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ABSTRACT

Federated Learning (FL) methods are often designed for specific client participa-
tion patterns, limiting their applicability in practical deployments. We introduce
the FedSUM family of algorithms, which supports arbitrary client participation
without additional assumptions on data heterogeneity. Our framework models
participation variability with two delay metrics, the maximum delay 7,,,x and the
average delay 7,,,. The FedSUM family comprises three variants: FedSUM-B
(basic version), FedSUM (standard version), and FedSUM-CR (communication-
reduced version). We provide unified convergence guarantees demonstrating the
effectiveness of our approach across diverse participation patterns, thereby broad-
ening the applicability of FL in real-world scenarios.

1 INTRODUCTION

Federated learning (FL) is a powerful paradigm for large-scale machine learning, especially when
data and computational resources are distributed across diverse clients, such as phones, sensors,
banks, and hospitals (McMahan et al., 2017; |Yang et al., [2020; |[Kairouz et al.,[2021). FL has been
widely adopted in commercial applications, including autonomous vehicles (Chen et al.|[2021;[Zeng
et al., 2022) and natural language processing (Yang et al., 2018} |Ramaswamy et al., |2019). FL
enhances computational efficiency by enabling parallel local training across distributed clients. It
also preserves data privacy, as raw data remains on the device and is never directly transmitted to
the central server.

One challenge in FL is variable client participation. In practice, not all clients can participate in
every training round due to factors such as connectivity issues and resource constraints (Li et al.,
2020). The variability has motivated the development of various models and assumptions regarding
participation patterns (Karimireddy et al., [2020; |Gu et al., 2021; Huang et al., 2023} [Wang & Ji,
2023;/Cho et al.| [2023} Xiang et al.,2024), which may be either under the server’s control or beyond
it, and either homogeneous or heterogeneous across clients and rounds. Since different participation
patterns can significantly affect convergence, quantifying and addressing their impact is essential for
effective learning in practical deployments.

Another major challenge affecting FL effectiveness is data heterogeneity, where client data dis-
tributions are non-identical or highly personalized in operational environments (Zhao et al., 2018;
Kairouz et al.,|2021} [Li et al., |2022). Such heterogeneity can lead to divergence between local and
global models, particularly when multiple local updates are performed before aggregation (Mohri
et al., 2019; |L1 et al.L [2019). The effectiveness of classical approaches such as FedAvg (McMahan
et al., 2017} [Stich, |2018)) has been shown to be limited in the presence of heterogeneous data and
partial client participation, motivating a number of subsequent improvements (Karimireddy et al.,
2020; Yang et al.| 2021)).

In light of these challenges, developing FL algorithms that can simultaneously mitigate data hetero-
geneity, support efficient local updates, and remain robust to arbitrary client participation remains a
fundamental open problem in federated learning.



Under review as a conference paper at ICLR 2026

1.1 MAIN RESULTS AND CONTRIBUTIONS
In this paper, we make the following key contributions to Federated Learning:

* Arbitrary Client Participation: We study FL with general nonconvex objectives under
arbitrary client participation, covering a wide spectrum of participation patterns, including
controllable or uncontrollable, stochastic or deterministic, and homogeneous or heteroge-
neous. To characterize variability in participation, we consider two delay metrics, Tyax
(maximum delay) and 7, (average delay), which allow us to precisely quantify its impact
on convergence. To the best of our knowledge, this is the first work to analyze such diverse
client participation scenarios.

* FedSUM Family of Algorithms: We propose the FedSUM family of algorithms, in-
cluding FedSUM-B (basic version), FedSUM (standard version), and FedSUM-CR
(communication-reduced version), all designed for arbitrary client participation. These
algorithms employ the Stochastic Uplink-Merge technique to address data heterogene-
ity. FedSUM achieves the same communication and memory cost as SCAFFOLD (Karim-
ireddy et al., 2020; Huang et al., 2023)) through single-variable uplink communication,
whereas FedSUM-B and FedSUM-CR further achieve single-variable downlink communi-
cation to match the cost of FedAvg.

* Unified and Novel Convergence Results: We establish unified convergence rates for the
FedSUM family, showing that, under specific participation patterns, the rates recover those
of algorithms tailored to those settings. This demonstrates both the adaptability and gen-
erality of our approach. Our convergence guarantees are novel in that they hold under
arbitrary client participation while incorporating the delay metrics Tmax and Tyye. In ad-
dition, the analysis requires only smoothness and bounded variance assumptions, without
imposing any additional restrictions on data heterogeneity or on the objective functions.

1.2 RELATED WORKS

Client participation patterns in FL. A variety of strategies have been proposed to model client
participation in FL. Early works such as FedAvg (McMahan et al.,[2017; L1 et al.,|2019) and SCAF-
FOLD (Karimireddy et al.,|2020; [Huang et al.l[2023)) assume that the server selects a small subset of
clients in each round, either uniformly at random or in proportion to local data volume. Later studies
address heterogeneous and time-varying response rates p!. Some works treat these rates as known
and server-controlled (e.g., determined by solving a stochastic optimization problem) (Perazzone
et al., [2022), while others model them as unknown but governed by a homogeneous Markov chain
(Ribero et al.,|2022; |Xiang et al., 2024} |Wang & Jil, 2023).

Wang & Ji| (2022) propose a generalized FedAvg that amplifies parameter updates every P rounds,
requiring additional assumptions such as equal client availability within each P-round window to
guarantee convergence. Similarly, (Crawshaw & Liu| (2024) design a SCAFFOLD variant that am-
plifies global parameters and local gradients every P rounds, but assume p! remains constant within
each window. |Yang et al.|(2022) study clients participating at will, but their guarantees hold only up
to a non-zero residual error. (Cho et al.||2023) consider FedAvg with cyclic sampling, decided by the
server, to accelerate convergence. |Gu et al.| (2021)) consider a more general participation pattern, but
only for strongly convex objectives; under nonconvex objectives, |Gu et al.| (2021));|Yan et al.| (2024
assume strictly bounded inactive periods, a condition that often contradicts random sampling.

Algorithm design in FL. Following the popularity of FedAvg (McMahan et al., [2017), numerous
algorithms have sought to improve performance under data heterogeneity and varying client par-
ticipation. One line of research focuses on refining the FedAvg framework. For instance, Fed AWE
(Xiang et al.,2024) amplifies client updates to compensate for missed computation during periods of
client inactivity, and FedAU (Wang & Ji, 2023) introduces a weighted aggregation of client updates
to mitigate the negative effects of client non-participation.

Another line of work enhances FL performance by introducing additional control variables. For
example, SCAFFOLD and its variants (Karimireddy et al., [2020; |Huang et al., 2023} |(Crawshaw
& Liu, [2024) exchanges control variables to correct the update directions for both clients and the
server. In contrast, FedVARP (Jhunjhunwala et al. [2022) and MIFA (Gu et al. [2021) maintain
control variables on the server to adjust its update direction, but the number of these variables scales
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linearly with the number of clients. FedLaAvg (Yan et al.| 2024)) stores previous updates as control
variables and transmits their differences, ensuring the server’s update direction incorporates most
recent information from all clients.

Despite these advances, many methods rely on restrictive assumptions about data distributions or
objective functions, exclude local updates, or only guarantee convergence up to a non-zero residual
error. For example, several works impose additional assumptions on data heterogeneity, typically by
bounding the divergence between local and global gradients (Wang & Ji, 2023} |Xiang et al., [2024;
Yu et al.,[2019; Wang et al.||2022; |Yuan & Li,[2022; |Wang et al.,|2020). Local updates, while useful,
often introduce bias under heterogeneous data; therefore, methods such as FedLaAvg (Yan et al.,
2024) completely eliminate them. Other approaches impose structural conditions on the objective
functions, such as bounded stochastic gradients (Perazzone et al.,2022;|Yan et al.,|2024) or Lipschitz
Hessians (Gu et al.| [2021). SCAFFOLD (Karimireddy et al., 2020; Huang et al.,|2023)), when paired
with uniform random sampling, avoids additional assumptions on data heterogeneity, but at the cost
of increased communication and memory compared to FedAvg.

1.3 PROBLEM SETUP

Throughout the paper, ||-|| denotes the ¢5 vector norm, and A denotes the index set {1,..., N}.
Additionally, the expectation E[] is taken over the randomness of the stochastic gradient.

In FL, our goal is to solve the following optimization problem:

. 1o
min f(z) = N ; filz), where fi(z) := Ee,wp, Fi(2; ). ey

Here, F;(x;&;) denotes the local loss function evaluated at model x on sample &;, and f;(z) repre-
sents the local objective under the data distribution D;, which may vary significantly across clients.

We introduce the standing assumptions below.

Assumption 1.1. (Smoothness) Each local objective f; has L-Lipschitz continuous gradients. That
is, for any x,y € R% and 1 < i < N, it holds that

IVfi(z) = Vi@l < Lz =yl

Assumption 1.2. (Bounded Variance) There exists o > 0 such that for any x € Réand1 <i <N,
we have

Ee, [VE(x:6)] = V@), Ee [IVF(@:&) - VA@)*| < 0%

where £; ~ D; are i.i.d. local samples at client 1.

2 ARBITRARY CLIENT PARTICIPATION IN FL

Understanding the impact of different client participation patterns is crucial in FL, as practical con-
straints often prevent all clients from joining every round. In this section, we first review several
commonly studied participation patterns, then extend the discussion to the general case of arbitrary
client participation, whether controllable or uncontrollable, stochastic or deterministic, homoge-
neous or heterogeneous. To quantify the variability among different participation patterns, we intro-
duce two delay metrics: the maximum delay 7,,,,, which measures the longest inactive period of
any client, and the average delay .., which captures the average frequency of client participation.
This broader perspective enables a unified analysis of participation heterogeneity and its effect on
convergence.

2.1 PARTICIPATION PATTERNS

Most FL methods make simplifying assumptions about client participation in the training process.
Some approaches assume uniform random sampling controlled by the server (Case 1) (Karimireddy
et al.,|2020; Huang et al.| [2023)), while others model client participation with uncertain, dynamic,
and independent client unavailability (Case 2), resulting in an uncontrollable participation pattern (Li
et al.||2020;|Yang et al.,[2022; Wang & J1,|2023; Xiang et al.,[2024). Another class of methods adopts
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a scheme where each client participates for a certain number of rounds and does not participate in
the other rounds of a cycle, to improve convergence performance (e.g., Case 3) (Cho et al., 2023;
Ding et all |2024). These assumptions may constrain the applicability of FL algorithms, as more
structured or round-correlated schemes, such as reshuffled cyclic participation (Case 4) (Malinovsky
et al.,|2023)) or participation modeled by Markov processes with non-independent and non-stationary
client availability, fall outside these assumptions.

We formally define the participation patterns (Case 1 to 4) below:

Case 1: Uniform Random Sampling. In each round ¢, the server uniformly and randomly samples
asubset Sy C N with |§;| = S.

Case 2: Probability-Based Independent Participation. Each client ¢ independently participates
in round ¢ with a probability p! € (0, 1], where pt > § > 0.

Case 3: Deterministic Cyclic Participation. Clients are arranged in a fixed order, and a block of S
consecutive clients is selected in each round. The process continues sequentially and wraps around
at the end, cycling deterministically through all clients.

Case 4: Reshuffled Cyclic Participation. Clients are arranged in a random order at the beginning
of each epoch, and a block of S consecutive clients is selected in each round. The process continues
sequentially and wraps around at the end, cycling through all clients.

The variability in participation patterns motivates a unified treatment of arbitrary client participation
and its characterization.

2.2  ARBITRARY CLIENT PARTICIPATION AND TWO DELAY METRICS

We consider an arbitrary client participation sequence {St}tT:_Ol, where S; C N denotes the set
of active clients at round ¢. This sequence may vary arbitrarily from round to round or follow a
predetermined schedule. A key challenge is to quantify the variability of participation patterns.
We address this by considering two metrics, the maximum delay 7,,,« and the average delay 7,
(Gu et al.l |2021)), which offer a concise means of quantifying client participation and facilitate our
theoretical analysis.

We begin with defining the last-selection time for each client i € A at round ¢ as follows:
a;s :=max{j <t:ieS;}. )

In other words, a; ; denotes the most recent round (up to ¢) in which client 7 was active. By conven-
tion, a; = —1 if client ¢ has never participated before round ¢ 4 1. Equivalently, a; ; records the
last round client ¢ was included in the active set, and can be expressed recursively as:

_ fait—1 ifclienti ¢ S, h _ 3)
@t =\ ifclienti € S, L BTLT T
The per-round delay at round ¢ is then defined as:
Ty = max {t —a;} >0. “4)

Here, 7, represents the largest gap between the current round and the last time any client participated.
We focus on this gap because, due to data heterogeneity, a single client’s behavior can significantly
influence overall performance. Accordingly, we define the two delay metrics as follows:

¢ The maximum delay is given by

Tmax = OrgntaSXT {Tt} )

which represents the largest per-round delay observed over the entire training process.

» The average delay is given by

1 T-1
Tavg = T § Tt,
t=0

which captures the average per-round delay across all rounds.
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Remark 2.1. (Intuition Behind the Delay Metrics.) The metrics Tmax and Ta, offer a concise
means of quantifying client participation. Smaller values indicate more frequent participation,
which generally promotes faster convergence and better global model performance. In Sectiond} we
evaluate the performance of the proposed algorithms in light of these metrics, demonstrating their
effectiveness in addressing varying client participation patterns in FL.

3 THE FEDSUM FAMILY

In this section, we introduce the FedSUM family (Federated Learning with Stochastic Uplink-
Merge), which includes FedSUM-B (basic version), FedSUM (standard version), and FedSUM-
CR (communication-reduced version). These algorithms address various challenges in FL under
arbitrary client participation, without requiring additional assumptions on data heterogeneity.

3.1 FEDSUM-B: A SIMPLE FLL APPROACH WITHOUT LOCAL UPDATES

We first propose FedSUM-B (see Algorithm [I]), a simple FL approach that employs a single variable
for both uplink and downlink communication in each round, and omits local updates.

The algorithm maintains local control variables {hgt)}fil on clients and a global control variable
y™® on the server. In each round ¢, each active client i € S; computes the stochastic gradient over

K mini-batches fi(t’k) evaluated at the current received model (). The subscript i refers to the
client index, while the superscript (¢, k) denotes the ¢-th round and the k-th mini-batch. After local

computations, clients update their control variables {hgt)}f\;l as follows:

K-1 K-1
1 N ep . 1 . a;. t .
WD )T 2 VE@EOE) A€ S, ) TR ), e 20,
i = k=0 = P
hgt), otherwise, 0, ifa;s = —1.

