USING MAXIMAL INFORMATION AUXILIARY VARI-ABLES TO IMPROVE SYNTHETIC DATA GENERATION BASED ON TABPFN FOUNDATION MODELS

Anonymous authors

000

001

003

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

024

025

026

027

028

029

031

033

037

038

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Synthetic data generation for tabular datasets is shifting toward the use of large, general-purpose foundation models. TabPFN, a state-of-the-art example, uses in-context learning to generate probabilistic predictions conditioned on observed examples in a single forward pass. However, when variables are only weakly associated with others, the model's ability to generate realistic synthetic data deteriorates, as the context examples provide little predictive signal. To address this, we introduce the maximal information auxiliary variable (MIAV) strategy, which increases context information with auxiliary variables constructed by rank-matching random noise variables to real data. We establish theoretical properties of the approach which explain its good performance for weakly associated variables. Additional practical advantages of the MIAV approach include improved computational efficiency and invariance to variable order during the synthetic data generation process. Empirical evaluations, on simulated and real datasets, illustrate how the MIAV strategy improves data generation when compared to direct application of TabPFN, and is competitive against other baselines. To illustrate the generality of the MIAV approach we also present an implementation based on the TabICL model (a more scalable tabular foundation model restricted to classification tasks) for performing synthetic data generation on categorical datasets. Overall, MIAV offers an effective foundation model-based alternative to be poke synthetic data generators.

1 Introduction

Accessible data is crucial for advancing machine learning research. In practice, however, real-world datasets often contain sensitive information, restricting their open distribution within the research community. A promising solution is the generation of synthetic datasets that closely replicate the properties of real data while avoiding direct disclosure (Lu et al., 2023).

While synthetic data has long been explored through bespoke statistical models and machine learning algorithms, the field is now undergoing a paradigm shift driven by advances in large-scale, general-purpose models. Traditional approaches, such as those by Borisov et al. (2023), Cresswell and Kim (2024), Jolicoeur-Martineau et al. (2024), Kotelnikov et al. (2023), Nowok et al. (2016), Reiter (2005), Shi et al. (2025), Watson et al. (2023), Xu et al. (2019), Young et al. (2009), Zhang et al. (2024), among many others, typically rely on dataset-specific training, demand substantial domain expertise, and often struggle with out-of-distribution generalization and knowledge transfer across datasets. Tabular foundation models (Hollmann et al., 2023; den Breejen et al., 2024; Koshil et al., 2024; Feuer et al., 2024; Ma et al., 2024a; Ma et al., 2024b; Xu et al., 2024; Zeng et al., 2024; Muller et al., 2025; Hollmann et al., 2025; Qu et al., 2025; Garg et al., 2025) offer a promising alternative. By learning broad, transferable representations of tabular data, they enable synthetic data generation across domains with minimal additional training.

In particular, TabPFN (Hollmann et al., 2025) represents a state-of-the-art tabular foundation model, trained on millions of diverse synthetic datasets covering a wide range of feature types, noise structures, and functional relationships. This diversity allows it to leverage a broad, transferable prior over tabular data distributions. TabPFN enjoys a solid theoretical foundation as it corresponds to a prior-data fitted network (PFN) (Müller et al., 2022) and can be interpreted as approximating

 Bayesian prediction under the prior induced by its synthetic training data. TabPFN relies on incontext learning (Brown et al., 2020) (ICL) for generating probabilistic predictions. At inference time, the pre-trained foundation model employs training features, \mathbf{X}^{tr} , and training targets, \mathbf{y}^{tr} , as the "context" data, whereas the test set features, \mathbf{X}^{ts} , play the role of the "query". The output of the query is a sample/prediction $\hat{\mathbf{y}}^{ts}$ from the posterior predictive distribution of \mathbf{y}^{ts} , $P(\mathbf{y}^{ts} \mid \mathbf{X}^{ts}, \mathbf{X}^{tr}, \mathbf{y}^{tr})$, generated by a single forward pass through the model's neural network. TabPFN has been shown to achieve state-of-the-art performance in classification and regression tasks in small datasets and, due to its generative nature, can also be directly used to perform synthetic data generation (Hollmann et al., 2025).

Despite its promise, applying TabPFN directly to synthetic data generation reveals an important limitation: the method performs poorly for variables that are only weakly associated with the rest of the dataset. This is expected: when the target data \mathbf{y} is uncorrelated with the features \mathbf{X} , the context examples $\mathbf{X}^{tr}, \mathbf{y}^{tr}$ provide no useful signal for learning how to map \mathbf{X} to \mathbf{y} . Consequently, when queried with \mathbf{X}^{ts} , the model is unable to approximate the distribution of \mathbf{y}^{ts} . While this limitation is less consequential for supervised learning tasks, it poses a significant caveat for synthetic data generation (see Appendix A for details). In principle, exemplar-based declarative programming strategies could mitigate this issue, but doing so would likely require fine-tuning, or even retraining the foundation models.

In this paper, we address this problem by showing how to generate high-quality synthetic datasets with the current TabPFN model. Our approach leverages maximal information auxiliary variables (MIAV) for in-context learning. We construct these variables through simple rank-matching of random noise to the real data and establish two key theoretical properties: (i) conditional on its MIAV, a variable X_j is independent of all other variables, and (ii) the MIAV of X_j retains maximal information about X_j in a non-parametric, information-theoretic sense (see Theorem 1). We further demonstrate that MIAV-based synthetic data generation corresponds to the correct factorization of the posterior predictive distribution conditioned on the original data and MIAVs. Together, these results provide the foundation for more effective synthetic data generation strategies using TabPFN models.

In addition to its theoretical strengths and its ability to generate high-quality synthetic data under weak association settings, our proposed strategy offers several practical advantages. First, unlike the direct synthetic data generation approach of Hollmann et al. (2025), which is sensitive to variable order and therefore requires aggregating results across multiple variable order permutations, our method is invariant to variable order. Second, regarding computational efficiency, TabPFN's runtime for a fixed sample size is primarily determined by the number of context features, as its complexity scales quadratically with the number of features. Since our approach uses only one feature per variable when generating synthetic data, it attains maximal efficiency and eliminates the need for aggregation across multiple runs.

To illustrate the issues around the direct use of TabPFN for synthetic data generation under weak association settings, we describe a couple of direct implementations and compare their performance against the MIAV approach in simulated data experiments (where we are able to control the strength of the statistical associations among the data variables), as well as, on extensive real-world data experiments based on 43 distinct datasets. (For completeness, we also include comparisons against other baseline generators.)

We conduct our evaluations in the setting of privacy-preserving data sharing (Rajotte et al., 2022), where the objective is to produce synthetic copies of real datasets that retain their statistical properties while simultaneously mitigating privacy risks. Accordingly, we assess the performance of the TabPFN-based synthetic data generation strategies using both data fidelity and privacy metrics.

Importantly, our synthetic data generation strategy can be directly applied to other tabular foundation models that approximate Bayesian inference. To demonstrate this, we also implemented our approach using the more scalable TabICL foundation model (Qu et al., 2025), a recently proposed alternative to TabPFN that alleviates some of its data size limitations. (Since the current version of TabICL only supports classification, our implementation and evaluation were restricted to 8 additional real-world categorical datasets.) These additional results highlight the generality of our strategy and suggest that, as PFN-based tabular foundation models continue to evolve, they can be seamlessly integrated into our framework.

In summary, this paper proposes an effective, computationally efficient, and generalizable approach that leverages the in-context learning capabilities of modern tabular foundation models to generate synthetic data aiming to facilitate data sharing. It provides a foundation-model alternative to traditional synthetic data generators built on the earlier paradigm of bespoke ML models.

2 NOTATION AND RELATED WORK

Throughout the text, random variables are represented in italics, and vectors of random variables are shown in boldface, e.g., $\mathbf{X} = (X_1, \dots, X_p)^t$. Data matrices and data vectors are represented in uppercase and lower case boldface, respectively. (E.g., if \mathbf{X} is an $n \times p$ matrix, than the jth column of \mathbf{X} is represented by \mathbf{x}_j .) We adopt the superscripts tr and ts to represent the training and test sets, and we let $q_{\theta}(\mathbf{x}_j^{ts} \mid \mathbf{X}_{-j}^{ts}, \mathbf{X}^{tr})$ represent a TabPFN model (either a regression or a classification model depending on whether the variable j is numeric or categorical), and $\hat{\mathbf{x}}_j^{ts}$ represents the prediction generated by using \mathbf{X}^{tr} for in-context training and \mathbf{X}_{-j}^{ts} for in-context query (where \mathbf{X}_{-j} represents the matrix obtained by removing the jth column from \mathbf{X}). Because our goal is to generate synthetic data copies of given datasets, rather than performing supervised learning tasks, our notation does not explicitly differentiate between feature and targets variables (as the same variable can sometimes play the role of a feature and sometimes of a target during the synthetic data generation process). Hence, we use the notation $q_{\theta}(\mathbf{x}_j^{ts} \mid \mathbf{X}_{-j}^{ts}, \mathbf{X}^{tr}) = q_{\theta}(\mathbf{x}_j^{ts} \mid \mathbf{X}_{-j}^{ts}, \mathbf{X}_{-j}^{tr}, \mathbf{x}_j^{tr})$ instead of the notation $q_{\theta}(\mathbf{y}^{ts} \mid \mathbf{X}^{ts}, \mathbf{X}^{tr}, \mathbf{y}^{tr})$, more commonly used in the TabPFN literature.

Although the literature on synthetic data generation (SDG) using bespoke machine learning models is extensive (see Bond-Taylor et al., 2021; Lu et al., 2023, and references therein), SDG based on tabular foundation models remains underexplored. To the best of our knowledge, only two prior studies have addressed this problem. Ma et al. (2023) introduced the TabPFGen algorithm, which relied on an earlier version of TabPFN (Hollmann et al., 2023) that could not handle regression tasks. To produce continuous data, TabPFGen employed an energy-based procedure for generating features conditional on classification labels. Such procedures are no longer necessary with the current version of TabPFN (Hollmann et al., 2025), which supports both classification and regression and can directly generate categorical and numerical data. SDG was also discussed in Hollmann et al. (2025), but only superficially: it was demonstrated on a single dataset without any formal evaluation of synthetic data quality. That work primarily focused on establishing TabPFN's state-of-the-art performance in supervised learning, with SDG presented merely as a secondary capability. In this paper, we (i) highlight the limitations of the direct SDG approach in Hollmann et al. (2025), (ii) propose a more effective alternative strategy, and (iii) conduct extensive evaluations of TabPFN-based SDG methods.

3 DIRECT STRATEGIES FOR SDG BASED ON TABPFN

Here we describe the simple strategy, suggested in Hollmann et al. (2025), for performing synthetic data generation with the TabPFN model, alongside an alternative variation of this direct approach. Their main limitations are discussed and illustrated using simulated datasets (where we can control the strength of the statistical associations between the variables).

Let $P(X^{ts} \mid X^{tr})$ represent the posterior predictive distribution (PPD) of the test data conditional on the training data. This conditional joint probability distribution can be fully factorize as,

$$P(\boldsymbol{X}^{ts} \mid \boldsymbol{X}^{tr}) = \prod_{j=1}^{p} P(X_j^{ts} \mid \boldsymbol{X}_{< j}^{ts}, \boldsymbol{X}^{tr}),$$
(1)

where $X_{< j}$ represents a subset of X containing elements 1 to j - 1.

Hollmann et al. (18) suggested generating synthetic data by following the factorization of the joint PPD,

$$P(\mathbf{X}^{ts} \mid \mathbf{X}^{tr}) \approx \prod_{i=1}^{p} q_{\theta}(\mathbf{x}_{j}^{ts} \mid \mathbf{X}_{< j}^{ts}, \mathbf{X}_{< j}^{tr}, \mathbf{x}_{j}^{tr}),$$
(2)

where, due to the in-context learning (ICL) nature of TabPFN, the conditioning on the training set is done on $\mathbf{X}_{\leq j}^{tr}$ and \mathbf{x}_{j}^{tr} rather than \mathbf{X}^{tr} . Note that the approximation in equation 2 represents,

in actuality, two different levels of approximation. The first is w.r.t. the approximation of the distribution $P(X_j^{ts} \mid \boldsymbol{X}_{\leq j}^{ts}, \boldsymbol{X}^{tr})$ by the distinct distribution $P(X_j^{ts} \mid \boldsymbol{X}_{\leq j}^{ts}, \boldsymbol{X}_{\leq j}^{tr}, X_j^{tr})$, which no longer conditions on training variables $X_{j'}$ for j' > j. The second is w.r.t. the approximation of $P(X_j^{ts} \mid \boldsymbol{X}_{\leq j}^{ts}, \boldsymbol{X}_{\leq j}^{tr}, \boldsymbol{X}_j^{tr})$ by the transformer model $q_{\theta}(\mathbf{x}_j^{ts} \mid \boldsymbol{X}_{\leq j}^{ts}, \mathbf{X}_{\leq j}^{tr}, \mathbf{x}_j^{tr})$.

Furthermore, because the TabPFN model cannot condition on an empty set (as you need to provide the model with some input for it to perform ICL) the first product term in equation 2 requires conditioning in a variable X_0 , which is not part of the data. Following the suggestion by Hollmann et al. (2025), we adopt a random noise feature as our X_0 . A detailed description of the implementation of this strategy, denoted "factorization of the joint PPD" (or JF for short), is provided in Algorithms 2 and 3 in Appendix B. (As pointed by Hollmann et al. (2025), the order of the variables in the joint factorization of the PPD can also affect the results, and Hollmann et al. suggest using a permutation sampling approximation of Janossy pooling to remedy this issue. This requires, however, the generation and aggregation of multiple synthetic datasets generated from random permutations of the order of the columns of the real data and is not implemented in our experiments.)

Figure 1 illustrates the application of the JF generation strategy (and other approaches that will be described later) to a simulated dataset containing data draw from highly correlated beta distributions. (See Appendix C for details.) To simulate an uninformative feature, we randomly shuffled the data of variable X_2 , so that it is completely uncorrelated with the other variables. (Figure 5a in Appendix D shows the correlation matrix for these variables.) The black densities represent the original ("real") data while the orange ones show the synthetic data generated with the JF strategy. Not surprisingly, this example shows that TabPFN provided very poor approximations for the distributions of X_1 and X_2 . In the case of X_1 , the ICL based on X_0 is poor because X_0 is a random noise variable which contains no information about X_1 . In the case of X_2 , the ICL again fails because X_1 does not contain information about X_2 (which is uncorrelated from all other variables).

Figure 1: Comparison of marginal distributions generated with the JF, FC, and MIAV strategies.

An alternative approach is to use the full conditional distributions of each variable in the synthetic data generation (denoted as FC, for short). This strategy is implemented using the factorization,

$$\prod_{i=1}^{p} q_{\theta}(\mathbf{x}_{j}^{ts} \mid \mathbf{X}_{-j}^{ts}, \mathbf{X}^{tr}) \tag{3}$$

where X_{-j} represents a subset matrix obtained by dropping column j from X. A detailed description of our implementation of this strategy is provided in Algorithms 4 and 5 in Appendix B.

Despite the fact that this fully conditional factorization does not correspond to a proper factorization of the PPD, this strategy has a few practical advantages. First, it eliminates the need for coming up with a X_0 variable, as the data for X_1 is generated from it's full conditional distribution. Second, the generation of each variable leverages information from all other variables. Third, this approach is unaffected by the order of the variables. It's main practical disadvantage is that it is more expensive to compute since increasing numbers of variables lead to increases in compute time. (As pointed by Hollmann et al. (2025), the time complexity of TabPFN is $O(n^2 + p^2)$, where n and p represent, respectively, the number of rows and columns of the data.)

The blue densities in Figure 1 illustrate the application of the FC generation strategy. Now, the distribution of X_1 is nicely recovered by the FC strategy. (This is easier to visualize in Figure 5m in Appendix D, which reports the same results as Figure 1 using a different display.) The approach, however, still fails for X_2 because this variable is uncorrelated to all other variables.

In Appendix E we describe additional variations of the JF direct data generation strategy.

