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ABSTRACT

Synthetic data generation for tabular datasets is shifting toward the use of large,
general-purpose foundation models. TabPFN, a state-of-the-art example, uses
in-context learning to generate probabilistic predictions conditioned on observed
examples in a single forward pass. However, when variables are only weakly associ-
ated with others, the model’s ability to generate realistic synthetic data deteriorates,
as the context examples provide little predictive signal. To address this, we intro-
duce the maximal information auxiliary variable (MIAV) strategy, which increases
context information with auxiliary variables constructed by rank-matching random
noise variables to real data. We establish theoretical properties of the approach
which explain its good performance for weakly associated variables. Additional
practical advantages of the MIAV approach include improved computational effi-
ciency and invariance to variable order during the synthetic data generation process.
Empirical evaluations, on simulated and real datasets, illustrate how the MIAV
strategy improves data generation when compared to direct application of TabPFN,
and is competitive against other baselines. To illustrate the generality of the MIAV
approach we also present an implementation based on the TabICL model (a more
scalable tabular foundation model restricted to classification tasks) for performing
synthetic data generation on categorical datasets. Overall, MIAV offers an effective
foundation model–based alternative to bespoke synthetic data generators.

1 INTRODUCTION

Accessible data is crucial for advancing machine learning research. In practice, however, real-world
datasets often contain sensitive information, restricting their open distribution within the research
community. A promising solution is the generation of synthetic datasets that closely replicate the
properties of real data while avoiding direct disclosure (Lu et al., 2023).

While synthetic data has long been explored through bespoke statistical models and machine learning
algorithms, the field is now undergoing a paradigm shift driven by advances in large-scale, general-
purpose models. Traditional approaches, such as those by Borisov et al. (2023), Cresswell and Kim
(2024), Jolicoeur-Martineau et al. (2024), Kotelnikov et al. (2023), Nowok et al. (2016), Reiter
(2005), Shi et al. (2025), Watson et al. (2023), Xu et al. (2019), Young et al. (2009), Zhang et al.
(2024), Xu et al. (2025), among many others, typically rely on dataset-specific training, demand
substantial domain expertise, and often struggle with knowledge transfer across datasets. Tabular
foundation models (Hollmann et al., 2023; den Breejen et al., 2024; Koshil et al., 2024; Feuer et
al., 2024; Ma et al., 2024a; Ma et al., 2024b; Xu et al., 2024; Zeng et al., 2024; Muller et al., 2025;
Hollmann et al., 2025; Qu et al., 2025; Garg et al., 2025) offer a promising alternative. By learning
broad, transferable representations of tabular data, they enable strong performance in supervised
learning tasks with minimal additional training.

In particular, TabPFN (Hollmann et al., 2025) represents a state-of-the-art tabular foundation model,
trained on millions of diverse synthetic datasets covering a wide range of feature types, noise
structures, and functional relationships. This diversity allows it to leverage a broad, transferable
prior over tabular data distributions. TabPFN enjoys a solid theoretical foundation as it corresponds
to a prior-data fitted network (PFN) (Müller et al., 2022) and can be interpreted as approximating
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Bayesian prediction under the prior induced by its synthetic training data. TabPFN relies on in-
context learning (Brown et al., 2020) (ICL) for generating probabilistic predictions. At inference time,
the pre-trained foundation model employs training features, Xtr, and training targets, ytr, as the
“context" data, whereas the test set features, Xts, play the role of the “query". The output of the query
is a sample/prediction ŷts from the posterior predictive distribution of yts, P (yts |Xts,Xtr,ytr),
generated by a single forward pass through the model’s neural network. TabPFN has been shown to
achieve state-of-the-art performance in classification and regression tasks in small datasets and, due
to its generative nature, can also be directly used to perform synthetic data generation (Hollmann et
al., 2025).

Despite its promise, applying TabPFN directly to synthetic data generation reveals an important
limitation: the method performs poorly for variables that are only weakly associated with the rest of
the dataset. This is expected: when the target data y is uncorrelated with the features X, the context
examples Xtr,ytr provide no useful signal for learning how to map X to y. Consequently, when
queried with Xts, the model is unable to approximate the distribution of yts. While this limitation
is less consequential for supervised learning tasks, it poses a significant caveat for synthetic data
generation (see Appendix A for details). In principle, exemplar-based declarative programming
strategies could mitigate this issue, but doing so would likely require fine-tuning, or even retraining
the foundation models.

In this paper, we address this problem by showing how to generate high-quality synthetic datasets
with the current TabPFN model. Our approach leverages maximal information auxiliary variables
(MIAV) for in-context learning. We construct these variables through simple rank-matching of
random noise to the real data and establish two key theoretical properties: (i) conditional on its
MIAV, a variable Xj is independent of all other variables, and (ii) the MIAV of Xj retains maximal
information about Xj in a non-parametric, information-theoretic sense (see Theorem 1). We further
demonstrate that MIAV-based synthetic data generation corresponds to the correct factorization of the
posterior predictive distribution conditioned on the original data and MIAVs. Together, these results
provide the foundation for more effective synthetic data generation strategies using TabPFN models.

In addition to its theoretical strengths and its ability to generate high-quality synthetic data under
weak association settings, our proposed strategy offers several practical advantages. First, unlike the
direct synthetic data generation approach of Hollmann et al. (2025), which is sensitive to variable
order and therefore requires aggregating results across multiple variable order permutations, our
method is invariant to variable order. Second, regarding computational efficiency, TabPFN’s runtime
for a fixed sample size is primarily determined by the number of context features, as its complexity
scales quadratically with the number of features. Since our approach uses only one feature per
variable when generating synthetic data, it attains maximal efficiency and eliminates the need for
aggregation across multiple runs.

To illustrate the issues around the direct use of TabPFN for synthetic data generation under weak
association settings, we describe a couple of direct implementations and compare their performance
against the MIAV approach in simulated data experiments (where we are able to control the strength
of the statistical associations among the data variables), as well as, on extensive real-world data
experiments based on 43 distinct datasets. (For completeness, we also include comparisons against
other baseline generators.)

We conduct our evaluations in the setting of privacy-preserving data sharing (Rajotte et al., 2022),
where the objective is to produce synthetic copies of real datasets that retain their statistical properties
while simultaneously mitigating privacy risks. Accordingly, we assess the performance of the
TabPFN-based synthetic data generation strategies using both data fidelity and privacy metrics.

Importantly, our synthetic data generation strategy can be directly applied to other tabular foundation
models that approximate Bayesian inference. To demonstrate this, we also implemented our approach
using the more scalable TabICL foundation model (Qu et al., 2025), a recently proposed alternative
to TabPFN that alleviates some of its data size limitations. (Since the current version of TabICL only
supports classification, our implementation and evaluation were restricted to 8 additional real-world
categorical datasets.) These additional results highlight the generality of our strategy and suggest
that, as PFN-based tabular foundation models continue to evolve, they can be seamlessly integrated
into our framework.
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In summary, this paper proposes an effective, computationally efficient, and generalizable approach
that leverages the in-context learning capabilities of modern tabular foundation models to generate
synthetic data aiming to facilitate data sharing. It provides a foundation-model alternative to traditional
synthetic data generators built on the earlier paradigm of bespoke ML models.

2 NOTATION

Throughout the text, random variables are represented in italics, vectors of random variables are
shown in boldface, e.g., X = (X1, . . . , Xp)

t, and P (X) is used for probability statements involving
random variables. Data matrices and data vectors are represented in uppercase and lower case
boldface, respectively. (E.g., if X is an n× p matrix, than the jth column of X is represented by xj .)
We use the notation X−j to represent the matrix obtained by removing the jth column from X, and
the notation X<j to represent the matrix comprised by the first j− 1 columns of X. (Similarly, in the
case of a set of random variables, we use the notation X<j to represent the subset of X containing
elements 1 to j − 1.) We adopt the superscripts tr and ts to represent the training and test sets, and
we let qθ(xtsj | Xts

−j ,X
tr) represent a TabPFN model (either a regression or a classification model

depending on whether the variable j is numeric or categorical), where x̂tsj ∼ qθ(x
ts
j | Xts

−j ,X
tr)

represents the prediction generated by the model. TabPFN uses both the training features, Xtr
−j , and

training targets, xtrj , as examples during the in-context training step, but only the test set features,
Xts
−j , during the in-context query step, where the model is asked to generate a prediction of the test

set targets based on the examples from the training set and the values of the test set features.

Because our goal is to generate synthetic data copies of given datasets, rather than performing
supervised learning tasks, our notation does not explicitly differentiate between feature and targets
variables (as the same variable can sometimes play the role of a feature and sometimes of a target
during the synthetic data generation process). Hence, we use the notation qθ(xtsj | Xts

−j ,X
tr) =

qθ(x
ts
j | Xts

−j ,X
tr
−j ,x

tr
j ) instead of the notation qθ(yts | Xts,Xtr,ytr), more commonly used in

the TabPFN literature.

3 RELATED WORK

Although the literature on synthetic data generation (SDG) using bespoke machine learning models
is extensive (see Bond-Taylor et al., 2021; Lu et al., 2023, and references therein), SDG based on
tabular foundation models remains underexplored. To the best of our knowledge, only two prior
studies have addressed this problem. Ma et al. (2023) introduced the TabPFGen algorithm, which
relied on an earlier version of TabPFN (Hollmann et al., 2023) that could not handle regression tasks.
To produce continuous data, TabPFGen employed an energy-based procedure for generating features
conditional on classification labels. Such procedures are no longer necessary with the current version
of TabPFN (Hollmann et al., 2025), which supports both classification and regression and can directly
generate categorical and numerical data. SDG was also discussed in Hollmann et al. (2025), but
only superficially: it was demonstrated on a single dataset without any formal evaluation of synthetic
data quality. That work primarily focused on establishing TabPFN’s state-of-the-art performance
in supervised learning, with SDG presented merely as a secondary capability. In this paper, we (i)
highlight the limitations of the direct SDG approach in Hollmann et al. (2025), (ii) propose a more
effective alternative strategy, and (iii) conduct extensive evaluations of TabPFN-based SDG methods.

4 DIRECT STRATEGIES FOR SDG BASED ON TABPFN

Here we describe the simple strategy, suggested in Hollmann et al. (2025), for performing synthetic
data generation with the TabPFN model, alongside an alternative variation of this direct approach.
Their main limitations are discussed and illustrated using simulated datasets (where we can control
the strength of the statistical associations between the variables).

Let P (Xts |Xtr) represent the posterior predictive distribution (PPD) of the test data conditional
on the training data. This conditional joint probability distribution can be fully factorize as,

P (Xts |Xtr) =

p∏
j=1

P (Xts
j |Xts

<j ,X
tr), (1)

3
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Figure 1: Comparison of marginal distributions generated with the JF, FC, and MIAV strategies.

where X<j represents a subset of X containing elements 1 to j − 1, and p represents the number of
features.

Hollmann et al. (2025) suggested generating synthetic data by following the factorization of the joint
PPD,

P (Xts |Xtr) ≈
p∏
j=1

qθ(x
ts
j | Xts

<j ,X
tr
<j ,x

tr
j ), (2)

where, due to the in-context learning (ICL) nature of TabPFN, the conditioning on the training set
is done on Xtr

<j and xtrj rather than Xtr. Note that the approximation in equation 2 represents,
in actuality, two different levels of approximation. The first is w.r.t. the approximation of the
distribution P (Xts

j | Xts
<j ,X

tr) by the distinct distribution P (Xts
j | Xts

<j ,X
tr
<j , X

tr
j ), which no

longer conditions on training variables Xj′ for j′ > j. The second is w.r.t. the approximation of
P (Xts

j |Xts
<j ,X

tr
<j , X

tr
j ) by the transformer model qθ(xtsj | Xts

<j ,X
tr
<j ,x

tr
j ).

Furthermore, because the TabPFN model cannot condition on an empty set (as you need to provide the
model with some input for it to perform ICL) the first product term in equation 2 requires conditioning
in a variable X0, which is not part of the data. Following the suggestion by Hollmann et al. (2025),
we adopt a random noise feature as our X0. A detailed description of the implementation of this
strategy, denoted “factorization of the joint PPD" (or JF for short), is provided in Algorithms 2 and
3 in Appendix B. (As pointed by Hollmann et al. (2025), the order of the variables in the joint
factorization of the PPD can also affect the results, and Hollmann et al. suggest using a permutation
sampling approximation of Janossy pooling1 to remedy this issue. This requires, however, the
generation and aggregation of multiple synthetic datasets generated from random permutations of the
order of the columns of the real data and is not implemented in our experiments.)

Figure 1 illustrates the application of the JF generation strategy (and other approaches that will be
described later) to a simulated dataset containing data draw from highly correlated beta distributions.
(See Appendix C for details.) To simulate an uninformative feature, we randomly shuffled the data of
variable X2, so that it is completely uncorrelated with the other variables. (Figure 5a in Appendix D
shows the correlation matrix for these variables.) The black densities represent the original (“real")
data while the orange ones show the synthetic data generated with the JF strategy. Not surprisingly,
this example shows that TabPFN provided very poor approximations for the distributions of X1 and
X2. In the case of X1, the ICL based on X0 is poor because X0 is a random noise variable which
contains no information about X1. In the case of X2, the ICL again fails because X1 does not contain
information about X2 (which is uncorrelated from all other variables).

An alternative approach is to use the full conditional distributions of each variable in the synthetic
data generation (denoted as FC, for short). This strategy is implemented using the factorization,

p∏
j=1

qθ(x
ts
j | Xts

−j ,X
tr) (3)

where X−j represents a subset matrix obtained by dropping column j from X. A detailed description
of our implementation of this strategy is provided in Algorithms 4 and 5 in Appendix B.

1Namely, Hollmann et al. (2025) generate N distinct synthetic datasets, using different random permutations
of the order of the variables during the synthetic data generation process, and average the results across the N
synthetic datasets to reduce variability and decrease the dependence of the result on the variable order.
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Figure 2: Degrading performance of JF and FC as association strength decreases. MIAV is unaffected.

Despite the fact that this fully conditional factorization does not correspond to a proper factorization
of the PPD, this strategy has a few practical advantages. First, it eliminates the need for coming up
with a X0 variable, as the data for X1 is generated from it’s full conditional distribution. Second, the
generation of each variable leverages information from all other variables. Third, this approach is
unaffected by the order of the variables. It’s main practical disadvantage is that it is more expensive
to compute since increasing numbers of variables lead to increases in compute time. (As pointed by
Hollmann et al. (2025), the time complexity of TabPFN is O(n2 + p2), where n and p represent,
respectively, the number of rows and columns of the data.)

The blue densities in Figure 1 illustrate the application of the FC generation strategy. Now, the
distribution of X1 is nicely recovered by the FC strategy. (This is easier to visualize in Figure 5m
in Appendix D, which reports the same results as Figure 1 using a different display.) The approach,
however, still fails for X2 because this variable is uncorrelated to all other variables.

In Appendix E we describe additional variations of the JF direct data generation strategy.