&)
The first expression in Equation (3] corresponds to the standard update rule in Algorithm[I] whereas
the second offers a high-level interpretation: hl(t) represents the aggregated stochastic gradient com-
puted by client ¢ during its most recent selection round prior to round ¢.

The FedSUM family employs a technique called Stochastic Uplink-Merge, in which each active

client ¢ € S; transmits only the difference 52@ between its current aggregated gradient and the most
recent gradient it computed. Specifically, if the client ¢ € S; has not participated before, the sending

message 6,§t) =+ 52—01 VE;(z®; fi(t’k)), otherwise, (51@) is given by:

| K1 | K1 .
5§t) =K Z VFy‘,(x(t);gi(t’k)) K Z VFi(JC(ai’t_l)fgai’Fh )). (6)
k=0 k=0

The server then updates its control variable 3(*) by incorporating §§t) from all active clients. Specif-
ically, denoting A; := U;<+S;, the update rule for y™® is given by:
t t K—1
j j 1 a; ai,t,k
RS D ILUES DI LUISWIES S 3h ok I IEE UMY
j=04€S; i€A: j=0 i€A: k=0
Since y*) is formed from gradients received from each client with delays, more frequent client

participation keeps y(*) closer to the current globally aggregated gradient. This directly motivates
the use of the delay metrics Ty,ax and Taye for analyzing arbitrary client participation.

Benefits of Stochastic Uplink-Merge. Since y(*) represents the sum of aggregated gradients from
the most recent participation of each previously active client and serves as the server’s update di-
rection. This design allows the FedSUM family to address data heterogeneity by incorporating
information from each client’s latest participation round, as illustrated in Figure[2| Similar idea has
been explored in earlier works (Gu et al.} 2021} |Yan et al.l 2024; Ying et al., 2025).

Note that although FedSUM-B operates without local updates, it achieves competitive convergence
and accuracy under sufficiently large batch sizes (see Figure[[T]in Appendix [H.
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Algorithm 1 FedSUM-B: Basic FL Without Local Updates

1: Input: initial model (%), control variables y(~1), {hgo)}ﬁil with value 0; global learning rate
7g; local learning rate 7;; batch size K; client participation {St}tT;Ol.
2: fort=0,1,--- ,T—1do

3 Send z(®) to all clients i € S;.
4 for client i € S; in parallel do
5: Receive (M) and initialize local model :z:(t 0 — =z®,
6: for k=0,--- , K—1do
7 Compute a mini-batch gradient g( k) =VF; (xgt’o); &‘“’k)).
8 end for
9 Update xl(-t’l) = mgt’o) m Zk 0 gzt ",
10: Compute 6 = 2® s
: pute 0; ' = — 7
2 _ (t 1)

— h(- ) and send 6@ to the server.

11: Update hEHl) (fori ¢ Sy, h; (1) - hE ).

12: end for

13:  Update y® = y(=1) 4 zle 51 and (1) = 20 — 1m0
14: end for

15: Server outputs (7).

3.2 FEDSUM: ENHANCING FL WITH LOCAL UPDATES

Building on FedSUM-B, we introduce the standard algorithm FedSUM (see Algorithm [2), which
also employs the Stochastic Uplink-Merge technique but supports local updates. Compared to
FedSUM-B, it requires additional communication of 4(*) to compute the correction direction of
local updates.

The control variables in FedSUM are similar to those in FedSUM-B, except that they correspond to
client models with local updates rather than a single global model. Specifically, at each round ¢, the

control variables {h( * ; and the global variable y®) are updated as follows:
| el
hz(,“‘l) == VFi(:rEai‘t’k);fi(ai"t’k)), if a;; > 0, and 0, otherwise.
k=0
K-1 3)
(t) _ = VFi(scl(-ai't’k);fl-(ai’“k)).

K .

€A k=0

Here, xl(-a"’"’k) denotes the local model of client ¢ at round a; ; during the k-th local update.

Correction direction y ) of local updates. A key challenge when performing local updates is that

the gradient VF; ( (th), 3 (¢, k)) computed on client 7’s local data can be biased due to data hetero-

geneity. To mitigate this bias, we introduce the correction direction y@

;~ by sending the previous
round’s aggregated gradient 3(*~1) from the server to each client i € S;. By subtracting the client’s
own previous gradient, hz(-t), we obtain a correction direction that incorporates the gradients of other

clients. Formally,

yl(t) h(t) + y (t—1) Z Z VF (a] t—1,k), E(U/J t—1, k)) (9)
JEAr\{L} k=0

where z("*~"*) is client j’s local model from its last participation round a; ¢ at the k-th update

step. This correction direction reflects the most recent aggregated gradients from other previously

active clients, helping to align client ¢’s updates with the global descent direction, as illustrated in

Figure
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Algorithm 2 FedSUM: FL with Local Updates

1: Input: initial model (%), control variables y(~1), {hgo)}ﬁil with value 0; global learning rate

ng; local learning rate 7;; local steps K; client participation {S; tT;Ol.

2: fort=0,1,--- ,T—1do

3 Send z® and y*—1) to all clients i € S;.
4 for client i € S, in parallel do
5 Receive 2(*) and y(*~1) and initialize local model 2{"%) = 2(®.
6: Compute local update correction direction 5" := —h{? + (=1
7 for k=0,--- , K —1do
8 Compute a mini-batch gradient gz(t’k) =VF; (xgt’k); fft’k)).
9 Locally update z\"* 1) = z{"*) _ x (ggt’k) + ygt)).
10: end for s
() g (0K
11: Compute (51@ = % - le@ - hz(-t) and send (5?) to the server.
(t) _ . (t,K)
12: Update h{' ™) = M2 )y (fori ¢ S, b = h).
13: end for
14: Update y® = y(t=0 £ 3, o 619 and 2(t+1) = z(t) — 121K (1),
15: end for '

16: Server outputs (7).

3.3 FEDSUM-CR: REDUCING COMMUNICATION COST IN FEDSUM

We further introduce FedSUM-CR (see Algorithm3]in Appendix [E)), to enhance the communication
efficiency of FedSUM and achieve single-variable communication for both uplink and downlink.
(t

In each round ¢ of FedSUM-CR, instead of computing the correction direction y; ) by receiving

y®=1) from the server as in FedSUM, each active client i € S; compute yit) locally using its
()

%

and zi(t), thereby reducing communication overhead. Specifically, each client
) ()

i %

e D e
LD {t, if i € &, o D) {x( )7 ifi €Sy, _ :E(ai=t), (10)

stored variables a

maintains additional control variables a; ’ and z; ’, updated as

t . 2,t t .
‘ ag), otherwise, ! zl( ), otherwise,

(®

%

with (-1 := (9 for convenience. Here, a

selected prior to round ¢, and zi(t) = g(ait-1) gtores the most recent model it received from the

server before round ¢. Using these variables, the correction direction for client ¢ € S, at round ¢ is
given by

= a;—1 records the last round when client 7 was

(®)

(®) N oz =2l 1 § Z Kz_:l (a),p:k), ¢(a;p.k)

i = P & I Rl P VE; (w7670,
CLE R (t= @)K i o

(1D

i
which represents the average aggregated gradient from other active clients between client ¢’s last
selection round and round ¢ — 1. This correction direction aligns client ¢’s update with the global de-
scent direction by incorporating gradients from other active clients during these intervening rounds.

The correction direction in FedSUM-CR (Equation|[IT)) is similar to that in FedSUM (Equation[9), as
both adjust local updates by incorporating the influence of other clients. Whether using the averaged
gradients from intervening rounds (as in FedSUM-CR) or the most recent aggregated gradient (as
in FedSUM) yields no significant theoretical distinction, since both approaches align the correction
with the global descent direction. This equivalence is reflected in the convergence rates presented in
Section ]

Comparison among the FedSUM family. The main difference between FedSUM-B, FedSUM,
and FedSUM-CR lies in how the correction direction y(t) is obtained. FedSUM-B omits local

%
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updates and thus does not require yft), resulting in reduced communication overhead. FedSUM

introduces additional communication by sending the aggregated gradient y(*) from the server to
clients for computing y(t)

%

. FedSUM-CR achieves the same correction with reduced communication
(t)

i -

by requiring extra memory to store the most recently received model z

4 CONVERGENCE RESULTS

In this section, we present the unified convergence result for the FedSUM family, summarized in
Theorem [4.1] and characterize their behavior under different client participation patterns.
Theorem 4.1. Suppose Assumptions [I1| and [I.2] hold. Under an arbitrary client participation

sequence {St}tT;OI characterized by Timax and T,ye, suppose the learning rates for FedSUM-B, Fed-
SUM, and FedSUM-CR are set as

1 N maxA
and m; = min { 7 ! } .

1
Mg =~ [Toax 10y/Twax KL\ /max{1, Ty } KT Lo?

Then all three algorithms achieve the following convergence rate:

T-1
]. t 2 T—1 30 (1 =+ Tavg)LO'ZAf ZOTmaX (LAf + .F())
T ;E[IIW(SE( MEFHSY =] € === + T (b

where Ay = f(z(9)) — f* and Fy := % Zivzl |V f; (z(O)]2.

When the participation sequence {St}z:ol involves randomness, we can further take full expectation

with respect to {St}tT:OI on both sides of Equation (I2). This allows us to characterize the average
performance for the FedSUM family, where E[71,.x] and E[7,,] quantify the impact of participation
patterns on the convergence rate.

Corollary 4.1. Under the same setting as in Theorem 4.1} suppose the participation sequence
{St};[:_ol involves randomness. Then all three algorithms achieve the following convergence rate:

1T

T
t

E[[Vf()]?] <

301/(1 + E[ravg] ) Lo A N 20E [Tmax] (LAf + Fp)
NKT T '

13)

Il
=)

Corollarydirectly follows from Theoremnoting that E[\/(1 + Tave)] < /(1 + E[ave])-

Remark 4.1. The upper bounds in Theoremand Corollaryshow that, smaller values of Ta,,
and Tmax, OF their expectations under a random participation pattern, lead to faster convergence
rates. This result is consistent with the intuition that smaller delays that indicates more frequent
client participation, improve overall convergence.

Remark 4.2. Moreover, the FedSUM family remains convergent even when the inactive period
grows with T (e.g., log(T)), which is a significant improvement compared to|Yan et al.|(2024)); \Gu
et al.|(2021), where convergence requires the inactive period to be strictly bounded.

The convergence guarantees in Theorem apply directly to the participation patterns introduced
in Section 2} As summarized in Table [I} our analysis not only unifies existing results but also
extends them in scope. These results indicate that the delay metrics Timax and Taye accurately capture
participation heterogeneity under arbitrary client participation schemes, while the FedSUM family
achieves state-of-the-art efficiency across diverse participation regimes.

5 EXPERIMENTS

Overview. We evaluate the FedSUM family on real-world datasets to corroborate our theoreti-
cal analysis and compare against state-of-the-art baselines, including comparisons between Fed-
SUM variants. Specifically, we consider a federated learning system with one parameter server and
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Table 1: Convergence behavior of the FedSUM family under different participation patterns, com-
pared with related works. Here O hides logarithmic factors.

Pattern Convergence Rate Related Works
Case 1 ) /Lo2Ay i N(LAj+Fp) Matchgs SCALLION without communication
SKT ST compression (Huang et al.,2023) (up to log factors).
Case2 O g;i(ATf + LAC{; Fo ) Matches FedAWE (Xiang et al., [2024).
Case3 O 2 /Lo2A; 4 N(@A+F) Not directly comparable to the CyCP fram.eyvork
SKT ST (Cho et al.,|2023), which requires the PL condition on f.
Case4 O ”\/Lsaj(?,f + N(L@fTJrF") None to the best of our knowledge.

N = 100 clients, where clients become available intermittently. We consider three image classi-
fication tasks using the MNIST (LeCun et al., 2010), SVHN (Netzer et al., 2011), and CIFAR-10
(Krizhevsky et al.,[2009) datasets, each containing 10 classes. For these tasks, we train convolutional
neural network (CNN) models with slightly different architectures. To simulate highly heteroge-
neous local data distributions, the image class distribution at client ¢ follows a Dirichlet distribution
with parameter « = 0.1 (Xiang et al., 2024} Crawshaw & Liu| 2024} Wang & Jil [2023)); see Fig-
ure [din Appendix [H]for a visualization. Additional specifications and experimental results are also
included in Appendix

Client participation patterns. We evaluate the FedSUM family under three participation patterns
inspired by real-world FL scenarios and prior work: (i) P1: The server randomly selects S = 20
clients per round, a controllable pattern (Karimireddy et al. [2020; Huang et al., [2023)). (ii) P2:
Each client participates independently with a fixed probability S/, a stationary and uncontrollable
pattern (Wang & Ji, 2023} (Xiang et al., [2024). (iii) P3: Each client participates with a time-varying
probability p! from a sine trajectory, representing a non-stationary, uncontrollable pattern (Bonawitz
et al.l[2019).

Baselines. We compare FedSUM (standard version) against several baseline algorithms that operate
without prior knowledge of client participation patterns during training. These baselines are grouped
into two categorizes: (i) methods that refine the FedAvg framework, including FedAvg applied to
active clients (McMahan et al., 2017), FedAU (Wang & Ji,[2023)), and FedAWE (Xiang et al.| |2024)).
(ii) methods that enhance FL performance by incorporating additional control variables, including
FedVARP (Jhunjhunwala et al.,[2022), MIFA (Gu et al.,|2021), and SCAFFOLD (Karimireddy et al.,
2020; [Huang et al., [2023)). For fairness, all algorithms use the same local and global learning rates,
selected via grid search based on the optimal performance of FedAvg (see Appendix [H] for details).

