

000 FEDSUM FAMILY: EFFICIENT FEDERATED LEARN- 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FEDERATED LEARNING METHODS UNDER ARBITRARY CLIENT PARTICIPATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Federated Learning (FL) methods are often designed for specific client participation patterns, limiting their applicability in practical deployments. We introduce the FedSUM family of algorithms, which supports arbitrary client participation without additional assumptions on data heterogeneity. Our framework models participation variability with two delay metrics, the maximum delay τ_{\max} and the average delay τ_{avg} . The FedSUM family comprises three variants: FedSUM-B (basic version), FedSUM (standard version), and FedSUM-CR (communication-reduced version). We provide unified convergence guarantees demonstrating the effectiveness of our approach across diverse participation patterns, thereby broadening the applicability of FL in real-world scenarios.

1 INTRODUCTION

Federated learning (FL) is a powerful paradigm for large-scale machine learning, especially when data and computational resources are distributed across diverse clients, such as phones, sensors, banks, and hospitals (McMahan et al., 2017; Yang et al., 2020; Kairouz et al., 2021). FL has been widely adopted in commercial applications, including autonomous vehicles (Chen et al., 2021; Zeng et al., 2022) and natural language processing (Yang et al., 2018; Ramaswamy et al., 2019). FL enhances computational efficiency by enabling parallel local training across distributed clients. It also preserves data privacy, as raw data remains on the device and is never directly transmitted to the central server.

One challenge in FL is variable **client participation**. In practice, not all clients can participate in every training round due to factors such as connectivity issues and resource constraints (Li et al., 2020). The variability has motivated the development of various models and assumptions regarding participation patterns (Karimireddy et al., 2020; Gu et al., 2021; Huang et al., 2023; Wang & Ji, 2023; Cho et al., 2023; Xiang et al., 2024), which may be either under the server’s control or beyond it, and either homogeneous or heterogeneous across clients and rounds. Since different participation patterns can significantly affect convergence, quantifying and addressing their impact is essential for effective learning in practical deployments.

Another major challenge affecting FL effectiveness is **data heterogeneity**, where client data distributions are non-identical or highly personalized in operational environments (Zhao et al., 2018; Kairouz et al., 2021; Li et al., 2022). Such heterogeneity can lead to divergence between local and global models, particularly when multiple local updates are performed before aggregation (Mohri et al., 2019; Li et al., 2019). The effectiveness of classical approaches such as FedAvg (McMahan et al., 2017; Stich, 2018) has been shown to be limited in the presence of heterogeneous data and partial client participation, motivating a number of subsequent improvements (Karimireddy et al., 2020; Yang et al., 2021).

In light of these challenges, developing FL algorithms that can simultaneously mitigate data heterogeneity, support efficient local updates, and remain robust to arbitrary client participation remains a fundamental open problem in federated learning.

054 1.1 MAIN RESULTS AND CONTRIBUTIONS
055056 In this paper, we make the following key contributions to Federated Learning:
057

- 058 • **Arbitrary Client Participation:** We study FL with general nonconvex objectives under
059 arbitrary client participation, covering a wide spectrum of participation patterns, including
060 controllable or uncontrollable, stochastic or deterministic, and homogeneous or heterogeneous.
061 To characterize variability in participation, we consider two delay metrics, τ_{\max}
062 (maximum delay) and τ_{avg} (average delay), which allow us to precisely quantify its impact
063 on convergence. To the best of our knowledge, this is the first work to analyze such diverse
064 client participation scenarios.
- 065 • **FedSUM Family of Algorithms:** We propose the FedSUM family of algorithms, in-
066 cluding **FedSUM-B** (basic version), **FedSUM** (standard version), and **FedSUM-CR**
067 (communication-reduced version), all designed for arbitrary client participation. These
068 algorithms employ the **Stochastic Uplink-Merge** technique to address data heterogeneity.
069 FedSUM achieves the same communication and memory cost as SCAFFOLD (Karim-
070 ireddy et al., 2020; Huang et al., 2023) through single-variable uplink communication,
071 whereas FedSUM-B and FedSUM-CR further achieve single-variable downlink commun-
072 ication to match the cost of FedAvg.
- 073 • **Unified and Novel Convergence Results:** We establish unified convergence rates for the
074 FedSUM family, showing that, under specific participation patterns, the rates recover those
075 of algorithms tailored to those settings. This demonstrates both the adaptability and
076 generality of our approach. Our convergence guarantees are novel in that they hold under
077 arbitrary client participation while incorporating the delay metrics τ_{\max} and τ_{avg} . In ad-
078 dition, the analysis requires only smoothness and bounded variance assumptions, without
079 imposing any additional restrictions on data heterogeneity or on the objective functions.

080 1.2 RELATED WORKS

081 **Client participation patterns in FL.** A variety of strategies have been proposed to model client
082 participation in FL. Early works such as FedAvg (McMahan et al., 2017; Li et al., 2019) and SCAF-
083 FOLD (Karimireddy et al., 2020; Huang et al., 2023) assume that the server selects a small subset of
084 clients in each round, either uniformly at random or in proportion to local data volume. Later studies
085 address heterogeneous and time-varying response rates p_i^t . Some works treat these rates as known
086 and server-controlled (e.g., determined by solving a stochastic optimization problem) (Perazzone
087 et al., 2022), while others model them as unknown but governed by a homogeneous Markov chain
088 (Ribero et al., 2022; Xiang et al., 2024; Wang & Ji, 2023).

089 Wang & Ji (2022) propose a generalized FedAvg that amplifies parameter updates every P rounds,
090 requiring additional assumptions such as equal client availability within each P -round window to
091 guarantee convergence. Similarly, Crawshaw & Liu (2024) design a SCAFFOLD variant that am-
092 plifies global parameters and local gradients every P rounds, but assume p_i^t remains constant within
093 each window. Yang et al. (2022) study clients participating at will, but their guarantees hold only up
094 to a non-zero residual error. (Cho et al., 2023) consider FedAvg with cyclic sampling, decided by the
095 server, to accelerate convergence. Gu et al. (2021) consider a more general participation pattern, but
096 only for strongly convex objectives; under nonconvex objectives, Gu et al. (2021); Yan et al. (2024)
097 assume strictly bounded inactive periods, a condition that often contradicts random sampling.

098 **Algorithm design in FL.** Following the popularity of FedAvg (McMahan et al., 2017), numerous
099 algorithms have sought to improve performance under data heterogeneity and varying client par-
100 ticipation. One line of research focuses on refining the FedAvg framework. For instance, FedAWE
101 (Xiang et al., 2024) amplifies client updates to compensate for missed computation during periods of
102 client inactivity, and FedAU (Wang & Ji, 2023) introduces a weighted aggregation of client updates
103 to mitigate the negative effects of client non-participation.

104 Another line of work enhances FL performance by introducing additional control variables. For
105 example, SCAFFOLD and its variants (Karimireddy et al., 2020; Huang et al., 2023; Crawshaw
106 & Liu, 2024) exchanges control variables to correct the update directions for both clients and the
107 server. In contrast, FedVARP (Jhunjhunwala et al., 2022) and MIFA (Gu et al., 2021) maintain
control variables on the server to adjust its update direction, but the number of these variables scales

108 linearly with the number of clients. FedLaAvg (Yan et al., 2024) stores previous updates as control
 109 variables and transmits their differences, ensuring the server’s update direction incorporates most
 110 recent information from all clients.

111 Despite these advances, many methods rely on restrictive assumptions about data distributions or
 112 objective functions, exclude local updates, or only guarantee convergence up to a non-zero residual
 113 error. For example, several works impose additional assumptions on data heterogeneity, typically by
 114 bounding the divergence between local and global gradients (Wang & Ji, 2023; Xiang et al., 2024;
 115 Yu et al., 2019; Wang et al., 2022; Yuan & Li, 2022; Wang et al., 2020). Local updates, while useful,
 116 often introduce bias under heterogeneous data; therefore, methods such as FedLaAvg (Yan et al.,
 117 2024) completely eliminate them. Other approaches impose structural conditions on the objective
 118 functions, such as bounded stochastic gradients (Perazzone et al., 2022; Yan et al., 2024) or Lipschitz
 119 Hessians (Gu et al., 2021). SCAFFOLD (Karimireddy et al., 2020; Huang et al., 2023), when paired
 120 with uniform random sampling, avoids additional assumptions on data heterogeneity, but at the cost
 121 of increased communication and memory compared to FedAvg.

122 1.3 PROBLEM SETUP

124 Throughout the paper, $\|\cdot\|$ denotes the ℓ_2 vector norm, and \mathcal{N} denotes the index set $\{1, \dots, N\}$.
 125 Additionally, the expectation $\mathbb{E}[\cdot]$ is taken over the randomness of the stochastic gradient.

127 In FL, our goal is to solve the following optimization problem:

$$128 \min_{x \in \mathbb{R}^p} f(x) := \frac{1}{N} \sum_{i=1}^N f_i(x), \quad \text{where } f_i(x) := \mathbb{E}_{\xi_i \sim \mathcal{D}_i} F_i(x; \xi_i). \quad (1)$$

131 Here, $F_i(x; \xi_i)$ denotes the local loss function evaluated at model x on sample ξ_i , and $f_i(x)$ represents
 132 the local objective under the data distribution \mathcal{D}_i , which may vary significantly across clients.

134 We introduce the standing assumptions below.

135 **Assumption 1.1.** *(Smoothness) Each local objective f_i has L -Lipschitz continuous gradients. That
 136 is, for any $x, y \in \mathbb{R}^d$ and $1 \leq i \leq N$, it holds that*

$$137 \quad \|\nabla f_i(x) - \nabla f_i(y)\| \leq L \|x - y\|.$$

139 **Assumption 1.2.** *(Bounded Variance) There exists $\sigma \geq 0$ such that for any $x \in \mathbb{R}^d$ and $1 \leq i \leq N$,
 140 we have*

$$141 \quad \mathbb{E}_{\xi_i} [\nabla F_i(x; \xi_i)] = \nabla f_i(x), \quad \mathbb{E}_{\xi_i} [\|\nabla F_i(x; \xi_i) - \nabla f_i(x)\|^2] \leq \sigma^2,$$

142 where $\xi_i \sim \mathcal{D}_i$ are i.i.d. local samples at client i .

144 2 ARBITRARY CLIENT PARTICIPATION IN FL

147 Understanding the impact of different client participation patterns is crucial in FL, as practical
 148 constraints often prevent all clients from joining every round. In this section, we first review several
 149 commonly studied participation patterns, then extend the discussion to the general case of arbitrary
 150 client participation, whether controllable or uncontrollable, stochastic or deterministic, homoge-
 151 neous or heterogeneous. To quantify the variability among different participation patterns, we intro-
 152 duce two delay metrics: the **maximum delay** τ_{\max} , which measures the longest inactive period of
 153 any client, and the **average delay** τ_{avg} , which captures the average frequency of client participation.
 154 This broader perspective enables a unified analysis of participation heterogeneity and its effect on
 155 convergence.

156 2.1 PARTICIPATION PATTERNS

158 Most FL methods make simplifying assumptions about client participation in the training process.
 159 Some approaches assume uniform random sampling controlled by the server (Case 1) (Karimireddy
 160 et al., 2020; Huang et al., 2023), while others model client participation with uncertain, dynamic,
 161 and independent client unavailability (Case 2), resulting in an uncontrollable participation pattern (Li
 et al., 2020; Yang et al., 2022; Wang & Ji, 2023; Xiang et al., 2024). Another class of methods adopts

162 a scheme where each client participates for a certain number of rounds and does not participate in
 163 the other rounds of a cycle, to improve convergence performance (e.g., Case 3) (Cho et al., 2023;
 164 Ding et al., 2024). These assumptions may constrain the applicability of FL algorithms, as more
 165 structured or round-correlated schemes, such as reshuffled cyclic participation (Case 4) (Malinovsky
 166 et al., 2023) or participation modeled by Markov processes with non-independent and non-stationary
 167 client availability, fall outside these assumptions.

168 We formally define the participation patterns (Case 1 to 4) below:
 169

170 **Case 1: Uniform Random Sampling.** In each round t , the server uniformly and randomly samples
 171 a subset $\mathcal{S}_t \subseteq \mathcal{N}$ with $|\mathcal{S}_t| = S$.

172 **Case 2: Probability-Based Independent Participation.** Each client i independently participates
 173 in round t with a probability $p_i^t \in (0, 1]$, where $p_i^t \geq \delta > 0$.

174 **Case 3: Deterministic Cyclic Participation.** Clients are arranged in a fixed order, and a block of S
 175 consecutive clients is selected in each round. The process continues sequentially and wraps around
 176 at the end, cycling deterministically through all clients.

177 **Case 4: Reshuffled Cyclic Participation.** Clients are arranged in a random order at the beginning
 178 of each epoch, and a block of S consecutive clients is selected in each round. The process continues
 179 sequentially and wraps around at the end, cycling through all clients.

180 The variability in participation patterns motivates a unified treatment of arbitrary client participation
 181 and its characterization.

182 2.2 ARBITRARY CLIENT PARTICIPATION AND TWO DELAY METRICS

184 We consider an arbitrary client participation sequence $\{\mathcal{S}_t\}_{t=0}^{T-1}$, where $\mathcal{S}_t \subseteq \mathcal{N}$ denotes the set
 185 of active clients at round t . This sequence may vary arbitrarily from round to round or follow a
 186 predetermined schedule. A key challenge is to quantify the variability of participation patterns.
 187 We address this by considering two metrics, the maximum delay τ_{\max} and the average delay τ_{avg}
 188 (Gu et al., 2021), which offer a concise means of quantifying client participation and facilitate our
 189 theoretical analysis.

190 We begin with defining the **last-selection time** for each client $i \in \mathcal{N}$ at round t as follows:
 191

$$192 a_{i,t} := \max \{j \leq t : i \in \mathcal{S}_j\}. \quad (2)$$

193 In other words, $a_{i,t}$ denotes the most recent round (up to t) in which client i was active. By convention,
 194 $a_{i,t} = -1$ if client i has never participated before round $t + 1$. Equivalently, $a_{i,t}$ records the
 195 last round client i was included in the active set, and can be expressed recursively as:

$$197 a_{i,t} = \begin{cases} a_{i,t-1} & \text{if client } i \notin \mathcal{S}_t, \\ t & \text{if client } i \in \mathcal{S}_t, \end{cases} \quad \text{with } a_{i,-1} = -1. \quad (3)$$

199 The **per-round delay** at round t is then defined as:
 200

$$201 \tau_t = \max_{i \in \mathcal{N}} \{t - a_{i,t}\} \geq 0. \quad (4)$$

203 Here, τ_t represents the largest gap between the current round and the last time any client participated.
 204 We focus on this gap because, due to data heterogeneity, a single client's behavior can significantly
 205 influence overall performance. Accordingly, we define the two delay metrics as follows:
 206

- 207 • The **maximum delay** is given by

$$208 \tau_{\max} = \max_{0 \leq t \leq T} \{\tau_t\},$$

210 which represents the largest per-round delay observed over the entire training process.
 211

- 212 • The **average delay** is given by

$$213 \tau_{\text{avg}} = \frac{1}{T} \sum_{t=0}^{T-1} \tau_t,$$

215 which captures the average per-round delay across all rounds.

216 **Remark 2.1. (Intuition Behind the Delay Metrics.)** The metrics τ_{\max} and τ_{avg} offer a concise
 217 means of quantifying client participation. Smaller values indicate more frequent participation,
 218 which generally promotes faster convergence and better global model performance. In Section 4, we
 219 evaluate the performance of the proposed algorithms in light of these metrics, demonstrating their
 220 effectiveness in addressing varying client participation patterns in FL.

222 3 THE FEDSUM FAMILY

224 In this section, we introduce the FedSUM family (**Federated Learning with Stochastic Uplink-**
 225 **Merge**), which includes **FedSUM-B** (basic version), **FedSUM** (standard version), and **FedSUM-**
 226 **CR** (communication-reduced version). These algorithms address various challenges in FL under
 227 arbitrary client participation, without requiring additional assumptions on data heterogeneity.

229 3.1 FEDSUM-B: A SIMPLE FL APPROACH WITHOUT LOCAL UPDATES

231 We first propose **FedSUM-B** (see Algorithm 1), a simple FL approach that employs a single variable
 232 for both uplink and downlink communication in each round, and omits local updates.

233 The algorithm maintains local control variables $\{h_i^{(t)}\}_{i=1}^N$ on clients and a global control variable
 234 $y^{(t)}$ on the server. In each round t , each active client $i \in \mathcal{S}_t$ computes the stochastic gradient over
 235 K mini-batches $\xi_i^{(t,k)}$ evaluated at the current received model $x^{(t)}$. The subscript i refers to the
 236 client index, while the superscript (t, k) denotes the t -th round and the k -th mini-batch. After local
 237 computations, clients update their control variables $\{h_i^{(t)}\}_{i=1}^N$ as follows:

$$239 \quad h_i^{(t+1)} = \begin{cases} \frac{1}{K} \sum_{k=0}^{K-1} \nabla F_i(x^{(t)}; \xi_i^{(t,k)}), & \text{if } i \in \mathcal{S}_t, \\ h_i^{(t)}, & \text{otherwise,} \end{cases} = \begin{cases} \frac{1}{K} \sum_{k=0}^{K-1} \nabla F_i(x^{(a_{i,t})}; \xi_i^{(a_{i,t},k)}), & \text{if } a_{i,t} \geq 0, \\ \mathbf{0}, & \text{if } a_{i,t} = -1. \end{cases} \quad (5)$$

244 The first expression in Equation (5) corresponds to the standard update rule in Algorithm 1, whereas
 245 the second offers a high-level interpretation: $h_i^{(t)}$ represents the aggregated stochastic gradient com-
 246 puted by client i during its most recent selection round prior to round t .

247 The FedSUM family employs a technique called **Stochastic Uplink-Merge**, in which each active
 248 client $i \in \mathcal{S}_t$ transmits only the difference $\delta_i^{(t)}$ between its current aggregated gradient and the most
 249 recent gradient it computed. Specifically, if the client $i \in \mathcal{S}_t$ has not participated before, the sending
 250 message $\delta_i^{(t)} = \frac{1}{K} \sum_{k=0}^{K-1} \nabla F_i(x^{(t)}; \xi_i^{(t,k)})$, otherwise, $\delta_i^{(t)}$ is given by:

$$252 \quad \delta_i^{(t)} = \frac{1}{K} \sum_{k=0}^{K-1} \nabla F_i(x^{(t)}; \xi_i^{(t,k)}) - \frac{1}{K} \sum_{k=0}^{K-1} \nabla F_i(x^{(a_{i,t-1})}; \xi_i^{(a_{i,t-1},k)}). \quad (6)$$

255 The server then updates its control variable $y^{(t)}$ by incorporating $\delta_i^{(t)}$ from all active clients. Specif-
 256 ically, denoting $\mathcal{A}_t := \cup_{j \leq t} \mathcal{S}_t$, the update rule for $y^{(t)}$ is given by:

$$257 \quad y^{(t)} = \sum_{j=0}^t \sum_{i \in \mathcal{S}_j} \delta_i^{(j)} = \sum_{i \in \mathcal{A}_t} \sum_{j=0}^t \delta_i^{(j)} \mathbb{1}_{\{j=a_{i,j}\}} = \frac{1}{K} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla F_i(x^{(a_{i,t})}; \xi_i^{(a_{i,t},k)}). \quad (7)$$

260 Since $y^{(t)}$ is formed from gradients received from each client with delays, more frequent client
 261 participation keeps $y^{(t)}$ closer to the current globally aggregated gradient. This directly motivates
 262 the use of the delay metrics τ_{\max} and τ_{avg} for analyzing arbitrary client participation.

263 **Benefits of Stochastic Uplink-Merge.** Since $y^{(t)}$ represents the sum of aggregated gradients from
 264 the most recent participation of each previously active client and serves as the server's update di-
 265 rection. This design allows the FedSUM family to address data heterogeneity by incorporating
 266 information from each client's latest participation round, as illustrated in Figure 2. Similar idea has
 267 been explored in earlier works (Gu et al., 2021; Yan et al., 2024; Ying et al., 2025).

269 Note that although FedSUM-B operates without local updates, it achieves competitive convergence
 270 and accuracy under sufficiently large batch sizes (see Figure 11 in Appendix H).

270 **Algorithm 1** FedSUM-B: Basic FL Without Local Updates

271

272 1: **Input:** initial model $x^{(0)}$, control variables $y^{(-1)}$, $\{h_i^{(0)}\}_{i=1}^N$ with value $\mathbf{0}$; global learning rate
273 η_g ; local learning rate η_l ; batch size K ; client participation $\{\mathcal{S}_t\}_{t=0}^{T-1}$.
274 2: **for** $t = 0, 1, \dots, T-1$ **do**
275 3: Send $x^{(t)}$ to all clients $i \in \mathcal{S}_t$.
276 4: **for** client $i \in \mathcal{S}_t$ in parallel **do**
277 5: Receive $x^{(t)}$ and initialize local model $x_i^{(t,0)} = x^{(t)}$.
278 6: **for** $k = 0, \dots, K-1$ **do**
279 7: Compute a mini-batch gradient $g_i^{(t,k)} = \nabla F_i(x_i^{(t,0)}; \xi_i^{(t,k)})$.
280 8: **end for**
281 9: Update $x_i^{(t,1)} = x_i^{(t,0)} - \eta_l \sum_{k=0}^{K-1} g_i^{(t,k)}$.
282 10: Compute $\delta_i^{(t)} = \frac{x^{(t)} - x_i^{(t,1)}}{\eta_l K} - h_i^{(t)}$ and send $\delta_i^{(t)}$ to the server.
283 11: Update $h_i^{(t+1)} = \frac{x^{(t)} - x_i^{(t,1)}}{\eta_l K}$ (for $i \notin \mathcal{S}_t$, $h_i^{(t+1)} = h_i^{(t)}$).
284 12: **end for**
285 13: Update $y^{(t)} = y^{(t-1)} + \sum_{i \in \mathcal{S}_t} \delta_i^{(t)}$ and $x^{(t+1)} = x^{(t)} - \frac{\eta_g \eta_l K}{N} y^{(t)}$.
286 14: **end for**
287 15: **Server** outputs $x^{(T)}$.

288
289
290

291 3.2 FEDSUM: ENHANCING FL WITH LOCAL UPDATES
292

293 Building on FedSUM-B, we introduce the standard algorithm **FedSUM** (see Algorithm 2), which
294 also employs the **Stochastic Uplink-Merge** technique but supports local updates. Compared to
295 FedSUM-B, it requires additional communication of $y^{(t)}$ to compute the correction direction of
296 local updates.

