

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 USING MAXIMAL INFORMATION AUXILIARY VARI- ABLES TO IMPROVE SYNTHETIC DATA GENERATION BASED ON TABPFN FOUNDATION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Synthetic data generation for tabular datasets is shifting toward the use of large, general-purpose foundation models. TabPFN, a state-of-the-art example, uses in-context learning to generate probabilistic predictions conditioned on observed examples in a single forward pass. However, when variables are only weakly associated with others, the model’s ability to generate realistic synthetic data deteriorates, as the context examples provide little predictive signal. To address this, we introduce the maximal information auxiliary variable (MIAV) strategy, which increases context information with auxiliary variables constructed by rank-matching random noise variables to real data. We establish theoretical properties of the approach which explain its good performance for weakly associated variables. Additional practical advantages of the MIAV approach include improved computational efficiency and invariance to variable order during the synthetic data generation process. Empirical evaluations, on simulated and real datasets, illustrate how the MIAV strategy improves data generation when compared to direct application of TabPFN, and is competitive against other baselines. To illustrate the generality of the MIAV approach we also present an implementation based on the TabICL model (a more scalable tabular foundation model restricted to classification tasks) for performing synthetic data generation on categorical datasets. Overall, MIAV offers an effective foundation model-based alternative to bespoke synthetic data generators.

1 INTRODUCTION

Accessible data is crucial for advancing machine learning research. In practice, however, real-world datasets often contain sensitive information, restricting their open distribution within the research community. A promising solution is the generation of synthetic datasets that closely replicate the properties of real data while avoiding direct disclosure (Lu et al., 2023).

While synthetic data has long been explored through bespoke statistical models and machine learning algorithms, the field is now undergoing a paradigm shift driven by advances in large-scale, general-purpose models. Traditional approaches, such as those by Borisov et al. (2023), Cresswell and Kim (2024), Jolicoeur-Martineau et al. (2024), Kotelnikov et al. (2023), Nowok et al. (2016), Reiter (2005), Shi et al. (2025), Watson et al. (2023), Xu et al. (2019), Young et al. (2009), Zhang et al. (2024), Xu et al. (2025), among many others, typically rely on dataset-specific training, demand substantial domain expertise, and often struggle with knowledge transfer across datasets. Tabular foundation models (Hollmann et al., 2023; den Breejen et al., 2024; Koshil et al., 2024; Feuer et al., 2024; Ma et al., 2024a; Ma et al., 2024b; Xu et al., 2024; Zeng et al., 2024; Muller et al., 2025; Hollmann et al., 2025; Qu et al., 2025; Garg et al., 2025) offer a promising alternative. By learning broad, transferable representations of tabular data, they enable strong performance in supervised learning tasks with minimal additional training.

In particular, TabPFN (Hollmann et al., 2025) represents a state-of-the-art tabular foundation model, trained on millions of diverse synthetic datasets covering a wide range of feature types, noise structures, and functional relationships. This diversity allows it to leverage a broad, transferable prior over tabular data distributions. TabPFN enjoys a solid theoretical foundation as it corresponds to a prior-data fitted network (PFN) (Müller et al., 2022) and can be interpreted as approximating

054 Bayesian prediction under the prior induced by its synthetic training data. TabPFN relies on in-
 055 context learning (Brown et al., 2020) (ICL) for generating probabilistic predictions. At inference time,
 056 the pre-trained foundation model employs training features, \mathbf{X}^{tr} , and training targets, \mathbf{y}^{tr} , as the
 057 “context” data, whereas the test set features, \mathbf{X}^{ts} , play the role of the “query”. The output of the query
 058 is a sample/prediction $\hat{\mathbf{y}}^{ts}$ from the posterior predictive distribution of \mathbf{y}^{ts} , $P(\mathbf{y}^{ts} | \mathbf{X}^{ts}, \mathbf{X}^{tr}, \mathbf{y}^{tr})$,
 059 generated by a single forward pass through the model’s neural network. TabPFN has been shown to
 060 achieve state-of-the-art performance in classification and regression tasks in small datasets and, due
 061 to its generative nature, can also be directly used to perform synthetic data generation (Hollmann et
 062 al., 2025).

063 Despite its promise, applying TabPFN directly to synthetic data generation reveals an important
 064 limitation: the method performs poorly for variables that are only weakly associated with the rest of
 065 the dataset. This is expected: when the target data \mathbf{y} is uncorrelated with the features \mathbf{X} , the context
 066 examples $\mathbf{X}^{tr}, \mathbf{y}^{tr}$ provide no useful signal for learning how to map \mathbf{X} to \mathbf{y} . Consequently, when
 067 queried with \mathbf{X}^{ts} , the model is unable to approximate the distribution of \mathbf{y}^{ts} . While this limitation
 068 is less consequential for supervised learning tasks, it poses a significant caveat for synthetic data
 069 generation (see Appendix A for details). In principle, exemplar-based declarative programming
 070 strategies could mitigate this issue, but doing so would likely require fine-tuning, or even retraining
 071 the foundation models.

072 In this paper, we address this problem by showing how to generate high-quality synthetic datasets
 073 with the current TabPFN model. Our approach leverages maximal information auxiliary variables
 074 (MIAV) for in-context learning. We construct these variables through simple rank-matching of
 075 random noise to the real data and establish two key theoretical properties: (i) conditional on its
 076 MIAV, a variable X_j is independent of all other variables, and (ii) the MIAV of X_j retains maximal
 077 information about X_j in a non-parametric, information-theoretic sense (see Theorem 1). We further
 078 demonstrate that MIAV-based synthetic data generation corresponds to the correct factorization of the
 079 posterior predictive distribution conditioned on the original data and MIAVs. Together, these results
 080 provide the foundation for more effective synthetic data generation strategies using TabPFN models.

081 In addition to its theoretical strengths and its ability to generate high-quality synthetic data under
 082 weak association settings, our proposed strategy offers several practical advantages. First, unlike the
 083 direct synthetic data generation approach of Hollmann et al. (2025), which is sensitive to variable
 084 order and therefore requires aggregating results across multiple variable order permutations, our
 085 method is invariant to variable order. Second, regarding computational efficiency, TabPFN’s runtime
 086 for a fixed sample size is primarily determined by the number of context features, as its complexity
 087 scales quadratically with the number of features. Since our approach uses only one feature per
 088 variable when generating synthetic data, it attains maximal efficiency and eliminates the need for
 089 aggregation across multiple runs.

090 To illustrate the issues around the direct use of TabPFN for synthetic data generation under weak
 091 association settings, we describe a couple of direct implementations and compare their performance
 092 against the MIAV approach in simulated data experiments (where we are able to control the strength
 093 of the statistical associations among the data variables), as well as, on extensive real-world data
 094 experiments based on 43 distinct datasets. (For completeness, we also include comparisons against
 095 other baseline generators.)

096 We conduct our evaluations in the setting of privacy-preserving data sharing (Rajotte et al., 2022),
 097 where the objective is to produce synthetic copies of real datasets that retain their statistical properties
 098 while simultaneously mitigating privacy risks. Accordingly, we assess the performance of the
 099 TabPFN-based synthetic data generation strategies using both data fidelity and privacy metrics.

100 Importantly, our synthetic data generation strategy can be directly applied to other tabular foundation
 101 models that approximate Bayesian inference. To demonstrate this, we also implemented our approach
 102 using the more scalable TabICL foundation model (Qu et al., 2025), a recently proposed alternative
 103 to TabPFN that alleviates some of its data size limitations. (Since the current version of TabICL only
 104 supports classification, our implementation and evaluation were restricted to 8 additional real-world
 105 categorical datasets.) These additional results highlight the generality of our strategy and suggest
 106 that, as PFN-based tabular foundation models continue to evolve, they can be seamlessly integrated
 107 into our framework.

108 In summary, this paper proposes an effective, computationally efficient, and generalizable approach
 109 that leverages the in-context learning capabilities of modern tabular foundation models to generate
 110 synthetic data aiming to facilitate data sharing. It provides a foundation-model alternative to traditional
 111 synthetic data generators built on the earlier paradigm of bespoke ML models.
 112

113 2 NOTATION

114
 115 Throughout the text, random variables are represented in italics, vectors of random variables are
 116 shown in boldface, e.g., $\mathbf{X} = (X_1, \dots, X_p)^t$, and $P(\mathbf{X})$ is used for probability statements involving
 117 random variables. Data matrices and data vectors are represented in uppercase and lower case
 118 boldface, respectively. (E.g., if \mathbf{X} is an $n \times p$ matrix, than the j th column of \mathbf{X} is represented by \mathbf{x}_j .)
 119 We use the notation \mathbf{X}_{-j} to represent the matrix obtained by removing the j th column from \mathbf{X} , and
 120 the notation $\mathbf{X}_{<j}$ to represent the matrix comprised by the first $j - 1$ columns of \mathbf{X} . (Similarly, in the
 121 case of a set of random variables, we use the notation $\mathbf{X}_{<j}$ to represent the subset of \mathbf{X} containing
 122 elements 1 to $j - 1$.) We adopt the superscripts tr and ts to represent the training and test sets, and
 123 we let $q_\theta(\mathbf{x}_j^{ts} \mid \mathbf{X}_{-j}^{ts}, \mathbf{X}^{tr})$ represent a TabPFN model (either a regression or a classification model
 124 depending on whether the variable j is numeric or categorical), where $\hat{\mathbf{x}}_j^{ts} \sim q_\theta(\mathbf{x}_j^{ts} \mid \mathbf{X}_{-j}^{ts}, \mathbf{X}^{tr})$
 125 represents the prediction generated by the model. TabPFN uses both the training features, \mathbf{X}_{-j}^{tr} , and
 126 training targets, \mathbf{x}_j^{tr} , as examples during the in-context training step, but only the test set features,
 127 \mathbf{X}_{-j}^{ts} , during the in-context query step, where the model is asked to generate a prediction of the test
 128 set targets based on the examples from the training set and the values of the test set features.