3.1 Performance degradation in datasets containing weak associations

The illustrative examples in Figure 1 were based in data simulated with very strong correlations. The performance of direct strategies such as JF and FC, however, is strongly influenced by the strength of the statistical associations among the variables. Because TabPFN relies on ICL for generating predictions, and weakly associated features provide little information about the target variable, its performance suffers in datasets with weakly associated variables. To illustrate this point, Figure 2 presents the application of the JF and FC strategies (among others) to datasets with decreasing correlation strengths. (The association strength is controlled by the ρ parameter, as described in Appendix C). Due to space limitations, the figure only reports results for a single variable (X_4) . The full results are presented in Figures 5 to 9 in the Appendix D. Figure 2 clearly shows that the quality of the synthetic data generated by the JF and FC approaches (orange and blue densities) decreases with decreasing correlation strengths.

Figure 2: Degrading performance of JF and FC as association strength decreases. MIAV is unaffected.

4 CONSTRUCTING MAXIMAL INFORMATION AUXILIARY VARIABLES

The previous section illustrates how direct application of TabPFN for synthetic data generation is problematic when variables lack strong statistical associations with other variables. A simple strategy for improving the synthetic data quality is to augment the dataset with auxiliary variables that are highly associated with the real data variables.

To this end, inspired by recent work in non-parametric and model free data synthesis (Chaibub Neto, 2025), we a propose a simple approach in which we rank-match arbitrary noise variables to the real data variables. The procedure is described in detail in Algorithm 1, and its output is what we denote as a maximal information auxiliary variable (MIAV).

Algorithm 1 GenerateMaximalInformationAuxiliaryVariable(\mathbf{x}_i)

```
    Input: data vector, x<sub>j</sub>
    m<sub>j</sub> ← Sort(GenerateRandomNoiseVector(n = length(x<sub>j</sub>))) {Generate a sorted random noise vector.}
    if x<sub>j</sub> is numeric then
    r ← Rank(x<sub>j</sub>) {Compute the ranks of x<sub>j</sub>. Ties are broken at random.}
    end if
    if x<sub>j</sub> is categorical then
    r ← NumericRankEncondingOfCategoticalVariables(x<sub>j</sub>) {Described in Algorithm 10 in the Appendix.}
    end if
    m<sub>j</sub> ← m<sub>j</sub>[r] {Re-order the entries of z<sub>j</sub> according to the ranks of x<sub>j</sub>. The result is a vector z<sub>j</sub> with identical ranks as x<sub>j</sub>.}
    Output: the auxiliary variable m<sub>j</sub>
```

The basic idea is to induce a monotonic mapping between a random noise variable and the real data vector \mathbf{x}_j . Starting in line 2, the algorithm first draws a sample of size n (equal to the length of \mathbf{x}_j) from an arbitrary random noise variable and then sorts it from lowest to highest values. (In our implementation we sample random noise from a uniform distribution in the [0, 1] interval.) In lines 3 to 8 the algorithm ranks the values of \mathbf{x}_j . If \mathbf{x}_j is numeric, the algorithm computes its ranks in the standard way (line 4), breaking ties among identical values using the random assignment approach. If \mathbf{x}_j is categorical, the algorithm applies a numeric rank encoding to the categorical variables, as described in Algorithm 10 in Appendix F, and originally proposed by Chaibub Neto (2025). (In a nutshell, Algorithm 10 counts the number elements of \mathbf{x}_j in each factor level and distributes numerical

ranks ranging from 1 to n randomly within each level of the categorical variable \mathbf{x}_j . Appendix F also includes an illustrative example.) Finally, in line 9 the algorithm re-orders the entries of \mathbf{m}_j according to the ranks of \mathbf{x}_j . The result is a vector \mathbf{m}_j with identical ranks to \mathbf{x}_j , that is, the position of the lowest value of \mathbf{m}_j is the same as the position of the lowest value of \mathbf{x}_j , the position of the 2nd lowest value of \mathbf{m}_j is the same as the second lowest value of \mathbf{x}_j , and so on. Figure 3 provides some examples. Panels a to e show the distributions of the X_j variables in black and their respective MIAVs, M_j , in red. (The MIAVs follow uniform distributions since in our implementation we draw random noise from uniform distributions.) Variable X_5 is discrete assuming values 1, 2, 3, and 4. Panels g to k show scatterplots of the M_j vs X_j data, illustrating the monotonic relations. Panels f and 1 show the pairwise associations for the X_j and M_j variables, respectively, and illustrate that, as expected, the M_j variables recapitulate the associations of the X_j data.

Figure 3: MIAVs illustrative example.

This procedure has some nice theoretical properties, described in the following result.

Theorem 1. Let M_j represent the auxiliary variable generated from X_j by Algorithm 1, and Y represent an arbitrary variable other than X_j or M_j . Then, non-parametrically,

- 1. $I(X_j; Y \mid M_j) = 0$, i.e., the conditional mutual information of X_j and Y given Z_j is 0.
- 2. $H(X_i \mid M_i) = 0$, i.e., the conditional entropy of X_j given M_j is 0.

The proof is presented in Appendix G. Note that this result holds non-parametrically, in the sense that any continuous variable is first discretized into n bins (where n represents sample size), so that we can use the discrete probability (and non-parametric) definitions of these information-theoretic quantities. This is justifiable because a sample of size n from a continuous variable can always be viewed as the sample of a discrete variable with n distinct levels, each observed with frequency 1/n.

This result shows that the auxiliary variable M_j , generated by Algorithm 1 has the following two key properties. First, it contains maximal information about X_j . (This holds in the conditional entropy sense, since $H(X_j \mid M_j) = 0$ implies that X_j is completely determined by M_j .). Second, conditional of M_j , X_j is statistically independent of any other variables. These two properties are key for the synthetic data generation approach that we propose next.

5 SDG USING MAXIMAL INFORMATION AUXILIARY VARIABLES

Let $M = (M_1, ..., M_p)^t$ represent the set of random variables M_j generated by Algorithm 1. Now, consider the augmented posterior predictive distribution of X^{ts} given X^{tr} , M^{ts} , and M^{tr} ,

$$P(\boldsymbol{X}^{ts} \mid \boldsymbol{X}^{tr}, \boldsymbol{M}^{ts}, \boldsymbol{M}^{tr}) = \prod_{i=1}^{p} P(X_j^{ts} \mid \boldsymbol{X}_{< j}^{ts}, \boldsymbol{X}^{tr}, \boldsymbol{M}^{ts}, \boldsymbol{M}^{tr}).$$
(4)

Now re-writing,

$$P(X_{j}^{ts} \mid \boldsymbol{X}_{< j}^{ts}, \boldsymbol{X}^{tr}, \boldsymbol{M}^{ts}, \boldsymbol{M}^{tr}) = P(X_{j}^{ts} \mid \boldsymbol{X}_{< j}^{ts}, \boldsymbol{X}^{tr}, \boldsymbol{M}_{-j}^{ts}, M_{j}^{tr}, \boldsymbol{M}_{-j}^{tr}, M_{j}^{tr}) \;, \tag{5}$$

and recalling that X_i^{ts} is independent from all other variables conditional on M_i^{ts} , its follows that,

$$P(X_j^{ts} \mid X_{< j}^{ts}, X^{tr}, M_{-j}^{ts}, M_j^{ts}, M_{-j}^{tr}, M_j^{tr}) = P(X_j^{ts} \mid M_j^{ts}),$$
(6)

which, for the same reason, can also be re-expressed as,

$$P(X_i^{ts} \mid M_i^{ts}) = P(X_i^{ts} \mid M_i^{ts}, M_i^{tr}, X_i^{tr}), \tag{7}$$

a format that is better suited for performing in-context learning with a PFN model. Hence, the PPD augmented with the set of maximal information auxiliary variables can formally be expressed as,

$$P(\mathbf{X}^{ts} \mid \mathbf{X}^{tr}, \mathbf{M}^{ts}, \mathbf{M}^{tr}) = \prod_{i=1}^{p} P(X_j^{ts} \mid M_j^{ts}, M_j^{tr}, X_j^{tr}),$$
(8)

and readily approximated by a trained TabPFN model as,

$$P(\boldsymbol{X}^{ts} \mid \boldsymbol{X}^{tr}, \boldsymbol{M}^{ts}, \boldsymbol{M}^{tr}) \approx \prod_{j=1}^{p} q_{\theta}(\mathbf{x}_{j}^{ts} \mid \mathbf{m}_{j}^{ts}, \mathbf{m}_{j}^{tr}, \mathbf{x}_{j}^{tr}),$$
(9)

where ICL for each variable X_j is performed by training on \mathbf{m}_i^{tr} and \mathbf{x}_i^{tr} and querying on \mathbf{m}_i^{ts} .

This formulation, denoted the "Maximal Information Auxiliary Variables" strategy (or MIAV strategy for short) has several practical advantages. First, it is the most efficient strategy in terms of computation, since ICL of each variable X_j is performed using a single variable M_j (recall that the complexity of the TabPFN model scales quadratically on the number of columns of the table). Appendix H reports complexity analyses and compute time benchmark experiments comparing the MIAV, JF, and FC strategies. Second, contrary to all the other direct generation strategies described in Section 3, the MIAV approach is based on a proper factorization of the (augmented) PPD (the approximation in equation 9 is only w.r.t. the transformer model approximation to the predictive distribution). Third, contrary to the JF strategy, the MIAV approach is invariant with respect to the order of the dataset columns. Fourth, and most importantly, the MIAV approach handles uninformative features and performs well in datasets containing weakly associated features. This last point is illustrated by the red densities in Figures 1 and 2 (see also panels s to w in Figures 5 to 9 in Appendix D), where the MIAV approach closely recapitulates the original marginal distributions. Quite importantly, note that while the augmented joint PPD in equation 8 factorizes into separate $P(X_i^{ts} \mid X_i^{tr}, M_i^{ts}, M_i^{tr})$ components, the synthetic data generated by the $q_{\theta}(\mathbf{x}_i^{ts} \mid \mathbf{x}_i^{tr}, \mathbf{m}_i^{tr}, \mathbf{m}_i^{ts})$ still recapitulates the association structure of X because this association is indirectly induced by the MIAVs (recall that M mimics the association structure in X, as illustrated in panels f and 1 of Figure 3. Algorithms 6 and 7 in Appendix B provide implementation details about the MIAV synthetic data generation approach.

6 EXPERIMENTS

We performed three sets of experiments. The first, used simulated data draw from correlated beta distributions (generated as described in Appendix C), for which we can control the strength of the associations among the variables. The second experiment, used a subset of 36 real-world datasets (Table 4) from the OpenML-CC18 benchmark suite (Bischl et al., 2021). The third one, used 7 additional datasets (Table 5) evaluated in Hansen et al. (2023) and Chaibub Neto et al. (2025). (Appendix I.3 contains further information and describes our rationale for selecting these datasets.)

In each of the three experiment sets, every dataset was divided into two equal subsets. The first, referred to as the original data, was provided to the synthesizers, while the second, the holdout data, was never accessed by them (see Appendix I.1 for details, including additional splits used for ICL). Synthetic datasets generated from the original data were evaluated using both fidelity and privacy metrics. Fidelity was assessed with the average KS-test statistic (KS), the L2 distance between association matrices (L2D), and the detection test (DT), which respectively measure agreement with marginal distributions, preservation of pairwise statistical associations, and the distinguishability of

¹Here, it is important to clarify that we are able to condition on the test set auxiliary variables, M^{ts} , because we always have unrestricted access to the full **X** data (which is only split into X^{tr} and X^{ts} for the sake of ICL). Hence, the test set is always available and we can generate the corresponding MIAV matrix M^{ts} . (Our goal is to generate a synthetic copy of the original data, rather than making predictions about unseen test data.)

real versus synthetic samples. Privacy was evaluated with the distance to closest record (DCR) and the sorted standard deviation interval distance (SSDID), which capture attribute disclosure risks, as well as the sorted distance-based record linkage (SDBRL), which measures re-identification risks. Further details on all evaluation metrics are provided in Appendix I.5.

In addition to comparing the MIAV-based synthetic data generation strategy with the joint factorization (JF) and full conditional (FC) approaches, experiments 1 and 2 also included the SMOTE generator (Chawla et al., 2002). SMOTE is well known for producing high-fidelity synthetic data, although this often comes at the expense of privacy when compared to other baselines (Kotelnikov et al., 2023; Kindji et al., 2024). We selected SMOTE as a baseline because, unlike deep learning—based generators, it is applicable to the small datasets used in our evaluations. (As shown in Table 4, 26 out of the 36 datasets contain fewer than 2,000 samples.)

In the third experiment, which involves larger datasets, we extended our comparisons to include additional baseline generators: DDPM (Kotelnikov et al., 2023), ARF (Watson et al., 2023), TVAE (Xu et al., 2019), CTGAN (Xu et al., 2019), and Bayesian networks (Young et al., 2009), all implemented in Synthcity (Qian et al., 2024). For DDPM, TVAE, and CTGAN, we adopted the hyperparameter values reported by Hansen et al. (2023) and Chaibub Neto et al. (2025), which had been optimized with Optuna (Akiba et al., 2019) using AUROC minimization of an XGBoost classifier. For ARF, we used the values from Chaibub Neto (2025). The corresponding hyperparameters are listed in Tables 6 and 7. Relying on these published configurations provided substantial computational savings, since hyperparameter optimization is particularly costly for deep learning—based models, and motivated our restriction of these baseline comparisons to only these 7 datasets.

In all three experiment sets, we also compared against the holdout sets to establish reference values for each evaluation metric under the ideal scenario of a generator that samples directly from the same distribution as the original data. To enhance statistical validity, we conducted 10 replications for each real-world dataset, each based on distinct original/holdout splits. For the correlated beta distribution experiments, results were similarly averaged over 10 replications per simulation setting, with variation introduced through different simulation parameters. We considered five simulation settings corresponding to absolute correlations $|\rho|=0,0.25,0.5,0.75,0.95$. Descriptions of the evaluation metrics and additional experimental details are provided in Appendix I.

Figure 4 presents the pooled results across datasets. For fidelity, SMOTE generally performed best, with a slight advantage over MIAV (recall that lower KS, L2D, and DT values indicate higher fidelity). MIAV, however, consistently outperformed JF and FC across all experiments and surpassed all other baseline generators in the third experiment, with the single exception of DDPM, which achieved better scores w.r.t. the DT metric (see panel o) (but still did worse than MIAV w.r.t. the other fidelity scores in panels m and n).

In terms of privacy, MIAV generally outperformed SMOTE on the DCR metric (where higher values indicate stronger privacy protection) and showed even larger gains on the SDBRL and SSDID metrics (where lower values indicate better privacy). MIAV also tended to surpass the other baseline generators with respect to DCR (panel o), but performed less favorably on SDBRL and SSDID (panels q and r). Across most experiments, JF and FC produced more private data than MIAV, although this came at the cost of substantially lower fidelity.

In general terms, the fidelity–privacy tradeoff patterns observed in the simulated datasets (top panels) closely mirrored those in the real datasets (middle and bottom panels). Overall, these experiments suggest a competitive performance of the MIAV-based synthetic data generator. Additional results broken down by dataset are provided in Figures 12, 13, 14, 15, 16, and 17 in Appendix I.6.

Appendix J introduces a noisy variant of the MIAV approach that applies controlled amounts of noise before generating synthetic data. This version, referred to as the noisy-MIAV strategy, can potentially enhance privacy protection in sensitive applications, albeit at the cost of reduced data fidelity.

We also demonstrate the MIAV data generation strategy using the TabICL foundation model (Qu et al., 2025) and compare its performance to TabPFN-based generators across 8 categorical datasets from the OpenML-CC18 suite. Results, presented in Appendix K, show that (i) MIAV-TabICL and MIAV-TabPFN achieve very similar performance, and (ii) MIAV-based strategies, whether built on TabICL or TabPFN, tend to outperform the JF and FC baselines. This alternative implementation

Figure 4: Pooled experimental results. Top panels show results pooled across the 5 simulated dataset settings. The middle panels show results pooled across the 36 real-world datasets selected from the OpenML-CC18 suite. The bottom panels show results pooled across the 7 real-world datasets used for the baseline generator comparisons. For the DCR metric, higher values indicate better privacy. For all other metrics, lower values indicate either better fidelity or better privacy.

highlights that our synthetic data generation approach is not limited to TabPFN and can be directly applied to other PFN-based foundation models.