4.1 PERFORMANCE DEGRADATION IN DATASETS CONTAINING WEAK ASSOCIATIONS

The illustrative examples in Figure 1 were based in data simulated with very strong correlations. The
performance of direct strategies such as JF and FC, however, is strongly influenced by the strength
of the statistical associations among the variables. Because TabPFN relies on ICL for generating
predictions, and weakly associated features provide little information about the target variable, its
performance suffers in datasets with weakly associated variables. To illustrate this point, Figure
2 presents the application of the JF and FC strategies (among others) to datasets with decreasing
correlation strengths. (The association strength is controlled by the ρ parameter, as described in
Appendix C). Due to space limitations, the figure only reports results for a single variable (X4). The
full results are presented in Figures 5 to 9 in the Appendix D. Figure 2 clearly shows that the quality
of the synthetic data generated by the JF and FC approaches (orange and blue densities) decreases
with decreasing correlation strengths.

5 CONSTRUCTING MAXIMAL INFORMATION AUXILIARY VARIABLES

The previous section illustrates how direct application of TabPFN for synthetic data generation is
problematic when variables lack strong statistical associations with other variables. A simple strategy
for improving the synthetic data quality is to augment the dataset with auxiliary variables that are
highly associated with the real data variables.

To this end, inspired by recent work in non-parametric and model free data synthesis (Chaibub Neto,
2025), we a propose a simple approach in which we rank-match arbitrary noise variables to the real
data variables. The procedure is described in detail in Algorithm 1, and its output is what we denote
as a maximal information auxiliary variable (MIAV).

The basic idea is to induce a monotonic mapping between a random noise variable and the real data
vector xj . Starting in line 2, the algorithm first draws a sample of size n (equal to the length of
xj) from an arbitrary random noise variable and then sorts it from lowest to highest values. (In our
implementation we sample random noise from a uniform distribution in the [0, 1] interval. This choice
is, nonetheless, unimportant as the approach is not sensitive to the noise distribution used to construct
the MIAV. See Appendix L for further details.) In lines 3 to 8 the algorithm ranks the values of xj . If
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Algorithm 1 GenerateMaximalInformationAuxiliaryVariable(xj)
1: Input: data vector, xj
2: mj ← Sort(GenerateRandomNoiseVector(n = length(xj))) {Generate a sorted random noise vector.}

3: if xj is numeric then
4: r← Rank(xj) {Compute the ranks of xj . Ties are broken at random.}

5: end if
6: if xj is categorical then
7: r← NumericRankEncondingOfCategoticalVariables(xj) {Described in Algorithm 10 in the Appendix.}

8: end if
9: mj ←mj [r] {Re-order the entries of mj according to the ranks of xj . The result is a vector mj with identical ranks as xj .}

10: Output: the auxiliary variable mj
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Figure 3: MIAVs illustrative example. In panels f and l, positive correlations are represented in blue
and negative correlations are represented in red.

xj is numeric, the algorithm computes its ranks in the standard way (line 4), breaking ties among
identical values using the random assignment approach. If xj is categorical, the algorithm applies
a numeric rank encoding to the categorical variables, as described in Algorithm 10 in Appendix F,
and originally proposed by Chaibub Neto (2025). (In a nutshell, Algorithm 10 counts the number
elements of xj in each factor level and distributes numerical ranks ranging from 1 to n randomly
within each level of the categorical variable xj . Appendix F also includes an illustrative example.)
Finally, in line 9 the algorithm re-orders the entries of mj according to the ranks of xj . The result
is a vector mj with identical ranks to xj , that is, the position of the lowest value of mj is the same
as the position of the lowest value of xj , the position of the 2nd lowest value of mj is the same as
the second lowest value of xj , and so on. Figure 3 provides some examples. Panels a to e show the
distributions of the Xj variables in black and their respective MIAVs, Mj , in red. (The MIAVs follow
uniform distributions since in our implementation we draw random noise from uniform distributions.)
Variable X5 is discrete assuming values 1, 2, 3, and 4. Panels g to k show scatterplots of the Mj vs
Xj data, illustrating the monotonic relations. Panels f and l show the pairwise associations for the
Xj and Mj variables, respectively, and illustrate that, as expected, the Mj variables recapitulate the
associations of the Xj data.

This procedure has some nice theoretical properties, described in the following result.
Theorem 1. Let Mj represent the auxiliary variable generated from Xj by Algorithm 1, and Y
represent an arbitrary variable other than Xj or Mj . Then, non-parametrically,

1. I(Xj ;Y |Mj) = 0, i.e., the conditional mutual information of Xj and Y given Mj is 0.

2. H(Xj |Mj) = 0, i.e., the conditional entropy of Xj given Mj is 0.

The proof is presented in Appendix G. Note that this result holds non-parametrically, in the sense
that any continuous variable is first discretized into n bins (where n represents sample size), so that
we can use the discrete probability (and non-parametric) definitions of these information-theoretic
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quantities. This is justifiable because a sample of size n from a continuous variable can always be
viewed as the sample of a discrete variable with n distinct levels, each observed with frequency 1/n.

This result shows that the auxiliary variable Mj , generated by Algorithm 1 has the following two key
properties. First, it contains maximal information about Xj . (This holds in the conditional entropy
sense, since H(Xj |Mj) = 0 implies that Xj is completely determined by Mj in a non-parametric
rank-based sense.) Second, conditional of Mj , Xj is statistically independent of any other variables.
These two properties are key for the synthetic data generation approach that we propose next.

6 SDG USING MAXIMAL INFORMATION AUXILIARY VARIABLES

Let M = (M1, . . . ,Mp)
t represent the set of random variables Mj generated by Algorithm 1. Now,

consider the augmented posterior predictive distribution of Xts given Xtr, M ts, and M tr,

P (Xts |Xtr,M ts,M tr) =

p∏
j=1

P (Xts
j |Xts

<j ,X
tr,M ts,M tr). (4)

Now re-writing,
P (Xts

j |Xts
<j ,X

tr,M ts,M tr) = P (Xts
j |Xts

<j ,X
tr,M ts

−j ,M
ts
j ,M

tr
−j ,M

tr
j ) , (5)

and recalling that Xts
j is independent from all other variables conditional on M ts

j , its follows that,

P (Xts
j |Xts

<j ,X
tr,M ts

−j ,M
ts
j ,M

tr
−j ,M

tr
j ) = P (Xts

j |M ts
j ) , (6)

which, for the same reason, can also be re-expressed as,
P (Xts

j |M ts
j ) = P (Xts

j |M ts
j ,M

tr
j , X

tr
j ) , (7)

a format that is better suited for performing in-context learning with a PFN model. Hence, the PPD
augmented with the set of maximal information auxiliary variables can formally be expressed as,

P (Xts |Xtr,M ts,M tr) =

p∏
j=1

P (Xts
j |M ts

j ,M
tr
j , X

tr
j ), (8)

and readily approximated by a trained TabPFN model as,

P (Xts |Xtr,M ts,M tr) ≈
p∏
j=1

qθ(x
ts
j |mts

j ,m
tr
j ,x

tr
j ), (9)

where ICL for each variable Xj is performed by training on mtr
j and xtrj and querying on mts

j .2

This formulation, denoted the “Maximal Information Auxiliary Variables" strategy (or MIAV strategy
for short) has several practical advantages. First, it is the most efficient strategy in terms of computa-
tion, since ICL of each variableXj is performed using a single variableMj (recall that the complexity
of the TabPFN model scales quadratically on the number of columns of the table). Appendix H
reports complexity analyses and compute time benchmark experiments comparing the MIAV, JF, and
FC strategies. Second, contrary to all the other direct generation strategies described in Section 4, the
MIAV approach is based on a proper factorization of the (augmented) PPD (the approximation in
equation 9 is only w.r.t. the transformer model approximation to the predictive distribution). Third,
contrary to the JF strategy, the MIAV approach is invariant with respect to the order of the dataset
columns. Fourth, and most importantly, the MIAV approach handles uninformative features and
performs well in datasets containing weakly associated features. This last point is illustrated by the
red densities in Figures 1 and 2 (see also panels s to w in Figures 5 to 9 in Appendix D), where the
MIAV approach closely recapitulates the original marginal distributions. Quite importantly, note that
while the augmented joint PPD in equation 8 factorizes into separate P (Xts

j | Xtr
j ,M

ts
j ,M

tr
j ) com-

ponents, the synthetic data generated by the qθ(xtsj | xtrj ,mtr
j ,m

ts
j ) still recapitulates the association

structure of X because this association is indirectly induced by the MIAVs (recall that M mimics the
association structure in X, as illustrated in panels f and l of Figure 3. Algorithms 6 and 7 in Appendix
B provide implementation details about the MIAV synthetic data generation approach.

2Here, it is important to clarify that we are able to condition on the test set auxiliary variables, M ts, because
we always have unrestricted access to the full X data (which is only split into Xtr and Xts for the sake of ICL).
Hence, the test set is always available and we can generate the corresponding MIAV matrix Mts. (Our goal is to
generate a synthetic copy of the original data, rather than making predictions about unseen test data.)
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7 EXPERIMENTS BASED ON TABPFN MODELS

Experiments. We performed three sets of experiments. The first, used simulated data draw from
correlated beta distributions (generated as described in Appendix C), for which we can control
the strength of the associations among the variables. The second experiment, used a subset of 36
real-world datasets (Table 4) from the OpenML-CC18 benchmark suite (Bischl et al., 2021). The
third one, used 7 additional datasets (Table 5) evaluated in Hansen et al. (2023) and Chaibub Neto et
al. (2025). (Appendix I.3 contains further information and describes our rationale for selecting these
datasets.)

Data splits. In each of the three experiment sets, every dataset was divided into two equal subsets.
The first, referred to as the original data, was provided to the synthesizers, while the second, the
holdout data, was never accessed by them. (Appendix I.1 provides further details about the data splits,
including the description of additional data splits performed in the original data for generating the
training and test sets used by the TabPFN models when performing in-context learning.)

Evaluation metrics. Synthetic datasets generated from the original data were evaluated using fidelity,
utility, and privacy metrics. Fidelity was assessed with the average KS-test statistic (KS), the L2
distance between association matrices (L2D), the detection test (DT), the Wasserstein distance (WD),
and the energy distance (ED), which measure agreement with marginal distributions, preservation of
pairwise statistical associations, distinguishability of real versus synthetic samples, and agreement
with respect to joint distributions, respectively. Utility was assessed with machine learning efficiency
(MLE) metric, which measures utility with respect to performance in downstream prediction tasks by
training learners on synthetic data and evaluating their predictive performances on real data (i.e., the
holdout set). Privacy was evaluated with the distance to closest record (DCR) and the sorted standard
deviation interval distance (SSDID), which capture attribute disclosure risks, as well as the sorted
distance-based record linkage (SDBRL), which measures re-identification risks. Further details on all
evaluation metrics are provided in Appendix I.5.

Baselines. In addition to comparing the MIAV-based synthetic data generation strategy with the
joint factorization (JF) and full conditional (FC) approaches, experiments 1 and 2 also included
the SMOTE generator (Chawla et al., 2002). SMOTE is well known for producing high-fidelity
synthetic data, although this often comes at the expense of privacy when compared to other baselines
(Kotelnikov et al., 2023; Kindji et al., 2024). We selected SMOTE as a baseline because, unlike deep
learning–based generators, it is applicable to the small datasets used in our evaluations. (As shown in
Table 4, 26 out of the 36 datasets contain fewer than 2,000 samples.) In the third experiment, which
involves larger datasets, we extended our comparisons to include additional baseline generators:
DDPM (Kotelnikov et al., 2023), ARF (Watson et al., 2023), TVAE (Xu et al., 2019), CTGAN (Xu et
al., 2019), and Bayesian networks (Young et al., 2009), all implemented in Synthcity (Qian et al.,
2024). For DDPM, TVAE, and CTGAN, we adopted the hyperparameter values reported by Hansen
et al. (2023) and Chaibub Neto et al. (2025), which had been optimized with Optuna (Akiba et al.,
2019) using AUROC minimization of an XGBoost classifier. For ARF, we used the values from
Chaibub Neto (2025). The corresponding hyperparameters are listed in Tables 6 and 7. Relying on
these published configurations provided substantial computational savings, since hyperparameter
optimization is particularly costly for deep learning–based models, and motivated our restriction of
these baseline comparisons to only these 7 datasets.

Experimental details. In all three experiment sets, we also compared against the holdout sets to
establish reference values for each evaluation metric under the ideal scenario of a generator that
samples directly from the same distribution as the original data. To enhance statistical validity, we
conducted 10 replications for each real-world dataset, each based on distinct original/holdout splits.
For the correlated beta distribution experiments, results were similarly averaged over 10 replications
per simulation setting, with variation introduced through different simulation parameters. We con-
sidered five simulation settings corresponding to absolute correlations |ρ| = 0, 0.25, 0.5, 0.75, 0.95.
Additional experimental details are provided in Appendix I.

7.1 RESULTS

Figure 4 presents results (pooled across datasets) for the KS, L2D, DT, DCR, SDBRL, and SSDID
metrics.
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Figure 4: Pooled experimental results. Top panels show results pooled across the 5 simulated dataset
settings. The middle panels show results pooled across the 36 real-world datasets selected from the
OpenML-CC18 suite. The bottom panels show results pooled across the 7 real-world datasets used
for the baseline generator comparisons. For the DCR metric, higher values indicate better privacy.
For all other metrics, lower values indicate either better fidelity or better privacy.

In terms of fidelity, SMOTE generally performed best, with a slight advantage over MIAV (recall that
lower KS, L2D, and DT values indicate higher fidelity). MIAV, however, consistently outperformed
JF and FC across all experiments and surpassed all other baseline generators in the third experiment,
with the single exception of DDPM, which achieved better scores w.r.t. the DT metric (see panel o)
(but still did worse than MIAV w.r.t. the other fidelity scores in panels m and n).

In terms of privacy, MIAV generally outperformed SMOTE on the DCR metric (where higher values
indicate stronger privacy protection) and showed even larger gains on the SDBRL and SSDID
metrics (where lower values indicate better privacy). MIAV also tended to surpass the other baseline
generators with respect to DCR (panel o), but performed less favorably on SDBRL and SSDID (panels
q and r). Across most experiments, JF and FC produced more private data than MIAV, although this
came at the cost of substantially lower fidelity.

In general terms, the fidelity–privacy tradeoff patterns observed in the simulated datasets (top panels)
closely mirrored those in the real datasets (middle and bottom panels). Overall, these experiments
suggest a competitive performance of the MIAV-based synthetic data generator. Additional results
broken down by dataset are provided in Figures 14, 15, 16, 17, 18, and 19 in Appendix I.7.

Figure 13 in Appendix I.6 report the pooled results for the MLE, WD, and ED metrics. Overall, these
evaluations show that the MIAV approach again achieves competitive performance with respect to
these additional metrics (ranking among the top generators in most experiments). See Appendix I.6
for further details.

Appendix J introduces a noisy variant of the MIAV approach that applies controlled amounts of noise
before generating synthetic data. This version, referred to as the noisy-MIAV strategy, can potentially
enhance privacy protection in sensitive applications, albeit at the cost of reduced data fidelity.