129 Because our goal is to generate synthetic data copies of given datasets, rather than performing
 130 supervised learning tasks, our notation does not explicitly differentiate between feature and targets
 131 variables (as the same variable can sometimes play the role of a feature and sometimes of a target
 132 during the synthetic data generation process). Hence, we use the notation $q_\theta(\mathbf{x}_j^{ts} \mid \mathbf{X}_{-j}^{ts}, \mathbf{X}^{tr}) =$
 133 $q_\theta(\mathbf{x}_j^{ts} \mid \mathbf{X}_{-j}^{ts}, \mathbf{X}^{tr}, \mathbf{x}_j^{tr})$ instead of the notation $q_\theta(\mathbf{y}^{ts} \mid \mathbf{X}^{ts}, \mathbf{X}^{tr}, \mathbf{y}^{tr})$, more commonly used in
 134 the TabPFN literature.

135 3 RELATED WORK

136 Although the literature on synthetic data generation (SDG) using bespoke machine learning models
 137 is extensive (see Bond-Taylor et al., 2021; Lu et al., 2023, and references therein), SDG based on
 138 tabular foundation models remains underexplored. To the best of our knowledge, only two prior
 139 studies have addressed this problem. Ma et al. (2023) introduced the TabPFGen algorithm, which
 140 relied on an earlier version of TabPFN (Hollmann et al., 2023) that could not handle regression tasks.
 141 To produce continuous data, TabPFGen employed an energy-based procedure for generating features
 142 conditional on classification labels. Such procedures are no longer necessary with the current version
 143 of TabPFN (Hollmann et al., 2025), which supports both classification and regression and can directly
 144 generate categorical and numerical data. SDG was also discussed in Hollmann et al. (2025), but
 145 only superficially: it was demonstrated on a single dataset without any formal evaluation of synthetic
 146 data quality. That work primarily focused on establishing TabPFN’s state-of-the-art performance
 147 in supervised learning, with SDG presented merely as a secondary capability. In this paper, we (i)
 148 highlight the limitations of the direct SDG approach in Hollmann et al. (2025), (ii) propose a more
 149 effective alternative strategy, and (iii) conduct extensive evaluations of TabPFN-based SDG methods.
 150

151 4 DIRECT STRATEGIES FOR SDG BASED ON TABPFN

152 Here we describe the simple strategy, suggested in Hollmann et al. (2025), for performing synthetic
 153 data generation with the TabPFN model, alongside an alternative variation of this direct approach.
 154 Their main limitations are discussed and illustrated using simulated datasets (where we can control
 155 the strength of the statistical associations between the variables).

156 Let $P(\mathbf{X}^{ts} \mid \mathbf{X}^{tr})$ represent the posterior predictive distribution (PPD) of the test data conditional
 157 on the training data. This conditional joint probability distribution can be fully factorize as,

$$158 \quad P(\mathbf{X}^{ts} \mid \mathbf{X}^{tr}) = \prod_{j=1}^p P(X_j^{ts} \mid \mathbf{X}_{<j}^{ts}, \mathbf{X}^{tr}), \quad (1)$$

Figure 1: Comparison of marginal distributions generated with the JF, FC, and MIAV strategies.

where $\mathbf{X}_{<j}$ represents a subset of \mathbf{X} containing elements 1 to $j - 1$, and p represents the number of features.

Hollmann et al. (2025) suggested generating synthetic data by following the factorization of the joint PPD,

$$P(\mathbf{X}^{ts} \mid \mathbf{X}^{tr}) \approx \prod_{j=1}^p q_\theta(\mathbf{x}_j^{ts} \mid \mathbf{X}_{<j}^{ts}, \mathbf{X}_{<j}^{tr}, \mathbf{x}_j^{tr}), \quad (2)$$

where, due to the in-context learning (ICL) nature of TabPFN, the conditioning on the training set is done on $\mathbf{X}_{<j}^{tr}$ and \mathbf{x}_j^{tr} rather than \mathbf{X}^{tr} . Note that the approximation in equation 2 represents, in actuality, two different levels of approximation. The first is w.r.t. the approximation of the distribution $P(X_j^{ts} \mid \mathbf{X}_{<j}^{ts}, \mathbf{X}^{tr})$ by the distinct distribution $P(X_j^{ts} \mid \mathbf{X}_{<j}^{ts}, \mathbf{X}_{<j}^{tr}, X_j^{tr})$, which no longer conditions on training variables $X_{j'}$ for $j' > j$. The second is w.r.t. the approximation of $P(X_j^{ts} \mid \mathbf{X}_{<j}^{ts}, \mathbf{X}_{<j}^{tr}, X_j^{tr})$ by the transformer model $q_\theta(\mathbf{x}_j^{ts} \mid \mathbf{X}_{<j}^{ts}, \mathbf{X}_{<j}^{tr}, \mathbf{x}_j^{tr})$.

Furthermore, because the TabPFN model cannot condition on an empty set (as you need to provide the model with some input for it to perform ICL) the first product term in equation 2 requires conditioning in a variable X_0 , which is not part of the data. Following the suggestion by Hollmann et al. (2025), we adopt a random noise feature as our X_0 . A detailed description of the implementation of this strategy, denoted “factorization of the joint PPD” (or JF for short), is provided in Algorithms 2 and 3 in Appendix B. (As pointed by Hollmann et al. (2025), the order of the variables in the joint factorization of the PPD can also affect the results, and Hollmann et al. suggest using a permutation sampling approximation of Janossy pooling¹ to remedy this issue. This requires, however, the generation and aggregation of multiple synthetic datasets generated from random permutations of the order of the columns of the real data and is not implemented in our experiments.)

Figure 1 illustrates the application of the JF generation strategy (and other approaches that will be described later) to a simulated dataset containing data drawn from highly correlated beta distributions. (See Appendix C for details.) To simulate an uninformative feature, we randomly shuffled the data of variable X_2 , so that it is completely uncorrelated with the other variables. (Figure 5a in Appendix D shows the correlation matrix for these variables.) The black densities represent the original (“real”) data while the orange ones show the synthetic data generated with the JF strategy. Not surprisingly, this example shows that TabPFN provided very poor approximations for the distributions of X_1 and X_2 . In the case of X_1 , the ICL based on X_0 is poor because X_0 is a random noise variable which contains no information about X_1 . In the case of X_2 , the ICL again fails because X_1 does not contain information about X_2 (which is uncorrelated from all other variables).

An alternative approach is to use the full conditional distributions of each variable in the synthetic data generation (denoted as FC, for short). This strategy is implemented using the factorization,

$$\prod_{j=1}^p q_\theta(\mathbf{x}_j^{ts} \mid \mathbf{X}_{-j}^{ts}, \mathbf{X}^{tr}) \quad (3)$$

where \mathbf{X}_{-j} represents a subset matrix obtained by dropping column j from \mathbf{X} . A detailed description of our implementation of this strategy is provided in Algorithms 4 and 5 in Appendix B.

¹Namely, Hollmann et al. (2025) generate N distinct synthetic datasets, using different random permutations of the order of the variables during the synthetic data generation process, and average the results across the N synthetic datasets to reduce variability and decrease the dependence of the result on the variable order.

Figure 2: Degrading performance of JF and FC as association strength decreases. MIAV is unaffected.

Despite the fact that this fully conditional factorization does not correspond to a proper factorization of the PPD, this strategy has a few practical advantages. First, it eliminates the need for coming up with a X_0 variable, as the data for X_1 is generated from its full conditional distribution. Second, the generation of each variable leverages information from all other variables. Third, this approach is unaffected by the order of the variables. Its main practical disadvantage is that it is more expensive to compute since increasing numbers of variables lead to increases in compute time. (As pointed by Hollmann et al. (2025), the time complexity of TabPFN is $O(n^2 + p^2)$, where n and p represent, respectively, the number of rows and columns of the data.)

