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Abstract

Transformers have achieved remarkable success in Natural Language Processing
but struggle with state tracking and algorithmic reasoning tasks, such as modeling
Regular Languages. In contrast, Recurrent Neural Networks (RNNs) exhibit per-
fect generalization modeling Regular Languages. To bridge this gap, we explore
Recurrent Transformer variants that incorporate chunking, balancing the paral-
lelizability of Transformers with the sequential processing of RNNs. We identify
layer-recurrence as the key type of recurrence that allows Recurrent Transformers to
succeed in modeling Regular Languages. Further analysis indicates a rapid decline
in generalization performance as chunk size increases beyond two, though with an
exponential decrease in training time. This study underscores the critical role of
layer-recurrence and chunk size in Recurrent Transformers, highlighting the trade-
off between generalization capabilities and parallelism. Code available at https:
//github.com/IBM/recurrent-chunked-models-regular-languages.

1 Introduction

Despite the remarkable success of Transform-
ers [Vaswani et al., 2017] in Natural Language
Processing (NLP), the architecture continues to
struggle with state tracking and algorithmic rea-
soning [Hahn, 2020, Bhattamishra et al., 2020,
Deletang et al., 2022]. The Chomsky Hierar-
chy [Chomsky, 1956, 1959] provides a frame-
work for classifying tasks based on difficulty,
and Deletang et al. [2022] demonstrated that
Transformers show profound weaknesses across
the hierarchy.

Regular Languages, the simplest class in the
Chomsky Hierarchy, are an important bench-
mark for evaluating the reasoning capabilities
of neural network architectures. Regular Lan-
guages can be represented using a Finite State
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Figure 1: The generalization performance of Trans-
formers with various types of recurrence. Lengths
to the left of the dashed line are in-distribution, and
lengths to the right are out-of-distribution.
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Machine with no access to an external memory [Hopcroft et al., 2006]. If an architecture fails to
learn Regular Languages in a robust and generalizable way, it is unlikely that it will succeed on more
challenging problems further up the hierarchy. On three out of four Regular Language tasks from
Deletang et al. [2022], Transformers fail to generalize to longer samples than those encountered in
the training set (see the line in Figure 1). Such experimental studies are supported by theoretical
results that highlight the Transformer’s inability to model regular languages over arbitrary input
lengths [Merrill and Sabharwal, 2023, Strobl et al., 20247].

Understanding the necessary modifications to Transformers to improve their performance modeling
Regular Languages is an important step in ascending the hierarchy towards mildly-context sensitive
languages, which are hypothesized to encapsulate human language [Joshi, 1985, Joshi et al., 1990].
Furthermore, the modifications might shed light on important inductive biases for human-like
language processing leading to improved generalization, reasoning, and sample efficiency.

The performance of Transformers contrasts with the results from various Recurrent Neural Network
(RNN) architectures, such as Simple Recurrent Networks [Elman, 1990] and Long Short-Term
Memory networks [Hochreiter and Schmidhuber, 1997], both of which exhibit perfect length general-
ization on the same four Regular Language tasks. RNNs can track intermediate states by updating
the recurrent vector that is passed forward to future tokens. For a sequence of " tokens, an RNN will
perform 7' computation steps, allowing it to maintain and update a state representation at each step.
In contrast, standard Transformers are non-recurrent, and a Transformer with L layers will process T’
tokens in L computation steps, regardless of the sequence length. Liu et al. [2022] demonstrated that
Transformers with at least L = log(T") layers can learn shortcut solutions for modeling automata.
While these shortcut solutions perform well in-distribution, they are brittle and fail to generalize
to longer samples, revealing a limitation in the Transformers’ ability to model Regular Languages
effectively.

The lack of a recurrent mechanism allows Transformers to process an entire sequence in parallel
using masking and teacher forcing. However, the absence of recurrence makes generalization
challenging for Transformers on certain algorithmic tasks where maintaining intermediate states
would be beneficial [Merrill and Sabharwal, 2023]. In a separate line of work, researchers have
investigated combining Transformers with recurrent mechanisms to improve the performance in
modeling long sequences [Hutchins et al., 2022, Ding et al., 2021, Bulatov et al., 2022] and tasks
where Transformers fail [Ju et al., 2022]. In this paper, we address how Recurrent Transformers affect
generalization.