8 EXPERIMENTS BASED ON TABICL MODELS

We also demonstrate the MIAV data generation strategy using the TabICL foundation model (Qu et
al., 2025) and compare its performance to TabPFN-based generators across 8 categorical datasets
from the OpenML-CC18 suite. Results, presented in Appendix K, show that (i) MIAV-TabICL and
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MIAV-TabPFN achieve very similar performance, and (ii) MIAV-based strategies, whether built on
TabICL or TabPFN, tend to outperform the JF and FC baselines. This alternative implementation
highlights that our synthetic data generation approach is not limited to TabPFN and can be directly
applied to other PFN-based foundation models.

9 FINAL REMARKS

In this paper, we introduce the MIAV strategy, a more effective approach for leveraging TabPFN
models in synthetic data generation. MIAV addresses key limitations of direct TabPFN application,
offers improved computational efficiency, and can be readily applied with other PFN-based foundation
models. We expect it to be especially useful in small-data scenarios, settings that are typically
challenging for traditional synthetic data generators but where TabPFN excels. Our experiments on
real datasets indicate that MIAV is competitive with established baselines built on bespoke machine
learning models. It is worth noting, however, that PFN-based tabular foundation models are still in
the early stages of development. As these models continue to evolve, it is reasonable to expect that
MIAV-based synthetic data generators built on future, more advanced PFN-based tabular foundation
models might achieve even better performance.

Our approach inevitably inherits the limitations of the underlying tabular foundation model used
for in-context learning. For the TabPFN model used in our experiments (namely, TabPFNv2), these
limitations include: (i) a maximum data size of 10,000 rows; (ii) memory usage that grows linearly
with dataset size, which can become prohibitive for very large data; and (iii) inference speeds that may
lag behind alternative baselines. But, as mentioned above, these are early days in the development
of PFN-based tabular foundation models and we expect that future releases will likely continue to
relax limitations from the previous versions. For instance, a new version of the TabPFN model,
denoted TabPFN-2.5, has been recently released which is able to handle datasets with up to 50,000
rows (Grinsztajn et al., 2025). Furthermore, the more scalable TabICL model is already able to
handle 500,000 rows but currently supports only classification tasks. Future versions of TabICL that
extend to regression could be directly integrated with the MIAV strategy, thereby helping to overcome
current model constraints.

In addition to limitations on the maximum number of rows they can process, PFN-based tabular
foundation models are also constrained by the number of columns they can handle. For example,
TabPFNv2 and TabICL support datasets with up to 500 features, while TabPFN-2.5 increases this
limit to 2,000. Importantly, however, these constraints do not affect the MIAV approach: because
MIAV requires training PFN-based models using only a single feature per variable, it can be applied
to datasets containing more columns than the column number limit of the underlying PFN model.

For tabular foundation models that do not approximate Bayesian inference, our approach may still
provide a natural strategy for synthetic data generation through in-context learning. Assessing the
feasibility of such extensions, however, is left for future work.

Finally, we point out that the MIAV strategy described here is really only intended for synthetic data
generation and should not be used for improving predictive performance of supervised learners. As
described in Section 5, generating MIAV variables requires unrestricted access to the full dataset X,
which is partitioned into Xtr and Xts and used to construct the corresponding MIAV matrices Mtr

and Mts. Because MIAVs must be computed on the test set, the approach is inherently incompatible
with supervised learning scenarios where test-set targets are unavailable. But, more importantly, it
should never be used to enhance supervised learning performance in settings where the full dataset is
merely split into training and test subsets for evaluation purposes. In such cases, the generation of the
MIAV variable associated with the test set target would leak information about the target into the
associated MIAV, and inclusion of this MIAV as an input in a supervised model would lead to an
artificial boost in predictive performance due to data leakage.

R and Python implementations of the MIAV strategy will be released on GitHub upon acceptance of
the paper. For now, the code has been shared with reviewers as supplementary material.
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A SUPERVISED LEARNING VERSUS SYNTHETIC DATA GENERATION IN THE
PRESENCE OF UNINFORMATIVE FEATURES

TabPFN achieves state-of-the-art performance in supervised learning tasks (19). However, its direct
application to synthetic data generation does not yield comparable results, as weakly associated
variables make it challenging for in-context learning methods to capture the true data distribution.
This issue is less pronounced in supervised learning, where noninformative features simply fail to
contribute to the prediction. Even when the prediction is based solely on such features, TabPFN
behaves appropriately. For instance, in binary classification with predictors completely uncorrelated
with the target, it produces an AUROC of about 0.5, consistent with random guessing. Although
uninteresting, this outcome is exactly what one would expect from any well-behaved classifier in
this scenario. By contrast, in the data generation setting, TabPFN’s reasonable performance in
classification does not carry over, as it fails to approximate the marginal distributions of the data
and to capture its statistical association structure. An illustrative example is presented in Figure 9 in
Section D, where direct application of TabPFN to datasets containing completely uncorrelated data
fails to recover the marginal distributions (see panels g, h, i, j, and k and m, n, o, p, and q), and fails
to recover the correlation structure of the original data (compare panels b and c against panel a).

B ALGORITHMS FOR TABPFN-BASED SYNTHETIC DATA GENERATION

In Algorithms 2, 4, and 6, the function GeneratePredictionUsingTabPFN(.) represents a
call to a TabPFN model qθ(.).

Algorithm 2 ICLwithJointFactorizationTabPFN(Xtr, Xts)
1: Input: training data for ICL, Xtr; query data for ICL, Xts

2: ntr ← NumberOfRows(Xtr) {Obtain number of samples of Xtr .}

3: nts ← NumberOfRows(Xts) {Obtain number of samples of Xts.}

4: p← NumberOfColumns(Xts) {Obtain number of columns of Xts.}

5: Zts ← [, ] {Create empty matrix to store the synthetic data.}

6: xtr0 ← GenerateUniformlyDistributedNoise(ntr) {Draw a sample of size ntr from a uniform distribution.}

7: xts0 ← GenerateUniformlyDistributedNoise(nts) {Draw a sample of size nts from a uniform distribution.}

8: Zts[, 1] ← GeneratePredictionUsingTabPFN(xts0 ,x
tr
0 ,x

tr
1 ) {Predict xts

1 using xtr
0 and xtr

1 as context, and

xts
0 as query. The prediction can be from a regression or classification TabPFN model, depending on whether xtr

1 is continuous or

categorical.}

9: for j = 2 to p do
10: Xtr

<j ← Xtr[, 1 : (j − 1)] {Select the first j − 1 columns of Xtr .}

11: Xts
<j ← Xts[, 1 : (j − 1)] {Select the first j − 1 columns of Xts.}

12: Zts[, j] ← GeneratePredictionUsingTabPFN(Xts
<j ,X

tr
<j ,x

tr
j ) {Predict xts

j using Xtr
<j and xtr

j as con-

text, and Xts
<j as query. The prediction can be from a regression or classification TabPFN model, depending on whether xtr

j is

continuous or categorical.}

13: end for
14: Output: synthetic data Zts

Algorithm 3 JointFactorizationTabPFNGenerator(X)
1: Input: the original data, X
2: X1,X2 ← DataSplit(X) {Split the original data X into two subsets, X1 and X2.}

3: Z1 ← ICLwithJointFactorizationTabPFN(Xtr = X2,X
ts = X1) {Generate a synthetic data copy of X1

using Algorithm 2.}

4: Z2 ← ICLwithJointFactorizationTabPFN(Xtr = X1,X
ts = X2) {Generate a synthetic data copy of X2

using Algorithm 2.}

5: Z← Concatenate(Z1,Z2) {Concatenate the synthetic datasets Z1 and Z2.}

6: Z← RoundIntegerVariables(X,Z) {This function uses X to determine which variables have integer type and round the

values of the corresponding variables in Z to the nearest integer.}

7: Output: synthetic data Z
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Algorithm 4 ICLwithFullConditionalsTabPFN(Xtr, Xts)
1: Input: training data for ICL, Xtr; query data for ICL, Xts

2: p← NumberOfColumns(Xts) {Obtain number of columns of Xts.}

3: Zts ← [, ] {Create empty matrix to store the synthetic data.}

4: for j = 1 to p do
5: Xtr

−j ← Xtr[,−j] {Drop the j-th column of Xtr .}

6: Xts
−j ← Xts[,−j] {Drop the j-th column of Xts.}

7: Zts[, j] ← GeneratePredictionUsingTabPFN(Xts
−j ,X

tr
−j ,x

tr
j ) {Predict xts

j using Xtr
−j and xtr

j as con-

text, and Xts
−j as query. The prediction can be from a regression or classification TabPFN model, depending on whether xtr

j is

continuous or categorical.}

8: end for
9: Output: synthetic data Zts

Algorithm 5 FullConditionalsTabPFNGenerator(X)
1: Input: the original data, X
2: X1,X2 ← DataSplit(X) {Split the original data X into two subsets, X1 and X2.}

3: Z1 ← ICLwithFullConditionalsTabPFN(Xtr = X2,X
ts = X1) {Generate a synthetic data copy of X1

using Algorithm 4.}

4: Z2 ← ICLwithFullConditionalsTabPFN(Xtr = X1,X
ts = X2) {Generate a synthetic data copy of X2

using Algorithm 4.}

5: Z← Concatenate(Z1,Z2) {Concatenate the synthetic datasets Z1 and Z2.}

6: Z← RoundIntegerVariables(X,Z)
7: Output: synthetic data Z

Algorithm 6 ICLwithMIAVTabPFN(Xtr, Xts)
1: Input: training data for ICL, Xtr; query data for ICL, Xts

2: p← NumberOfColumns(Xts) {Obtain number of columns of Xts.}

3: Zts ← [, ] {Create empty matrix to store the synthetic data.}

4: for j = 1 to p do
5: mtr

j ← GenerateMaximalInformationAuxiliaryVariable(xtrj ) {Generate the MIAV for xtr
j using Algo-

rithm 1.}

6: mts
j ← GenerateMaximalInformationAuxiliaryVariable(xtsj ) {Generate the MIAV for xts

j using Algo-

rithm 1.}

7: Zts[, j]← GeneratePredictionUsingTabPFN(mts
j ,m

tr
j ,x

tr
j ) {Predict xts

j using mtr
j and xtr

j as context,

and mts
j as query. The prediction can be from a regression or classification TabPFN model, depending on whether xtr

j is continuous

or categorical.}

8: end for
9: Output: synthetic data Zts

Algorithm 7 MIAVTabPFNGenerator(X)
1: Input: the original data, X
2: X1,X2 ← DataSplit(X) {Split the original data X into two subsets, X1 and X2.}

3: Z1 ← ICLwithMIAVTabPFN(Xtr = X2,X
ts = X1) {Generate a synthetic data copy of X1 using Alg. 6.}

4: Z2 ← ICLwithMIAVTabPFN(Xtr = X1,X
ts = X2) {Generate a synthetic data copy of X2 using Alg. 6.}

5: Z← Concatenate(Z1,Z2) {Concatenate the synthetic datasets Z1 and Z2.}

6: Z← RoundIntegerVariables(X,Z) {This function uses X to determine which variables have integer type and round the

values of the corresponding variables in Z to the nearest integer.}

7: Output: synthetic data Z

In Algorithms 3, 5, and 7 the function RoundIntegerVariables(X, Z) uses the original data,
X, to determine which variables have integer type and round the values of the corresponding variables
in the synthetic data, Z, to the nearest integer. This post-processing step is necessary because TabPFN
(and most other data synthesizers) return real values for variables that are originally of integer type.
In our experiments, we apply the same post-processing step to the SMOTE baseline.
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C SIMULATING CORRELATED BETA DISTRIBUTIONS

Here, we describe how we simulated correlated beta distributions used in the simulated data experi-
ments, as well as, for the illustrative examples provided in Figures 1, 2, and 3 in the main text, and
Figures 5, 6, 7, 8, and 9 in Appendix D.

The data was simulated as follows. First, we simulate data from a multivariate normal random variable
Y ∼ Np(0,Σ). Next, for j = 1, . . . , p, we compute the correlated uniform variables Uj = Φ(Zj),
and the correlated beta random variables Xj = G−1a,b(Uj), where Φ and Ga,b represent, respectively,
the cumulative distribution functions of standard normal variable and a beta variable with shape
parameters a and b.

The multivariate Gausssian variable Y is generated with a Toeplitz structured covariance matrix Σ
with off-diagonal entries σij = ρ|i−j|, and diagonal entries σjj = 1, for ρ ∈ [−1, 1]. (Note that
under this correlation structure, neighboring variables are more highly associated than more distant
variables, and the association decreases the farther apart the variables are. Also, for negative ρ values
the direction of the association flips depending on whether the exponent |i− j| is even or odd.)

For the illustrations presented in Figures 1, 2, and 3 we further randomly shuffle the data of variable
X2 in order to simulate an uninformative feature uncorrelated with all other variables in the dataset.
Furthermore, for the illustrations presented in Figure 3, we also discretize variable X5 into four
classes.
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Figure 5: Comparison of the JF, FC, and MIAV synthetic data generation strategies for correlated beta
variables generated with ρ = −0.95. Panel a shows the Pearson correlation matrices for the original
data, while panels b to e show the correlation matrices for the JF, FC, MIAV synthetic datasets and
the holdout set (positive correlations are represented in blue and negative correlations are represented
in red). Panels f, l, r, and z show the difference between the original data correlation matrix and the
respective synthetic datasets and holdout set. The remaining panels show the marginal distributions
generated by the distinct synthetic data generation approaches and for the holdout set.
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Figure 6: Analogous comparisons as in Figure 5, but for data simulated with ρ = −0.75.
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Figure 7: Analogous comparisons as in Figure 5, but for data simulated with ρ = −0.5.
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Figure 8: Analogous comparisons as in Figure 5, but for data simulated with ρ = −0.25.
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Figure 9: Analogous comparisons as in Figure 5, but for data simulated with ρ = 0.
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E ADDITIONAL DIRECT SYNTHETIC DATA GENERATION STRATEGIES

As described in Algorithms 2 and 4 our implementations of the JF and FC strategies use the real test
data when performing the in-context queries. In the case of the JF strategy, an alternative approach
would be to use the synthetic data generated in the previous steps when we query the model in the
current generation step. That is, instead of generating the data according to equation 2 we generate it
according to,

p∏
j=1

qθ(x
ts
j | X̂ts

<j ,X
tr
<j ,x

tr
j ) , (10)

where X̂ts
<j represents the predictions (i.e., the synthetic data) generated in the previous j − 1

generation steps. We denote this strategy as the “updated joint factorization" (or UJF for short), and
implement it in Algorithms 8 and 9. Note that Algorithm 8 implements two versions of the UJF
approach. The first, simply takes a bootstrap sample from the original X1 data as the “synthetic
version" of X1. The second, uses the random noise variable X0 to generate X1 (similarly to the JF
strategy). Intuitively, we would expect UJF to under-perform in comparison with the JF strategy, since
any drifts in the distribution of the synthetic data generated in the previous steps would propagate to
the later ones.