297 The control variables in FedSUM are similar to those in FedSUM-B, except that they correspond to
298 client models with local updates rather than a single global model. Specifically, at each round t , the
299 control variables $\{h_i^{(t)}\}_{i=1}^N$ and the global variable $y^{(t)}$ are updated as follows:
300

$$301 \quad h_i^{(t+1)} = \frac{1}{K} \sum_{k=0}^{K-1} \nabla F_i(x_i^{(a_{i,t},k)}; \xi_i^{(a_{i,t},k)}), \text{ if } a_{i,t} \geq 0, \text{ and } \mathbf{0}, \text{ otherwise.} \quad (8)$$

$$302 \quad y^{(t)} = \frac{1}{K} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla F_i(x_i^{(a_{i,t},k)}; \xi_i^{(a_{i,t},k)}).$$

303 Here, $x_i^{(a_{i,t},k)}$ denotes the local model of client i at round $a_{i,t}$ during the k -th local update.
304

305 **Correction direction $y_i^{(t)}$ of local updates.** A key challenge when performing local updates is that
306 the gradient $\nabla F_i(x_i^{(t,k)}; \xi_i^{(t,k)})$ computed on client i 's local data can be biased due to data hetero-
307 geneity. To mitigate this bias, we introduce the correction direction $y_i^{(t)}$ by sending the previous
308 round's aggregated gradient $y^{(t-1)}$ from the server to each client $i \in \mathcal{S}_t$. By subtracting the client's
309 own previous gradient, $h_i^{(t)}$, we obtain a correction direction that incorporates the gradients of other
310 clients. Formally,
311

$$312 \quad y_i^{(t)} = -h_i^{(t)} + y^{(t-1)} = \frac{1}{K} \sum_{j \in \mathcal{A}_t \setminus \{i\}} \sum_{k=0}^{K-1} \nabla F_j(x_j^{(a_{j,t-1},k)}; \xi_j^{(a_{j,t-1},k)}), \quad (9)$$

313 where $x_j^{(a_{j,t-1},k)}$ is client j 's local model from its last participation round $a_{j,t-1}$ at the k -th update
314 step. This correction direction reflects the most recent aggregated gradients from other previously
315 active clients, helping to align client i 's updates with the global descent direction, as illustrated in
316 [Figure 3](#).

324

Algorithm 2 FedSUM: FL with Local Updates

325

326 1: **Input:** initial model $x^{(0)}$, control variables $y^{(-1)}$, $\{h_i^{(0)}\}_{i=1}^N$ with value **0**; global learning rate
 327 η_g ; local learning rate η_l ; local steps K ; client participation $\{\mathcal{S}_t\}_{t=0}^{T-1}$.
 328 2: **for** $t = 0, 1, \dots, T-1$ **do**
 329 3: Send $x^{(t)}$ and $y^{(t-1)}$ to all clients $i \in \mathcal{S}_t$.
 330 4: **for** client $i \in \mathcal{S}_t$ in parallel **do**
 331 5: Receive $x^{(t)}$ and $y^{(t-1)}$ and initialize local model $x_i^{(t,0)} = x^{(t)}$.
 332 6: Compute local update correction direction $y_i^{(t)} := -h_i^{(t)} + y^{(t-1)}$.
 333 7: **for** $k = 0, \dots, K-1$ **do**
 334 8: Compute a mini-batch gradient $g_i^{(t,k)} = \nabla F_i(x_i^{(t,k)}; \xi_i^{(t,k)})$.
 335 9: Locally update $x_i^{(t,k+1)} = x_i^{(t,k)} - \frac{\eta_l}{N} (g_i^{(t,k)} + y_i^{(t)})$.
 336 10: **end for**
 337 11: Compute $\delta_i^{(t)} = \frac{N(x^{(t)} - x_i^{(t,K)})}{\eta_l K} - y_i^{(t)} - h_i^{(t)}$ and send $\delta_i^{(t)}$ to the server.
 338 12: Update $h_i^{(t+1)} = \frac{N(x^{(t)} - x_i^{(t,K)})}{\eta_l K} - y_i^{(t)}$ (for $i \notin \mathcal{S}_t$, $h_i^{(t+1)} = h_i^{(t)}$).
 339 13: **end for**
 340 14: Update $y^{(t)} = y^{(t-1)} + \sum_{i \in \mathcal{S}_t} \delta_i^{(t)}$ and $x^{(t+1)} = x^{(t)} - \frac{\eta_g \eta_l K}{N} y^{(t)}$.
 341 15: **end for**
 342 16: **Server** outputs $x^{(T)}$.

345

346

347 3.3 FEDSUM-CR: REDUCING COMMUNICATION COST IN FEDSUM

348

349 We further introduce **FedSUM-CR** (see Algorithm 3 in Appendix E), to enhance the communication
 350 efficiency of FedSUM and achieve *single-variable communication for both uplink and downlink*.

351

352 In each round t of FedSUM-CR, instead of computing the correction direction $y_i^{(t)}$ by receiving
 353 $y^{(t-1)}$ from the server as in FedSUM, each active client $i \in \mathcal{S}_t$ compute $y_i^{(t)}$ locally using its
 354 stored variables $a_i^{(t)}$ and $z_i^{(t)}$, thereby reducing communication overhead. Specifically, each client
 355 maintains additional control variables $a_i^{(t)}$ and $z_i^{(t)}$, updated as

356

357

358

$$a_i^{(t+1)} := \begin{cases} t, & \text{if } i \in \mathcal{S}_t, \\ a_i^{(t)}, & \text{otherwise,} \end{cases} \quad z_i^{(t+1)} := \begin{cases} x^{(t)}, & \text{if } i \in \mathcal{S}_t, \\ z_i^{(t)}, & \text{otherwise,} \end{cases} \quad (10)$$

359

360 with $x^{(-1)} := x^{(0)}$ for convenience. Here, $a_i^{(t)} = a_{i,t-1}$ records the last round when client i was
 361 selected prior to round t , and $z_i^{(t)} = x^{(a_{i,t-1})}$ stores the most recent model it received from the
 362 server before round t . Using these variables, the correction direction for client $i \in \mathcal{S}_t$ at round t is
 363 given by

364

365

366

$$y_i^{(t)} := \frac{N}{\eta_g \eta_l K} \cdot \frac{z_i^{(t)} - x^{(t)}}{t - a_i^{(t)}} - h_i^{(t)} = \frac{1}{(t - a_{i,t-1})K} \sum_{p=a_{i,t-1}}^{t-1} \sum_{j \in \mathcal{A}_p \setminus \{i\}} \sum_{k=0}^{K-1} \nabla F_j(x_j^{(a_{j,p},k)}; \xi_j^{(a_{j,p},k)}), \quad (11)$$

367

368 which represents the average aggregated gradient from other active clients between client i 's last
 369 selection round and round $t-1$. This correction direction aligns client i 's update with the global de-
 370 scend direction by incorporating gradients from other active clients during these intervening rounds.

370

371 The correction direction in FedSUM-CR (Equation 11) is similar to that in FedSUM (Equation 9), as
 372 both adjust local updates by incorporating the influence of other clients. Whether using the averaged
 373 gradients from intervening rounds (as in FedSUM-CR) or the most recent aggregated gradient (as
 374 in FedSUM) yields no significant theoretical distinction, since both approaches align the correction
 375 with the global descent direction. This equivalence is reflected in the convergence rates presented in
 376 Section 4.

377

378 **Comparison among the FedSUM family.** The main difference between **FedSUM-B**, **FedSUM**,
 379 and **FedSUM-CR** lies in how the correction direction $y_i^{(t)}$ is obtained. FedSUM-B omits local

378 updates and thus does not require $y_i^{(t)}$, resulting in reduced communication overhead. FedSUM
 379 introduces additional communication by sending the aggregated gradient $y^{(t)}$ from the server to
 380 clients for computing $y_i^{(t)}$. FedSUM-CR achieves the same correction with reduced communication
 381 by requiring extra memory to store the most recently received model $z_i^{(t)}$.
 382

384 4 CONVERGENCE RESULTS

386 In this section, we present the unified convergence result for the FedSUM family, summarized in
 387 Theorem 4.1, and characterize their behavior under different client participation patterns.

388 **Theorem 4.1.** *Suppose Assumptions 1.1 and 1.2 hold. Under an arbitrary client participation
 389 sequence $\{\mathcal{S}_t\}_{t=0}^{T-1}$ characterized by τ_{\max} and τ_{avg} , suppose the learning rates for FedSUM-B, Fed-
 390 SUM, and FedSUM-CR are set as*

$$392 \eta_g = \frac{1}{\sqrt{\tau_{\max}}}, \text{ and } \eta_l = \min \left\{ \frac{1}{10\sqrt{\tau_{\max}KL}}, \frac{\sqrt{N\tau_{\max}\Delta_f}}{\sqrt{\max\{1, \tau_{\text{avg}}\}KTL\sigma^2}} \right\}.$$

395 Then all three algorithms achieve the following convergence rate:

$$397 \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(x^{(t)})\|^2 | \{\mathcal{S}_t\}_{t=0}^{T-1}] \leq \frac{30\sqrt{(1 + \tau_{\text{avg}})L\sigma^2\Delta_f}}{\sqrt{NKT}} + \frac{20\tau_{\max}(L\Delta_f + F_0)}{T}, \quad (12)$$

400 where $\Delta_f := f(x^{(0)}) - f^*$ and $F_0 := \frac{1}{N} \sum_{i=1}^N \|\nabla f_i(x^{(0)})\|^2$.
 401

402 When the participation sequence $\{\mathcal{S}_t\}_{t=0}^{T-1}$ involves randomness, we can further take full expectation
 403 with respect to $\{\mathcal{S}_t\}_{t=0}^{T-1}$ on both sides of Equation (12). This allows us to characterize the average
 404 performance for the FedSUM family, where $\mathbb{E}[\tau_{\max}]$ and $\mathbb{E}[\tau_{\text{avg}}]$ quantify the impact of participation
 405 patterns on the convergence rate.

406 **Corollary 4.1.** *Under the same setting as in Theorem 4.1, suppose the participation sequence
 407 $\{\mathcal{S}_t\}_{t=0}^{T-1}$ involves randomness. Then all three algorithms achieve the following convergence rate:*

$$409 \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(x^{(t)})\|^2] \leq \frac{30\sqrt{(1 + \mathbb{E}[\tau_{\text{avg}}])L\sigma^2\Delta_f}}{\sqrt{NKT}} + \frac{20\mathbb{E}[\tau_{\max}](L\Delta_f + F_0)}{T}. \quad (13)$$

412 Corollary 4.1 directly follows from Theorem 4.1 noting that $\mathbb{E}[\sqrt{(1 + \tau_{\text{avg}})}] \leq \sqrt{(1 + \mathbb{E}[\tau_{\text{avg}}])}$.
 413

414 **Remark 4.1.** *The upper bounds in Theorem 4.1 and Corollary 4.1 show that, smaller values of τ_{avg}
 415 and τ_{\max} , or their expectations under a random participation pattern, lead to faster convergence
 416 rates. This result is consistent with the intuition that smaller delays that indicates more frequent
 417 client participation, improve overall convergence.*

418 **Remark 4.2.** *Moreover, the FedSUM family remains convergent even when the inactive period
 419 grows with T (e.g., $\log(T)$), which is a significant improvement compared to Yan et al. (2024); Gu
 420 et al. (2021), where convergence requires the inactive period to be strictly bounded.*

422 The convergence guarantees in Theorem 4.1 apply directly to the participation patterns introduced
 423 in Section 2. As summarized in Table 1, our analysis not only unifies existing results but also
 424 extends them in scope. These results indicate that the delay metrics τ_{\max} and τ_{avg} accurately capture
 425 participation heterogeneity under arbitrary client participation schemes, while the FedSUM family
 426 achieves state-of-the-art efficiency across diverse participation regimes.

427 5 EXPERIMENTS

430 **Overview.** We evaluate the FedSUM family on real-world datasets to corroborate our theoretical
 431 analysis and compare against state-of-the-art baselines, including comparisons between Fed-
 432 SUM variants. Specifically, we consider a federated learning system with one parameter server and

432 Table 1: Convergence behavior of the FedSUM family under different participation patterns, com-
 433 pared with related works. Here $\tilde{\mathcal{O}}$ hides logarithmic factors.

435 Pattern	436 Convergence Rate	437 Related Works
438 Case 1	$\tilde{\mathcal{O}} \left(\frac{\sqrt{L\sigma^2\Delta_f}}{\sqrt{SKT}} + \frac{N(L\Delta_f+F_0)}{ST} \right)$	439 Matches SCALLION without communication 440 compression (Huang et al., 2023) (up to log factors).
440 Case 2	$\tilde{\mathcal{O}} \left(\frac{\sqrt{L\sigma^2\Delta_f}}{\sqrt{\delta NKT}} + \frac{L\Delta_f+F_0}{\delta T} \right)$	441 Matches FedAWE (Xiang et al., 2024).
441 Case 3	$\mathcal{O} \left(\frac{\sqrt{L\sigma^2\Delta_f}}{\sqrt{SKT}} + \frac{N(L\Delta_f+F_0)}{ST} \right)$	442 Not directly comparable to the CyCP framework 443 (Cho et al., 2023), which requires the PL condition on f .
442 Case 4	$\mathcal{O} \left(\frac{\sqrt{L\sigma^2\Delta_f}}{\sqrt{SKT}} + \frac{N(L\Delta_f+F_0)}{ST} \right)$	444 None to the best of our knowledge.

445
 446
 447
 448 $N = 100$ clients, where clients become available intermittently. We consider three image classi-
 449 fication tasks using the MNIST (LeCun et al., 2010), SVHN (Netzer et al., 2011), and CIFAR-10
 450 (Krizhevsky et al., 2009) datasets, each containing 10 classes. For these tasks, we train convolutional
 451 neural network (CNN) models with slightly different architectures. To simulate highly heteroge-
 452 neous local data distributions, the image class distribution at client i follows a Dirichlet distribution
 453 with parameter $\alpha = 0.1$ (Xiang et al., 2024; Crawshaw & Liu, 2024; Wang & Ji, 2023); see Fig-
 454 ure 4 in Appendix H for a visualization. Additional specifications and experimental results are also
 455 included in Appendix H.

456 **Client participation patterns.** We evaluate the FedSUM family under three participation patterns
 457 inspired by real-world FL scenarios and prior work: (i) **P1**: The server randomly selects $S = 20$
 458 clients per round, a controllable pattern (Karimireddy et al., 2020; Huang et al., 2023). (ii) **P2**:
 459 Each client participates independently with a fixed probability S/N , a stationary and uncontrollable
 460 pattern (Wang & Ji, 2023; Xiang et al., 2024). (iii) **P3**: Each client participates with a time-varying
 461 probability p_i^t from a sine trajectory, representing a non-stationary, uncontrollable pattern (Bonawitz
 462 et al., 2019).

463 **Baselines.** We compare FedSUM (standard version) against several baseline algorithms that operate
 464 without prior knowledge of client participation patterns during training. These baselines are grouped
 465 into two categorizes: (i) methods that refine the FedAvg framework, including FedAvg applied to
 466 active clients (McMahan et al., 2017), FedAU (Wang & Ji, 2023), and FedAWE (Xiang et al., 2024).
 467 (ii) methods that enhance FL performance by incorporating additional control variables, including
 468 FedVARP (Jhunjhunwala et al., 2022), MIFA (Gu et al., 2021), and SCAFFOLD (Karimireddy et al.,
 469 2020; Huang et al., 2023). For fairness, all algorithms use the same local and global learning rates,
 470 selected via grid search based on the optimal performance of FedAvg (see Appendix H for details).

471 Figure 1a presents the training loss and test accuracy curves for the three datasets. **FedSUM** and
 472 **FedSUM-CR** achieve faster convergence and greater stability than the baseline algorithms, which
 473 we attribute to its stochastic uplink-merge technique combined with the correction direction. **Figure**
 474 **1b** further demonstrates that **FedSUM** and **FedSUM-CR** achieve faster convergence with respect to
 475 the communication workload. Notably, **FedSUM-CR** maintains the strong performance of **FedSUM**
 476 with improved communication efficiency, making it the most effective algorithm in this comparison.
 477 Detailed performance plots, offering clearer comparisons for specific participation patterns and last
 478 communication rounds, are provided in Appendix H.3.

479 6 CONCLUSION

480 This work presents the first comprehensive analysis of federated learning under arbitrary client par-
 481 ticipation. We introduce two delay metrics that quantify the impact of participation variability and
 482 propose the FedSUM family of algorithms, which achieve both efficiency and robustness through
 483 the stochastic uplink-merge technique. Our unified convergence guarantees recover known rates
 484 in special cases and extend to arbitrary participation patterns under only standard smoothness and

486 bounded variance assumptions. These contributions position the FedSUM family as a practical and
 487 theoretically grounded framework for federated learning across diverse participation scenarios.
 488

504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

Figure 1: Training loss and test accuracy curves for CNN models on three datasets, comparing different FL algorithms under various client participation patterns. The performance is evaluated against (a) the number of communication rounds and (b) the cumulative communication workload. For the workload, one unit corresponds to the transmission of a full-sized model.

540 REPRODUCIBILITY STATEMENT
541542 We ensure reproducibility by providing all implementation details in Appendix H, including an
543 anonymous code link (with random seeds), hyperparameters, learning rate schedules, optimizer set-
544 tings, dataset splits, evaluation protocols, and hardware specifications. These details enable inde-
545 pendent researchers to replicate our results.
546547 ETHICS STATEMENT
548549 This work proposes federated learning algorithms under arbitrary client participation. All experi-
550 ments were conducted on publicly available datasets (e.g., MNIST, SVHN, CIFAR-10) with con-
551 volutional neural networks specified in Appendix H. We do not foresee direct risks of harm arising
552 from our methodology and we emphasize that our contributions are intended to advance research in
553 optimization and federated learning. We encourage responsible and ethical use of the algorithms.
554555 REFERENCES
556557 Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
558 Ivanov, Chloe Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, et al. Towards
559 federated learning at scale: System design. *Proceedings of machine learning and systems*, 1:
560 374–388, 2019.561 Jin-Hua Chen, Min-Rong Chen, Guo-Qiang Zeng, and Jia-Si Weng. Bdfl: A byzantine-fault-
562 tolerance decentralized federated learning method for autonomous vehicle. *IEEE Transactions*
563 *on Vehicular Technology*, 70(9):8639–8652, 2021.
564565 Yae Jee Cho, Pranay Sharma, Gauri Joshi, Zheng Xu, Satyen Kale, and Tong Zhang. On the con-
566 vergence of federated averaging with cyclic client participation. In *International Conference on*
567 *Machine Learning*, pp. 5677–5721. PMLR, 2023.568 Michael Crawshaw and Mingrui Liu. Federated learning under periodic client participation and
569 heterogeneous data: A new communication-efficient algorithm and analysis. *Advances in Neural*
570 *Information Processing Systems*, 37:8240–8299, 2024.
571572 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
573 bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of*
574 *the North American Chapter of the Association for Computational Linguistics: Human Language*
575 *Technologies, Volume 1 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June
576 2019. Association for Computational Linguistics. URL <https://aclanthology.org/N19-1423>.
577578 Yucheng Ding, Chaoyue Niu, Yikai Yan, Zhenzhe Zheng, Fan Wu, Guihai Chen, Shaojie Tang, and
579 Rongfei Jia. Distributed optimization over block-cyclic data. In *Proceedings of the 6th ACM*
580 *International Conference on Multimedia in Asia Workshops*, pp. 1–6, 2024.581 Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. Fast federated learning in the
582 presence of arbitrary device unavailability. *Advances in Neural Information Processing Systems*,
583 34:12052–12064, 2021.
584585 Xinpeng Huang, Ping Li, and Xiaoyun Li. Stochastic controlled averaging for federated learning
586 with communication compression. *arXiv preprint arXiv:2308.08165*, 2023.587 Divyansh Jhunjhunwala, Pranay Sharma, Aushim Nagarkatti, and Gauri Joshi. Fedvarp: Tackling
588 the variance due to partial client participation in federated learning. In *Uncertainty in Artificial*
589 *Intelligence*, pp. 906–916. PMLR, 2022.
590591 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
592 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
593 vances and open problems in federated learning. *Foundations and trends® in machine learning*,
14(1–2):1–210, 2021.

594 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
 595 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
 596 *International conference on machine learning*, pp. 5132–5143. PMLR, 2020.

597

598 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny im-
 599 ages.(2009), 2009.

600 Yann LeCun, Corinna Cortes, Chris Burges, et al. Mnist handwritten digit database, 2010.

601

602 Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos:
 603 An experimental study. In *2022 IEEE 38th international conference on data engineering (ICDE)*,
 604 pp. 965–978. IEEE, 2022.

605 Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
 606 methods, and future directions. *IEEE signal processing magazine*, 37(3):50–60, 2020.

607

608 Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
 609 fedavg on non-iid data. *arXiv preprint arXiv:1907.02189*, 2019.

610 Grigory Malinovsky, Samuel Horváth, Konstantin Burlachenko, and Peter Richtárik. Federated
 611 learning with regularized client participation. *arXiv preprint arXiv:2302.03662*, 2023.

612

613 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 614 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-
 615 gence and statistics*, pp. 1273–1282. PMLR, 2017.

616

617 Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In *Inter-
 618 national conference on machine learning*, pp. 4615–4625. PMLR, 2019.

619

620 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
 621 Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep
 622 learning and unsupervised feature learning*, volume 2011, pp. 7. Granada, 2011.

623

624 Jake Perazzone, Shiqiang Wang, Mingyue Ji, and Kevin S Chan. Communication-efficient device
 625 scheduling for federated learning using stochastic optimization. In *IEEE INFOCOM 2022-IEEE
 626 Conference on Computer Communications*, pp. 1449–1458. IEEE, 2022.

627

628 Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays. Federated learning
 629 for emoji prediction in a mobile keyboard. *arXiv preprint arXiv:1906.04329*, 2019.

630

631 Mónica Ribero, Haris Vikalo, and Gustavo De Veciana. Federated learning under intermittent client
 632 availability and time-varying communication constraints. *IEEE Journal of Selected Topics in
 633 Signal Processing*, 17(1):98–111, 2022.

634

635 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
 636 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
 637 treebank. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language
 638 Processing*, pp. 1631–1642, Seattle, Washington, USA, October 2013. Association for Computa-
 639 tional Linguistics. URL <https://aclanthology.org/D13-1170>.

640

641 Sebastian U Stich. Local sgd converges fast and communicates little. *arXiv preprint
 642 arXiv:1805.09767*, 2018.

643

644 Zhenyu Sun, Ziyang Zhang, Zheng Xu, Gauri Joshi, Pranay Sharma, and Ermin Wei. Debiasing
 645 federated learning with correlated client participation. *arXiv preprint arXiv:2410.01209*, 2024.

646

647 Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
 648 inconsistency problem in heterogeneous federated optimization. *Advances in neural information
 649 processing systems*, 33:7611–7623, 2020.

650

651 Jianyu Wang, Anit Kumar Sahu, Gauri Joshi, and Soummya Kar. Matcha: A matching-based link
 652 scheduling strategy to speed up distributed optimization. *IEEE Transactions on Signal Process-
 653 ing*, 70:5208–5221, 2022.

648 Shiqiang Wang and Mingyue Ji. A unified analysis of federated learning with arbitrary client par-
 649 ticipation. *Advances in neural information processing systems*, 35:19124–19137, 2022.
 650

651 Shiqiang Wang and Mingyue Ji. A lightweight method for tackling unknown participation statistics
 652 in federated averaging. *arXiv preprint arXiv:2306.03401*, 2023.

653 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 654 Pierrick Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 655 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 656 Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
 657 language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural
 658 Language Processing: System Demonstrations*, pp. 38–45, Online, October 2020. Association for
 659 Computational Linguistics. URL <https://aclanthology.org/2020.emnlp-demos.6>.

660

661 Ming Xiang, Stratis Ioannidis, Edmund Yeh, Carlee Joe-Wong, and Lili Su. Efficient federated
 662 learning against heterogeneous and non-stationary client unavailability. *Advances in Neural In-
 663 formation Processing Systems*, 37:104281–104328, 2024.