Recurrent Transformer variants introduce the notion of chunking to interpolate between the fast,
parallelizable architecture of a standard Transformer and the slower, sequential architecture of RNNS.
Within a chunk, all tokens are processed in parallel, while a recurrent connection is established
between chunks. At the extremes, a chunk size of 1 processes inputs similarly to an RNN, whereas a
chunk size equal to the maximum sequence length is equivalent to a standard Transformer. Figure 2
illustrates the computation graph and associated parallelizability for an RNN, a Transformer, and a
Recurrent Transformer. It is important to note that the slowdown from adding recurrent processing to
Transformers only occurs when teacher forcing is enabled, typically during training. When a standard
Transformer generates tokens in an autoregressive setting, it must proceed token-by-token and has no
parallelism benefits over a Recurrent Transformer.

We start by defining Token Layer Recurrence, the type of recurrence implemented by RNNs. We
show that Staircase Attention [Ju et al., 2022] satisfies Token Layer Recurrence at a chunk size of 1,
whereas Block-Recurrent Transformer (BRT) [Hutchins et al., 2022] does not. We validate this finding
empirically by showing that Staircase Attention generalizes well on the Regular Language tasks and
BRT fails (Figure 1). We also define Chunk Layer Recurrence, a less restrictive version of Token
Layer Recurrence, and investigate the relationship between larger chunk sizes and generalization
performance. While large chunk sizes are faster and more amenable to large-scale training, we
find that small chunk sizes consistently perform better for every architecture in terms of length
generalization. Although models with smaller chunk sizes generalize better, we observe that these
smaller chunk sizes lead to training speeds an order of magnitude slower than a standard Transformer.
This work highlights the importance of either increasing the speed of Recurrent Transformers, finding
the optimal chunk size for a specific task, or adding recurrence during post-training.

The primary contributions of this paper are:
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Figure 2: Computation graphs for an RNN, Transformer, and Recurrent Transformer over four tokens.
The boxes with the same number can be calculated in parallel, and the number indicates the sequential
step of computation (for example, box 3 cannot be calculated until boxes 1 and 2 are finished).
Boxes within the same chunk are highlighted in light orange and share the same number. Recurrent
connections are red, and attention connections are green. The Recurrent Transformer depicted has a
chunk size of 2.

* Defining Token Layer Recurrence and Chunk Layer Recurrence.

* Evaluating three chunk-based models, namely Staircase Attention, Block-Recurrent Trans-
former, and RegularGPT, on Regular Language tasks.

* Identifying Staircase Attention as a Recurrent Transformer that generalizes well on the tasks
and satisfies Chunk Layer Recurrence.

* Investigating the relationship between chunk size and generalization performance.

* Demonstrating the impact of chunk size on training speed and therefore scalability.

2 Related Work

The Chomsky Hierarchy The Chomsky Hierarchy [Chomsky, 1956, 1959] identifies Formal
Language computations by increasing complexity based on the required grammar to model the
computation. Each level of the hierarchy can be modeled by a finite state machine with access to
increasingly expressive data structures. One line of research is to map Neural Network architectures
to levels of the hierarchy [Bhattamishra et al., 2020, Deletang et al., 2022, Strobl et al., 2024].
Borenstein et al. [2024] extend previous work on Regular Language recognition to Regular Language
modeling by using KL Divergence between model predictions and probabilistic finite-state automata.

Transformers and their limitations Standard Transformers are known to possess computational
limitations due to the attention mechanism [Merrill and Sabharwal, 2023, Strobl et al., 2024]. Liu
et al. [2022] showed theoretically and empirically that Transformers are able to learn shortcuts to
simulate an automata with 7" tokens in log(7") layers. The learned shortcuts are brittle and do not
generalize well. Chi et al. [2023] modify a Transformer to succeed on Regular Language tasks,
although their architecture has degraded performance on natural language modeling.