The blue densities in Figure 1 illustrate the application of the FC generation strategy. Now, the distribution of X_1 is nicely recovered by the FC strategy. (This is easier to visualize in Figure 5m in Appendix D, which reports the same results as Figure 1 using a different display.) The approach, however, still fails for X_2 because this variable is uncorrelated to all other variables.

In Appendix E we describe additional variations of the JF direct data generation strategy.

4.1 PERFORMANCE DEGRADATION IN DATASETS CONTAINING WEAK ASSOCIATIONS

The illustrative examples in Figure 1 were based in data simulated with very strong correlations. The performance of direct strategies such as JF and FC, however, is strongly influenced by the strength of the statistical associations among the variables. Because TabPFN relies on ICL for generating predictions, and weakly associated features provide little information about the target variable, its performance suffers in datasets with weakly associated variables. To illustrate this point, Figure 2 presents the application of the JF and FC strategies (among others) to datasets with decreasing correlation strengths. (The association strength is controlled by the ρ parameter, as described in Appendix C). Due to space limitations, the figure only reports results for a single variable (X_4). The full results are presented in Figures 5 to 9 in the Appendix D. Figure 2 clearly shows that the quality of the synthetic data generated by the JF and FC approaches (orange and blue densities) decreases with decreasing correlation strengths.

5 CONSTRUCTING MAXIMAL INFORMATION AUXILIARY VARIABLES

The previous section illustrates how direct application of TabPFN for synthetic data generation is problematic when variables lack strong statistical associations with other variables. A simple strategy for improving the synthetic data quality is to augment the dataset with auxiliary variables that are highly associated with the real data variables.

To this end, inspired by recent work in non-parametric and model free data synthesis (Chaibub Neto, 2025), we propose a simple approach in which we rank-match arbitrary noise variables to the real data variables. The procedure is described in detail in Algorithm 1, and its output is what we denote as a maximal information auxiliary variable (MIAV).

The basic idea is to induce a monotonic mapping between a random noise variable and the real data vector \mathbf{x}_j . Starting in line 2, the algorithm first draws a sample of size n (equal to the length of \mathbf{x}_j) from an arbitrary random noise variable and then sorts it from lowest to highest values. (In our implementation we sample random noise from a uniform distribution in the $[0, 1]$ interval. **This choice is, nonetheless, unimportant as the approach is not sensitive to the noise distribution used to construct the MIAV. See Appendix L for further details.**) In lines 3 to 8 the algorithm ranks the values of \mathbf{x}_j . If

270 **Algorithm 1** GenerateMaximalInformationAuxiliaryVariable(\mathbf{x}_j)
271
272 1: **Input:** data vector, \mathbf{x}_j
273 2: $\mathbf{m}_j \leftarrow \text{Sort}(\text{GenerateRandomNoiseVector}(n = \text{length}(\mathbf{x}_j)))$ {Generate a sorted random noise vector.}
274 3: **if** \mathbf{x}_j is numeric **then**
275 4: $\mathbf{r} \leftarrow \text{Rank}(\mathbf{x}_j)$ {Compute the ranks of \mathbf{x}_j . Ties are broken at random.}
276 5: **end if**
277 6: **if** \mathbf{x}_j is categorical **then**
278 7: $\mathbf{r} \leftarrow \text{NumericRankEncodingOfCategoricalVariables}(\mathbf{x}_j)$ {Described in Algorithm 10 in the Appendix.}
279 8: **end if**
280 9: $\mathbf{m}_j \leftarrow \mathbf{m}_j[\mathbf{r}]$ {Re-order the entries of \mathbf{m}_j according to the ranks of \mathbf{x}_j . The result is a vector \mathbf{m}_j with identical ranks as \mathbf{x}_j .}
281 10: **Output:** the auxiliary variable \mathbf{m}_j

282
283 Figure 3: MIAVs illustrative example. In panels f and l, positive correlations are represented in blue
284 and negative correlations are represented in red.
285
286

287
288
289 \mathbf{x}_j is numeric, the algorithm computes its ranks in the standard way (line 4), breaking ties among
290 identical values using the random assignment approach. If \mathbf{x}_j is categorical, the algorithm applies
291 a numeric rank encoding to the categorical variables, as described in Algorithm 10 in Appendix F,
292 and originally proposed by Chaibub Neto (2025). (In a nutshell, Algorithm 10 counts the number
293 elements of \mathbf{x}_j in each factor level and distributes numerical ranks ranging from 1 to n randomly
294 within each level of the categorical variable \mathbf{x}_j . Appendix F also includes an illustrative example.)
295 Finally, in line 9 the algorithm re-orders the entries of \mathbf{m}_j according to the ranks of \mathbf{x}_j . The result
296 is a vector \mathbf{m}_j with identical ranks to \mathbf{x}_j , that is, the position of the lowest value of \mathbf{m}_j is the same
297 as the position of the lowest value of \mathbf{x}_j , the position of the 2nd lowest value of \mathbf{m}_j is the same as
298 the second lowest value of \mathbf{x}_j , and so on. Figure 3 provides some examples. Panels a to e show the
299 distributions of the X_j variables in black and their respective MIAVs, M_j , in red. (The MIAVs follow
300 uniform distributions since in our implementation we draw random noise from uniform distributions.)
301 Variable X_5 is discrete assuming values 1, 2, 3, and 4. Panels g to k show scatterplots of the M_j vs
302 X_j data, illustrating the monotonic relations. Panels f and l show the pairwise associations for the
303 X_j and M_j variables, respectively, and illustrate that, as expected, the M_j variables recapitulate the
304 associations of the X_j data.

305 This procedure has some nice theoretical properties, described in the following result.

306 **Theorem 1.** Let M_j represent the auxiliary variable generated from X_j by Algorithm 1, and Y
307 represent an arbitrary variable other than X_j or M_j . Then, non-parametrically,

308 1. $I(X_j; Y | M_j) = 0$, i.e., the conditional mutual information of X_j and Y given M_j is 0.
309 2. $H(X_j | M_j) = 0$, i.e., the conditional entropy of X_j given M_j is 0.

310 The proof is presented in Appendix G. Note that this result holds non-parametrically, in the sense
311 that any continuous variable is first discretized into n bins (where n represents sample size), so that
312 we can use the discrete probability (and non-parametric) definitions of these information-theoretic

324 quantities. This is justifiable because a sample of size n from a continuous variable can always be
 325 viewed as the sample of a discrete variable with n distinct levels, each observed with frequency $1/n$.
 326

327 This result shows that the auxiliary variable M_j , generated by Algorithm 1 has the following two key
 328 properties. First, it contains maximal information about X_j . (This holds in the conditional entropy
 329 sense, since $H(X_j | M_j) = 0$ implies that X_j is completely determined by M_j in a **non-parametric**
 330 **rank-based sense**.) Second, conditional of M_j , X_j is statistically independent of any other variables.
 331 These two properties are key for the synthetic data generation approach that we propose next.

332 6 SDG USING MAXIMAL INFORMATION AUXILIARY VARIABLES

333 Let $\mathbf{M} = (M_1, \dots, M_p)^t$ represent the set of random variables M_j generated by Algorithm 1. Now,
 334 consider the augmented posterior predictive distribution of \mathbf{X}^{ts} given \mathbf{X}^{tr} , \mathbf{M}^{ts} , and \mathbf{M}^{tr} ,

$$335 P(\mathbf{X}^{ts} | \mathbf{X}^{tr}, \mathbf{M}^{ts}, \mathbf{M}^{tr}) = \prod_{j=1}^p P(X_j^{ts} | \mathbf{X}_{<j}^{ts}, \mathbf{X}^{tr}, \mathbf{M}^{ts}, \mathbf{M}^{tr}). \quad (4)$$

336 Now re-writing,

$$337 P(X_j^{ts} | \mathbf{X}_{<j}^{ts}, \mathbf{X}^{tr}, \mathbf{M}^{ts}, \mathbf{M}^{tr}) = P(X_j^{ts} | \mathbf{X}_{<j}^{ts}, \mathbf{X}^{tr}, \mathbf{M}_{-j}^{ts}, M_j^{ts}, \mathbf{M}_{-j}^{tr}, M_j^{tr}), \quad (5)$$

338 and recalling that X_j^{ts} is independent from all other variables conditional on M_j^{ts} , it follows that,

$$339 P(X_j^{ts} | \mathbf{X}_{<j}^{ts}, \mathbf{X}^{tr}, \mathbf{M}_{-j}^{ts}, M_j^{ts}, \mathbf{M}_{-j}^{tr}, M_j^{tr}) = P(X_j^{ts} | M_j^{ts}), \quad (6)$$

340 which, for the same reason, can also be re-expressed as,

$$341 P(X_j^{ts} | M_j^{ts}) = P(X_j^{ts} | M_j^{ts}, M_j^{tr}, X_j^{tr}), \quad (7)$$