Algorithm 8 ICLwithUpdatedJointFactorizationTabPFN(Xtr, Xts, version = 1)
1: Input: training data for ICL, Xtr; query data for ICL, Xts; version of the UJF strategy
2: ntr ← NumberOfRows(Xtr) {Obtain number of samples of Xtr .}

3: nts ← NumberOfRows(Xts) {Obtain number of samples of Xts.}

4: p← NumberOfColumns(Xts) {Obtain number of columns of Xts.}

5: Zts ← [, ] {Create empty matrix to store the synthetic data.}

6: if version == 1 then
7: Zts[, 1]← BootstrapSample(xts1 )
8: end if
9: if version == 2 then

10: xtr0 ← GenerateUniformlyDistributedNoise(ntr) {Draw a sample of size ntr from a uniform distribution.}

11: xts0 ← GenerateUniformlyDistributedNoise(nts) {Draw a sample of size nts from a uniform distribution.}

12: Zts[, 1] ← GeneratePredictionUsingTabPFN(xts0 ,x
tr
0 ,x

tr
1 ) {Predict xts

1 using xtr
0 and xtr

1 as context,

and xts
0 as query. The prediction can be from a regression or classification TabPFN model, depending on whether xtr

1 is continuous

or categorical.}

13: end if
14: for j = 2 to p do
15: Xtr

<j ← Xtr[, 1 : (j − 1)] {Select the first j − 1 columns of Xtr .}

16: Zts<j ← Zts[, 1 : (j − 1)] {Select the first j − 1 columns of Zts.}

17: Zts[, j] ← GeneratePredictionUsingTabPFN(Zts<j ,X
tr
<j ,x

tr
j ) {Predict xts

j using Xtr
<j and xtr

j as con-

text, and Zts
<j as query. The prediction can be from a regression or classification TabPFN model, depending on whether xtr

j is

continuous or categorical.}

18: end for
19: Output: synthetic data Zts

Algorithm 9 UpdatedJointFactorizationTabPFNGenerator(X)
1: Input: the original data, X
2: X1,X2 ← DataSplit(X) {Split the original data X into two subsets, X1 and X2.}

3: Z1 ← ICLwithUpdatedJointFactorizationTabPFN(Xtr = X2,X
ts = X1) {Generate a synthetic data

copy of X1 using Algorithm 8.}

4: Z2 ← ICLwithUpdatedJointFactorizationTabPFN(Xtr = X1,X
ts = X2) {Generate a synthetic data

copy of X2 using Algorithm 8.}

5: Z← Concatenate(Z1,Z2) {Concatenate the synthetic datasets Z1 and Z2.}

6: Output: synthetic data Z

This intuition is confirmed in Figure 10, which shows the application of version 1 of the UJF strategy
in purple (panels f to j) and of version 2 (panels l to p) in cyan. For comparison, the plot also include
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Figure 10: Comparison of JF and the UJF approaches.

the results from the JF approach (panels r to v). Even in version 1, where the algorithm samples the
first variable from the correct distribution, the distributions of the synthetic data still ends drifting
away from the original data distributions at later steps of the data generation approach. (Note that
UJF1 performs considerably worse than the JF approach for variables X3, X4, and X5.) In version 2
(panels l to p) the performance is even worse because the quality of the X1 data generated in the first
step is already very poor.

F ADDITIONAL ALGORITHMS

Algorithm 10 NumericRankEncodingOfCategoticalVariables(xj)
1: Input: categorical variable data xj
2: levels← ExtractLevels(xj) {Obtain levels of variable xj .}

3: tb← Table(xj [, i]) {Obtain level counts of variable xj .}

4: cumcounts← CumulativeSum(tb) {Compute cumulative counts from the table counts.}

5: numlevels← Length(levels) {Obtain number of levels.}

6: r← [] {Create empty vector to store the numeric rank encodings.}

7: for k = 1 to numlevels do
8: idx←Which(xj == levels[k]) {Obtain the indexes of the records for which xj equals level k.}

9: lowerbound← cumcounts[k] + 1 {Compute the lower bound for the numerical encoding of level k of xj .}

10: upperbound← cumcounts[k + 1] {Compute the upper bound for the numerical encoding of level k of xj .}

11: nrseq ← Sequence(lowerbound, upperbound) {Create a sequence of numeric rank values starting at lower-

bound and ending at upper-bound.}

12: r[idx] ← RandomPermutation(nrseq) {Assign randomly shuffled numeric rank values to the positions of xj

corresponding to level k.}

13: end for
14: Output: numerical rank encoding r
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As an example, suppose xj = (A,A,A,A,B,B,B,C,C,C,C,C,D,D,D)t. This categorical
variable has four levels A, B, C and D with counts nA = 4, nB = 3, nC = 5 and nD = 3. To
generate the numerical rank encoding r presented in Table 1, the algorithm transforms the categorical
values according to the mapping,mapr, in Table 1. Note that this mapping corresponds to an arbitrary
ranking of the categorical levels according to the arbitrary order A < B < C < D. That is, starting
with class A, the mapping assigns ranks 1, 2, 3, and 4 (in random order) to the four tied elements
A in xj . (Note that by assigning the ranks in random order the mapping is effectively using the “at
random" method to break ties among identical values of the categorical variable.) For class B, the
mapping assigns ranks 5, 6, and 7 (in random order) to the three tied elements B in xj . For class C it
assigns ranks 8 to 12 (in random order) to the five tied elements C. Finally, for class D, the mapping
assigns ranks 13, 14, and 15 (in random order) to the three tied elements D in xj .

Table 1: Toy example illustrating the application of the numeric rank encoding procedure for categori-
cal variables implemented by Algorithm 10 to xj = (A,A,A,A,B,B,B,C,C,C,C,C,D,D,D)t.

mapr A = {1, 2, 3, 4}, B = {5, 6, 7}, C = {8, 9, 10, 11, 12} D = {13, 14, 15}

xj A A A A B B B C C C C C D D D
r 3 1 4 2 7 5 6 9 8 11 12 10 14 15 13

G PROOF OF THEOREM 1

Consider variables Xj , Y , and Mj , where Y is a placeholder notation for any variable other than Xj

or Mj (Y could, for example, be any other Xj′ or Mj′ for j′ 6= j). Variables Xj and Y might be
continuous or categorical. Variable Mj is always continuous by construction. To prove the result in
a non-parametric setting, we treat any continuous variable as a categorical variable with n distinct
levels (where n represents the number of samples in the data). We also assume the independent
samples setting, where the rows of dataset X are independent.

G.1 PROOF OF STATEMENT 1, WHEN Xj AND Y ARE CONTINUOUS

Proof. We consider first the case where Xj and Y are originally continuous variables. In this case,
all variables are treated as categorical variables with n levels, where i = 1, . . . , n, l = 1, . . . , n, and
k = 1, . . . , n indexes the categorical levels of variables Xj , Y , and Mj , respectively.

The conditional mutual information (CMI) of Xj and Y given Mj is defined as,

I(Xj ;Y |Mj) =

=

n∑
i=1

n∑
l=1

n∑
k=1

P (Xj = i, Y = l,Mj = k) log

(
P (Xj = i, Y = l |Mj = k)

P (Xj = i |Mj = k)P (Y = l |Mj = k)

)

=

n∑
i=1

n∑
l=1

n∑
k=1

P (Xj = i, Y = l,Mj = k) log

(
P (Xj = i, Y = l,Mj = k)P (Mj = k)

P (Xj = i,Mj = k)P (Y = l,Mj = k)

)
,

(11)

where the joint probabilities are defined from the joint frequency counts in a finite population. For
instance, P (Xj = i, Y = l,Mj = k) = f(Xj = i, Y = l,Mj = k)/n where f(Xj = i, Y =
l,Mj = k) corresponds to the number of instances in a population of size n for which Xj = i and
Y = l and Mj = k. Note that because all three variables have n distinct levels, these frequencies
will be either 1 or 0 depending on whether the combination of values is observed or not in the dataset.

To avoid division by 0, we consider the smoothed version of the CMI where an arbitrarily small
constant ε is added to the frequency counts of each cell in the contingency tables defining these
probabilities. Namely,

f ε(Xj = i, Y = l,Mj = k) = f(Xj = i, Y = l,Mj = k) + ε, (12)
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and P ε(Xj = i, Y = l,Mj = k) is obtained by normalization as,

P ε(Xj = i, Y = l,Mj = k) =
f(Xj = i, Y = l,Mj = k) + ε∑n

i=1

∑n
l=1

∑n
k=1(f(Xj = i, Y = l,Mj = k) + ε)

=
f(Xj = i, Y = l,Mj = k) + ε∑n

i=1

∑n
l=1

∑n
k=1 f(Xj = i, Y = l,Mj = k) +

∑n
i=1

∑n
l=1

∑n
k=1 ε

=
f(Xj = i, Y = l,Mj = k) + ε

n+ n3 ε
. (13)

Similarly, we have that,

P ε(Xj = i,Mj = k) =
f(Xj = i,Mj = k) + ε

n+ n2 ε
, (14)

P ε(Y = l,Mj = k) =
f(Y = l,Mj = k) + ε

n+ n2 ε
, (15)

P ε(Mj = k) =
f(Mj = k) + ε

n+ n ε
=

1 + ε

n(1 + ε)
=

1

n
. (16)

Now, because the rank-matching procedure used in the construction ofMj implies a perfect monotonic
relation between the values of Xj and Mj we have that the discretized versions of Xj and Mj will
be identical (see Table 2 for an illustrative toy example). This correspondence between Xj and Mj

implies that these variables cannot concomitantly assume different values at the same time (i.e., the
joint frequency f(Xj = i,Mj = k) will always be 0 if i 6= k). It also implies that the joint counts
f(Xj = i,Mj = k) will always be equal to the marginal counts f(Mj = k) when i = k. Hence, we
have that,

f(Xj = i,Mj = k) =

{
f(Mj = k) = 1 , if i = k

0 , if i 6= k
, (17)

and we can re-express equation (14) as,

P ε(Xj = i,Mj = k) =


f(Mj = k) + ε

n+ n2ε
=

1 + ε

n+ n2ε
, if i = k

ε

n+ n2 ε
, if i 6= k

. (18)

Similarly, we have that,

f(Xj = i, Y = l,Mj = k) =

{
f(Y = l,Mj = k) , if i = k

0 , if i 6= k
, (19)

and we can re-express equation (13) as,

P ε(Xj = i, Y = l,Mj = k) =


f(Y = l,Mj = k) + ε

n+ n3ε
, if i = k

ε

n+ n3 ε
, if i 6= k

. (20)
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Re-expressing the conditional mutual information in terms of the smoothed probabilities and separat-
ing the summation over the cases where k = i from the cases where k 6= i we have,

Iε(Xj ;Y |Mj) = (21)

=

n∑
i=1

n∑
l=1

P ε(Xj = i, Y = l,Mj = i) log

(
P ε(Xj = i, Y = l,Mj = i)P ε(Mj = i)

P ε(Xj = i,Mj = i)P ε(Y = l,Mj = i)

)
+

+

n∑
i=1

n∑
l=1

∑
k 6=i

P ε(Xj = i, Y = l,Mj = k) log

(
P ε(Xj = i, Y = l,Mj = k)P ε(Mj = k)

P ε(Xj = i,Mj = k)P ε(Y = l,Mj = k)

)

=

n∑
i=1

n∑
l=1

f(Y = l,Mj = i) + ε

n+ n3ε
log


(
f(Y = l,Mj = i) + ε

n+ n3 ε

)(
f(Mj = i) + ε

n+ n ε

)
(
f(Mj = i) + ε

n+ n2ε

)(
f(Y = l,Mj = i) + ε

n+ n2ε

)
+

+

n∑
i=1

n∑
l=1

∑
k 6=i

ε

n+ n3 ε
log


(

ε

n+ n3 ε

)(
f(Mj = k) + ε

n+ n ε

)
(

ε

n+ n2 ε

)(
f(Y = l,Mj = k) + ε

n+ n2 ε

)


=

n∑
i=1

n∑
l=1

f(Y = l,Mj = i) + ε

n+ n3ε
log

((
n+ n2ε

) (
n+ n2ε

)
(n+ n3ε) (n+ n ε)

)
+

+

n∑
i=1

n∑
l=1

∑
k 6=i

ε

n+ n3 ε
log

(
(n+ n2 ε)(n+ n2 ε)(f(Mj = k) + ε)

(n+ n3 ε)(n+ n ε)(f(Y = l,Mj = k) + ε)

)

Taking the limit as ε→ 0 we have that Iε(Xj ;Y |Mj) converges to,

n∑
i=1

n∑
l=1

f(Y = l,Mj = i)

n
log (1) +

n∑
i=1

n∑
l=1

∑
k 6=i

0 log

(
f(Mj = k)

f(Y = l,Mj = k)

)
= 0 . (22)

Observe that the term 0 log(f(Mj = k)/f(Y = l,Mj = k)) in the above equation equals 0
because it can be rewritten as 0 log f(Mj = k) − 0 log f(Y = l,Mj = k) and 0 log f(Mj =
k) = 0 log(1/n) = 0 and 0 log f(Y = l,Mj = k) equals 0 log 1 = 0 if l = k or 0 log 0 = 0 if
l 6= k. (Note that in this last case, we are adopting the convention that 0 log 0 = 0, as customary in
information theory.)

G.2 PROOF OF STATEMENT 1, WHEN Xj AND Y ARE CATEGORICAL

Proof. We now consider the case where Xj and Y are categorical variables. Let bx and by represent
the number of levels of Xj and Y , and let i = 1, . . . , bx, l = 1, . . . , by, and k = 1, . . . , n represent
the indexes of the levels of variables Xj , Y , and Mj , respectively.

Now, the CMI of Xj and Y conditional of Mj is given by,

I(Xj ;Y |Mj) =

=

bx∑
i=1

by∑
l=1

n∑
k=1

P (Xj = i, Y = l,Mj = k) log

(
P (Xj = i, Y = l |Mj = k)

P (Xj = i |Mj = k)P (Y = l |Mj = k)

)

=

bx∑
i=1

by∑
l=1

n∑
k=1

P (Xj = i, Y = l,Mj = k) log

(
P (Xj = i, Y = l,Mj = k)P (Zj = k)

P (Xj = i,Mj = k)P (Y = l,Mj = k)

)
.

(23)
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To avoid division by 0, we again consider the smoothed version of the CMI with smoothed probabili-
ties given by,

P ε(Xj = i, Y = l,Mj = k) =
f(Xj = i, Y = l,Mj = k) + ε

n+ bx by n ε
. (24)

P ε(Xj = i,Mj = k) =
f(Xj = i,Mj = k) + ε

n+ bx n ε
, (25)

P ε(Y = l,Mj = k) =
f(Y = l,Mj = k) + ε

n+ by n ε
, (26)

P ε(Mj = k) =
f(Mj = k) + ε

n+ n ε
=

1 + ε

n(1 + ε)
=

1

n
. (27)

By construction, when Xj is categorical, we have that the following relations hold between Xj and
the discretized Mj ,

f(Xj = i,Mj = k) =

{
f(Mj = k) , if k ∈ Ii
0 , if k /∈ Ii , (28)

f(Xj = i, Y = l,Mj = k) =

{
f(Y = l,Mj = k) , if k ∈ Ii
0 , if k /∈ Ii , (29)

where Ii represents the set of indexes of the discretizedMj variable for whichXj = i, and 1{k ∈ Ii}
represents the indicator function assuming value 1 when k belongs to Ii, and 0 otherwise. (Table 3
provides an illustrative example explaining the above relations.)