Recurrent Neural Networks Recurrent Neural Networks (RNNs) were developed to process
sequential information, with a particular focus on language processing [Jordan, 1997, Elman, 1990].
Two significant improvements to RNNs were the introduction of gating [Hochreiter and Schmidhuber,
1997, Cho et al., 2014] and attention [Bahdanau et al., 2015]. Researchers have investigated the



computability of RNNs from a formal language perspective [Siegelmann and Sontag, 1995, Chen
et al., 2018, Nowak et al., 2023, Svete and Cotterell, 2023].

Recurrent Transformers Prior work has investigated adding recurrent mechanisms into Trans-
formers. Ju et al. [2022] introduce Staircase Attention and show improvements on entity-tracking and
language modeling. Hutchins et al. [2022] and Didolkar et al. [2022] contemporaneously published
Transformer architectures which use cross attention to a set of recurrent vectors to improve modeling
long range sequences. Bulatov et al. [2022] showed improvements on long range modeling by
adding recurrent memory tokens to Transformers. Chowdhury and Caragea [2024] investigated the
relationship between Transformer depth-wise recurrence and chunk-wise recurrence on various tasks.

Transformer Length Generalization Since Transformers lack recurrence, positional embeddings
are used to signify the order of tokens. Different types of positional embeddings can improve length
generalization [Csordés et al., 2021, Ruoss et al., 2023, Shaw et al., 2018, Su et al., 2024, Zhou
et al., 2024, Kazemnejad et al., 2023, Press et al., 2021], although Deletang et al. [2022] and Ruoss
et al. [2023] showed that none of the positional embeddings that they tested allowed Transformers to
generalize well on Regular Languages.

3 Architectures

Standard Attention
We briefly describe three architectures that we test. For additional
details, please see the original papers. For each architectures, task,
and chunk size, we run a hyperparameter search to find the best 0,1 Xy 1 Xa,1
setting for that combination. We then train five randomly initialized
models with the best setting and report these results. Training details W

for each architecture can be found in Appendix A.

The three architectures we discuss below use the notion of di-
viding an input sequence X = {Xj,...Xr_1} of length T
into chunks K = {Ko,...Krr/c1} of size C where K; =
{Xixc, .- X(i+1)xc—1}. Each architecture processes chunks in
different ways.

K
Token Layer Recurrence RNNs implement recurrence through 2
the property that the output for a token X ; at sequence position /
1 and layer [ depends on the output of a previous token at layer [:
Xii = f(X<iy,...)Vi> 0. Meanwhile, the state of token X, ; in K, K,

a Transformer with causal attention depends only on states at [ — 1:

X1 = f({X<ii-1}). Token layer recurrence allows a network %

to iteratively update a state as new information is processed. For

a treatment of token layer recurrence and generalization in Linear Ko,g K1 A
RNNSs, see Fan et al. [2024] and Merrill et al. [2024]. I/v
Chunk Layer Recurrence When the chunk size is greater than K
S . 0,1
1, the property of layer recurrence is violated. Consider a chunk
size of C' = 2. Xy and X; will be processed in parallel, which T
means that X;; = f(Xo;-1,X1,-1). Thus, we define Chunk
Layer Recurrence similarly to Token Layer Recurrence but with Koo Kio Kao

chunks: K;; = f(K<;1,...) Vi > 0. A model that satisfies Chunk

Layer Recurrence will satisfy Token Layer Recurrence when the  Figure 3: Attention patterns

chunk size is set to 1. for standard attention and
Staircase Attention.

3.1 Staircase Attention

Staircase Attention [Ju et al., 2022] staggers the chunks so that each consecutive chunk attends to
the previous chunk after one level of processing. The differences between standard attention and
Staircase Attention are depicted in Figure 3. By staggering the chunks, Staircase Attention satisfies
Chunk Layer Recurrence. In order to speed up the model, Staircase Attention uses a Universal



Transformer [Dehghani et al., 2018] so that multiple chunks at different layers can be processed in
parallel. Ju et al. [2022] show that Staircase Attention succeeds on two state tracking tasks where
Transformers fail, but they did not consider how the model generalizes out-of-distribution. Here,
we look at state tracking tasks and how well the model generalizes to longer sequences. Staircase
Attention also shows competitive performance on language modeling tasks. The authors consider
chunk sizes 8, 16, and 32 for the algorithmic tasks, and chunk sizes 32, 64, and 128 for the language
modeling tasks. Their results generally show improved performance with smaller chunk sizes, at the
cost of a slower model.