342 a format that is better suited for performing in-context learning with a PFN model. Hence, the PPD
 343 augmented with the set of maximal information auxiliary variables can formally be expressed as,

$$344 P(\mathbf{X}^{ts} | \mathbf{X}^{tr}, \mathbf{M}^{ts}, \mathbf{M}^{tr}) = \prod_{j=1}^p P(X_j^{ts} | M_j^{ts}, M_j^{tr}, X_j^{tr}), \quad (8)$$

345 and readily approximated by a trained TabPFN model as,

$$346 P(\mathbf{X}^{ts} | \mathbf{X}^{tr}, \mathbf{M}^{ts}, \mathbf{M}^{tr}) \approx \prod_{j=1}^p q_\theta(\mathbf{x}_j^{ts} | \mathbf{m}_j^{ts}, \mathbf{m}_j^{tr}, \mathbf{x}_j^{tr}), \quad (9)$$

347 where ICL for each variable X_j is performed by training on \mathbf{m}_j^{tr} and \mathbf{x}_j^{tr} and querying on \mathbf{m}_j^{ts} .²

348 This formulation, denoted the “Maximal Information Auxiliary Variables” strategy (or MIAV strategy
 349 for short) has several practical advantages. First, it is the most efficient strategy in terms of computa-
 350 tion, since ICL of each variable X_j is performed using a single variable M_j (recall that the complexity
 351 of the TabPFN model scales quadratically on the number of columns of the table). Appendix H
 352 reports complexity analyses and compute time benchmark experiments comparing the MIAV, JF, and
 353 FC strategies. Second, contrary to all the other direct generation strategies described in Section 4, the
 354 MIAV approach is based on a proper factorization of the (augmented) PPD (the approximation in
 355 equation 9 is only w.r.t. the transformer model approximation to the predictive distribution). Third,
 356 contrary to the JF strategy, the MIAV approach is invariant with respect to the order of the dataset
 357 columns. Fourth, and most importantly, the MIAV approach handles uninformative features and
 358 performs well in datasets containing weakly associated features. This last point is illustrated by the
 359 red densities in Figures 1 and 2 (see also panels s to w in Figures 5 to 9 in Appendix D), where the
 360 MIAV approach closely recapitulates the original marginal distributions. Quite importantly, note that
 361 while the augmented joint PPD in equation 8 factorizes into separate $P(X_j^{ts} | X_j^{tr}, M_j^{ts}, M_j^{tr})$ com-
 362 ponents, the synthetic data generated by the $q_\theta(\mathbf{x}_j^{ts} | \mathbf{x}_j^{tr}, \mathbf{m}_j^{tr}, \mathbf{m}_j^{ts})$ still recapitulates the association
 363 structure of \mathbf{X} because this association is indirectly induced by the MIAVs (recall that \mathbf{M} mimics the
 364 association structure in \mathbf{X} , as illustrated in panels f and l of Figure 3. Algorithms 6 and 7 in Appendix
 365 B provide implementation details about the MIAV synthetic data generation approach.

366 ²Here, it is important to clarify that we are able to condition on the test set auxiliary variables, \mathbf{M}^{ts} , because
 367 we always have unrestricted access to the full \mathbf{X} data (which is only split into \mathbf{X}^{tr} and \mathbf{X}^{ts} for the sake of ICL).
 368 Hence, the test set is always available and we can generate the corresponding MIAV matrix \mathbf{M}^{ts} . (Our goal is to
 369 generate a synthetic copy of the original data, rather than making predictions about unseen test data.)

378 7 EXPERIMENTS BASED ON TABPFN MODELS
379
380381 **Experiments.** We performed three sets of experiments. The first, used simulated data draw from
382 correlated beta distributions (generated as described in Appendix C), for which we can control
383 the strength of the associations among the variables. The second experiment, used a subset of 36
384 real-world datasets (Table 4) from the OpenML-CC18 benchmark suite (Bischl et al., 2021). The
385 third one, used 7 additional datasets (Table 5) evaluated in Hansen et al. (2023) and Chaibub Neto et
386 al. (2025). (Appendix I.3 contains further information and describes our rationale for selecting these
387 datasets.)
388388 **Data splits.** In each of the three experiment sets, every dataset was divided into two equal subsets.
389 The first, referred to as the original data, was provided to the synthesizers, while the second, the
390 holdout data, was never accessed by them. (Appendix I.1 provides further details about the data splits,
391 including the description of additional data splits performed in the original data for generating the
392 training and test sets used by the TabPFN models when performing in-context learning.)
393393 **Evaluation metrics.** Synthetic datasets generated from the original data were evaluated using fidelity,
394 utility, and privacy metrics. Fidelity was assessed with the average KS-test statistic (KS), the L2
395 distance between association matrices (L2D), the detection test (DT), the Wasserstein distance (WD),
396 and the energy distance (ED), which measure agreement with marginal distributions, preservation of
397 pairwise statistical associations, distinguishability of real versus synthetic samples, and agreement
398 with respect to joint distributions, respectively. Utility was assessed with machine learning efficiency
399 (MLE) metric, which measures utility with respect to performance in downstream prediction tasks by
400 training learners on synthetic data and evaluating their predictive performances on real data (i.e., the
401 holdout set). Privacy was evaluated with the distance to closest record (DCR) and the sorted standard
402 deviation interval distance (SSDID), which capture attribute disclosure risks, as well as the sorted
403 distance-based record linkage (SDBRL), which measures re-identification risks. Further details on all
404 evaluation metrics are provided in Appendix I.5.
405405 **Baselines.** In addition to comparing the MIAV-based synthetic data generation strategy with the
406 joint factorization (JF) and full conditional (FC) approaches, experiments 1 and 2 also included
407 the SMOTE generator (Chawla et al., 2002). SMOTE is well known for producing high-fidelity
408 synthetic data, although this often comes at the expense of privacy when compared to other baselines
409 (Kotelnikov et al., 2023; Kindji et al., 2024). We selected SMOTE as a baseline because, unlike deep
410 learning-based generators, it is applicable to the small datasets used in our evaluations. (As shown in
411 Table 4, 26 out of the 36 datasets contain fewer than 2,000 samples.) In the third experiment, which
412 involves larger datasets, we extended our comparisons to include additional baseline generators:
413 DDPM (Kotelnikov et al., 2023), ARF (Watson et al., 2023), TVAE (Xu et al., 2019), CTGAN (Xu et
414 al., 2019), and Bayesian networks (Young et al., 2009), all implemented in Synthcity (Qian et al.,
415 2024). For DDPM, TVAE, and CTGAN, we adopted the hyperparameter values reported by Hansen
416 et al. (2023) and Chaibub Neto et al. (2025), which had been optimized with Optuna (Akiba et al.,
417 2019) using AUROC minimization of an XGBoost classifier. For ARF, we used the values from
418 Chaibub Neto (2025). The corresponding hyperparameters are listed in Tables 6 and 7. Relying on
419 these published configurations provided substantial computational savings, since hyperparameter
420 optimization is particularly costly for deep learning-based models, and motivated our restriction of
421 these baseline comparisons to only these 7 datasets.
422422 **Experimental details.** In all three experiment sets, we also compared against the holdout sets to
423 establish reference values for each evaluation metric under the ideal scenario of a generator that
424 samples directly from the same distribution as the original data. To enhance statistical validity, we
425 conducted 10 replications for each real-world dataset, each based on distinct original/holdout splits.
426 For the correlated beta distribution experiments, results were similarly averaged over 10 replications
427 per simulation setting, with variation introduced through different simulation parameters. We
428 considered five simulation settings corresponding to absolute correlations $|\rho| = 0, 0.25, 0.5, 0.75, 0.95$.
429 Additional experimental details are provided in Appendix I.
430431 7.1 RESULTS
432433 Figure 4 presents results (pooled across datasets) for the KS, L2D, DT, DCR, SDBRL, and SSDID
434 metrics.
435

Figure 4: Pooled experimental results. Top panels show results pooled across the 5 simulated dataset settings. The middle panels show results pooled across the 36 real-world datasets selected from the OpenML-CC18 suite. The bottom panels show results pooled across the 7 real-world datasets used for the baseline generator comparisons. For the DCR metric, higher values indicate better privacy. For all other metrics, lower values indicate either better fidelity or better privacy.

In terms of fidelity, SMOTE generally performed best, with a slight advantage over MIAV (recall that lower KS, L2D, and DT values indicate higher fidelity). MIAV, however, consistently outperformed JF and FC across all experiments and surpassed all other baseline generators in the third experiment, with the single exception of DDPM, which achieved better scores w.r.t. the DT metric (see panel o) (but still did worse than MIAV w.r.t. the other fidelity scores in panels m and n).

In terms of privacy, MIAV generally outperformed SMOTE on the DCR metric (where higher values indicate stronger privacy protection) and showed even larger gains on the SDBRL and SSDID metrics (where lower values indicate better privacy). MIAV also tended to surpass the other baseline generators with respect to DCR (panel o), but performed less favorably on SDBRL and SSDID (panels q and r). Across most experiments, JF and FC produced more private data than MIAV, although this came at the cost of substantially lower fidelity.