7 FINAL REMARKS

In this paper, we introduce the MIAV strategy, a more effective approach for leveraging TabPFN models in synthetic data generation. MIAV addresses key limitations of direct TabPFN application, offers improved computational efficiency, and can be readily applied with other PFN-based foundation models. We expect it to be especially useful in small-data scenarios, settings that are typically challenging for traditional synthetic data generators but where TabPFN excels. Our experiments on real datasets indicate that MIAV is competitive with established baselines built on bespoke machine learning models. It is worth noting, however, that PFN-based tabular foundation models (PFNTFMs) are still in the early stages of development. As these models continue to evolve, it is reasonable to expect that MIAV-based synthetic data generators built on future, more advanced PFNTFMs might achieve even better performance.

Our approach inevitably inherits the limitations of the underlying tabular foundation model used for in-context learning. For TabPFN, these limitations include: (i) a maximum data size of 10,000 rows (though future releases will likely relax these constraints); (ii) memory usage that grows linearly with dataset size, which can become prohibitive for very large data; and (iii) inference speeds that may lag behind alternative baselines. The more scalable TabICL model alleviates some of these concerns, but currently supports only classification tasks. Future versions of TabICL that extend to regression could be directly integrated with the MIAV strategy, thereby helping to overcome these constraints.

For tabular foundation models that do not approximate Bayesian inference, our approach may still provide a natural strategy for synthetic data generation through in-context learning. Assessing the feasibility of such extensions, however, is left for future work.

Finally, we point out that the MIAV strategy described here is really only intended for synthetic data generation. Clearly, it cannot be directly used for improving supervised learning because the generation of the MIAVs requires access to the test set target data.

R and Python implementations of the MIAV strategy will be released on GitHub upon acceptance of the paper. For now, the code has been shared with reviewers as supplementary material.

REFERENCES

- [1] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2623-2631).
- [2] Bond-Taylor, S., Leach, A., Long, Y., and Willcocks, C. G. (2021). Deep generative modelling: a comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models. IEEE Transactions on Pattern Analysis and Machine Intelligence.
- [3] Borisov, V., Sessler, K., Leemann, T., Pawelczyk, M., and Kasneci, G. (2022). Language models are realistic tabular data generators, in: The Eleventh International Conference on Learning Representations (ICLR), 2023.
- [4] den Breejen, F., Bae, S., Cha, S., and Yun, S.-Y. (2024). Why In-Context Learning Transformers are Tabular Data Classifiers. arXiv:2405.13396v1.
- [5] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, et al. (2020). Language Models are Few-Shot Learners. NeurIPS 2020.
- [6] Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R. G., van Rijn, J. N., & Vanschoren, J. (2019). OpenML Benchmarking Suites. NeurIPS 2021.
- [7] Chaibub Neto, E. (2024). Statistical disclosure control for numeric microdata via sequential joint probability preserving data shuffling. Transactions on Data Privacy, 17(3):147-179, 2024.
- [8] Chaibub Neto, E. (2025). TabSDS: a Lightweight, Fully Non-Parametric, and Model Free Approach for Generating Synthetic Tabular Data. ICML, 2025.
- [9] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357.
- [10] Cresswell, J. C., and Kim, T. (2024). Scaling up diffusion and flow-based XGBoost models. arXiv 2408.16046
- [11] Domingo-Ferrer, J., Muralidhar, K., and Bras-Amoros, M. (2020). General confidentiality and utility metrics for privacy-preserving data publishing based on the permutation model. IEEE Transactions on Dependable and Secure Computing, 18(5):2506-2517. DOI: 10.1109/TDSC.2020.2968027.
- [12] Domingo-Ferrer, J., and Torra, V. (2001). A quantitative comparison of disclosure control methods for microdata. In Confidentiality, disclosure, and data access: theory and practical applications for statistical agencies, edited by P. Doyle, J. Lane, J. Theeuwes, and L. Zayatz. 111-133. Elsevier.
- [13] Drechsler, J. (2011). Synthetic Data Sets for Statistical Disclosure Control. Springer, New York.
- [14] Feuer, B., Schirrmeister, R. T., Cherepanova, V., Hegde, C., Hutter, F., Goldblum, M., Cohen, N., and White, C. (2024) TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks. arXiv preprint arXiv:2402.11137.
- [15] Garg, A., Ali, M., Hollmann, N., Purucker, L., Muller, S., Hutter, F. (2025). Real-TabPFN: Improving Tabular Foundation Models via Continued Pre-training With Real-World Data. Proceedings of the 1st ICML Workshop on Foundation Models for Structured Data.
- [16] Hansen, L., Seedat, N., van der Schaar, M., and Petrovic, A. (2023). Reimagining synthetic tabular data generation through data-centric AI: A comprehensive benchmark. Advances in Neural Information Processing Systems, 36, 33781-33823.
- [17] Hollmann, N., Muller, S., Eggensperger, K., Hutter, F., TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second. International Conference on Learning Representations (ICLR) 2023.

- [18] Hollmann, N., Muller, S., Purucker, L., Krishnakumar, A., Korfer, M., Hoo, S. B., Schirrmeister, R. T., & Hutter, F. (2025). Accurate predictions on small data with a tabular foundation model. Nature, 637, 319-326.
- [19] Jolicoeur-Martineau, A., Fatras, K., and Kachman, T. (2024). Generating and imputing tabular data via diffusion and flow-based gradient-boosted trees. AISTATS 2024
 - [20] Kindji, G. C. N., Rojas-Barahona, L. M., Fromont, E., and Urvoy, T. (2024). Under the hood of tabular data generation models: benchmarks with extensive tuning. arXiv:2406.12945
 - [21] Koshil, M., Nagler, T., Feurer, M., and Eggensperger, K. (2024). Towards Localization via Data Embedding for TabPFN. Third Table Representation Learning Workshop at NeurIPS 2024.
 - [22] Kotelnikov, A., Baranchuk, D., Rubachev, I., and Babenko, A. (2023). Tabddpm: Modelling tabular data with diffusion models. In International Conference on Machine Learning (pp. 17564-17579). PMLR.
 - [23] Lu, Y., Wang, H., and Wei, W. (2023). Machine learning for synthetic data generation: a review. arXiv preprint arXiv:2302.04062, 2023.
 - [24] Mateo-Sanz, J.M., Sebe, F., and Domingo-Ferrer, J. (2004). Outlier protection in continuous microdata masking. International Workshop on Privacy in Statistical Databases. PSD 2004: Privacy in Statistical Databases pp 201-215.
- [25] Ma, J., Dankar, A., Stein, G., Yu, G., & Caterini, A. L. (2023). TabPFGen Tabular Data Generation with TabPFN. Poster presented at the Table Representation Learning Workshop, NeurIPS 2023
 - [26] Ma, J., Thomas, V., Hosseinzadeh, R., Kamkari, H., Labach, A., Cresswell, J. C., Golestan, K., Yu, G., Volkovs, M., and Caterini, A. L. (2024). TabDPT: Scaling Tabular Foundation Models. arXiv:2410.18164.
 - [27] Ma, J., Thomas, V., Yu, G., and Caterini, A. (2024). In-Context Data Distillation with TabPFN. arXiv preprint arXiv:2402.06971.
- [28] Muller, S., Hollmann, N., Pineda, S., Grabocka, J., Hutter, F. (2022). Transformers can do Bayesian inference. ICLR 2022.
 - [29] Muller, A., Curino, C., and Ramakrishnan, R. (2025). MotherNet: Fast Training and Inference via Hyper-Network Transformers. ICLR 2025.
 - [30] Nowok, B., Raab, G. M., and Dibben, C. (2016). synthpop: bespoke creation of synthetic data in R. Journal of Statistical Software, 74(11), 1-26. https://doi.org/10.18637/jss.v074.i11
 - [31] Pagliuca, D., and Seri, G. (1999). Some results of individual ranking method on the system of enterprise accounts annual survey, Esprit SDC Project, Deliverable MI-3/D2.
 - [32] Qian, Z., Davis, R., and van der Schaar, M. (2024). Synthcity: a benchmark framework for diverse use cases of tabular synthetic data. Advances in Neural Information Processing Systems, 36.
- [33] Qu, J., Holzmüller, D., Varoquaux, G., & Le Morvan, M. (2025). TabICL: A Tabular Foundation Model for In-Context Learning on Large Data. In Proceedings of the 42nd International Conference on Machine Learning (ICML 2025).
- 587 [34] Rajotte, J. F., Bergen, R., Buckeridge, D. L., El Emam, K., Ng, R., & Strome, E. (2022).
 588 Synthetic data as an enabler for machine learning applications in medicine. iScience, 25(11), 105331.
 - [35] Reiter, J. P. (2005). Using CART to generate partially synthetic, public use microdata. Journal of Official Statistics, 21(3):441-462.
 - [36] Shi, J., Xu, M., Hua, H., Zhang, H., Ermon, S., and Leskovec, J. (2025). TabDiff: a mixed-type diffusion model for tabular data generation. ICLR 2025.

- [37] Szekely, G. J., & Rizzo, M. L. (2023). The Energy of Data and Distance Correlation. Chapman Hall/CRC, Monographs on Statistics and Applied Probability, Vol. 171. 466 pages.
- [38] Watson, D. S., Blesch, K., Kapar, J., and Wright, M. N. (2023). Adversarial random forests for density estimation and generative modeling. In International Conference on Artificial Intelligence and Statistics (pp. 5357-5375). PMLR.
- [39] Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veeramachaneni, K. (2019). Modeling tabular data using conditional GAN. Advances in Neural Information Processing Systems, 32, 2019.
- [40] Xu, D., Cirit, O., Asadi, R., Sun, Y., and Wang, W. (2024) Mixture of In-Context Prompters for Tabular PFNs. ICLR 2025.
- [41] Young, J., Graham, P., and Penny, R. (2009). Using bayesian networks to create synthetic data. Journal of Official Statistics, 25(4):549.
- [42] Zeng, Y., Kang, W., and Mueller, A. C. (2024) Tabflex: Scaling tabular learning to millions with linear attention. In NeurIPS 2024 Third Table Representation Learning Workshop.
- [43] Zhang, H., Zhang, J., Srinivasan, B., Shen, Z., Qin, X., Faloutsos, C., Rangwala, H., and Karypis, G. (2023). Mixed-type tabular data synthesis with score-based diffusion in latent space. in: The Twelfth International Conference on Learning Representations, 2024.

APPENDIX **CONTENTS** A Supervised learning versus synthetic data generation in the presence of uninformative features Algorithms for TabPFN-based synthetic data generation C Simulating correlated beta distributions **Supplementary Figures** E Additional direct synthetic data generation strategies **Additional algorithms** G Proof of Theorem 1 H Complexity analysis and runtime experiments I Extended experiments section Overview of data splitting into original, holdout, training, and test sets I.1 I.2 I.3 I.4 I.5 I.6 The noisy-MIAV strategy K Synthetic data generation based on TabICL PFN models L LLM usage

A SUPERVISED LEARNING VERSUS SYNTHETIC DATA GENERATION IN THE PRESENCE OF UNINFORMATIVE FEATURES

TabPFN achieves state-of-the-art performance in supervised learning tasks (18). However, its direct application to synthetic data generation does not yield comparable results, as weakly associated variables make it challenging for in-context learning methods to capture the true data distribution. This issue is less pronounced in supervised learning, where noninformative features simply fail to contribute to the prediction. Even when the prediction is based solely on such features, TabPFN behaves appropriately. For instance, in binary classification with predictors completely uncorrelated with the target, it produces an AUROC of about 0.5, consistent with random guessing. Although uninteresting, this outcome is exactly what one would expect from any well-behaved classifier in this scenario. By contrast, in the data generation setting, TabPFN's reasonable performance in classification does not carry over, as it fails to approximate the marginal distributions of the data and to capture its statistical association structure. An illustrative example is presented in Figure 9 in Section D, where direct application of TabPFN to datasets containing completely uncorrelated data fails to recover the marginal distributions (see panels g, h, i, j, and k and m, n, o, p, and q), and fails to recover the correlation structure of the original data (compare panels b and c against panel a).

B ALGORITHMS FOR TABPFN-BASED SYNTHETIC DATA GENERATION

In Algorithms 2, 4, and 6, the function GeneratePredictionUsingTabPFN(.) represents a call to a TabPFN model $q_{\theta}(.)$.

Algorithm 2 ICLwithJointFactorizationTabPFN($\mathbf{X}^{tr}, \mathbf{X}^{ts}$)

```
1: Input: training data for ICL, \mathbf{X}^{tr}; query data for ICL, \mathbf{X}^{ts}
 2: n_{tr} \leftarrow \text{NumberOfRows}(\mathbf{X}^{tr}) {Obtain number of samples of \mathbf{X}^{tr}.}
 3: n_{ts} \leftarrow \text{NumberOfRows}(\mathbf{X}^{ts}) {Obtain number of samples of \mathbf{X}^{ts}.}
 4: p \leftarrow \text{NumberOfColumns}(\mathbf{X}^{ts}) {Obtain number of columns of \mathbf{X}^{ts}.}
 5: \mathbf{Z}^{ts} \leftarrow [,] {Create empty matrix to store the synthetic data.}
 6: \mathbf{x}_0^{tr} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{tr}) {Draw a sample of size n_{tr} from a uniform distribution.}
           \overset{s}{\mapsto} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts}) \text{ {\tt Draw a sample of size } } n_{ts} \text{ from a uniform distribution.}}
 8: \mathbf{Z}^{ts}[,1] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{x}_0^{ts},\mathbf{x}_0^{tr},\mathbf{x}_1^{tr}) {Predict \mathbf{x}_1^{ts} using \mathbf{x}_0^{tr} and \mathbf{x}_1^{tr} as context, and
       \mathbf{x}_0^{ts} as query. The prediction can be from a regression or classification TabPFN model, depending on whether \mathbf{x}_1^{tr} is continuous or
       categorical.}
 9: for j = 2 to p do
          \mathbf{X}_{\leq j}^{tr} \leftarrow \mathbf{X}^{tr}[1:(j-1)] (Select the first j-1 columns of \mathbf{X}^{tr}.)
           \mathbf{X}_{< j}^{ts} \leftarrow \mathbf{X}^{ts}[, 1:(j-1)] {Select the first j-1 columns of \mathbf{X}^{ts}.}
           \mathbf{Z}^{ts}[,j] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{X}^{ts}_{< j}, \mathbf{X}^{tr}_{< j}, \mathbf{x}^{tr}_{j}) \text{ (Predict } \mathbf{x}^{ts}_{j} \text{ using } \mathbf{X}^{tr}_{< j} \text{ and } \mathbf{x}^{tr}_{j} \text{ as constant}
           text, and \mathbf{X}_{< j}^{ts} as query. The prediction can be from a regression or classification TabPFN model, depending on whether \mathbf{x}_{j}^{tr} is
           continuous or categorical.}
13: end for
```

Algorithm 3 JointFactorizationTabPFNGenerator(X)

```
1: Input: the original data, X
```

14: **Output:** synthetic data \mathbf{Z}^{ts}

- $2: \ \, \mathbf{X}_{1}, \mathbf{X}_{2} \leftarrow DataSplit(\mathbf{X}) \ \{ \text{Split the original data } \mathbf{X} \text{ into two subsets, } \mathbf{X}_{1} \text{ and } \mathbf{X}_{2}. \}$
- 3: $\mathbf{Z}_1 \leftarrow \text{ICL}$ with Joint Factorization TabPFN ($\mathbf{X}^{tr} = \mathbf{X}_2, \mathbf{X}^{ts} = \mathbf{X}_1$) {Generate a synthetic data copy of \mathbf{X}_1 using Algorithm 2.}
- 4: $\mathbf{Z}_2 \leftarrow \text{ICL}$ with Joint Factorization TabPFN $(\mathbf{X}^{tr} = \mathbf{X}_1, \mathbf{X}^{ts} = \mathbf{X}_2)$ {Generate a synthetic data copy of \mathbf{X}_2 using Algorithm 2.}
- 5: $\mathbf{Z} \leftarrow \text{Concatenate}(\mathbf{Z}_1, \mathbf{Z}_2)$ {Concatenate the synthetic datasets \mathbf{Z}_1 and \mathbf{Z}_2 .}
- 6: **Z** ← RoundIntegerVariables(**X**, **Z**) {This function uses **X** to determine which variables have integer type and round the values of the corresponding variables in **Z** to the nearest integer.}
- 7: **Output:** synthetic data **Z**

