KNG L+ 250 NK Y mo® L+ 270 LZ Z E| > Vi)
=0 t=0 t=0 p=t—7¢ JjEA,

nani K nani K

<3 Tug0 LT + 270 TmaXLZE > Vi)
t=0 €A
(26)

which gives the desired result. O

Lemma B.6. Suppose Assumption|l. and hold Then, for ngm K < g —» e have

2Tmax-FO
T ’

2A
1S sfosn < N
9

where Ay = f(x(o)) — f*and Fy := ﬁ Zf\il HVf,-(m(O))||2.

Proof. By Assumption the function f := % Zj\; fi 1s L-smooth. Then, it holds by the descent
lemma that

2
Ef(z*)) < Ef(z®) + E <Vf(x(t)), 2D _ x(t)> 4 g mel) _® 27)

For the inner product term in Equation (27)), there holds that

K
E (V)2 —2) = E <Vf(x(t)), %leyu>>

_ %E < Z Z [ x(a’ ¢ f(az t,k)) vfi(x(ai,t))} > (28)

i€A; k=0

77797\;K < va azt) >

1€EAL
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For the second term in Equation (28), we have

77g771K (t) (ait)
- < Z Vfi(x

1€A:
K N
:_77977l <va1 x(t) va (ai,e) >
zeAt
2
_ 77g77l§( Z V£ (2000 2®) Z Vi (200
2N 1€A; 1€A:
K K ’
1 .
E— 517!]771[{15 va(m(t))H 77977l Z Vfila (as, f) 779771 Z Vfl _ Z Vfi(x(“"’t))
1EA i€AL
(29)

Then, summing over ¢ from 0 to 7' — 1 on both sides of Equation (27) and taking full expectation,
we have

K—1
0<A;— T Z]E<Vf ), [g: (a0, gl )y — vfz-(x<“i’“)}>
€Ay k=0
1 0) Mg (as.0))
277‘17”[(2]]5”%0 H R Z]E > Vi (30)
'LGAt
L 1K L 2
g @it L t+1) _ (¢
o ZE Zsz )= 3" Vii(ale) +2ZEH@=( Ol
i= 1€A; t=0
where Ay := f (2(©)) — £*. Implementing Lemmainto Equation (30), we have
T-1
_ Nig" ®) (z(@s) (as,e,k) ((aie)
00y - 4SBT T3 [ ) - Ot
t=0 i€As k=0
2 ngmK -« :
—§7lq771KZEHVf O - BEF -2k L) Y E|| Y VA G
=0 t=0 |liea,
2
WgﬁlK 20 £(@i) 77g771 KT ,

1€EAL

Implementing Lemma [B.4]into Equation (3I)), we have

T—
0<A; - %Z <Vf “) ZZ[ (e, M) = sz'(x(‘“*t))}>
t=0

i€A k=0
T— T-1
1 2 K
- 7779an va x(t )H - 77;7\172 (1 - 27]97”KL 4779”1 max}-(QL2 ZE
t=0 |lieA,
2KT 2 TmaxTave K 2T
ngn]lv oL, 4 2 02 L% 1y Tina K F.
(32)
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Implementing Lemma[B.5]into Equation (32)), we have

22K 1 T-1 2
0 <Af +3- =1 ToL— Sk Y E HVf(x(t))H
t=0

T-1 2
n an a
- §N2 (1—-2n,mKL - 477377?7’31“}(2[/2 — Angm K Tmax L) Z E Z V fi(xla0)
t=0 |lieA,
2KT 21313 Tonax Tave IS 2T
ngn]l\[ 2L + 779771 N e 0'2L2 + 7]g7lleaxKFO.
(33)
For ngm K < E— L,we have
1—2n,mKL—4 KL — dng KL > 1— —— — — 151 oy
Mg 77g771 rrnx TlgM 4\ Tmax 47_max 16 9 16 .
Hence, for nymK < &= 1a . we can rearrange Equation to get
1 2 ,’72 2K
5’79775[(2 E HVf(x(t))H <Ap 4500 ax {1, Tag } T2 L+ g K Fo. (34)
t=0
InP Tmax T K2
where we use the fact that MO‘QI;Q ngm To?L for ngmK < g——.
Dividing both sides of Equation (34) by 2n,m KT, we have
T—1
1 2 2A 2Tmax F
-+ (t) f 779771 2 max4'0
z ZOE HVf(x )H R I (R (35)
which completes the proof. O
Theorem B.1. Suppose Assumption [I[.I| and [I.2] hold. Then, for ngm =
. VNA;
i { \/nlax{l Tavg} KT Lo? ’ 10K7'maxL » We have
- p)
S L) P TN L U SRV
NKT T
where Ay == f(z(9)) — f* and Fy := % Zivzl HVfi(m(O))W.
Proof. Invoking Lemma. we have, for nyn K < STx\a T
2A Mg 2'Tm'LxFWO
EHV ®) H I 107 1, 7o} 020 4 Zmaxl0. 36
TZ flx nngT+ N max {1, Taye } 0L + T (36)
For
) NA; 1
= min ) )
T /max {1, Tave } KT Lo? 10K TiaxL
we have
2A¢ < 2y/max {1, Tave } Lo2A5  20Timax LA
ngmKT — NKT T
10 1, Tave } Lo2A
1079 max{l,Tan}02L < \/max{ Tos} Lo I
N VNKT
Thus, we can combine the above two inequalities with Equation to get
T—1
1 2 12 1, Tave F Lo? Ay 207Tmax (Fo + LA
S B |vseo)| <2Vl il oAy | 2 (P4 EAY) )
NKT T
which gives the desired result by scaling the constants appropriately. [
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C CONVERGENCE ANALYSIS FOR FEDSUM

In this section, we prove the convergence result of FedSUM.
We derive the update direction y*) in FedSUM as follows.

K-1

y® =%Z 37 gilalt P gleeh)y, (38)

Furthermore, the local control variable hg ) and local update correction direction y, () fori € A; are
defined as follows:

K—
hgt) Z (CLZt 1,k) f(a” 1Jf)) (39)
k=0
1 = k k
=g 3 e gheh), (40)

jeA_1/{i} k=0

Lemma[C.T|establishes a basic relationship between the difference of two consecutive model updates
and the aggregated gradient, shown as follows.

Lemma C.1. Suppose Assumption[I_1land[I.2]hold. Then, it holds that

K1 2
> D Vi)

ic Ay k=0

2ngn; KTo®

Sl ol 277 771 e
t+1 t g
;EHx - H < N ZO

Proof. Invoking Equation (8], we have, by line 17 in Algorithm 2]

(% t:k)  c(ai,ek)
7§i ! )
Z Z vfz (aL t7k)

K— 2 9
2 Z[ (w6 = Vi <““’k>>]H W
€Ay k= i€A; k=0
(41)

Invoking Assumption[I.2land Lemmal[A-T] we have, by taking expectation on both sides of Equation

ng T]l

2,2 172
Hzml) _ Lol = T AT H (®)

N2

2779 nl
=2

b}

2
2,2 2,2
2 < 2ng77lK 2 + 27]5777[ E

S—xN ¢ Nz (42)

K-1
> > Vhida

E Hx<t+1> _®
€A k=0

We get the desired result by summing over ¢ from 0 to 7' — 1 on the both sides of Equation @2). [

As a direct consequence of Lemmal[A.2] we conduct the Lemma|C.2]and Corollary [C.3]to bound the
aggregated gradient of server.