3.2 Block-Recurrent Transformers

Block-Recurrent Transformers (BRT) [Hutchins et al., 2022] integrate the recurrent connection as
cross attention between the current chunk and a set of recurrent tokens. This allows the output of
the chunk to use information from previous chunks. The recurrent tokens are updated by using
cross-attention to the chunk tokens, and the recurrent tokens are passed along to the next chunk.
Crucially, the recurrent tokens attend to the input of the chunk instead of the output. This means
that BRT does not satisfy Chunk Layer Recurrence. Inspired by gating in LSTMs [Hochreiter and
Schmidhuber, 1997], BRT experiments with different gate configurations for the recurrent tokens.
This design is similar to the Temporal Latent Bottleneck [Didolkar et al., 2022] which was published
concurrently. BRT shows improved performance on long sequence language modeling as measured
by perplexity. They uses a chunk size of 512, two orders of magnitude larger than the chunks we
consider in this paper.

3.3 RegularGPT

RegularGPT [Chi et al., 2023] is not a recurrent model, but we include it in our experiments since
it uses chunked processing. Rather than enforcing a sequential processing of chunks, RegularGPT
leverages attention masking to enforce a divide-and-conquer strategy. RegularGPT does not support
chunk size 1. The divide-and-conquer strategy is implemented using a Universal Transformer with
sliding dilated attention masks and dynamic depth. RegularGPT has good length generalization on
the Regular Language tasks from [Deletang et al., 2022] using a chunk size of C' = 2. However, while
RegularGPT improves performance on the Regular Language tasks, it leads to worse performance
in Language Modeling as measured by perplexity on length extrapolation when compared to other
models designed for long contexts. RegularGPT shows decreased performance going from chunk
size 2 to 3. Here, we investigate whether this trend continues for larger chunk sizes 4 and 8. On
language modeling, RegularGPT is tested with chunk sizes 32, 64, 128, and 256. The authors find
that chunk size 128 works the best but underperforms baselines.

4 Results mm RNN === BRT

B Staircase Attention Transformer
4.1 Datasets

1.0
We test the three models on the four Regular
Language tasks from Deletang et al. [2022]: 08
Even Pairs, Parity Check, Cycle Navigation, and 0.6 |
Modular Arithmetic (Simple). For more details ) ’ .
about these tasks, see Appendix B. We follow ® 4
the same procedure as Deletang et al. [2022] |
and train our models on sequences up to length 0.2 '
40, and during test time we evaluate our model l
on sequences up to length 500. The score is the 0.0
average accuracy measured over sequences from Even Pairs  Cycle Navigation .
leneth 1 to 500. Parity Check Modular Arithmetic
& Task
4.2 Token

Figure 4: Average generalization performance of
token recurrent architectures (chunk size 1) on Reg-
ular Language tasks. Bars indicate minimum and
maximum values across five random seeds.

Recurrent Transformers (Chunk Size 1)

We first test Recurrent Transformers with a
chunk size of 1 to see if a token recurrent model
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Figure 5: Average generalization performance by chunk size across five random seeds. The shaded
regions represent minimum and maximum values. The dashed gray bar represents chance performance.
The dashed pink line represents the average Transformer performance, and the dotted pink link
represents the max Transformer performance. Transformer results are drawn from Deletang et al.
[2022].

can replicate the performance of a simple RNN. The results are shown in Figure 4. Both the RNN and
Staircase Attention achieve perfect generalization across the four tasks. BRT performs better than the
Transformer in Parity Check and Even Pairs but does not provide any benefit in Cycle Navigation or
Modular Arithmetic. These results validate that adding the right type of recurrence to Transformers
can improve generalization, but a chunk size of 1 forgoes the parallelism benefits of Transformers.

4.3 Performance degrades with larger chunk sizes

In order to see how much we can scale up Recurrent Transformers, we test how the generalization
performance changes as we increase parallelism through larger chunk sizes. Figure 5 shows the
performance of each architecture and chunk size combination on the four tasks. Across all of the
tasks and architectures, generalization drops as chunk sizes increases, except for Even Pairs where all
models succeed.