756 **Algorithm 4** ICL with Full Conditionals TabPFN(\mathbf{X}^{tr} , \mathbf{X}^{ts}) 757 1: **Input:** training data for ICL, \mathbf{X}^{tr} ; query data for ICL, \mathbf{X}^{ts} 758 2: $p \leftarrow \text{NumberOfColumns}(\mathbf{X}^{ts})$ {Obtain number of columns of \mathbf{X}^{ts} .} 759 3: $\mathbf{Z}^{ts} \leftarrow [,]$ {Create empty matrix to store the synthetic data.} 760 4: **for** j = 1 **to** p **do** 761 $\mathbf{X}_{-j}^{tr} \leftarrow \mathbf{X}^{tr}[,-j]$ {Drop the j-th column of \mathbf{X}^{tr} .} 762 $\mathbf{X}_{-i}^{ts} \leftarrow \mathbf{X}^{ts}[,-j] \; \{ \text{Drop the } j\text{-th column of } \mathbf{X}^{ts}. \}$ 763 $\mathbf{Z}^{ts}[,j] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{X}^{ts}_{-j},\mathbf{X}^{tr}_{-j},\mathbf{x}^{tr}_{j}) \text{ (Predict } \mathbf{x}^{ts}_{j} \text{ using } \mathbf{X}^{tr}_{-j} \text{ and } \mathbf{x}^{tr}_{j} \text{ as constant}$ 764 text, and \mathbf{X}_{-i}^{ts} as query. The prediction can be from a regression or classification TabPFN model, depending on whether \mathbf{x}_{i}^{tr} is 765 continuous or categorical.} 766 8: end for 767 9: **Output:** synthetic data \mathbf{Z}^{ts} 768 769 **Algorithm 5** FullConditionalsTabPFNGenerator(X) 770 1: **Input:** the original data, **X** 771 2: $X_1, X_2 \leftarrow DataSplit(X)$ {Split the original data X into two subsets, X_1 and X_2 .} 772 3: $\mathbf{Z}_1 \leftarrow \text{ICL}$ with Full Conditionals TabPFN $(\mathbf{X}^{tr} = \mathbf{X}_2, \mathbf{X}^{ts} = \mathbf{X}_1)$ {Generate a synthetic data copy of \mathbf{X}_1 773 774 4: $\mathbf{Z}_2 \leftarrow \text{ICL}$ with Full Conditionals TabPFN ($\mathbf{X}^{tr} = \mathbf{X}_1, \mathbf{X}^{ts} = \mathbf{X}_2$) {Generate a synthetic data copy of \mathbf{X}_2 775 using Algorithm 4.} 776 5: $\mathbf{Z} \leftarrow \text{Concatenate}(\mathbf{Z}_1, \mathbf{Z}_2)$ (Concatenate the synthetic datasets \mathbf{Z}_1 and \mathbf{Z}_2 .) 777 6: $\mathbf{Z} \leftarrow \text{RoundIntegerVariables}(\mathbf{X}, \mathbf{Z})$ 778 7: **Output:** synthetic data **Z** 779 780 **Algorithm 6** ICLwithMIAVTabPFN($\mathbf{X}^{tr}, \overline{\mathbf{X}^{ts}}$) 781 1: **Input:** training data for ICL, \mathbf{X}^{tr} ; query data for ICL, \mathbf{X}^{ts} 782 2: $p \leftarrow \text{NumberOfColumns}(\mathbf{X}^{ts})$ {Obtain number of columns of \mathbf{X}^{ts} .} 783 3: $\mathbf{Z}^{ts} \leftarrow [,]$ {Create empty matrix to store the synthetic data.} 784 4: **for** j = 1 **to** p **do** 785 $\mathbf{m}_{i}^{tr} \leftarrow \text{GenerateMaximalInformationAuxiliaryVariable}(\mathbf{x}_{i}^{tr})$ (Generate the MIAV for \mathbf{x}_{i}^{tr} using Algo-786 787 $\mathbf{m}_i^{ts} \leftarrow \text{GenerateMaximalInformationAuxiliaryVariable}(\mathbf{x}_i^{ts})$ {Generate the MIAV for \mathbf{x}_i^{ts} using Algo-788 rithm 1.} 789 $\mathbf{Z}^{ts}[,j] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{m}_{i}^{ts},\mathbf{m}_{i}^{tr},\mathbf{x}_{i}^{tr}) \text{ {Predict }} \mathbf{x}_{j}^{ts} \text{ using } \mathbf{m}_{j}^{tr} \text{ and } \mathbf{x}_{j}^{tr} \text{ as context,}$ and \mathbf{m}_i^{ts} as query. The prediction can be from a regression or classification TabPFN model, depending on whether \mathbf{x}_i^{tr} is continuous 791 or categorical.} 8: end for 792 9: **Output:** synthetic data \mathbf{Z}^{ts} 793 794 **Algorithm 7** MIAVTabPFNGenerator(**X**) 796 1: **Input:** the original data, X 797 2: $X_1, X_2 \leftarrow DataSplit(X)$ {Split the original data X into two subsets, X_1 and X_2 .} 798 3: $\mathbf{Z}_1 \leftarrow \text{ICLwithMIAVTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_2, \mathbf{X}^{ts} = \mathbf{X}_1)$ {Generate a synthetic data copy of \mathbf{X}_1 using Alg. 6.} 799 4: $\mathbf{Z}_2 \leftarrow \text{ICLwithMIAVTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_1, \mathbf{X}^{ts} = \mathbf{X}_2)$ (Generate a synthetic data copy of \mathbf{X}_2 using Alg. 6.) 800 5: $\mathbf{Z} \leftarrow \text{Concatenate}(\mathbf{Z}_1, \mathbf{Z}_2)$ {Concatenate the synthetic datasets \mathbf{Z}_1 and \mathbf{Z}_2 .}

In Algorithms 3, 5, and 7 the function $RoundIntegerVariables(\mathbf{X}, \mathbf{Z})$ uses the original data, \mathbf{X} , to determine which variables have integer type and round the values of the corresponding variables in the synthetic data, \mathbf{Z} , to the nearest integer. This post-processing step is necessary because TabPFN (and most other data synthesizers) return real values for variables that are originally of integer type. In our experiments, we apply the same post-processing step to the SMOTE baseline.

6: Z ← RoundIntegerVariables(X, Z) {This function uses X to determine which variables have integer type and round the

values of the corresponding variables in **Z** to the nearest integer.}

7: **Output:** synthetic data **Z**

801

802

804 805

807

808

C SIMULATING CORRELATED BETA DISTRIBUTIONS

Here, we describe how we simulated correlated beta distributions used in the simulated data experiments, as well as, for the illustrative examples provided in Figures 1, 2, and 3 in the main text, and Figures 5, 6, 7, 8, and 9 in Appendix D.

The data was simulated as follows. First, we simulate data from a multivariate normal random variable $Y \sim N_p(\mathbf{0}, \mathbf{\Sigma})$. Next, for $j=1,\ldots,p$, we compute the correlated uniform variables $U_j=\Phi(Z_j)$, and the correlated beta random variables $X_j=G_{a,b}^{-1}(U_j)$, where Φ and $G_{a,b}$ represent, respectively, the cumulative distribution functions of standard normal variable and a beta variable with shape parameters a and b.

The multivariate Gaussian variable Y is generated with a Toeplitz structured covariance matrix Σ with off-diagonal entries $\sigma_{ij} = \rho^{|i-j|}$, and diagonal entries $\sigma_{jj} = 1$, for $\rho \in [-1,1]$. (Note that under this correlation structure, neighboring variables are more highly associated than more distant variables, and the association decreases the farther apart the variables are. Also, for negative ρ values the direction of the association flips depending on whether the exponent |i-j| is even or odd.)

For the illustrations presented in Figures 1, 2, and 3 we further randomly shuffle the data of variable X_2 in order to simulate an uninformative feature uncorrelated with all other variables in the dataset. Furthermore, for the illustrations presented in Figure 3, we also discretize variable X_5 into four classes.

D SUPPLEMENTARY FIGURES

Figure 5: Comparison of the JF, FC, and MIAV synthetic data generation strategies for correlated beta variables generated with $\rho=-0.95$. Panel a shows the Pearson correlation matrices for the original data, while panels b to e show the correlation matrices for the JF, FC, MIAV synthetic datasets and the holdout set. Panels f, l, r, and z show the difference between the original data correlation matrix and the respective synthetic datasets and holdout set. The remaining panels show the marginal distributions generated by the distinct synthetic data generation approaches and for the holdout set.

Figure 6: Analogous comparisons as in Figure 5, but for data simulated with $\rho = -0.75$.

Figure 7: Analogous comparisons as in Figure 5, but for data simulated with $\rho = -0.5$.

Figure 8: Analogous comparisons as in Figure 5, but for data simulated with $\rho = -0.25$.

Figure 9: Analogous comparisons as in Figure 5, but for data simulated with $\rho = 0$.

973 974

975

976

977

978

979

980 981

982

983

984

985

986

987

988

989 990

> 1013 1014

1015

1016

1017

1018

1019

1020

1021

1023 1024

1025

ADDITIONAL DIRECT SYNTHETIC DATA GENERATION STRATEGIES

As described in Algorithms 2 and 4 our implementations of the JF and FC strategies use the real test data when performing the in-context queries. In the case of the JF strategy, an alternative approach would be to use the synthetic data generated in the previous steps when we query the model in the current generation step. That is, instead of generating the data according to equation 2 we generate it according to,

$$\prod_{j=1}^{p} q_{\theta}(\mathbf{x}_{j}^{ts} \mid \hat{\mathbf{X}}_{\leq j}^{ts}, \mathbf{X}_{\leq j}^{tr}, \mathbf{x}_{j}^{tr}), \qquad (10)$$

where $\mathbf{X}_{s_i}^{ts}$ represents the predictions (i.e., the synthetic data) generated in the previous j-1generation steps. We denote this strategy as the "updated joint factorization" (or UJF for short), and implement it in Algorithms 8 and 9. Note that Algorithm 8 implements two versions of the UJF approach. The first, simply takes a bootstrap sample from the original X_1 data as the "synthetic version" of X_1 . The second, uses the random noise variable X_0 to generate X_1 (similarly to the JF strategy). Intuitively, we would expect UJF to under-perform in comparison with the JF strategy, since any drifts in the distribution of the synthetic data generated in the previous steps would propagate to the later ones.

Algorithm 8 ICLwithUpdatedJointFactorizationTabPFN(\mathbf{X}^{tr} , \mathbf{X}^{ts} , version = 1)

```
991
                                    1: Input: training data for ICL, X^{tr}; query data for ICL, X^{ts}; version of the UJF strategy
992
                                    2: n_{tr} \leftarrow \text{NumberOfRows}(\mathbf{X}^{tr}) {Obtain number of samples of \mathbf{X}^{tr}.}
993
                                    3: n_{ts} \leftarrow \text{NumberOfRows}(\mathbf{X}^{ts}) {Obtain number of samples of \mathbf{X}^{ts}.}
994
                                    4: p \leftarrow \text{NumberOfColumns}(\mathbf{X}^{ts}) {Obtain number of columns of \mathbf{X}^{ts}.}
995
                                    5: \mathbf{Z}^{ts} \leftarrow [,] {Create empty matrix to store the synthetic data.}
996
                                    6: if version == 1 then
997
                                    7:
                                                        \mathbf{Z}^{ts}[,1] \leftarrow \text{BootstrapSample}(\mathbf{x}_1^{ts})
                                    8: end if
998
                                    9: if version == 2 then
999
                                                        \mathbf{x}_0^{tr} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{tr}) \text{ {Draw a sample of size } } n_{tr} \text{ from a uniform distribution.} } \\ \mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts}) \text{ {Draw a sample of size } } n_{ts} \text{ from a uniform distribution.} } \\ \mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts}) \text{ {Draw a sample of size } } n_{ts} \text{ from a uniform distribution.} } \\ \mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts}) \text{ {Draw a sample of size } } n_{ts} \text{ from a uniform distribution.} } \\ \mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts}) \text{ {Draw a sample of size } } n_{ts} \text{ from a uniform distribution.} } \\ \mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts}) \text{ {Draw a sample of size } } n_{ts} \text{ from a uniform distribution.} } \\ \mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts}) \text{ {Draw a sample of size } } n_{ts} \text{ from a uniform distribution.} } \\ \mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts}) \text{ {Draw a sample of size } } n_{ts} \text{ from a uniform distribution.} } \\ \mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts}) \text{ {Draw a sample of size } } n_{ts} \text{ from a uniform distribution.} } \\ \mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts}) \text{ {Draw a sample of size } } n_{ts} \text{ from a uniform distribution.} } \\ \mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts}) \text{ {Draw a sample of size } } n_{ts} \text{ {Draw a sample of size } n_{ts} \text{ {Draw a sample of si
                                 10:
 1000
                                11:
 1001
                                                        \mathbf{Z}^{ts}[,1] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{x}_0^{ts},\mathbf{x}_0^{tr},\mathbf{x}_1^{tr}) \text{ \{Predict } \mathbf{x}_1^{ts} \text{ using } \mathbf{x}_0^{tr} \text{ and } \mathbf{x}_1^{tr} \text{ as context,} 
 1002
                                                        and \mathbf{x}_0^{ts} as query. The prediction can be from a regression or classification TabPFN model, depending on whether \mathbf{x}_1^{tr} is continuous
 1003
                                                        or categorical.}
 1004
                                13: end if
                                14: for j = 2 to p do
                                                        \mathbf{X}_{< j}^{tr} \leftarrow \mathbf{X}^{tr}[, 1:(j-1)] {Select the first j-1 columns of \mathbf{X}^{tr}.}
                                                        \mathbf{Z}_{\leq j}^{ts} \leftarrow \mathbf{Z}^{ts}[, 1:(j-1)] {Select the first j-1 columns of \mathbf{Z}^{ts}.}
 1008
                                                        \mathbf{Z}^{ts}[,j] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{Z}^{ts}_{< j}, \mathbf{X}^{tr}_{< j}, \mathbf{x}^{tr}_{j}) \text{ {Predict }} \mathbf{x}^{ts}_{j} \text{ using }} \mathbf{X}^{tr}_{< j} \text{ and } \mathbf{x}^{tr}_{j} \text{ as constant}
 1009
                                                        text, and \mathbf{Z}_{< i}^{tx} as query. The prediction can be from a regression or classification TabPFN model, depending on whether \mathbf{x}_i^{tx} is
 1010
                                                        continuous or categorical.}
 1011
                                18: end for
                                19: Output: synthetic data \mathbf{Z}^{ts}
 1012
```

```
Algorithm 9 UpdatedJointFactorizationTabPFNGenerator(X)
 1: Input: the original data, X
 2: X_1, X_2 \leftarrow DataSplit(X) {Split the original data X into two subsets, X_1 and X_2.}
 3: \mathbf{Z}_1 \leftarrow \text{ICL}withUpdatedJointFactorizationTabPFN(\mathbf{X}^{tr} = \mathbf{X}_2, \mathbf{X}^{ts} = \mathbf{X}_1) {Generate a synthetic data
      copy of X<sub>1</sub> using Algorithm 8.}
 4: \mathbf{Z}_2 \leftarrow \text{ICLwithUpdatedJointFactorizationTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_1, \mathbf{X}^{ts} = \mathbf{X}_2) (Generate a synthetic data
      copy of X_2 using Algorithm 8.}
 5: \mathbf{Z} \leftarrow \text{Concatenate}(\mathbf{Z}_1, \mathbf{Z}_2) {Concatenate the synthetic datasets \mathbf{Z}_1 and \mathbf{Z}_2.}
 6: Output: synthetic data Z
```

This intuition is confirmed in Figure 10, which shows the application of version 1 of the UJF strategy in purple (panels f to j) and of version 2 (panels l to p) in cyan. For comparison, the plot also include

Figure 10: Comparison of JF and the UJF approaches.

the results from the JF approach (panels r to v). Even in version 1, where the algorithm samples the first variable from the correct distribution, the distributions of the synthetic data still ends drifting away from the original data distributions at later steps of the data generation approach. (Note that UJF1 performs considerably worse than the JF approach for variables X_3 , X_4 , and X_5 .) In version 2 (panels 1 to p) the performance is even worse because the quality of the X_1 data generated in the first step is already very poor.