Lemma C.2. Suppose Assumption[I_1land[I.2hold. Then, we have

T-1 t—-1

_ K—1 2 T—-1
D0 | P VLETT) S a3 OE
t=0

t=0 p=t—7¢ ||jeAd, k=0

K—-1 2
> > Vi)

i€ Ay k=0

Proof. Invoking Lemmal[A.2] we have

t—T1=1t— max{t —a; 1} = mln{al ¢} > min{0,t — Tax -
1EN
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And hence,
2 2
T—1 t—1 K—1 : T—1 t—1 K-1 )
aj p,k Aj,p,
DX B VAEETT <X X B Y V)
t=0 p=t—7¢ ||j€EAp k=0 t=0 p=min{0,t—Tmax} ||FEAp k=0
T—1p+Tmax K—1 ( ) 2 T-1 K—1 o) 2
a]‘,p,k ai7t,k
< B> > Vha ) =mmas d B> D VhE™ )
p=0 t=p+1 ||j€A4, k=0 t=0 |licA; k=0
which gives the desired result. O

Corollary [C3]is a direct consequence of Lemma|[C.2]
Corollary C.3. Suppose Assumption|I. 1|and[I.2|hold. Then, we have

T-1 t—1 K-1 2 T-1 K—1 2
S 3 E|S Y Va0 <l Y E|Y S vaEn)
t=0 p=t—T¢ jEA, k=0 —0 ieA, k=0

Lemma [C.4]is the key lemma to estimate the difference between the aggregated gradient of server
and the aggregated gradient of all clients.

Lemma C.4. Suppose Assumptionand hold. Then, we have, for n; < ﬁ,

2

T-1 N K—1
STE|KY VAED) =Y > VA@E™Y)
t=0 i=1 i€A; k=0

<BK®N*TmaxFo + 8mon7 K? NTinax max {1, 7ayg} To> L 4 1500 N° K*To? L?

2
T-1 K-1

+ (1092072 e K2 L2 + 24 KN 1 L7) Y E|[ S S V()|
t=0 jEA; k=0

where Fyy := % Zil vai(x(()))’f,

Proof. Notice that, by the decomposition of the difference between the aggregated gradient of server
and the aggregated gradient of all clients, we have

N K—1 2 2
a; ,k’ a; ¢
HKZWx“)) =3 Y VAES| <8RS VEED) = Y Vi)
i=1 i€ Ay k=0 ieN ieN
2 2
K-1
+3[K Y V@) = 3 ST V@) +3k2 | Y Vi)
i€A i€A; k=0 1EN /Ay
(43)
We bound the expectation of terms in Equation (#3)) one by one. First of all, we have
? 2
E Z Vi(a®) Z Vi@ < N2 Z E Hx(t) _ plain)
ieN ieN ieN
2 2
! ot S N N () ()
— 2 (p+1) _ .(p) _ 197t . Aj,p, Qj,p
S DN FEURNE)| IR 3 D I DB SPESER )
ieN pP=a; .z ieN p=a;t jEA, k=0
(44)
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By Assumption[I.2] we have, according to Equation (44) and summing over ¢,

T-1 5
3K? Z E Z Vfi(x(t)) _ Z Vfi(x(‘“’f))

t=0 iEN iEN

T— K-1
<6K2”g"m222n Z 3 Z 2 4 6K 'g”lezzE Z S % vt

t=0ieN p=a;tj€A, k=0 t=0 ieN p=a;,t jEA, k=0
2
2 27-3 272 2.2 2 (as, ,k)
<6120 K° NTinaxTane To*L? + 61207 K212, L ZE > ZVfL N
€A k=0

(45)
where the procedure is similar to the proof of Lemma[B.4]

For the second part of Equation (3, we have, by Assumption[T.T}

K-1 K-1
K2 Vfia)) = 30 3 VA = |30 3 [VAE) - V)]

€A, €A k=0 i€AL k=0
<NKL* ) Z H (ar) _ Mk)H
€Ay k=0
(40)
Note that (%) is the local model of client i at the beginning of round a;., and x( 20) s the

local model of client 7 at the beginning of round a; ; after k local updates. Then accordlng to the
definition of hE ) and y( ) shown in Equationﬂand@ it holds that

5 S e e < 5 5 SR e g

2

i€A; k=0 i€A; k=0 ||lp=0
1 ||k—1 2
"y Z (gl ) gl “7)
€Ay k=0 ||p=0
k— 2 _ _ 2
<2le Z Z Z { aL D) ’5 (ai, t,P)) h/gal ot } + 27][ Z Z Z (ai,t—1)
€A k=0 |[p=0 €A k=0 ||p=

We deal with the first term in Equation 7)) as follows. Notice that, by the definition of hgt) in
Equation (39) that

@0 L~ B 5
a;. Ai,a; g —157 Ai,a; 1 —1)
hi * :?Zgi(‘ri ’ ’fi ' )7
k=0
where a; 4, ,—1 is the round when client ¢ is selected in the second last round before ¢. Then, we
have
k—
p

Z [gl( (ai,+,p) g(amﬁp)) hgaz‘,t)}

2

1
0
k—1
5 Z [gi(xgai’hp)yfi(ai’hp)) sz( (‘17, tJl) :|
p=0

_ 2
Z{sz (2" P) = ¥ fiale:9)]
p=0

+ 5k? vai(x(ai,t)) - Vfi(a:(ai,au 1) H k2 K—-1 [Vfl (aia; ,—1) )~V iz (@ira; 415 q))}

q=0
2 K- (!lq a; —1 ,q) (ai:%‘,t—hq) PR 2
Z [ & ) — Vfi(a! ¥ )}
. (48)
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Then, by taking expectation and invoking Equation (@7), we have the following upper bound for
each term in Equation (@8).

Term 1:
T—1 K—1 ||lk—1 2
i 3 ntateen), 60 - o)
t=0 ic Ay k=0 p=0 (49)
T—1 K—1k—1
<n; o2 < )NK>To>.
t=0 icA; k=0 p=0
Term 2
T-—1 K-1 ||lk=1 -1 K-1 k- 5
Y E |3 [Vl ) = Vfiatn) } e
t=0 i€ Ay k=0 p=0 t=0 i€ Ay k=0 p=0
T—1 K-1 K-1 ( ) : :
ity i i 7k i,
2SS Y S B ol e[ <2 S5 S ) gt
t=0 icA; k=0 p=0 t=0 ic A; k=0
(50)
Term 3:
2
3033 IR E ]
t=0 i€ Ay k=0
T-1 9 T-1 a;,t—1 2
<P S B[aed e [T Y SR Y [60 )
t=0 i€ A t=0 i€ A P=0ia; -1
2
it—1 K—
I
t=0 i€ A, P=ai,a; ;—1 JEA, k=0
4K3L2 T-1 ait—1 K-1
e D DD DCTE TP B SN DI B
t=0 ic A, P=0i,a; —1 JEAp k=0
2
4K3L2 T-1 a;t—1 K— @
2 D e —aie] )0 E ZZ
t=0 icA; P=Qi,a; ;1 JEAp k=
27 K3L2 e
2 NS Jags — diay 1]’ NKo™.
t=0 i€ A
(51)
With the fact that a; 4, ,—1 is the second last round when client ¢ is selected before ¢ and a; ¢ is the
last round when client ¢ is selected, it holds that 0 < a;; — @j,4; ,—1 < Tmax. Then,
2
Y Y S O - et
t=0 i€ Ay k=0
n;lKSLQ T-1 it K-1 ( " 2
A p,
SUUELE S SE TS SIS 1 DOD SR AC | IEEY N
t=0 1€ A p=max{0,a; + —Tmax } JEAp k=0