In general terms, the fidelity–privacy tradeoff patterns observed in the simulated datasets (top panels) closely mirrored those in the real datasets (middle and bottom panels). Overall, these experiments suggest a competitive performance of the MIAV-based synthetic data generator. Additional results broken down by dataset are provided in Figures 14, 15, 16, 17, 18, and 19 in Appendix I.7.

Figure 13 in Appendix I.6 report the pooled results for the MLE, WD, and ED metrics. Overall, these evaluations show that the MIAV approach again achieves competitive performance with respect to these additional metrics (ranking among the top generators in most experiments). See Appendix I.6 for further details.

Appendix J introduces a noisy variant of the MIAV approach that applies controlled amounts of noise before generating synthetic data. This version, referred to as the noisy-MIAV strategy, can potentially enhance privacy protection in sensitive applications, albeit at the cost of reduced data fidelity.

8 EXPERIMENTS BASED ON TABICL MODELS

We also demonstrate the MIAV data generation strategy using the TabICL foundation model (Qu et al., 2025) and compare its performance to TabPFN-based generators across 8 categorical datasets from the OpenML-CC18 suite. Results, presented in Appendix K, show that (i) MIAV-TabICL and

486 MIAV-TabPFN achieve very similar performance, and (ii) MIAV-based strategies, whether built on
 487 TabICL or TabPFN, tend to outperform the JF and FC baselines. This alternative implementation
 488 highlights that our synthetic data generation approach is not limited to TabPFN and can be directly
 489 applied to other PFN-based foundation models.
 490

491 9 FINAL REMARKS

492 In this paper, we introduce the MIAV strategy, a more effective approach for leveraging TabPFN
 493 models in synthetic data generation. MIAV addresses key limitations of direct TabPFN application,
 494 offers improved computational efficiency, and can be readily applied with other PFN-based foundation
 495 models. We expect it to be especially useful in small-data scenarios, settings that are typically
 496 challenging for traditional synthetic data generators but where TabPFN excels. Our experiments on
 497 real datasets indicate that MIAV is competitive with established baselines built on bespoke machine
 498 learning models. It is worth noting, however, that PFN-based tabular foundation models are still in
 499 the early stages of development. As these models continue to evolve, it is reasonable to expect that
 500 MIAV-based synthetic data generators built on future, more advanced PFN-based tabular foundation
 501 models might achieve even better performance.
 502

503 Our approach inevitably inherits the limitations of the underlying tabular foundation model used
 504 for in-context learning. **For the TabPFN model used in our experiments (namely, TabPFNv2),** these
 505 limitations include: (i) a maximum data size of 10,000 rows; (ii) memory usage that grows linearly
 506 with dataset size, which can become prohibitive for very large data; and (iii) inference speeds that may
 507 lag behind alternative baselines. **But, as mentioned above, these are early days in the development**
 508 **of PFN-based tabular foundation models and we expect that future releases will likely continue to**
 509 **relax limitations from the previous versions.** For instance, a new version of the TabPFN model,
 510 denoted TabPFN-2.5, has been recently released which is able to handle datasets with up to 50,000
 511 rows (Grinsztajn et al., 2025). Furthermore, the more scalable TabICL model is already able to
 512 handle 500,000 rows but currently supports only classification tasks. Future versions of TabICL that
 513 extend to regression could be directly integrated with the MIAV strategy, thereby helping to overcome
 514 current model constraints.

515 In addition to limitations on the maximum number of rows they can process, PFN-based tabular
 516 foundation models are also constrained by the number of columns they can handle. For example,
 517 TabPFNv2 and TabICL support datasets with up to 500 features, while TabPFN-2.5 increases this
 518 limit to 2,000. Importantly, however, these constraints do not affect the MIAV approach: because
 519 MIAV requires training PFN-based models using only a single feature per variable, it can be applied
 520 to datasets containing more columns than the column number limit of the underlying PFN model.

521 For tabular foundation models that do not approximate Bayesian inference, our approach may still
 522 provide a natural strategy for synthetic data generation through in-context learning. Assessing the
 523 feasibility of such extensions, however, is left for future work.

524 Finally, we point out that the MIAV strategy described here is really only intended for synthetic data
 525 generation and should not be used for improving predictive performance of supervised learners. As
 526 described in Section 5, generating MIAV variables requires unrestricted access to the full dataset \mathbf{X} ,
 527 which is partitioned into \mathbf{X}^{tr} and \mathbf{X}^{ts} and used to construct the corresponding MIAV matrices \mathbf{M}^{tr}
 528 and \mathbf{M}^{ts} . Because MIAVs must be computed on the test set, the approach is inherently incompatible
 529 with supervised learning scenarios where test-set targets are unavailable. But, more importantly, it
 530 should never be used to enhance supervised learning performance in settings where the full dataset is
 531 merely split into training and test subsets for evaluation purposes. In such cases, the generation of the
 532 MIAV variable associated with the test set target would leak information about the target into the
 533 associated MIAV, and inclusion of this MIAV as an input in a supervised model would lead to an
 534 artificial boost in predictive performance due to data leakage.

535 R and Python implementations of the MIAV strategy will be released on GitHub upon acceptance of
 536 the paper. For now, the code has been shared with reviewers as supplementary material.
 537

538
 539

540 REFERENCES
541

542 [1] Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-generation hy-
543 perparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International
544 Conference on Knowledge Discovery & Data Mining (pp. 2623-2631).

545 [2] Bond-Taylor, S., Leach, A., Long, Y., and Willcocks, C. G. (2021). Deep generative modelling:
546 a comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models.
547 IEEE Transactions on Pattern Analysis and Machine Intelligence.

548 [3] Borisov, V., Sessler, K., Leemann, T., Pawelczyk, M., and Kasneci, G. (2022). Language models
549 are realistic tabular data generators, in: The Eleventh International Conference on Learning
550 Representations (ICLR), 2023.

552 [4] den Breejen, F., Bae, S., Cha, S., and Yun, S.-Y. (2024). Why In-Context Learning Transformers
553 are Tabular Data Classifiers. arXiv:2405.13396v1.

555 [5] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, et al. (2020). Language Models are
556 Few-Shot Learners. NeurIPS 2020.

557 [6] Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R. G., van Rijn, J. N.,
558 & Vanschoren, J. (2019). OpenML Benchmarking Suites. NeurIPS 2021.

560 [7] Chaibub Neto, E. (2024). Statistical disclosure control for numeric microdata via sequential
561 joint probability preserving data shuffling. Transactions on Data Privacy, 17(3):147-179, 2024.

563 [8] Chaibub Neto, E. (2025). TabSDS: a Lightweight, Fully Non-Parametric, and Model Free
564 Approach for Generating Synthetic Tabular Data. ICML, 2025.

565 [9] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: synthetic
566 minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357.

568 [10] Cresswell, J. C., and Kim, T. (2024). Scaling up diffusion and flow-based XGBoost models.
569 arXiv 2408.16046

571 [11] Domingo-Ferrer, J., Muralidhar, K., and Bras-Amoros, M. (2020). General confidentiality
572 and utility metrics for privacy-preserving data publishing based on the permutation
573 model. IEEE Transactions on Dependable and Secure Computing, 18(5):2506-2517. DOI:
574 10.1109/TDSC.2020.2968027.

575 [12] Domingo-Ferrer, J., and Torra, V. (2001). A quantitative comparison of disclosure control
576 methods for microdata. In Confidentiality, disclosure, and data access: theory and practical
577 applications for statistical agencies, edited by P. Doyle, J. Lane, J. Theeuwes, and L. Zayatz.
578 111-133. Elsevier.

579 [13] Drechsler, J. (2011). Synthetic Data Sets for Statistical Disclosure Control. Springer, New York.

581 [14] Feuer, B., Schirrmeister, R. T., Cherepanova, V., Hegde, C., Hutter, F., Goldblum, M., Cohen,
582 N., and White, C. (2024) TuneTables: Context Optimization for Scalable Prior-Data Fitted
583 Networks. arXiv preprint arXiv:2402.11137.

585 [15] Garg, A., Ali, M., Hollmann, N., Purucker, L., Muller, S., Hutter, F. (2025). Real-TabPFN:
586 Improving Tabular Foundation Models via Continued Pre-training With Real-World Data.
587 Proceedings of the 1st ICML Workshop on Foundation Models for Structured Data.

588 [16] Grinsztajn, L., et al. (2025). TabPFN-2.5: Advancing the State of the Art
589 in Tabular Foundation Models. https://storage.googleapis.com/prior-labs-tabpfn-public/reports/TabPFN_2_5_tech_report.pdf?date=2025-11-06.

592 [17] Hansen, L., Seedat, N., van der Schaar, M., and Petrovic, A. (2023). Reimagining synthetic
593 tabular data generation through data-centric AI: A comprehensive benchmark. Advances in
Neural Information Processing Systems, 36, 33781-33823.

594 [18] Hollmann, N., Muller, S., Eggensperger, K., Hutter, F. TabPFN: A Transformer That Solves
 595 Small Tabular Classification Problems in a Second. International Conference on Learning
 596 Representations (ICLR) 2023.