F ADDITIONAL ALGORITHMS

```
1064
           Algorithm 10 NumericRankEncodingOfCategoticalVariables(\mathbf{x}_i)
1065
             1: Input: categorical variable data \mathbf{x}_{j}
             2: levels \leftarrow ExtractLevels(\mathbf{x}_i) {Obtain levels of variable \mathbf{x}_i.}
1067
             3: tb \leftarrow \text{Table}(\mathbf{x}_{i}[,i]) {Obtain level counts of variable \mathbf{x}_{i}.}
1068
             4: cumcounts \leftarrow \text{CumulativeSum}(tb) {Compute cumulative counts from the table counts.}
1069
             5: numlevels \leftarrow \text{Length}(levels) {Obtain number of levels.}
1070
             6: \mathbf{r} \leftarrow [] {Create empty vector to store the numeric rank encodings.}
             7: for k = 1 to numlevels do
1071
                     idx \leftarrow \text{Which}(\mathbf{x}_i == levels[k]) {Obtain the indexes of the records for which \mathbf{x}_i equals level k.}
1072
             9:
                     lowerbound \leftarrow cumcounts[k] + 1 (Compute the lower bound for the numerical encoding of level k of \mathbf{x}_{i,\cdot})
            10:
                     upperbound \leftarrow cumcounts[k+1] (Compute the upper bound for the numerical encoding of level k of \mathbf{x}_j.)
1074
                     nrseq \leftarrow \text{Sequence}(lowerbound, upperbound) {Create a sequence of numeric rank values starting at lower-
            11:
1075
                     bound and ending at upper-bound.}
            12:
                     \mathbf{r}[idx] \leftarrow \mathsf{RandomPermutation}(nrseq) (Assign randomly shuffled numeric rank values to the positions of \mathbf{x}_j
1077
                     corresponding to level k.
1078
            13: end for
1079
            14: Output: numerical rank encoding r
```

As an example, suppose $\mathbf{x}_j = (A, A, A, A, B, B, B, C, C, C, C, C, D, D, D)^t$. This categorical variable has four levels A, B, C and D with counts $n_A = 4$, $n_B = 3$, $n_C = 5$ and $n_D = 3$. To generate the numerical rank encoding \mathbf{r} presented in Table 1, the algorithm transforms the categorical values according to the mapping, map_r , in Table 1. Note that this mapping corresponds to an arbitrary ranking of the categorical levels according to the arbitrary order A < B < C < D. That is, starting with class A, the mapping assigns ranks 1, 2, 3, and 4 (in random order) to the four tied elements A in \mathbf{x}_j . (Note that by assigning the ranks in random order the mapping is effectively using the "at random" method to break ties among identical values of the categorical variable.) For class B, the mapping assigns ranks 5, 6, and 7 (in random order) to the three tied elements B in \mathbf{x}_j . For class C it assigns ranks 8 to 12 (in random order) to the five tied elements C. Finally, for class D, the mapping assigns ranks 13, 14, and 15 (in random order) to the three tied elements D in \mathbf{x}_j .

Table 1: Toy example illustrating the application of the numeric rank encoding procedure for categorical variables implemented by Algorithm 10 to $\mathbf{x}_j = (A, A, A, A, B, B, B, C, C, C, C, C, D, D, D)^t$.

$map_r \mid A = \{1, 2, 3, 4\},\$			$B = \{5, 6, 7\},\$		$C = \{8, 9, 10, 11, 12\}$				$D = \{13, 14, 15\}$						
\mathbf{x}_j \mathbf{r}	A 3	A 1	A 4	A 2	B 7	B 5	B 6	$\begin{array}{ c c } C \\ 9 \end{array}$	C 8	C 11	C 12	C 10	D 14	D 15	D 13

G Proof of Theorem 1

Consider variables X_j , Y, and M_j , where Y is a placeholder notation for any variable other than X_j or M_j (Y could, for example, be any other $X_{j'}$ or $M_{j'}$ for $j' \neq j$). Variables X_j and Y might be continuous or categorical. Variable M_j is always continuous by construction. To prove the result in a non-parametric setting, we treat any continuous variable as a categorical variable with n distinct levels (where n represents the number of samples in the data). We also assume the independent samples setting, where the rows of dataset X are independent.

G.1 Proof of statement 1, when X_j and Y are continuous

Proof. We consider first the case where X_j and Y are originally continuous variables. In this case, all variables are treated as categorical variables with n levels, where $i=1,\ldots,n,$ $l=1,\ldots,n$, and $k=1,\ldots,n$ indexes the categorical levels of variables X_j , Y, and M_j , respectively.

The conditional mutual information (CMI) of X_j and Y given M_j is defined as,

$$I(X_{j}; Y | M_{j}) =$$

$$= \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k=1}^{n} P(X_{j} = i, Y = l, M_{j} = k) \log \left(\frac{P(X_{j} = i, Y = l \mid M_{j} = k)}{P(X_{j} = i \mid M_{j} = k) P(Y = l \mid M_{j} = k)} \right)$$

$$= \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k=1}^{n} P(X_{j} = i, Y = l, M_{j} = k) \log \left(\frac{P(X_{j} = i, Y = l, M_{j} = k) P(M_{j} = k)}{P(X_{j} = i, M_{j} = k) P(Y = l, M_{j} = k)} \right),$$
(11)

where the joint probabilities are defined from the joint frequency counts in a finite population. For instance, $P(X_j=i,Y=l,M_j=k)=f(X_j=i,Y=l,M_j=k)/n$ where $f(X_j=i,Y=l,M_j=k)$ corresponds to the number of instances in a population of size n for which $X_j=i$ and Y=l and $M_j=k$. Note that because all three variables have n distinct levels, these frequencies will be either 1 or 0 depending on whether the combination of values is observed or not in the dataset.

To avoid division by 0, we consider the smoothed version of the CMI where an arbitrarily small constant ϵ is added to the frequency counts of each cell in the contingency tables defining these probabilities. Namely,

$$f^{\epsilon}(X_{j} = i, Y = l, M_{j} = k) = f(X_{j} = i, Y = l, M_{j} = k) + \epsilon,$$
 (12)

and $P^{\epsilon}(X_j=i,Y=l,M_j=k)$ is obtained by normalization as,

$$P^{\epsilon}(X_{j} = i, Y = l, M_{j} = k) = \frac{f(X_{j} = i, Y = l, M_{j} = k) + \epsilon}{\sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k=1}^{n} (f(X_{j} = i, Y = l, M_{j} = k) + \epsilon)}$$

$$= \frac{f(X_{j} = i, Y = l, M_{j} = k) + \epsilon}{\sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k=1}^{n} f(X_{j} = i, Y = l, M_{j} = k) + \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k=1}^{n} \epsilon}$$

$$= \frac{f(X_{j} = i, Y = l, M_{j} = k) + \epsilon}{n + n^{3} \epsilon}.$$
(13)

Similarly, we have that,

$$P^{\epsilon}(X_j = i, M_j = k) = \frac{f(X_j = i, M_j = k) + \epsilon}{n + n^2 \epsilon}, \qquad (14)$$

$$P^{\epsilon}(Y=l, M_j=k) = \frac{f(Y=l, M_j=k) + \epsilon}{n + n^2 \epsilon}, \qquad (15)$$

$$P^{\epsilon}(M_j = k) = \frac{f(M_j = k) + \epsilon}{n + n \epsilon} = \frac{1 + \epsilon}{n(1 + \epsilon)} = \frac{1}{n}.$$
 (16)

Now, because the rank-matching procedure used in the construction of M_j implies a perfect monotonic relation between the values of X_j and M_j we have that the discretized versions of X_j and M_j will be identical (see Table 2 for an illustrative toy example). This correspondence between X_j and M_j implies that these variables cannot concomitantly assume different values at the same time (i.e., the joint frequency $f(X_j=i,M_j=k)$ will always be 0 if $i\neq k$). It also implies that the joint counts $f(X_j=i,M_j=k)$ will always be equal to the marginal counts $f(M_j=k)$ when i=k. Hence, we have that,

$$f(X_j = i, M_j = k) = \begin{cases} f(M_j = k) = 1, & \text{if } i = k \\ 0, & \text{if } i \neq k \end{cases}$$
(17)

and we can re-express equation (14) as,

$$P^{\epsilon}(X_j = i, M_j = k) = \begin{cases} \frac{f(M_j = k) + \epsilon}{n + n^2 \epsilon} = \frac{1 + \epsilon}{n + n^2 \epsilon}, & \text{if } i = k\\ \frac{\epsilon}{n + n^2 \epsilon}, & \text{if } i \neq k \end{cases}$$
(18)

Similarly, we have that,

$$f(X_j = i, Y = l, M_j = k) = \begin{cases} f(Y = l, M_j = k), & \text{if } i = k \\ 0, & \text{if } i \neq k \end{cases}$$
(19)

and we can re-express equation (13) as,

$$P^{\epsilon}(X_j = i, Y = l, M_j = k) = \begin{cases} \frac{f(Y = l, M_j = k) + \epsilon}{n + \epsilon^{3\epsilon}}, & \text{if } i = k \\ \frac{n + \epsilon^{3\epsilon}}{n + n^{3\epsilon}}, & \text{if } i \neq k \end{cases}$$
(20)

Re-expressing the conditional mutual information in terms of the smoothed probabilities and separating the summation over the cases where k = i from the cases where $k \neq i$ we have,

$$\begin{aligned} & 1191 & I^{\epsilon}(X_{j};Y|M_{j}) = \\ & = \sum_{i=1}^{n} \sum_{l=1}^{n} P^{\epsilon}(X_{j}=i,Y=l,M_{j}=i) \log \left(\frac{P^{\epsilon}(X_{j}=i,Y=l,M_{j}=i) P^{\epsilon}(M_{j}=i)}{P^{\epsilon}(X_{j}=i,M_{j}=i) P^{\epsilon}(Y=l,M_{j}=i)} \right) + \\ & + \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k\neq i} P^{\epsilon}(X_{j}=i,Y=l,M_{j}=k) \log \left(\frac{P^{\epsilon}(X_{j}=i,Y=l,M_{j}=k) P^{\epsilon}(M_{j}=k)}{P^{\epsilon}(X_{j}=i,M_{j}=k) P^{\epsilon}(Y=l,M_{j}=k)} \right) \\ & = \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k\neq i} \frac{P^{\epsilon}(Y_{j}=i,M_{j}=i) + \epsilon}{n+n^{3}\epsilon} \log \left(\frac{\left(\frac{f(Y=l,M_{j}=i) + \epsilon}{n+n^{3}\epsilon}\right) \left(\frac{f(M_{j}=i) + \epsilon}{n+n^{2}\epsilon}\right)}{\left(\frac{f(M_{j}=i) + \epsilon}{n+n^{2}\epsilon}\right)} \right) + \\ & + \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k\neq i} \frac{\epsilon}{n+n^{3}\epsilon} \log \left(\frac{\left(\frac{\epsilon}{n+n^{3}\epsilon}\right) \left(\frac{f(M_{j}=k) + \epsilon}{n+n^{2}\epsilon}\right)}{\left(\frac{\epsilon}{n+n^{2}\epsilon}\right) \left(\frac{f(Y=l,M_{j}=k) + \epsilon}{n+n^{2}\epsilon}\right)} \right) \\ & = \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k\neq i} \frac{\epsilon}{n+n^{3}\epsilon} \log \left(\frac{\left(n+n^{2}\epsilon\right) \left(n+n^{2}\epsilon\right) \left(n+n^{2}\epsilon\right)}{\left(n+n^{2}\epsilon\right) \left(n+n^{2}\epsilon\right)} \right) + \\ & + \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k\neq i} \frac{\epsilon}{n+n^{3}\epsilon} \log \left(\frac{\left(n+n^{2}\epsilon\right) \left(n+n^{2}\epsilon\right) \left(f(M_{j}=k) + \epsilon\right)}{\left(n+n^{2}\epsilon\right) \left(n+n^{2}\epsilon\right) \left(n+n^{2}\epsilon\right)} \right) \\ & + \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k\neq i} \frac{\epsilon}{n+n^{3}\epsilon} \log \left(\frac{\left(n+n^{2}\epsilon\right) \left(n+n^{2}\epsilon\right) \left(f(M_{j}=k) + \epsilon\right)}{\left(n+n^{2}\epsilon\right) \left(n+n^{2}\epsilon\right) \left(n+n^{2}\epsilon\right) \left(n+n^{2}\epsilon\right)} \right) \end{aligned}$$

Taking the limit as $\epsilon \to 0$ we have that $I^{\epsilon}(X_i; Y|M_i)$ converges to,

$$\sum_{i=1}^{n} \sum_{l=1}^{n} \frac{f(Y=l, M_j=i)}{n} \log(1) + \sum_{i=1}^{n} \sum_{l=1}^{n} \sum_{k \neq i} 0 \log\left(\frac{f(M_j=k)}{f(Y=l, M_j=k)}\right) = 0.$$
 (22)

Observe that the term $0\log(f(M_j=k)/f(Y=l,M_j=k))$ in the above equation equals 0 because it can be rewritten as $0\log f(M_j=k)-0\log f(Y=l,M_j=k)$ and $0\log f(M_j=k)=0\log(1/n)=0$ and $0\log f(Y=l,M_j=k)$ equals $0\log 1=0$ if l=k or $0\log 0=0$ if $l\neq k$. (Note that in this last case, we are adopting the convention that $0\log 0=0$, as customary in information theory.)

G.2 Proof of statement 1, when X_j and Y are categorical

Proof. We now consider the case where X_j and Y are categorical variables. Let b_x and b_y represent the number of levels of X_j and Y, and let $i=1,\ldots,b_x,$ $l=1,\ldots,b_y$, and $k=1,\ldots,n$ represent the indexes of the levels of variables X_j , Y, and M_j , respectively.

Now, the CMI of X_j and Y conditional of M_j is given by,

1234
1235
$$I(X_{j}; Y | M_{j}) =$$
1236
1237
1238
$$= \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{y}} \sum_{k=1}^{n} P(X_{j} = i, Y = l, M_{j} = k) \log \left(\frac{P(X_{j} = i, Y = l | M_{j} = k)}{P(X_{j} = i | M_{j} = k) P(Y = l | M_{j} = k)} \right)$$
1238
1239
1240
$$= \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{y}} \sum_{k=1}^{n} P(X_{j} = i, Y = l, M_{j} = k) \log \left(\frac{P(X_{j} = i, Y = l, M_{j} = k) P(Z_{j} = k)}{P(X_{j} = i, M_{j} = k) P(Y = l, M_{j} = k)} \right).$$
1241
(23)

To avoid division by 0, we again consider the smoothed version of the CMI with smoothed probabilities given by,

$$P^{\epsilon}(X_j = i, Y = l, M_j = k) = \frac{f(X_j = i, Y = l, M_j = k) + \epsilon}{n + b_x b_y n \epsilon}.$$
 (24)

$$P^{\epsilon}(X_j = i, M_j = k) = \frac{f(X_j = i, M_j = k) + \epsilon}{n + b_x n \epsilon}, \qquad (25)$$

$$P^{\epsilon}(Y=l, M_j=k) = \frac{f(Y=l, M_j=k) + \epsilon}{n + b_y n \epsilon}, \qquad (26)$$

$$P^{\epsilon}(M_j = k) = \frac{f(M_j = k) + \epsilon}{n + n \epsilon} = \frac{1 + \epsilon}{n(1 + \epsilon)} = \frac{1}{n}.$$
 (27)

By construction, when X_j is categorical, we have that the following relations hold between X_j and the discretized M_j ,

$$f(X_j = i, M_j = k) = \begin{cases} f(M_j = k), & \text{if } k \in I_i \\ 0, & \text{if } k \notin I_i \end{cases} , \tag{28}$$

$$f(X_j = i, Y = l, M_j = k) = \begin{cases} f(Y = l, M_j = k), & \text{if } k \in I_i \\ 0, & \text{if } k \notin I_i \end{cases},$$
 (29)

where I_i represents the set of indexes of the discretized M_j variable for which $X_j = i$, and $\mathbb{1}\{k \in I_i\}$ represents the indicator function assuming value 1 when k belongs to I_i , and 0 otherwise. (Table 3 provides an illustrative example explaining the above relations.)