(52)
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With the fact that ¢ — Tyax < a;¢ < ¢, we have

niK312 T—1 it K 9
57 Z Z Tmax Z E Z Z vfj(mgaj,p,k)
t=0 i€ A, p=max{0,a; + —Tmax } JEA, k=0
2
372 T-1 K1
M Z Z Z E Z Z vfj(x§aj,p7k)

t=0 i€ As p=max{0,t—2Tmax } JjEAp k=0
2

372 T-1
_MZ Z E Z va] aj.p,k (53)

t=0 p=max{0,t—2Tmax } jeA, k=0

2
2 TmEXK3L2 T—1min{T—1,p+27Tmax } K-1 _
el E S e T S v
jEAp k=0
2
242 372 T—1 K-1
Sw E \g7 “J t k
N t=0 JEA: k=0
Term 4:
T-1 K-1 9 K—-1 ( ) 2
Qj,a 1 Gisaq =14
> B || D [Vhi ) = Vi )
t=0 ic Ay k=0 q=0
T-1 K—1 2 K-1 (as )2
e 53 58 T )
t=0 ic A, k=0 q=0
T—1 K—-1 2
<77l Tmax K “L Z E Hl‘(% #k) 1'(04 2 ;

where the last inequality is due to the fact that a;4;, 1 is the second last round when
client 7 is selected before ¢ and a;; is the last round when client 7 is selected. Then, it

, 2
holds that Qiasop1 = iy Hence, ZZ“:BI Z,;eAt Z;(ziol E Hx(ai,al,tfl) . wial,ai,tflﬂ) <
2
itk ;
Tmmxz ZzeAtZ EH (a t ) (alﬁt)
Term 5:
T-1 K12 ||K-1 ( o ) 2
Ai,a; 1,9 Ai,a; 1,9 ia; s —
nt B || [aitw e g ) - Wi e )]
=0 ie A, k=0 q=0 (55)
T-1 K12 K1
<n} — Y o’ <nNK’To?
t=0 i€ A; k=0 q=0
For the second term in Equation 7)), we have
K—1|[k—1 K—1 ) 9
DY |l =22 35T k2 Hym,t—l)H < mPK? Y Hymi‘t—l)H
i€ Ay k=0 |[p=0 i€A: k=0 i€AL
(56)
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Consequently, it implies that

K-1
Y235 35 DL VEESEEYTS 3D ok I Dl PIECEral it

=0 ic A, t=0 icA; ||j€Aa, ,—1 k=0
2

T-1 K—-1
<apK Y S E|Y Y ij(zﬁa]‘“i’“k)) + A2 K2N202T

t=0 i€A,  ||j€Aa, ,—1 k=0

T-1 K-1
AP ENTmae Y E[ Y0 ST V@) + 42K N2%02T,
t=0 i€A; k=0

(57
where the last inequality is due to the fact that E HZlE A, ZkK 01 V fi(z; (az, t’k)) H appears at most
NTax times in the previous sum.

Finally, after summing ¢ from O to 7 — 1 in Equation 7)), and implementing the upper bound for
each term in Equation (@8)) as above, it holds that

T-1 K-1 T-1 K—1
I IEHxW) — gl ’”H <10ENKTo? + 1072 K2L2 Y 30 37 B 2l - afeen
t=0 i€ A, k=0 t=0 i€ A, k=0
2
LS 3 D 3B SLE R N 2
t=0 JEAL k=0
T-1 K-1
+ 1077127-maxK2L2 Z Z Z E "l‘gai,t,k) _ m(th’,,t,) + 107; 2N K2T o2
t=0 ic A, k=0
+ 402 K NTinax Z E|IY Z Vi 4+ 4P K2N?62T
€A k=0
(58)
Then, for 1; < Wﬁ’ by rearranging the terms in Equation (58), we have

Z Z E Hx(aq‘,,t) _ xgai,t;k) H < 507]2N2K2T0' + 40,'79771 deK4TO'2L2

2 (59)
T-1

80m2nir2 K32 (@
+< g™ Na +877[2KNTmax>ZE Z va] th)

t=0 ||jeA; k=0

For the third part of Equation (#3)), we have, by summing over ¢,

T—1 2 T-1 N 9
Y| S VA <3K2 Y (V- A0S 9|

t=0 |[ieN /A, t=0 i=1 (60)

2
Y Y, e HVﬂ M| < 3K2N?ror i,
t= O]GN =

where Fg := % Zf\il ||sz‘(33(0))||2'
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Thus, by summing over ¢ and taking expectation in Equation @’ implementing the three parts, we
have, forn; <1/ (10,/7’maxKL), by SNKL? - 40n2nir2, K *To?L* < 277377?K3N7maxT02L2,

qnl max

T-1 N K—1 2
SIS STEIND 3 SRR
t=0 i=1 i€A; k=0

max

K-1
SN vt

i€ Ay k=0

<BKZN?TopascFo + 81207 K Ny max {1, Tag } To? L? + 60207 K*72, L* > E

2
T-1 K-1

+ 1500 N3 KPTo L2 + (2400201720 K LY + 2402 K2 N2 1o L2) Y E|| Y 3 W (2l
t=0 jEAL k=0
<BKZN*Tinax Fo + 8717 K? NTinax max {1, ayg } To? L? + 1500 N* K*To? L?

2
T-1

+ (10m2nP 20 K2 L2 + 240 K2 N? 70 L) D E || > vai (o)
t=0 jeAL k=0
(61)

Lemma C.5. Suppose Assumption[I.1)and[I.2|hold. Then, we have

_ Ng™ ZE<vf (t) Z Z |: (altk é—(azt k) vfz( (@i, k))}>
i€ Ay k=0

2
o K

K-1
> X Viila")

i€A; k=0

7]2772
Tavg0 LT + 2-2 L 1 L Z E

<3
N t=0

Proof. By the independently and randomly sampled fi(a'i’t), we have, foreachi € 4, and 0 < k <
K -1,

E <vf(x(nlini€.’\/'{ai,t}))’ 9i (.’L‘,Eai’hk), é‘i(aiytvk)) vfl( (a,_ ts k))> 0 (62)

By t — 7 = min;en {a; ¢}, we then derive that

%m <Vf(” E:E:[% mfmgm”m) Vﬁ(m”mﬂ>

i€ Ay k=0

K—-1
= 1lE <Vf(x(t)) ~VAE), 303 ol ) g “’“’)]>

€A, k=0
(63)
Then, if 7; > 0, it holds by picking o = T%L in the Cauchy-Schwarz inequality (a,b) < o|al|® +
L 1b||? that,

K—-1
- %E <Vf(x(t)) 2(t=Te) ’ Z {gi(xga'i,tyk),é.i((li,mk)) sz( (as, t7k)):|>
i€Ay k=0
1 77 oy k k k i
SEE"Vf(x(t) Vf(x (t—7¢) H TtLE Z Z [gi(xgaqz,m )751@1‘,“ )) vfz( (@i, ))}
€A k=0

(64)
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With the fact that, by taking full expectation, we derive that

E| T3 [aal®™,6009) - 9 p(alee0)]

1€A; k=0
K-1

<Y Y E|

i€A; k=0

2

2
(w60 ()| < NKo?,

and

NTE: TR T
]EH Oy _ v f(zt=T) H <L2EH &) _ pt-m)||” = g
Vi) flx N < T x N

p=t—7¢ jEA, k=0

77 ,’7 t—1 K—1 2
! aj,p.k aj p,k aj p.k
SQJQV I2E Z {gj(g )f( ) ij(( ))]
p=t—T¢ ]e.Ap k=0
2
77 77[ 2 = Kol (ajp.k)
+ 2 ]9\72 L°E ij(xj irk)y
p=t—7¢ jEA, k=0
Then, we have
t—1 K—1 2
aj ak aj p, a ,k?
E|| > (g5l ) = v gy ()|
p=t—7¢ jEA, k=0
t—1 K—-1 )
=Ty EHgJ ((lj k) g(ajpv ) vf]( (a] p,k))H
p=t—7¢ jEA, k=0
t—1
<7 ]VI(O'2:]\/v[('y'fg'z7
p=t—T¢
and
2 2
t—1 K-1
E| Y Y Y s <n 3B Y vheen)
p=t—7¢ jEA, k=0 p=t—7s jeA, k=0

Thus, summing over ¢ from 0 to 7' — 1 on both sides of Equation (64) and invoking Lemma|C.2]and
Corollary [C.3] we have the following bound holds no matter whether 7, > 0 or not:

_ e ZE<Vf (@), 3 Z [g:(atese gleer) —Vfi(x(“’*“’“))D

1€A; k=0
22 22 77 T-1 t—1 K- 2
S LD S35 3 S hop TR
t=0 p=t—m7 €A, k=
K o, my; e
<3 a0 LT + 20 TmaxLZE > ZVfI el
€A k=0
(65)
which gives the desired result. O
Lemma C.6. Suppose Assumptionandhold. Then, for m; < Wﬁ, and ngn <
1
m, we have
2A Imgmmax {1, Tue} 0L 3TmaxFo
= > E||vie® H ! g > Tave 15072 NK o2 L2,
Z fla “ngmKT + N + T + h 7

where Ap = f(2©) = f* and Fy := L 3" ||V fi(2®)]|*.
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Proof. By Assumptlon. 1.1} the function f := 1 ~ >, fiis L-smooth. Then, it holds by the descent
lemma that

2
Ef(z*D) < Ef(z®) + E <Vf(x(t)), 2D _ x(t)> 4 g mel) _® (66)
For the inner product term in Equation (66)), there holds that
E(V/(®),altt) —2) = F <Vf(ac(t)), Wy<t>>
N
Tg" < ~ [ ( k) s(ai,i.k) (ai,e:k) }
gl Aty Qi ts Qi t,
=—-—-—E a Z gz E ) vfz( ) > 67
N i€A; k=0 ( )
_n 77 = k
l 0«1 ty
el <ZW #0), 3" N Vfilay >>.
1€A: k=0

We bound the first term after summing over ¢ in Equation according to Lemma|[C.3] Then, for
the second term in Equation (67)), we have

-2 <va @), Y Z V i) >: — S LE <sz @), 3" Z V i)

i€A; k=0 i€A; k=0

K-1
. Mg (@)
(t) Mg - "
O e U ob ST
€Ay k=0
TgM N K—-1 . 2
-+y$KE KE:vﬁum%—E:E:Vﬁ@f”J)
=1 i€A; k=0

(63)
Then, summing over ¢ from 0 to 7' — 1 on both sides of Equation (66) and taking full expectation,
we have

K-1
0<A;- ”g”’ZE<W“)7ZZ[ (@l €0 ) “"’“’>}>

€Ay k=0
1 - 2 mgm (as k ’
LS sl - 2 S e oot

t=0 €Ay k=0
Ng™ t (as, Ly t+1 HlI?
QN%KZE KZW 1)y ZZW +§ZEHx</+>_x<>
€Ay k=0 t=0
(69)
where A := f(2(®)) — f*. Implementing Lemmainto Equation (69), we have
Mg < k
v<a, - 1Y <Vf 0. el P 09 - ale >>}>
t=0 i€A; k=0
1 T— - T K—1 . 2
l ity
*5nngZ |vs@® )H — i (L= nmKL) Y B ST 3 Vi
t=0 t=0 iEAt k=0
Mg (t) K (as.1,k) 779771 2KTo?L
it S8y vt - 3 S wpepet| o B,
i€Ay k=0
(70)
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Implementing Lemma [C.3]into Equation (70), we have

T

T—1
]_ 2
0 <Af = gk Y B[V )| = St (1= ngnK L~ dggnrna KL) Y E
t=0 t=0

K-1 2
> > Vi)

i€A; k=0

SEUNCHE 2
ngn; max {1, Tayg} KTo*L
+ N .

KZVf (t) szfl (a7fk)

Ng™

E
+ 2R Z
i€Ay k=0

Implementing Lemma into Equation (71)), we have, for 7;

(71)
< 1
— 10y/Tmax KL’

S oN [
0<Af - ZnmK Y E HVf(x )H
t=0

2o (1= ymE L — T KL — 10020272, K2 L2 — 2472 KN Ty L) -

gnl max

- 2N2K
T K—1 2
a; 37] anmaxKFO
]E . ( L,t7k) g
SE| S S v+ Ml
t=0 i€A k=0
An?n? max {1, Taye } KTo?L 40312 Timax max {1, Taye } K2T o2 L?
At max {1 Tove} + 'l 1 T} + 5y NK>To? L2,
N N
(72)
Then, for n; < m, and ngn < ﬁ, we have
1= ngmKL — 40y Tmax K L — 10007700 K2 L? — 2407 K* N 70 L?
1 2 1 (73)
spo o2 b S

Therefore, for n; < by rearranging Equation and noticing

1 1
o——~rL d Ny < Hr— %7

4772’7]237}11&,( max {1, Taye } K*T0o?L? - 1]377[2 max {1, Tayg } KTo?L

N - 2N ’
it implies that
2A ]- A\ 2L m XF
B
gl
(74
O

Theorem C.1. Suppose Assumption[I.1|and[1.2] hold. Then, for

N J . 1 Tmafo
= ————, an = min s
e vV Tmax n 10\/ 7-max]\]I(L \/N max {1, Tavg} KTLO'2

we have

T-1
1 2 30y/max {1, T} Lo2A;  20Tmax (LA} + Fy)
7 2 B[V < NKT " T

where Ay == f(z(9) — f* and Fy := % Zl IV £i(z© )H .

Proof. Invoking Lemma we have, for n; < m, and n,m < ﬁ,

T—1
1 2 2A Ingmmax {1, Tayg} 0°L  3TmaxFo
=S IEHV ®) H < =B s > Tave 150n2 N K o2 L2.
T < F@) S emKT © N T TUmARe

(75)
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Choosing
N . 1 Tmax A f
g = Tmax = { 10y/TwaxNK L’ \ /N max {1, Tuyg} KT Lo? } ’
we have

. NAy 1
= min , )
g \/max {1, 7ave} KTLo? 10Tmax KL
2Af < 2y/max {1, Tave } Lo2Ay N 20T max LA ¢

)

ngmKT — NKT T
9v/max {1, Taye } Lo2A
Q—ngl max{l,Tavg} o’ < \/ {N;{?} f,
1 Tm'lef 15 LUzAf
150’ NKo2L? < 150 ‘ NKo?I[? < =Y — /|
K 10y/Teeex NKL /N max {1, 7} KTLo? = T UNKT

Thus, we can combine the above bounds with Equation (75)) to get

T-1 2
l Z E va(m(t))HQ < 26\/max{1,Ta\,g} Lo Af n 20Tmax (LAf + f‘j())7
NKT T

which gives the desired result by appropriately magnifying the constants. O

D CONVERGENCE ANALYSIS FOR FEDSUM-CR

In this section, we prove the convergence result of FedSUM-CR.

Algorithm 3 FedSUM-CR: Enhencing Communication Efficiency in FedSUM

1: Input initial model (%), control variables y(~1, {h{?}V | with value 0, {z{”}V, with value
0) and {a( )} +, with value —1; global learning rate 7)4; local learning rate 7;; local steps K;
chent participation {S; }/'

2: fort=0,1,--- ,T—1do
3: Send z® to all clients i € S;.
4: for client ¢ € S; in parallel do
5: Receive z(*) and initialize local model :v( 0 = 20,
6: Compute local updat tion direction y¥ = —&_%"=2? _ ()
: ompute local update correction direction y; * = -0 ~—; bR
7: for k=0,--- , K—1do
8: Compute a mini-batch gradient g = VF;(z; (t.k) ,§ (t’k)).
9: Locally update acl(.t k) xz(.t ) —n (gft k) yl(f))
10: end for s
m(f‘)fz»t’K
11: Compute 510) =—r (t) - h(.t) and send 61@ to the server.
12: Update a{"™) = ¢, 2" = 2 _and AT = . y
N (3 m 1 K 1
13: (fori ¢ S, zi(H'l) = zi(f) (fH) a h(fH) h(f))

14: end for
150 Updatey® = y(=D 4 37,05, 6" and o1 = (0 — 2y (o),
16: end for

17: Server outputs (7).