Even Pairs Even Pairs is the only Regular Language task where a standard Transformer is capable
of generalizing well, although with high variance as seen by the difference between max and average
Transformer results indicated by the pink lines. All three models achieve consistent generalization on
Even Pairs regardless of the chunk size.

Parity Check Transformers struggle on Parity Check with the best performing Transformer barely
performing above chance. Both Recurrent models are capable of perfect generalization at chunk
size 1, and all three chunked models succeed at chunk size 2, although BRT shows high variance.
At chunk size 4, BRT fails to generalize, RegularGPT succeeds across every seed, and Staircase
Attention generally performs well.

Cycle Navigation After Even Pairs, Cycle Navigation is the second easiest Regular Language task,
with the best Transformer achieving a score of 0.6. For chunk sizes 1 and 2, Staircase Attention
generalizes well, but by chunk size 4 the performance drops drastically. RegularGPT does well at
chunk size 2, and is capable of succeeding at chunk size 4, although with high variance. By chunk
size 8, RegularGPT no longer generalizes. BRT fails to generalize at any chunk size.
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Figure 6: Staircase Attention relative step time slowdown compared to a baseline Transformer,
represented by the dashed line. Relative slowdown is the ratio of model step time by baseline step
time.

Modular Arithmetic Transformers struggle on Modular Arithmetic, and the best performing model
barely does better than chance. BRT fails to generalize and shows similar results as the Transformer.
RegularGPT does well at chunk size 2, but it’s performance decreases linearly down to chance by
chunk size 8. Staircase Attention does well across all of the chunk sizes tested.

The main takeaway as evidenced by Figure 5 is that smaller chunk sizes work better. Staircase
Attention with chunk size 2 consistently performs well. We do not find much difference between
chunk size 1 and 2 in terms of generalization performance for Staircase Attention, and as we will
show in the next section, chunk size 2 is roughly twice as fast as chunk size 1.

4.4 Training Speed

The previous section showed that smaller chunk sizes for Recurrent Transformers work better.
However, smaller chunk sizes also lead to a slower step time when the architectures are trained in
a non-autoregressive setting with teacher forcing. In this section, we quantify how much slower
Recurrent Transformers are at different chunk sizes.

Figure 6 shows the relative step time slowdown of Staircase Attention for different chunk sizes and
sequence lengths. We use relative speed in order to profile the model speed since relative speed
transfers across hardware and implementation details. In order to calculate the relative speed, we
divide the forward and backward step time for Staircase Attention by the step time for a parallel
Transformer. When a chunk size is greater than or equal to the sequence length, the performance
should mirror that of a standard Transformer since the sequence will be processed without recurrence,
which we see for chunk size 4096. The figure shows that doubling the chunk size roughly makes the
model twice as fast. As the sequence length increases so does the slowdown, until a certain point,
after which the slowdown decreases. Staircase Attention does not compute the full O(N?) attention,
so at larger lengths the slowdown compared baseline starts to recede. The relative step slowdown for
BRT is shown in Appendix C.

Importantly, at test time when performing autoregressive generation, Recurrent Transformers do not
incur a speed penalty for their recurrence. This means that these architectures are a fixed training
cost, and they yield the same cost when generating text in an autoregressive manner.



4.5 Navigating the generalization-parallelism frontier

The previous two sections illustrate the challenge of scaling Recurrent Transformers. On one hand,
large chunk sizes lead to faster training, whereas on the other hand, smaller chunk sizes are more
consistent across different tasks. Ideally, we would have a theoretical basis for identifying optimal
chunk size in a natural language corpus. Even on the four simple tasks explored here, Staircase
Attention has a different optimal chunk size for each task. While chunk size 2 generalizes well on
every task, Modular Arithmetic is amenable to chunk size 8 which is roughly 3 times faster than than
chunk size 2.

5 Conclusion and Future Work

We investigated the performance of Recurrent Transformers on Regular Language tasks. While
Transformers generalize poorly on these tasks, we found that Staircase Attention with a small chunk
size generalizes well.