Using equations 28 and 29 we can re-express equations (25) and (24) as,

$$P^{\epsilon}(X_j = i, M_j = k) = \begin{cases} \frac{f(M_j = k) + \epsilon}{n + b_x n \epsilon}, & \text{if } k \in I_i \\ \frac{\epsilon}{n + b_x n \epsilon}, & \text{if } k \notin I_i \end{cases},$$
(30)

and,

$$P^{\epsilon}(X_{j}=i,Y=l,M_{j}=k) = \begin{cases} \frac{f(Y=l,M_{j}=k) + \epsilon}{n + b_{x} b_{y} n \epsilon}, & \text{if } k \in I_{i} \\ \frac{\epsilon}{n + b_{x} b_{y} n \epsilon}, & \text{if } k \notin I_{i} \end{cases}$$
(31)

Re-expressing the conditional mutual information in terms of the smoothed probabilities and separating the summation over the cases where $k \in I_i$ from the cases where $k \notin I_i$ we have,

$$\begin{aligned} & 1298 \\ & 1299 \end{aligned} & I^{\epsilon}(X_{j};Y|M_{j}) = \end{aligned} \\ & = \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{y}} \sum_{k \in I_{i}} P^{\epsilon}(X_{j} = i, Y = l, M_{j} = k) \log \left(\frac{P^{\epsilon}(X_{j} = i, Y = l, M_{j} = k) P^{\epsilon}(M_{j} = k)}{P^{\epsilon}(X_{j} = i, M_{j} = k) P^{\epsilon}(Y = l, M_{j} = k)} \right) + \\ & + \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{y}} \sum_{k \notin I_{i}} P^{\epsilon}(X_{j} = i, Y = l, M_{j} = k) \log \left(\frac{P^{\epsilon}(X_{j} = i, Y = l, M_{j} = k) P^{\epsilon}(M_{j} = k)}{P^{\epsilon}(X_{j} = i, M_{j} = k) P^{\epsilon}(Y = l, M_{j} = k)} \right) \\ & + \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{y}} \sum_{k \notin I_{i}} \frac{f(Y = l, M_{j} = k) + \epsilon}{n + b_{x} b_{y} n \epsilon} \log \left(\frac{\left(\frac{f(Y = l, M_{j} = k) + \epsilon}{n + b_{x} b_{y} n \epsilon} \right) \left(\frac{f(M_{j} = k) + \epsilon}{n + b_{x} b_{y} n \epsilon} \right)}{\left(\frac{f(M_{j} = k) + \epsilon}{n + b_{x} b_{y} n \epsilon} \right) \left(\frac{f(M_{j} = k) + \epsilon}{n + b_{x} n \epsilon} \right)} \right) \\ & + \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{y}} \sum_{k \notin I_{i}} \frac{\epsilon}{n + b_{x} b_{y} n \epsilon} \log \left(\frac{\left(\frac{\epsilon}{n + b_{x} n \epsilon} \right) \left(\frac{f(M_{j} = k) + \epsilon}{n + b_{y} n \epsilon} \right)}{n + b_{y} n \epsilon} \right) \\ & = \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{y}} \sum_{k \notin I_{i}} \frac{f(Y = l, M_{j} = k) + \epsilon}{n + b_{x} b_{y} n \epsilon} \log \left(\frac{\left(\frac{n + b_{x} n \epsilon}{n + b_{x} b_{y} n \epsilon} \right) (f(M_{j} = k) + \epsilon)}{(n + b_{x} b_{y} n \epsilon) (n + n \epsilon)} \right) \\ & + \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{y}} \sum_{k \notin I_{i}} \frac{\epsilon}{n + b_{x} b_{y} n \epsilon} \log \left(\frac{\left(\frac{n + b_{x} n \epsilon}{n + b_{x} b_{y} n \epsilon} \right) (f(M_{j} = k) + \epsilon)}{(n + b_{x} b_{y} n \epsilon) (n + n \epsilon)} \right) \\ & + \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{y}} \sum_{k \notin I_{i}} \frac{\epsilon}{n + b_{x} b_{y} n \epsilon} \log \left(\frac{\left(\frac{n + b_{x} n \epsilon}{n + b_{x} b_{y} n \epsilon} \right) (f(M_{j} = k) + \epsilon)}{(n + b_{x} b_{y} n \epsilon) (n + n \epsilon)} \right) \\ & + \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{y}} \sum_{k \notin I_{i}} \frac{\epsilon}{n + b_{x} b_{y} n \epsilon} \log \left(\frac{\left(\frac{n + b_{x} n \epsilon}{n + b_{x} b_{y} n \epsilon} \right) (f(M_{j} = k) + \epsilon)}{(n + b_{x} b_{y} n \epsilon) (n + n \epsilon)} \right) \\ & + \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{y}} \sum_{k \notin I_{i}} \frac{\epsilon}{n + b_{x} b_{y} n \epsilon} \log \left(\frac{\left(\frac{n + b_{x} n \epsilon}{n + b_{x} b_{y} n \epsilon} \right) (f(M_{j} = k) + \epsilon)}{(n + b_{x} b_{y} n \epsilon) (n + n \epsilon)} \right) \\ & + \sum_{i=1}^{b_{x}} \sum_{l=1}^{b_{x}} \sum_{k \notin I_{i}} \frac{\epsilon}{n + b_{x} b_{y} n \epsilon} \log \left(\frac{n + b_{x} n \epsilon}{n + b_{x} b_{y} n \epsilon} \right) (n + n \epsilon) \left(\frac{n + b_{x} n \epsilon}{n + b_{x} b_{y}$$

Taking the limit as $\epsilon \to 0$ we have that $I^{\epsilon}(X_j; Y | M_j)$ converges to,

$$\sum_{i=1}^{b_x} \sum_{l=1}^{b_y} \sum_{k \in I_i} \frac{f(Y=l, M_j=i)}{n} \log(1) + \sum_{i=1}^{b_x} \sum_{l=1}^{b_y} \sum_{k \notin I_i} 0 \log\left(\frac{f(M_j=k)}{f(Y=l, M_j=k)}\right) = 0.$$
 (33)

G.3 Proof of statement 1. In the remaining cases

Proof. In the case where X_j is continuous and Y is categorical, a similar argument to the proof in the case that both variables are continuous shows that,

$$I^{\epsilon}(X_{j}; Y | M_{j}) =$$

$$= \sum_{i=1}^{n} \sum_{l=1}^{b_{y}} \frac{f(Y = l, M_{j} = i) + \epsilon}{n + b_{y} n^{2} \epsilon} \log \left(\frac{(n + n^{2} \epsilon) (n + b_{y} n \epsilon)}{(n + b_{y} n^{2} \epsilon) (n + n \epsilon)} \right) +$$

$$+ \sum_{i=1}^{n} \sum_{l=1}^{b_{y}} \sum_{k \neq i} \frac{\epsilon}{n + b_{y} n^{2} \epsilon} \log \left(\frac{(n + n^{2} \epsilon) (n + b_{y} n \epsilon) (f(M_{j} = k) + \epsilon)}{(n + b_{y} n^{2} \epsilon) (n + n \epsilon) (f(Y = l, M_{j} = k) + \epsilon)} \right),$$
(34)

which again converges to 0 as $\epsilon \to 0$.

In the case that X_j is categorical and Y is continuous, a similar argument to the proof in the case that both variables are categorical shows that,

$$I^{\epsilon}(X_{j}; Y | M_{j}) =$$

$$= \sum_{i=1}^{b_{x}} \sum_{l=1}^{n} \sum_{k \in I_{i}} \frac{f(Y = l, M_{j} = k) + \epsilon}{n + b_{x} n^{2} \epsilon} \log \left(\frac{(n + b_{x} n \epsilon)(n + n^{2} \epsilon)}{(n + b_{x} n^{2} \epsilon)(n + n \epsilon)} \right) +$$

$$+ \sum_{i=1}^{b_{x}} \sum_{l=1}^{n} \sum_{k \notin I_{i}} \frac{\epsilon}{n + b_{x} n^{2} \epsilon} \log \left(\frac{(n + b_{x} n \epsilon)(n + n^{2} \epsilon)(f(M_{j} = k) + \epsilon)}{(n + b_{x} n^{2} \epsilon)(n + n \epsilon)(f(Y = l, M_{j} = k) + \epsilon)} \right)$$

$$(35)$$

which again converges to 0 as $\epsilon \to 0$.

G.4 Proof of Statement 2

1356 Proof. By definition, the conditional entropy of X_j given M_j is given by,

$$H(X_j \mid M_j) = \sum_{i} \sum_{k} P(X_j = i, M_j = k) \log \left(\frac{P(X_j = i, M_j = k)}{P(M_j = k)} \right)$$

$$= \sum_{i} \sum_{k} P(X_j = i \mid M_j = k) P(M_j = k) \log P(X_j = i \mid M_j = k)$$
(36)

In the case where X_j is continuous (and discretized into n classes) we have that equation (36) reduces to,

$$H(X_j \mid M_j) = \sum_{i=1}^n P(X_j = i \mid M_j = i) P(M_j = i) \log P(X_j = i \mid M_j = i)$$

$$+ \sum_{i=1}^n \sum_{k \neq i} P(X_j = i \mid M_j = k) P(M_j = k) \log P(X_j = i \mid M_j = k) , \qquad (37)$$

after we split the summation over k into the cases where k = i and $k \neq i$. Since, by construction, we have that,

$$P(X_j = i \mid M_j = k) = \begin{cases} 1, & \text{if } k = i \\ 0 & \text{if } k \neq i \end{cases},$$
 (38)

if follows that,

$$H(X_j \mid M_j) = \sum_{i=1}^n P(M_j = i) \log 1 + \sum_{i=1}^n \sum_{k \neq i} 0 P(M_j = k) \log 0 = 0$$
 (39)

where we take $0 \log 0$ to be defined as 0 (as its is customary in information theory).

Similarly, in the case where X_i is categorical (with b_x classes) equation (36) reduces to,

$$H(X_j \mid M_j) = \sum_{i=1}^{b_x} \sum_{k \in I_i} P(X_j = i \mid M_j = k) P(M_j = k) \log P(X_j = i \mid M_j = k)$$

$$+ \sum_{i=1}^{b_x} \sum_{k \notin I_i} P(X_j = i \mid M_j = k) P(M_j = k) \log P(X_j = i \mid M_j = k) , \qquad (40)$$

after we split the summation over k into the cases where $k \in I_i$ and $k \notin I_i$. Since, by construction, we also have that in the categorical case,

$$P(X_j = i \mid M_j = k) = \begin{cases} 1, & \text{if } k \in I_i \\ 0 & \text{if } k \notin I_i \end{cases} , \tag{41}$$

if follows again that,

$$H(X_j \mid M_j) = \sum_{i=1}^{b_x} \sum_{k \in I_i} P(M_j = i) \log 1 + \sum_{i=1}^{b_x} \sum_{k \notin I_i} 0 P(M_j = k) \log 0 = 0.$$
 (42)

Table 2: Illustrative toy example showing the generation of M_j using Algorithm 1 when X_j is continuous. The sample $\mathbf{x}_j = (0.92, -1.29, 0.34, -0.93, 0.71, 0.39, 0.65, 0.85, 0.84, 1.38, -0.32)^t$ (with n=11) represents observations from X_j . Rows (i) and (ii) display the original values of X_j and their corresponding ranks. Row (iii) shows the generated variable M_j , which is uniformly distributed and rank-matched to X_j (i.e., the ordering of M_j is identical to that of X_j). Row (iv) confirms this by showing that the ranks of M_j match those of row (ii). Because of this perfect monotonic correspondence, the discretized versions of X_j and M_j are identical for any chosen number of bins. Rows (v) and (vi) illustrate this fact by presenting the discretizations of X_j and M_j

based (II): (III) (IV	: RANKS OF X_j): ORIGINAL M_j	0.92 10 0.69 10	-1.29 1 0.12	0.34 4 0.41	-0.93 2 0.20	0.71 7 0.61	0.39 5 0.44	0.65 6 0.50	0.85 9 0.67	0.84 8 0.62	1.38 11 0.74	-0.32 3 0.39	•
(V) (VI)	: X_j (DISCRETIZED)	10	1 1	4 4	2 2	7 7 7	5 5 5	6 6	9 9	8 8	11	3 3	-

Table 3: Toy illustrative example of the generation of M_i using Algorithms 1 and 10 in the case where X_i is categorical. Let $\mathbf{x}_i = (A, A, A, A, B, B, B, C, C, C, C)^t$ represent a sample of size n = 11from the categorical variable X_i , which has 3 distinct levels, $\{A, B, C\}$. Let i = 1, 2, 3 represent the indexes of the levels of X_i . Row (i) shows the data in its original format, while row (ii) shows the same data in terms of the level indexes representation, where level A is indexed as 1, level B as 2, and level C as 3. Row (iii) shows the output, \mathbf{r} , of Algorithm 10 which generates a numeric rank encoding of the categorical variable X_i . (It adopts the arbitrary order A < B < C to the categorical levels of X_i and starting with class A, it assigns ranks 1, 2, 3, and 4 (in random order) to the four tied elements A in \mathbf{x}_i . For class B, it assigns ranks 5, 6, and 7 (in random order) to the three tied elements B in \mathbf{x}_i . Finally, for class C it assigns ranks 8 to 11 (in random order) to the four tied elements C.) Row (iv) shows the output of Algorithm 1. It first sample and sort 11 values from a uniform distribution in the [0, 1] range (line 2) given, in this example, by (0.12, 0.20, 0.39, 0.41, 0.44, 0.50, 0.61, 0.62, 0.67, 0.69, 0.74) and then rank match this sorted random noise vector to the numeric rank encodings r show in line (iii). The result is a random noise vector with identical ranks as r. Row (v) shows M_i after discretization into n = 11 levels (in terms of level indexes representation). Clearly, when we discretize M_i into n levels we recover the numerical rank encoding in row (iii). Now, let I_i represent the indexes of the M_i values for which $X_i = i$. In this example $I_1 = \{1, 2, 3, 4\}, I_2 = \{5, 6, 7\},$ and $I_3 = \{8, 9, 10, 11\}$. Note that, by construction, whenever M_i equals 1, 2, 3, or 4, the value of X_j will be 1. This implies that $f(X_j = 1, M_j = k) = f(M_j = k) = 1$ if $k \in \{1, 2, 3, 4\}$, and $f(X_j = 1, M_j = k) = 0$ if $k \notin \{1, 2, 3, 4\}$. Similarly, $f(X_j = 2, M_j = k) = f(M_j = k) = 1$ if $k \in \{5,6,7\}$, and $f(X_j = 2, M_j = k) = 0$ if $k \notin \{5,6,7\}$, and so on for other values of i. Clearly, this result holds in general, as stated in equation 28. A similar argument justifies equation 29.

(I):	ORIGINAL X_i	A	A	A	A	В	В	В	C	C	C	C
(II):	X_i LEVEL INDEXES	1	1	1	1	2	2	2	3	3	3	3
(III):	NUMERIC RANK ENCODING	3	1	4	2	7	5	6	9	8	11	10
(IV):	M_i (CONTINUOUS)	0.39	0.12	0.41	0.20	0.61	0.44	0.50	0.67	0.62	0.74	0.69
(v):	M_j (discretized)	3	1	4	2	7	5	6	9	8	11	10
(VI):	I_i mapping		$I_1 = \{1,$	$\{2, 3, 4\}$,	I_2	$= \{5, 6,$	7},	I:	$_{3}=\{8,$	9, 10, 11	.}

H COMPLEXITY ANALYSIS AND RUNTIME EXPERIMENTS

H.1 COMPLEXITY ANALYSIS

As pointed in Hollmann et al. (2025) the complexity of the TabPFN algorithm scales quadratically with the number of samples (n) and the number of features (p), i.e., $O(n^2 + p^2)$.