Figure [Ta] presents the training loss and test accuracy curves for the three datasets. FedSUM and
FedSUM-CR achieve faster convergence and greater stability than the baseline algorithms, which
we attribute to its stochastic uplink-merge technique combined with the correction direction. Figure
further demonstrates that FedSUM and FedSUM-CR achieve faster convergence with respect to
the communication workload. Notably, FedSUM-CR maintains the strong performance of FedSUM
with improved communication efficiency, making it the most effective algorithm in this comparison.
Detailed performance plots, offering clearer comparisons for specific participation patterns and last
communication rounds, are provided in Appendix

6 CONCLUSION

This work presents the first comprehensive analysis of federated learning under arbitrary client par-
ticipation. We introduce two delay metrics that quantify the impact of participation variability and
propose the FedSUM family of algorithms, which achieve both efficiency and robustness through
the stochastic uplink-merge technique. Our unified convergence guarantees recover known rates
in special cases and extend to arbitrary participation patterns under only standard smoothness and
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bounded variance assumptions. These contributions position the FedSUM family as a practical and
theoretically grounded framework for federated learning across diverse participation scenarios.
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Figure 1: Training loss and test accuracy curves for CNN models on three datasets, comparing
different FL algorithms under various client participation patterns. The performance is evaluated
against (a) the number of communication rounds and (b) the cumulative communication workload.

For the workload, one unit corresponds to the transmission of a full-sized model.
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REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing all implementation details in Appendix [H| including an
anonymous code link (with random seeds), hyperparameters, learning rate schedules, optimizer set-
tings, dataset splits, evaluation protocols, and hardware specifications. These details enable inde-
pendent researchers to replicate our results.

ETHICS STATEMENT

This work proposes federated learning algorithms under arbitrary client participation. All experi-
ments were conducted on publicly available datasets (e.g., MNIST, SVHN, CIFAR-10) with con-
volutional neural networks specified in Appendix [H We do not foresee direct risks of harm arising
from our methodology and we emphasize that our contributions are intended to advance research in
optimization and federated learning. We encourage responsible and ethical use of the algorithms.
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In Appendix [A] we show the visual representation of the techniques behind the FedSUM Family.
In Appendix we provide the notations and preliminary results. In Appendix [C] we derive the
convergence results of FedSUM-B. In Appendix [D] we present the convergence results of FedSUM.
In Appendix [E] we introduce the convergence results of FedSUM-CR. In Appendix [F] we derive
convergence bounds under various client participation patterns. In Appendix we present the
experimental setups and additional experiments.

A VISUAL REPRESENTATION OF THE TECHNIQUES BEHIND THE FEDSUM
FAMILY

To address data heterogeneity during model updates, we introduce the Stochastic Uplink-Merge
(SUM) technique, which is illustrated in Figure[2] The figure demonstrates how the SUM technique
operates across three rounds (from round ¢ to round ¢ 4 2) when client i is selected to compute the
update direction.

In this scenario, client 7’s local minima « is far from the global minima x*, representing strong data
heterogeneity. Despite client ¢ being the only one activated during these rounds, the SUM technique
ensures that the server’s model update is influenced by the gradients from other clients, even though
they are not activated during the period from round ¢ to round ¢ + 2. This method helps to avoid
the bias that can arise from frequently activated clients, such as client 7, and ensures that the update
direction is better aligned with the global model. This approach allows the server to effectively
handle data heterogeneity and reduce the negative impact of the participation bias issue discussed in
[Ribero et al.| (2022)); [Sun et al.| (2024).

1 K-1
1 (t+2,8)
TN

Round t Round t+1 Round t+2

Figure 2: Tllustration of the Stochastic Uplink-Merge (SUM) technique in addressing data hetero-
geneity and participation bias issue during server’s model updates.

gradient g ) and the correction direction ygt), and show how this approach helps mitigate data

heterogeneity. Despite the fact that the local updates initially tend to converge towards the local

In Figurel?l we illustrate the local update rule for the active client ¢ with both the (stochastic)
T,k
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minima 7, the correction direction ygt) ensures that the update direction is guided towards the

global minimum z*. This process is demonstrated for local updates from & to k + 3, where the
update at each step accounts for the correction direction, preventing the local update from being

biased by the local minima.
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Figure 3: Tllustration of the usage of the correction direction y! in addressing data heterogeneity
during client’s local model updates.

B NOTATIONS AND PRELIMINARY RESULTS

For the simplicity of the proof, we let 5 = N1, and n, = %", where 7; and 17;, are the learning rates
in the proposed FedSUM family (i.e., we change the learning rate symbols by letting 7; <— N1; and

Ng < ’ng)
Define FC-U = ¢, FH = o (Uogjgk {§§t’j)} U ]-'(t_l)), and let F =
o (Uie/\/,ogkgx,l}'i(t’k) U {S; };:o) if the participation sequence {St};f:_ol is random; otherwise,

FO = & (Uie/\/,ogkg;{_lfft’k)), where o(-) denotes the o-algebra generated by the random

variables within the parentheses. We use E[-] to denote the expectation over the stochastic gradient.
Additionally, each a; ¢, T¢, Tmax and Tuy, are functions of S;, where ¢ = 0,...,T — 1. These can be
directly used and evaluated by taking the full expectation.

We define S; := |S;| < N and A; := |A¢| < N. The stochastic gradient of client ¢ € S; at round
t and the k-th local update is denoted as gi(xl(-t’o), fi(t’k)) = VFi(xEt’O), §§t’k)) in FedSUM-B, and

gi(@iP TRy = U (207 ¢(4F)) in FedSUM and FedSUM-CR for simplicity.

Lemma B.T] provides a basic variance upper bound for the aggregated stochastic gradient, which is
crucial for analyzing the convergence of the FedSUM family, and holds obviously since each client
draws independent samples in every round and local update.

Lemma B.1. Suppose Assumption[I.2] holds. Then, for any active set A, of clients, it holds that

K-1 2
Z Z [gi(m(ai,t,k)7gga'i,t,k)) o vf7(z(a1tk)):| < NKO’z.

i€A; k=0

E
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Proof. By the independently and randomly sampled {¢&;}, it implies that

2| 30X [statrn, o) - sz-<x<“w’f>>”
€Ay k=0
K— 2
— Z E Z [ (@i ek) g(‘“ #:k) ) _ Vfi(x(ai,tvk))}
1€EAL k=0
2
I [ [gstateeD g0 = V()] |
1€A; k=0
K-—1
<Y > o? < AKo® < NKo.
i€ Ay k=0

O

LemmalB.2]establishes a basic relationship between the minimum last-selection round among clients
and the maximum delay 7y, ax.

Lemma B.2. For any k > 0, it holds that

i ' >k
?Elg} {az:k+7111ax} =

Proof. First, by the definition of 7.y, for any client ¢ € A, it should be updated during the iteration
from k to k + Tmax. Otherwise, there exists k' < T and client 7 € A such that client 7 is not selected
during the iteration from &’ to &’ 4+ Tyax. Then, it implies that

/ : !/
Tmax Z k + Tmax — mln {ajvk/'f"rmax} Z k + Tmax — aiyk?/“r‘l'max
J€

Zk, + Tmax — @4 Kk Tmax = k + Tmax — @i k'—1
=Tmax + 1 + (kJ —-1- ai,k’—l) Z Tmax + 1a

where we use the facts that a; y—1 = a; 17 = - -+ = @ '+, iD the fourth inequality and t —a; ; >
0 in the last inequality. It conducts to a contradiction.

Thus, for any k and for any client i € N, client i should be selected at least once during the iteration
from k t0 k + Tinax i.e. there exists k* € {k,k+ 1, -,k + Tiax} such that a; y~ = k*. Asa
result, we have
i ot rma > Gikr = K* > k.
Therefore, we have
min {a; > k.
iEN { z,k-&-Tmax} =

O
C CONVERGENCE ANALYSIS FOR FEDSUM-B
In this section, we get the convergence result of FedSUM-B.
We begin with the update direction y(*) of server in FedSUM-B shown as follows.
1 K—1 ( :
t) — — on(ait) ai ¢,k
y =2 D0 Y gl gt ), (14)

i€ Ay k=0
Lemma C.1. Suppose Assumption[I.Ijand[I.2]hold. Then, we have

T-1
z E Hx(tﬂ) _
t=0

> pPpKT ngm K2 =

> vhe)

1E€EA
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Proof. Invoking Equation (T4), we have

2

77 77; 2 nint = (@i k)
Hx(tJrl) _ x(t) Tg"lh 22— H ol = ]gv2 gz(x(al t)’gia1 k)
A k=0
K— 2
7777 it azmk a; t 7777 ait
2] 5 8 e oo —wpaen] | 4B 5 g
€Ay k=0 €A
(15)
Invoking Assumption[I.2} we have, by taking expectation on both sides of Equation (T3),
2
E Hx(tJrl) _® 77g7h Z Z 779771 Z Y, (z(@0)
1€A; k=0 i€A; (16)
2,2
ngnl K 77977l (az t)
<2 —0® +2 E|> Vi
1€A1

We get the desired result by summing over ¢ from 0 to 7' — 1 on the both sides of Equation (T6). [J

Lemma C.2. Suppose Assumpnon-and- [7.2|hold. Then, we have

2

T-1 t—-1
Y3 E( DD Vi) <TmaxZE

t=0 p=t—m1; ]E_Ap

> Vil

€A

Proof. Invoking Lemma[B.2] we have t — 7, > min {0, ¢ — Timax } and hence,

T—1 t—1 2 T-1 t—1 2
S PRI [ SIS S PR TR
t=0 p=t—m JjEA, t=0 p=min{0,t—Tmax } JjEA,

2
T—1t=p+Tmax

<Z S E| D V) <TmaXZIE > Vi),

p=0 t=p+1 JEA, JEA

which gives the desired result. O

Corollary [C.3]holds directly by Lemma[C.2]
Corollary C.3. Suppose Assumption[I.1|and[I.2hold. Then, we have

T—1 t—1 2

2

t=0 p=t—7¢ JEA, t=0

va alt)

€A

Lemma C.4. Suppose Assumption[I_1land[I.2hold. Then, we have

T 2

Y E

t=0

n

SOVAEO) = 3 Vi)

=1 €A

2

T
§477£2777l27—max7_avgNKTL202 + 477377127'513)(}{2[/2 Z E
t=0

+ 2N27maxF07

> Vi)

€A

where Fy == 1 Zf\il vai(x(o))||2'

18



Under review as a conference paper at ICLR 2026

Proof. Tt holds that

Z V fi(x®

iEN

= |2 [7A) -

iEN

<N Vi) -
iEN

<2NI2 Y Hx(t)
ieN

2
- 3 Vi)

— plais)

€A,

Vi )]+ Y Vi

lEN/.At

1EN /At

1EN /Ay

Invoking Equation (T4), we have, by taking full expectation, that

SE[a® st =
ieN

t—1 K—

77977l ZE Z ;;

iEN p=ai, j

2

SE § {x@“) _x(m}

ieEN P=ai,t

ngn?K 2

2
1

gj (a] ») a] P’k))

» k=0

2

’ig’h S E Z S Z{ (w(0a0), (2 M)y £ (a(00))

1EN p=a;,t jEA, k=0

ngm Z E Z

iEN pP=ai,t

2

va (a]P

JjEA,

We can bound the first term in Equation (@3) as follows:

779771 ZE Z Z Z [ (ajp) g(ﬂw )—ij(iv(“j’p))]

ieN p=a; jEA, k=

t—1

<277g771 Z ai,t) Z
ieEN p=ai,t
779 U Zrmax Z Z
p=aitjEA, k

@szzzz <ol 5 3 gt gl 5

iEN p=a; .t jEA,

2,2 2
<2nyn; KTt Tmax0 "

2

0

€A,

Vfi<x<ai’f>>Hg+2<NfAt> > [vaa|

CLa(V - Ay 3 ija-(x<0>)H2 .

Se| Y o

ieN P=ai,t

2

K—
Z [ (i) (aj,;”k)) Vi (x(aj,p)):|
k=

. ) 2
E ng<x<af=p>, &™) = V()|

t—1

k=0 €N p=ai,t

For the second term in Equation (@3)), we have

LSS PS>

1EN p=ai,t jEAp

2,2 772 t—1

2

(a; ngn; K
Vf] j.p) <2 gZ\l]2 Z(tfai,t) ZE

2

SQUQZQK Som Y E| DD Vi) =2L%K 7 Z_: E

1EN p=t—T¢ JEA, p=t—T¢
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Summing over ¢ from 0 to 7" — 1 and invoking Lemma [C.2]and Corollary [C.3] we have

apa R

t=0 ieN
T—1 772”2 2 T—1 t—1 2
<20 Krno® 3 m 4 27553 m > B Y V() @n
t=0 t=0 p=t—T¢ jE.A

77 77
§277§77127'avg7maxKT0'2 +2-2 l Inax Z E

> 5e)

1EA;

Furthermore, we can bound the second term in Equation (T7) as follows:

SSCEVED ol T E EE ol )
t=0 €N /Ay
N (22)
2% S S =2 % 5 10 3wt
t=0 jeEN/A; i=1 t=0 jeN
<2N2Tnax Fo,

2 .
where Fj := % Zf\il ||Vfi(x(0))|’ and we use ZjeN Z;O Tijga,y < Zf\il Tmax = IV Tmax 10N
the last inequality.