597 [19] Hollmann, N., Muller, S., Purucker, L., Krishnakumar, A., Korfer, M., Hoo, S. B., Schirrmeister,
 598 R. T., & Hutter, F. (2025). Accurate predictions on small data with a tabular foundation model.
 599 Nature, 637, 319-326.

600 [20] Jolicoeur-Martineau, A., Fatras, K., and Kachman, T. (2024). Generating and imputing tabular
 601 data via diffusion and flow-based gradient-boosted trees. AISTATS 2024

602 [21] Kindji, G. C. N., Rojas-Barahona, L. M., Fromont, E., and Urvoy, T. (2024). Under the hood of
 603 tabular data generation models: benchmarks with extensive tuning. arXiv:2406.12945

604 [22] Koshil, M., Nagler, T., Feurer, M., and Eggensperger, K. (2024). Towards Localization via Data
 605 Embedding for TabPFN. Third Table Representation Learning Workshop at NeurIPS 2024.

606 [23] Kotelnikov, A., Baranchuk, D., Rubachev, I., and Babenko, A. (2023). Tabddpm: Modelling
 607 tabular data with diffusion models. In International Conference on Machine Learning (pp.
 608 17564-17579). PMLR.

609 [24] Lu, Y., Wang, H., and Wei, W. (2023). Machine learning for synthetic data generation: a review.
 610 arXiv preprint arXiv:2302.04062, 2023.

611 [25] Mateo-Sanz, J.M., Sebe, F., and Domingo-Ferrer, J. (2004). Outlier protection in continuous
 612 microdata masking. International Workshop on Privacy in Statistical Databases. PSD 2004:
 613 Privacy in Statistical Databases pp 201-215.

614 [26] Ma, J., Dankar, A., Stein, G., Yu, G., & Caterini, A. L. (2023). TabPFGen - Tabular Data
 615 Generation with TabPFN. Poster presented at the Table Representation Learning Workshop,
 616 NeurIPS 2023

617 [27] Ma, J., Thomas, V., Hosseinzadeh, R., Kamkari, H., Labach, A., Cresswell, J. C., Golestan, K.,
 618 Yu, G., Volkovs, M., and Caterini, A. L. (2024). TabDPT: Scaling Tabular Foundation Models.
 619 arXiv:2410.18164.

620 [28] Ma, J., Thomas, V., Yu, G., and Caterini, A. (2024). In-Context Data Distillation with TabPFN.
 621 arXiv preprint arXiv:2402.06971.

622 [29] Muller, S., Hollmann, N., Pineda, S., Grabocka, J., Hutter, F. (2022). Transformers can do
 623 Bayesian inference. ICLR 2022.

624 [30] Muller, A., Curino, C., and Ramakrishnan, R. (2025). MotherNet: Fast Training and Inference
 625 via Hyper-Network Transformers. ICLR 2025.

626 [31] Nowok, B., Raab, G. M., and Dibben, C. (2016). synthpop: bespoke creation of synthetic data
 627 in R. Journal of Statistical Software, 74(11), 1-26. <https://doi.org/10.18637/jss.v074.i11>

628 [32] Pagliuca, D., and Seri, G. (1999). Some results of individual ranking method on the system of
 629 enterprise accounts annual survey, Esprit SDC Project, Deliverable MI-3/D2.

630 [33] Qian, Z., Davis, R., and van der Schaar, M. (2024). Synthcity: a benchmark framework for
 631 diverse use cases of tabular synthetic data. Advances in Neural Information Processing Systems,
 632 36.

633 [34] Qu, J., Holzmüller, D., Varoquaux, G., & Le Morvan, M. (2025). TabICL: A Tabular Founda-
 634 tion Model for In-Context Learning on Large Data. In Proceedings of the 42nd International
 635 Conference on Machine Learning (ICML 2025).

636 [35] Rajotte, J. F., Bergen, R., Buckeridge, D. L., El Emam, K., Ng, R., & Strome, E. (2022).
 637 Synthetic data as an enabler for machine learning applications in medicine. iScience, 25(11),
 638 105331.

639 [36] Reiter, J. P. (2005). Using CART to generate partially synthetic, public use microdata. Journal
 640 of Official Statistics, 21(3):441-462.

648 [37] Shi, J., Xu, M., Hua, H., Zhang, H., Ermon, S., and Leskovec, J. (2025). TabDiff: a mixed-type
 649 diffusion model for tabular data generation. ICLR 2025.
 650

651 [38] Szekely, G. J., & Rizzo, M. L. (2023). The Energy of Data and Distance Correlation. Chapman
 652 Hall/CRC, Monographs on Statistics and Applied Probability, Vol. 171. 466 pages.
 653

654 [39] Watson, D. S., Blesch, K., Kapar, J., and Wright, M. N. (2023). Adversarial random forests
 655 for density estimation and generative modeling. In International Conference on Artificial
 656 Intelligence and Statistics (pp. 5357-5375). PMLR.
 657

658 [40] Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veeramachaneni, K. (2019). Modeling tabular
 659 data using conditional GAN. Advances in Neural Information Processing Systems, 32, 2019.
 660

661 [41] Xu, D., Cirit, O., Asadi, R., Sun, Y., and Wang, W. (2024) Mixture of In-Context Prompts for
 662 Tabular PFNs. ICLR 2025.
 663

664 [42] Xu, S., Lee, C., T., Sharma, M., Yousuf, R., B., Muralidhar, N., Ramakrishnan, N. (2025) Why
 665 LLMs are bad at synthetic table generation (and what to do about it). arXiv:2406.14541.
 666

667 [43] Young, J., Graham, P., and Penny, R. (2009). Using bayesian networks to create synthetic data.
 668 Journal of Official Statistics, 25(4):549.
 669

670 [44] Zeng, Y., Kang, W., and Mueller, A. C. (2024) Tabflex: Scaling tabular learning to millions with
 671 linear attention. In NeurIPS 2024 Third Table Representation Learning Workshop.
 672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702	APPENDIX	
703		
704	CONTENTS	
705		
706		
707	A Supervised learning versus synthetic data generation in the presence of uninformative	
708	features	15
709		
710	B Algorithms for TabPFN-based synthetic data generation	15
711		
712	C Simulating correlated beta distributions	17
713		
714	D Supplementary Figures	17
715		
716	E Additional direct synthetic data generation strategies	20
717		
718	F Additional algorithms	21
719		
720	G Proof of Theorem 1	22
721		
722	G.1 Proof of statement 1, when X_j and Y are continuous	22
723		
724	G.2 Proof of statement 1, when X_j and Y are categorical	24
725		
726	G.3 Proof of statement 1, in the remaining cases	26
727		
728	G.4 Proof of statement 2	27
729	H Complexity analysis and runtime experiments	29
730		
731	H.1 Complexity analysis	29
732	H.2 Runtime experiments	29
733		
734	I Extended experiments section	30
735		
736	I.1 Overview of data splitting into original, holdout, training, and test sets	30
737	I.2 Simulated data experiments	31
738	I.3 Real-world data experiments	31
739		
740	I.4 Hyperparameters for the baseline models	33
741		
742	I.5 Evaluation metrics	34
743	I.6 Results for additional evaluation metrics	35
744		
745	I.7 Extended results	37
746		
747	J The noisy-MIAV strategy	43
748		
749	K Synthetic data generation based on TabICL PFN models	45
750		
751	L Insensitivity to the choice of the random noise distribution	47
752		
753	M LLM usage	51
754		
755		

756 A SUPERVISED LEARNING VERSUS SYNTHETIC DATA GENERATION IN THE
757 PRESENCE OF UNINFORMATIVE FEATURES
758

759 TabPFN achieves state-of-the-art performance in supervised learning tasks (19). However, its direct
760 application to synthetic data generation does not yield comparable results, as weakly associated
761 variables make it challenging for in-context learning methods to capture the true data distribution.
762 This issue is less pronounced in supervised learning, where noninformative features simply fail to
763 contribute to the prediction. Even when the prediction is based solely on such features, TabPFN
764 behaves appropriately. For instance, in binary classification with predictors completely uncorrelated
765 with the target, it produces an AUROC of about 0.5, consistent with random guessing. Although
766 uninteresting, this outcome is exactly what one would expect from any well-behaved classifier in
767 this scenario. By contrast, in the data generation setting, TabPFN’s reasonable performance in
768 classification does not carry over, as it fails to approximate the marginal distributions of the data
769 and to capture its statistical association structure. An illustrative example is presented in Figure 9 in
770 Section D, where direct application of TabPFN to datasets containing completely uncorrelated data
771 fails to recover the marginal distributions (see panels g, h, i, j, and k and m, n, o, p, and q), and fails
772 to recover the correlation structure of the original data (compare panels b and c against panel a).
773