We derive the update direction y(*) in FedSUM-CR as follows.

K-1
1 . .
t) . . (a’b,t7k) (aw,tak)
== 30 gl gl ), 16)

i€A; k=0
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For the convenience of notation, we define that a; _; = —1 forall i € N and z(-Y = 2() Then,
we have the control variables:

h(t) (am 1,k)’€ [ 1719))’
' = 77

agt) =iy 1,2 z( ) (ai,t—l).
(t)

Furthermore, the local update corrected direction y,

0 _ N Zi(t) —z®) m N zleie=1) — (1) X0
g ngmI ¢ — agt) ’ ngmK t—a;i1

N 1 = ®
— - (p) _ (p+1)) _pl
KT e p:; 1 (:g x : (78)

— A0S
t*alt 1 Z y !

pP=ai,t—1

MN

is derived as follows:

%

Lemma[D.T|establishes a basic relationship between the difference of two consecutive model updates
and the aggregated gradient, shown as follows.

Lemma D.1. Suppose Assumption[I.1|and[I.2 hold. Then, it holds that

T—-1 2 9 2 2 T—1 K-1 2
Z E Hx(t+1) _® 2 - 2%77[]\}]{TU g771 Z E Z Z Vfi(xl(a“’k))
t=0 i€Ay k=0
Proof. Similar to the proof of Lemma|[C.1] O

As a direct consequence of Lemmal[A.2] we conduct the Lemma|[D.2]and Corollary[D.3]to bound the
aggregated gradient of server.

Lemma D.2. Suppose Assumption[I.1|and|I.2] - hold. Then, we have

T—-1 t—1
Z Z E Z ZV]"] aJP7k) <TlnaxZE szfz (alt,k:)

t=0 p=t—7¢ jeEA, k=0 €Ay k=0

Proof. The proof is similar to the proof of Lemmal[C.2] O

Corollary [D.3]is a direct consequence of Lemma[D.2]
Corollary D.3. Suppose Assumption[I.1]and @ hold. Then, we have

ZTt Z E Z Zv‘fj (aJp ) < maxZE szfz a7fk)

t=0 p=t—7¢ JjEA, k=0 €Ay k=0

Lemma [D.4]is the key lemma to estimate the difference between the aggregated gradient of server
and the aggregated gradient of all clients.

Lemma D.4. Suppose Assumptionand 2|hold. Then, we have, for ny < 15-—51

T—1 N - :
Z E KZ Vfi(:z:(t)) _ Z Z Vfi(l‘z(»ai’t’k)
t=0 i=1

€A, k=0
<BK2 N2y Fo + 877_27712K3N7'max max {1, Tue } To*L? + 1500 N3 K3 1ypax To? L?
2

+ (10920272 o JC2L? + 241 K2 N2 70 L2 ZJE 3 Z vh @) |
jeA k=0

vV TmaxKL

where Fy == 1 Zf\il vai(x(o))||2'
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Proof. Notice that, by the decomposition of the difference between the aggregated gradient of the
server and the aggregated gradient of all clients, we have

N K—1 2 2
HKZ ZICORDIDIRZIC ] IE S DIAFICUED BAEIC
i=1 i€A; k=0 ieN ieN
2
EY Vo) -3 Z V fi () +3K2 > V)
€A €Ay k=0 iEN /At
(79)
We bound the expectation of terms in Equation (79) one by one. First of all, we have
2 2
S VHED) =Y V)| < NI2SE me _ plaie)
ieEN ieEN ieEN
- 2 2
S 30 DONEEREE| R o P ol ob SRR RS
iEN p=a; iEN p=a;+ jEA, k=0
(80)
By Assumption[T.2} we have, according to Equation and summing over ¢,
T—1 2
BK2Y E| Y Vi) =) Vi)
t=0 ieN ieN
t—1 K- 2
T 3D S 2 S e D Wl PO SR ST
t=0 ieEN p=a;t jEA, k=0 t=0 ieN pa“je.A k=0
- K-1
<620 K NrmaxTane To2 L2 + 60202 K22, L2 Y B Y ST i)
i€ Ay k=0
8D

where the procedure is similar to the proof of Lemma[B.4]
For the second part of Equation (#3), we have, by Assumption[T.T}

2

K-1 K-1
HK > Vhield) = 37T Vit (Vi) = V()|
i€ AL i€ Ay k=0 i€ Ay k=0
<NKL* Y Z H (as0) _ “”””H
i€A; k=0
(82)
Note that z(%.¢) is the local model of client i at the beginning of round a; ;, and x(al %) is the

local model of client 7 at the beginning of round a; ; after k local updates. Then, accordlng to the
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definition of A{") and 5" shown in Equation (77) and (78). it holds that

K2

K—1|lk—1
H (aie) _ glaith) H { (asep) _ (azthrl)}
5k "L xl
K—1|[k—1 2
=t 3 3 |1 [otel" el ) i
i€ Ay k=0 |[p=0
K—1|lk—1 2 (83)
<ot 3 37|32 ool ) )]
€A k=0 ||p=0
K—-1 a;t—1 2
DD D s Z > v
i€A; k=0 alt G~ 1) p=0q=0ai,a; ,—1

We deal with the first term in Equation (83) as follows. Notice that, by the definition of hEt) in
Equation (77) that

K—
@it (at a; =15 k) (az‘,ai = ,k)
( )= - Z ' ’gi e )7

k=0

where a; 4, ,—1 is the round when client 7 is selected in the second last round before ¢. Then, we
have

k—1 2
Z |:gb( (a1 t>D) {(al t,P)) hgai’t)i|
p=0
k—1 B )
<5 Z [gi(xgazz,tm)’ gi(ai,m;n)) . vfi(xl(ai,typ) } Z |:vf1 (al up) Vfi(m(ai’t))}
p=0 =

4582 |04 0) ~ Do) 45

K—1
3 [Vhm)) - v )]
q=0

K— 2

Z [ (ai,ai,t—l,q)’gi(af,,aiyt_uq)) B Vfi(x(ai’“ivt’l’q))}

q=0

2
+5—

(84)
Then, by taking expectation and invoking Equation (83), we have the following upper bound for
each term in Equation (84).

Term 1:
T-1 K-1 |lk—1 2
ot E{| S oo, 650) - v gl )
t=0 i€ Ay k=0 p=0 (85)
T—1 K-1k—1
<n? o? <PNK*To?.
t=0 i€ A; k=0 p=0
Term 2:
T-1 K—1 |lk-1 2 T-1 K—1 k-1
Y S B[S [aer ) - vaeeo)]| <Y Y S ey k|
t=0 ic A, k=0 p=0 t=0 ic Ay k=0 p=0
T—1 K-1 K-1 T-1 K-1
szLzz Z k EHx aiep) _ (aie) <772K2L2Z ) (ait)
t=0 i€ Ay k=0 p=0 t=0 i€ Ay k=0
(86)
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Term 3:

PY 5 S # Vi) Vi)

t=0 i€ Ay k=0

T-1 9 T-1 agi—1 2
<P K3L2 Z Z E Hm(ai,t) _ p@ia 0|7 = K3 L2 Z Z E Z [x(i’“) _ 2
t=0 i€ A; t=0 i€ A; P=Qia; 4—1
2
277 174K3L2 T—1 @it
2 2 e aea] X E| DD Z v (st
t=0 i€ A; P=Qia; ;—1 jeAp, k=0
217 K3L2 =1
il il ZZ it — Qia; — 1} NKo2.
t=0 i€ A;
37)
With the fact that a; 4, , 1 is the second last round when client ¢ is selected before ¢ and a; ; is the
last round when client ¢ is selected, it holds that a; y — @;,4; ,—1 < Tmax. Then,
T—1 K—1 5
BY Y Y R hiale) - V)|
t=0 i€ A; k=0
774K3L2 T-1 gt K—1 2
ook
SUUESE 55 LD SR DO SR ZAE R S
t=0 ic A, p=max{0,a; t—Tmax } je€A, k=0
(83)
With the fact that ¢ — Tyax < a;¢ < t, we have
2
47372 T-1 @it K—1
17 K°L ik
S Y 3 B[S S v
t=0 i€ A, p=max{0,a; + —Tmax } JEAp k=0