664

665 Yikai Yan, Chaoyue Niu, Yucheng Ding, Zhenzhe Zheng, Shaojie Tang, Qinya Li, Fan Wu, Chengfei
 666 Lyu, Yanghe Feng, and Guihai Chen. Federated optimization under intermittent client availability.
 667 *INFORMS Journal on Computing*, 36(1):185–202, 2024.

668 Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participa-
 669 tion in non-iid federated learning. *arXiv preprint arXiv:2101.11203*, 2021.

670

671 Haibo Yang, Xin Zhang, Prashant Khanduri, and Jia Liu. Anarchic federated learning. In *Inter-
 672 national Conference on Machine Learning*, pp. 25331–25363. PMLR, 2022.

673 Kai Yang, Tao Jiang, Yuanming Shi, and Zhi Ding. Federated learning via over-the-air computation.
 674 *IEEE transactions on wireless communications*, 19(3):2022–2035, 2020.

675

676 Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel Ra-
 677 mage, and Françoise Beaufays. Applied federated learning: Improving google keyboard query
 678 suggestions. *arXiv preprint arXiv:1812.02903*, 2018.

679 Bicheng Ying, Zhe Li, and Haibo Yang. Exact and linear convergence for federated learning under
 680 arbitrary client participation is attainable. *Advances in Neural Information Processing Systems*,
 681 2025.

682 Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
 683 communication: Demystifying why model averaging works for deep learning. In *Proceedings of
 684 the AAAI conference on artificial intelligence*, volume 33, pp. 5693–5700, 2019.

685

686 Xiaotong Yuan and Ping Li. On convergence of fedprox: Local dissimilarity invariant bounds, non-
 687 smoothness and beyond. *Advances in Neural Information Processing Systems*, 35:10752–10765,
 688 2022.

689 Tengchan Zeng, Omid Semiari, Mingzhe Chen, Walid Saad, and Mehdi Bennis. Federated learn-
 690 ing on the road autonomous controller design for connected and autonomous vehicles. *IEEE
 691 Transactions on Wireless Communications*, 21(12):10407–10423, 2022.

692

693 Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
 694 learning with non-iid data. *arXiv preprint arXiv:1806.00582*, 2018.

695

696

697

698

699

700

701

702	CONTENTS	
703		
704		
705	1 Introduction	1
706	1.1 Main Results and Contributions	2
707	1.2 Related Works	2
708	1.3 Problem Setup	3
709		
710		
711	2 Arbitrary Client Participation in FL	3
712	2.1 Participation Patterns	3
713	2.2 Arbitrary Client Participation and Two Delay Metrics	4
714		
715		
716	3 The FedSUM Family	5
717	3.1 FedSUM-B: A Simple FL Approach Without Local Updates	5
718	3.2 FedSUM: Enhancing FL with Local Updates	6
719	3.3 FedSUM-CR: Reducing Communication Cost in FedSUM	7
720		
721		
722		
723	4 Convergence Results	8
724		
725	5 Experiments	8
726		
727	6 Conclusion	9
728		
729		
730	A Visual Representation of the Techniques Behind the FedSUM Family	15
731		
732	B Notations and Preliminary Results	16
733		
734	C Convergence Analysis for FedSUM-B	17
735		
736		
737	D Convergence Analysis for FedSUM	24
738		
739	E Convergence Analysis for FedSUM-CR	35
740		
741	F Client Participation Patterns	44
742		
743		
744	G Convergence Results of the FedSUM Family	46
745		
746	H Numerical Experiments	47
747	H.1 Code	47
748	H.2 Experimental setups	47
749	H.3 Detailed Experimental Results	48
750	H.4 Additional Experimental Results	48
751	H.5 Comparison Among the FedSUM Family	51
752	H.6 Additional Experiment: Comparison of FedSUM with FedAvg and SCAFFOLD on Training ResNet-18	52
753		
754		
755		

756	H.7 Additional Experiment: Comparison of FedSUM with FedAvg on SST-2 Dataset	52
757		
758	H.8 Additional Experiment: Influence of Biased Sampling	53
759		
760	I LLM Usage	54
761		

In Appendix A, we show the visual representation of the techniques behind the FedSUM Family. In Appendix B, we provide the notations and preliminary results. In Appendix C, we derive the convergence results of FedSUM-B. In Appendix D, we present the convergence results of FedSUM. In Appendix E, we introduce the convergence results of FedSUM-CR. In Appendix F, we derive convergence bounds under various client participation patterns. In Appendix H, we present the experimental setups and additional experiments.

A VISUAL REPRESENTATION OF THE TECHNIQUES BEHIND THE FEDSUM FAMILY

To address data heterogeneity during model updates, we introduce the Stochastic Uplink-Merge (SUM) technique, which is illustrated in Figure 2. The figure demonstrates how the SUM technique operates across three rounds (from round t to round $t + 2$) when client i is selected to compute the update direction.

In this scenario, client i 's local minima x_i^* is far from the global minima x^* , representing strong data heterogeneity. Despite client i being the only one activated during these rounds, the SUM technique ensures that the server's model update is influenced by the gradients from other clients, even though they are not activated during the period from round t to round $t + 2$. This method helps to avoid the bias that can arise from frequently activated clients, such as client i , and ensures that the update direction is better aligned with the global model. This approach allows the server to effectively handle data heterogeneity and reduce the negative impact of the participation bias issue discussed in Ríbero et al. (2022); Sun et al. (2024).

Figure 2: Illustration of the Stochastic Uplink-Merge (SUM) technique in addressing data heterogeneity and participation bias issue during server's model updates.

In Figure 3, we illustrate the local update rule for the active client i with both the (stochastic) gradient $g_i^{(t,k)}$ and the correction direction $y_i^{(t)}$, and show how this approach helps mitigate data heterogeneity. Despite the fact that the local updates initially tend to converge towards the local

810 minima x_i^* , the correction direction $y_i^{(t)}$ ensures that the update direction is guided towards the
 811 global minimum x^* . This process is demonstrated for local updates from k to $k + 3$, where the
 812 update at each step accounts for the correction direction, preventing the local update from being
 813 biased by the local minima.

814

833
 834
 835
 836 Figure 3: Illustration of the usage of the correction direction y_i^t in addressing data heterogeneity
 837 during client's local model updates.

B NOTATIONS AND PRELIMINARY RESULTS

842 For the simplicity of the proof, we let $\eta_l = N\eta'_l$ and $\eta_g = \frac{\eta'_g}{N}$, where η'_l and η'_g are the learning rates
 843 in the proposed FedSUM family (i.e., we change the learning rate symbols by letting $\eta_l \leftarrow N\eta'_l$ and
 844 $\eta_g \leftarrow \frac{\eta'_g}{N}$).

845 Define $\mathcal{F}^{(-1)} := \emptyset$, $\mathcal{F}_i^{(t,k)} := \sigma\left(\cup_{0 \leq j \leq k} \{\xi_i^{(t,j)}\} \cup \mathcal{F}^{(t-1)}\right)$, and let $\mathcal{F}^{(t)} :=$
 846 $\sigma\left(\cup_{i \in \mathcal{N}, 0 \leq k \leq K-1} \mathcal{F}_i^{(t,k)} \cup \{\mathcal{S}_j\}_{j=0}^t\right)$ if the participation sequence $\{\mathcal{S}_t\}_{t=0}^{T-1}$ is random; otherwise,
 847 $\mathcal{F}^{(t)} := \sigma\left(\cup_{i \in \mathcal{N}, 0 \leq k \leq K-1} \mathcal{F}_i^{(t,k)}\right)$, where $\sigma(\cdot)$ denotes the σ -algebra generated by the random
 848 variables within the parentheses. We use $\mathbb{E}[\cdot]$ to denote the expectation over the stochastic gradient.
 849 Additionally, each $a_{i,t}$, τ_t , τ_{\max} and τ_{avg} are functions of \mathcal{S}_t , where $t = 0, \dots, T-1$. These can be
 850 directly used and evaluated by taking the full expectation.

851 We define $S_t := |\mathcal{S}_t| \leq N$ and $A_t := |\mathcal{A}_t| \leq N$. The stochastic gradient of client $i \in \mathcal{S}_t$ at round
 852 t and the k -th local update is denoted as $g_i(x_i^{(t,0)}, \xi_i^{(t,k)}) := \nabla F_i(x_i^{(t,0)}, \xi_i^{(t,k)})$ in FedSUM-B, and
 853 $g_i(x_i^{(t,k)}, \xi_i^{(t,k)}) := \nabla F_i(x_i^{(t,k)}, \xi_i^{(t,k)})$ in FedSUM and FedSUM-CR for simplicity.

854 Lemma B.1 provides a basic variance upper bound for the aggregated stochastic gradient, which is
 855 crucial for analyzing the convergence of the FedSUM family, and holds obviously since each client
 856 draws independent samples in every round and local update.

857 **Lemma B.1.** *Suppose Assumption 1.2 holds. Then, for any active set \mathcal{A}_t of clients, it holds that*

$$862 \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t,k})}, \xi_i^{(a_{i,t,k})}) - \nabla f_i(x^{(a_{i,t,k})}) \right] \right\|^2 \leq N K \sigma^2.$$

864 *Proof.* By the independently and randomly sampled $\{\xi_i\}$, it implies that
 865

$$\begin{aligned}
 866 \quad & \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t}, k)}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x^{(a_{i,t}, k)}) \right] \right\|^2 \\
 867 \quad & = \sum_{i \in \mathcal{A}_t} \mathbb{E} \left\| \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t}, k)}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x^{(a_{i,t}, k)}) \right] \right\|^2 \\
 868 \quad & = \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| \left[g_i(x^{(a_{i,t}, k)}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x^{(a_{i,t}, k)}) \right] \right\|^2 \\
 869 \quad & \leq \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \sigma^2 \leq A_t K \sigma^2 \leq N K \sigma^2.
 \end{aligned}$$

□

880 Lemma B.2 establishes a basic relationship between the minimum last-selection round among clients
 881 and the maximum delay τ_{\max} .
 882

883 **Lemma B.2.** *For any $k \geq 0$, it holds that*

$$884 \quad \min_{i \in \mathcal{N}} \{a_{i, k + \tau_{\max}}\} \geq k.$$

885 *Proof.* First, by the definition of τ_{\max} , for any client $i \in \mathcal{N}$, it should be updated during the iteration
 886 from k to $k + \tau_{\max}$. Otherwise, there exists $k' \leq T$ and client $i \in \mathcal{N}$ such that client i is not selected
 887 during the iteration from k' to $k' + \tau_{\max}$. Then, it implies that

$$\begin{aligned}
 888 \quad & \tau_{\max} \geq k' + \tau_{\max} - \min_{j \in \mathcal{N}} \{a_{j, k' + \tau_{\max}}\} \geq k' + \tau_{\max} - a_{i, k' + \tau_{\max}} \\
 889 \quad & \geq k' + \tau_{\max} - a_{i, k' + \tau_{\max}} \geq k' + \tau_{\max} - a_{i, k' - 1} \\
 890 \quad & = \tau_{\max} + 1 + (k' - 1 - a_{i, k' - 1}) \geq \tau_{\max} + 1,
 \end{aligned}$$

891 where we use the facts that $a_{i, k' - 1} = a_{i, k'} = \dots = a_{i, k' + \tau_{\max}}$ in the fourth inequality and $t - a_{i,t} \geq 0$ in the last inequality. It conducts to a contradiction.
 892

893 Thus, for any k and for any client $i \in \mathcal{N}$, client i should be selected at least once during the iteration
 894 from k to $k + \tau_{\max}$ i.e. there exists $k^* \in \{k, k + 1, \dots, k + \tau_{\max}\}$ such that $a_{i, k^*} = k^*$. As a
 895 result, we have

$$896 \quad a_{i, k + \tau_{\max}} \geq a_{i, k^*} = k^* \geq k.$$

897 Therefore, we have

$$898 \quad \min_{i \in \mathcal{N}} \{a_{i, k + \tau_{\max}}\} \geq k.$$

□

900 C CONVERGENCE ANALYSIS FOR FEDSUM-B

901 In this section, we get the convergence result of FedSUM-B.

902 We begin with the update direction $y^{(t)}$ of server in FedSUM-B shown as follows.

$$903 \quad y^{(t)} = \frac{1}{K} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} g_i(x^{(a_{i,t}, k)}, \xi_i^{(a_{i,t}, k)}). \quad (14)$$

904 **Lemma C.1.** *Suppose Assumption 1.1 and 1.2 hold. Then, we have*

$$905 \quad \sum_{t=0}^{T-1} \mathbb{E} \left\| x^{(t+1)} - x^{(t)} \right\|^2 \leq 2 \frac{\eta_g^2 \eta_l^2 K T}{N} \sigma^2 + 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2.$$

Proof. Invoking Equation (14), we have

$$\begin{aligned}
& \left\| x^{(t+1)} - x^{(t)} \right\|^2 = \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \left\| y^{(t)} \right\|^2 = \frac{\eta_g^2 \eta_l^2}{N^2} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t}, k)}) \right\|^2 \\
& \leq \frac{\eta_g^2 \eta_l^2}{N^2} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\|^2 + 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \left\| \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{a_{i,t}}) \right\|^2. \tag{15}
\end{aligned}$$

Invoking Assumption 1.2, we have, by taking expectation on both sides of Equation (15),

$$\begin{aligned}
& \mathbb{E} \|x^{(t+1)} - x^{(t)}\|^2 \leq 2 \frac{\eta_g^2 \eta_l^2}{N^2} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \sigma^2 + 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\
& \leq 2 \frac{\eta_g^2 \eta_l^2 K}{N} \sigma^2 + 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2.
\end{aligned} \tag{16}$$

We get the desired result by summing over t from 0 to $T - 1$ on the both sides of Equation (16). \square

Lemma C.2. *Suppose Assumption 1.1 and 1.2 hold. Then, we have*

$$\sum_{t=0}^{T-1} \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2 \leq \tau_{\max} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2$$

Proof. Invoking Lemma B.2, we have $t - \tau_t > \min \{0, t - \tau_{\max}\}$ and hence,

$$\begin{aligned} & \sum_{t=0}^{T-1} \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2 \leq \sum_{t=0}^{T-1} \sum_{p=\min\{0, t-\tau_{\max}\}}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2 \\ & \leq \sum_{p=0}^{T-1} \sum_{t=p+\tau_{\max}}^{t=p+1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2 \leq \tau_{\max} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \nabla f_j(x^{(a_{j,t})}) \right\|^2, \end{aligned}$$

which gives the desired result.

Corollary C.3 holds directly by Lemma C.2.

Corollary C.3. Suppose Assumption 1.1 and 1.2 hold. Then, we have

$$\sum_{t=0}^{T-1} \tau_t \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2 \leq \tau_{\max}^2 \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2$$

Lemma C.4 Suppose Assumption 1.1 and 1.2 hold. Then we have

$$\begin{aligned} & \sum_{t=0}^T \mathbb{E} \left\| \sum_{i=1}^n \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\ & \leq 4\eta_g^2\eta_l^2\tau_{\max}\tau_{avg}NKT L^2\sigma^2 + 4\eta_g^2\eta_l^2\tau_{\max}^2K^2L^2 \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 + 2N^2\tau_{\max}F_0, \end{aligned}$$

where $F_0 := \frac{1}{N} \sum_{i=1}^N \|\nabla f_i(x^{(0)})\|^2$.

Proof. It holds that

$$\begin{aligned}
& \left\| \sum_{i \in \mathcal{N}} \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\
&= \left\| \sum_{i \in \mathcal{N}} \left[\nabla f_i(x^{(t)}) - \nabla f_i(x^{(a_{i,t})}) \right] + \sum_{i \in \mathcal{N} \setminus \mathcal{A}_t} \nabla f_i(x^{(0)}) \right\|^2 \\
&\leq 2N \sum_{i \in \mathcal{N}} \left\| \nabla f_i(x^{(t)}) - \nabla f_i(x^{(a_{i,t})}) \right\|^2 + 2(N - A_t) \sum_{i \in \mathcal{N} \setminus \mathcal{A}_t} \left\| \nabla f_i(x^{(0)}) \right\|^2 \\
&\leq 2NL^2 \sum_{i \in \mathcal{N}} \left\| x^{(t)} - x^{(a_{i,t})} \right\|^2 + 2(N - A_t) \sum_{i \in \mathcal{N} \setminus \mathcal{A}_t} \left\| \nabla f_i(x^{(0)}) \right\|^2. \tag{17}
\end{aligned}$$

Invoking Equation (14), we have, by taking full expectation, that

$$\begin{aligned}
\sum_{i \in \mathcal{N}} \mathbb{E} \left\| x^{(t)} - x^{(a_{i,t})} \right\|^2 &= \sum_{i \in \mathcal{N}} \mathbb{E} \left\| \sum_{p=a_{i,t}}^{t-1} \left[x^{(p+1)} - x^{(p)} \right] \right\|^2 = \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \sum_{i \in \mathcal{N}} \mathbb{E} \left\| \sum_{p=a_{i,t}}^{t-1} y^{(p)} \right\|^2 \\
&= \frac{\eta_g^2 \eta_l^2}{N^2} \sum_{i \in \mathcal{N}} \mathbb{E} \left\| \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} g_j(x^{(a_{j,p})}, \xi_j^{(a_{j,p},k)}) \right\|^2 \\
&\leq 2 \frac{\eta_g^2 \eta_l^2}{N^2} \sum_{i \in \mathcal{N}} \mathbb{E} \left\| \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \left[g_j(x^{(a_{j,p})}, \xi_j^{(a_{j,p},k)}) - \nabla f_j(x^{(a_{j,p})}) \right] \right\|^2 \\
&\quad + 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \sum_{i \in \mathcal{N}} \mathbb{E} \left\| \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2
\end{aligned} \tag{18}$$

We can bound the first term in Equation (45) as follows:

$$\begin{aligned}
& 2 \frac{\eta_g^2 \eta_l^2}{N^2} \sum_{i \in \mathcal{N}} \mathbb{E} \left\| \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \left[g_j(x^{(a_{j,p})}, \xi_j^{(a_{j,p}, k)}) - \nabla f_j(x^{(a_{j,p})}) \right] \right\|^2 \\
& \leq 2 \frac{\eta_g^2 \eta_l^2}{N^2} \sum_{i \in \mathcal{N}} (t - a_{i,t}) \sum_{p=a_{i,t}}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \left[g_j(x^{(a_{j,p})}, \xi_j^{(a_{j,p}, k)}) - \nabla f_j(x^{(a_{j,p})}) \right] \right\|^2 \\
& \leq 2 \frac{\eta_g^2 \eta_l^2}{N^2} \sum_{i \in \mathcal{N}} \tau_{\max} \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \mathbb{E} \left\| g_j(x^{(a_{j,p})}, \xi_j^{(a_{j,p}, k)}) - \nabla f_j(x^{(a_{j,p})}) \right\|^2 \\
& \leq 2 \frac{\eta_g^2 \eta_l^2 \tau_{\max}}{N^2} \sum_{i \in \mathcal{N}} \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \sigma^2 \leq 2 \frac{\eta_g^2 \eta_l^2 \tau_{\max} K}{N} \sum_{i \in \mathcal{N}} \sum_{p=a_{i,t}}^{t-1} \sigma^2 = 2 \frac{\eta_g^2 \eta_l^2 \tau_{\max} K}{N} \sum_{i \in \mathcal{N}} (t - a_{i,t}) \sigma^2 \\
& \leq 2 \eta_g^2 \eta_l^2 K \tau_t \tau_{\max} \sigma^2.
\end{aligned} \tag{19}$$

For the second term in Equation (45), we have

$$\begin{aligned}
& 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \sum_{i \in \mathcal{N}} \mathbb{E} \left\| \sum_{p=a_i, t}^{t-1} \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2 \leq 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \sum_{i \in \mathcal{N}} (t - a_{i,t}) \sum_{p=a_i, t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2 \\
& \leq 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \sum_{i \in \mathcal{N}} \tau_t \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2 = 2 \frac{\eta_g^2 \eta_l^2 K^2}{N} \tau_t \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2. \tag{20}
\end{aligned}$$

Summing over t from 0 to $T - 1$ and invoking Lemma C.2 and Corollary C.3, we have

$$\begin{aligned}
& \sum_{t=0}^{T-1} \sum_{i \in \mathcal{N}} \mathbb{E} \left\| x^{(t)} - x^{(a_{i,t})} \right\|^2 \\
& \leq 2\eta_g^2 \eta_l^2 K \tau_{\max} \sigma^2 \sum_{t=0}^{T-1} \tau_t + 2 \frac{\eta_g^2 \eta_l^2 K^2}{N} \sum_{t=0}^{T-1} \tau_t \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2 \\
& \leq 2\eta_g^2 \eta_l^2 \tau_{\text{avg}} \tau_{\max} K T \sigma^2 + 2 \frac{\eta_g^2 \eta_l^2 K^2}{N} \tau_{\max}^2 \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2. \tag{21}
\end{aligned}$$

Furthermore, we can bound the second term in Equation (17) as follows:

$$\begin{aligned}
& 2 \sum_{t=0}^{T-1} (N - A_t) \sum_{i \in \mathcal{N} / \mathcal{A}_t} \left\| \nabla f_i(x^{(0)}) \right\|^2 \leq 2 \sum_{t=0}^{T-1} (N - A_t) \sum_{i=1}^N \left\| \nabla f_i(x^{(0)}) \right\|^2 \\
& = 2 \sum_{t=0}^{T-1} \sum_{j \in \mathcal{N} / \mathcal{A}_t} \sum_{i=1}^N \left\| \nabla f_i(x^{(0)}) \right\|^2 = 2 \sum_{t=0}^{T-1} \sum_{j \in \mathcal{N}} \mathbb{1}_{\{j \notin \mathcal{A}_t\}} \sum_{i=1}^N \left\| \nabla f_i(x^{(0)}) \right\|^2 \\
& \leq 2N^2 \tau_{\max} F_0,
\end{aligned} \tag{22}$$

where $F_0 := \frac{1}{N} \sum_{i=1}^N \|\nabla f_i(x^{(0)})\|^2$ and we use $\sum_{j \in \mathcal{N}} \sum_{t=0}^T \mathbb{1}_{\{j \notin \mathcal{A}_t\}} \leq \sum_{i=1}^N \tau_{\max} = N\tau_{\max}$ in the last inequality.