Finally, we can combine Equation (T8)), (T9), 20), (21)) and (22) to get the desired result:

T-1 2
2 E|D VA@EY) =Y Vi)
t=0 ieN €A
; ) (23)
<A TmaxTae NKTL?0% + Aini 72 KPL2 Y E | D V(@@ ))|| + 2N rpan Fo.
t=0 1€A;
O

Lemma C.5. Suppose Assumption[I.1land[I.2hold. Then, we have

nﬂn§3E<V7 @ Z:E:{% (ait) l%m ) — vﬂ(thtﬂ>

i€A k=0
Z V /il x(am)

i€ Ay

et K

TavgO LT + Qngm TmaxL Z E

Proof. By the independently and randomly sampled fi(ai”t), we have, foreachi € A;,and 0 < k <
K -1,

E <Vf(x(rnini€/\f{ai,t}))7 gi(x(“f‘*"k), gl(‘“‘f’k)) _ Vfi(x(ai,t))> —0. (24)
We then derive that

K-1
SNE <Vf @), 30 Y a0 — Vfifale)] >

i€Ay k=0

—1
’75V’”E<vf<x<t>> (), 3 Z[ (a9, ") = Vfila <“”>}>.

i€ Ay k=0

(25)
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Then, if 7, > 0, it holds by picking oo = T%L in the Cauchy-Schwarz inequality (a,b) < «|al|® +

L[p)? that,
, K—-1
77§’V”E<Vf(x(t)) 20) 37 3 a0 6~ Vil “~>}>
€A, k=0
1 77 = (as,¢,k)
< - (t) (t— Tt) H (GL t) @ity (i)
,TtLIEHVf(x ) = Vf(x #LE ;;[ aloen) €M) - fiale)]

With the fact that, by taking full expectation,

2

K-1
DY [l g - Vfialn)|

€Ay k=0

K-1
2
<n Y0 Y Eflaitel 0, 6400) - e[| < KNno,

i€ Ay k=0

and

2 2 t—1 -1
EHVf@#U——Vf@V*”UH glPEHx@)_x@fn) %ih[?E 2: g (@
p=t—7¢ jEA, k=0
n2n? t—1 K-1 2
<2 ZgVQI L’E Z { x(% ») g(aJ P ) Vfix (aj.p) )}
p=t—Ty jEA, k=0
,’7 n K t—1 2
9l 2 (aJ »)
+ 2 L°E Z \7 7
p=t—T¢ jEA,
we have
2
t—1 K—1
E Z [ (a; ») 5( Jps ) _ vfj(x(aj,p))}
p=t—T7¢ jEA, k=0
2
t—1 K-1
E |: (ll] p) é‘(aJ D ) ij($(aj‘p)):|
p:tf'rt jEA, k=0
t—1 K-1 )
= Y 3 D E|giaten) ) - v )| < NE o,
p=t—7¢ jEA, k=0

and

2 2
t—1 i
E Z Z ij(x(aj’p)) <7 Z E Z ij(m(aj,p))

p=t—7¢ jEA, p=t—T¢ JEA,
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Thus, summing over ¢ from 0 to 7" on both sides of Equation (26) and invoking Corollary [D.3] we
have the following bound holds no matter whether 7; < ¢ or not:

S <Vf ), 3 [outa@e, 6% = 9 figale)| >

t=0 i€ A

Mg = M n2nK> :

< D KNG L+ 250 NK Y mo® L+ 270 LZ Z E| > Vi)
t=0 t=0 t=0 p=t—7¢ JEA,

nani K nani K

<3 Tug0 LT + 270 TmaXLZE > Vi),
t=0 €A
(27)

which gives the desired result. O

Lemma C.6. Suppose Assumpnonand 2| hold. Then, for ngm K < 87 I we have

2A 2o Fi
(t f Tlg™ 2 max4L'0
§ ]EHVf H T 1R e {1, T} 7L+ SR,

where Ay = f(20) — f* and Fy := + Zf\; HVf,»(x(O))H%

Proof. By Assumptlon. the function f := & vazl fiis L-smooth. Then, it holds by the descent
lemma that

2
Ef(zH)) <Ef(z®)+E <Vf(nc(t))7 (Y — x(t)> + g Hm(tﬂ) —z® H . (28)

For the inner product term in Equation (28), there holds that

K
E (V)2 — o) _E <Vf(x<t>), Wy<t>>

N
_ ?79771 <Vf (t) Z Z [ (a“ §(alt;k)) Vfi(z (aie) )}> 29)
1€A; k=0
. WE< Vfila®) >
N ZEZAt

For the second term in Equation (29), we have

- e <Vf(w(”>7 )3 Vfi<x(w>>

i€A;
K N
- <Z Viia), 3 Vi) >
i=1 1€A:
K N 2 N
—_ 77;7\1[2 SV i) S V@) — S VEAED) = 3 Vi)
i=1 i€A; i=1 i€A;
1 2 ngmK ay|| 41 mK
= — o KE | Vf®)| - 2E | 3 Vil o o
1€A,L i€EA4
(30)
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Then, summing over ¢ from 0 to 7' — 1 on both sides of Equation (28) and taking full expectation,
we have

T-1
0<a;— T ZE<Vf 0y [gi@e0), €)= vfi<x<““’)}>

t €Ay k=0
1 T-1 ngmK 57
I i
Lot S ora] - 3 58] 5 v
’LeAt
K < L 2
77;;7\;2 Z E vaz _ Z Vi (zl@i)) L ZE Hz(t+1) — 20|,
i= 1€A; t=0
where A; := f(x(?)) — f*. Implementing Lemmainto Equation (3T)), we have
T—
Mg @i ai,t,k ai
0<A;- TZ <Vf ). 2 Z [g: (49, €M) = 9 i (al v>>}>
t=0 €A k=0
T— 2 pomK T-1 2
1 .t
Qnng Z E HVf x(t H — 29N2 (1 —-2nymKL) ZE Z Vfi(m( g )) (32)
t=0 |lieA,
2
nng (t) 2(@it) 779771 KT o2
e ZE va )= 2 Ve ey oLk
i= g t
Implementing Lemma [C.4]into Equation (32)), we have
NgM a; ¢ ai,t,k a; ¢
0<A;— % ZJE<Vf ), > Z[ zleen) 60N~V fi(al ‘>>}>
i€A: k=0
1 K - E O K — K212 TﬁlE (i)
= 5 Z V)| - S (- 2nem AP KPP Y TR Vfi(alen)
t=0 |licA,
2KT 21313 Tnax Tave I 2T
77_‘777;\[ 2L+ ngnl jv avg U2L2+ngnl7—maxKFO~
(33)

Implementing Lemma[C.3]into Equation (33), we have

22K 1 T—1 2
0 <Ay + 3= ruTo’L = SgnK Y E HVf(x(t))H
t=0
nom K T—1 2
g'll 272 ait
= oz (1= 20K L = Angnf 1o K2L? = dngm K Tax L) 3 B || > V fila(®)
t=0 i€A;
2n?KT 20313 Tmax Tave K 2T
2 g g ST S 022 T K P
N N :
(34)
For ngm K < ﬁ, we have
1—2n,mKL—4 KL — dngKraL > 1— —— — — 151 oy
Mg 77g771 max Tlg™ max 4Tmax 16 9 16 .
Hence, for nym K < g——7, we can rearrange Equation (34) to get
1 L 2t K
inngZ]EHVf(x(t))H <A+ 50 max {1, g} To* L+ K Fo. (35)
t=0
3 37' ax Tave 2
where we use the fact that MHLQ 7, n; “—To% L for ngmK < 8rma T
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Dividing both sides of Equation (33) by 3n,m KT, we have

2TmaxF0

1 2 __2Af g1
T ZEHVﬂ:ﬂ”)H <L + 102" max {1, Taye } 02 L + T

< (36)

— ngmKT N
which completes the proof. O
Theorem C.1. Suppose Assumption and hold. Then, for mngm =

. NA; L 8
min , we nave
\/max{ 1,Turg } KT Lo2’ 10K Tmax L

T-1 5
l Z o va(x(t))HQ SSO\/max{LTavg} Lo Af n 20Tmax (Fo + LAf)7
T & NKT T

where Ay == f(z(0) — f* and Fy := % Zf\]:l HVfi(:n(O))H2

Proof. Invoking Lemma we have, for n,m K < L

8Tmax L’

2Tmax F
+ 10”%71 max {1, Tae} 0°L + % 37)

T-1
1 Z 2 2A
T P (=) ngmKT

For

, NA; 1
= min ; )
Mg \/max {1, Tavg} KTL0'2 1OK7—maXL

we have

284 < 2\/max{177—a\'g}L02Af + 20Tmax LAy
ngmET — NKT T
1029 10y/max {1, 7} Lo* A

N VNKT '

Thus, we can combine the above two inequalities with Equation (37) to get

)

max {1, Tave } oL <

T-1
1 2 12v/max {1, Taye} Lo2A ¢+  207max (Fo + LA
t=0

NKT T ’

which gives the desired result by scaling the constants appropriately. O

D CONVERGENCE ANALYSIS FOR FEDSUM

In this section, we prove the convergence result of FedSUM.
We derive the update direction y*) in FedSUM as follows.
L N (k) o)
) _ ~ o(aiek ai,t,k
y W= D0 D @t ), (39)
€A, k=0

Furthermore, the local control variable hl(-t) and local update correction direction yl(t) fori € A; are
defined as follows:

K—-1
1 aj -1,k ai—1,k
hz(‘t):? > gl glenmnh)y (40)
k=0
®) 1 Kl (aj,t—1,k) #(ajt—1,k)
Y; :? E E gj('rj agj ) 41)

jeA_1/{i} k=0

Lemma[D.T]establishes a basic relationship between the difference of two consecutive model updates
and the aggregated gradient, shown as follows.
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Lemma D.1. Suppose Assumption[I.1|and[I.2|hold. Then, it holds that

K-1 2
> VhaY)

€Ay k=0

= 2 2P KTo? 2 21—
(t+1) _ (1) Mg 779771

D _E Hx “ H S Z

— t=0

Proof. Invoking Equation (8), we have, by line 17 in Algorithm 2}

2
o0t = B o B ot
t k=0
2
27727712 = a7 ok a; ¢,k (ai,t.k 27727712 = a;i .k
o SY R bl >
€Ay k=0

i€ Ay k=0
(42)
Invoking Assumption[T.2]and Lemma[B.T] we have, by taking expectation on both sides of Equation

k)

2
E|IY Z V filal o) 43)

€Ay k=0

2,2
E Hm<t+1) _ m(t)HQ < 2779]’\7]! Koz 2779771

We get the desired result by summing over ¢ from 0 to 7 — 1 on the both sides of Equation @3). [J

As a direct consequence of Lemma[B.2] we conduct the Lemma|D.2]and Corollary [D.3]to bound the
aggregated gradient of server.

Lemma D.2. Suppose Assumption[I.1|and @ hold. Then, we have

T-1

> S whe)

€A k=0

z_: szf G,JPJC) <TmaXZE

—T jEA, k=0

t=0 p=

Proof. Invoking Lemma|[B.2] we have

t—T1=1t— rlré&}e/( {t—a;+} = Erel.l/\r/_l {a;+} > min{0,t — Tmax} -

And hence,
2 2
-1 t— K—1 - — t— K-1 o
aj,ps Aj,ps
) Z 2D VEE@PTI <3 D> B Y Vi
t=0 p=t— JEA, k=0 t=0 p=min{0,t—Tmax} ||FE€EAp k=0
2 2
T—1p+Tmax K-1
ajp;k a;t,k
<> 3 B> Ve —dexZE > Y v !
p=0 t=p+1 jeEAp k=0 i€ Ay k=0
which gives the desired result. O

Corollary [D.3]is a direct consequence of Lemma[D.2]
Corollary D.3. Suppose Assumption[I.1jand - hold. Then, we have

K-1 2
PIDIRVACED

i€ Ay k=0

t—1 K-1 T_1
T E Vf—(x,a"”” N < 1ox E
] 5 k) 2
t=0

t=0 p=t—7y jEA, k=0

Lemma [D-4]is the key lemma to estimate the difference between the aggregated gradient of server
and the aggregated gradient of all clients.
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Lemma D.4. Suppose Assumption|l.I|and|l.2|hold. Then, we have, for n; < ﬁ,

ZE KZW )= 3 S )
€Ay k=0

§3K2N TmaxFo + 81217 K° NTinax max {1, 7aye} To> L? + 15007 N° K*To® L?
2

T-1

+ (109202120 L2 + 2402 K2 N 1o L2) DB S ZVfJ ity
t=0 jEAL k=0

where Fy := % va:l vai(l"(o))H?'

Proof. Notice that, by the decomposition of the difference between the aggregated gradient of server
and the aggregated gradient of all clients, we have

N K—1 2 2
HKZ VH@D) = 3 3 Vh@E)| <3R5 V) = 3 Vi)
i=1 i€A; k=0 iEN ieN
K—1 2
31K . Vi) = ST ST v ) 13k Y viE©)
i€A; i€A; k=0 1EN /Ay
(44)
We bound the expectation of terms in Equation (@4)) one by one. First of all, we have
2
2
S VD) =Y Vi) <NI2SE me _ plaie)
iEN ieEN i
1 2 2
=NI2YE| Y [x(zﬂrl) _ m“’)} ’7977! *YE Z 3 Z gi(z ,k>’§J<_a]~,p7k>>
i€EN p=a; ieN p=ait jEA, k=0
(45)

By Assumption[I.2} we have, according to Equation (#3)) and summing over ¢,

T-—1 5
3K22E Zv‘fl(q;(t)) _ vaz(x(a,f))
=0

€N iEN

SVS% 3D 3 DI OB SRR T LV SO IR D SIS i s /AC RN

t=0 ieN p=a;: jEA, k=0 t=0 ieN p=a;,t jEA, k=0
2
2, 27-3 272 2 2 _2 2 a;t,k
<6120 N Tax Tave To L2 + 6020 K212, L ZE > ZVfZ (sl
ZeAtk 0

(46)
where the procedure is similar to the proof of Lemma[C.4]

For the second part of Equation (@4), we have, by Assumption [L.1]

HK Z Vfi(x (ai,t) Z Z V iz (al t,k) Z Z |:Vf x(a” sz( (as, f,k,‘))i|

2

€A i€ Ay k=0 ic Ay k=0
VK2 Y Y [ane e
€A k=0
(47)
Note that 2(%:¢) is the local model of client i at the beginning of round a;,t, and x(al k) s the

local model of client 7 at the beginning of round a; ; after k local updates. Then, accordlng to the
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definition of hz(-t) and yft) shown in Equation @ and it holds that

K—1 ) K—1||k— 2
Z Z Hx(ai,t) _ xz(_ai,uk)H _ Z Z Z |: a; t,p) Eai,typ+1):|
i€A, k=0 i€ A, k=0 ||p=0
K—1|[k-1 2
=n; > [91( jreer) gfeserh) +yfa”)} (48)
i€A, k=0 |lp=0
K—1|k-1 2 K—1||k-1
<on? [gi(wgai’“p)fgai’“p)) —hga”} +207 YD D Syl
€Ay k=0 |[p=0 €A k=0 ||p=0

We deal with the first term in Equation (#8) as follows. Notice that, by the definition of hgt) in
Equation that

K—
At (at a; ¢—1s k) (az‘,ai = k)
( )= - Z ' ’gi e )7
k=0

where a; 4, ,—1 is the round when client ¢ is selected in the second last round before ¢. Then, we
have '

k-1

Z [gl( (ai,+,p) g(amﬁp)) hgaz‘,t)}

p=0

k—1
<5 Z [gi(xgai’hp)yfi(ai’hp)) sz( (‘17, tJl) :|
p=0

2

Z[sz (™) = Vfilale)]

p=0
2 |[E= : 2
+5k‘2HVfi(.r(ai‘t))—Vfi(x(ai’a“ 1) H [ (al aj4—1) ) — sz( (@ira; ,~1:9 )}
q=0
2
w2 |15
(“1 age=154)  (@ia; 4—1,9) Qia; 1 —1,
Z[ &) = V()|
q=0
(49)