The small chunk size required for consistent generalization poses some roadblocks for scaling up
Staircase Attention. Two immediate questions are whether we can define the optimal chunk size that
supports generalization for a given task, and whether we can instill recurrence during post-training
instead of pre-training.

In order to scale up Recurrent Transformers for reasoning, we want to find the largest chunk size for
a dataset that retains good generalization. For instance, Python is whitespace sensitive, so one trivial
chunking hypothesis is to break chunks on newlines. A similar idea is to break natural language on
punctuation, conjunctions, and relative clauses. Future work should investigate the properties that
define optimal chunks.

One way to alleviate the slowdown from recurrent training is to start with a pre-trained LLM and
instill recurrence during post-training. Recurrent processing is more likely to be helpful on datasets
where reasoning is important. For example, recurrence would be much more beneficial on datasets
with explicit intermediate reasoning [Nye et al., 2021, Wei et al., 2022] than a dataset with a list
of independent facts. Some forms of post-training are inherently autoregressive like reinforcement
learning from human feedback [Christiano et al., 2017], process supervision [Lightman et al., 2024],
and preference optimization [Pang et al., 2024]; in these cases there will be no extra cost of using
Recurrent Transformers over standard Transformers. Future work should investigate how recurrent
post-training can be performed on a model pre-trained in a parallel manner.

An additional direction to consider is how Recurrent Transformers perform within the scaling laws
[Kaplan et al., 2020, Hoffmann et al., 2022]. If recurrence is a useful inductive bias, models may
converge faster with better generalization while being trained on shorter sequences. This might make
Recurrent Transformers more competitive when evaluated on computational budget as opposed to
only looking at the time for a training step.

This work showed that some Recurrent Transformers can successfully model Regular Languages.
Human language is hypothesized to be Mildly Context-Sensitive [Joshi, 1985, Joshi et al., 1990], and
we can climb the Chomsky Hierarchy [Chomsky, 1956, 1959] by integrating Recurrent Transformers
with differentiable stacks [Joulin and Mikolov, 2015, Grefenstette et al., 2015] to model Context-Free
Language and differentiable trees [Soulos et al., 2023] to model Mildly Context-Sensitive Languages.
Recent work by DuSell and Chiang [2024] showed that Transformers with Stack Attention improve
modeling of Context-Free transformations, but their models do not perform well out-of-distribution.
Integrating Staircase Attention into their model may help Transformers perform better on Context-
Free transformations in and out-of distribution.
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A Training details

The training details are available below. For each model, we run a hyperparameter search of 20
runs for each combination of architecture, chunk size, and task. The best hyperparameter setting
resulting in the highest generalization performance is used to train five additional runs for final results.
We noticed that in some cases, models with lower validation loss or higher validation accuracy
would have worse generalization performance. When multiple models had the same generalization
performance, we selected the setting with the best validation accuracy, and then the lowest validation
loss. All models are trained with the AdamW optimizer.

For Staircase Attention, BRT, and RegularGPT, we remove the final EOS token that Deletang et al.
[2022] include with the input sequence. For the Transformer model, we keep the final EOS token in
order to match their training procedure.

A.1 Staircase Attention

We base our implementation of Staircase Attention on Ju et al. [2022]. Since the model includes recur-
rence, we do not include positional embeddings. This corresponds to the NoPe scheme [Kazemnejad
et al., 2023].

For sweeps of chunk sizes 1 and 2, we train for 20k steps to reduce the amount of compute used.
For chunk sizes 4 and 8, we train for 100k steps. For chunk size 8, we noticed that the training and
validation accuracies were still rising at 100k steps, so we increased the training steps to 1 million for
the final give runs. For Cycle Navigation and chunk size 2, 20k training steps was insufficient so we
increased the number of training steps to 100k. We only run the hyperparameter search for 5 runs on
Even Pairs since the task is easy.

We sample the following hyperparameter values during our search:

Batch size: [64, 128, 256]

Embedding size: [64, 256, 512]

Number of heads: [4, 8, 16]

Learning rate: log_uniform(le-5, le-3)

Dropout: [0, .1, .2]

Weight decay: [0, 1e-6, 1e-5, 1e-4, 1e-3, le-2, le-1]
AdamW betal inverse: log_uniform(.01, .2)

Number of recurrent calls: [2, 4]

Number of layers in the Universal Transformer: [1, 2]

A.2 RegularGPT

We use the RegularGPT implemention from the authors of Chi et al. [2023] available at https:
//github.com/chijames/regular_gpt.