Finally, we can combine Equation (18), (19), (20), (21) and (22) to get the desired result:

$$\begin{aligned}
& \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{N}} \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\
& \leq 4\eta_g^2\eta_l^2\tau_{\max}\tau_{\text{avg}}NKT L^2\sigma^2 + 4\eta_g^2\eta_l^2\tau_{\max}^2K^2L^2 \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 + 2N^2\tau_{\max}F_0.
\end{aligned} \tag{23}$$

Lemma C.5. Suppose Assumption 1.1 and 1.2 hold. Then, we have

$$\begin{aligned}
& - \frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\rangle \\
& \leq 3 \frac{\eta_g^2 \eta_l^2 K}{N} \tau_{avg} \sigma^2 L T + 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \tau_{\max} L \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2.
\end{aligned}$$

Proof. By the independently and randomly sampled $\xi_i^{(a_{i,t})}$, we have, for each $i \in \mathcal{A}_t$, and $0 \leq k \leq K-1$,

$$\mathbb{E} \left\langle \nabla f(x^{(\min_{i \in \mathcal{N}}\{a_{i,t}\})}), g_i(x^{(a_{i,t,k}}), \xi_i^{(a_{i,t,k})}) - \nabla f_i(x^{(a_{i,t})}) \right\rangle = 0. \quad (24)$$

We then derive that

$$\begin{aligned}
& - \frac{\eta_g \eta_l}{N} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\rangle \\
& = - \frac{\eta_g \eta_l}{N} \mathbb{E} \left\langle \nabla f(x^{(t)}) - \nabla f(x^{(t-\tau_t)}), \sum_{i \in A_*} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\rangle. \tag{25}
\end{aligned}$$

1080 Then, if $\tau_t > 0$, it holds by picking $\alpha = \frac{1}{\tau_t L}$ in the Cauchy-Schwarz inequality $\langle a, b \rangle \leq \alpha \|a\|^2 + \frac{1}{\alpha} \|b\|^2$ that,

1083

$$1084 - \frac{\eta_g \eta_l}{N} \mathbb{E} \left\langle \nabla f(x^{(t)}) - \nabla f(x^{(t-\tau_t)}), \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\rangle \\ 1085 \leq \frac{1}{\tau_t L} \mathbb{E} \left\| \nabla f(x^{(t)}) - \nabla f(x^{(t-\tau_t)}) \right\|^2 + \frac{\eta_g^2 \eta_l^2}{N^2} \tau_t L \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\|^2. \\ 1086 \\ 1087 \\ 1088 \\ 1089 \\ 1090 \\ 1091 \\ 1092 \\ 1093 \\ 1094 \\ 1095 \\ 1096 \\ 1097 \\ 1098 \\ 1099 \\ 1100 \\ 1101 \\ 1102 \\ 1103 \\ 1104 \\ 1105 \\ 1106 \\ 1107 \\ 1108 \\ 1109 \\ 1110 \\ 1111 \\ 1112 \\ 1113 \\ 1114 \\ 1115 \\ 1116 \\ 1117 \\ 1118 \\ 1119 \\ 1120 \\ 1121 \\ 1122 \\ 1123 \\ 1124 \\ 1125 \\ 1126 \\ 1127 \\ 1128 \\ 1129 \\ 1130 \\ 1131 \\ 1132 \\ 1133$$

With the fact that, by taking full expectation,

$$\tau_t \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\|^2 \\ \leq \tau_t \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x^{(a_{i,t})}) \right\|^2 \leq KN\tau_t\sigma^2,$$

and

$$\mathbb{E} \left\| \nabla f(x^{(t)}) - \nabla f(x^{(t-\tau_t)}) \right\|^2 \leq L^2 \mathbb{E} \left\| x^{(t)} - x^{(t-\tau_t)} \right\|^2 = \frac{\eta_g^2 \eta_l^2}{N^2} L^2 \mathbb{E} \left\| \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} g_j(x^{(a_{j,p})}, \xi_j^{(a_{j,p},k)}) \right\|^2 \\ \leq 2 \frac{\eta_g^2 \eta_l^2}{N^2} L^2 \mathbb{E} \left\| \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \left[g_j(x^{(a_{j,p})}, \xi_j^{(a_{j,p},k)}) - \nabla f_j(x^{(a_{j,p})}) \right] \right\|^2 \\ + 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} L^2 \mathbb{E} \left\| \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2,$$

we have

$$\mathbb{E} \left\| \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \left[g_j(x^{(a_{j,p})}, \xi_j^{(a_{j,p},k)}) - \nabla f_j(x^{(a_{j,p})}) \right] \right\|^2 \\ \leq \tau_t \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \left[g_j(x^{(a_{j,p})}, \xi_j^{(a_{j,p},k)}) - \nabla f_j(x^{(a_{j,p})}) \right] \right\|^2 \\ = \tau_t \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \mathbb{E} \left\| g_j(x^{(a_{j,p})}, \xi_j^{(a_{j,p},k)}) - \nabla f_j(x^{(a_{j,p})}) \right\|^2 \leq NK\tau_t^2\sigma^2,$$

and

$$\mathbb{E} \left\| \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2 \leq \tau_t \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2.$$

Thus, summing over t from 0 to T on both sides of Equation (26) and invoking Corollary D.3, we have the following bound holds no matter whether $\tau_t < t$ or not:

$$\begin{aligned}
& -\frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in \mathcal{A}_t} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t})}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\rangle \\
& \leq \frac{\eta_g^2 \eta_l^2}{N^2} \sum_{t=0}^{T-1} \tau_t K N \sigma^2 L + 2 \frac{\eta_g^2 \eta_l^2}{N^2} N K \sum_{t=0}^{T-1} \tau_t \sigma^2 L + 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} L \sum_{t=0}^{T-1} \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \nabla f_j(x^{(a_{j,p})}) \right\|^2 \\
& \leq 3 \frac{\eta_g^2 \eta_l^2 K}{N} \tau_{\text{avg}} \sigma^2 L T + 2 \frac{\eta_g^2 \eta_l^2 K^2}{N^2} \tau_{\text{max}} L \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2,
\end{aligned} \tag{27}$$

which gives the desired result.

Lemma C.6. Suppose Assumption 1.1 and 1.2 hold. Then, for $\eta_g \eta_l K \leq \frac{1}{8\tau_{\max} L}$, we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{2\Delta_f}{\eta_g \eta_l K T} + 10 \frac{\eta_g \eta_l}{N} \max \{1, \tau_{avg}\} \sigma^2 L + \frac{2\tau_{\max} F_0}{T},$$

where $\Delta_f := f(x^{(0)}) - f^*$ and $F_0 := \frac{1}{N} \sum_{i=1}^N \|\nabla f_i(x^{(0)})\|^2$.

Proof. By Assumption 1.1, the function $f := \frac{1}{N} \sum_{i=1}^N f_i$ is L -smooth. Then, it holds by the descent lemma that

$$\mathbb{E} f(x^{(t+1)}) \leq \mathbb{E} f(x^{(t)}) + \mathbb{E} \left\langle \nabla f(x^{(t)}), x^{(t+1)} - x^{(t)} \right\rangle + \frac{L}{2} \left\| x^{(t+1)} - x^{(t)} \right\|^2. \quad (28)$$

For the inner product term in Equation (28), there holds that

$$\begin{aligned}
& \mathbb{E} \left\langle \nabla f(x^{(t)}), x^{(t+1)} - x^{(t)} \right\rangle = \mathbb{E} \left\langle \nabla f(x^{(t)}), -\frac{\eta_g \eta_l K}{N} y^{(t)} \right\rangle \\
& = -\frac{\eta_g \eta_l}{N} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\rangle \\
& \quad - \frac{\eta_g \eta_l K}{N} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\rangle. \tag{29}
\end{aligned}$$

For the second term in Equation (29), we have

```

1175
1176   -  $\frac{\eta_g \eta_l K}{N} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\rangle$ 
1177
1178   = -  $\frac{\eta_g \eta_l K}{N^2} \mathbb{E} \left\langle \sum_{i=1}^N \nabla f_i(x^{(t)}), \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\rangle$ 
1179
1180
1181   = -  $\frac{\eta_g \eta_l K}{2N^2} \mathbb{E} \left[ \left\| \sum_{i=1}^N \nabla f_i(x^{(t)}) \right\|^2 + \left\| \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 - \left\| \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \right]$ 
1182
1183
1184   = -  $\frac{1}{2} \eta_g \eta_l K \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 - \frac{\eta_g \eta_l K}{2N^2} \mathbb{E} \left\| \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 + \frac{\eta_g \eta_l K}{2N^2} \mathbb{E} \left\| \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2. \quad (30)$ 
1185
1186
1187

```

1188 Then, summing over t from 0 to $T - 1$ on both sides of Equation (28) and taking full expectation,
1189 we have

$$\begin{aligned}
1191 \quad 0 &\leq \Delta_f - \frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\rangle \\
1192 &\quad - \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 - \frac{\eta_g \eta_l K}{2N^2} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\
1193 &\quad + \frac{\eta_g \eta_l K}{2N^2} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 + \frac{L}{2} \sum_{t=0}^{T-1} \mathbb{E} \left\| x^{(t+1)} - x^{(t)} \right\|^2, \\
1194 &\quad + \frac{\eta_g \eta_l K}{2N^2} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 + \frac{L}{2} \sum_{t=0}^{T-1} \mathbb{E} \left\| x^{(t+1)} - x^{(t)} \right\|^2,
\end{aligned} \tag{31}$$

1200 where $\Delta_f := f(x^{(0)}) - f^*$. Implementing Lemma C.1 into Equation (31), we have
1201

$$\begin{aligned}
1202 \quad 0 &\leq \Delta_f - \frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\rangle \\
1203 &\quad - \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 - \frac{\eta_g \eta_l K}{2N^2} (1 - 2\eta_g \eta_l K L) \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\
1204 &\quad + \frac{\eta_g \eta_l K}{2N^2} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 + \frac{\eta_g^2 \eta_l^2 K T}{N} \sigma^2 L. \\
1205 &\quad + \frac{\eta_g^2 \eta_l^2 K T}{N} \sigma^2 L + \frac{2\eta_g^3 \eta_l^3 \tau_{\max} \tau_{\text{avg}} K^2 T}{N} \sigma^2 L^2 + \eta_g \eta_l \tau_{\max} K F_0.
\end{aligned} \tag{32}$$

1211 Implementing Lemma C.4 into Equation (32), we have
1212

$$\begin{aligned}
1213 \quad 0 &\leq \Delta_f - \frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \left[g_i(x^{(a_{i,t})}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\rangle \\
1214 &\quad - \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 - \frac{\eta_g \eta_l K}{2N^2} (1 - 2\eta_g \eta_l K L - 4\eta_g^2 \eta_l^2 \tau_{\max}^2 K^2 L^2) \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\
1215 &\quad + \frac{\eta_g^2 \eta_l^2 K T}{N} \sigma^2 L + \frac{2\eta_g^3 \eta_l^3 \tau_{\max} \tau_{\text{avg}} K^2 T}{N} \sigma^2 L^2 + \eta_g \eta_l \tau_{\max} K F_0.
\end{aligned} \tag{33}$$

1216 Implementing Lemma C.5 into Equation (33), we have
1217

$$\begin{aligned}
1218 \quad 0 &\leq \Delta_f + 3 \frac{\eta_g^2 \eta_l^2 K}{N} \tau_{\text{avg}} T \sigma^2 L - \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \\
1219 &\quad - \frac{\eta_g \eta_l K}{2N^2} (1 - 2\eta_g \eta_l K L - 4\eta_g^2 \eta_l^2 \tau_{\max}^2 K^2 L^2 - 4\eta_g \eta_l K \tau_{\max} L) \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in A_t} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\
1220 &\quad + \frac{\eta_g^2 \eta_l^2 K T}{N} \sigma^2 L + \frac{2\eta_g^3 \eta_l^3 \tau_{\max} \tau_{\text{avg}} K^2 T}{N} \sigma^2 L^2 + \eta_g \eta_l \tau_{\max} K F_0.
\end{aligned} \tag{34}$$

1221 For $\eta_g \eta_l K \leq \frac{1}{8\tau_{\max} L}$, we have
1222

$$1223 \quad 1 - 2\eta_g \eta_l K L - 4\eta_g^2 \eta_l^2 \tau_{\max}^2 K^2 L^2 - 4\eta_g \eta_l K \tau_{\max} L > 1 - \frac{1}{4\tau_{\max}} - \frac{1}{16} - \frac{1}{2} > \frac{1}{16} > 0.$$

1224 Hence, for $\eta_g \eta_l K \leq \frac{1}{8\tau_{\max} L}$, we can rearrange Equation (34) to get
1225

$$1226 \quad \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^T \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \Delta_f + 5 \frac{\eta_g^2 \eta_l^2 K}{N} \max \{1, \tau_{\text{avg}}\} T \sigma^2 L + \eta_g \eta_l K \tau_{\max} F_0. \tag{35}$$

1227 where we use the fact that $\frac{2\eta_g^3 \eta_l^3 \tau_{\max} \tau_{\text{avg}} K^2 T}{N} \sigma^2 L^2 \leq \frac{\eta_g^2 \eta_l^2 K}{N} T \sigma^2 L$ for $\eta_g \eta_l K \leq \frac{1}{8\tau_{\max} L}$.
1228

Dividing both sides of Equation (35) by $\frac{1}{2}\eta_g\eta_lKT$, we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{2\Delta_f}{\eta_g\eta_lKT} + 10 \frac{\eta_g\eta_l}{N} \max \{1, \tau_{\text{avg}}\} \sigma^2 L + \frac{2\tau_{\max}F_0}{T}, \quad (36)$$

which completes the proof. \square

Theorem C.1. Suppose Assumption 1.1 and 1.2 hold. Then, for $\eta_g\eta_l = \min \left\{ \frac{\sqrt{N\Delta_f}}{\sqrt{\max \{1, \tau_{\text{avg}}\} KTL\sigma^2}}, \frac{1}{10K\tau_{\max}L} \right\}$, we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{30\sqrt{\max \{1, \tau_{\text{avg}}\} L\sigma^2\Delta_f}}{\sqrt{NKT}} + \frac{20\tau_{\max}(F_0 + L\Delta_f)}{T},$$

where $\Delta_f := f(x^{(0)}) - f^*$ and $F_0 := \frac{1}{N} \sum_{i=1}^N \left\| \nabla f_i(x^{(0)}) \right\|^2$.

Proof. Invoking Lemma C.6, we have, for $\eta_g\eta_lK \leq \frac{1}{8\tau_{\max}L}$,

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{2\Delta_f}{\eta_g\eta_lKT} + 10 \frac{\eta_g\eta_l}{N} \max \{1, \tau_{\text{avg}}\} \sigma^2 L + \frac{2\tau_{\max}F_0}{T}. \quad (37)$$

For

$$\eta_g\eta_l = \min \left\{ \frac{\sqrt{N\Delta_f}}{\sqrt{\max \{1, \tau_{\text{avg}}\} KTL\sigma^2}}, \frac{1}{10K\tau_{\max}L} \right\},$$

we have

$$\begin{aligned} \frac{2\Delta_f}{\eta_g\eta_lKT} &\leq \frac{2\sqrt{\max \{1, \tau_{\text{avg}}\} L\sigma^2\Delta_f}}{\sqrt{NKT}} + \frac{20\tau_{\max}L\Delta_f}{T}, \\ 10 \frac{\eta_g\eta_l}{N} \max \{1, \tau_{\text{avg}}\} \sigma^2 L &\leq \frac{10\sqrt{\max \{1, \tau_{\text{avg}}\} L\sigma^2\Delta_f}}{\sqrt{NKT}}. \end{aligned}$$

Thus, we can combine the above two inequalities with Equation (37) to get

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{12\sqrt{\max \{1, \tau_{\text{avg}}\} L\sigma^2\Delta_f}}{\sqrt{NKT}} + \frac{20\tau_{\max}(F_0 + L\Delta_f)}{T}, \quad (38)$$

which gives the desired result by scaling the constants appropriately. \square

D CONVERGENCE ANALYSIS FOR FEDSUM

In this section, we prove the convergence result of FedSUM.

We derive the update direction $y^{(t)}$ in FedSUM as follows.

$$y^{(t)} = \frac{1}{K} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}). \quad (39)$$

Furthermore, the local control variable $h_i^{(t)}$ and local update correction direction $y_i^{(t)}$ for $i \in \mathcal{A}_t$ are defined as follows:

$$h_i^{(t)} = \frac{1}{K} \sum_{k=0}^{K-1} g_i(x_i^{(a_{i,t-1},k)}, \xi_i^{(a_{i,t-1},k)}). \quad (40)$$

$$y_i^{(t)} = \frac{1}{K} \sum_{j \in \mathcal{A}_{t-1}/\{i\}} \sum_{k=0}^{K-1} g_j(x_j^{(a_{j,t-1},k)}, \xi_j^{(a_{j,t-1},k)}). \quad (41)$$

Lemma D.1 establishes a basic relationship between the difference of two consecutive model updates and the aggregated gradient, shown as follows.

1296 **Lemma D.1.** Suppose Assumption 1.1 and 1.2 hold. Then, it holds that
1297

$$1298 \sum_{t=0}^{T-1} \mathbb{E} \|x^{(t+1)} - x^{(t)}\|^2 \leq \frac{2\eta_g^2\eta_l^2KT\sigma^2}{N} + \frac{2\eta_g^2\eta_l^2}{N^2} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2.$$

1302 *Proof.* Invoking Equation (8), we have, by line 17 in Algorithm 2,
1303

$$1304 \|x^{(t+1)} - x^{(t)}\|^2 = \frac{\eta_g^2\eta_l^2K^2}{N^2} \|y^{(t)}\|^2 = \frac{\eta_g^2\eta_l^2}{N^2} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) \right\|^2
1305 \leq \frac{2\eta_g^2\eta_l^2}{N^2} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} [g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)})] \right\|^2 + \frac{2\eta_g^2\eta_l^2}{N^2} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2. \quad (42)$$

1307 Invoking Assumption 1.2 and Lemma B.1, we have, by taking expectation on both sides of Equation
1308 (42),
1309

$$1313 \mathbb{E} \|x^{(t+1)} - x^{(t)}\|^2 \leq \frac{2\eta_g^2\eta_l^2K}{N} \sigma^2 + \frac{2\eta_g^2\eta_l^2}{N^2} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2. \quad (43)$$

1316 We get the desired result by summing over t from 0 to $T-1$ on the both sides of Equation (43). \square
1317

1318 As a direct consequence of Lemma B.2, we conduct the Lemma D.2 and Corollary D.3 to bound the
1319 aggregated gradient of server.
1320

1321 **Lemma D.2.** Suppose Assumption 1.1 and 1.2 hold. Then, we have

$$1322 \sum_{t=0}^{T-1} \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \leq \tau_{\max} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2.$$

1326 *Proof.* Invoking Lemma B.2, we have
1327

$$1328 t - \tau_t = t - \max_{i \in \mathcal{N}} \{t - a_{i,t}\} = \min_{i \in \mathcal{N}} \{a_{i,t}\} \geq \min \{0, t - \tau_{\max}\}.$$

1330 And hence,
1331

$$1332 \sum_{t=0}^{T-1} \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \leq \sum_{t=0}^{T-1} \sum_{p=\min\{0, t-\tau_{\max}\}}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2
1333 \leq \sum_{p=0}^{T-1} \sum_{t=p+1}^{p+\tau_{\max}} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 = \tau_{\max} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2,$$

1339 which gives the desired result. \square
1340

1341 Corollary D.3 is a direct consequence of Lemma D.2.
1342

1343 **Corollary D.3.** Suppose Assumption 1.1 and 1.2 hold. Then, we have

$$1344 \sum_{t=0}^{T-1} \tau_t \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \leq \tau_{\max}^2 \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2.$$

1348 Lemma D.4 is the key lemma to estimate the difference between the aggregated gradient of server
1349 and the aggregated gradient of all clients.

1350 **Lemma D.4.** Suppose Assumption 1.1 and 1.2 hold. Then, we have, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\max}}KL}$,
1351

$$\begin{aligned} 1352 \quad & \sum_{t=0}^{T-1} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 \\ 1353 \quad & \leq 3K^2 N^2 \tau_{\max} F_0 + 8\eta_g^2 \eta_l^2 K^3 N \tau_{\max} \max \{1, \tau_{\text{avg}}\} T \sigma^2 L^2 + 150\eta_l^2 N^3 K^3 T \sigma^2 L^2 \\ 1354 \quad & + (10\eta_g^2 \eta_l^2 \tau_{\max}^2 K^2 L^2 + 24\eta_l^2 K^2 N^2 \tau_{\max} L^2) \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t}, k)}) \right\|^2, \\ 1355 \quad & \end{aligned}$$

1356 where $F_0 := \frac{1}{N} \sum_{i=1}^N \|\nabla f_i(x^{(0)})\|^2$.
1357

1358 *Proof.* Notice that, by the decomposition of the difference between the aggregated gradient of server
1359 and the aggregated gradient of all clients, we have
1360

$$\begin{aligned} 1361 \quad & \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 \leq 3K^2 \left\| \sum_{i \in \mathcal{N}} \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{N}} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\ 1362 \quad & + 3 \left\| K \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) - \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 + 3K^2 \left\| \sum_{i \in \mathcal{N} / \mathcal{A}_t} \nabla f_i(x^{(0)}) \right\|^2. \\ 1363 \quad & \end{aligned} \tag{44}$$

1364 We bound the expectation of terms in Equation (44) one by one. First of all, we have
1365

$$\begin{aligned} 1366 \quad & \mathbb{E} \left\| \sum_{i \in \mathcal{N}} \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{N}} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \leq NL^2 \sum_{i \in \mathcal{N}} \mathbb{E} \left\| x^{(t)} - x^{(a_{i,t})} \right\|^2 \\ 1367 \quad & = NL^2 \sum_{i \in \mathcal{N}} \mathbb{E} \left\| \sum_{p=a_{i,t}}^{t-1} [x^{(p+1)} - x^{(p)}] \right\|^2 = \frac{\eta_g^2 \eta_l^2}{N} L^2 \sum_{i \in \mathcal{N}} \mathbb{E} \left\| \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} g_j(x_j^{(a_{j,p}, k)}, \xi_j^{(a_{j,p}, k)}) \right\|^2. \\ 1368 \quad & \end{aligned} \tag{45}$$

1369 By Assumption 1.2, we have, according to Equation (45) and summing over t ,
1370

$$\begin{aligned} 1371 \quad & 3K^2 \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{N}} \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{N}} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\ 1372 \quad & \leq 6K^2 \frac{\eta_g^2 \eta_l^2}{N} L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{N}} \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \sigma^2 + 6K^2 \frac{\eta_g^2 \eta_l^2}{N} L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{N}} \left\| \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p}, k)}) \right\|^2 \\ 1373 \quad & \leq 6\eta_g^2 \eta_l^2 K^3 N \tau_{\max} \tau_{\text{avg}} T \sigma^2 L^2 + 6\eta_g^2 \eta_l^2 K^2 \tau_{\max}^2 L^2 \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2, \\ 1374 \quad & \end{aligned} \tag{46}$$

1375 where the procedure is similar to the proof of Lemma C.4.
1376

1377 For the second part of Equation (44), we have, by Assumption 1.1,
1378

$$\begin{aligned} 1379 \quad & \left\| K \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) - \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 = \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} [\nabla f_i(x^{(a_{i,t})}) - \nabla f_i(x_i^{(a_{i,t}, k)})] \right\|^2 \\ 1380 \quad & \leq NKL^2 \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \|x^{(a_{i,t})} - x_i^{(a_{i,t}, k)}\|^2. \\ 1381 \quad & \end{aligned} \tag{47}$$

1382 Note that $x^{(a_{i,t})}$ is the local model of client i at the beginning of round $a_{i,t}$, and $x_i^{(a_{i,t}, k)}$ is the
1383 local model of client i at the beginning of round $a_{i,t}$ after k local updates. Then, according to the
1384

definition of $h_i^{(t)}$ and $y_i^{(t)}$ shown in Equation 40 and 41, it holds that

$$\begin{aligned}
& \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left\| x^{(a_{i,t})} - x_i^{(a_{i,t}, k)} \right\|^2 = \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left\| \sum_{p=0}^{k-1} \left[x_i^{(a_{i,t}, p)} - x_i^{(a_{i,t}, p+1)} \right] \right\|^2 \\
& = \eta_l^2 \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left\| \sum_{p=0}^{k-1} \left[g_i(x_i^{(a_{i,t}, p)}, \xi_i^{(a_{i,t}, p)}) + y_i^{(a_{i,t})} \right] \right\|^2 \\
& \leq 2\eta_l^2 \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left\| \sum_{p=0}^{k-1} \left[g_i(x_i^{(a_{i,t}, p)}, \xi_i^{(a_{i,t}, p)}) - h_i^{(a_{i,t})} \right] \right\|^2 + 2\eta_l^2 \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left\| \sum_{p=0}^{k-1} y^{(a_{i,t}-1)} \right\|^2.
\end{aligned} \tag{48}$$

We deal with the first term in Equation (48) as follows. Notice that, by the definition of $h_i^{(t)}$ in Equation (40) that

$$h_i^{(a_{i,t})} = \frac{1}{K} \sum_{k=0}^{K-1} g_i(x_i^{(a_{i,a_{i,t-1}}, k)}, \xi_i^{(a_{i,a_{i,t-1}}, k)}),$$

where $a_{i,a_{i,t}-1}$ is the round when client i is selected in the second last round before t . Then, we have

$$\begin{aligned}
& \left\| \sum_{p=0}^{k-1} \left[g_i(x_i^{(a_{i,t},p)}, \xi_i^{(a_{i,t},p)}) - h_i^{(a_{i,t})} \right] \right\|^2 \\
& \leq 5 \left\| \sum_{p=0}^{k-1} \left[g_i(x_i^{(a_{i,t},p)}, \xi_i^{(a_{i,t},p)}) - \nabla f_i(x_i^{(a_{i,t},p)}) \right] \right\|^2 + 5 \left\| \sum_{p=0}^{k-1} \left[\nabla f_i(x_i^{(a_{i,t},p)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\|^2 \\
& \quad + 5k^2 \left\| \nabla f_i(x^{(a_{i,t})}) - \nabla f_i(x^{(a_{i,a_{i,t}-1})}) \right\|^2 + 5 \frac{k^2}{K^2} \left\| \sum_{q=0}^{K-1} \left[\nabla f_i(x^{(a_{i,a_{i,t}-1})}) - \nabla f_i(x_i^{(a_{i,a_{i,t}-1},q)}) \right] \right\|^2 \\
& \quad + 5 \frac{k^2}{K^2} \left\| \sum_{q=0}^{K-1} \left[g_i(x_i^{(a_{i,a_{i,t}-1},q)}, \xi_i^{(a_{i,a_{i,t}-1},q)}) - \nabla f_i(x^{(a_{i,a_{i,t}-1},q)}) \right] \right\|^2.
\end{aligned} \tag{49}$$

Then, by taking expectation and invoking Equation (48), we have the following upper bound for each term in Equation (49).