Then, by taking expectation and invoking Equation (@8)), we have the following upper bound for
each term in Equation (@9).
Term 1:

T-1 K-1 |k— 2

n; Z E Z |: a1t7p),€a7.t7p) vfz( azt’p)):|
t=0 ic Ay k=0 p=0 (50)
T-1 K—1k—1
gn 0% < 7712NK2T02.

t=0 ic Ay k=0 p=0

Term 2
T-1 K—1 |[k—1 2 T-1 K—1 k-1 )
7 EIY [sz( (@iep)y Vfi(:C(ai,t))} <’y Yk IE‘ 2(0i0)
t=0 i€ Ay k=0 p=0 t=0 ic Ay k=0 p=0
T—1 K-1 K-1 5 T—1 K—1
STIZQL2 Z k ]E ngai,tvp) _ .,L,(ai’{,) S 772K2L2 Z Z ) (aq',,t)
t=0 i€ Ay k=0 p=0 t=0 i€ Ay k=0
(5D
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Term 3
T—1 K-1
i B[V ritae0) = ¥ fiatesen)|
t=0 i€A; k=0
2
T-—1 a;—1
<K1Y YR ‘ 200 _ glana,|” = p2g3p2 Z SE| Y [m(ml) — z®)
t=0 i€ A; t=0 i€ A, P=0ia; ;-1
2
774K3L2 T—1 ai,t—1
WL YR Y Y ZW’
t=0 i€ A, P=@i,a; ,—1 JEA, k=0
it—1 K-1
2n K3L2T : et
e D D DECTE TP B SN DI BEs
t=0 i€ Ay P=0ia; -1 jEAp k=0
372 T—1 a1 —1 2
277 KL N
e D DD DHCTELIPE B S ZZWJ
t=0 ic A, P=0ia; -1 jeA, k=0
47372 T—1
ﬂlK L
g = ZZ Aig = Qja; — 1} NKo2.
t=0 i€ A,
(52)
With the fact that a; 4, ,—1 is the second last round when client ¢ is selected before ¢ and a; ; is the
last round when client ¢ is selected, it holds that 0 < a;; — @j,4; ,—1 < Tmax. Then,
T—1 K-1 9
y B [V iale0) = V)|
t=0 icA; k=0
nl K3L2 T-1 @it K—1 ( i 2
Y S > B S| K o
t=0 ic.A; p=max{0,a; t —Tmax } JEAp k=0
(53)
With the fact that ¢ — 7. < a4, < ¢, we have
372 T-1 a; K-—1 2
an L = -
Y T S E|Y S o
t=0 ic A, p=max{0,a; ¢+ — Tmax } JEAp k=0
2

2779771 TmaxK L2 oy (aj,p.k)
ST oD SHEED DI ol ne e e
t=0 i€ As p=max{0,t—2Tmax } jEA, k=0

2
2 T—1

2020 Tax K2 L
——ngm Sy BT Y vaele 54
t=0 p=max{0,t—2Tmax} |[JEAp k=0
2
min{T—1,p+2Tmax } K-1
277 nl TlnaszL2 ! ai .k
D LS g 5 S e
JjEA, k=0
2
477277;17}%@)(](3[/2 — = . k
N D 321 DY > Vi

t=0 jEA: k=0
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Term 4:

T-1 K12 K-1 T 2
Y FRE | [ - v i)
t=0 i€ Ay k=0 a=0
T—1 K19 K1 @ 2
<n?L? S—YE mei,ai,t-l) g et H (55)
t=0 ic Ay k=0 K q=0
T—1 K—1 )
Sn?TmaxKQLQ E sz(‘ai‘hk) - l'(ai’t) P

where the last inequality is due to the fact that a;,, 1 is the second last round when
client ¢ is selected before ¢ and a;; is the last round when client ¢ is selected. Then, it

Giray p—150) |2
holds that a;q,,+1 = a;;. Hence, Z;T:_Ol D ica, Zi}lEHm(ai’“ifl) —951(- et q)H
2
a; ¢,k a;t
Tmaxz Z’LEAf Z E H ( ) ( int)
Term 5:
T-1 K-1 K-1 2
k2 (ai,ai ,717q) (ai,ai t—l,(I) (a; q)
0 ek {gi(wi G T ) = Vi@ e )}
t=0 i€ A, k=0 q=0 (56)
T-1 K-l 9 K-1
<n; — Y o? <pINK*To?
t=0 i€ A; k=0 q=0
For the second term in Equation (@8)), we have
K—1|[k—1 2 K—1 )
IDIDI WA R D g VA IEEZAD W VA
i€A:s k=0 ||p=0 €A k=0 4 t
(57
Consequently, it implies that
2
T—1 9 T—1 @ A
STD Dot ICTR e 35 pEY (I Sl SPNCEE IR
t=0 i€ A, t=0 ic A, ||j€Aa, ,—1 k=0
2
K (a0, ,,k)
<d4n; Kz STE|DD D Vi@ )| + 4ifKAN?0*T
t=0 i€ A jEAai =1 k=0
4N K Nia ZE 3 Z Y i) +4m?K2N2o—2T,
’LGAt k=0
(58)

where the last inequality is due to the fact that E HZ’LE A, ZkK 01 Vfi(z; (az, ”k)) H appears at most
NTax times in the previous sum.
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Finally, after summing ¢ from 0 to 7" — 1 in Equation {8)), and implementing the upper bound for
each term in Equation (@9) as above, it holds that

-1

T-1 K—1
Z Z Z EHx(CLi‘t) _ altk)H < 102 NK*To? +107712K2L22 Z ZE‘

t=0 i€ A; k=0 t=0 i€ Ay k=0

2
K3L2 T—1 K-—1 .
771 max Z Z Z ij(ivg- _7,f,,k)) I 207737714 r%aXK4TU2LQ
t=0 jeAL k=0

T-1 K-1
+ 1077l27maxK2L2 Z Z Z E Hml(,ai,t»k) — plaie) 2

t=0 i€ A; k=0

2
(a'L ts k' x(ai,t)

N 4077g

+ 109 NK?To?

+ 472 K NTinax Z E|IY Z V5| 4 a2 K2N262T
€A k=0
(59
Then, for n; < Wﬁ’ by rearranging the terms in Equation (59), we have
35 SR [a0 ol < 50N 4 a0 KT
t=0 ic Ay k=0
- . 2 (60)
8077 77 maxK L — a ty
( T L N ) S| 53 W)
t=0 ||j€A; k=0
For the third part of Equation #4)), we have, by summing over ¢,
T-1 2 T-1 N )
3230 Y VAEO)| <32 S (V- 40 [V
t=0 |[i{eN/ A+ t=0 i=1 61)

1055 o 3 [ <o

t=0 jeN
— Ly (2|7
where Fy := >0 [|[Vfi(z )]

Thus, by summing over ¢ and taking expectation in Equatlon @, implementing the three parts, we
have, for ; < 1/ (10\/TmaxK L), by SNKL? - 40779 K*T

77[ max o?L* < QUSUIQKgNTmaxTUQLQ,
T-1
Z KZsz (z(®) Z vaz (ai.ek)y
=0 i=1 i€A; k=0

<BK?N?Tnax Fo + 81 K* NTimax max {1, Tavg } To? L2 + 60207 K272, L? Z E

max

Z Z vfz (az ka)

i€ A, k=0

2
T-1 K-1
+ 150 N3 K3 To? L2 + (240020172, K LY + 242 K2 N2 100 L2) Y E|| Y Y V(20
t=0 jEA; k=0
<BK®N?TmaxFo + 8myn; K® NTimax max {1, Tayg } To> L 4 1500 N° K*To” L?

2
T-1

K-1
(O AL 4 20 KN ) 3| 5 3 9
t=0 jeEA: k=0
(62)
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Lemma D.5. Suppose Assumption[I1|and[I.2|hold. Then, we have

_ Ng™ ZE<vf (t Z Z |: (alt, ’g(a”, ) vfz( (am,k))}>

€A k=0
K—1 2
779771 K 2 77g771 (a,7 k)
<3 Tag0* LT + 235 TmaxL;E ; ;;) Vfi(x )

Proof. By the independently and randomly sampled 51»(“1 t), we have, foreachi € 4, and 0 < k <

K -1,
E <Vf(x(milﬂi@\f{ai.,t}))7 g (l'l(ai’t’k), é}(ai“’k)) sz( (as, t7/€))> 0. (63)

By t — 7 = min;en {a; ¢}, we then derive that

77g77l <Vf (t) 22[91 (ai,1,k) g(a“k) Vfi(z (a”k))}>

i€ Ay k=0

K—
= _ %E <Vf(x(t)) t Tt) Z Z { (a1 t,k) g(aw t7k)) sz( (‘11 t7k))}>
A —

(64)

Then, if 7, > 0, it holds by picking & = —'= in the Cauchy-Schwarz inequality (a,b) < a llal® +

11| that,

K-1
gl <Vf<:c“>> — VAT, 3T gl ) - vt >

N i€A, k=0
Z Z [ (m +,k) é.(aq t,k ) sz( (G’?f k)):|

2

1
SiEva(x(t) V(2 H 779’71 nLE
TtL

1,6./41 k=0 (65)
With the fact that, by taking full expectation, we derive that
2
Z Z |: (az t,k) g(al .k ) Vf( (as, t,k)):|
zEAt k=0
al ok aI t,k a.L t,k
<y Z ) -l < VKo,
€Ay k=0
and
2 2 22 t—1 K-1
IEHVf(x(t)) _ Vf(x(t—n))H < L2EHx(t) G 9N ]g\[2l IL2E Z Z Z gj(xg_aj,pﬁk% ](}lj,p’k)
p=t—T7¢ jEA, k=0

t—1 K-1

§277977l IR Z Z Z [ ( gajmk),f(%p’ ) Vf( (ajp,k))]

nen; — = (a;.p,k) i
+255 LB > Vi)
p=t—7¢ jEA, k=0
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Then, we have

2

t—1 K-1
5 > [astafs €)= vl
p=t—T¢ jEA, k=0
t—1 K—-1 . ( . )
3 X 3 Bt - Vi)
p=t—71 jEA, k=0
t—1
<7t NKo? = NKtio?,
p=t—T¢
and
2 2
K-1 t—1 K—1
E Z Vf] (ajpka)) <7 Z E Z Zij(.’E(aj’p’k))
p=t—7¢ jEA, k=0 p=t—1 jeA, k=0

Thus, summing over ¢ from 0 to 7' — 1 on both sides of Equation (63)) and invoking Lemma[D.2]and
Corollary [D.3] we have the following bound holds no matter whether 7 > 0 or not:

nﬂ”§2E<Vf(” 2:}:[ W““§®”’)—Vﬁ@“““ﬂ>

€A k=0

T—1 t—1 K—1
n 771 2 n; 771 771 _—
<ZTt 9 NKo2L + 2 ]‘if NKo Z >V f(lneh)
t=0 t=0 t=0 p=t—7, ||j€A, k=0
et K man = i
<3 Tag0 LT + 205 Tunax L ) | B ZZW (ai0:k))
t=0 €Ay k=0
(66)
which gives the desired result. O
Lemma D.6. Suppose Assumptionandhold. Then, for n; < Wﬁ’ and ngm <
1
T0rman KL’ we have
2A Imgmmax {1, Tue} 0L 3TmaxFo
= > E||vie® H ! g > Tavg 1502 N Ko L2
Z flx nngTJr N + =+ 1500 N Ko

where Ay = f(z() — f* and Fy := %Z?:l HVfi(x(O))Hz.

Proof. By Assumptlon. the function f := 1 Z?:l fi 1s L-smooth. Then, it holds by the descent
lemma that

2
Ef(z*D) < Ef(z®) + E <Vf(x(t)), 2D _ $<t>> 4 g Hzml) _® (67)
For the inner product term in Equation (67)), there holds that
(), g+ _ 0 = 0y _ MM )
E(V/(@®),2 z > 1E<Vf<x )~y >
77 77l a1f7k a1f7 a7fk
leAf k=0
_ - i
l it
i <zw, 9,3 3 UhEb) >
€Ay k=0
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We bound the first term after summing over ¢ in Equation (68) according to Lemma [D.3] Then, for
the second term in Equation (68)), we have

779771 <va x(t) ZZVﬂ (altvk) >:_;\7]927;l( <KZVJC x(t) ZZVﬂ (altvk)>

i€A; k=0 i€A; k=0

1 2
—— SnKE [0 - Sl g

IRILAEEE

N2K
€Ay k=0
2
TgM a‘l.tk
| TR W T
€Ay k=0

(69)
Then, summing over ¢ from 0 to 7' — 1 on both sides of Equation (67) and taking full expectation,
we have

K-1

0<Aj— 77977l ZE <Vf (t) ), [ a1 .k fui,t,k)) V(! (@i, k))}>

i€A; k=0
K-1
> > Vit

€Ay k=0
:E:IE" (t+1) _ x(w

1 t) Mg
~ gk ZE va H T ON?K Z]E

Mg
E
2N2K Z

KZVf (@) - ZVfZ )

i€A; k=0
(70)
where Ay := f (2(©)) — £*. Implementing Lemmainto Equation (70), we have
T-1 K—-1
0<A; - LY E <w<x<f>>, I R B A )>]>
t=0 i€A: k=0
T— T K-1 2
1 () Mg (ai,,k)
SRR Dt LA 1) 91 D DD DR
t=0 t=0 ieAt k=0
Mg (t) = (as,¢,k) 779771 KTU2L
S B K V) - X Y vl BT
i€A; k=0
(71)
Implementing Lemma [D.3]into Equation (71)), we have
1 T-1 > yon T K-1 X 2
4 ity
0 <Af — Sngnk Y B[V )| = St (1= ngn KL~ dngnrna KL) Y| S S Vfial™ ")
t=0 t=0 |[licA; k=0

Anznf max {1, Tavg} KToL
+ N .