The generation of synthetic data with the MIAV strategy (Algorithm 7) involves calling Algorithm 6 two times (see lines 3 and 4). Algorithm 6, by its turn, involves p calls to TabPFN models trained with a single feature (see the *for loop* in lines 4 to 8 of Algorithm 6). Since the complexity of a TabPNF model trained with a single feature is $O(n^2+1)=O(n^2)$, it follows that the complexity of Algorithm 6 is $O(p\,n^2)$. Consequently, the complexity of the MIAV strategy (Algorithm 7) is $O(2\,p\,n^2)=O(p\,n^2)$.

The FC approach (Algorithm 5), on the other hand, has complexity $O(p n^2 + p^3)$, since Algorithm 4 involves p calls to TabPFN models with p-1 features, so that,

$$O(p(n^2 + (p-1)^2)) = O(p n^2 + p^3).$$
(43)

Similarly, the JF approach (Algorithm 3) also has complexity $O(p n^2 + p^3)$, since Algorithm 2 involves p calls to TabPFN models with number of features increasing from 1 to p-1 whose total complexity is given by,

$$\sum_{k=1}^{p-1} O(n^2 + k^2) = O\left(\sum_{k=1}^{p-1} n^2\right) + O\left(\sum_{k=1}^{p-1} k^2\right) = O((p-1)n^2) + O\left(\frac{(p-1)p(2p-1)}{6}\right)$$

$$= O(pn^2) + O(p^3) = O(pn^2 + p^3). \tag{44}$$

These analyses show that, for fixed n, the MIAV strategy scales linearly with increasing number of variables, whereas the FC and JF approaches scale cubically with increasing number of variables.

H.2 RUNTIME EXPERIMENTS

We performed 3 runtime experiments comparing the MIAV, JF, and FC synthetic data generation strategies. The experiments were based on simulated datasets containing 1000, 2000, or 3000 samples (rows) with number of variables (columns) varying from 10 to 100, in increments of 10. (The data was simulated from correlated beta distributions as described in Appendix C, using $a \sim \text{Uniform}(0, 10)$, $b \sim \text{Uniform}(0, 10)$, and $\rho = 0.5$.) In each experiment, the runtime was measured with the perf_counter() function from the time Python module. Results are reported in seconds and based on 5 replications of each experiment. All experiments were performed on an AWS EC2 g5.xlarge instance with 1 NVIDIA A10G GPU (24 GiB), 4 vCPUs, 16 GiB RAM, 250 GB NVMe SSD, and up to 10 Gbps network bandwidth.

Figure 11 reports the runtime results. As expected, panels a, b, and c show that, as the number of features increases, we observe considerably longer runtimes for FC (blue curves) and JF (orange curves) when compared to the MIAV (red curves). The panels also illustrate that the runtimes of the FC and JF strategies scale cubically with increasing number of features, whereas the runtime of the MIAV approach scales linearly. Panel d reports the results for the MIAV approach for the distinct sample sizes side by side. (The red lines represent the median values across the 5 replications.)

Note that in the computation of the JF approach we use a single variable order for the factorization of the joint posterior predictive distribution in all experiments in this paper. Hollmann et al. (2025)

²Note that the complexity of the other computations in Algorithm 6 are dominated by the TabPFN computation. Explicitly, the MIAV generation (line 5 and line 6 of Algorithm 6) has complexity $O(n \log n)$ since, as shown in Algorithm 1, it: (i) involves sorting of a random noise vector (line 2 of Algorithm 1), which has complexity $O(n \log n)$ (since random noise generation of a vector of length n has complexity $O(n \log n)$); (ii) involves the ranking of a vector of length n (line 4 of Algorithm 1), which has complexity $O(n \log n)$); and (iii) involves a call to Algorithm 10 (line 7 of Algorithm 1), which has complexity O(n) (as both the CummulativeSum operation (line 4 of Algorithm 10) has complexity O(n) and the repeated applications of the RandomPermutation operation (line 12 of Algorithm 10) inside the *for loop* also have total complexity O(n)).

Figure 11: Runtime experiments. Panels a, b, and c report runtime benchmark results comparing the FC, JF, and MIAV synthetic data generation strategies for datasets containing 1,000, 2,000, and 3,000 samples, respectively. Panel d compares the MIAV results across the different sample sizes.

suggest using a permutation sampling approximation of Janossy pooling for combining results across different permutations of the order of the variables. (This is done to account for the fact that the variable order influences the quality of the synthesized data.) Implementation of this strategy would, however, increase the computation time by a factor of k, where k represents the number of variable order permutations used by the approximation. (Hollmann et al. adopted k=24 in their experiments.)

I EXTENDED EXPERIMENTS SECTION

I.1 OVERVIEW OF DATA SPLITTING INTO ORIGINAL, HOLDOUT, TRAINING, AND TEST SETS

Our experiments are performed as follows. Each dataset \mathbf{D} is first split into two datasets \mathbf{X} and \mathbf{X}^h , denoted as the "original" and the "holdout" datasets, respectively. In our evaluations, the original dataset, \mathbf{X} , plays the role of the "real" data, from which we generate a synthetic data copy. (We denote it as the "original" data because \mathbf{D} might be a real-world dataset or a simulated dataset in our experiments.) The holdout dataset, \mathbf{X}^h , is used to "estimate" the performance of an ideal data generator capable of generating data from the same distribution as the original data. In our experiments, in addition to evaluating the synthetic datasets using the metrics described in Section I.5 below, we also compute the metric values for the holdout set in order to get a sense about the range of values we would expect to see for the metric in the ideal case of a generator truly able to draw independent samples from the same distribution as the original data.

For the generation of synthetic data, based on ICL using the TabPFN-based strategies described in the main test, namely, JF, FC, and MIAV, we further split the original data, \mathbf{X} , into two subsets, \mathbf{X}_1 and \mathbf{X}_2 . As described in Algorithms 3, 5, and 7 in Section B, the synthetic data generation is performed as follows. First, the algorithms generate a synthetic copy of \mathbf{X}_1 , using \mathbf{X}_2 as the training set and \mathbf{X}_1 as the test set. Second, the algorithms generate a synthetic copy of \mathbf{X}_2 , by using \mathbf{X}_1 as the training set and \mathbf{X}_2 as the test set. Third, the algorithms concatenate the datasets generated in the previous steps to obtain the full synthetic dataset copy of \mathbf{X} .

For the generation of synthetic data using SMOTE (and other baselines), the original data X is directly fed into the synthesizer with no need for further data splits.

I.2 SIMULATED DATA EXPERIMENTS

For the simulated data experiments we evaluate the synthetic data generators over 5 distinct settings spanning different correlation structures among the variables. In all settings, we generate datasets with 5 variables from correlated beta distributions as described in Section C. The correlation structure (Toeplitz) is controlled by a single parameter ρ , and in our experiments we adopt correlation strengths, $|\rho|$, in the range $|\rho| = \{0, 0.25, 0.5, 0.75, 0.95\}$.

For each experimental setting (i.e., $|\rho|$ value) we simulate 10 distinct datasets, \mathbf{D} , of size 800, using Toeplitz correlation parameter randomly set to either ρ or $-\rho$ with equal probability, and adopting different shape parameters, a and b, for the beta distributions. For each variable $X_j \sim \text{Beta}(a,b)$, the a and b parameters are randomly sampled from uniform distributions as follows:

- $a \sim U(0.1, 0.9), b \sim U(0.1, 0.9), \text{ for } X_1.$
- $a \sim U(0.1, 0.9), b \sim U(1, 10), \text{ for } X_2.$
- $a \sim U(10, 50), b \sim U(1, 10), \text{ for } X_3.$
- $a \sim U(5, 15), b \sim U(5, 15), \text{ for } X_4.$
- $a \sim U(1, 10), b \sim U(5, 15), \text{ for } X_5.$

Each dataset **D** is split into original (**X**) and holdout (\mathbf{X}^h) datasets of size 400. Only the **X** datasets are used by the synthetic data generators.

I.3 REAL-WORLD DATA EXPERIMENTS

For the real-world data experiments we selected a subset of the datasets from the OpenML-CC18 benchmark suite (Bischl et al., 2021), which were analyzed in Hollmann et al. (2023, 2025). The OpenML-CC18 suite contains 72 datasets but, similarly to Hollmann et al. (2025), we selected datasets with at most 10,000 rows (examples), at most 500 columns (features), and containing categorical variables with at most 10 classes. Furthermore, because most of the evaluation metrics used in this paper are tailored to numeric data, we applied the additional filter that the datasets needed to contain more numerical variables than categorical ones. After applying these filters to the 72 datasets in OpenML-CC18 we were left with the 36 datasets listed in Table 4.

Table 4: Datasets used in the real-world data evaluations. These include all 36 datasets in the OpenML-CC18 benchmark suite with at most 10,000 samples, 500 variables, 10 classes per categorical variables, and a larger number of numeric variables than categorical ones. In the first column we assign simplified dataset names (D1 to D36) to the original dataset names. The number of categorical variables is abbreviated as #cat, and the number of classes of the categorical variable with most classes is abbreviated as #class.

NAME	ORIGINAL DATASET NAME	#SAMPLES	#COLUMNS	#CAT	#CLASS	OPENML ID
D1	BALANCE-SCALE	625	5	1	3	11
D2	MFEAT-FACTORS	2000	217	1	10	12
D3	MFEAT-FOURIER	2000	77	1	10	14
D4	BREAST-W	699	10	1	2	15
D5	MFEAT-KARHUNEN	2000	65	1	10	16
D6	MFEAT-MORPHOLOGICAL	2000	7	1	10	18
D7	MFEAT-ZERNIKE	2000	48	1	10	22
D8	OPTDIGITS	5620	65	1	10	28
D9	DIABETES	768	9	1	2	37
D10	SPAMBASE	4601	58	1	2	43
D11	VEHICLE	846	19	1	4	53
D12	SATIMAGE	6430	37	1	6	2074
D13	ANALCATDATA-AUTHORSHIP	841	71	1	4	3549
D14	PC4	1458	38	1	2	3902
D15	PC3	1563	38	1	2	3903
D16	KC2	522	22	1	2	3913
D17	KC1	2109	22	1	2	3917
D18	PC1	1109	22	1	2	3918
D19	WDBC	569	31	1	2	9946
D20	PHONEME	5404	6	1	2	9952
D21	QSAR-BIODEG	1055	42	1	2	9957
D22	WALL-ROBOT-NAVIGATION	5456	25	1	4	9960
D23	SEMEION	1593	257	1	10	9964
D24	ILPD	583	11	2	2	9971
D25	ozone-level-8hr	2534	73	1	2	9978
D26	FIRST-ORDER-THEOREM-PROVING	6118	52	1	6	9985
D27	BANKNOTE-AUTHENTICATION	1372	5	1	2	10093
D28	BLOOD-TRANSFUSION-SERVICE-CENTER	748	5	1	2	10101
D29	GESTUREPHASESEGMENTATIONPROCESSED	9873	33	1	5	14969
D30	MICEPROTEIN	1080	78	1	8	146800
D31	STEEL-PLATES-FAULT	1941	28	1	7	146817
D32	CLIMATE-MODEL-SIMULATION-CRASHES	540	19	1	2	146819
D33	WILT	4839	6	1	2	146820
D34	SEGMENT	2310	17	1	7	146822
D35	MFEAT-PIXEL	2000	241	1	10	146824
D36	CHURN	5000	21	5	10	167141

We also compared the proposed synthetic data generation strategies against popular synthetic data generators using a subset of the datasets evaluated in Hansen et al. (2023) and Chaibub Neto (2025)

listed on Table 5. Note that while Table 5 contains datasets with more than 10,000 samples, we are still able to fit TabPFN models because in our evaluations we split the datasets into original and holdout sets, and the synthetic data generation is only applied to the original set (which, by its turn, is further split in 2 subsets during the ICL learning step). We allowed for larger datasets in these baseline comparison experiments because the deep-learning based baselines benefit from larger datasets. (We constrained the maximum number of samples to be less than 20,000, however, because the computation of the evaluation metrics became too slow for larger datasets.)

Table 5: Datasets used in the baseline comparison experiments. See Table 4 for the column descriptions.

NAME	ORIGINAL DATASET NAME	# SAMPLES	#COLUMNS	#CAT	#CLASS	OPENML ID
AB	ABALONE	4177	9	1	2	-
BM	BANK MARKETING	10578	8	1	2	44126
CR	Credit	16714	11	1	2	44089
EM	EYE MOVEMENTS	7608	21	1	2	44130
НО	House 16H	13488	17	1	2	44123
MT	MAGIC TELESCOPE	13376	11	1	2	44125
PO	Pol	10082	27	1	2	44122

Similarly to Chaibub Neto (2025), the Abalone data was fetched using the commands:

```
from sklearn.datasets import fetch_openml
```

fetch_openml(name="abalone", version=1, as_frame=True)

The other datasets were fetched using:

openml.datasets.get_dataset(openmlid).

I.4 HYPERPARAMETERS FOR THE BASELINE MODELS

Table 6: Hyperparameters used for the generative models trained on the Abalone (AB) dataset.

Model	Parameters
	n_iter: 7605
DDPM	lr: 0.002991978123076162
	batch_size: 970
	num_timesteps: 407
	is_classification: False
	num_trees: 80
ARF	delta: 0
	max_iters: 2
	early_stop: False
	min_node_size: 2
	n_iter: 400
TVAE	lr: 0.001
	decoder_n_layers_hidden: 5
	weight_decay: 0.0001
	batch size: 128
	n_units_embedding: 200
	decoder n units hidden: 150
	decoder_nonlin: tanh
	decoder dropout: 0.19964446358158816
	encoder n layers hidden: 4
	encoder n units hidden: 100
	encoder nonlin: relu
	encoder_dropout: 0.0820245231222064
	n iter: 700
CTGAN	generator_n_layers_hidden: 1
	generator n units hidden: 100
	generator nonlin: elu
	generator dropout: 0.13836424598477665
	discriminator n layers hidden: 2
	discriminator n units hidden: 100
	discriminator nonlin: tanh
	discriminator n iter: 5
	discriminator_dropout: 0.023861565936528797
	lr: 0.001
	weight decay: 0.0001
	batch size: 200
	encoder max clusters: 8
	CHCOUCI_HIAX_CIUSICIS. 6

Table 7: Hyperparameters used for the generative models trained on Bank marketing (BM), Credit (CR), Eye movements (EM), House 16H (HO), Magic telescope (MT), and Pol (PO) datasets.

Model Denometers

Model	Parameters
	n_iter: 1051
DDPM	lr: 0.0009375080542687667
	batch_size: 2929
	num_timesteps: 998
	is_classification: True
	num_trees: 30
ARF	delta: 0
	max_iters: 10
	early_stop: True
	min_node_size: 5
	n_iter: 300
TVAE	lr: 0.0002
	decoder_n_layers_hidden: 4
	weight_decay: 0.001
	batch_size: 256
	n_units_embedding: 200
	decoder_n_units_hidden: 300
	decoder_nonlin: elu
	decoder_dropout: 0.194325119117226
	encoder_n_layers_hidden: 1
	encoder_n_units_hidden: 450
	encoder_nonlin: leaky_relu
	encoder_dropout: 0.04288563703094718
	n_iter: 1000
CTGAN	generator_n_layers_hidden: 2
	generator_n_units_hidden: 50
	generator_nonlin: tanh
	generator_dropout: 0.0575
	discriminator_n_layers_hidden: 4
	discriminator_n_units_hidden: 150
	discriminator_nonlin: relu
	discriminator_n_iter: 1
	discriminator_dropout: 0.1
	lr: 0.001
	weight_decay: 0.001
	batch_size: 200
	encoder_max_clusters: 10

I.5 EVALUATION METRICS

We evaluated the quality of the synthetic data in terms of data fidelity and data privacy.