Term 1:

$$\begin{aligned}
& \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| \sum_{p=0}^{k-1} \left[g_i(x_i^{(a_{i,t}, p)}, \xi_i^{(a_{i,t}, p)}) - \nabla f_i(x_i^{(a_{i,t}, p)}) \right] \right\|^2 \\
& \leq \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \sum_{p=0}^{k-1} \sigma^2 \leq \eta_l^2 N K^2 T \sigma^2.
\end{aligned} \tag{50}$$

Term 2:

$$\begin{aligned}
& \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| \sum_{p=0}^{k-1} \left[\nabla f_i(x_i^{(a_{i,t}, p)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\|^2 \leq \eta_l^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} k \sum_{p=0}^{k-1} \mathbb{E} \|x_i^{(a_{i,t}, p)} - x^{(a_{i,t})}\|^2 \\
& \leq \eta_l^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} k \sum_{p=0}^{K-1} \mathbb{E} \|x_i^{(a_{i,t}, p)} - x^{(a_{i,t})}\|^2 \leq \eta_l^2 K^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \|x_i^{(a_{i,t}, k)} - x^{(a_{i,t})}\|^2. \tag{51}
\end{aligned}$$

1458

Term 3:

1459

1460

1461

$$\begin{aligned}
 & \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} k^2 \left\| \nabla f_i(x^{(a_{i,t})}) - \nabla f_i(x^{(a_{i,a_{i,t}-1})}) \right\|^2 \\
 & \leq \eta_l^2 K^3 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \mathbb{E} \left\| x^{(a_{i,t})} - x^{(a_{i,a_{i,t}-1})} \right\|^2 = \eta_l^2 K^3 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \mathbb{E} \left\| \sum_{p=a_{i,a_{i,t}-1}}^{a_{i,t}-1} [x^{(p+1)} - x^{(p)}] \right\|^2 \\
 & \leq \frac{2\eta_g^2 \eta_l^4 K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \mathbb{E} \left\| \sum_{p=a_{i,a_{i,t}-1}}^{a_{i,t}-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 & \quad + \frac{2\eta_g^2 \eta_l^4 K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} [a_{i,t} - a_{i,a_{i,t}-1}] \sum_{p=a_{i,a_{i,t}-1}}^{a_{i,t}-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \sigma^2 \\
 & \leq \frac{2\eta_g^2 \eta_l^4 K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} [a_{i,t} - a_{i,a_{i,t}-1}] \sum_{p=a_{i,a_{i,t}-1}}^{a_{i,t}-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 & \quad + \frac{2\eta_g^2 \eta_l^4 K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} [a_{i,t} - a_{i,a_{i,t}-1}]^2 N K \sigma^2. \tag{52}
 \end{aligned}$$

1481

With the fact that $a_{i,a_{i,t}-1}$ is the second last round when client i is selected before t and $a_{i,t}$ is the last round when client i is selected, it holds that $0 \leq a_{i,t} - a_{i,a_{i,t}-1} \leq \tau_{\max}$. Then,

1482

1483

1484

1485

$$\begin{aligned}
 & \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} k^2 \left\| \nabla f_i(x^{(a_{i,t})}) - \nabla f_i(x^{(a_{i,a_{i,t}-1})}) \right\|^2 \\
 & \leq \frac{2\eta_g^2 \eta_l^4 K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \tau_{\max} \sum_{p=\max\{0, a_{i,t}-\tau_{\max}\}}^{a_{i,t}} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 + 2\eta_g^2 \eta_l^4 \tau_{\max}^2 K^4 T \sigma^2 L^2. \tag{53}
 \end{aligned}$$

1492

1493

With the fact that $t - \tau_{\max} \leq a_{i,t} \leq t$, we have

1494

1495

$$\begin{aligned}
 & \frac{2\eta_g^2 \eta_l^4 K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \tau_{\max} \sum_{p=\max\{0, a_{i,t}-\tau_{\max}\}}^{a_{i,t}} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 & \leq \frac{2\eta_g^2 \eta_l^4 \tau_{\max} K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{p=\max\{0, t-2\tau_{\max}\}}^t \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 & \leq \frac{2\eta_g^2 \eta_l^4 \tau_{\max} K^3 L^2}{N} \sum_{t=0}^{T-1} \sum_{p=\max\{0, t-2\tau_{\max}\}}^t \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 & \leq \frac{2\eta_g^2 \eta_l^4 \tau_{\max} K^3 L^2}{N} \sum_{p=0}^{T-1} \sum_{t=p}^{\min\{T-1, p+2\tau_{\max}\}} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 & \leq \frac{4\eta_g^2 \eta_l^4 \tau_{\max}^2 K^3 L^2}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t},k)}) \right\|^2. \tag{54}
 \end{aligned}$$

1512 **Term 4:**

$$\begin{aligned}
& \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \frac{k^2}{K^2} \mathbb{E} \left\| \sum_{q=0}^{K-1} \left[\nabla f_i(x^{(a_{i,a_{i,t-1})})} - \nabla f_i(x_i^{(a_{i,a_{i,t-1},q})}) \right] \right\|^2 \\
& \leq \eta_l^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \frac{k^2}{K} \sum_{q=0}^{K-1} \mathbb{E} \left\| x^{(a_{i,a_{i,t-1})}} - x_i^{(a_{i,a_{i,t-1},q})} \right\|^2 \\
& \leq \eta_l^2 \tau_{\max} K^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x_i^{(a_{i,t},k)} - x^{(a_{i,t})} \right\|^2,
\end{aligned} \tag{55}$$

1526 where the last inequality is due to the fact that $a_{i,a_{i,t-1}}$ is the second last round when
1527 client i is selected before t and $a_{i,t}$ is the last round when client i is selected. Then, it
1528 holds that $a_{i,a_{i,t+1}} = a_{i,t}$. Hence, $\sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{q=0}^{K-1} \mathbb{E} \left\| x^{(a_{i,a_{i,t-1})}} - x_i^{(a_{i,a_{i,t-1},q})} \right\|^2 \leq$
1529 $\tau_{\max} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x_i^{(a_{i,t},k)} - x^{(a_{i,t})} \right\|^2$.

1532 **Term 5:**

$$\begin{aligned}
& \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \frac{k^2}{K^2} \mathbb{E} \left\| \sum_{q=0}^{K-1} \left[g_i(x_i^{(a_{i,a_{i,t-1},q})}, \xi_i^{(a_{i,a_{i,t-1},q})}) - \nabla f_i(x^{(a_{i,a_{i,t-1},q})}) \right] \right\|^2 \\
& \leq \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \frac{k^2}{K^2} \sum_{q=0}^{K-1} \sigma^2 \leq \eta_l^2 N K^2 T \sigma^2.
\end{aligned} \tag{56}$$

1543 For the second term in Equation (48), we have

$$2\eta_l^2 \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left\| \sum_{p=0}^{k-1} y^{(a_{i,t}-1)} \right\|^2 = 2\eta_l^2 \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} k^2 \left\| y^{(a_{i,t}-1)} \right\|^2 \leq 2\eta_l^2 K^3 \sum_{i \in \mathcal{A}_t} \left\| y^{(a_{i,t}-1)} \right\|^2. \tag{57}$$

1550 Consequently, it implies that

$$\begin{aligned}
& 2\eta_l^2 K^3 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \mathbb{E} \left\| y^{(a_{i,t}-1)} \right\|^2 = 2\eta_l^2 K \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_{a_{i,t}-1}} \sum_{k=0}^{K-1} g_j(x_j^{(a_{j,a_{i,t},k})}, \xi_j^{(a_{j,a_{i,t},k})}) \right\|^2 \\
& \leq 4\eta_l^2 K \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_{a_{i,t}-1}} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,a_{i,t},k})}) \right\|^2 + 4\eta_l^2 K^2 N^2 \sigma^2 T \\
& \leq 4\eta_l^2 K N \tau_{\max} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 + 4\eta_l^2 K^2 N^2 \sigma^2 T,
\end{aligned} \tag{58}$$

1564 where the last inequality is due to the fact that $\mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2$ appears at most
1565 $N \tau_{\max}$ times in the previous sum.

1566

Finally, after summing t from 0 to $T - 1$ in Equation (48), and implementing the upper bound for
1567 each term in Equation (49) as above, it holds that
1568

1569

$$\begin{aligned} & \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x^{(a_{i,t})} - x_i^{(a_{i,t},k)} \right\|^2 \leq 10\eta_l^2 N K^2 T \sigma^2 + 10\eta_l^2 K^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x_i^{(a_{i,t},k)} - x^{(a_{i,t})} \right\|^2 \\ & + \frac{40\eta_g^2 \eta_l^4 \tau_{\max}^2 K^3 L^2}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t},k)}) \right\|^2 + 20\eta_g^2 \eta_l^4 \tau_{\max}^2 K^4 T \sigma^2 L^2 \\ & + 10\eta_l^2 \tau_{\max} K^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x_i^{(a_{i,t},k)} - x^{(a_{i,t})} \right\|^2 + 10\eta_l^2 N K^2 T \sigma^2 \\ & + 4\eta_l^2 K N \tau_{\max} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 + 4\eta_l^2 K^2 N^2 \sigma^2 T. \end{aligned} \tag{59}$$

1582

Then, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\max} K L}}$, by rearranging the terms in Equation (59), we have
1583

1584

$$\begin{aligned} & \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x^{(a_{i,t})} - x_i^{(a_{i,t},k)} \right\|^2 \leq 50\eta_l^2 N^2 K^2 T \sigma^2 + 40\eta_g^2 \eta_l^4 \tau_{\max}^2 K^4 T \sigma^2 L^2 \\ & + \left(\frac{80\eta_g^2 \eta_l^4 \tau_{\max}^2 K^3 L^2}{N} + 8\eta_l^2 K N \tau_{\max} \right) \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t},k)}) \right\|^2. \end{aligned} \tag{60}$$

1590

For the third part of Equation (44), we have, by summing over t ,
1591

1592

$$\begin{aligned} & 3K^2 \sum_{t=0}^{T-1} \left\| \sum_{i \in \mathcal{N} / \mathcal{A}_t} \nabla f_i(x^{(0)}) \right\|^2 \leq 3K^2 \sum_{t=0}^{T-1} (N - A_t) \sum_{i=1}^N \left\| \nabla f_i(x^{(0)}) \right\|^2 \\ & = 3K^2 \sum_{t=0}^{T-1} \sum_{j \in \mathcal{N}} \mathbb{1}_{j \notin \mathcal{A}_t} \sum_{i=1}^N \left\| \nabla f_i(x^{(0)}) \right\|^2 \leq 3K^2 N^2 \tau_{\max} F_0, \end{aligned} \tag{61}$$

1599

where $F_0 := \frac{1}{N} \sum_{i=1}^N \left\| \nabla f_i(x^{(0)}) \right\|^2$.

1600

Thus, by summing over t and taking expectation in Equation (44), implementing the three parts, we
1601 have, for $\eta_l \leq 1 / (10\sqrt{\tau_{\max} K L})$, by $3NKL^2 \cdot 40\eta_g^2 \eta_l^4 \tau_{\max}^2 K^4 T \sigma^2 L^4 \leq 2\eta_g^2 \eta_l^2 K^3 N \tau_{\max} T \sigma^2 L^2$,
1602

1603

$$\begin{aligned} & \sum_{t=0}^{T-1} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 \\ & \leq 3K^2 N^2 \tau_{\max} F_0 + 8\eta_g^2 \eta_l^2 K^3 N \tau_{\max} \max \{1, \tau_{\text{avg}}\} T \sigma^2 L^2 + 6\eta_g^2 \eta_l^2 K^2 \tau_{\max}^2 L^2 \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 \\ & + 150\eta_l^2 N^3 K^3 T \sigma^2 L^2 + (240\eta_g^2 \eta_l^4 \tau_{\max}^2 K^4 L^4 + 24\eta_l^2 K^2 N^2 \tau_{\max} L^2) \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t},k)}) \right\|^2 \\ & \leq 3K^2 N^2 \tau_{\max} F_0 + 8\eta_g^2 \eta_l^2 K^3 N \tau_{\max} \max \{1, \tau_{\text{avg}}\} T \sigma^2 L^2 + 150\eta_l^2 N^3 K^3 T \sigma^2 L^2 \\ & + (10\eta_g^2 \eta_l^2 \tau_{\max}^2 K^2 L^2 + 24\eta_l^2 K^2 N^2 \tau_{\max} L^2) \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t},k)}) \right\|^2. \end{aligned} \tag{62}$$

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

□

1620 **Lemma D.5.** Suppose Assumption 1.1 and 1.2 hold. Then, we have
1621

$$\begin{aligned}
1622 \quad & -\frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right] \right\rangle \\
1623 \quad & \leq 3 \frac{\eta_g^2 \eta_l^2 K}{N} \tau_{avg} \sigma^2 L T + 2 \frac{\eta_g^2 \eta_l^2}{N^2} \tau_{max} L \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2.
\end{aligned}$$

1630 *Proof.* By the independently and randomly sampled $\xi_i^{(a_{i,t})}$, we have, for each $i \in \mathcal{A}_t$ and $0 \leq k \leq$
1631 $K-1$,

$$\mathbb{E} \left\langle \nabla f(x^{(\min_{i \in \mathcal{N}} \{a_{i,t}\})}), g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right\rangle = 0. \quad (63)$$

1635 By $t - \tau_t = \min_{i \in \mathcal{N}} \{a_{i,t}\}$, we then derive that
1636

$$\begin{aligned}
1637 \quad & -\frac{\eta_g \eta_l}{N} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right] \right\rangle \\
1638 \quad & = -\frac{\eta_g \eta_l}{N} \mathbb{E} \left\langle \nabla f(x^{(t)}) - \nabla f(x^{(t-\tau_t)}), \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right] \right\rangle.
\end{aligned} \quad (64)$$

1644 Then, if $\tau_t > 0$, it holds by picking $\alpha = \frac{1}{\tau_t L}$ in the Cauchy-Schwarz inequality $\langle a, b \rangle \leq \alpha \|a\|^2 +$
1645 $\frac{1}{\alpha} \|b\|^2$ that,

$$\begin{aligned}
1647 \quad & -\frac{\eta_g \eta_l}{N} \mathbb{E} \left\langle \nabla f(x^{(t)}) - \nabla f(x^{(t-\tau_t)}), \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right] \right\rangle \\
1648 \quad & \leq \frac{1}{\tau_t L} \mathbb{E} \left\| \nabla f(x^{(t)}) - \nabla f(x^{(t-\tau_t)}) \right\|^2 + \frac{\eta_g^2 \eta_l^2}{N^2} \tau_t L \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right] \right\|^2.
\end{aligned} \quad (65)$$

1654 With the fact that, by taking full expectation, we derive that
1655

$$\begin{aligned}
1656 \quad & \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right] \right\|^2 \\
1657 \quad & \leq \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 \leq N K \sigma^2,
\end{aligned}$$

1662 and

$$\begin{aligned}
1663 \quad & \mathbb{E} \left\| \nabla f(x^{(t)}) - \nabla f(x^{(t-\tau_t)}) \right\|^2 \leq L^2 \mathbb{E} \left\| x^{(t)} - x^{(t-\tau_t)} \right\|^2 = \frac{\eta_g^2 \eta_l^2}{N^2} L^2 \mathbb{E} \left\| \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} g_j(x_j^{(a_{j,p},k)}, \xi_j^{(a_{j,p},k)}) \right\|^2 \\
1664 \quad & \leq 2 \frac{\eta_g^2 \eta_l^2}{N^2} L^2 \mathbb{E} \left\| \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \left[g_j(x_j^{(a_{j,p},k)}, \xi_j^{(a_{j,p},k)}) - \nabla f_j(x_j^{(a_{j,p},k)}) \right] \right\|^2 \\
1665 \quad & + 2 \frac{\eta_g^2 \eta_l^2}{N^2} L^2 \mathbb{E} \left\| \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2.
\end{aligned}$$

1674 Then, we have
 1675

$$\begin{aligned}
 1676 \quad & \mathbb{E} \left\| \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \left[g_j(x_j^{(a_{j,p},k)}, \xi_j^{(a_{j,p},k)}) - \nabla f_j(x_j^{(a_{j,p},k)}) \right] \right\|^2 \\
 1677 \quad & = \tau_t \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \mathbb{E} \left\| g_j(x_j^{(a_{j,p},k)}, \xi_j^{(a_{j,p},k)}) - \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 1678 \quad & \leq \tau_t \sum_{p=t-\tau_t}^{t-1} NK\sigma^2 = NK\tau_t^2\sigma^2,
 \end{aligned}$$

1685 and
 1686

$$\mathbb{E} \left\| \sum_{p=t-\tau_t}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \leq \tau_t \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2.$$

1691 Thus, summing over t from 0 to $T-1$ on both sides of Equation (65) and invoking Lemma D.2 and
 1692 Corollary D.3, we have the following bound holds no matter whether $\tau_t > 0$ or not:

$$\begin{aligned}
 1693 \quad & - \frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right] \right\rangle \\
 1694 \quad & \leq \sum_{t=0}^{T-1} \tau_t \frac{\eta_g^2 \eta_l^2}{N^2} NK\sigma^2 L + 2 \frac{\eta_g^2 \eta_l^2}{N^2} NK\sigma^2 L \sum_{t=0}^{T-1} \tau_t + 2 \frac{\eta_g^2 \eta_l^2}{N^2} L \sum_{t=0}^{T-1} \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 1695 \quad & \leq 3 \frac{\eta_g^2 \eta_l^2 K}{N} \tau_{\text{avg}} \sigma^2 LT + 2 \frac{\eta_g^2 \eta_l^2}{N^2} \tau_{\text{max}} L \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2,
 \end{aligned} \tag{66}$$

1703 which gives the desired result. \square
 1704

1705 **Lemma D.6.** Suppose Assumption 1.1 and 1.2 hold. Then, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\text{max}} NKL}}$, and $\eta_g \eta_l \leq$
 1706 $\frac{1}{10\tau_{\text{max}} K L}$, we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{2\Delta_f}{\eta_g \eta_l K T} + \frac{9\eta_g \eta_l \max\{1, \tau_{\text{avg}}\} \sigma^2 L}{N} + \frac{3\tau_{\text{max}} F_0}{T} + 150\eta_l^2 N K \sigma^2 L^2.$$

1712 where $\Delta_f := f(x^{(0)}) - f^*$ and $F_0 := \frac{1}{n} \sum_{i=1}^n \left\| \nabla f_i(x^{(0)}) \right\|^2$.
 1713

1714 *Proof.* By Assumption 1.1, the function $f := \frac{1}{n} \sum_{i=1}^n f_i$ is L -smooth. Then, it holds by the descent
 1715 lemma that

$$\mathbb{E} f(x^{(t+1)}) \leq \mathbb{E} f(x^{(t)}) + \mathbb{E} \left\langle \nabla f(x^{(t)}), x^{(t+1)} - x^{(t)} \right\rangle + \frac{L}{2} \left\| x^{(t+1)} - x^{(t)} \right\|^2. \tag{67}$$

1719 For the inner product term in Equation (67), there holds that
 1720

$$\begin{aligned}
 1721 \quad & \mathbb{E} \left\langle \nabla f(x^{(t)}), x^{(t+1)} - x^{(t)} \right\rangle = \mathbb{E} \left\langle \nabla f(x^{(t)}), -\frac{\eta_g \eta_l K}{N} y^{(t)} \right\rangle \\
 1722 \quad & = -\frac{\eta_g \eta_l}{N} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right] \right\rangle \\
 1723 \quad & \quad - \frac{\eta_g \eta_l}{N^2} \mathbb{E} \left\langle \sum_{i=1}^N \nabla f_i(x^{(t)}), \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\rangle.
 \end{aligned} \tag{68}$$

We bound the first term after summing over t in Equation (68) according to Lemma D.5. Then, for the second term in Equation (68), we have

$$\begin{aligned}
 & -\frac{\eta_g \eta_l}{N^2} \mathbb{E} \left\langle \sum_{i=1}^N \nabla f_i(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\rangle = -\frac{\eta_g \eta_l}{N^2 K} \mathbb{E} \left\langle K \sum_{i=1}^N \nabla f_i(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\rangle \\
 & = -\frac{1}{2} \eta_g \eta_l K \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 - \frac{\eta_g \eta_l}{2N^2 K} \mathbb{E} \left\| \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 \\
 & \quad + \frac{\eta_g \eta_l}{2N^2 K} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2. \tag{69}
 \end{aligned}$$