K-1
KZW =3 Y VA

i€A; k=0

S

(72)
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Implementing Lemma into Equation (72), we have, for ; < ﬁ,

L oN [
0<A; = sngnk Y E[vre)|
t=0

yryl 2.2 2 272 2 7-2 AT2 2
- 2]\?21{ (1 - 779771KL - 477977l7maxKL - 10779771 TmaxK L” - 247]1 K°N 7-max-[/ ) .
T K—1 2
a; 377 anmaxKFO
STE|S D Vit t)|| 4 Heliman 0
t=0 |licA; k=0 2
An?n? max {1, Tae } KTo?L 40303 Tiax max {1, Tave } K2T0?L?
4 Urll {1, Tave} n Mg Tma {1, Tave} —|—75ng77l3NK2T02L2.
N N
(73)
Then, for n; < ﬁ, and ngn; < ﬁ, we have
1= ngmKL — 40y Tmax K L — 100,07 700 K2 L? — 2407 K* N 700 L?
1 2 1 6 (74)
- - =~ — > 0.

Therefore, for 7; < Wﬁ’ and g7 < 15— » by rearranging Equation (73) and noticing

417277137'max max {1, Tove } K2T0?L? - 7727712 max {1, Tave } KT0?L
N - 2N ’

it implies that

T-1

1 2 2A 9 1 V. 2L maxF

= Z]EHW(:N))H = nIJ;T 4 o™ maX]{V’Ta efo’L | 37 40 4 1505 NKo? L2,
=0 gl

(75)
O

Theorem D.1. Suppose Assumption[I1|and[I.2|hold. Then, for

1 Tmafo
and n; = min , )
" { 10+ /Tmax NK L \/N max {1, Ta, } KT Lo? }

N
ng V Tmax ’

we have

)

T-1
1 2 30\/max{1,7'm, }L02Af 20T max (LAf + )
7 B[] < /
T 2 BV S NKT " T

where Ay = f(z(9)) — f* and Fy := % Zf\; HVfi(x(O))H2.

: 1 1
Proof. Invokmg Lemma we have, for m S W, and Mg S T0rmme KL’

T-1

1 2 2A; 9 L 7ug} 020 3Tmach

=S E[vreo)| s—L+ T max AL T} 0°L | Sl |y g2
t=0

“ngmKT N T
(76)
Choosing
N . 1 Tmafo
= , = min , ,
1T S 10\ NKL" /N max {1, 7mg} KT Lo
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we have
. NAy 1
= min , )
g \/max {1, Tavg} .[(T‘LO’2 107—111axKL
20y < 2\/max{1,7m,g} Lo2Ay n 20Tmax LA ¢
ngm KT — NKT T ’
Ng™t 2 9y/max {1, Taye} Lo?Ay
9= 1 L<
N max {1, Taye } 0 ~RT )
15002 NKo?L? < 150 Tma 81 NKo?1? < VLA
o o i S ——
K 10y/Feex NK L /N max (1, 7ug) KTLo? = T UNKT

Thus, we can combine the above bounds with Equation to get

T—1
1 2 26\/max{1 Tavg s LO2A 20Tmax (LA ¢ + Fp)
— (t) H < ) avg f max f 0
TZIEHVf(z "W < = + T

)

which gives the desired result by appropriately magnifying the constants. O

E CONVERGENCE ANALYSIS FOR FEDSUM-CR

In this section, we prove the convergence result of FedSUM-CR.

Algorithm 3 FedSUM-CR: Enhencing Communication Efficiency in FedSUM

1: Input initial model (%), control variables y(~1, {h{?}V | with value 0, {z{”)}V., with value
) and {a; 0)} L, with value —1; global learning rate 7),; local learning rate 7;; local steps K;
chent participation {S; }/_'

2: fort=0,1,--- ,T—1do
3: Send z(® to all clients i € S;.
4: for client i € S, in parallel do
5: Receive 2(*) and initialize local model a:(t 0 = 40,
() _ ()
6: Compute local update correction direction y(t) ngix = zit _a;) O
for k=0,--- ,K—1do
Compute a mini-batch gradient g( " — VF, (x; (t-h). 3 (t.k) )
9: Locally update z{"* 1) = z(-*) * ( (BF) 4 yl( ))
10: end for .
N(2® gzt
11: Compute 510) = % - @ - h(-t) and send 51@ to the server.
t (t,K)
12: Update az(_t+1) —t (t+1) = 2, and h(t+1) ( ( LK’ * ) . yz(t)
13: (fori ¢ S, zi(t—H) = Zi(t), a§t+1) a( h(t+1) h(t))
14: end for X
15: Update y*) = y(t=1) 4 3~ ¢ ) and z(t1) = g(®) — LBy,
16: end for
17: Server outputs (7).
We derive the update direction y*) in FedSUM-CR as follows.
L N (k) o)
) o(aik ai,i,k
=2 2 2 alam.gmeh), (77)

i€A; k=0
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For the convenience of notation, we define that a; _; = —1 forall i € N and z(-Y = 2() Then,
we have the control variables:

h(t) (am 1,k)’€ i t— 1719))’
' = (78)

agt) =iy 1,2 z( ) (ai,t—l).
(t)

Furthermore, the local update corrected direction y,

0 _ N Zi(t) —z®) m N zleie=1) — (1) X0
g ngmI ¢ — agt) ’ ngmK t—a;i1

N 1 = ®
— - (p) _ (p+1)) _pl
KT e p:; 1 (:g x : (79)

— A0S
t*alt 1 Z y !

pP=ai,t—1

MN

is derived as follows:

%

Lemma [E-T|establishes a basic relationship between the difference of two consecutive model updates
and the aggregated gradient, shown as follows.

Lemma E.1. Suppose Assumption[I.1|and[I.2)hold. Then, it holds that

T—-1 2 9 2 2 T—1 K-1 2
Z E Hx(t+1) _® 2 - 2%77[]\}]{TU g771 Z E Z Z Vfi(xl(a“’k))
t=0 i€Ay k=0
Proof. Similar to the proof of Lemma[D.1} O

As a direct consequence of Lemma|[B.2] we conduct the Lemma[E:2]and Corollary [E3]to bound the
aggregated gradient of server.

Lemma E.2. Suppose Assumption|I.1|and -hold Then, we have

T—-1 t—1
Z Z E Z ZV]"] aJP7k) <TlnaxZE szfz (alt,k:)

t=0 p=t—7¢ jeEA, k=0 €Ay k=0

Proof. The proof is similar to the proof of Lemma[D.2] O

Corollary [E3]is a direct consequence of Lemmal[E.2]
Corollary E.3. Suppose Assumption[I.Ijand @hold Then, we have

ZTt Z E Z Zv‘fj (aJp ) < maxZE szfz a7fk)

t=0 p=t—7¢ JjEA, k=0 €Ay k=0

Lemma [E.4]is the key lemma to estimate the difference between the aggregated gradient of server
and the aggregated gradient of all clients.

Lemma E.4. Suppose Assumptionand hold Then, we have, for m < 1o7—=—x1

T—1 N - :
Z E KZ Vfi(:z:(t)) _ Z Z Vfi(l‘z(»ai’t’k)
t=0 i=1

€A, k=0
<BK2 N2y Fo + 877_27712K3N7'max max {1, Tue } To*L? + 1500 N3 K3 1ypax To? L?
2

+ (10920272 o JC2L? + 241 K2 N2 70 L2 ZJE 3 Z vh @) |
jeA k=0

\/dexKL’

where Fy == 1 Zf\il vai(x(o))||2'
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Proof. Notice that, by the decomposition of the difference between the aggregated gradient of the
server and the aggregated gradient of all clients, we have

N K—1 2 2
HKZ ZICORDIDIRZIC ] IE S DIAFICUED BAEIC
i=1 i€A; k=0 ieN ieN
2
EY Vo) -3 Z V fi () +3K2 > V)
€A €Ay k=0 iEN /At
(80)
We bound the expectation of terms in Equation one by one. First of all, we have
2 2
S VHED) =Y V)| < NI2SE me _ plaie)
ieEN ieEN ieEN
- 2 2
_NL2 ZE Z [ (p+1) _ x(p):| 77g771 L2 ZE Z Z Z (aJ p-k) f(aJ P )
iEN p=a; iEN p=a;+ jEA, k=0
(81
By Assumption[T.2} we have, according to Equation (81)) and summing over ¢,
T—1 2
KD B\ D VI@Y) =) Vi)
t=0 ieN ieN
t—1 K- 2
T 3D S 2 S e D Wl PO SR ST
t=0 ieEN p=a;t jEA, k=0 t=0 ieN pa“je.A k=0
- K-1
<620 K NrmaxTane To2 L2 + 60202 K22, L2 Y B Y ST i)
i€ Ay k=0
(82)

where the procedure is similar to the proof of Lemma|C.4]

For the second part of Equation (#4), we have, by Assumption[T.1}

2

K-1 K-1
HK > Vhield) = 37T Vit (Vi) = V()|
i€ AL i€ Ay k=0 i€ Ay k=0
<NKL* Y Z H (as0) _ “”””H
i€A; k=0
(83)
Note that z(%.¢) is the local model of client i at the beginning of round a; ;, and x(al %) is the

local model of client 7 at the beginning of round a; ; after k local updates. Then, accordlng to the
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definition of A{") and 5" shown in Equation (78) and (79). it holds that

K-1|lk-1
H (aie) _ azf k) H { (aie,p) _ (amerl)}
K—1]|k—1 2
Y Y [mww%ww
€A k=0 ||p=0
K—1|[k—1 2 (84)
<2n Z Z Z [gi(wgai't’p)7§§ai’t’p)) _ hgaq‘,,t)i|
€A k=0 ||p=0
K-—1 a;t—1 2
DD D s 1) DI
€A k=0 it — Giaq,.— 1 p=0q=a;,a,; ,—1

We deal with the first term in Equation (84) as follows. Notice that, by the definition of hEt) in
Equation ([78) that

(as,e) = (a1 a; 1 —1s k) (az‘,awfl’k)
hi - Z agi )7
k=0

where a; 4, ,—1 is the round when client 7 is selected in the second last round before ¢. Then, we
have

k-1 2
Z |:gb( (% tsP) {(al t)p)) hgam,t):|
p=0
k—1 _ 2
<5 Z [gi(xgaz:,tﬁn)’ gi(ai,m;b)) _ vfz(mg(llhp) :| Z |:vf1 (ai,tvp)) o sz(if(a”t))}
p=0 =0
9 (ai 2 k2 Kl (@i,a; 4—159) ’
st - spise sy [ [ - oagte )
q=0
k|1 (o ) o ) i
5 S [asale e ) g gt
q=0
(85)
Then, by taking expectation and invoking Equation (84), we have the following upper bound for
each term in Equation (83).
Term 1:
T-1 K—1 |lk-1 2
i E(| D [autel . 6%7) = v fial™ )
t=0 i€ Ay k=0 p=0 (86)
T-1 K—1k—1
<n; o2 < PNK>To>.
t=0 i€ Ay k=0 p=0
Term 2:
T-1 K—1 |[k—1 2 T-1 K—1 k-1 )
Y3 Y B [VaE ) - Vaae)]| <ty Y S kY E| ol
t=0 i€ A, k=0 |lp=0 t=0 i€A, k=0 p=0
T—1 K-1 K-1 N T-1 K—1
<n?L? Z Z k E Hx @i tP) _ g(aie) < n2K2L2 Z Z ) (as.t)
t=0 i€A; k=0 p=0 t=0 i€ A; k=0
87)
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Term 3:

PY 5 S # Vi) Vi)

t=0 i€ Ay k=0

T-1 9 T-1 agi—1 2
<P K3L2 Z Z E Hm(ai,t) _ p@ia 0|7 = K3 L2 Z Z E Z [x(i’“) _ 2
t=0 i€ A; t=0 i€ A; P=Qia; 4—1
2
277 174K3L2 T—1 @it
2 2 e aea] X E| DD Z v (st
t=0 i€ A; P=Qia; ;—1 jeAp, k=0
217 K3L2 =1
il il ZZ it — Qia; — 1} NKo2.
t=0 i€ A;
(33)
With the fact that a; 4, , 1 is the second last round when client ¢ is selected before ¢ and a; ; is the
last round when client ¢ is selected, it holds that a; y — @;,4; ,—1 < Tmax. Then,
T—1 K—1 5
BY Y Y R hiale) - V)|
t=0 i€ A; k=0
774K3L2 T-1 gt K—1 2
ook
SUUESE 55 LD SR DO SR ZAE R S
t=0 ic A, p=max{0,a; t—Tmax } je€A, k=0
(39)
With the fact that ¢ — Tyax < a;¢ < t, we have
2
47372 T-1 @it K—1
17 K°L ik
S Y 3 B[S S v
t=0 i€ A, p=max{0,a; + —Tmax } JEAp k=0

2
2779771 TmaxK3L2 il

K-1
STy B[S Svsene

t=0 i€ Ay p=max{0,t—2Tmax } jeAp k=0

2
277977[ 7-maxI(SLQ =

K-—1
S DY S BT Y v 90)

t=0 p=max{0,t—27max } jeA, k=0

2
2 TmaxK L2 T— 11’[1111{T 17p+27—max} K-1 .
el E S e T S s
jeA, k=0
372 T-1 2
4779”[ maxK L Z k
S a1 DY ZVfJ o
jEA: k=0
Term 4:
T-1 K142 |lK-1 ( : 2
Qi oas b —1 Aiya; 1 —1,4
> B || D [Vhi ) = Vi )
t=0 icA; k=0 q=0
T—1 K-l 9 K1 (s 2
SEPIPIDIF DI L o
t=0 i€ A; k=0 q=0
T—1 K-1 5
<} Tinas K2 L2 Z]EHI“W’” 2|
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where the last inequality is due to the fact that a;4,, 1 is the second last round when
client 7 is selected before ¢ and a;; is the last round when client 7 is selected. Then, it

, 2
holds that a; 4, ,11 = a;;. Hence, ZTfl ZzeA,, Zf;ol E Hx(“'i~%,rl) — xial’a"'“l’q) <
itk
Tmax Z ZzEAt Z (a 0k $(a1 +)
Term 5:
T—1 K12 |K-1 ( o : 2
Qi,a; 1 —1,4 Qiya; ¢ —1,4 ias 1,
Yy B || [gulary g ) Ol ))
t=0 i€A; k=0 q=0
92)
T—1 K140 K-1
<n? 2 o? <PNK*To?.
t=0 icA; k=0 a=0
For the second term in Equation (84), we have
a;t—1 2 1 ai+—1
%ZZ - Z DO A D sl D DI A
i€Ay k=0 it hai,e— 1 p=09q=ai,a; ,—1 i€ A, bt bhai—l q=0i,a; ;1
93)
Consequently, it implies by the fact a; y — @;,4; ,—1 < Tmax that
ai,tfl 2
DR = S
t=0 i€ A aZt_alalt 1) q=0j,a; ,—1
ai,t—1 K-1 2
Ky 2 e " > D gitaf gt
=0 ic A, baie—1 4=ai,a; ,—1 jEA, k=0
a; +—1 K-—1 2
<4m2KZ Z Y E Vi@l e 4 K2N26%T
t=0 i€ A T Giag -1 4=0i,a; ;1 JjeEAy k=0
2
<4 K N Tinax Z E|> Z Vi ) 4 4 K2N262T,
16./41 k=0
(94)

where the last equality holds by Equation (90).