Using equations 28 and 29 we can re-express equations (25) and (24) as,

P ε(Xj = i,Mj = k) =


f(Mj = k) + ε

n+ bx n ε
, if k ∈ Ii

ε

n+ bx n ε
, if k /∈ Ii

, (30)

and,

P ε(Xj = i, Y = l,Mj = k) =


f(Y = l,Mj = k) + ε

n+ bx by n ε
, if k ∈ Ii

ε

n+ bx by n ε
, if k /∈ Ii

. (31)
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Re-expressing the conditional mutual information in terms of the smoothed probabilities and separat-
ing the summation over the cases where k ∈ Ii from the cases where k /∈ Ii we have,
Iε(Xj ;Y |Mj) = (32)

=

bx∑
i=1

by∑
l=1

∑
k∈Ii

P ε(Xj = i, Y = l,Mj = k) log

(
P ε(Xj = i, Y = l,Mj = k)P ε(Mj = k)

P ε(Xj = i,Mj = k)P ε(Y = l,Mj = k)

)
+

+

bx∑
i=1

by∑
l=1

∑
k/∈Ii

P ε(Xj = i, Y = l,Mj = k) log

(
P ε(Xj = i, Y = l,Mj = k)P ε(Mj = k)

P ε(Xj = i,Mj = k)P ε(Y = l,Mj = k)

)

=

bx∑
i=1

by∑
l=1

∑
k∈Ii

f(Y = l,Mj = k) + ε

n+ bx by n ε
log


(
f(Y = l,Mj = k) + ε

n+ bx by n ε

)(
f(Mj = k) + ε

n+ n ε

)
(
f(Mj = k) + ε

n+ bx n ε

)(
f(Y = l,Mj = k) + ε

n+ by n ε

)
+

+

bx∑
i=1

by∑
l=1

∑
k/∈Ii

ε

n+ bx by n ε
log


(

ε

n+ bx by n ε

)(
f(Mj = k) + ε

n+ n ε

)
(

ε

n+ bx n ε

)(
f(Y = l,Mj = k) + ε

n+ by n ε

)


=

bx∑
i=1

by∑
l=1

∑
k∈Ii

f(Y = l,Mj = k) + ε

n+ bx by n ε
log

(
(n+ bx n ε)(n+ by n ε)

(n+ bx by n ε)(n+ n ε)

)
+

+

bx∑
i=1

by∑
l=1

∑
k/∈Ii

ε

n+ bx by n ε
log

(
(n+ bx n ε)(n+ by n ε)(f(Mj = k) + ε)

(n+ bx by n ε)(n+ n ε)(f(Y = l,Mj = k) + ε)

)
Taking the limit as ε→ 0 we have that Iε(Xj ;Y |Mj) converges to,

bx∑
i=1

by∑
l=1

∑
k∈Ii

f(Y = l,Mj = i)

n
log (1) +

bx∑
i=1

by∑
l=1

∑
k/∈Ii

0 log

(
f(Mj = k)

f(Y = l,Mj = k)

)
= 0 . (33)

G.3 PROOF OF STATEMENT 1, IN THE REMAINING CASES

Proof. In the case where Xj is continuous and Y is categorical, a similar argument to the proof in
the case that both variables are continuous shows that,

Iε(Xj ;Y |Mj) = (34)

=

n∑
i=1

by∑
l=1

f(Y = l,Mj = i) + ε

n+ by n2 ε
log

((
n+ n2 ε

)
(n+ by n ε)

(n+ by n2 ε) (n+ n ε)

)
+

+

n∑
i=1

by∑
l=1

∑
k 6=i

ε

n+ by n2 ε
log

(
(n+ n2 ε)(n+ by n ε)(f(Mj = k) + ε)

(n+ by n2 ε)(n+ n ε)(f(Y = l,Mj = k) + ε)

)
,

which again converges to 0 as ε→ 0.

In the case that Xj is categorical and Y is continuous, a similar argument to the proof in the case that
both variables are categorical shows that,

Iε(Xj ;Y |Mj) = (35)

=

bx∑
i=1

n∑
l=1

∑
k∈Ii

f(Y = l,Mj = k) + ε

n+ bx n2 ε
log

(
(n+ bx n ε)(n+ n2 ε)

(n+ bx n2 ε)(n+ n ε)

)
+

+

bx∑
i=1

n∑
l=1

∑
k/∈Ii

ε

n+ bx n2 ε
log

(
(n+ bx n ε)(n+ n2 ε)(f(Mj = k) + ε)

(n+ bx n2 ε)(n+ n ε)(f(Y = l,Mj = k) + ε)

)
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which again converges to 0 as ε→ 0.

G.4 PROOF OF STATEMENT 2

Proof. By definition, the conditional entropy of Xj given Mj is given by,

H(Xj |Mj) =
∑
i

∑
k

P (Xj = i,Mj = k) log

(
P (Xj = i,Mj = k)

P (Mj = k)

)
=
∑
i

∑
k

P (Xj = i |Mj = k)P (Mj = k) logP (Xj = i |Mj = k) (36)

In the case where Xj is continuous (and discretized into n classes) we have that equation (36) reduces
to,

H(Xj |Mj) =

n∑
i=1

P (Xj = i |Mj = i)P (Mj = i) logP (Xj = i |Mj = i)

+

n∑
i=1

∑
k 6=i

P (Xj = i |Mj = k)P (Mj = k) logP (Xj = i |Mj = k) , (37)

after we split the summation over k into the cases where k = i and k 6= i. Since, by construction, we
have that,

P (Xj = i |Mj = k) =

{
1, if k = i
0 if k 6= i

, (38)

if follows that,

H(Xj |Mj) =

n∑
i=1

P (Mj = i) log 1 +

n∑
i=1

∑
k 6=i

0P (Mj = k) log 0 = 0 (39)

where we take 0 log 0 to be defined as 0 (as its is customary in information theory).

Similarly, in the case where Xj is categorical (with bx classes) equation (36) reduces to,

H(Xj |Mj) =

bx∑
i=1

∑
k∈Ii

P (Xj = i |Mj = k)P (Mj = k) logP (Xj = i |Mj = k)

+

bx∑
i=1

∑
k/∈Ii

P (Xj = i |Mj = k)P (Mj = k) logP (Xj = i |Mj = k) , (40)

after we split the summation over k into the cases where k ∈ Ii and k /∈ Ii. Since, by construction,
we also have that in the categorical case,

P (Xj = i |Mj = k) =

{
1, if k ∈ Ii
0 if k /∈ Ii , (41)

if follows again that,

H(Xj |Mj) =

bx∑
i=1

∑
k∈Ii

P (Mj = i) log 1 +

bx∑
i=1

∑
k/∈Ii

0P (Mj = k) log 0 = 0 . (42)
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Table 2: Illustrative toy example showing the generation of Mj using Algorithm 1 when Xj is
continuous. The sample xj = (0.92,−1.29, 0.34,−0.93, 0.71, 0.39, 0.65, 0.85, 0.84, 1.38,−0.32)t

(with n = 11) represents observations from Xj . Rows (i) and (ii) display the original values of
Xj and their corresponding ranks. Row (iii) shows the generated variable Mj , which is uniformly
distributed and rank-matched to Xj (i.e., the ordering of Mj is identical to that of Xj). Row (iv)
confirms this by showing that the ranks of Mj match those of row (ii). Because of this perfect
monotonic correspondence, the discretized versions of Xj and Mj are identical for any chosen
number of bins. Rows (v) and (vi) illustrate this fact by presenting the discretizations of Xj and Mj

based on n bins.

(I): ORIGINAL Xj 0.92 -1.29 0.34 -0.93 0.71 0.39 0.65 0.85 0.84 1.38 -0.32
(II): RANKS OF Xj 10 1 4 2 7 5 6 9 8 11 3
(III): ORIGINAL Mj 0.69 0.12 0.41 0.20 0.61 0.44 0.50 0.67 0.62 0.74 0.39
(IV): RANKS OF Mj 10 1 4 2 7 5 6 9 8 11 3

(V): Xj (DISCRETIZED) 10 1 4 2 7 5 6 9 8 11 3
(VI): Mj (DISCRETIZED) 10 1 4 2 7 5 6 9 8 11 3

Table 3: Toy illustrative example of the generation ofMj using Algorithms 1 and 10 in the case where
Xj is categorical. Let xj = (A,A,A,A,B,B,B,C,C,C,C)t represent a sample of size n = 11
from the categorical variable Xj , which has 3 distinct levels, {A,B,C}. Let i = 1, 2, 3 represent the
indexes of the levels of Xj . Row (i) shows the data in its original format, while row (ii) shows the
same data in terms of the level indexes representation, where level A is indexed as 1, level B as 2, and
level C as 3. Row (iii) shows the output, r, of Algorithm 10 which generates a numeric rank encoding
of the categorical variable Xj . (It adopts the arbitrary order A < B < C to the categorical levels of
Xj and starting with class A, it assigns ranks 1, 2, 3, and 4 (in random order) to the four tied elements
A in xj . For class B, it assigns ranks 5, 6, and 7 (in random order) to the three tied elements B in
xj . Finally, for class C it assigns ranks 8 to 11 (in random order) to the four tied elements C.) Row
(iv) shows the output of Algorithm 1. It first sample and sort 11 values from a uniform distribution
in the [0, 1] range (line 2) given, in this example, by (0.12, 0.20, 0.39, 0.41, 0.44, 0.50, 0.61, 0.62,
0.67, 0.69, 0.74) and then rank match this sorted random noise vector to the numeric rank encodings
r show in line (iii). The result is a random noise vector with identical ranks as r. Row (v) shows Mj

after discretization into n = 11 levels (in terms of level indexes representation). Clearly, when we
discretize Mj into n levels we recover the numerical rank encoding in row (iii). Now, let Ii represent
the indexes of the Mj values for which Xj = i. In this example I1 = {1, 2, 3, 4}, I2 = {5, 6, 7},
and I3 = {8, 9, 10, 11}. Note that, by construction, whenever Mj equals 1, 2, 3, or 4, the value of
Xj will be 1. This implies that f(Xj = 1,Mj = k) = f(Mj = k) = 1 if k ∈ {1, 2, 3, 4}, and
f(Xj = 1,Mj = k) = 0 if k /∈ {1, 2, 3, 4}. Similarly, f(Xj = 2,Mj = k) = f(Mj = k) = 1 if
k ∈ {5, 6, 7}, and f(Xj = 2,Mj = k) = 0 if k /∈ {5, 6, 7}, and so on for other values of i. Clearly,
this result holds in general, as stated in equation 28. A similar argument justifies equation 29.

(I): ORIGINAL Xj A A A A B B B C C C C
(II): Xj LEVEL INDEXES 1 1 1 1 2 2 2 3 3 3 3
(III): NUMERIC RANK ENCODING 3 1 4 2 7 5 6 9 8 11 10
(IV): Mj (CONTINUOUS) 0.39 0.12 0.41 0.20 0.61 0.44 0.50 0.67 0.62 0.74 0.69
(V): Mj (DISCRETIZED) 3 1 4 2 7 5 6 9 8 11 10

(VI): Ii MAPPING I1 = {1, 2, 3, 4}, I2 = {5, 6, 7}, I3 = {8, 9, 10, 11}
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H COMPLEXITY ANALYSIS AND RUNTIME EXPERIMENTS

H.1 COMPLEXITY ANALYSIS

As pointed in Hollmann et al. (2025) the complexity of the TabPFN algorithm scales quadratically
with the number of samples (n) and the number of features (p), i.e., O(n2 + p2).

The generation of synthetic data with the MIAV strategy (Algorithm 7) involves calling Algorithm 6
two times (see lines 3 and 4). Algorithm 6, by its turn, involves p calls to TabPFN models trained
with a single feature (see the for loop in lines 4 to 8 of Algorithm 6). Since the complexity of a
TabPNF model trained with a single feature is O(n2 + 1) = O(n2), it follows that the complexity
of Algorithm 6 is O(p n2).3 Consequently, the complexity of the MIAV strategy (Algorithm 7) is
O(2 p n2) = O(p n2).

The FC approach (Algorithm 5), on the other hand, has complexity O(p n2 + p3), since Algorithm 4
involves p calls to TabPFN models with p− 1 features, so that,

O(p(n2 + (p− 1)2)) = O(p n2 + p3) . (43)

Similarly, the JF approach (Algorithm 3) also has complexity O(p n2 + p3), since Algorithm 2
involves p calls to TabPFN models with number of features increasing from 1 to p− 1 whose total
complexity is given by,

p−1∑
k=1

O(n2 + k2) = O

(
p−1∑
k=1

n2

)
+O

(
p−1∑
k=1

k2

)
= O((p− 1)n2) +O

(
(p− 1)p(2p− 1)

6

)
= O(p n2) +O(p3) = O(p n2 + p3) . (44)

These analyses show that, for fixed n, the MIAV strategy scales linearly with increasing number of
variables, whereas the FC and JF approaches scale cubically with increasing number of variables.

H.2 RUNTIME EXPERIMENTS

We performed 7 runtime experiments comparing the MIAV, JF, and FC synthetic data generation
strategies. The experiments were based on simulated datasets containing 1000, 2000, 3000, 4000,
5000, 10000, or 20000 samples (rows) with number of variables (columns) varying from 10 to 100,
in increments of 10. (The data was simulated from correlated beta distributions as described in
Appendix C, using a ∼ Uniform(0, 10), b ∼ Uniform(0, 10), and ρ = 0.5.) In each experiment,
the runtime was measured with the perf_counter() function from the time Python module.
Results are reported in seconds and based on 5 replications of each experiment. All experiments were
performed on an AWS EC2 g5.xlarge instance with 1 NVIDIA A10G GPU (24 GiB), 4 vCPUs,
16 GiB RAM, 250 GB NVMe SSD, and up to 10 Gbps network bandwidth.

Figure 11 reports the runtime results for number of rows (n) increasing from 1000 to 5000, while
Figure 12 reports results for n equal to 5000, 10000, and 20000. As expected, both figures show that,
as the number of features increases, we observe considerably longer runtimes for FC (blue curves)
and JF (orange curves) when compared to the MIAV (red curves). The figures also illustrate that the
runtimes of the FC and JF strategies scale cubically with increasing number of features, whereas the
runtime of the MIAV approach scales linearly. Panel f in Figure 11 and panel d in Figure 12 report
the results for the MIAV approach for the distinct sample sizes side by side. (The red lines represent
the median values across the 5 replications.)