774 B ALGORITHMS FOR TABPFN-BASED SYNTHETIC DATA GENERATION
775

776 In Algorithms 2, 4, and 6, the function `GeneratePredictionUsingTabPFN(.)` represents a
777 call to a TabPFN model $q_\theta(\cdot)$.
778

779 **Algorithm 2** ICLwithJointFactorizationTabPFN(\mathbf{X}^{tr} , \mathbf{X}^{ts})

780 1: **Input:** training data for ICL, \mathbf{X}^{tr} ; query data for ICL, \mathbf{X}^{ts}
781 2: $n_{tr} \leftarrow \text{NumberOfRows}(\mathbf{X}^{tr})$ {Obtain number of samples of \mathbf{X}^{tr} .}
782 3: $n_{ts} \leftarrow \text{NumberOfRows}(\mathbf{X}^{ts})$ {Obtain number of samples of \mathbf{X}^{ts} .}
783 4: $p \leftarrow \text{NumberOfColumns}(\mathbf{X}^{ts})$ {Obtain number of columns of \mathbf{X}^{ts} .}
784 5: $\mathbf{Z}^{ts} \leftarrow [,]$ {Create empty matrix to store the synthetic data.}
785 6: $\mathbf{x}_0^{tr} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{tr})$ {Draw a sample of size n_{tr} from a uniform distribution.}
786 7: $\mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts})$ {Draw a sample of size n_{ts} from a uniform distribution.}
787 8: $\mathbf{Z}^{ts}[, 1] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{x}_0^{ts}, \mathbf{x}_0^{tr}, \mathbf{x}_1^{tr})$ {Predict \mathbf{x}_1^{ts} using \mathbf{x}_0^{tr} and \mathbf{x}_1^{tr} as context, and
788 \mathbf{x}_0^{ts} as query. The prediction can be from a regression or classification TabPFN model, depending on whether \mathbf{x}_1^{tr} is continuous or
789 categorical.}
790 9: **for** $j = 2$ **to** p **do**
791 10: $\mathbf{X}_{<j}^{tr} \leftarrow \mathbf{X}^{tr}[, 1 : (j - 1)]$ {Select the first $j - 1$ columns of \mathbf{X}^{tr} .}
792 11: $\mathbf{X}_{<j}^{ts} \leftarrow \mathbf{X}^{ts}[, 1 : (j - 1)]$ {Select the first $j - 1$ columns of \mathbf{X}^{ts} .}
793 12: $\mathbf{Z}^{ts}[, j] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{X}_{<j}^{ts}, \mathbf{X}_{<j}^{tr}, \mathbf{x}_j^{tr})$ {Predict \mathbf{x}_j^{ts} using $\mathbf{X}_{<j}^{tr}$ and \mathbf{x}_j^{tr} as con-
794 text, and $\mathbf{X}_{<j}^{ts}$ as query. The prediction can be from a regression or classification TabPFN model, depending on whether \mathbf{x}_j^{tr} is
795 continuous or categorical.}
796 13: **end for**
797 14: **Output:** synthetic data \mathbf{Z}^{ts}

798
799 **Algorithm 3** JointFactorizationTabPFNGenerator(\mathbf{X})

800 1: **Input:** the original data, \mathbf{X}
801 2: $\mathbf{X}_1, \mathbf{X}_2 \leftarrow \text{DataSplit}(\mathbf{X})$ {Split the original data \mathbf{X} into two subsets, \mathbf{X}_1 and \mathbf{X}_2 .}
802 3: $\mathbf{Z}_1 \leftarrow \text{ICLwithJointFactorizationTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_2, \mathbf{X}^{ts} = \mathbf{X}_1)$ {Generate a synthetic data copy of \mathbf{X}_1
803 using Algorithm 2.}
804 4: $\mathbf{Z}_2 \leftarrow \text{ICLwithJointFactorizationTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_1, \mathbf{X}^{ts} = \mathbf{X}_2)$ {Generate a synthetic data copy of \mathbf{X}_2
805 using Algorithm 2.}
806 5: $\mathbf{Z} \leftarrow \text{Concatenate}(\mathbf{Z}_1, \mathbf{Z}_2)$ {Concatenate the synthetic datasets \mathbf{Z}_1 and \mathbf{Z}_2 .}
807 6: $\mathbf{Z} \leftarrow \text{RoundIntegerVariables}(\mathbf{X}, \mathbf{Z})$ {This function uses \mathbf{X} to determine which variables have integer type and round the
808 values of the corresponding variables in \mathbf{Z} to the nearest integer.}
809 7: **Output:** synthetic data \mathbf{Z}

810

Algorithm 4 ICLwithFullConditionalsTabPFN(\mathbf{X}^{tr} , \mathbf{X}^{ts})

811

```

1: Input: training data for ICL,  $\mathbf{X}^{tr}$ ; query data for ICL,  $\mathbf{X}^{ts}$ 
2:  $p \leftarrow \text{NumberOfColumns}(\mathbf{X}^{ts})$  {Obtain number of columns of  $\mathbf{X}^{ts}$ .}
3:  $\mathbf{Z}^{ts} \leftarrow [ , ]$  {Create empty matrix to store the synthetic data.}
4: for  $j = 1$  to  $p$  do
5:    $\mathbf{X}_{-j}^{tr} \leftarrow \mathbf{X}^{tr}[ , -j]$  {Drop the  $j$ -th column of  $\mathbf{X}^{tr}$ .}
6:    $\mathbf{X}_{-j}^{ts} \leftarrow \mathbf{X}^{ts}[ , -j]$  {Drop the  $j$ -th column of  $\mathbf{X}^{ts}$ .}
7:    $\mathbf{Z}^{ts}[ , j] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{X}_{-j}^{ts}, \mathbf{X}_{-j}^{tr}, \mathbf{x}_j^{tr})$  {Predict  $\mathbf{x}_j^{ts}$  using  $\mathbf{X}_{-j}^{tr}$  and  $\mathbf{x}_j^{tr}$  as context, and  $\mathbf{X}_{-j}^{ts}$  as query. The prediction can be from a regression or classification TabPFN model, depending on whether  $\mathbf{x}_j^{tr}$  is continuous or categorical.}
8: end for
9: Output: synthetic data  $\mathbf{Z}^{ts}$ 

```

822

823

Algorithm 5 FullConditionalsTabPFNGenerator(\mathbf{X})

824

```

1: Input: the original data,  $\mathbf{X}$ 
2:  $\mathbf{X}_1, \mathbf{X}_2 \leftarrow \text{DataSplit}(\mathbf{X})$  {Split the original data  $\mathbf{X}$  into two subsets,  $\mathbf{X}_1$  and  $\mathbf{X}_2$ .}
3:  $\mathbf{Z}_1 \leftarrow \text{ICLwithFullConditionalsTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_2, \mathbf{X}^{ts} = \mathbf{X}_1)$  {Generate a synthetic data copy of  $\mathbf{X}_1$  using Algorithm 4.}
4:  $\mathbf{Z}_2 \leftarrow \text{ICLwithFullConditionalsTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_1, \mathbf{X}^{ts} = \mathbf{X}_2)$  {Generate a synthetic data copy of  $\mathbf{X}_2$  using Algorithm 4.}
5:  $\mathbf{Z} \leftarrow \text{Concatenate}(\mathbf{Z}_1, \mathbf{Z}_2)$  {Concatenate the synthetic datasets  $\mathbf{Z}_1$  and  $\mathbf{Z}_2$ .}
6:  $\mathbf{Z} \leftarrow \text{RoundIntegerVariables}(\mathbf{X}, \mathbf{Z})$ 
7: Output: synthetic data  $\mathbf{Z}$ 

```

833

834

Algorithm 6 ICLwithMIAVTabPFN(\mathbf{X}^{tr} , \mathbf{X}^{ts})

835

```

1: Input: training data for ICL,  $\mathbf{X}^{tr}$ ; query data for ICL,  $\mathbf{X}^{ts}$ 
2:  $p \leftarrow \text{NumberOfColumns}(\mathbf{X}^{ts})$  {Obtain number of columns of  $\mathbf{X}^{ts}$ .}
3:  $\mathbf{Z}^{ts} \leftarrow [ , ]$  {Create empty matrix to store the synthetic data.}
4: for  $j = 1$  to  $p$  do
5:    $\mathbf{m}_j^{tr} \leftarrow \text{GenerateMaximalInformationAuxiliaryVariable}(\mathbf{x}_j^{tr})$  {Generate the MIAV for  $\mathbf{x}_j^{tr}$  using Algorithm 1.}
6:    $\mathbf{m}_j^{ts} \leftarrow \text{GenerateMaximalInformationAuxiliaryVariable}(\mathbf{x}_j^{ts})$  {Generate the MIAV for  $\mathbf{x}_j^{ts}$  using Algorithm 1.}
7:    $\mathbf{Z}^{ts}[ , j] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{m}_j^{ts}, \mathbf{m}_j^{tr}, \mathbf{x}_j^{tr})$  {Predict  $\mathbf{x}_j^{ts}$  using  $\mathbf{m}_j^{tr}$  and  $\mathbf{x}_j^{tr}$  as context, and  $\mathbf{m}_j^{ts}$  as query. The prediction can be from a regression or classification TabPFN model, depending on whether  $\mathbf{x}_j^{tr}$  is continuous or categorical.}
8: end for
9: Output: synthetic data  $\mathbf{Z}^{ts}$ 