Finally, after summing ¢ from O to 7" — 1 in Equation (84), and implementing the upper bound for
each term in Equation (83) as above, it holds that

-1 K-1

T-1 K-1
PIDID IR BRI ’”H < 10 NK>To® + 107 KL Z > S E[eln

t=0 i€ Ay k=0 t=0 ic A, k=0

2
_ plaiy)

2
40 K32 1! Kl v
779771 m'}x Z Z Z vfj(mgaj,t,k)) 4 2017377;171313XK4T02L2

t=0 ||jeA, k=0

T-1 K-1
10 T K212 S S S B[ 00 |* 4 102 N E T
t=0 icA; k=0
+APKNTE,, Z E|IY Z Vi )|+ 4 K2N?02T.
€Ay k=0

95)
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Then, for 7, by rearranging the terms in Equation (93), we have

< 1
— 10/Tmax KL’

T-1 K-1
Z Z Z E Hx(ai,t) _ U«L t’k)H < 50n2N2K2TmaxTa + 4077g”7l maXK4TO_2L2
t=0 i€ Ay k=0
T-1 K-1 2 (96)
807]27747-1%1 XK3L2 — — a;
+< e + 8P ENT2 | STE ST ST vl

t=0 ||jed, k=0

For the third part of Equation (80), we have, by summing over ¢,

2
T—1

323 | vAGE©) <3K2Z (N = 4,) ZHWZ ) H
t=0 |[ieN/ A+ t=0 (97)

T—1 N
2
=303 3 L D[V < 3N B
t=0 jeN i=1
where Fy := & SN ’|Vfi($(0))”2~
Thus, by summing over ¢ and taking expectation in Equation (@_5[), implementing the three parts, we
K*T

have, forn;, < 1/ (10\/@KL), by SNKL? ~4()7)§77[4 T2 oLt < QHST]ZQKSNTmaXTJQL2,
T-1 N K—-1
STE|ES VAEED) - SN V@t
t=0 i=1 i€As k=0

K-1
> > Vi)

<BK2N%raxFo + 817; K3 N Tpax max {1, Tave } To%L? + 67797712[(2 2 L Z E

max

€A k=0
T—1 K-1
+ 1500 N3 K ropax To L% + (24002nir2 o KLY + 24 K2N?72 L) ST E | S ST wy(aloeh)
t=0 jEAL k=0

<BK? N2 Fo + 817(2] K3 N Tpax max {1, Tave } To?*L? + 1500 N3 K3 1ypax To? L?
2

+ (020772 KL + 24P N2 L) S E || S Z Vil

jeEAL k=0
(98)
O
Lemma E.5. Suppose Assumption@and@hold Then, we have
_ Ng™ a; i,k a;t,k a;,t,k
WS e (9100, 53 [l ) -9 >>}>
€Ay k=0
2,2
g K Ui )
<3 a0 LT + 205 TmaXLZE > Z Vfi(x
i€AL k=0
Proof. The proof is similar to the proof of Lemma|D.5| O
Lemma E.6. Suppose Assumption and hold. Then, for n; < m, and ngn <
m, we have
2A IMmgmmax {1, Tue} 0L 3TmaxFo
= > E||vie® H ! g > Tavg 1502 N Ko L2,
Z flx nngT-i- N + =+ 15007 N Ko

where Ay i= (@) — f* and Fy :== L S0 ||V £:(2@)|”.
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Proof. By Assumptlon. 1.1} the function f := 1 ~ >, fiis L-smooth. Then, it holds by the descent
lemma that

2
Ef(z®D)) < Ef(e®) + E <Vf(x(t)), L) x(t)> n g Hx<t+1> N0 99)

For the inner product term in Equation (99), there holds that

K
E <Vf(x<t>), 2D _ x(t)> —FE <Vf(x(t)), _%y(t>>

_ ngm <Vf ®) ZZ[QZ (@i.0h) elaiok)y g (x (a”’k))}> (100)

€A k=0
K-1
- L E <va “) EAj ;sz zj) >
1€Ay k=0

We bound the first term after summing over ¢ in Equation (T00) according to Lemmal[E-3] Then, for
the second term in Equation (T00), we have

K—1
779771 <ZVf ® ,Z Z Vfi(xz(-ai"’k))>

i€A; k=0

— (K5 e, X vl

i€A; k=0
K ) (101)
1 2 .
__ - (t) Mg (@i k)
- znng]EHVf(x )H IN?K Z D> Vi)
i€A; k=0
779771 t) (as, uk)
SN2 E KZWZ ZZW
i€A; k=0

Then, summing over ¢ from 0 to 7' — 1 on both sides of Equation (99) and taking full expectation,
we have

0 <A W"ZE<W ”%ZZ[& (i) ) _ T fi(a “”’”)D

€A k=0

T-1 K-1
1 Uryl ai 1k
577g775KZEHVf () H — 2152‘;{2]]3 Z vai(xg 6.k)
i€A; k=0
K-1 2 I T 9
%ZK ZE szf ) -3 % V(|| . SE Hx(tJrl) 0
i€A, k=0 t=0
(102)
where Ay := f (x(o)) — f*. Implementing Lemmainto Equation (102)), we have
T
a/L t,k at t; Clq t,k}
t=0 zeAt k=0
1 = NN T K-1 . 2
! Qi t
a 5”9771KZ va G )H ~sneg (L kL) SR Y Vi
t=0 t=0 iEAt k=0
Mg (t) K (as.1,k) 779771 2KTo?L
I Sl IS TIEURS 38 SUTER) s
i€Ay k=0
(103)
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Implementing Lemma [E-3]into Equation (T03)), we have
2 N 47737]12 max {1, Tye } KT0o?L

T-1
1
0 <Ay - Enng Z E HVf(:v(t))H
t=0

N
Mg o = k ’
I Qi ty
- 2]\?2[( (1 = ngmK L — 4ngm Tmax K L) ZE Z Z Vfi(xg : )) (104)
=0 |lieA, k=0
e S e S e - S )
€A k=0

Implementing Lemmainto Equation (T04), we have, for n; < ﬁ,

T—1
1
0<A; - sngmK Y E HvﬂN)H + 7500 N K rinax To L2
t=0

1
- % (1= ngmKL — 4ngmTmax K L — 10773775713%1(%2 2407 K2 N*Typax L?) -

S| PO ITERY

1€Ay k=0
N 4773771 max{l,ﬂwg} KTo?L N 371g771 Tiax Max {1, Taye } K?To? L2

3nganmaxKF0
2

N N
(105)
Then, for 17, < 10\/7—7NKL’ and nym < 15— we have
1= ngmKL — 4ngmTmax KL — 10070770 K2 L? — 240} K> N7} L
1 2 1 6 (106)
o . R 2 >
- 10 5 10 25
Therefore, for n; < m, and 1, < m, by rearranging Equation (T03) and noticing
417277?7},13,( max {1, Toye } K2T0?L? - nSle max {1, Taye } KT0?L
N - 2N ’

it implies that

T-—1 9
l Z E HVf(x(t))H2 < 2Af + 977977[ ma‘X{LTan}J L + 3TmaxF0

150’ NK o2 L2
“ngmKT N T +10m ?

(107)
O
Theorem E.1. Suppose Assumption[I1and[I.2 hold. Then, for

N d i 1 Tmafo
= ———, and n; = min ,
1= 10y/Tmax NK L™ \ /N max {1, 7o} KT L0

we have

T-1
1 Z 2 30\/max{1,7'av }L02Af 20Tmax (LAf + Fp)
T —o VIED)| = NKT N T

where Ay = f(z(0)) — f* and Fy := % PO HVfi(a?(O))H2.

; 1 1
Proof. Invoking Lemma we have, for n; < 0V NKL and nyn;, < T0r KL

T—1
1 2 2A Ingmmax {1, Tayg} 0°L  3TmaxFo
=S IEHV ®) H < =B s > Tave 150n2 N K o2 L2.
T < F@) S emKT © N T TUmARe

(108)
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Choosing
N . 1 Tmafo
= 5 = min 5 5
e Tmax n ]-O\/ 7—max-z\/v-KvL \/N max {1, Tavg} KTLO'2
we have

, NA; 1
= min , ,
™M \/max {17 Tavg} KTLo? 107—maxKL
2A¢ < 2\/max{1,7'avg} Lo2Ay N 20T max LA f

ngmKT — NKT T ’
9 1, Tave} Lo2A [
ngnl max{l,Tavg}U2L < \/max{ T} Lo j,
N NKT
1 xS 15\/Lo2A
1502 NK o2 L? < 150 Tmax ) NKo?[? < =2V 2F
10\/TmaxNK L /N max {1, 7uye } KT Lo NKT

Thus, we can combine the above bounds with Equation (T08) to get

i

T—1
1 2 26\/max{1 Tavg} LO?Af  20Tmax (LAf + Fp)
T Zt - VIET|| < NKT " T

which gives the desired result by appropriately magnifying the constants. O

F CLIENT PARTICIPATION PATTERNS

In this section, we provide rough estimates of client participation characteristics for the four cases

introduced in Section Since both 7,y and 7,45 are functions of {S: tT:_Ol, it follows directly from

the definition that 7y, < Timax. Hence, we focus on bounding 7ax (or E[Tmax]) as a rough measure
of different client participation patterns.

Lemma F.1. Suppose S; are sampled uniformly at random from N with |S;| = S < N fort =
0,...,T, as described in Case 1 of Section 2] Then, we have

B[] < % In(NT).

Proof. For each client 7 € A at the iteration ¢, define the indicator variable:

[ ifies,
170, otherwise.

Then, for each client ¢, define its longest-run random variable as
Li=max{l>1:X,; = X441 == Xit11—1 = 0forsome t} .

Then,
Tmax = Iz%%\)f( {LL} .

By uniformly and randomly sampling S; from N, it holds that for fixed i € N/,

| ) S
p=P(Xi;=0)=P>i¢S)=1- "5 :1—N.
(s)
The event that client 4 appears in iterations ¢,# 4+ 1,--- ;¢ + [ — 1 has probability p' and there are
T — 1 + 1 possible starting points for such a run. Thus, a union bound gives
P (Tmax 2 1) = P (UL, U™ {Xie = X1 = -+ = Xig-1 = 0})
N T—i+1 N T—l+1
SZ Z PXip=Xipt1="=Xit41-1=0) = Z Z p' < NTp.
i=1 t=1 i=1 t=1

44



Under review as a conference paper at ICLR 2026

Using the tail-sum formular for the expected value, we have

T T
Efmax = 3 P (Tmax > 1) < Y _min {1, NTp'}. (109)

p)
NTp

Picking integer m = [logp 1, we have

m

Efmax < 3 1+ Z NTY' <m+
=1 l=m+1

Besides, implementing into Equation (110) with the fact that
NTp o NTP g, Gz NTp(=p) | o p NS
1—p 1—p 1—p NTp 1—p S

NTpm+1

- (110)

we have

+1+1

Emax < log, -’ (1-p) (INT ) 41n(NT) < 41n(NT) 4N
np

NTp In(;) ~— 1-p S
which completes the proof. O

Lemma F.2. Suppose each client independently participates in each round with a fixed probability
p; > 6 € (0,1], as described in Case 2 ofSection Then, we have

E[rmas] < % max {1n(NT), 1n((15)} .

Proof. For each client i € N at the iteration ¢, define the indicator variable:
1, ifi € S,
Xi t = . ‘
’ 0, otherwise.
Then, for each client ¢, define its longest-run random variable as
Li=max{I{>1:X,;, = X441 == X;441—1 = 0forsome t} .
Then,
max — Lz .
e = g AL}
By the assumption that each client independently participates in each round with a fixed probability
p; > 6 € (0,1], it holds that for any client 7,
p:]P)(Xlt:O):].—pl §1—5
Using the tail-sum formular for the expected value, we have

T T
ETmax = ZP(TmaX >1) <Y min{1,NTp'}. (111)
Picking integer m = [log, NTP)] we have
m T
NTpm+1
1
Efmax <Y 1+ Y NTp' <m+ — (112)
=1 l=m+1
Besides, implementing into Equation (112]) with the fact that
NTp o NTD g 4z NTp(=p) 0 p 1
1-—p 1—p 1—p NTp 1—p— 9
we have
In 1-p 1
(1-p) (NTp) In(NT) + In(5)
Erpax <log, ——~+141= ——-*+4+2< —— 92 4 2
G 0g, NTp +1+ Inp + ln(%) +
In(NT) + In(}) In(NT) In} 4 1
< 2 < —2 +2< = In(NT),In(=
S < ) 0 < Smax {(VT) ()
which completes the proof. O
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Lemma E.3. Suppose clients are selected in reshuffled cyclic order, as described in Case 3 of Sec-

tion[2] Then, we have,
AN

IETmax S ?

Proof. Since the client order is randomly reshuffled at the beginning of each epoch, the interval
between two consecutive selections of any client ¢ cannot exceed the rounds spanning from the start
of one epoch to the end of the next.

As one epoch consists of | N/.S| rounds, the gap between two consecutive selections of any client 4
is at most 2| N/S|. Hence,

AN
max < t— 7 < 2|N, S < —
Tmax < wnax max{t—a;; } < 2[N/S| < —
Taking expectation on both sides yields the desired result. O

Lemma F4. Suppose clients are selected in deterministic cyclic order, as described in Case 4 of
Section 2] Then, we have,
< 2N

Tmax —

Proof. Since the client order is deterministic of each epoch, ther interval between two consecutive
selections of any client 7 cannot exceed the rounds spanning from the start of one epoch to the end
of it, which implies
2N

g

7-IIl ax S

G CONVERGENCE RESULTS OF THE FEDSUM FAMILY

In this section, we present the convergence results of the FedSUM family and analyze their behavior
under different client participation patterns. Since we take the full expectation over T,y and Tiax,
both functions of Sy, t =0, ..., T —1, in Lemmas|C.6} [D.6] and[E.¢] it suffices to use their expected
values in the final theorem.