3Note that the complexity of the other computations in Algorithm 6 are dominated by the TabPFN compu-
tation. Explicitly, the MIAV generation (line 5 and line 6 of Algorithm 6) has complexity O(n logn) since,
as shown in Algorithm 1, it: (i) involves sorting of a random noise vector (line 2 of Algorithm 1), which has
complexity O(n logn) (since random noise generation of a vector of length n has complexity O(n) and it’s
sorting has complexity O(n logn)); (ii) involves the ranking of a vector of length n (line 4 of Algorithm 1),
which has complexity O(n logn); and (iii) involves a call to Algorithm 10 (line 7 of Algorithm 1), which has
complexity O(n) (as both the CummulativeSum operation (line 4 of Algorithm 10) has complexity O(n) and
the repeated applications of the RandomPermutation operation (line 12 of Algorithm 10) inside the for loop also
have total complexity O(n)).
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Figure 11: Runtime experiments. Panels a, b, c, d and e report runtime benchmark results comparing
the FC, JF, and MIAV synthetic data generation strategies for datasets containing 1,000, 2,000, 3,000,
4,000 and 5,000 samples, respectively. Panel f compares the MIAV results across the different sample
sizes.
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Figure 12: Runtime experiments. Panels a, b, and c report runtime benchmark results comparing the
FC, JF, and MIAV synthetic data generation strategies for datasets containing 5,000, 10,000, and
20,000 samples, respectively. Panel d compares the MIAV results across the different sample sizes.

Note that in the computation of the JF approach we use a single variable order for the factorization
of the joint posterior predictive distribution in all experiments in this paper. Hollmann et al. (2025)
suggest using a permutation sampling approximation of Janossy pooling for combining results across
different permutations of the order of the variables. (This is done to account for the fact that the
variable order influences the quality of the synthesized data.) Implementation of this strategy would,
however, increase the computation time by a factor of k, where k represents the number of variable
order permutations used by the approximation. (Hollmann et al. adopted k = 24 in their experiments.)

I EXTENDED EXPERIMENTS SECTION

I.1 OVERVIEW OF DATA SPLITTING INTO ORIGINAL, HOLDOUT, TRAINING, AND TEST SETS

Our experiments are performed as follows. Each dataset D is first split into two datasets X and Xh,
denoted as the “original" and the “holdout" datasets, respectively. In our evaluations, the original
dataset, X, plays the role of the “real" data, from which we generate a synthetic data copy. (We
denote it as the “original" data because D might be a real-world dataset or a simulated dataset
in our experiments.) The holdout dataset, Xh, is used to “estimate" the performance of an ideal
data generator capable of generating data from the same distribution as the original data. In our
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experiments, in addition to evaluating the synthetic datasets using the metrics described in Section I.5
below, we also compute the metric values for the holdout set in order to get a sense about the range
of values we would expect to see for the metric in the ideal case of a generator truly able to draw
independent samples from the same distribution as the original data.

For the generation of synthetic data, based on ICL using the TabPFN-based strategies described in the
main test, namely, JF, FC, and MIAV, we further split the original data, X, into two subsets, X1 and
X2. As described in Algorithms 3, 5, and 7 in Section B, the synthetic data generation is performed
as follows. First, the algorithms generate a synthetic copy of X1, using X2 as the training set and X1

as the test set. Second, the algorithms generate a synthetic copy of X2, by using X1 as the training
set and X2 as the test set. Third, the algorithms concatenate the datasets generated in the previous
steps to obtain the full synthetic dataset copy of X.

For the generation of synthetic data using SMOTE (and other baselines), the original data X is
directly fed into the synthesizer with no need for further data splits.

I.2 SIMULATED DATA EXPERIMENTS

For the simulated data experiments we evaluate the synthetic data generators over 5 distinct settings
spanning different correlation structures among the variables. In all settings, we generate datasets
with 5 variables from correlated beta distributions as described in Section C. The correlation structure
(Toeplitz) is controlled by a single parameter ρ, and in our experiments we adopt correlation strengths,
|ρ|, in the range |ρ| = {0, 0.25, 0.5, 0.75, 0.95}.
For each experimental setting (i.e., |ρ| value) we simulate 10 distinct datasets, D, of size 800, using
Toeplitz correlation parameter randomly set to either ρ or −ρ with equal probability, and adopting
different shape parameters, a and b, for the beta distributions. For each variable Xj ∼ Beta(a, b), the
a and b parameters are randomly sampled from uniform distributions as follows:

• a ∼ U(0.1, 0.9), b ∼ U(0.1, 0.9), for X1.
• a ∼ U(0.1, 0.9), b ∼ U(1, 10), for X2.
• a ∼ U(10, 50), b ∼ U(1, 10), for X3.
• a ∼ U(5, 15), b ∼ U(5, 15), for X4.
• a ∼ U(1, 10), b ∼ U(5, 15), for X5.

Each dataset D is split into original (X) and holdout (Xh) datasets of size 400. Only the X datasets
are used by the synthetic data generators.

I.3 REAL-WORLD DATA EXPERIMENTS

For the real-world data experiments we selected a subset of the datasets from the OpenML-CC18
benchmark suite (Bischl et al., 2021), which were analyzed in Hollmann et al. (2023, 2025). The
OpenML-CC18 suite contains 72 datasets but, similarly to Hollmann et al. (2025), we selected
datasets with at most 10,000 rows (examples), at most 500 columns (features), and containing
categorical variables with at most 10 classes. Furthermore, because most of the evaluation metrics
used in this paper are tailored to numeric data, we applied the additional filter that the datasets needed
to contain more numerical variables than categorical ones. After applying these filters to the 72
datasets in OpenML-CC18 we were left with the 36 datasets listed in Table 4.

We also compared the proposed synthetic data generation strategies against popular synthetic data
generators using a subset of the datasets evaluated in Hansen et al. (2023) and Chaibub Neto (2025)
listed on Table 5. Note that while Table 5 contains datasets with more than 10,000 samples, we
are still able to fit TabPFN models because in our evaluations we split the datasets into original
and holdout sets, and the synthetic data generation is only applied to the original set (which, by its
turn, is further split in 2 subsets during the ICL learning step). We allowed for larger datasets in
these baseline comparison experiments because the deep-learning based baselines benefit from larger
datasets. (We constrained the maximum number of samples to be less than 20,000, however, because
the computation of the evaluation metrics became too slow for larger datasets.)

Similarly to Chaibub Neto (2025), the Abalone data was fetched using the commands:
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Table 4: Datasets used in the real-world data evaluations. These include all 36 datasets in the OpenML-
CC18 benchmark suite with at most 10,000 samples, 500 variables, 10 classes per categorical
variables, and a larger number of numeric variables than categorical ones. In the first column we
assign simplified dataset names (D1 to D36) to the original dataset names. The number of categorical
variables is abbreviated as #cat, and the number of classes of the categorical variable with most
classes is abbreviated as #class.

NAME ORIGINAL DATASET NAME #SAMPLES #COLUMNS #CAT #CLASS OPENML ID

D1 BALANCE-SCALE 625 5 1 3 11
D2 MFEAT-FACTORS 2000 217 1 10 12
D3 MFEAT-FOURIER 2000 77 1 10 14
D4 BREAST-W 699 10 1 2 15
D5 MFEAT-KARHUNEN 2000 65 1 10 16
D6 MFEAT-MORPHOLOGICAL 2000 7 1 10 18
D7 MFEAT-ZERNIKE 2000 48 1 10 22
D8 OPTDIGITS 5620 65 1 10 28
D9 DIABETES 768 9 1 2 37
D10 SPAMBASE 4601 58 1 2 43
D11 VEHICLE 846 19 1 4 53
D12 SATIMAGE 6430 37 1 6 2074
D13 ANALCATDATA-AUTHORSHIP 841 71 1 4 3549
D14 PC4 1458 38 1 2 3902
D15 PC3 1563 38 1 2 3903
D16 KC2 522 22 1 2 3913
D17 KC1 2109 22 1 2 3917
D18 PC1 1109 22 1 2 3918
D19 WDBC 569 31 1 2 9946
D20 PHONEME 5404 6 1 2 9952
D21 QSAR-BIODEG 1055 42 1 2 9957
D22 WALL-ROBOT-NAVIGATION 5456 25 1 4 9960
D23 SEMEION 1593 257 1 10 9964
D24 ILPD 583 11 2 2 9971
D25 OZONE-LEVEL-8HR 2534 73 1 2 9978
D26 FIRST-ORDER-THEOREM-PROVING 6118 52 1 6 9985
D27 BANKNOTE-AUTHENTICATION 1372 5 1 2 10093
D28 BLOOD-TRANSFUSION-SERVICE-CENTER 748 5 1 2 10101
D29 GESTUREPHASESEGMENTATIONPROCESSED 9873 33 1 5 14969
D30 MICEPROTEIN 1080 78 1 8 146800
D31 STEEL-PLATES-FAULT 1941 28 1 7 146817
D32 CLIMATE-MODEL-SIMULATION-CRASHES 540 19 1 2 146819
D33 WILT 4839 6 1 2 146820
D34 SEGMENT 2310 17 1 7 146822
D35 MFEAT-PIXEL 2000 241 1 10 146824
D36 CHURN 5000 21 5 10 167141

Table 5: Datasets used in the baseline comparison experiments. See Table 4 for the column descrip-
tions.

NAME ORIGINAL DATASET NAME # SAMPLES #COLUMNS #CAT #CLASS OPENML ID
AB ABALONE 4177 9 1 2 -
BM BANK MARKETING 10578 8 1 2 44126
CR CREDIT 16714 11 1 2 44089
EM EYE MOVEMENTS 7608 21 1 2 44130
HO HOUSE 16H 13488 17 1 2 44123
MT MAGIC TELESCOPE 13376 11 1 2 44125
PO POL 10082 27 1 2 44122

from sklearn.datasets import fetch_openml

fetch_openml(name="abalone", version=1, as_frame=True)

The other datasets were fetched using:

openml.datasets.get_dataset(openmlid).
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I.4 HYPERPARAMETERS FOR THE BASELINE MODELS

Table 6: Hyperparameters used for the generative models trained on the Abalone (AB) dataset.
Model Parameters

n_iter: 7605
DDPM lr: 0.002991978123076162

batch_size: 970
num_timesteps: 407
is_classification: False
num_trees: 80

ARF delta: 0
max_iters: 2
early_stop: False
min_node_size: 2
n_iter: 400

TVAE lr: 0.001
decoder_n_layers_hidden: 5
weight_decay: 0.0001
batch_size: 128
n_units_embedding: 200
decoder_n_units_hidden: 150
decoder_nonlin: tanh
decoder_dropout: 0.19964446358158816
encoder_n_layers_hidden: 4
encoder_n_units_hidden: 100
encoder_nonlin: relu
encoder_dropout: 0.0820245231222064
n_iter: 700

CTGAN generator_n_layers_hidden: 1
generator_n_units_hidden: 100
generator_nonlin: elu
generator_dropout: 0.13836424598477665
discriminator_n_layers_hidden: 2
discriminator_n_units_hidden: 100
discriminator_nonlin: tanh
discriminator_n_iter: 5
discriminator_dropout: 0.023861565936528797
lr: 0.001
weight_decay: 0.0001
batch_size: 200
encoder_max_clusters: 8

Table 7: Hyperparameters used for the generative models trained on Bank marketing (BM), Credit
(CR), Eye movements (EM), House 16H (HO), Magic telescope (MT), and Pol (PO) datasets.

Model Parameters
n_iter: 1051

DDPM lr: 0.0009375080542687667
batch_size: 2929
num_timesteps: 998
is_classification: True
num_trees: 30

ARF delta: 0
max_iters: 10
early_stop: True
min_node_size: 5
n_iter: 300

TVAE lr: 0.0002
decoder_n_layers_hidden: 4
weight_decay: 0.001
batch_size: 256
n_units_embedding: 200
decoder_n_units_hidden: 300
decoder_nonlin: elu
decoder_dropout: 0.194325119117226
encoder_n_layers_hidden: 1
encoder_n_units_hidden: 450
encoder_nonlin: leaky_relu
encoder_dropout: 0.04288563703094718
n_iter: 1000

CTGAN generator_n_layers_hidden: 2
generator_n_units_hidden: 50
generator_nonlin: tanh
generator_dropout: 0.0575
discriminator_n_layers_hidden: 4
discriminator_n_units_hidden: 150
discriminator_nonlin: relu
discriminator_n_iter: 1
discriminator_dropout: 0.1
lr: 0.001
weight_decay: 0.001
batch_size: 200
encoder_max_clusters: 10
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I.5 EVALUATION METRICS

We evaluated the quality of the synthetic data in terms of data utility, data fidelity, and data privacy.

Data utility was evaluated using the machine learning efficiency (MLE) metric for measuring utility
in downstream predictive tasks. MLE was computed using a random forest learner trained in the
synthetic data and evaluated in the holdout set (which corresponds to real data). (To measure the
ground truth performance, we train the random forest learner on the original data and evaluate
its performance on the holdout set.) The predictive performance was measured using AUROC in
classification tasks and R2 in regression tasks. Hence, larger values of MLE imply better utility of the
synthetic data in downstream ML tasks.

Data fidelity was evaluated with respect to the quality of the marginal distributions, quality of the
pairwise statistical associations, overall data quality, and quality of the joint distribution according to
the following metrics:

• Average KS-statistic (KS). This metric is used to evaluate the quality of the synthetic
data marginal distributions. It is based on the Kolmogorov-Smirnov two-sample statistical
test (KS-test) for the equality of distributions. For each variable it computes the KS-test
statistic between the synthetic and original data, and the metric corresponds to the average
KS-statistic across all variables. Lower values of this metric indicate better agreement
between the synthetic and original marginal distributions.
• L2 distance between association matrices (L2D). This metric is used to evaluate how

well the synthetic data recovers the pairwise statistical associations observed in the original
data. The L2 distance is computed as the average of the squared difference between the
elements of the synthetic and original data association matrices. Lower values of this
metric indicate better agreement between the synthetic and original data pairwise statistical
associations. Since the datasets might include both numerical and categorical variables, we
assess pairwise associations as follows: for numerical pairs we use Pearson correlation; for
categorical pairs we use the Cramer’s V statistic; for numeric/categorical pairs we regress
the numeric variable on the categorical one and use the square root of the R2 statistic as our
association measure (this reduces to the absolute correlation coefficient when both variables
are numerical).
• Wasserstein distance (WD). The WD metric, also known as the Earth Mover’s Distance,

quantifies the dissimilarity between two probability distributions by measuring the minimum
“cost" of transporting probability mass from one distribution to the other. It is used to
evaluate how well the joint probability distribution of the synthetic data approximates the
joint distribution of the original data. Lower values of this metric indicate better agreement
between the synthetic and original joint probability distributions. Because we adopt the
squared Euclidean distance cost matrix for the computation of the transport cost, this metric
is sensitive to scale (i.e., variables with larger numerical ranges dominate the distance).
Hence, we first re-scale all variables before computing the WD.
• Energy distance (ED). This metric is also used to evaluate how well the joint probability

distribution of the synthetic data approximates the joint distribution of the original data.
Again, lower values of this metric indicate better agreement between the synthetic and origi-
nal joint probability distributions. (Energy distance (Szekely and Rizzo, 2023) represents a
special case of the maximum mean discrepancy statistic.) Since ED uses Euclidean norms
to compare observations, it is also sensitive to scale (i.e., variables with larger numerical
ranges dominate the distance). Hence, we first re-scale all variables before computing the
ED.
• Detection test (DT). This metric measures the overall quality of the synthetic data by

evaluating the performance of a classifier trained to discriminate between synthetic and
original data examples. When the synthetic data is indistinguishable from the original data
the classifier should achieve a random guess performance level, otherwise the classifier
performance should be better than random. In our experiments, we use a random forest
classifier and evaluate classification performance using AUROC. Values closer to AUROC =
0.5 indicate better agreement between the synthetic and original data.