2
2779771 TmaxK3L2 il

K-1
STy B[S Svsene

t=0 i€ Ay p=max{0,t—2Tmax } jeAp k=0

2
277977[ 7-maxI(SLQ =

K-—1
S DY S BT Y v (89)

t=0 p=max{0,t—27max } jeA, k=0

2
2 TmaxK L2 T— 11’[1111{T 17p+27—max} K-1 .
el E S e T S s
jeA, k=0
372 T-1 2
4779”[ maxK L Z k
S a1 DY ZVfJ o
jEA: k=0
Term 4:
T-1 K142 |lK-1 ( : 2
Qi oas b —1 Aiya; 1 —1,4
iy =E|| Y [V ) — Vi )
t=0 icA; k=0 q=0
T—1 K-l 9 K1 (s 2
SEPIPIDIF DI L o0
t=0 i€ A; k=0 q=0
T—1 K-1 5
<} Tinas K2 L2 Z]EHI“W’” 2|
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where the last inequality is due to the fact that a;4,, 1 is the second last round when
client 7 is selected before ¢ and a;; is the last round when client 7 is selected. Then, it

, 2
holds that a; 4, ,11 = a;;. Hence, ZTfl ZzeA,, Zf;ol E Hx(“'i~%,rl) — xial’a"'“l’q) <
itk
Tmax Z ZzEAt Z (a 0k $(a1 +)
Term 5:
T—1 K12 |K-1 ( o : 2
Qi,a; 1 —1,4 Qiya; ¢ —1,4 ias 1,
Yy B || [gulary g ) Ol ))
t=0 i€A, k=0 a=0 o1
T—1 K140 K-1
<n? 2 o? <PNK*To?.
t=0 icA; k=0 a=0
For the second term in Equation (83), we have
a;t—1 2 1 ai+—1
%ZZ - Z DO A D sl D DI A
i€Ay k=0 it hai,e— 1 p=09q=ai,a; ,—1 i€ A, bt bhai—l q=0i,a; ;1
92)
Consequently, it implies by the fact a; y — @;,4; ,—1 < Tmax that
ai,tfl 2
DR = S
t=0 i€ A aZt_alalt 1) q=0j,a; ,—1
ai,t—1 K-1 2
Ky 2 e " > D gitaf gt
=0 ic A, baie—1 4=ai,a; ,—1 jEA, k=0
a; +—1 K-—1 2
<4m2KZ Z Y E Vi@l e 4 K2N26%T
t=0 i€ A T Giag -1 4=0i,a; ;1 JjeEAy k=0
2
<4 K N Tinax Z E|> Z Vi ) 4 4 K2N262T,
16./41 k=0
(93)

where the last equality holds by Equation (89).

Finally, after summing ¢ from O to 7" — 1 in Equation (83)), and implementing the upper bound for
each term in Equation (84) as above, it holds that

-1 K-1

T-1 K-1
PIDID IR BRI ’”H < 10 NK>To® + 107 KL Z > S E[eln

t=0 i€ Ay k=0 t=0 ic A, k=0

2
_ plaiy)

2
40 K32 1! Kl v
779771 m'}x Z Z Z vfj(mgaj,t,k)) 4 2017377;171313XK4T02L2

t=0 ||jeA, k=0

T-1 K-1
10 T K212 S S S B[ 00 |* 4 102 N E T
t=0 icA; k=0
+APKNTE,, Z E|IY Z Vi )|+ 4 K2N?02T.
€Ay k=0

(94)
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Then, for 7, by rearranging the terms in Equation (94), we have

< 1
— 10/Tmax KL’

T-1 K-1
Z Z Z E Hx(ai,t) _ U«L t’k)H < 50n2N2K2TmaxTa + 4077g”7l maXK4TO_2L2
t=0 i€ Ay k=0
T-1 K-1 2 (95)
807]27747-1%1 XK3L2 — — a;
+< e + 8P ENT2 | STE ST ST vl

t=0 ||jed, k=0

For the third part of Equation (79), we have, by summing over ¢,

2
L D ORZIRCI RV SRV o] T

t=0 ||iEN /Ay t=0 (96)
T—1 N 5
=3K2 30 3 Liga, | VA )| < 8N o
t=0 jeN i=1
where Fy := & SN ’|Vfi($(0))”2~
Thus, by summing over ¢ and taking expectation in Equation @, implementing the three parts, we
K*T

have, forn;, < 1/ (10\/@KL), by SNKL? ~4()7)§77[4 T2 oLt < QHST]ZQKSNTmaXTJQL2,
T-1 N K—-1
STE|ES VAEED) - SN V@t
t=0 i=1 i€As k=0

K-1
> > Vi)

<BK2N%raxFo + 817; K3 N Tpax max {1, Tave } To%L? + 67797712[(2 2 L Z E

max

€A k=0
T—1 K-1
+ 1500 N3 K ropax To L% + (24002nir2 o KLY + 24 K2N?72 L) ST E | S ST wy(aloeh)
t=0 jEAL k=0

<BK? N2 Fo + 817(2] K3 N Tpax max {1, Tave } To?*L? + 1500 N3 K3 1ypax To? L?
2

+ (020772 KL + 24P N2 L) S E || S Z Vil

jeEAL k=0
L)
O
Lemma D.5. Suppose Assumption@and@hold Then, we have
SIS (). 33 a0 - Ol k>>}>
€Ay k=0
2,2
Mg K man; )
<3 a0 LT + 205 TmaXLZE > Z Vfi(x
i€AL k=0
Proof. The proof is similar to the proof of Lemma|[C.5] O
Lemma D.6. Suppose Assumption and hold. Then, for n; < m, and ngn <
m, we have
2A IMmgmmax {1, Tue} 0L 3TmaxFo
= > E||vie® H ! g > Tovg 15002 N K022,
Z flx nngT-i- N + =+ 15007 N Ko

where Ay i= (@) — f* and Fy :== L S0 ||V £:(2@)|”.
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Proof. By Assumptlon. 1.1} the function f := 1 ~ >, fiis L-smooth. Then, it holds by the descent
lemma that

2
Ef(z®D)) < Ef(e®) + E <Vf(x(t)), L) x(t)> n g Hx<t+1> N0 98)

For the inner product term in Equation (98)), there holds that

K
E <Vf(x<t>), 2D _ x(t)> —FE <Vf(x(t)), _%y(t>>

_ ngm <Vf ®) ZZ[QZ (ai,e.k) g(am )= Vfi(z (alt,k))}> 99)

€A k=0
K-1
- L E <va “) EAj ;sz zj) >
1€Ay k=0

We bound the first term after summing over ¢ in Equation (99) according to Lemma [D.3] Then, for
the second term in Equation (99), we have

K—1
779771 <ZVf ® ,Z Z Vfi(xz(-ai"’k))>

i€A; k=0

— (K5 e, X vl

i€A; k=0
o1 9 (100)
1 2 .
__ - (t) Mg (@i k)
- znng]EHVf(x )H IN?K Z D> Vi)
i€A; k=0
779771 t) (as, uk)
SN2 E KZWZ ZZW
i€A; k=0

Then, summing over ¢ from 0 to 7' — 1 on both sides of Equation (98) and taking full expectation,
we have