Then, summing over t from 0 to $T-1$ on both sides of Equation (67) and taking full expectation, we have

$$\begin{aligned}
 0 \leq & \Delta_f - \frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t}, k)}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x_i^{(a_{i,t}, k)}) \right] \right\rangle \\
 & - \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 - \frac{\eta_g \eta_l}{2N^2 K} \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 \\
 & + \frac{\eta_g \eta_l}{2N^2 K} \sum_{t=0}^{T-1} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 + \frac{L}{2} \sum_{t=0}^T \mathbb{E} \left\| x^{(t+1)} - x^{(t)} \right\|^2. \tag{70}
 \end{aligned}$$

where $\Delta_f := f(x^{(0)}) - f^*$. Implementing Lemma D.1 into Equation (70), we have

$$\begin{aligned}
 0 \leq & \Delta_f - \frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t}, k)}, \xi_i^{(a_{i,t}, k)}) - \nabla f_i(x_i^{(a_{i,t}, k)}) \right] \right\rangle \\
 & - \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 - \frac{\eta_g \eta_l}{2N^2 K} (1 - \eta_g \eta_l K L) \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 \\
 & + \frac{\eta_g \eta_l}{2N^2 K} \sum_{t=0}^{T-1} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 + \frac{\eta_g^2 \eta_l^2 K T \sigma^2 L}{N}. \tag{71}
 \end{aligned}$$

Implementing Lemma D.5 into Equation (71), we have

$$\begin{aligned}
 0 \leq & \Delta_f - \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 - \frac{\eta_g \eta_l}{2N^2 K} (1 - \eta_g \eta_l K L - 4\eta_g \eta_l \tau_{\max} K L) \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 \\
 & + \frac{\eta_g \eta_l}{2N^2 K} \sum_{t=0}^{T-1} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 + \frac{4\eta_g^2 \eta_l^2 \max\{1, \tau_{\text{avg}}\} K T \sigma^2 L}{N}. \tag{72}
 \end{aligned}$$

1782 Implementing Lemma D.4 into Equation (72), we have, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\max}KL}}$,
 1783

$$\begin{aligned}
 0 \leq & \Delta_f - \frac{1}{2}\eta_g\eta_lK \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \\
 & - \frac{\eta_g\eta_l}{2N^2K} (1 - \eta_g\eta_lKL - 4\eta_g\eta_l\tau_{\max}KL - 10\eta_g^2\eta_l^2\tau_{\max}^2K^2L^2 - 24\eta_l^2K^2N^2\tau_{\max}L^2) \\
 & \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 + \frac{3\eta_g\eta_l\tau_{\max}KF_0}{2} \\
 & + \frac{4\eta_g^2\eta_l^2 \max\{1, \tau_{\text{avg}}\} KT\sigma^2L}{N} + \frac{4\eta_g^3\eta_l^3\tau_{\max} \max\{1, \tau_{\text{avg}}\} K^2T\sigma^2L^2}{N} + 75\eta_g\eta_l^3NK^2T\sigma^2L^2.
 \end{aligned} \tag{73}$$

1795 Then, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\max}NK}}$, and $\eta_g\eta_l \leq \frac{1}{10\tau_{\max}KL}$, we have
 1796

$$\begin{aligned}
 & 1 - \eta_g\eta_lKL - 4\eta_g\eta_l\tau_{\max}KL - 10\eta_g^2\eta_l^2\tau_{\max}^2K^2L^2 - 24\eta_l^2K^2N^2\tau_{\max}L^2 \\
 & \geq 1 - \frac{1}{10} - \frac{2}{5} - \frac{1}{10} - \frac{6}{25} > 0.
 \end{aligned} \tag{74}$$

1801 Therefore, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\max}NK}}$, and $\eta_g\eta_l \leq \frac{1}{10\tau_{\max}KL}$, by rearranging Equation (73) and noticing
 1802

$$\frac{4\eta_g^3\eta_l^3\tau_{\max} \max\{1, \tau_{\text{avg}}\} K^2T\sigma^2L^2}{N} \leq \frac{\eta_g^2\eta_l^2 \max\{1, \tau_{\text{avg}}\} KT\sigma^2L}{2N},$$

1805 it implies that

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{2\Delta_f}{\eta_g\eta_lKT} + \frac{9\eta_g\eta_l \max\{1, \tau_{\text{avg}}\} \sigma^2L}{N} + \frac{3\tau_{\max}F_0}{T} + 150\eta_l^2NK\sigma^2L^2. \tag{75}$$

1811 \square

1813 **Theorem D.1.** Suppose Assumption 1.1 and 1.2 hold. Then, for

$$\eta_g = \frac{N}{\sqrt{\tau_{\max}}}, \text{ and } \eta_l = \min \left\{ \frac{1}{10\sqrt{\tau_{\max}NK}}, \frac{\sqrt{\tau_{\max}\Delta_f}}{\sqrt{N \max\{1, \tau_{\text{avg}}\} KTL\sigma^2}} \right\},$$

1818 we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{30\sqrt{\max\{1, \tau_{\text{avg}}\} L\sigma^2\Delta_f}}{\sqrt{NKT}} + \frac{20\tau_{\max}(L\Delta_f + F_0)}{T},$$

1824 where $\Delta_f := f(x^{(0)}) - f^*$ and $F_0 := \frac{1}{N} \sum_{i=1}^N \|\nabla f_i(x^{(0)})\|^2$.
 1825

1826 *Proof.* Invoking Lemma D.6, we have, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\max}NK}}$, and $\eta_g\eta_l \leq \frac{1}{10\tau_{\max}KL}$,
 1827

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{2\Delta_f}{\eta_g\eta_lKT} + \frac{9\eta_g\eta_l \max\{1, \tau_{\text{avg}}\} \sigma^2L}{N} + \frac{3\tau_{\max}F_0}{T} + 150\eta_l^2NK\sigma^2L^2. \tag{76}$$

1832 Choosing

$$\eta_g = \frac{N}{\sqrt{\tau_{\max}}}, \quad \eta_l = \min \left\{ \frac{1}{10\sqrt{\tau_{\max}NK}}, \frac{\sqrt{\tau_{\max}\Delta_f}}{\sqrt{N \max\{1, \tau_{\text{avg}}\} KTL\sigma^2}} \right\},$$

1836 we have

$$\begin{aligned}
 1838 \quad \eta_g \eta_l &= \min \left\{ \frac{\sqrt{N \Delta_f}}{\sqrt{\max \{1, \tau_{\text{avg}}\} K T L \sigma^2}}, \frac{1}{10 \tau_{\text{max}} K L} \right\}, \\
 1839 \quad \frac{2 \Delta_f}{\eta_g \eta_l K T} &\leq \frac{2 \sqrt{\max \{1, \tau_{\text{avg}}\} L \sigma^2 \Delta_f}}{\sqrt{N K T}} + \frac{20 \tau_{\text{max}} L \Delta_f}{T}, \\
 1840 \quad 9 \frac{\eta_g \eta_l}{N} \max \{1, \tau_{\text{avg}}\} \sigma^2 L &\leq \frac{9 \sqrt{\max \{1, \tau_{\text{avg}}\} L \sigma^2 \Delta_f}}{\sqrt{N K T}}, \\
 1841 \quad 150 \eta_l^2 N K \sigma^2 L^2 &\leq 150 \frac{1}{10 \sqrt{\tau_{\text{max}} N K L}} \frac{\sqrt{\tau_{\text{max}} \Delta_f}}{\sqrt{N \max \{1, \tau_{\text{avg}}\} K T L \sigma^2}} N K \sigma^2 L^2 \leq \frac{15 \sqrt{L \sigma^2 \Delta_f}}{\sqrt{N K T}}.
 \end{aligned}$$

1842 Thus, we can combine the above bounds with Equation (76) to get

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{26 \sqrt{\max \{1, \tau_{\text{avg}}\} L \sigma^2 \Delta_f}}{\sqrt{N K T}} + \frac{20 \tau_{\text{max}} (L \Delta_f + F_0)}{T},$$

1843 which gives the desired result by appropriately magnifying the constants. \square

E CONVERGENCE ANALYSIS FOR FEDSUM-CR

1844 In this section, we prove the convergence result of FedSUM-CR.

Algorithm 3 FedSUM-CR: Enhancing Communication Efficiency in FedSUM

- 1: **Input:** initial model $x^{(0)}$, control variables $y^{(-1)}$, $\{h_i^{(0)}\}_{i=1}^N$ with value $\mathbf{0}$, $\{z_i^{(0)}\}_{i=1}^N$ with value $x^{(0)}$ and $\{a_i^{(0)}\}_{i=1}^N$ with value -1 ; global learning rate η_g ; local learning rate η_l ; local steps K ; client participation $\{\mathcal{S}_t\}_{t=0}^{T-1}$
- 2: **for** $t = 0, 1, \dots, T-1$ **do**
- 3: Send $x^{(t)}$ to all clients $i \in \mathcal{S}_t$.
- 4: **for** client $i \in \mathcal{S}_t$ in parallel **do**
- 5: Receive $x^{(t)}$ and initialize local model $x_i^{(t,0)} = x^{(t)}$.
- 6: Compute local update correction direction $y_i^{(t)} = \frac{N}{\eta_g \eta_l K} \frac{z_i^{(t)} - x^{(t)}}{t - a_i^{(t)}} - h_i^{(t)}$.
- 7: **for** $k = 0, \dots, K-1$ **do**
- 8: Compute a mini-batch gradient $g_i^{(t,k)} = \nabla F_i(x_i^{(t,k)}; \xi_i^{(t,k)})$.
- 9: Locally update $x_i^{(t,k+1)} = x_i^{(t,k)} - \frac{\eta_l}{N} (g_i^{(t,k)} + y_i^{(t)})$.
- 10: **end for**
- 11: Compute $\delta_i^{(t)} = \frac{N(x^{(t)} - x_i^{(t,K)})}{\eta_l K} - y_i^{(t)} - h_i^{(t)}$ and send $\delta_i^{(t)}$ to the server.
- 12: Update $a_i^{(t+1)} = t$, $z_i^{(t+1)} = x^{(t)}$, and $h_i^{(t+1)} = \frac{N(x^{(t)} - x_i^{(t,K)})}{\eta_l K} - y_i^{(t)}$
- 13: (for $i \notin \mathcal{S}_t$, $z_i^{(t+1)} = z_i^{(t)}$, $a_i^{(t+1)} = a_i^{(t)}$ and $h_i^{(t+1)} = h_i^{(t)}$).
- 14: **end for**
- 15: Update $y^{(t)} = y^{(t-1)} + \sum_{i \in \mathcal{S}_t} \delta_i^{(t)}$ and $x^{(t+1)} = x^{(t)} - \frac{\eta_g \eta_l K}{N} y^{(t)}$.
- 16: **end for**
- 17: **Server** outputs $x^{(T)}$.

1845 We derive the update direction $y^{(t)}$ in FedSUM-CR as follows.

$$y^{(t)} = \frac{1}{K} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} g_i(x_i^{(a_{i,t}, k)}, \xi_i^{(a_{i,t}, k)}). \quad (77)$$

1890 For the convenience of notation, we define that $a_{i,-1} = -1$ for all $i \in \mathcal{N}$ and $x^{(-1)} = x^{(0)}$. Then,
1891 we have the control variables:

$$1892 \quad h_i^{(t)} = \frac{1}{K} \sum_{k=0}^{K-1} g_i(x_i^{(a_{i,t-1},k)}, \xi_i^{(a_{i,t-1},k)}), \quad (78)$$

$$1895 \quad a_i^{(t)} = a_{i,t-1}, z_i^{(t)} = x^{(a_{i,t-1})}.$$

1897 Furthermore, the local update corrected direction $y_i^{(t)}$ is derived as follows:

$$1898 \quad y_i^{(t)} = \frac{N}{\eta_g \eta_l K} \frac{z_i^{(t)} - x^{(t)}}{t - a_i^{(t)}} - h_i^{(t)} = \frac{N}{\eta_g \eta_l K} \frac{x^{(a_{i,t-1})} - x^{(t)}}{t - a_{i,t-1}} - h_i^{(t)}$$

$$1900 \quad = \frac{N}{\eta_g \eta_l K} \frac{1}{t - a_{i,t-1}} \sum_{p=a_{i,t-1}}^{t-1} (x^{(p)} - x^{(p+1)}) - h_i^{(t)} \quad (79)$$

$$1904 \quad = \frac{1}{t - a_{i,t-1}} \sum_{p=a_{i,t-1}}^{t-1} y^{(p)} - h_i^{(t)}.$$

1907 Lemma E.1 establishes a basic relationship between the difference of two consecutive model updates
1908 and the aggregated gradient, shown as follows.

1909 **Lemma E.1.** *Suppose Assumption 1.1 and 1.2 hold. Then, it holds that*

$$1911 \quad \sum_{t=0}^{T-1} \mathbb{E} \|x^{(t+1)} - x^{(t)}\|^2 \leq \frac{2\eta_g^2 \eta_l^2 K T \sigma^2}{N} + \frac{2\eta_g^2 \eta_l^2}{N^2} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2.$$

1914 *Proof.* Similar to the proof of Lemma D.1. □

1916 As a direct consequence of Lemma B.2, we conduct the Lemma E.2 and Corollary E.3 to bound the
1917 aggregated gradient of server.

1918 **Lemma E.2.** *Suppose Assumption 1.1 and 1.2 hold. Then, we have*

$$1920 \quad \sum_{t=0}^{T-1} \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \leq \tau_{\max} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2.$$

1924 *Proof.* The proof is similar to the proof of Lemma D.2. □

1926 Corollary E.3 is a direct consequence of Lemma E.2.

1927 **Corollary E.3.** *Suppose Assumption 1.1 and 1.2 hold. Then, we have*

$$1928 \quad \sum_{t=0}^{T-1} \tau_t \sum_{p=t-\tau_t}^{t-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \leq \tau_{\max}^2 \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2.$$

1932 Lemma E.4 is the key lemma to estimate the difference between the aggregated gradient of server
1933 and the aggregated gradient of all clients.

1934 **Lemma E.4.** *Suppose Assumption 1.1 and 1.2 hold. Then, we have, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\max} K L}}$,*

$$1935 \quad \sum_{t=0}^{T-1} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2$$

$$1938 \quad \leq 3K^2 N^2 \tau_{\max} F_0 + 8\eta_g^2 \eta_l^2 K^3 N \tau_{\max} \max \{1, \tau_{\text{avg}}\} T \sigma^2 L^2 + 150\eta_l^2 N^3 K^3 \tau_{\max} T \sigma^2 L^2$$

$$1940 \quad + (10\eta_g^2 \eta_l^2 \tau_{\max}^2 K^2 L^2 + 24\eta_l^2 K^2 N^2 \tau_{\max} L^2) \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t},k)}) \right\|^2,$$

1943 where $F_0 := \frac{1}{N} \sum_{i=1}^N \|\nabla f_i(x^{(0)})\|^2$.

1944
 1945 *Proof.* Notice that, by the decomposition of the difference between the aggregated gradient of the
 1946 server and the aggregated gradient of all clients, we have
 1947
 1948
 1949

$$\begin{aligned}
 1950 & \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 \leq 3K^2 \left\| \sum_{i \in \mathcal{N}} \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{N}} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\
 1951 & + 3 \left\| K \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) - \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 + 3K^2 \left\| \sum_{i \in \mathcal{N} \setminus \mathcal{A}_t} \nabla f_i(x^{(0)}) \right\|^2.
 \end{aligned} \tag{80}$$

1957 We bound the expectation of terms in Equation (80) one by one. First of all, we have
 1958
 1959
 1960
 1961

$$\begin{aligned}
 1962 & \mathbb{E} \left\| \sum_{i \in \mathcal{N}} \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{N}} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \leq NL^2 \sum_{i \in \mathcal{N}} \mathbb{E} \left\| x^{(t)} - x^{(a_{i,t})} \right\|^2 \\
 1963 & = NL^2 \sum_{i \in \mathcal{N}} \mathbb{E} \left\| \sum_{p=a_{i,t}}^{t-1} [x^{(p+1)} - x^{(p)}] \right\|^2 = \frac{\eta_g^2 \eta_l^2}{N} L^2 \sum_{i \in \mathcal{N}} \left\| \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} g_j(x_j^{(a_{j,p}, k)}, \xi_j^{(a_{j,p}, k)}) \right\|^2.
 \end{aligned} \tag{81}$$

1968 By Assumption 1.2, we have, according to Equation (81) and summing over t ,
 1969
 1970
 1971
 1972

$$\begin{aligned}
 1973 & 3K^2 \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{N}} \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{N}} \nabla f_i(x^{(a_{i,t})}) \right\|^2 \\
 1974 & \leq 6K^2 \frac{\eta_g^2 \eta_l^2}{N} L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{N}} \tau_{\max} \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \sigma^2 + 6K^2 \frac{\eta_g^2 \eta_l^2}{N} L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{N}} \left\| \sum_{p=a_{i,t}}^{t-1} \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p}, k)}) \right\|^2 \\
 1975 & \leq 6\eta_g^2 \eta_l^2 K^3 N \tau_{\max} \tau_{\text{avg}} T \sigma^2 L^2 + 6\eta_g^2 \eta_l^2 K^2 \tau_{\max}^2 L^2 \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2,
 \end{aligned} \tag{82}$$

1983 where the procedure is similar to the proof of Lemma C.4.
 1984
 1985 For the second part of Equation (44), we have, by Assumption 1.1,
 1986
 1987
 1988
 1989

$$\begin{aligned}
 1990 & \left\| K \sum_{i \in \mathcal{A}_t} \nabla f_i(x^{(a_{i,t})}) - \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 = \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} [\nabla f_i(x^{(a_{i,t})}) - \nabla f_i(x_i^{(a_{i,t}, k)})] \right\|^2 \\
 1991 & \leq NKL^2 \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left\| x_i^{(a_{i,t})} - x_i^{(a_{i,t}, k)} \right\|^2.
 \end{aligned} \tag{83}$$

1996 Note that $x_i^{(a_{i,t})}$ is the local model of client i at the beginning of round $a_{i,t}$, and $x_i^{(a_{i,t}, k)}$ is the
 1997 local model of client i at the beginning of round $a_{i,t}$ after k local updates. Then, according to the

1998 definition of $h_i^{(t)}$ and $y_i^{(t)}$ shown in Equation (78) and (79), it holds that
 1999

$$\begin{aligned}
& \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left\| x^{(a_{i,t})} - x_i^{(a_{i,t}, k)} \right\|^2 = \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left\| \sum_{p=0}^{k-1} \left[x_i^{(a_{i,t}, p)} - x_i^{(a_{i,t}, p+1)} \right] \right\|^2 \\
& = \eta_l^2 \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left\| \sum_{p=0}^{k-1} \left[g_i(x_i^{(a_{i,t}, p)}, \xi_i^{(a_{i,t}, p)}) + y_i^{(a_{i,t})} \right] \right\|^2 \\
& \leq 2\eta_l^2 \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \left\| \sum_{p=0}^{k-1} \left[g_i(x_i^{(a_{i,t}, p)}, \xi_i^{(a_{i,t}, p)}) - h_i^{(a_{i,t})} \right] \right\|^2 \\
& \quad + 2\eta_l^2 \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \frac{1}{(a_{i,t} - a_{i, a_{i,t}-1})^2} \left\| \sum_{p=0}^{k-1} \sum_{q=a_{i,a_{i,t}-1}}^{a_{i,t}-1} y^{(q)} \right\|^2. \tag{84}
\end{aligned}$$

We deal with the first term in Equation (84) as follows. Notice that, by the definition of $h_i^{(t)}$ in Equation (78) that

$$h_i^{(a_{i,t})} = \frac{1}{K} \sum_{k=0}^{K-1} g_i(x_i^{(a_{i,a_{i,t-1}}, k)}, \xi_i^{(a_{i,a_{i,t-1}}, k)}),$$

where $a_{i,a_{i,t}-1}$ is the round when client i is selected in the second last round before t . Then, we have

$$\begin{aligned}
& \left\| \sum_{p=0}^{k-1} \left[g_i(x_i^{(a_{i,t},p)}, \xi_i^{(a_{i,t},p)}) - h_i^{(a_{i,t})} \right] \right\|^2 \\
& \leq 5 \left\| \sum_{p=0}^{k-1} \left[g_i(x_i^{(a_{i,t},p)}, \xi_i^{(a_{i,t},p)}) - \nabla f_i(x_i^{(a_{i,t},p)}) \right] \right\|^2 + 5 \left\| \sum_{p=0}^{k-1} \left[\nabla f_i(x_i^{(a_{i,t},p)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\|^2 \\
& \quad + 5k^2 \left\| \nabla f_i(x^{(a_{i,t})}) - \nabla f_i(x^{(a_{i,a_{i,t}-1})}) \right\|^2 + 5 \frac{k^2}{K^2} \left\| \sum_{q=0}^{K-1} \left[\nabla f_i(x^{(a_{i,a_{i,t}-1})}) - \nabla f_i(x_i^{(a_{i,a_{i,t}-1},q)}) \right] \right\|^2 \\
& \quad + 5 \frac{k^2}{K^2} \left\| \sum_{q=0}^{K-1} \left[g_i(x_i^{(a_{i,a_{i,t}-1},q)}, \xi_i^{(a_{i,a_{i,t}-1},q)}) - \nabla f_i(x^{(a_{i,a_{i,t}-1},q)}) \right] \right\|^2.
\end{aligned} \tag{85}$$

Then, by taking expectation and invoking Equation (84), we have the following upper bound for each term in Equation (85).