Data privacy was evaluated according to the following metrics:
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• Distance to closest record (DCR). This represents a record-level privacy metric that mea-
sures how similar a synthetic record is to the closest record in the original dataset. It is
computed by measuring, for each synthetic record, the minimum distance to any record
in the original dataset using Euclidean distance; values close to zero indicate higher dis-
closure risk because synthetic records are nearly indistinguishable from the original data
ones, whereas larger values suggest safer privacy protection by ensuring greater separation
between synthetic and real data (this might be achieved at the cost of lower data fidelity,
though). Since Euclidean distance is sensitive to scale (i.e., variables with larger numerical
ranges dominate the distance), we first re-scale all variables before computing the DCR.
• Sorted distance-based record linkage (SDBRL). This metric represents a variant of the

Distance-Based Record Linkage (DBRL) metric. The DBRL metric (Pagliuca and Seri, 1999;
Domingo-Ferrer and Torra, 2001) is a widely used method for evaluating re-identification
risk of perturbation methods within the Statistical Disclosure Control field (Drechsler, 2011).
It operates by computing the Euclidean distance between each record in the perturbed dataset
and all records in the original dataset, designating a perturbed record as ’linked’ when its
nearest neighbor corresponds to its true original record. The DBRL value is then given by
the proportion of perturbed records successfully linked back to their original counterparts.
Strictly speaking, the DBRL metric is only intended for evaluating data perturbation methods,
since it assumes the existence of a direct mapping between the original and perturbed values
(for example, when perturbed data are obtained by adding noise to the original data). In the
case of synthetic data, where such a mapping is absent, an approximate correspondence can
still be established following the approach of Domingo-Ferrer et al. (2020) and Chaibub
Neto (2024, 2025). The idea is to sort the rows of both the original and synthetic datasets
by the values of a chosen attribute (column) and then compute the metric on these sorted
datasets. (A rationale for this procedure is given in section 3 of Domingo-Ferrer et al.
(2020).) This adapted version of the DBRL metric is referred to as the “sorted DBRL"
metric, or SDBRL for short.
• Sorted standard deviation interval distance (SSDID). This metric represents a variant of

the Standard Deviation Interval Distance (SDID) metric. The SDID metric Mateo-Sanz et al.
(2004) is a commonly used method for evaluating attribute disclosure risk of perturbation
methods in the Statistical Disclosure Control literature. It corresponds to the proportion
of original records inside a standard deviation interval whose center is the corresponding
perturbed record (where the interval width is computed in terms of a percentage p of the
standard deviation of the variable). A record i in the original dataset is considered to be
inside the standard deviation interval of the perturbed record i if, for all variables j, it is
inside the respective standard deviation interval. Similarly to DBRL, the SDID metric also
assumes the existence of a mapping between the original and perturbed values, and we
adopted the sorted version of this metric (SSDID) proposed by Chaibub Neto (2024, 2025)
in our synthetic data evaluations.

In our evaluations, we only compute the KS, WD, ED, DCR, SDBRL, and SSDID metrics for numeric
variables. (Note that our simulated datasets contain only numeric variables and, as shown in Table 4,
the real-world datasets contained mostly numeric variables as well.)

I.6 RESULTS FOR ADDITIONAL EVALUATION METRICS

In the main text, we present evaluation results for three fidelity metrics (namely, KS, L2D, and
DT) and three privacy metrics (namely, DCR, SDBRL, and SSDID). Here, we present additional
evaluation results for the: machine learning efficiency (MLE) metric, which measures data utility in
downstream predictive tasks; and the Wasserstein distance and the energy distance metrics, both of
which measure data fidelity by evaluating how well the joint probability distribution of the synthetic
data approximates the joint distribution of the original data.

Figure 13 report the results (which were computed in the exact same data splits and synthetic datasets
as the previous evaluation metrics). Panels a, b, and c show the results from the experiments based on
simulated data draw from correlated beta distributions. Panels d, e, and f report the results for the 36
real-world datasets from the OpenML-CC18 benchmark suite described in Table 4. Panels g, h, and i
show the results for the 7 additional datasets evaluated in Hansen et al. (2023) and Chaibub Neto et
al. (2025) described in Table 5.
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Figure 13: Pooled experimental results. Top panels show results pooled across the 5 simulated dataset
settings. The middle panels show results pooled across the 36 real-world datasets selected from the
OpenML-CC18 suite. The bottom panels show results pooled across the 7 real-world datasets used
for the baseline generator comparisons. For the MLE metric, higher values indicate better data utility
(MLE is measured by AUROC in classification tasks and R2 in regression tasks). For the WD and
ED metrics, lower values indicate better fidelity.

In terms of MLE (panels a, d, and g), where larger values indicate better utility, the MIAV approach
(red boxplots) performs consistently well across all experiments, closely tracking the ground truth
performance, reported by the holdout set results (green boxplots). Overall, most baselines tended
to show comparable performances, with the exception of the JF and the bayesian-network (BN)
generators in panel g (and the FC generator in panel a), which tended to underperform when compared
to the other generators.

In terms of the WD and ED fidelity metrics, where lower values indicate better fidelity, the SMOTE
and MIAV approaches tended to outperform the JF and FC methods in all experiments. Interestingly,
the comparisons of WD and ED across the other baselines (panels h and i) show some surprising
results. In particular, the bayesian-network (BN) generator, which achieved the worse data utility
performance as measured by MLE (panel g) as well as the worse data fidelity performances in terms
of the L2D and DT metrics (see panels n and o in Figure 4 in the main text), tended to produce
surprisingly strong results in terms of WD and ED. The DDPM baseline, on the other hand, achieved
weak performance in terms of WD and ED despite ranking among the strongest baselines in all
other data utility and data fidelity metrics. These observations corroborate similar surprising results
reported by Hansen et al. (2023), which also observed better fidelity scores for bayesian-network
than for the DDPM model in their experiments. These findings provide yet another example of how
distinct performance metrics do not always generate consistent conclusions, and underscore the need
for evaluations based on multiple metrics.
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I.7 EXTENDED RESULTS

Due to space limitations, in the main text we only present experimental results pooled across all
datasets. Here we provide more detailed results. Figure 14 presents the results from the simulated
data experiments separated by simulation setting. Figures 15, 16, 17, and 18 present separated results
for each of the OpenML-CC18 real-world datasets. Figure 19 presents separated results for each of
the real-world datasets in Table 5.
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Figure 14: Simulated data experiments separated by simulation setting. Each boxplot displays the
results from 10 separate replications based on different simulation parameters.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.0

0.1

0.2

0.3

0.4

KS, D1

av
e.

 K
S

−
st

at
is

tic

(a1)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.00

0.05

0.10

0.15

0.20

0.25

L2D, D1

L2
 d

is
t. 

be
tw

ee
n 

as
so

c.
 m

at
ric

es (b1)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.5

0.6

0.7

0.8

0.9

1.0
DT, D1

A
U

R
O

C

(c1)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.00

0.05

0.10

0.15

0.20

0.25

0.30
DCR, D1

m
ed

ia
n 

of
 D

C
R

 d
is

tr
ib

ut
io

n

(d1)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
SDBRL, D1

so
rt

ed
 D

B
R

L

(e1)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
SSDID, D1

so
rt

ed
 S

D
ID

(f1)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.010

0.015

0.020

0.025

0.030

0.035

KS, D2

av
e.

 K
S

−
st

at
is

tic

(a2)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
L2D, D2

L2
 d

is
t. 

be
tw

ee
n 

as
so

c.
 m

at
ric

es (b2)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.5

0.6

0.7

0.8

0.9

1.0
DT, D2

A
U

R
O

C

(c2)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.4

0.6

0.8

1.0

1.2

1.4
DCR, D2

m
ed

ia
n 

of
 D

C
R

 d
is

tr
ib

ut
io

n

(d2)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.0

0.2

0.4

0.6

0.8

1.0
SDBRL, D2

so
rt

ed
 D

B
R

L

(e2)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.000

0.002

0.004

0.006

0.008

0.010
SSDID, D2

so
rt

ed
 S

D
ID

(f2)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.04

0.06

0.08

0.10

0.12

0.14

KS, D3

av
e.

 K
S

−
st

at
is

tic

(a3)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.000

0.005

0.010

0.015

0.020
L2D, D3

L2
 d

is
t. 

be
tw

ee
n 

as
so

c.
 m

at
ric

es (b3)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.5

0.6

0.7

0.8

0.9

1.0
DT, D3

A
U

R
O

C

(c3)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.4

0.6

0.8

1.0

1.2

DCR, D3

m
ed

ia
n 

of
 D

C
R

 d
is

tr
ib

ut
io

n

(d3)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.01

0.02

0.03

0.04

0.05

SDBRL, D3

so
rt

ed
 D

B
R

L

(e3)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.000

0.001

0.002

0.003

0.004

0.005

SSDID, D3

so
rt

ed
 S

D
ID

(f3)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.05

0.10

0.15

0.20
KS, D4

av
e.

 K
S

−
st

at
is

tic

(a4)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

L2D, D4

L2
 d

is
t. 

be
tw

ee
n 

as
so

c.
 m

at
ric

es (b4)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.5

0.6

0.7

0.8

0.9

1.0
DT, D4

A
U

R
O

C

(c4)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.0

0.1

0.2

0.3

0.4

DCR, D4

m
ed

ia
n 

of
 D

C
R

 d
is

tr
ib

ut
io

n
(d4)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.0

0.1

0.2

0.3

0.4
SDBRL, D4

so
rt

ed
 D

B
R

L

(e4)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.00

0.05

0.10

0.15

0.20

0.25

0.30

SSDID, D4

so
rt

ed
 S

D
ID

(f4)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.04

0.06

0.08

0.10

0.12

0.14
KS, D5

av
e.

 K
S

−
st

at
is

tic

(a5)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.000

0.005

0.010

0.015

L2D, D5

L2
 d

is
t. 

be
tw

ee
n 

as
so

c.
 m

at
ric

es (b5)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.5

0.6

0.7

0.8

0.9

1.0
DT, D5

A
U

R
O

C

(c5)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.4

0.6

0.8

1.0

DCR, D5

m
ed

ia
n 

of
 D

C
R

 d
is

tr
ib

ut
io

n

(d5)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.01

0.02

0.03

0.04

0.05

0.06

SDBRL, D5
so

rt
ed

 D
B

R
L

(e5)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.000

0.001

0.002

0.003

0.004

0.005

SSDID, D5

so
rt

ed
 S

D
ID

(f5)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.05

0.10

0.15

0.20

KS, D6

av
e.

 K
S

−
st

at
is

tic

(a6)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.00

0.05

0.10

0.15

L2D, D6

L2
 d

is
t. 

be
tw

ee
n 

as
so

c.
 m

at
ric

es (b6)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.5

0.6

0.7

0.8

0.9

1.0
DT, D6

A
U

R
O

C

(c6)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.1

0.2

0.3

0.4

0.5

0.6

0.7
DCR, D6

m
ed

ia
n 

of
 D

C
R

 d
is

tr
ib

ut
io

n

(d6)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.00

0.05

0.10

0.15

0.20

0.25
SDBRL, D6

so
rt

ed
 D

B
R

L

(e6)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E
0.00

0.05

0.10

0.15

0.20

SSDID, D6
so

rt
ed

 S
D

ID

(f6)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.02

0.03

0.04

0.05

0.06

0.07

0.08
KS, D7

av
e.

 K
S

−
st

at
is

tic

(a7)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.000

0.005

0.010

0.015

L2D, D7

L2
 d

is
t. 

be
tw

ee
n 

as
so

c.
 m

at
ric

es (b7)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.5

0.6

0.7

0.8

0.9

1.0
DT, D7

A
U

R
O

C

(c7)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
DCR, D7

m
ed

ia
n 

of
 D

C
R

 d
is

tr
ib

ut
io

n

(d7)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.0

0.1

0.2

0.3

0.4

0.5

0.6
SDBRL, D7

so
rt

ed
 D

B
R

L

(e7)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.000

0.002

0.004

0.006

0.008

SSDID, D7

so
rt

ed
 S

D
ID

(f7)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.015

0.020

0.025

0.030

0.035

0.040

0.045
KS, D8

av
e.

 K
S

−
st

at
is

tic

(a8)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.0005

0.0010

0.0015

0.0020
L2D, D8

L2
 d

is
t. 

be
tw

ee
n 

as
so

c.
 m

at
ric

es (b8)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.5

0.6

0.7

0.8

DT, D8

A
U

R
O

C

(c8)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.5

1.0

1.5

DCR, D8

m
ed

ia
n 

of
 D

C
R

 d
is

tr
ib

ut
io

n

(d8)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

−1.0

−0.5

0.0

0.5

1.0
SDBRL, D8

so
rt

ed
 D

B
R

L

(e8)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
SSDID, D8

so
rt

ed
 S

D
ID

(f8)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.05

0.10

0.15

0.20

0.25

0.30

0.35

KS, D9

av
e.

 K
S

−
st

at
is

tic

(a9)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.00

0.02

0.04

0.06

0.08
L2D, D9

L2
 d

is
t. 

be
tw

ee
n 

as
so

c.
 m

at
ric

es (b9)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.5

0.6

0.7

0.8

0.9

1.0
DT, D9

A
U

R
O

C

(c9)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.2

0.3

0.4

0.5

0.6
DCR, D9

m
ed

ia
n 

of
 D

C
R

 d
is

tr
ib

ut
io

n

(d9)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.00

0.05

0.10

0.15

0.20

0.25

0.30

SDBRL, D9

so
rt

ed
 D

B
R

L

(e9)

ho
ld

ou
t

M
IA

V JF F
C

S
M

O
T

E

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
SSDID, D9

so
rt

ed
 S

D
ID

(f9)

Figure 15: Experiment results for datasets D1 to D9 (see Table 4 for the original dataset names).
Each boxplot displays the results from 10 distinct original/holdout data splits.
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Figure 16: Experiment results for datasets D10 to D18 (see Table 4 for the original dataset names).
Each boxplot displays the results from 10 distinct original/holdout data splits.
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Figure 17: Experiment results for datasets D19 to D27 (see Table 4 for the original dataset names).
Each boxplot displays the results from 10 distinct original/holdout data splits.
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Figure 18: Experiment results for datasets D28 to D36 (see Table 4 for the original dataset names).
Each boxplot displays the results from 10 distinct original/holdout data splits.
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Figure 19: Experiment results for datasets in Table 5. Each boxplot displays the results from 10
distinct original/holdout data splits.
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J THE NOISY-MIAV STRATEGY

A simple way to improve the privacy of the MIAV synthetic data generation approach is to add
controlled amounts of noise to the MIAV before generating the synthetic data with the TabPFN
model. The details are presented in Algorithms 11 and 12. As shown in lines 7 and 9 of Algorithm
11, we generate noisy versions of the MIAV by adding Gaussian noise with mean 0 and standard
deviance equal to a fixed percentage of the standard deviation of the respective MIAV. By increasing
the percent of noise parameter we generate increasingly noisier versions of the MIAV.