Unless noted, each search and final run trains for 50k steps. For Cycle Navigation and chunk sizes 4
and 8, we train the final five runs for 100k steps. For Modular Arithmetic, every chunk size gets 100k
training steps for the final five runs. On Even Pairs, we only perform a hyperparameter search with
10 runs.

We sample the following hyperparameter values during our search:

Batch size: [64, 128, 256]

Embedding size: [64, 256, 512]
Number of heads: [4, 8, 16]

Learning rate: log_uniform(le-5, le-3)
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Dropout: [0, .1, .2]

Weight decay: [0, le-6, le-5, le-4, 1e-3, le-2, le-1]
AdamW betal inverse: log_uniform(.01, .2)

Number of recurrent calls: [2, 4]

Number of layers in the Universal Transformer: [1, 2, 3, 4]

A.3 Block-Recurrent Transformer

We use the Block-Recurrent Transformer (BRT) implementation at github.com/lucidrains/
block-recurrent-transformer-pytorch. Hutchins et al. [2022] experiment with various gate
configurations, and we use select the best performing configuration from the paper: fixed gate with
the skip configuration which corresponds to Rec: fixed:skip in the original paper.

We use a BRT architecture with three layers, where the first and third layers are standard Transformer
layers, and the middle layer is the recurrent layer. We dynamically set the number of recurrent vectors
based on the chunk size in order to allow the hyperparameter search to select how much bias there
should be between parallel and recurrent computation.

We train runs with chunk size 1 for 50k steps, and runs with chunk sizes 2, 4, and 8 for 100k steps.
For the final five runs, we increase the number of training steps for chunk sizes 4 and 8 to 200k. On
Cycle Navigation and Modular Arithmetic with chunk size 1, we increase the number of training
steps to 100k. We only run the hyperparameter search for 5 runs on Even Pairs since the task is easy.

We sample the following hyperparameter values during our search:

Batch size: [64, 128, 256]

Embedding size: [64, 256, 512]

Number of heads: [4, 8, 16]

Learning rate: log_uniform(le-5, le-3)

Dropout: [0, .1, .2]

Weight decay: [0, 1e-6, le-5, le-4, 1e-3, le-2, le-1]

AdamW betal inverse: log_uniform(.01, .2)

Number of recurrent vectors: [1x chunk size, 2x chunk size, 4x chunk size]

A.4 Transformer

Unless specified, we follow the hyperparameters from Deletang et al. [2022]. We train for 100k steps
because Table B.6 in Deletang et al. [2022] showed that more steps does not help, except for Modular
Arithmetic where we increase the number of steps to 1 million. We use causal attention masking with
no positional embeddings.

B Dataset details

Parity Check: Parity Check corresponds to a finite-state machine with two states, Even and Odd,
and it admits two inputs, 0 and 1. Given a binary input sequence, the final state of the machine is
Even if the number of ones in the sequence is even, and otherwise it is Odd.

Even Pairs: Given a binary input sequence, the Even Pairs task consists of determining whether the
number of 01 and 10 subsequences in the input is equal. This task can be equivalently expressed as
detecting whether the start and the end of the binary input string are the same symbol.

Cycle Navigation: This task corresponds to a finite-state machine consisting of five states arranged
on a cycle graph. It admits three inputs, Left, Right and Stay. Starting from an initial state, the cycle
is traversed according to the inputs.

Modular Arithmetic: The inputs to this task are integers between 0 and 4 interleaved with the
operations +, — and . The final state of the automaton is obtained by evaluating the given expression
in modular arithmetic with modulo 5.
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Figure 7: BRT relative step time slowdown compared to a baseline Transformer, represented by the
dashed line. Relative slowdown is the ratio of model step time by baseline step time.

C BRT Relative Performance

The training speed analaysis for Staircase Attention in Section 4.4 is replicated here for BRT. The
results are shown in Figure 7.
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