Term 1:

$$\begin{aligned}
& \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| \sum_{p=0}^{k-1} \left[g_i(x_i^{(a_{i,t}, p)}, \xi_i^{(a_{i,t}, p)}) - \nabla f_i(x_i^{(a_{i,t}, p)}) \right] \right\|^2 \\
& \leq \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \sum_{p=0}^{k-1} \sigma^2 \leq \eta_l^2 N K^2 T \sigma^2.
\end{aligned} \tag{86}$$

Term 2:

$$\begin{aligned}
& \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| \sum_{p=0}^{k-1} \left[\nabla f_i(x_i^{(a_{i,t}, p)}) - \nabla f_i(x^{(a_{i,t})}) \right] \right\|^2 \leq \eta_l^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} k \sum_{p=0}^{k-1} \mathbb{E} \left\| x_i^{(a_{i,t}, p)} - x^{(a_{i,t})} \right\|^2 \\
& \leq \eta_l^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} k \sum_{p=0}^{K-1} \mathbb{E} \left\| x_i^{(a_{i,t}, p)} - x^{(a_{i,t})} \right\|^2 \leq \eta_l^2 K^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x_i^{(a_{i,t}, k)} - x^{(a_{i,t})} \right\|^2. \tag{87}
\end{aligned}$$

2052

2053 **Term 3:**

2054

$$\begin{aligned}
 & \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} k^2 \left\| \nabla f_i(x^{(a_{i,t})}) - \nabla f_i(x^{(a_{i,a_{i,t-1})})} \right\|^2 \\
 & \leq \eta_l^2 K^3 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \mathbb{E} \left\| x^{(a_{i,t})} - x^{(a_{i,a_{i,t-1})} \right\|^2 = \eta_l^2 K^3 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \mathbb{E} \left\| \sum_{p=a_{i,a_{i,t-1}}}^{a_{i,t}-1} [x^{(p+1)} - x^{(p)}] \right\|^2 \\
 & \leq \frac{2\eta_g^2 \eta_l^4 K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} [a_{i,t} - a_{i,a_{i,t-1}}] \sum_{p=a_{i,a_{i,t-1}}}^{a_{i,t}} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 & \quad + \frac{2\eta_g^2 \eta_l^4 K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} [a_{i,t} - a_{i,a_{i,t-1}}]^2 N K \sigma^2. \tag{88}
 \end{aligned}$$

2060

2061 With the fact that $a_{i,a_{i,t-1}}$ is the second last round when client i is selected before t and $a_{i,t}$ is the
2062 last round when client i is selected, it holds that $a_{i,t} - a_{i,a_{i,t-1}} \leq \tau_{\max}$. Then,

2063

$$\begin{aligned}
 & \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} k^2 \left\| \nabla f_i(x^{(a_{i,t})}) - \nabla f_i(x^{(a_{i,a_{i,t-1})})} \right\|^2 \\
 & \leq \frac{2\eta_g^2 \eta_l^4 K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \tau_{\max} \sum_{p=\max\{0, a_{i,t}-\tau_{\max}\}}^{a_{i,t}} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 + 2\eta_g^2 \eta_l^4 \tau_{\max}^2 K^4 T \sigma^2 L^2. \tag{89}
 \end{aligned}$$

2064

2065 With the fact that $t - \tau_{\max} \leq a_{i,t} \leq t$, we have

2066

$$\begin{aligned}
 & \frac{2\eta_g^2 \eta_l^4 K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \tau_{\max} \sum_{p=\max\{0, a_{i,t}-\tau_{\max}\}}^{a_{i,t}} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 & \leq \frac{2\eta_g^2 \eta_l^4 \tau_{\max} K^3 L^2}{N^2} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{p=\max\{0, t-2\tau_{\max}\}}^t \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 & \leq \frac{2\eta_g^2 \eta_l^4 \tau_{\max} K^3 L^2}{N} \sum_{t=0}^{T-1} \sum_{p=\max\{0, t-2\tau_{\max}\}}^t \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 & \leq \frac{2\eta_g^2 \eta_l^4 \tau_{\max} K^3 L^2}{N} \sum_{p=0}^{T-1} \sum_{t=p}^{\min\{T-1, p+2\tau_{\max}\}} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_p} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,p},k)}) \right\|^2 \\
 & \leq \frac{4\eta_g^2 \eta_l^4 \tau_{\max}^2 K^3 L^2}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t},k)}) \right\|^2. \tag{90}
 \end{aligned}$$

2067

2068 **Term 4:**

2069

$$\begin{aligned}
 & \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \frac{k^2}{K^2} \mathbb{E} \left\| \sum_{q=0}^{K-1} [\nabla f_i(x^{(a_{i,a_{i,t-1})})} - \nabla f_i(x_i^{(a_{i,a_{i,t-1},q})})] \right\|^2 \\
 & \leq \eta_l^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \frac{k^2}{K} \sum_{q=0}^{K-1} \mathbb{E} \left\| x^{(a_{i,a_{i,t-1})}} - x_i^{(a_{i,a_{i,t-1},q})} \right\|^2 \\
 & \leq \eta_l^2 \tau_{\max} K^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x_i^{(a_{i,t},k)} - x^{(a_{i,t})} \right\|^2, \tag{91}
 \end{aligned}$$

2106 where the last inequality is due to the fact that $a_{i,a_{i,t}-1}$ is the second last round when
2107 client i is selected before t and $a_{i,t}$ is the last round when client i is selected. Then, it
2108 holds that $a_{i,a_{i,t}+1} = a_{i,t}$. Hence, $\sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{q=0}^{K-1} \mathbb{E} \left\| x^{(a_{i,a_{i,t}-1})} - x_i^{(a_{i,a_{i,t}-1,q})} \right\|^2 \leq$
2109 $\tau_{\max} \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x_i^{(a_{i,t},k)} - x^{(a_{i,t})} \right\|^2$.
2110

2112 **Term 5:**

$$\begin{aligned} 2114 \quad & \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \frac{k^2}{K^2} \mathbb{E} \left\| \sum_{q=0}^{K-1} \left[g_i(x_i^{(a_{i,a_{i,t}-1,q})}, \xi_i^{(a_{i,a_{i,t}-1,q})}) - \nabla f_i(x^{(a_{i,a_{i,t}-1,q})}) \right] \right\|^2 \\ 2115 \quad & \leq \eta_l^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \frac{k^2}{K^2} \sum_{q=0}^{K-1} \sigma^2 \leq \eta_l^2 N K^2 T \sigma^2. \end{aligned} \quad (92)$$

2121 For the second term in Equation (84), we have

$$2123 \quad 2\eta_l^2 \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \frac{1}{(a_{i,t} - a_{i,a_{i,t}-1})^2} \left\| \sum_{p=0}^{k-1} \sum_{q=a_{i,a_{i,t}-1}}^{a_{i,t}-1} y^{(q)} \right\|^2 \leq 2\eta_l^2 K^3 \sum_{i \in \mathcal{A}_t} \frac{1}{(a_{i,t} - a_{i,a_{i,t}-1})^2} \left\| \sum_{q=a_{i,a_{i,t}-1}}^{a_{i,t}-1} y^{(q)} \right\|^2. \quad (93)$$

2127 Consequently, it implies by the fact $a_{i,t} - a_{i,a_{i,t}-1} \leq \tau_{\max}$ that

$$\begin{aligned} 2129 \quad & 2\eta_l^2 K^3 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \frac{1}{(a_{i,t} - a_{i,a_{i,t}-1})^2} \mathbb{E} \left\| \sum_{q=a_{i,a_{i,t}-1}}^{a_{i,t}-1} y^{(q)} \right\|^2 \\ 2130 \quad & = 2\eta_l^2 K \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \frac{1}{(a_{i,t} - a_{i,a_{i,t}-1})^2} \mathbb{E} \left\| \sum_{q=a_{i,a_{i,t}-1}}^{a_{i,t}-1} \sum_{j \in \mathcal{A}_q} \sum_{k=0}^{K-1} g_j(x_j^{(a_{j,q},k)}, \xi_j^{(a_{j,q},k)}) \right\|^2 \\ 2131 \quad & \leq 4\eta_l^2 K \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \frac{1}{a_{i,t} - a_{i,a_{i,t}-1}} \sum_{q=a_{i,a_{i,t}-1}}^{a_{i,t}-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_q} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,q},k)}) \right\|^2 + 4\eta_l^2 K^2 N^2 \sigma^2 T \\ 2132 \quad & \leq 4\eta_l^2 K N \tau_{\max} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 + 4\eta_l^2 K^2 N^2 \sigma^2 T, \end{aligned} \quad (94)$$

2143 where the last equality holds by Equation (90).

2144 Finally, after summing t from 0 to $T-1$ in Equation (84), and implementing the upper bound for
2145 each term in Equation (85) as above, it holds that

$$\begin{aligned} 2147 \quad & \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x^{(a_{i,t})} - x_i^{(a_{i,t},k)} \right\|^2 \leq 10\eta_l^2 N K^2 T \sigma^2 + 10\eta_l^2 K^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x_i^{(a_{i,t},k)} - x^{(a_{i,t})} \right\|^2 \\ 2148 \quad & + \frac{40\eta_g^2 \eta_l^4 \tau_{\max}^4 K^3 L^2}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t},k)}) \right\|^2 + 20\eta_g^2 \eta_l^4 \tau_{\max}^2 K^4 T \sigma^2 L^2 \\ 2149 \quad & + 10\eta_l^2 \tau_{\max} K^2 L^2 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x_i^{(a_{i,t},k)} - x^{(a_{i,t})} \right\|^2 + 10\eta_l^2 N K^2 T \sigma^2 \\ 2150 \quad & + 4\eta_l^2 K N \tau_{\max}^2 \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 + 4\eta_l^2 K^2 N^2 \sigma^2 T. \end{aligned} \quad (95)$$

2160 Then, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\max}KL}}$, by rearranging the terms in Equation (95), we have
2161

$$\begin{aligned} 2162 \sum_{t=0}^{T-1} \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \mathbb{E} \left\| x^{(a_{i,t})} - x_i^{(a_{i,t,k})} \right\|^2 &\leq 50\eta_l^2 N^2 K^2 \tau_{\max} T \sigma^2 + 40\eta_g^2 \eta_l^4 \tau_{\max}^2 K^4 T \sigma^2 L^2 \\ 2163 &+ \left(\frac{80\eta_g^2 \eta_l^4 \tau_{\max}^2 K^3 L^2}{N} + 8\eta_l^2 K N \tau_{\max}^2 \right) \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t,k})}) \right\|^2. \end{aligned} \quad (96)$$

2168 For the third part of Equation (80), we have, by summing over t ,

$$\begin{aligned} 2169 \sum_{t=0}^{T-1} \left\| \sum_{i \in \mathcal{N} \setminus \mathcal{A}_t} \nabla f_i(x^{(0)}) \right\|^2 &\leq 3K^2 \sum_{t=0}^{T-1} (N - A_t) \sum_{i=1}^N \left\| \nabla f_i(x^{(0)}) \right\|^2 \\ 2170 &= 3K^2 \sum_{t=0}^{T-1} \sum_{j \in \mathcal{N}} \mathbb{1}_{j \notin \mathcal{A}_t} \sum_{i=1}^N \left\| \nabla f_i(x^{(0)}) \right\|^2 \leq 3K^2 N^2 \tau_{\max} F_0, \end{aligned} \quad (97)$$

2177 where $F_0 := \frac{1}{N} \sum_{i=1}^N \left\| \nabla f_i(x^{(0)}) \right\|^2$.

2178 Thus, by summing over t and taking expectation in Equation (80), implementing the three parts, we
2179 have, for $\eta_l \leq 1 / (10\sqrt{\tau_{\max}KL})$, by $3NKL^2 \cdot 40\eta_g^2 \eta_l^4 \tau_{\max}^2 K^4 T \sigma^2 L^4 \leq 2\eta_g^2 \eta_l^2 K^3 N \tau_{\max} T \sigma^2 L^2$,

$$\begin{aligned} 2180 \sum_{t=0}^{T-1} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t,k})}) \right\|^2 \\ 2181 &\leq 3K^2 N^2 \tau_{\max} F_0 + 8\eta_g^2 \eta_l^2 K^3 N \tau_{\max} \max \{1, \tau_{\text{avg}}\} T \sigma^2 L^2 + 6\eta_g^2 \eta_l^2 K^2 \tau_{\max}^2 L^2 \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t,k})}) \right\|^2 \\ 2182 &+ 150\eta_l^2 N^3 K^3 \tau_{\max} T \sigma^2 L^2 + (240\eta_g^2 \eta_l^4 \tau_{\max}^2 K^4 L^4 + 24\eta_l^2 K^2 N^2 \tau_{\max}^2 L^2) \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t,k})}) \right\|^2 \\ 2183 &\leq 3K^2 N^2 \tau_{\max} F_0 + 8\eta_g^2 \eta_l^2 K^3 N \tau_{\max} \max \{1, \tau_{\text{avg}}\} T \sigma^2 L^2 + 150\eta_l^2 N^3 K^3 \tau_{\max} T \sigma^2 L^2 \\ 2184 &+ (10\eta_g^2 \eta_l^2 \tau_{\max}^2 K^2 L^2 + 24\eta_l^2 K^2 N^2 \tau_{\max}^2 L^2) \sum_{t=0}^{T-1} \mathbb{E} \left\| \sum_{j \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_j(x_j^{(a_{j,t,k})}) \right\|^2. \end{aligned} \quad (98)$$

2196 \square

2197 **Lemma E.5.** Suppose Assumption 1.1 and 1.2 hold. Then, we have

$$\begin{aligned} 2198 - \frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} [g_i(x_i^{(a_{i,t,k})}, \xi_i^{(a_{i,t,k})}) - \nabla f_i(x_i^{(a_{i,t,k})})] \right\rangle \\ 2199 &\leq 3 \frac{\eta_g^2 \eta_l^2 K}{N} \tau_{\text{avg}} \sigma^2 L T + 2 \frac{\eta_g^2 \eta_l^2}{N^2} \tau_{\max} L \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in \mathcal{A}_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t,k})}) \right\|^2. \end{aligned}$$

2206 *Proof.* The proof is similar to the proof of Lemma D.5. \square

2207 **Lemma E.6.** Suppose Assumption 1.1 and 1.2 hold. Then, for $\eta_l \leq \frac{1}{10\tau_{\max}NK\bar{L}}$, and $\eta_g \eta_l \leq \frac{1}{10\tau_{\max}KL}$, we have

$$2208 \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{2\Delta_f}{\eta_g \eta_l K T} + \frac{9\eta_g \eta_l \max \{1, \tau_{\text{avg}}\} \sigma^2 L}{N} + \frac{3\tau_{\max} F_0}{T} + 150\eta_l^2 N K \sigma^2 L^2.$$

2213 where $\Delta_f := f(x^{(0)}) - f^*$ and $F_0 := \frac{1}{n} \sum_{i=1}^n \left\| \nabla f_i(x^{(0)}) \right\|^2$.

2214 *Proof.* By Assumption 1.1, the function $f := \frac{1}{n} \sum_{i=1}^n f_i$ is L -smooth. Then, it holds by the descent
 2215 lemma that

2216
$$\mathbb{E}f(x^{(t+1)}) \leq \mathbb{E}f(x^{(t)}) + \mathbb{E} \left\langle \nabla f(x^{(t)}), x^{(t+1)} - x^{(t)} \right\rangle + \frac{L}{2} \left\| x^{(t+1)} - x^{(t)} \right\|^2. \quad (99)$$

2217 For the inner product term in Equation (99), there holds that

2218
$$\begin{aligned} \mathbb{E} \left\langle \nabla f(x^{(t)}), x^{(t+1)} - x^{(t)} \right\rangle &= \mathbb{E} \left\langle \nabla f(x^{(t)}), -\frac{\eta_g \eta_l K}{N} y^{(t)} \right\rangle \\ &= -\frac{\eta_g \eta_l}{N} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right] \right\rangle \\ &\quad - \frac{\eta_g \eta_l}{N^2} \mathbb{E} \left\langle \sum_{i=1}^N \nabla f_i(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\rangle. \end{aligned} \quad (100)$$

2219 We bound the first term after summing over t in Equation (100) according to Lemma E.5. Then, for
 2220 the second term in Equation (100), we have

2221
$$\begin{aligned} &-\frac{\eta_g \eta_l}{N^2} \mathbb{E} \left\langle \sum_{i=1}^N \nabla f_i(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\rangle \\ &= -\frac{\eta_g \eta_l}{N^2 K} \mathbb{E} \left\langle K \sum_{i=1}^N \nabla f_i(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\rangle \\ &= -\frac{1}{2} \eta_g \eta_l K \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 - \frac{\eta_g \eta_l}{2N^2 K} \mathbb{E} \left\| \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 \\ &\quad + \frac{\eta_g \eta_l}{2N^2 K} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2. \end{aligned} \quad (101)$$

2222 Then, summing over t from 0 to $T-1$ on both sides of Equation (99) and taking full expectation,
 2223 we have

2224
$$\begin{aligned} 0 &\leq \Delta_f - \frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right] \right\rangle \\ &\quad - \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 - \frac{\eta_g \eta_l}{2N^2 K} \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 \\ &\quad + \frac{\eta_g \eta_l}{2N^2 K} \sum_{t=0}^{T-1} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 + \frac{L}{2} \sum_{t=0}^T \mathbb{E} \left\| x^{(t+1)} - x^{(t)} \right\|^2. \end{aligned} \quad (102)$$

2225 where $\Delta_f := f(x^{(0)}) - f^*$. Implementing Lemma E.1 into Equation (102), we have

2226
$$\begin{aligned} 0 &\leq \Delta_f - \frac{\eta_g \eta_l}{N} \sum_{t=0}^{T-1} \mathbb{E} \left\langle \nabla f(x^{(t)}), \sum_{i \in A_t} \sum_{k=0}^{K-1} \left[g_i(x_i^{(a_{i,t},k)}, \xi_i^{(a_{i,t},k)}) - \nabla f_i(x_i^{(a_{i,t},k)}) \right] \right\rangle \\ &\quad - \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 - \frac{\eta_g \eta_l}{2N^2 K} (1 - \eta_g \eta_l K L) \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 \\ &\quad + \frac{\eta_g \eta_l}{2N^2 K} \sum_{t=0}^{T-1} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t},k)}) \right\|^2 + \frac{\eta_g^2 \eta_l^2 K T \sigma^2 L}{N}. \end{aligned} \quad (103)$$

2268 Implementing Lemma E.5 into Equation (103), we have
2269

$$\begin{aligned}
2270 \quad 0 \leq \Delta_f - \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 + \frac{4\eta_g^2 \eta_l^2 \max \{1, \tau_{\text{avg}}\} KT \sigma^2 L}{N} \\
2271 \\
2272 \quad - \frac{\eta_g \eta_l}{2N^2 K} (1 - \eta_g \eta_l KL - 4\eta_g \eta_l \tau_{\text{max}} KL) \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 \\
2273 \\
2274 \quad + \frac{\eta_g \eta_l}{2N^2 K} \sum_{t=0}^{T-1} \mathbb{E} \left\| K \sum_{i=1}^N \nabla f_i(x^{(t)}) - \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2.
2275
\end{aligned} \tag{104}$$

2276 Implementing Lemma E.4 into Equation (104), we have, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\text{max}}KL}}$,
2277

$$\begin{aligned}
2278 \quad 0 \leq \Delta_f - \frac{1}{2} \eta_g \eta_l K \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 + 75\eta_g \eta_l^3 NK^2 \tau_{\text{max}} T \sigma^2 L^2 \\
2279 \\
2280 \quad - \frac{\eta_g \eta_l}{2N^2 K} (1 - \eta_g \eta_l KL - 4\eta_g \eta_l \tau_{\text{max}} KL - 10\eta_g^2 \eta_l^2 \tau_{\text{max}}^2 K^2 L^2 - 24\eta_l^2 K^2 N^2 \tau_{\text{max}} L^2) \\
2281 \\
2282 \quad \sum_{t=0}^T \mathbb{E} \left\| \sum_{i \in A_t} \sum_{k=0}^{K-1} \nabla f_i(x_i^{(a_{i,t}, k)}) \right\|^2 + \frac{3\eta_g \eta_l \tau_{\text{max}} K F_0}{2} \\
2283 \\
2284 \quad + \frac{4\eta_g^2 \eta_l^2 \max \{1, \tau_{\text{avg}}\} KT \sigma^2 L}{N} + \frac{3\eta_g^3 \eta_l^3 \tau_{\text{max}} \max \{1, \tau_{\text{avg}}\} K^2 T \sigma^2 L^2}{N}.
2285
\end{aligned} \tag{105}$$

2286 Then, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\text{max}}NKL}}$, and $\eta_g \eta_l \leq \frac{1}{10\tau_{\text{max}}KL}$, we have
2287

$$\begin{aligned}
2288 \quad 1 - \eta_g \eta_l KL - 4\eta_g \eta_l \tau_{\text{max}} KL - 10\eta_g^2 \eta_l^2 \tau_{\text{max}}^2 K^2 L^2 - 24\eta_l^2 K^2 N^2 \tau_{\text{max}}^2 L^2 \\
2289 \\
2290 \quad \geq 1 - \frac{1}{10} - \frac{2}{5} - \frac{1}{10} - \frac{6}{25} > 0.
\end{aligned} \tag{106}$$

2291 Therefore, for $\eta_l \leq \frac{1}{10\tau_{\text{max}}NKL}$, and $\eta_g \eta_l \leq \frac{1}{10\tau_{\text{max}}KL}$, by rearranging Equation (105) and noticing
2292

$$\frac{4\eta_g^3 \eta_l^3 \tau_{\text{max}} \max \{1, \tau_{\text{avg}}\} K^2 T \sigma^2 L^2}{N} \leq \frac{\eta_g^2 \eta_l^2 \max \{1, \tau_{\text{avg}}\} KT \sigma^2 L}{2N},$$

2293 it implies that
2294

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{2\Delta_f}{\eta_g \eta_l KT} + \frac{9\eta_g \eta_l \max \{1, \tau_{\text{avg}}\} \sigma^2 L}{N} + \frac{3\tau_{\text{max}} F_0}{T} + 150\eta_l^2 NK \sigma^2 L^2. \tag{107}$$

2295 \square
2296

2297 **Theorem E.1.** Suppose Assumption 1.1 and 1.2 hold. Then, for
2298

$$\eta_g = \frac{N}{\sqrt{\tau_{\text{max}}}}, \text{ and } \eta_l = \min \left\{ \frac{1}{10\sqrt{\tau_{\text{max}}NKL}}, \frac{\sqrt{\tau_{\text{max}}\Delta_f}}{\sqrt{N \max \{1, \tau_{\text{avg}}\} KTL\sigma^2}} \right\},$$

2299 we have
2300

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{30\sqrt{\max \{1, \tau_{\text{avg}}\} L\sigma^2 \Delta_f}}{\sqrt{NKT}} + \frac{20\tau_{\text{max}} (L\Delta_f + F_0)}{T},$$

2301 where $\Delta_f := f(x^{(0)}) - f^*$ and $F_0 := \frac{1}{N} \sum_{i=1}^N \left\| \nabla f_i(x^{(0)}) \right\|^2$.
2302

2303 *Proof.* Invoking Lemma D.6, we have, for $\eta_l \leq \frac{1}{10\sqrt{\tau_{\text{max}}NKL}}$, and $\eta_g \eta_l \leq \frac{1}{10\tau_{\text{max}}KL}$,
2304

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{2\Delta_f}{\eta_g \eta_l KT} + \frac{9\eta_g \eta_l \max \{1, \tau_{\text{avg}}\} \sigma^2 L}{N} + \frac{3\tau_{\text{max}} F_0}{T} + 150\eta_l^2 NK \sigma^2 L^2. \tag{108}$$

2322 Choosing

2323

$$\eta_g = \frac{N}{\sqrt{\tau_{\max}}}, \quad \eta_l = \min \left\{ \frac{1}{10\sqrt{\tau_{\max}}NKL}, \frac{\sqrt{\tau_{\max}\Delta_f}}{\sqrt{N \max\{1, \tau_{\text{avg}}\} KTL\sigma^2}} \right\},$$

2324

2325 we have

2326

$$\eta_g\eta_l = \min \left\{ \frac{\sqrt{N\Delta_f}}{\sqrt{\max\{1, \tau_{\text{avg}}\} KTL\sigma^2}}, \frac{1}{10\tau_{\max}KL} \right\},$$

2327

$$\frac{2\Delta_f}{\eta_g\eta_l K T} \leq \frac{2\sqrt{\max\{1, \tau_{\text{avg}}\} L\sigma^2\Delta_f}}{\sqrt{NKT}} + \frac{20\tau_{\max}L\Delta_f}{T},$$

2328

$$9\frac{\eta_g\eta_l}{N} \max\{1, \tau_{\text{avg}}\} \sigma^2 L \leq \frac{9\sqrt{\max\{1, \tau_{\text{avg}}\} L\sigma^2\Delta_f}}{\sqrt{NKT}},$$

2329

$$150\eta_l^2 NK\sigma^2 L^2 \leq 150 \frac{1}{10\sqrt{\tau_{\max}NKL}} \frac{\sqrt{\tau_{\max}\Delta_f}}{\sqrt{N \max\{1, \tau_{\text{avg}}\} KTL\sigma^2}} NK\sigma^2 L^2 \leq \frac{15\sqrt{L\sigma^2\Delta_f}}{\sqrt{NKT}}.$$

2330

2331 Thus, we can combine the above bounds with Equation (108) to get

2332

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{26\sqrt{\max\{1, \tau_{\text{avg}}\} L\sigma^2\Delta_f}}{\sqrt{NKT}} + \frac{20\tau_{\max}(L\Delta_f + F_0)}{T},$$

2333

2334 which gives the desired result by appropriately magnifying the constants. \square

2335

2336 F CLIENT PARTICIPATION PATTERNS

2337

2338 In this section, we provide rough estimates of client participation characteristics for the four cases
 2339 introduced in Section 2. Since both τ_{avg} and τ_{\max} are functions of $\{\mathcal{S}_t\}_{t=0}^{T-1}$, it follows directly from
 2340 the definition that $\tau_{\text{avg}} \leq \tau_{\max}$. Hence, we focus on bounding τ_{\max} (or $\mathbb{E}[\tau_{\max}]$) as a rough measure
 2341 of different client participation patterns.