Data fidelity was evaluated with respect to the quality of the marginal distributions, quality of the pairwise statistical associations, and overall data quality, according to the following metrics:

- Average KS-statistic (KS). This metric is used to evaluate the quality of the synthetic data marginal distributions. It is based on the Kolmogorov-Smirnov two-sample statistical test (KS-test) for the equality of distributions. For each variable it computes the KS-test statistic between the synthetic and original data, and the metric corresponds to the average KS-statistic across all variables. Lower values of this metric indicate better agreement between the synthetic and original marginal distributions.
- L2 distance between association matrices (L2D). This metric is used to evaluate how well the synthetic data recovers the pairwise statistical associations observed in the original data. The L2 distance is computed as the average of the squared difference between the elements of the synthetic and original data association matrices. Lower values of this metric indicate better agreement between the synthetic and original data pairwise statistical associations. Since the datasets might include both numerical and categorical variables, we assess pairwise associations as follows: for numerical pairs we use Pearson correlation; for categorical pairs we use the Cramer's V statistic; for numeric/categorical pairs we regress the numeric variable on the categorical one and use the square root of the R² statistic as our association measure (this reduces to the absolute correlation coefficient when both variables are numerical).
- **Detection test (DT).** This metric measures the overall quality of the synthetic data by evaluating the performance of a classifier trained to discriminate between synthetic and original data examples. When the synthetic data is indistinguishable from the original data the classifier should achieve a random guess performance level, otherwise the classifier performance should be better than random. In our experiments, we use a random forest

 classifier and evaluate classification performance using AUROC. Values closer to AUROC = 0.5 indicate better agreement between the synthetic and original data.

Data privacy was evaluated according to the following metrics:

- Distance to closest record (DCR). This represents a record-level privacy metric that measures how similar a synthetic record is to the closest record in the original dataset. It is computed by measuring, for each synthetic record, the minimum distance to any record in the original dataset using Euclidean distance; values close to zero indicate higher disclosure risk because synthetic records are nearly indistinguishable from the original data ones, whereas larger values suggest safer privacy protection by ensuring greater separation between synthetic and real data (this might be achieved at the cost of lower data fidelity, though). Since Euclidean distance is sensitive to scale (i.e., variables with larger numerical ranges dominate the distance), we first re-scale all variables before computing the DCR.
- Sorted distance-based record linkage (SDBRL). This metric represents a variant of the Distance-Based Record Linkage (DBRL) metric. The DBRL metric (Pagliuca and Seri, 1999; Domingo-Ferrer and Torra, 2001) is a widely used method for evaluating re-identification risk of perturbation methods within the Statistical Disclosure Control field (Drechsler, 2011). It operates by computing the Euclidean distance between each record in the perturbed dataset and all records in the original dataset, designating a perturbed record as 'linked' when its nearest neighbor corresponds to its true original record. The DBRL value is then given by the proportion of perturbed records successfully linked back to their original counterparts. Strictly speaking, the DBRL metric is only intended for evaluating data perturbation methods, since it assumes the existence of a direct mapping between the original and perturbed values (for example, when perturbed data are obtained by adding noise to the original data). In the case of synthetic data, where such a mapping is absent, an approximate correspondence can still be established following the approach of Domingo-Ferrer et al. (2020) and Chaibub Neto (2024, 2025). The idea is to sort the rows of both the original and synthetic datasets by the values of a chosen attribute (column) and then compute the metric on these sorted datasets. (A rationale for this procedure is given in section 3 of Domingo-Ferrer et al. (2020).) This adapted version of the DBRL metric is referred to as the "sorted DBRL" metric, or SDBRL for short.
- Sorted standard deviation interval distance (SSDID). This metric represents a variant of the Standard Deviation Interval Distance (SDID) metric. The SDID metric Mateo-Sanz et al. (2004) is a commonly used method for evaluating attribute disclosure risk of perturbation methods in the Statistical Disclosure Control literature. It corresponds to the proportion of original records inside a standard deviation interval whose center is the corresponding perturbed record (where the interval width is computed in terms of a percentage p of the standard deviation of the variable). A record i in the original dataset is considered to be inside the standard deviation interval of the perturbed record i if, for all variables j, it is inside the respective standard deviation interval. Similarly to DBRL, the SDID metric also assumes the existence of a mapping between the original and perturbed values, and we adopted the sorted version of this metric (SSDID) proposed by Chaibub Neto (2024, 2025) in our synthetic data evaluations.

In our evaluations, we only compute the KS, DCR, SDBRL, and SSDID metrics for numeric variables. (Note that our simulated datasets contain only numeric variables and, as shown in Table 4, the real-world datasets contained mostly numeric variables as well.)

I.6 EXTENDED RESULTS

Due to space limitations, in the main text we only present experimental results pooled across all datasets. Here we provide more detailed results. Figure 12 presents the results from the simulated data experiments separated by simulation setting. Figures 13, 14, 15, and 16 present separated results for each of the OpenML-CC18 real-world datasets. Figure 17 presents separated results for each of the real-world datasets in Table 5.

Figure 12: Simulated data experiments separated by simulation setting. Each boxplot displays the results from 10 separate replications based on different simulation parameters.

Figure 13: Experiment results for datasets D1 to D9 (see Table 4 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

Figure 14: Experiment results for datasets D10 to D18 (see Table 4 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

Figure 15: Experiment results for datasets D19 to D27 (see Table 4 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

Figure 16: Experiment results for datasets D28 to D36 (see Table 4 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

Figure 17: Experiment results for datasets in Table 5. Each boxplot displays the results from 10 distinct original/holdout data splits.

J THE NOISY-MIAV STRATEGY

A simple way to improve the privacy of the MIAV synthetic data generation approach is to add controlled amounts of noise to the MIAV before generating the synthetic data with the TabPFN model. The details are presented in Algorithms 11 and 12. As shown in lines 7 and 9 of Algorithm 11, we generate noisy versions of the MIAV by adding Gaussian noise with mean 0 and standard deviance equal to a fixed percentage of the standard deviation of the respective MIAV. By increasing the percent of noise parameter we generate increasingly noisier versions of the MIAV.

Algorithm 11 ICLwithNoisyMIAVTabPFN(\mathbf{X}^{tr} , \mathbf{X}^{ts} , percent)

```
    Input: training data for ICL, X<sup>tr</sup>; query data for ICL, X<sup>ts</sup>
    n ← NumberOfRows(X<sup>ts</sup>) {Obtain number of rows of X<sup>ts</sup>.}
    p ← NumberOfColumns(X<sup>ts</sup>) {Obtain number of columns of X<sup>ts</sup>.}
    Z<sup>ts</sup> ← [,] {Create empty matrix to store the synthetic data.}
    for j = 1 to p do
    m<sup>tr</sup><sub>j</sub> ← GenerateMaximalInformationAuxiliaryVariable(x<sup>tr</sup><sub>j</sub>) {Generate the MIAV for x<sup>tr</sup><sub>j</sub> using Algorithm 1.}
    m<sup>tr</sup><sub>j</sub> ← m<sup>tr</sup><sub>j</sub> + GenerateNormalVariable(size = n, mean = 0, sd = percent * sd(m<sup>tr</sup><sub>j</sub>)) {Add Gaussian noise to the MIAV according to a specified percent of the MIAV's standard deviation.}
    m<sup>ts</sup><sub>j</sub> ← GenerateMaximalInformationAuxiliaryVariable(x<sup>ts</sup><sub>j</sub>) {Generate the MIAV for x<sup>ts</sup><sub>j</sub> using Algorithm 1.}
    m<sup>ts</sup><sub>j</sub> ← m<sup>ts</sup><sub>j</sub> + GenerateNormalVariable(size = n, mean = 0, sd = percent * sd(m<sup>ts</sup><sub>j</sub>)) {Add Gaussian noise to the MIAV according to a specified percent of the MIAV's standard deviation.}
```

- 10: $\mathbf{Z}^{ts}[,j] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{m}_{j}^{ts},\mathbf{m}_{j}^{tr},\mathbf{x}_{j}^{tr}) \text{ {Predict }} \mathbf{x}_{j}^{ts} \text{ using }} \mathbf{m}_{j}^{tr} \text{ and } \mathbf{x}_{j}^{tr} \text{ as context,}$ and \mathbf{m}_{j}^{ts} as query. The prediction can be from a regression or classification TabPFN model, depending on whether \mathbf{x}_{j}^{tr} is continuous or categorical.}
- 11: **end for**

12: **Output:** synthetic data \mathbf{Z}^{ts}

Algorithm 12 NoisyMIAVTabPFNGenerator(**X**, percent)

- 1: **Input:** the original data, **X**
- 2: $X_1, X_2 \leftarrow DataSplit(X)$ {Split the original data X into two subsets, X_1 and X_2 .}
- 3: $\mathbf{Z}_1 \leftarrow \text{ICL}$ with Noisy MIAVTabPFN ($\mathbf{X}^{tr} = \mathbf{X}_2, \mathbf{X}^{ts} = \mathbf{X}_1, \text{percent}$) (Generate a synthetic data copy of \mathbf{X}_1 using Alg. 6.)
- 4: $\mathbf{Z}_2 \leftarrow \text{ICL}$ with Noisy MIAVTabPFN ($\mathbf{X}^{tr} = \mathbf{X}_1, \mathbf{X}^{ts} = \mathbf{X}_2, \text{percent}$) {Generate a synthetic data copy of \mathbf{X}_2 using Alg. 6.}
- 5: $\mathbf{Z} \leftarrow \text{Concatenate}(\mathbf{Z}_1, \mathbf{Z}_2)$ {Concatenate the synthetic datasets \mathbf{Z}_1 and \mathbf{Z}_2 .}
- 6: Z ← RoundIntegerVariables(X, Z) {This function uses X to determine which variables have integer type and round the values of the corresponding variables in Z to the nearest integer.}
- 7: **Output:** synthetic data **Z**

Figure 18 shows an illustrative example (using simulated dataset with correlated beta distributed data). Panels a1 to e1 show a scatterplots of the MIAVs, M_j versus the original variable, X_j . Panel a2 to e2 show the respective scatterplots for the noisy MIAVs obtained by adding Gaussian noise with standard deviation given by $0.1 \times \mathrm{sd}(M_j)$ (where $\mathrm{sd}(M_j)$ represents the standard deviation of the MIAV M_j). Similarly, panels a3 to e3 and panels a4 to e4 show the scatterplots for the noisy MIAVs obtained with standard deviations $0.2 \times \mathrm{sd}(M_j)$, and $0.3 \times \mathrm{sd}(M_j)$, respectively.

Figure 19 compares the densities of synthetic data generated with the MIAV approach (panels a1 to e1) against synthetic data generated with the noisy-MIAV approach using increasing amounts of noise (namely, $0.1 \times \mathrm{sd}(M_j)$ for panels a2 to e2, $0.2 \times \mathrm{sd}(M_j)$ for panels a3 to e3, and $0.3 \times \mathrm{sd}(M_j)$ for panels a4 to e4.)

Finally, in Figure 20 we report the results from synthetic and real-world data experiments evaluating the noisy-MIAV approach w.r.t. the same fidelity and privacy metrics using the same 43 datasets evaluated in the main paper. As before, the results were based on 10 distinct random splits of the data into original and holdout datasets and the figure report results pooled across all datasets. As expected, the noisy-MIAV approach trades an increase in data privacy by a decrease in data fidelity.

Figure 18: MIAV and noisy-MIAV versus original data scatterplots. Panels a1-e1, a2-e2, a3-e3, and a4-e4 show scatterplots of the original data versus MIAV and original data versus noisy-MIAVs generated with increasing amounts of noise.

Figure 19: Marginal distributions generated with the noisy-MIAV strategy. Panels a1 to e1 report the densities based on the standard MIAV. Panel a2-e2, a3-e3, and a4-e4 show densities based on the noisy-MIAV (NMIAV) generated with noise percent set to 0.1, 0.2, and 0.3, respectively.

Figure 20: Experiment results for the noisy-MIAV strategy with noise percent increasing from 0.05 to 0.3 (in 0.05 increments). Increasing amounts of noise lead to decreasing data fidelity (larger values for the KS, L2D, and DT metrics), but improved data privacy (larger DCR values and lower SDBRL and SSDID values). Each boxplot displays the results from 10 distinct original/holdout data splits. Top panels show the pooled results for the synthetic data experiments. Middle panels show the pooled results for the OpenML-CC18 datasets in Table 4. Bottom panels show pooled results for the datasets in Table 5. (The boxplots omit outliers to improve visualization.)

K SYNTHETIC DATA GENERATION BASED ON TABICL PFN MODELS

To illustrate that our proposed synthetic data generation strategy is not restricted to TabPFN models, here we illustrate its application in conjunction with the TabICL model (Qu et al., 2025), which corresponds to an alternative PFN-based tabular foundation model. TabICL provides a much more scalable alternative to TabPFN, being able to handle datasets with up to 500,000 examples using affordable compute resources. However, similarly to TabPFN, it is still constrained to datasets with at most 500 features. (Observe, however, that because the MIAV strategy only requires training of TabPFN (or TabICL) models with a single feature per variable, this constraint has no impact on the MIAV approach, which can potentially be used to generate synthetic data versions of datasets containing more than 500 variables.)

Because TabICL currently can only handle classification tasks, our illustrations are restricted to datasets containing only categorical variables. Since we are also comparing the TabICL-based synthetic data generation against the strategies based on TabPFN we restrict our comparisons to the datasets in the OpenML-CC18 benchmark suite with at most 10,000 samples, 500 features, containing categorical variables with at most 10 level classes, and which contain more categorical variables than numeric ones. (We dropped the numerical variables from the few datasets that contained both numeric and categorical variables.) Table 8 shows the selected datasets for these comparisons.

As before, we consider 3 data generation strategies, namely, the MIAV-TabICL, the JF-TabICL, and the FC-TabICL and compare it against the corresponding TabPFN based MIAV, JF, and FC strategies (denoted as MIAV-TabPFN, the JF-TabPFN, and the FC-TabPFN in the plots below).

Table 8: Datasets used for the TabICL illustrations and comparisons with TabPFN. These include all 8 datasets in the OpenML-CC18 benchmark suite with at most 10,000 samples, 500 variables, 10 classes per categorical variables, and a larger number of categorical variables than numeric ones. In the first column we assign simplified dataset names (C1 to C8) to the original dataset names. The number of categorical variables is abbreviated as #cat, and the number of classes of the categorical variable with most classes is abbreviated as #class. In datasets C2 and C3 we remove the numerical variables before running the analyses.

NAME	ORIGINAL DATASET NAME	#SAMPLES	#COLUMNS	#CAT	#CLASS	OPENML ID
C1	KR-VS-KP	3196	37	37	3	3
C2	CMC	1473	10	8	4	23
C3	CREDIT-G	1000	21	14	10	31
C4	SPLICE	3190	61	61	6	45
C5	TIC-TAC-TOE	958	10	10	3	49
C6	ANALCATDATA-DMFT	797	5	5	9	3560
C7	CAR	1728	7	7	4	146821
C8	DNA	3186	181	181	3	167140

The implementation of the TabICL-based strategies is analogous to the TabPFN ones (we just need to switch the GeneratePreditionsUsingTabPFN() function in Algorithms 2, 4, and 6 by the corresponding GeneratePreditionsUsingTabICL() function).

The experiments were run as before, where each dataset was first randomly split into approximately equal sized original and holdout sets, and we report the results from 10 data splits. Since we only consider categorical datasets, we adopt: (i) the average KL-divergence metric to measure the quality of the synthetic data marginal distributions (where we compute separate KL-divergence scores for each column of the dataset and take the average across all columns as the final metric); and (ii) the L2D metric for measuring how well the synthetic data captures the pairwise statistical associations observed in the original data (where the pairwise associations of the categorical variables are measured with the Cramer-V statistic.). For both of these metrics, lower values indicate better data fidelity.

Figures 21 to 22 report the results for the average KL-divergence and L2D metrics, respectively. For comparison, the figures also show the results for the holdout datasets. For all datasets, the results for MIAV-TabICL and MIAV-TabPFN were very close. As before, the MIAV-based strategies tended to outperform the JF and FC ones.

Figure 21: KL-divergence comparison for categorical datasets C1 to C8 (see Table 8 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

Figure 22: L2D comparison for categorical datasets C1 to C8 (see Table 8 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

L LLM USAGE

ChatGPT-5 was used to refine the grammar and clarity of some paragraphs of the paper and to translate R code into Python code. We reviewed and verified all AI-generated content for accuracy and take full responsibility for the paper's final content.