0 <A W"ZE<W ”%ZZ[& (i) ) _ T fi(a “”’”)D

€A k=0

T—1 K—1
1 Mgl ai 1k
- e S0 - 3] 52 3w
icA; k=0
K-1 2 I T 9
+toNoR ZE KZW )= 3 > VhGE" )| + 5 Y B[« o
i€A; k=0 =0
(101)
where Ay := f (x(o)) — f*. Implementing Lemmainto Equation (T0T), we have
T
a/L t,k at t; Clq t,k}
t=0 zeAt k=0
1 i NN T K—1 . 2
! Qi ty
- 577ng2 |vs@® >H (1 KL)SE|| S Y i
t=0 t=0 iEAt k=0
Mg (t) K (as.1,k) 779771 2KTo?L
I Sl IS TIEURS 38 SUTER) s
€A k=0
(102)
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Implementing Lemma [D.3]into Equation (T02)), we have
2 N 47737]12 max {1, Tye } KT0o?L

T-1
1
0 <Ay - Enng Z E HVf(:v(t))H
t=0

N
o T K-1 . 2
I Qi ty
~ gnage (L= NI L — 41y s K L) ZJE SN Vet (103)
=0 i€Ay k=0
T 3] (O TEI o) ST
i€A; k=0

Implementing Lemma into Equation (T03)), we have, for n; < ﬁ,

T—1
1
0 <A~ sngmK Y E HvﬂN)H + 7500 N K rinax To L2
t=0

1
- % (1= ngmKL — 4ngmTmax K L — 10773775713%1(%2 2407 K2 N*Typax L?) -
a 377 anmaxKFO
ZE S UGl T
1€Ay k=0 2

N 4773771 max {1, Tye } KT0?L N 371g771 Tiax Max {1, Taye } K?To? L2

N N
(104)
Then, for 17, < 10\/7—7NKL’ and nym < 15— we have
1= ngmKL — 4ngmTmax KL — 10070770 K2 L? — 240} K> N7} L
1 2 1 6 (105)
o . R 2 >
- 10 5 10 25
Therefore, for n; < m, and 1, < m, by rearranging Equation (T04) and noticing
417277?7},13,( max {1, Toye } K2T0?L? - nSle max {1, Taye } KT0?L
N - 2N ’

it implies that

T-—1 9
l Z E HVf(x(t))H2 < 2Af + 977977[ ma‘X{LTan}J L + 3TmaxF0

150’ NK o2 L2
“ngmKT N T +10m ?

(106)
O
Theorem D.1. Suppose Assumption[I1|and[I.2|hold. Then, for

N d i 1 Tmafo
= ———, and n; = min ,
1= 10y/Tmax NK L™ \ /N max {1, 7o} KT L0

we have

T-1
1 Z 2 30\/max{1,7'av }L02Af 20Tmax (LAf + Fp)
T —o VIED)| = NKT N T

where Ay = f(z(0)) — f* and Fy := % PO HVfi(a?(O))H2.

Proof. Invoking Lemma we have, for n; < m, and ngm < ﬁ,

T—1
1 2 2A Ingmmax {1, Tayg} 0°L  3TmaxFo
=S IEHV ®) H < =B s > Tave 150n2 N K o2 L2.
T < F@) S emKT © N T TUmARe

(107)
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Choosing
N . 1 Tmafo
= 5 = min 5 5
e Tmax n ]-O\/ 7—max-z\/v-KvL \/N max {1, Tavg} KTLO'2
we have

, NA; 1
= min , ,
™M \/max {17 Tavg} KTLo? 107—maxKL
2A¢ < 2\/max{1,7'avg} Lo2Ay N 20T max LA f

ngmKT — NKT T ’
9 1, Tave} Lo2A [
ngnl max{l,Tavg}U2L < \/max{ T} Lo j,
N NKT
1 xS 15\/Lo2A
1502 NK o2 L? < 150 Tmax ) NKo?[? < =2V 2F
10\/TmaxNK L /N max {1, 7uye } KT Lo NKT

Thus, we can combine the above bounds with Equation (107) to get

i

T—1
1 2 26\/max{1 Tavg} LO?Af  20Tmax (LAf + Fp)
T Zt - VIET|| < NKT " T

which gives the desired result by appropriately magnifying the constants. O

E CLIENT PARTICIPATION PATTERNS

In this section, we provide rough estimates of client participation characteristics for the four cases

introduced in Section Since both 7,y and 7,45 are functions of {S: tT:_Ol, it follows directly from

the definition that 7y, < Timax. Hence, we focus on bounding 7ax (or E[Tmax]) as a rough measure
of different client participation patterns.

Lemma E.1. Suppose S; are sampled uniformly at random from N with |S;| = S < N fort =
0,...,T, as described in Case 1 of Section 2] Then, we have

B[] < % In(NT).

Proof. For each client 7 € A at the iteration ¢, define the indicator variable:

[ ifies,
170, otherwise.

Then, for each client ¢, define its longest-run random variable as
Li=max{l>1:X,; = X441 == Xit11—1 = 0forsome t} .

Then,
Tmax = Iz%%\)f( {LL} .

By uniformly and randomly sampling S; from N, it holds that for fixed i € N/,

| ) S
p=P(Xi;=0)=P>i¢S)=1- "5 :1—N.
(s)
The event that client 4 appears in iterations ¢,# 4+ 1,--- ;¢ + [ — 1 has probability p' and there are
T — 1 + 1 possible starting points for such a run. Thus, a union bound gives
P (Tmax 2 1) = P (UL, U™ {Xie = X1 = -+ = Xig-1 = 0})
N T—i+1 N T—l+1
SZ Z PXip=Xipt1="=Xit41-1=0) = Z Z p' < NTp.
i=1 t=1 i=1 t=1
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Using the tail-sum formular for the expected value, we have

T T
Efmax = 3 P (Tmax > 1) < Y _min {1, NTp'}. (108)

p)
NTp

Picking integer m = [logp 1, we have

m

Efmax < 3 1+ Z NTY' <m+
=1 l=m+1

Besides, implementing into Equation (109) with the fact that
NTp m o NTP jog, 4522 _ NTp (1-p) — 1 ang P NS
1—p 1—p 1—p NTp 1—p S

NTpm+1

- (109)

we have

+1+1

Emax < log, -’ (1-p) (INT ) 41n(NT) < 41n(NT) 4N
np

NTp In(;) ~— 1-p S
which completes the proof. O

Lemma E.2. Suppose each client independently participates in each round with a fixed probability
p; > 6 € (0,1], as described in Case 2 ofSection Then, we have

E[rmas] < % max {1n(NT), 1n((15)} .

Proof. For each client i € N at the iteration ¢, define the indicator variable:
1, ifi € S,
Xi t = . ‘
’ 0, otherwise.
Then, for each client ¢, define its longest-run random variable as
Li=max{I{>1:X,;, = X441 == X;441—1 = 0forsome t} .
Then,
max — Lz .
e = g AL}
By the assumption that each client independently participates in each round with a fixed probability
p; > 6 € (0,1], it holds that for any client 7,
p:]P)(Xlt:O):].—pl §1—5
Using the tail-sum formular for the expected value, we have

T T
ETmax = ZP(TmaX >1) <Y min{1,NTp'}. (110)
Picking integer m = [log, NTP)] we have
m T
NTpm+1
1
Efmax <Y 1+ Y NTp' <m+ — (111)
=1 l=m+1
Besides, implementing into Equation (111]) with the fact that
NTp o NTD g 4z NTp(=p) 0 p 1
1-—p 1—p 1—p NTp 1—p— 9
we have
In 1-p 1
(1-p) (NTp) In(NT) + In(5)
Erpax <log, ——~+141= ——-*+4+2< —— 92 4 2
G 0g, NTp +1+ Inp + ln(%) +
In(NT) + In(}) In(NT) In} 4 1
< 2 < —2 +2< = In(NT),In(=
S < ) 0 < Smax {(VT) ()
which completes the proof. O
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Lemma E.3. Suppose clients are selected in reshuffled cyclic order, as described in Case 3 of

Section[2] Then, we have,
AN

IETmax S ?