2342

2343 **Lemma F.1.** Suppose \mathcal{S}_t are sampled uniformly at random from \mathcal{N} with $|\mathcal{S}_t| = S < N$ for $t = 0, \dots, T$, as described in Case 1 of Section 2. Then, we have

2344

2345

$$\mathbb{E}[\tau_{\max}] \leq \frac{4N}{S} \ln(NT).$$

2346

2347 *Proof.* For each client $i \in \mathcal{N}$ at the iteration t , define the indicator variable:

2348

$$X_{i,t} := \begin{cases} 1, & \text{if } i \in \mathcal{S}_t, \\ 0, & \text{otherwise.} \end{cases}$$

2349

2350 Then, for each client i , define its longest-run random variable as

2351

$$L_i := \max \{l \geq 1 : X_{i,t} = X_{i,t+1} = \dots = X_{i,t+l-1} = 0 \text{ for some } t\}.$$

2352

2353 Then,

$$\tau_{\max} = \max_{i \in \mathcal{N}} \{L_i\}.$$

2354

2355 By uniformly and randomly sampling \mathcal{S}_t from \mathcal{N} , it holds that for fixed $i \in \mathcal{N}$,

2356

$$p := \mathbb{P}(X_{i,t} = 0) = \mathbb{P}(i \notin \mathcal{S}_t) = 1 - \frac{\binom{N-1}{S-1}}{\binom{N}{S}} = 1 - \frac{S}{N}.$$

2357

2358 The event that client i appears in iterations $t, t+1, \dots, t+l-1$ has probability p^l and there are
 2359 $T-l+1$ possible starting points for such a run. Thus, a union bound gives

2360

2361

$$\begin{aligned} \mathbb{P}(\tau_{\max} \geq l) &= \mathbb{P}(\bigcup_{i=1}^N \bigcup_{t=1}^{T-l+1} \{X_{i,t} = X_{i,t+1} = \dots = X_{i,t+l-1} = 0\}) \\ &\leq \sum_{i=1}^N \sum_{t=1}^{T-l+1} \mathbb{P}(X_{i,t} = X_{i,t+1} = \dots = X_{i,t+l-1} = 0) = \sum_{i=1}^N \sum_{t=1}^{T-l+1} p^l \leq NTp^l. \end{aligned}$$

2362

Using the tail-sum formular for the expected value, we have

$$\mathbb{E}\tau_{\max} = \sum_{l=1}^T \mathbb{P}(\tau_{\max} \geq l) \leq \sum_{l=1}^T \min\{1, NTp^l\}. \quad (109)$$

Picking integer $m = \lceil \log_p \frac{(1-p)}{NTp} \rceil$, we have

$$\mathbb{E}\tau_{\max} \leq \sum_{l=1}^m 1 + \sum_{l=m+1}^T NTp^l \leq m + \frac{NTp^{m+1}}{1-p}. \quad (110)$$

Besides, implementing into Equation (110) with the fact that

$$\frac{NTp}{1-p}p^m \leq \frac{NTp}{1-p}p^{\log_p \frac{(1-p)}{NTp}} = \frac{NTp}{1-p} \frac{(1-p)}{NTp} = 1, \text{ and } \frac{p}{1-p} = \frac{N-S}{S} \leq N,$$

we have

$$\mathbb{E}\tau_{\max} \leq \log_p \frac{(1-p)}{NTp} + 1 + 1 = \frac{\ln\left(\frac{1-p}{NTp}\right)}{\ln p} + 2 \leq \frac{4\ln(NT)}{\ln(\frac{1}{p})} \leq \frac{4\ln(NT)}{1-p} = \frac{4N}{S} \ln(NT),$$

which completes the proof. \square

Lemma F.2. Suppose each client independently participates in each round with a fixed probability $p_i \geq \delta \in (0, 1]$, as described in Case 2 of Section 2. Then, we have

$$\mathbb{E}[\tau_{\max}] \leq \frac{4}{\delta} \max \left\{ \ln(NT), \ln\left(\frac{1}{\delta}\right) \right\}.$$

Proof. For each client $i \in \mathcal{N}$ at the iteration t , define the indicator variable:

$$X_{i,t} := \begin{cases} 1, & \text{if } i \in \mathcal{S}_t, \\ 0, & \text{otherwise.} \end{cases}$$

Then, for each client i , define its longest-run random variable as

$$L_i := \max \{l \geq 1 : X_{i,t} = X_{i,t+1} = \dots = X_{i,t+l-1} = 0 \text{ for some } t\}.$$

Then,

$$\tau_{\max} = \max_{i \in \mathcal{N}} \{L_i\}.$$

By the assumption that each client independently participates in each round with a fixed probability $p_i \geq \delta \in (0, 1]$, it holds that for any client i ,

$$p := \mathbb{P}(X_{i,t} = 0) = 1 - p_i \leq 1 - \delta.$$

Using the tail-sum formular for the expected value, we have

$$\mathbb{E}\tau_{\max} = \sum_{l=1}^T \mathbb{P}(\tau_{\max} \geq l) \leq \sum_{l=1}^T \min\{1, NTp^l\}. \quad (111)$$

Picking integer $m = \lceil \log_p \frac{(1-p)}{NTp} \rceil$, we have

$$\mathbb{E}\tau_{\max} \leq \sum_{l=1}^m 1 + \sum_{l=m+1}^T NTp^l \leq m + \frac{NTp^{m+1}}{1-p}. \quad (112)$$

Besides, implementing into Equation (112) with the fact that

$$\frac{NTp}{1-p}p^m \leq \frac{NTp}{1-p}p^{\log_p \frac{(1-p)}{NTp}} = \frac{NTp}{1-p} \frac{(1-p)}{NTp} = 1, \text{ and } \frac{p}{1-p} \leq \frac{1}{\delta},$$

we have

$$\begin{aligned} \mathbb{E}\tau_{\max} &\leq \log_p \frac{(1-p)}{NTp} + 1 + 1 = \frac{\ln\left(\frac{1-p}{NTp}\right)}{\ln p} + 2 \leq \frac{\ln(NT) + \ln(\frac{1}{\delta})}{\ln(\frac{1}{p})} + 2 \\ &\leq \frac{\ln(NT) + \ln(\frac{1}{\delta})}{1-p} + 2 \leq \frac{\ln(NT)}{\delta} + \frac{\ln \frac{1}{\delta}}{\delta} + 2 \leq \frac{4}{\delta} \max \left\{ \ln(NT), \ln\left(\frac{1}{\delta}\right) \right\}, \end{aligned}$$

which completes the proof. \square

2430
 2431 **Lemma F.3.** Suppose clients are selected in reshuffled cyclic order, as described in Case 3 of Sec-
 2432 tion 2. Then, we have,

2433
$$\mathbb{E}\tau_{\max} \leq \frac{4N}{S}.$$

 2434

2435 *Proof.* Since the client order is randomly reshuffled at the beginning of each epoch, the interval
 2436 between two consecutive selections of any client i cannot exceed the rounds spanning from the start
 2437 of one epoch to the end of the next.

2438 As one epoch consists of $\lfloor N/S \rfloor$ rounds, the gap between two consecutive selections of any client i
 2439 is at most $2\lfloor N/S \rfloor$. Hence,

2440
$$\tau_{\max} \leq \max_{0 \leq t \leq T-1} \max_{i \in \mathcal{N}} \{t - a_{i,t}\} \leq 2\lfloor N/S \rfloor \leq \frac{4N}{S}.$$

 2441

2442 Taking expectation on both sides yields the desired result. \square
 2443

2444 **Lemma F.4.** Suppose clients are selected in deterministic cyclic order, as described in Case 4 of
 2445 Section 2. Then, we have,

2446
$$\tau_{\max} \leq \frac{2N}{S}.$$

 2447

2448 *Proof.* Since the client order is deterministic of each epoch, the interval between two consecutive
 2449 selections of any client i cannot exceed the rounds spanning from the start of one epoch to the end
 2450 of it, which implies

2451
$$\tau_{\max} \leq \frac{2N}{S}.$$

 2452

2453 \square

2454 G CONVERGENCE RESULTS OF THE FEDSUM FAMILY

2455 In this section, we present the convergence results of the FedSUM family and analyze their behavior
 2456 under different client participation patterns. Since we take the full expectation over τ_{avg} and τ_{\max} ,
 2457 both functions of \mathcal{S}_t , $t = 0, \dots, T-1$, in Lemmas C.6, D.6, and E.6, it suffices to use their expected
 2458 values in the final theorem.

2459 Combining Theorem C.1, D.1 and E.1, we obtain the following unified convergence result.

2460 **Theorem G.1.** Under Assumptions 1.1 and 1.2, and for arbitrary client participation characterized
 2461 by τ_{\max} and τ_{avg} , if the learning rates for FedSUM-B, FedSUM, and FedSUM-CR are set as

2462
$$\eta_g = \frac{N}{\sqrt{\tau_{\max}}}, \text{ and } \eta_l = \min \left\{ \frac{1}{10\sqrt{\tau_{\max}}NKL}, \frac{\sqrt{\tau_{\max}\Delta_f}}{\sqrt{N \max\{1, \tau_{\text{avg}}\} KTL\sigma^2}} \right\},$$

 2463

2464 then all three algorithms achieve the following convergence rate:

2465
$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla f(x^{(t)})\|^2] \leq \frac{30\sqrt{\max\{1, \tau_{\text{avg}}\} L\sigma^2\Delta_f}}{\sqrt{NKT}} + \frac{20\tau_{\max}(L\Delta_f + F_0)}{T}, \quad (113)$$

 2466

2467 where $\Delta_f := f(x^{(0)}) - f^*$ and $F_0 := \frac{1}{N} \sum_{i=1}^N \|\nabla f_i(x^{(0)})\|^2$.

2468 The following corollary is direct consequences of Lemmas F.1, F.2, F.3, and F.4. By substituting
 2469 the bounds on τ_{\max} (and τ_{avg} when applicable) from each lemma into Theorem 4.1, we obtain the
 2470 convergence results of FedSUM-B, FedSUM, and FedSUM-CR under the four client participation
 2471 schemes described in Section 2.

2472 **Corollary G.1** (Convergence under Case 1–4). Under Assumptions 1.1 and 1.2, and with appropri-
 2473 ately chosen learning rates η_g and η_l , the FedSUM-B, FedSUM, and FedSUM-CR algorithms satisfy
 2474 the following bounds under the participation schemes in Section 2:

2484 • **Case 1 (Uniform Random Sampling):**

2485

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{60\sqrt{L\sigma^2\Delta_f \log(NT)}}{\sqrt{SKT}} + \frac{80(L\Delta_f + F_0)N \log(NT)}{ST}.$$

2486 • **Case 2 (Probability-Based Independent Sampling):**

2487

$$\begin{aligned} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq & \frac{60\sqrt{L\sigma^2\Delta_f} \max \{ \log(NT), \log(\frac{1}{\delta}) \}}{\sqrt{\delta NKT}} \\ & + \frac{80(L\Delta_f + F_0) \max \{ \log(NT), \log(\frac{1}{\delta}) \}}{\delta T}. \end{aligned}$$

2488 • **Case 3 (Reshuffled Cyclic Participation):**

2489

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{60\sqrt{L\sigma^2\Delta_f}}{\sqrt{SKT}} + \frac{80N(L\Delta_f + F_0)}{ST}.$$

2490 • **Case 4 (Cyclic Participation):**

2491

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(x^{(t)}) \right\|^2 \leq \frac{60\sqrt{L\sigma^2\Delta_f}}{\sqrt{SKT}} + \frac{80N(L\Delta_f + F_0)}{ST}.$$

2508 H NUMERICAL EXPERIMENTS

2510 H.1 CODE

2512 The code for reproducing our experiments is available at <https://anonymous.4open.science/r/FedSUM-0658>.

2515 H.2 EXPERIMENTAL SETUPS

2517 **Hardware and software Setups.**

2518 • Hardware. The experiments are performed on a private cluster with eight Nvidia RTX 3090
2519 GPU cards.

2520 • Software. We code the experiments based on Pytorch 2.0.1 and Python 3.11.4.

2522 **Neural network and hyper-parameter specifications.**

2524 Table 2 details the models and training setup. The initial local learning rate η_0 and global learning
2525 rate η_g are optimized over a grid search, with $\eta_0 \in \{0.01, 0.005, 0.001, 0.0005\}$ and $\eta_0\eta_g = 0.01$,
2526 based on the best performance after 500 global rounds of FedAvg. Consequently, we select $\eta_g = 1.0$
2527 and $\eta_0 = 0.01$ for all algorithms across various models and datasets. Furthermore, we choose
2528 $K = 50$ in FedAU as suggested in the original paper (Wang & Ji, 2023).

2529 **Datasets and data heterogeneity.**

2530 All the datasets we evaluate contain 10 classes of images, detailed as follows.

2532 • **MNIST (LeCun et al., 2010).** The dataset contains 28×28 grayscale images of 10 different
2533 handwritten digits. In total, there are 60000 train images and 10000 test images.

2534 • **SVHN (Netzer et al., 2011).** The dataset contains 32×32 colored images of 10 different
2535 number digits. In total, there are 73257 train images and 26032 test images.

2536 • **CIFAR-10 (Krizhevsky et al., 2009).** The dataset contains 32×32 colored images of 10
2537 different objects. In total, there are 50000 train images and 10000 test images.

2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591

Figure 4 shows the data distribution across 100 clients in training over MNIST. The x-axis represents the client index, and the y-axis the number of data samples per client. The color bars in each histogram show the proportions of different labels. The Dirichlet parameter $\alpha = 0.1$ controls data heterogeneity: smaller α values lead to more non-i.i.d. distributions, while larger α values result in more homogeneous data.

Figure 4: Data heterogeneity with $\text{Dirichlet}(\alpha = 0.1)$ distribution across 100 clients. The x-axis is the client index, and the y-axis is the number of samples. The color bars represent the proportion of each label. Smaller α leads to more non-i.i.d. data.

Client participation patterns.

As described in Section 2, we consider three client participation patterns:

- **P1 (Uniform random sampling):** At each round t , $S = 20$ clients are randomly and uniformly selected to participate.
- **P2 (Stationary probability participation):** At each round t , each client has a participation probability of $\frac{S}{N}$, where $S = 20$, $N = 100$.
- **P3 (Non-stationary with sine trajectory):** At each round t , the participation probability of each client is $p_i^t := \frac{S}{N} (0.3\sin(\frac{\pi t}{5}) + 0.7)$, where $S = 20$, $N = 100$.

H.3 DETAILED EXPERIMENTAL RESULTS

To provide a more granular analysis of the experimental results presented in Section 5 of the main paper, this part offers more detailed performance comparisons. Specifically, Figures 5, 6, and 7 isolate the performance of the evaluated algorithms under each of the three client participation patterns (P1, P2, and P3), respectively. This allows for a clearer assessment of how each algorithm responds to different participation schemes. Furthermore, to offer a clearer view of the final convergence behavior, Figure 8 presents the training dynamics over the last 160 rounds.

H.4 ADDITIONAL EXPERIMENTAL RESULTS

We present the performance of FedSUM across all the client participation patterns outlined in Section 2, specifically for Cases 1 to 4. The results shown in Figure 9 confirm the robust performance of FedSUM under different patterns.

In addition, we illustrate the performance of FedSUM evaluated under the client participation pattern Case 2 (Probability-Based Independent Participation, with varying probabilities p), as shown in Figure 10. The results imply that larger p (and thus smaller τ_{avg} and τ_{max}) generally leads to better performance, which agrees with the theoretical findings.

Figure 5: Performance of the evaluated algorithms using CNN models on three datasets under client participation pattern P1.

Figure 6: Performance of the evaluated algorithms using CNN models on three datasets under client participation pattern P2.

Figure 7: Performance of the evaluated algorithms using CNN models on three datasets under client participation pattern P3.

Figure 8: Detailed view of convergence behavior during the final 160 rounds of training.

Figure 9: Performance of the FedSUM algorithm using CNN models on three datasets, evaluated across client participation patterns (Case 1 to Case 4) as described in Section 2.

2700 Table 2: Neural network architectures, loss function, learning rate scheduling, training steps and
 2701 batch size specifications.

Datasets	MNIST	SVHN	CIFAR-10
Neural network	CNN	CNN	CNN
Model architecture	C(1,10) - R - M - C(10,20) - D - R - M - L(50) - R - D - L(10)	C(3,32)-R -M- C(32,32)-R-M -L(128)-R-L(10)	C(3,32)-R -M- C(32,32)-R-M -L(256)-R-L(64) -R-L(10)
Loss function	Cross-entropy loss		
Local learning rate η_l Scheduling	$\eta_l = \frac{\eta_0}{\sqrt{t/10+1}}$, where t denotes the global round.		
Number of clients N	100		
Number of local updates K	10		
Number of global rounds T	2000		
Batch size	128		

* C(# in-channel, # out-channel): a 2D convolution layer (kernel size 3, stride 1, padding 1); R: ReLU activation function; M: a 2D max-pool layer (kernel size 2, stride 2); L: (# outputs): a fully-connected linear layer; D: a dropout layer (probability 0.2).

2742 Figure 10: Performance of the FedSUM algorithm using CNN models on three datasets with data
 2743 heterogeneity ($\alpha = 0.1$) and constant learning rates $\eta_g = 1.0$ and $\eta_l = 0.01$, evaluated under
 2744 the client participation pattern Case 2 (Probability-Based Independent Participation, with varying
 2745 probabilities p).

H.5 COMPARISON AMONG THE FEDSUM FAMILY

2750 Figure 11 further demonstrates that FedSUM-B and FedSUM-CR achieve performance comparable
 2751 to or even better than FedSUM when further setting the constant and bigger local learning rate
 2752 $\eta_l = 0.1$. This is mainly because the batch size is set to 128, which is relatively large given that each
 2753 client has only about 600 data samples. Under a smaller batch size (e.g., 8 or 16), the performance
 of FedSUM-B degrades while FedSUM takes the lead.

Figure 11: Training loss and test accuracy curves for CNN models trained using FedSUM family on three datasets under different client participation patterns.

H.6 ADDITIONAL EXPERIMENT: COMPARISON OF FEDSUM WITH FEDAVG AND SCAFFOLD ON TRAINING RESNET-18

We conduct additional experiments by training a ResNet-18 model on the CIFAR-10 and CIFAR-100 datasets to further evaluate the performance of our proposed methods.

In both experiments, we simulate a federated environment with 50 total clients, from which 10 are randomly selected in each communication round. To model data heterogeneity, the training data is partitioned among clients using a Dirichlet distribution with $\alpha = 0.1$. The optimization and training parameters are configured as follows:

- **Optimizer:** We use SGD without weight decay. The global learning rate is set to $\eta_g = 1.0$.
- **CIFAR-10:** Each client performs 10 local updates with a batch size of 32 and a local learning rate of $\eta_l = 0.01$.
- **CIFAR-100:** Each client performs 10 local updates with a batch size of 32 and a local learning rate of $\eta_l = 0.001$.

The results, showing the training loss and test accuracy curves for these experiments, are presented in Figure 12a and Figure 12b. [It can be seen that FedSUM achieves the strongest performance in both cases.](#)

H.7 ADDITIONAL EXPERIMENT: COMPARISON OF FEDSUM WITH FEDAVG ON SST-2 DATASET

We further evaluate the performance of the proposed FedSUM algorithm against the standard Federated Averaging (FedAvg) baseline (McMahan et al., 2017) on the Stanford Sentiment Treebank (SST-2) dataset (Socher et al., 2013), a benchmark for binary sentiment classification.

The base model for the experiment is “bert-base-uncased” (Devlin et al., 2019), which we fine-tune for the downstream task. We utilize the pre-trained weights and implementation from the Hugging Face transformers library (Wolf et al., 2020) and then append a single fully-connected linear layer which serves as the classification head. To simulate a federated environment, we partition the SST-2 training set into 8 non-overlapping, equal-sized subsets, creating an I.I.D. data distribution across the clients.

During the federated training process, 2 clients are randomly sampled to participate in each communication round. Each selected client performs 3 local updates of training on its data partition with a batch size of 4. We use SGD optimizer without weight decay, setting the local learning rate to

(a) Results on CIFAR-10

(b) Results on CIFAR-100

2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Figure 12: Training loss and test accuracy for a ResNet-18 model on CIFAR-10 and CIFAR-100. For both datasets, data is partitioned heterogeneously among 50 clients using a Dirichlet distribution ($\alpha = 0.1$).

$\eta_l = 1 \times 10^{-4}$ and the global learning rate to $\eta_g = 1.0$. This setup allows for a direct comparison of the convergence properties and final accuracy of the two algorithms under a controlled IID setting.

The results of this experiment, shown in Figure 13, compare the loss and accuracy curves for the two algorithms: FedAvg and FedSUM. The FedSUM algorithm demonstrates competitive performance in terms of both loss reduction and accuracy improvement compared to FedAvg. Note that both SCAFFOLD (Karimireddy et al., 2020) and FedSUM-CR do not converge in this experiment and thus the corresponding results are not depicted.

Figure 13: Comparison of FedSUM and FedAvg on SST-2 dataset using BERT model. The left plot shows the loss curve, while the right plot shows the accuracy curve for each algorithm over 4000 rounds.

H.8 ADDITIONAL EXPERIMENT: INFLUENCE OF BIASED SAMPLING

We further evaluate the performance of the proposed FedSUM algorithm against the standard Federated Averaging (FedAvg) baseline (McMahan et al., 2017) under a biased sampling client participation pattern.

In this biased sampling scenario, clients are assigned different probabilities of participation based on their indices. Specifically, clients 1 to 11 have a 0.5 probability of participating, clients 12 to 22 have a 0.45 probability, clients 23 to 33 have a 0.4 probability, and so on, with the probability decreasing as client indices increase.

The results in Figures 14a and 14b indicate that the bias issue discussed in Ribero et al. (2022); Sun et al. (2024) does not affect the performance of FedSUM, which is consistent with the benefits of the Stochastic Uplink-Merge (SUM) technique outlined in Appendix A.

(a) Performance comparison of the FedSUM algorithm using CNN models across different client participation patterns (Case 1 to Case 4), including the biased sampling case.

(b) Performance comparison between the FedSUM and FedAvg algorithms using CNN models on three datasets, evaluated under the biased sampling case.

Figure 14: Influence of the biased sampling case.

I LLM USAGE

In preparing this manuscript, we made limited use of Large Language Models (LLMs) solely for minor text polishing. The LLM was used only to improve grammar, clarity, and readability. All conceptual development, theoretical analysis, experimental design, and interpretation of results were conducted entirely by the authors, and the scientific content is the authors' original work.