Combining Theorem|[C.1] [D.T|and [E.T] we obtain the following unified convergence result.

Theorem G.1. Under Assumptions([I.1|and[I.2] and for arbitrary client participation characterized
by Tmax and Tay,, if the learning rates for FedSUM-B, FedSUM, and FedSUM-CR are set as

1 Tmafo
10y/Tnax NK L' /N max{1, 74, } KT Lo>

N
Ng = \/?, andn = min{

then all three algorithms achieve the following convergence rate:

; (113)

- 30\/max{17 Tavg FLO2A 20Tiax (LAf + Fo)
= [V f(z®) 8 +
= }zoj IV F®)]?] < o -

where Ay = f(z(9)) — f* and Fy := % Zfil |V f; (z(O)]2.

The following corollary is direct consequences of Lemmas [F1] [F2] [F3] and [F4] By substituting
the bounds on 7,,.x (and 7,y, When applicable) from each lemma into Theorem [4.1] we obtain the
convergence results of FedSUM-B, FedSUM, and FedSUM-CR under the four client participation
schemes described in Section 21

Corollary G.1 (Convergence under Case 1-4). Under Assumptions[I.1|and[I.2} and with appropri-
ately chosen learning rates ng and 1, the FedSUM-B, FedSUM, and FedSUM-CR algorithms satisfy
the following bounds under the participation schemes in Section[2}
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Case 1 (Uniform Random Sampling):

— 2 2 LAy + Fo)Nlog(NT
1 Z E va(l‘(t))H < 60\/Lo2A;log(NT)  80(LAjs + Fy) N log( )
T 2 SKT ST

Case 2 (Probability-Based Independent Sampling):

7 e |vao)| < S0VE? A mox {og(VT) log())
t=0

OINKT
80(LAf + Fy) max {log(NT),log(3)}
- 5T

Case 3 (Reshuffled Cyclic Participation):

! Lo?A; 8ON(LA; + F
rE ol s St G
t=0

Case 4 (Cyclic Participation):

T—1
% Z . HVf(x(t))H2 < 60«/5;;Af N SON(L?IJ: + FO) .
t=0

H NUMERICAL EXPERIMENTS

H.1 CoDE

The code for reproducing our experiments is available at https://anonymous.4open.
science/r/FedSUM-0658|

H.2 EXPERIMENTAL SETUPS
Hardware and software Setups.
» Hardware. The experiments are performed on a private cluster with eight Nvidia RTX 3090

GPU cards.
* Software. We code the experiments based on Pytorch 2.0.1 and Python 3.11.4.

Neural network and hyper-parameter specifications.

Table [2] details the models and training setup. The initial local learning rate 7, and global learning
rate 1), are optimized over a grid search, with 19 € {0.01,0.005,0.001, 0.0005} and nn, = 0.01,
based on the best performance after 500 global rounds of FedAvg. Consequently, we select n, = 1.0
and ny = 0.01 for all algorithms across various models and datasets. Furthermore, we choose
K = 50 in FedAU as suggested in the original paper (Wang & Ji, 2023)).

Datasets and data heterogeneity.
All the datasets we evaluate contain 10 classes of images, detailed as follows.
* MNIST (LeCun et al.,|2010). The dataset contains 28 x 28 grayscale images of 10 different
handwritten digits. In total, there are 60000 train images and 10000 test images.

* SVHN (Netzer et al.,|2011). The dataset contains 32 x 32 colored images of 10 different
number digits. In total, there are 73257 train images and 26032 test images.

* CIFAR-10 (Krizhevsky et al., 2009). The dataset contains 32 x 32 colored images of 10
different objects. In total, there are 50000 train images and 10000 test images.
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Figure[d]shows the data distribution across 100 clients in training over MNIST. The x-axis represents
the client index, and the y-axis the number of data samples per client. The color bars in each
histogram show the proportions of different labels. The Dirichlet parameter a = 0.1 controls data
heterogeneity: smaller v values lead to more non-i.i.d. distributions, while larger o values result in
more homogeneous data.

Label Distribution per Client
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Figure 4: Data heterogeneity with Dirichlet(a. = 0.1) distribution across 100 clients. The x-axis is
the client index, and the y-axis is the number of samples. The color bars represent the proportion of
each label. Smaller « leads to more non-i.i.d. data.

Client participation patterns.

As described in Section 2] we consider three client participation patterns:

* P1 (Uniform random sampling): At each round ¢, S = 20 clients are randomly and
uniformly selected to participate.

» P2 (Stationary probability participation): At each round ¢, each client has a participation
probability of %, where S = 20, N = 100.

* P3 (Non-stationary with sine trajectory): At each round ¢, the participation probability
of each client is p! := = (0.3sin(ZL) + 0.7), where S = 20, N' = 100.

H.3 DETAILED EXPERIMENTAL RESULTS

To provide a more granular analysis of the experimental results presented in Section [5| of the main
paper, this part offers more detailed performance comparisons. Specifically, Figures& and[7)iso-
late the performance of the evaluated algorithms under each of the three client participation patterns
(P1, P2, and P3), respectively. This allows for a clearer assessment of how each algorithm responds
to different participation schemes. Furthermore, to offer a clearer view of the final convergence
behavior, Figure [§] presents the training dynamics over the last 160 rounds.

H.4 ADDITIONAL EXPERIMENTAL RESULTS

We present the performance of FedSUM across all the client participation patterns outlined in Sec-
tion 2} specifically for Cases 1 to 4. The results shown in Figure [0] confirm the robust performance
of FedSUM under different patterns.

In addition, we illustrate the performance of FedSUM evaluated under the client participation pattern
Case 2 (Probability-Based Independent Participation, with varying probabilities p), as shown in
Figure@ The results imply that larger p (and thus smaller 7,,, and T,ax) generally leads to better
performance, which agrees with the theoretical findings.
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Figure 5: Performance of the evaluated algorithms using CNN models on three datasets under client
participation pattern P1.
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Figure 6: Performance of the evaluated algorithms using CNN models on three datasets under client
participation pattern P2.
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Figure 7: Performance of the evaluated algorithms using CNN models on three datasets under client
participation pattern P3.
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Figure 8: Detailed view of convergence behavior during the final 160 rounds of training.
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Figure 9: Performance of the FedSUM algorithm using CNN models on three datasets, evaluated
across client participation patterns (Case 1 to Case 4) as described in Section@
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Table 2: Neural network architectures, loss function, learning rate scheduling, training steps and
batch size specifications.

Datasets MNIST SVHN CIFAR-10
Neural network CNN CNN CNN
C1L,I0)-R-M-  CG332)-R-M-  CG:32-R-M

C(32,32)-R-M

Model architecture -C]i((ls%)z(.))R- _DD— .RL_( i\g) ] ]?((13225_21%-.1[{,3/([) ) L (2- ;6_{ 1(21_(1)4) (64)
Loss function Cross-entropy loss
Localslcelilé‘glilrll;gnfgate K n = \/ﬁ, where t denotes the global round.
Number of clients N 100
Number of local updates K 10
Number of global rounds 7' 2000
Batch size 128

* C(# in-channel, # out-channel): a 2D convolution layer (kernel size 3, stride 1, padding 1); R: ReLU
activation function; M: a 2D max-pool layer (kernel size 2, stride 2); L: (# outputs): a fully-connected
linear layer; D: a dropout layer (probability 0.2).
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Figure 10: Performance of the FedSUM algorithm using CNN models on three datasets with data
heterogeneity (o« = 0.1) and constant learning rates n, = 1.0 and 77, = 0.01, evaluated under
the client participation pattern Case 2 (Probability-Based Independent Participation, with varying
probabilities p).

H.5 COMPARISON AMONG THE FEDSUM FAMILY

Figure[TT|further demonstrates that FedSUM-B and FedSUM-CR achieve performance comparable
to or even better than FedSUM when further setting the constant and bigger local learning rate
m = 0.1. This is mainly because the batch size is set to 128, which is relatively large given that each
client has only about 600 data samples. Under a smaller batch size (e.g., 8 or 16), the performance
of FedSUM-B degrades while FedSUM takes the lead.
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Figure 11: Training loss and test accuracy curves for CNN models trained using FedSUM family
on three datasets under different client participation patterns.

H.6 ADDITIONAL EXPERIMENT: COMPARISON OF FEDSUM WITH FEDAVG AND
SCAFFOLD ON TRAINING RESNET-18

We conduct additional experiments by training a ResNet-18 model on the CIFAR-10 and CIFAR-
100 datasets to further evaluate the performance of our proposed methods.

In both experiments, we simulate a federated environment with 50 total clients, from which 10 are
randomly selected in each communication round. To model data heterogeneity, the training data is
partitioned among clients using a Dirichlet distribution with o = 0.1. The optimization and training
parameters are configured as follows:

* Optimizer: We use SGD without weight decay. The global learning rate is set to 1, = 1.0.

* CIFAR-10: Each client performs 10 local updates with a batch size of 32 and a local
learning rate of 7, = 0.01.

* CIFAR-100: Each client performs 10 local updates with a batch size of 32 and a local
learning rate of 7; = 0.001.

The results, showing the training loss and test accuracy curves for these experiments, are presented
in Figure [124] and Figure [I2b] It can be seen that FedSUM achieves the strongest performance in
both cases.

H.7 ADDITIONAL EXPERIMENT: COMPARISON OF FEDSUM WITH FEDAVG ON SST-2
DATASET

We further evaluate the performance of the proposed FedSUM algorithm against the standard Fed-
erated Averaging (FedAvg) baseline (McMahan et al.l [2017) on the Stanford Sentiment Treebank
(SST-2) dataset (Socher et al., [2013)), a benchmark for binary sentiment classification.

The base model for the experiment is “bert-base-uncased” (Devlin et al} [2019), which we fine-tune
for the downstream task. We utilize the pre-trained weights and implementation from the Hugging

Face transformers library (Wolf et al.l [2020) and then append a single fully-connected linear layer
which serves as the classification head. To simulate a federated environment, we partition the SST-2

training set into 8 non-overlapping, equal-sized subsets, creating an [.I.D. data distribution across
the clients.

During the federated training process, 2 clients are randomly sampled to participate in each commu-
nication round. Each selected client performs 3 local updates of training on its data partition with
a batch size of 4. We use SGD optimizer without weight decay, setting the local learning rate to
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Figure 12: Training loss and test accuracy for a ResNet-18 model on CIFAR-10 and CIFAR-100.
For both datasets, data is partitioned heterogeneously among 50 clients using a Dirichlet distribution
(e =0.1).

m = 1x 10~ and the global learning rate to 1, = 1.0. This setup allows for a direct comparison of
the convergence properties and final accuracy of the two algorithms under a controlled IID setting.

The results of this experiment, shown in Figure[I3] compare the loss and accuracy curves for the two
algorithms: FedAvg and FedSUM. The FedSUM algorithm demonstrates competitive performance
in terms of both loss reduction and accuracy improvement compared to FedAvg. Note that both
SCAFFOLD (Karimireddy et al., 2020) and FedSUM-CR do not converge in this experiment and
thus the corresponding results are not depicted.
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Figure 13: Comparison of FedSUM and FedAvg on SST-2 dataset using BERT model. The left plot
shows the loss curve, while the right plot shows the accuracy curve for each algorithm over 4000
rounds.

H.8 ADDITIONAL EXPERIMENT: INFLUENCE OF BIASED SAMPLING

53



Under review as a conference paper at ICLR 2026

We further evaluate the performance of the proposed FedSUM algorithm against the standard Fed-
erated Averaging (FedAvg) baseline (McMahan et al., 2017) under a biased sampling client partici-
pation pattern.

In this biased sampling scenario, clients are assigned different probabilities of participation based
on their indices. Specifically, clients 1 to 11 have a 0.5 probability of participating, clients 12 to
22 have a 0.45 probability, clients 23 to 33 have a 0.4 probability, and so on, with the probability
decreasing as client indices increase.

The results in Figures [[4a]and [T4b]indicate that the bias issue discussed in |[Ribero et al](2022);
2024)) does not affect the performance of FedSUM, which is consistent with the benefits of
the Stochastic Uplink-Merge (SUM) technique outlined in Appendix [A]
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(a) Performance comparison of the FedSUM algorithm using CNN models across different client participation
patterns (Case 1 to Case 4), including the biased sampling case.
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(b) Performance comparison between the FedSUM and FedAvg algorithms using CNN models on
three datasets, evaluated under the biased sampling case.

Figure 14: Influence of the biased sampling case.

I LLM USAGE

In preparing this manuscript, we made limited use of Large Language Models (LLMs) solely for
minor text polishing. The LLM was used only to improve grammar, clarity, and readability. All
conceptual development, theoretical analysis, experimental design, and interpretation of results were
conducted entirely by the authors, and the scientific content is the authors’ original work.

54



	Introduction
	Main Results and Contributions
	Related Works
	Problem Setup

	Arbitrary Client Participation in FL
	Participation Patterns
	Arbitrary Client Participation and Two Delay Metrics

	The FedSUM Family
	FedSUM-B: A Simple FL Approach Without Local Updates
	FedSUM: Enhancing FL with Local Updates
	FedSUM-CR: Reducing Communication Cost in FedSUM

	Convergence Results
	Experiments
	Conclusion
	Visual Representation of the Techniques Behind the FedSUM Family
	Notations and Preliminary Results
	Convergence Analysis for FedSUM-B
	Convergence Analysis for FedSUM
	Convergence Analysis for FedSUM-CR
	Client Participation Patterns
	Convergence Results of the FedSUM Family
	Numerical Experiments
	Code
	Experimental setups
	Detailed Experimental Results
	Additional Experimental Results
	Comparison Among the FedSUM Family
	Additional Experiment: Comparison of FedSUM with FedAvg and SCAFFOLD on Training ResNet-18
	Additional Experiment: Comparison of FedSUM with FedAvg on SST-2 Dataset
	Additional Experiment: Influence of Biased Sampling

	LLM Usage