Algorithm 11 ICLwithNoisyMIAVTabPFN(Xtr, Xts, percent)
1: Input: training data for ICL, Xtr; query data for ICL, Xts

2: n← NumberOfRows(Xts) {Obtain number of rows of Xts.}

3: p← NumberOfColumns(Xts) {Obtain number of columns of Xts.}

4: Zts ← [, ] {Create empty matrix to store the synthetic data.}

5: for j = 1 to p do
6: mtr

j ← GenerateMaximalInformationAuxiliaryVariable(xtrj ) {Generate the MIAV for xtr
j using Algo-

rithm 1.}

7: mtr
j ←mtr

j + GenerateNormalVariable(size = n,mean = 0, sd = percent ∗ sd(mtr
j )) {Add

Gaussian noise to the MIAV according to a specified percent of the MIAV’s standard deviation.}

8: mts
j ← GenerateMaximalInformationAuxiliaryVariable(xtsj ) {Generate the MIAV for xts

j using Algo-

rithm 1.}

9: mts
j ←mts

j + GenerateNormalVariable(size = n,mean = 0, sd = percent ∗ sd(mts
j )) {Add

Gaussian noise to the MIAV according to a specified percent of the MIAV’s standard deviation.}

10: Zts[, j]← GeneratePredictionUsingTabPFN(mts
j ,m

tr
j ,x

tr
j ) {Predict xts

j using mtr
j and xtr

j as context,

and mts
j as query. The prediction can be from a regression or classification TabPFN model, depending on whether xtr

j is continuous

or categorical.}

11: end for
12: Output: synthetic data Zts

Algorithm 12 NoisyMIAVTabPFNGenerator(X, percent)
1: Input: the original data, X
2: X1,X2 ← DataSplit(X) {Split the original data X into two subsets, X1 and X2.}

3: Z1 ← ICLwithNoisyMIAVTabPFN(Xtr = X2,X
ts = X1, percent) {Generate a synthetic data copy of

X1 using Alg. 6.}

4: Z2 ← ICLwithNoisyMIAVTabPFN(Xtr = X1,X
ts = X2, percent) {Generate a synthetic data copy of

X2 using Alg. 6.}

5: Z← Concatenate(Z1,Z2) {Concatenate the synthetic datasets Z1 and Z2.}

6: Z← RoundIntegerVariables(X,Z) {This function uses X to determine which variables have integer type and round the

values of the corresponding variables in Z to the nearest integer.}

7: Output: synthetic data Z

Figure 20 shows an illustrative example (using simulated dataset with correlated beta distributed
data). Panels a1 to e1 show a scatterplots of the MIAVs, Mj versus the original variable, Xj . Panel
a2 to e2 show the respective scatterplots for the noisy MIAVs obtained by adding Gaussian noise
with standard deviation given by 0.1× sd(Mj) (where sd(Mj) represents the standard deviation of
the MIAV Mj). Similarly, panels a3 to e3 and panels a4 to e4 show the scatterplots for the noisy
MIAVs obtained with standard deviations 0.2× sd(Mj), and 0.3× sd(Mj), respectively.

Figure 21 compares the densities of synthetic data generated with the MIAV approach (panels a1
to e1) against synthetic data generated with the noisy-MIAV approach using increasing amounts of
noise (namely, 0.1× sd(Mj) for panels a2 to e2, 0.2× sd(Mj) for panels a3 to e3, and 0.3× sd(Mj)
for panels a4 to e4.)

Finally, in Figure 22 we report the results from synthetic and real-world data experiments evaluating
the noisy-MIAV approach w.r.t. the same fidelity and privacy metrics using the same 43 datasets
evaluated in the main paper. As before, the results were based on 10 distinct random splits of the data
into original and holdout datasets and the figure report results pooled across all datasets. As expected,
the noisy-MIAV approach trades an increase in data privacy by a decrease in data fidelity.
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Figure 20: MIAV and noisy-MIAV versus original data scatterplots. Panels a1-e1, a2-e2, a3-e3, and
a4-e4 show scatterplots of the original data versus MIAV and original data versus noisy-MIAVs
generated with increasing amounts of noise.
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Figure 21: Marginal distributions generated with the noisy-MIAV strategy. Panels a1 to e1 report the
densities based on the standard MIAV. Panel a2-e2, a3-e3, and a4-e4 show densities based on the
noisy-MIAV (NMIAV) generated with noise percent set to 0.1, 0.2, and 0.3, respectively.
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Figure 22: Experiment results for the noisy-MIAV strategy with noise percent increasing from 0.05
to 0.3 (in 0.05 increments). Increasing amounts of noise lead to decreasing data fidelity (larger values
for the KS, L2D, and DT metrics), but improved data privacy (larger DCR values and lower SDBRL
and SSDID values). Each boxplot displays the results from 10 distinct original/holdout data splits.
Top panels show the pooled results for the synthetic data experiments. Middle panels show the pooled
results for the OpenML-CC18 datasets in Table 4. Bottom panels show pooled results for the datasets
in Table 5. (The boxplots omit outliers to improve visualization.)

K SYNTHETIC DATA GENERATION BASED ON TABICL PFN MODELS

To illustrate that our proposed synthetic data generation strategy is not restricted to TabPFN models,
here we illustrate its application in conjunction with the TabICL model (Qu et al., 2025), which
corresponds to an alternative PFN-based tabular foundation model. TabICL provides a much more
scalable alternative to TabPFN, being able to handle datasets with up to 500,000 examples using
affordable compute resources. However, similarly to TabPFN, it is still constrained to datasets with
at most 500 features. (Observe, however, that because the MIAV strategy only requires training of
TabPFN (or TabICL) models with a single feature per variable, this constraint has no impact on
the MIAV approach, which can potentially be used to generate synthetic data versions of datasets
containing more than 500 variables.)

Because TabICL currently can only handle classification tasks, our illustrations are restricted to
datasets containing only categorical variables. Since we are also comparing the TabICL-based
synthetic data generation against the strategies based on TabPFN we restrict our comparisons to the
datasets in the OpenML-CC18 benchmark suite with at most 10,000 samples, 500 features, containing
categorical variables with at most 10 level classes, and which contain more categorical variables
than numeric ones. (We dropped the numerical variables from the few datasets that contained both
numeric and categorical variables.) Table 8 shows the selected datasets for these comparisons.

As before, we consider 3 data generation strategies, namely, the MIAV-TabICL, the JF-TabICL, and
the FC-TabICL and compare it against the corresponding TabPFN based MIAV, JF, and FC strategies
(denoted as MIAV-TabPFN, the JF-TabPFN, and the FC-TabPFN in the plots below).
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Table 8: Datasets used for the TabICL illustrations and comparisons with TabPFN. These include all
8 datasets in the OpenML-CC18 benchmark suite with at most 10,000 samples, 500 variables, 10
classes per categorical variables, and a larger number of categorical variables than numeric ones. In
the first column we assign simplified dataset names (C1 to C8) to the original dataset names. The
number of categorical variables is abbreviated as #cat, and the number of classes of the categorical
variable with most classes is abbreviated as #class. In datasets C2 and C3 we remove the numerical
variables before running the analyses.

NAME ORIGINAL DATASET NAME #SAMPLES #COLUMNS #CAT #CLASS OPENML ID

C1 KR-VS-KP 3196 37 37 3 3
C2 CMC 1473 10 8 4 23
C3 CREDIT-G 1000 21 14 10 31
C4 SPLICE 3190 61 61 6 45
C5 TIC-TAC-TOE 958 10 10 3 49
C6 ANALCATDATA-DMFT 797 5 5 9 3560
C7 CAR 1728 7 7 4 146821
C8 DNA 3186 181 181 3 167140

The implementation of the TabICL-based strategies is analogous to the TabPFN ones (we just need to
switch the GeneratePreditionsUsingTabPFN() function in Algorithms 2, 4, and 6 by the
corresponding GeneratePreditionsUsingTabICL() function).

The experiments were run as before, where each dataset was first randomly split into approximately
equal sized original and holdout sets, and we report the results from 10 data splits. Since we only
consider categorical datasets, we adopt: (i) the average KL-divergence metric to measure the quality
of the synthetic data marginal distributions (where we compute separate KL-divergence scores for
each column of the dataset and take the average across all columns as the final metric); and (ii) the
L2D metric for measuring how well the synthetic data captures the pairwise statistical associations
observed in the original data (where the pairwise associations of the categorical variables are measured
with the Cramer-V statistic.). For both of these metrics, lower values indicate better data fidelity.

Figures 23 to 24 report the results for the average KL-divergence and L2D metrics, respectively. For
comparison, the figures also show the results for the holdout datasets. For all datasets, the results for
MIAV-TabICL and MIAV-TabPFN were very close. As before, the MIAV-based strategies tended to
outperform the JF and FC ones.
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Figure 23: KL-divergence comparison for categorical datasets C1 to C8 (see Table 8 for the original
dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.
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Figure 24: L2D comparison for categorical datasets C1 to C8 (see Table 8 for the original dataset
names). Each boxplot displays the results from 10 distinct original/holdout data splits.

L INSENSITIVITY TO THE CHOICE OF THE RANDOM NOISE DISTRIBUTION

In all experiments reported in this paper, we construct MIAV variables with random noise sampled
from a uniform distribution. A natural question is whether the MIAV approach is sensitive to the
choice of the distribution used the generate the MIAV variable. Here, we clarify that the MIAV
approach based on the TabPFN model is insensitive to the choice of noise distribution because,
internally, TabPFN pre-process all features to approximately standard normal distributions before
running them through the transformer. (As described in the Methods section Hollmann et al. (2025),
the neural network of TabPFN expects approximately normal features after all pre-processing steps.
To this end, for each input, TabPFN employs a Yeo-Johnson power transformation to stabilize variance
and make the distributions approximately normal, followed by a z-transformation to center the inputs
at 0 and scale their variance to 1.) As a consequence, the choice of noise distribution does not have
an impact on the performance of the MIAV approach since the MIAV input variable is internally
transformed to approximate a standard normal distribution.

To illustrate this point we compare the performance of the MIAV approach implemented with
different random noise distributions including uniform (U(0, 1)), gaussian (N(0, 1)), and exponential
(Exp(1)) noise. We again simulate data from correlated beta distributions and evaluate qualitatively
the quality of the MIAV-based synthetic data generated with different random noise distributions.
(In all these illustrations we use the same original data. Only the synthetic datasets generated with
the MIAV approach differ.). Figure 25 reports the marginal distributions of the original data (black
densities) and their respective MIAVs (red densities) (panels a to e), alongside scatter-plots of the
original and MIAV variables (panels f to j), for synthetic data generated with MIAVs following a
uniform distribution. Figures 26 and 27 report analogous comparisons for synthetic data generated
with MIAVs following gaussian and exponential distributions.

Figure 28 reports the marginal densities of the original data (black) and the synthetic data (red)
generated with uniformly distributed MIAVs. The figure shows the results from 3 separate replications
based on different random seeds, where the top, middle, and bottom panels report the results generated
with distinct random seeds. Figures 29 and 30 report the analogous results for synthetic data generated
with gaussian and exponential random noise distributions, respectively. Comparison of Figures 28,
29, and 30 shows that the quality of the synthetic data remains unchanged with the different choices
of random noise distributions.
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Figure 25: Illustrative example with MIAVs generated with uniform random noise.
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Figure 26: Illustrative example with MIAVs generated with gaussian random noise.
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Figure 27: Illustrative example with MIAVs generated with exponential random noise.
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Figure 28: Marginal distributions of the original data (black densities) and the synthetic data (red
densities) generated with uniformly distributed MIAVs. The top, middle, and bottom panels report
results generated with different random seeds.

0.2 0.6

0.
0

1.
0

2.
0

3.
0

     X1 (repl. 1)

variable values

de
ns

ity

original
MIAV

(g)

0.0 0.4 0.8

0
2

4
6

8

     X2 (repl. 1)

variable values

de
ns

ity

original
MIAV

(h)

0.7 0.9

0
2

4
6

8

     X3 (repl. 1)

variable values

de
ns

ity

original
MIAV

(i)

0.0 0.5 1.0

0.
0

0.
4

0.
8

1.
2

     X4 (repl. 1)

variable values

de
ns

ity

original
MIAV

(j)

0.0 0.4

0
1

2
3

     X5 (repl. 1)

variable values

de
ns

ity
original
MIAV

(k)

0.2 0.6

0
1

2
3

     X1 (repl. 2)

variable values

de
ns

ity

original
MIAV

(f)

0.0 0.4 0.8

0
2

4
6

8

     X2 (repl. 2)

variable values

de
ns

ity

original
MIAV

(g)

0.7 0.9

0
2

4
6

8
10

     X3 (repl. 2)

variable values

de
ns

ity

original
MIAV

(h)

0.0 0.5 1.0

0.
0

0.
4

0.
8

1.
2

     X4 (repl. 2)

variable values

de
ns

ity

original
MIAV

(i)

0.0 0.4

0.
0

1.
0

2.
0

3.
0

     X5 (repl. 2)

variable values

de
ns

ity

original
MIAV

(j)

0.2 0.6

0.
0

1.
0

2.
0

3.
0

     X1 (repl. 3)

variable values

de
ns

ity

original
MIAV

(k)

0.0 0.4 0.8

0
2

4
6

8

     X2 (repl. 3)

variable values

de
ns

ity

original
MIAV

(l)

0.7 0.9

0
2

4
6

8

     X3 (repl. 3)

variable values

de
ns

ity

original
MIAV

(m)

0.0 0.5 1.0

0.
0

0.
4

0.
8

1.
2

     X4 (repl. 3)

variable values

de
ns

ity

original
MIAV

(n)

0.0 0.4

0
1

2
3

4

     X5 (repl. 3)

variable values

de
ns

ity

original
MIAV

(o)

Figure 29: Marginal distributions of the original data (black densities) and the synthetic data (red
densities) generated with normally distributed MIAVs. The top, middle, and bottom panels report
results generated with different random seeds.
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Figure 30: Marginal distributions of the original data (black densities) and the synthetic data (red
densities) generated with exponentially distributed MIAVs. The top, middle, and bottom panels report
results generated with different random seeds.
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ChatGPT-5 was used to refine the grammar and clarity of some paragraphs of the paper and to
translate R code into Python code. We reviewed and verified all AI-generated content for accuracy
and take full responsibility for the paper’s final content.
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