Proof. Since the client order is randomly reshuffled at the beginning of each epoch, the interval
between two consecutive selections of any client ¢ cannot exceed the rounds spanning from the start
of one epoch to the end of the next.

As one epoch consists of | N/.S| rounds, the gap between two consecutive selections of any client 4
is at most 2| N/S|. Hence,

AN
max < t— 7 < 2|N, S < —
Tmax < wnax max{t—a;; } < 2[N/S| < —
Taking expectation on both sides yields the desired result. O

Lemma E.4. Suppose clients are selected in deterministic cyclic order, as described in Case 4 of
Section 2] Then, we have,
< 2N

Tmax —

Proof. Since the client order is deterministic of each epoch, ther interval between two consecutive
selections of any client 7 cannot exceed the rounds spanning from the start of one epoch to the end
of it, which implies
2N

g

7-IIl ax S

F CONVERGENCE RESULTS OF THE FEDSUM FAMILY

In this section, we present the convergence results of the FedSUM family and analyze their behavior
under different client participation patterns. Since we take the full expectation over Ty and Tiax,
both functions of Sy, t = 0, ..., T —1, in Lemmas[B.6][C.6] and[D.€| it suffices to use their expected
values in the final theorem.

Combining Theorem [B.1] [C.T]and [D.1] we obtain the following unified convergence result.

Theorem F.1. Under Assumptions[[.1|and[I.2} and for arbitrary client participation characterized
by Tmax and Tay,, if the learning rates for FedSUM-B, FedSUM, and FedSUM-CR are set as

1 Tmafo
10y/Tnax NK L' /N max{1, 74, } KT Lo>

N
Ng = \/?, andn = min{

then all three algorithms achieve the following convergence rate:

; (112)

- 30\/max{17 Tavg FLO2A 20Tiax (LAf + Fo)
= [V f(z®) 8 +
= }zoj IV F®)]?] < o -

where Ay = f(z(9)) — f* and Fy := % Zfil |V f; (z(O)]2.

The following corollary is direct consequences of Lemmas [E2] [E3] and [E.4] By substituting
the bounds on 7,,.x (and 7,y, When applicable) from each lemma into Theorem [4.1] we obtain the
convergence results of FedSUM-B, FedSUM, and FedSUM-CR under the four client participation
schemes described in Section 21

Corollary F.1 (Convergence under Case 1-4). Under Assumptions[I.1\and[l.2] and with appropri-
ately chosen learning rates ng and 1, the FedSUM-B, FedSUM, and FedSUM-CR algorithms satisfy
the following bounds under the participation schemes in Section[2}
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Case 1 (Uniform Random Sampling):

= 2 2 LAf + Fy)Nlog(NT
1 ZEHVJC(I(t))H < 60\/Lo2Aslog(NT)  80(LAjs + Fy) N log( )
T 2 SKT ST

Case 2 (Probability-Based Independent Sampling):
T—1 . A
L oy < )
T t=0 OINKT
80(LAj + Fy) max {log(NT),log(3)}
- oT :

Case 3 (Reshuffled Cyclic Participation):

! VILZA N(LA; + F,
%ZEHVf(x(t))H2§6O ;;Terso (ij+ ).

t=0
* Case 4 (Cyclic Participation):

! Lo?A; SON(LA; + F
7 E[vie)| < TRy (L2 +F),
t=0

G NUMERICAL EXPERIMENTS

G.1 CODE

The code for reproducing our experiments is available at https://anonymous.4open.
science/r/FedSUM-0658.

G.2 EXPERIMENTAL SETUPS
Hardware and software Setups.
» Hardware. The experiments are performed on a private cluster with eight Nvidia RTX 3090

GPU cards.
» Software. We code the experiments based on Pytorch 2.0.1 and Python 3.11.4.

Neural network and hyper-parameter specifications.

Table [2] details the models and training setup. The initial local learning rate 1, and global learning
rate 7, are optimized over a grid search, with o € {0.01,0.005,0.001,0.0005} and ngn, = 0.01,
based on the best performance after 500 global rounds of FedAvg. Consequently, we select , = 1.0
and 1y = 0.01 for all algorithms across various models and datasets. Furthermore, we choose
K = 50 in FedAU as suggested in the original paper (Wang & Ji, 2023)).

Datasets and data heterogeneity.
All the datasets we evaluate contain 10 classes of images, detailed as follows.
* MNIST (LeCun et al.,|2010). The dataset contains 28 x 28 grayscale images of 10 different
handwritten digits. In total, there are 60000 train images and 10000 test images.

* SVHN (Netzer et al.,|2011). The dataset contains 32 x 32 colored images of 10 different
number digits. In total, there are 73257 train images and 26032 test images.

* CIFAR-10 (Krizhevsky et al., 2009). The dataset contains 32 x 32 colored images of 10
different objects. In total, there are 50000 train images and 10000 test images.
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Figure[2shows the data distribution across 100 clients in training over MNIST. The x-axis represents
the client index, and the y-axis the number of data samples per client. The color bars in each
histogram show the proportions of different labels. The Dirichlet parameter a = 0.1 controls data
heterogeneity: smaller v values lead to more non-i.i.d. distributions, while larger o values result in
more homogeneous data.
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Figure 2: Data heterogeneity with Dirichlet(ox = 0.1) distribution across 100 clients. The x-axis is
the client index, and the y-axis is the number of samples. The color bars represent the proportion of
each label. Smaller « leads to more non-i.i.d. data.

Number of Samples

0 100
Client Index

Client participation patterns.

As described in Section 2] we consider three client participation patterns:

* P1 (Uniform random sampling): At each round ¢, S = 20 clients are randomly and
uniformly selected to participate.

» P2 (Stationary probability participation): At each round ¢, each client has a participation
probability of 5 where S = 20, N = 100.

* P3 (Non-stationary with sine trajectory): At each round ¢, the participation probability
of each client is p! := £ (0.3sin(ZL) + 0.7), where S = 20, N = 100.

G.3 ADDITIONAL EXPERIMENTS

Figure [3] further demonstrates that FedSUM-B and FedSUM-CR achieve performance comparable
to or even better than FedSUM. This is mainly because the batch size is set to 128, which is relatively
large given that each client has only about 600 data samples. Under a smaller batch size (e.g., 8 or
16), the performance of FedSUM-B degrades while FedSUM takes the lead.

H LLM USAGE

In preparing this manuscript, we made limited use of Large Language Models (LLMs) solely for
minor text polishing. The LLM was used only to improve grammar, clarity, and readability. All
conceptual development, theoretical analysis, experimental design, and interpretation of results were
conducted entirely by the authors, and the scientific content is the authors’ original work.
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Table 2: Neural network architectures, loss function, learning rate scheduling, training steps and

batch size specifications.

Datasets MNIST SVHN CIFAR-10
Neural network CNN CNN CNN
C(1,10)-R-M - C(3,32)-R -M- C(3.32)-R -M-

Model architecture

C(10,20)-D-R-M
-L(50)-R - D - L(10)

C(32,32)-R-M
-L(128)-R-L(10)

C(32,32)-R-M
L(256)-R-L(64)
R-L(10)

Loss function

Local learning rate n;
Scheduling

Number of clients N
Number of local updates K

Number of global rounds 7'

Cross-entropy loss

70

= 701

100

10

2000

, where t denotes the global round.

Batch size

128

°
©
wsmng,

* C(# in-channel, # out-channel): a 2D convolution layer (kernel size 3, stride 1, padding 1); R: ReLU
activation function; M: a 2D max-pool layer (kernel size 2, stride 2); L: (# outputs): a fully-connected

linear layer; D: a dropout layer (probability 0.2).

MNIST - Accuracy

SVHN - Accuracy

CIFAR-10 - Accuracy
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Figure 3: Training loss and test accuracy curves for CNN models trained using FedSUM family on
three datasets under different client participation patterns.
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