```

848

849

Algorithm 7 MIAVTabPFNGenerator(\mathbf{X})

850

```

1: Input: the original data,  $\mathbf{X}$ 
2:  $\mathbf{X}_1, \mathbf{X}_2 \leftarrow \text{DataSplit}(\mathbf{X})$  {Split the original data  $\mathbf{X}$  into two subsets,  $\mathbf{X}_1$  and  $\mathbf{X}_2$ .}
3:  $\mathbf{Z}_1 \leftarrow \text{ICLwithMIAVTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_2, \mathbf{X}^{ts} = \mathbf{X}_1)$  {Generate a synthetic data copy of  $\mathbf{X}_1$  using Alg. 6.}
4:  $\mathbf{Z}_2 \leftarrow \text{ICLwithMIAVTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_1, \mathbf{X}^{ts} = \mathbf{X}_2)$  {Generate a synthetic data copy of  $\mathbf{X}_2$  using Alg. 6.}
5:  $\mathbf{Z} \leftarrow \text{Concatenate}(\mathbf{Z}_1, \mathbf{Z}_2)$  {Concatenate the synthetic datasets  $\mathbf{Z}_1$  and  $\mathbf{Z}_2$ .}
6:  $\mathbf{Z} \leftarrow \text{RoundIntegerVariables}(\mathbf{X}, \mathbf{Z})$  {This function uses  $\mathbf{X}$  to determine which variables have integer type and round the values of the corresponding variables in  $\mathbf{Z}$  to the nearest integer.}
7: Output: synthetic data  $\mathbf{Z}$ 

```

858

859

860

In Algorithms 3, 5, and 7 the function `RoundIntegerVariables(\mathbf{X} , \mathbf{Z})` uses the original data, \mathbf{X} , to determine which variables have integer type and round the values of the corresponding variables in the synthetic data, \mathbf{Z} , to the nearest integer. This post-processing step is necessary because TabPFN (and most other data synthesizers) return real values for variables that are originally of integer type. In our experiments, we apply the same post-processing step to the SMOTE baseline.

864 C SIMULATING CORRELATED BETA DISTRIBUTIONS
865

866 Here, we describe how we simulated correlated beta distributions used in the simulated data experiments,
867 as well as, for the illustrative examples provided in Figures 1, 2, and 3 in the main text, and
868 Figures 5, 6, 7, 8, and 9 in Appendix D.

869 The data was simulated as follows. First, we simulate data from a multivariate normal random variable
870 $\mathbf{Y} \sim N_p(\mathbf{0}, \Sigma)$. Next, for $j = 1, \dots, p$, we compute the correlated uniform variables $U_j = \Phi(Z_j)$,
871 and the correlated beta random variables $X_j = G_{a,b}^{-1}(U_j)$, where Φ and $G_{a,b}$ represent, respectively,
872 the cumulative distribution functions of standard normal variable and a beta variable with shape
873 parameters a and b .
874

875 The multivariate Gaussian variable \mathbf{Y} is generated with a Toeplitz structured covariance matrix Σ
876 with off-diagonal entries $\sigma_{ij} = \rho^{|i-j|}$, and diagonal entries $\sigma_{jj} = 1$, for $\rho \in [-1, 1]$. (Note that
877 under this correlation structure, neighboring variables are more highly associated than more distant
878 variables, and the association decreases the farther apart the variables are. Also, for negative ρ values
879 the direction of the association flips depending on whether the exponent $|i - j|$ is even or odd.)

880 For the illustrations presented in Figures 1, 2, and 3 we further randomly shuffle the data of variable
881 X_2 in order to simulate an uninformative feature uncorrelated with all other variables in the dataset.
882 Furthermore, for the illustrations presented in Figure 3, we also discretize variable X_5 into four
883 classes.
884

885 D SUPPLEMENTARY FIGURES
886

911 Figure 5: Comparison of the JF, FC, and MIAV synthetic data generation strategies for correlated beta
912 variables generated with $\rho = -0.95$. Panel a shows the Pearson correlation matrices for the original data,
913 while panels b to e show the correlation matrices for the JF, FC, MIAV synthetic datasets and the
914 holdout set (positive correlations are represented in blue and negative correlations are represented
915 in red). Panels f, l, r, and z show the difference between the original data correlation matrix and the
916 respective synthetic datasets and holdout set. The remaining panels show the marginal distributions
917 generated by the distinct synthetic data generation approaches and for the holdout set.
918

Figure 6: Analogous comparisons as in Figure 5, but for data simulated with $\rho = -0.75$.Figure 7: Analogous comparisons as in Figure 5, but for data simulated with $\rho = -0.5$.

998 Figure 8: Analogous comparisons as in Figure 5, but for data simulated with $\rho = -0.25$.
999Figure 9: Analogous comparisons as in Figure 5, but for data simulated with $\rho = 0$.

1026 E ADDITIONAL DIRECT SYNTHETIC DATA GENERATION STRATEGIES
1027

1028 As described in Algorithms 2 and 4 our implementations of the JF and FC strategies use the real test
1029 data when performing the in-context queries. In the case of the JF strategy, an alternative approach
1030 would be to use the synthetic data generated in the previous steps when we query the model in the
1031 current generation step. That is, instead of generating the data according to equation 2 we generate it
1032 according to,

$$1033 \quad 1034 \quad \prod_{j=1}^p q_\theta(\mathbf{x}_j^{ts} \mid \hat{\mathbf{X}}_{<j}^{ts}, \mathbf{X}_{<j}^{tr}, \mathbf{x}_j^{tr}), \quad 1035$$

1036 where $\hat{\mathbf{X}}_{<j}^{ts}$ represents the predictions (i.e., the synthetic data) generated in the previous $j - 1$
1037 generation steps. We denote this strategy as the “updated joint factorization” (or UJF for short), and
1038 implement it in Algorithms 8 and 9. Note that Algorithm 8 implements two versions of the UJF
1039 approach. The first, simply takes a bootstrap sample from the original X_1 data as the “synthetic
1040 version” of X_1 . The second, uses the random noise variable X_0 to generate X_1 (similarly to the JF
1041 strategy). Intuitively, we would expect UJF to under-perform in comparison with the JF strategy, since
1042 any drifts in the distribution of the synthetic data generated in the previous steps would propagate to
1043 the later ones.

1044 **Algorithm 8** ICLwithUpdatedJointFactorizationTabPFN($\mathbf{X}^{tr}, \mathbf{X}^{ts}, version = 1$)
1045

```

1: Input: training data for ICL,  $\mathbf{X}^{tr}$ ; query data for ICL,  $\mathbf{X}^{ts}$ ; version of the UJF strategy
2:  $n_{tr} \leftarrow \text{NumberOfRows}(\mathbf{X}^{tr})$  {Obtain number of samples of  $\mathbf{X}^{tr}$ .}
3:  $n_{ts} \leftarrow \text{NumberOfRows}(\mathbf{X}^{ts})$  {Obtain number of samples of  $\mathbf{X}^{ts}$ .}
4:  $p \leftarrow \text{NumberOfColumns}(\mathbf{X}^{ts})$  {Obtain number of columns of  $\mathbf{X}^{ts}$ .}
5:  $\mathbf{Z}^{ts} \leftarrow [ , ]$  {Create empty matrix to store the synthetic data.}
6: if version == 1 then
7:    $\mathbf{Z}^{ts}[:, 1] \leftarrow \text{BootstrapSample}(\mathbf{x}_1^{tr})$ 
8: end if
9: if version == 2 then
10:   $\mathbf{x}_0^{tr} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{tr})$  {Draw a sample of size  $n_{tr}$  from a uniform distribution.}
11:   $\mathbf{x}_0^{ts} \leftarrow \text{GenerateUniformlyDistributedNoise}(n_{ts})$  {Draw a sample of size  $n_{ts}$  from a uniform distribution.}
12:   $\mathbf{Z}^{ts}[:, 1] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{x}_0^{ts}, \mathbf{x}_0^{tr}, \mathbf{x}_1^{tr})$  {Predict  $\mathbf{x}_1^{ts}$  using  $\mathbf{x}_0^{tr}$  and  $\mathbf{x}_1^{tr}$  as context, and  $\mathbf{x}_0^{ts}$  as query. The prediction can be from a regression or classification TabPFN model, depending on whether  $\mathbf{x}_1^{tr}$  is continuous or categorical.}
13: end if
14: for  $j = 2$  to  $p$  do
15:    $\mathbf{X}_{<j}^{tr} \leftarrow \mathbf{X}^{tr}[:, 1 : (j - 1)]$  {Select the first  $j - 1$  columns of  $\mathbf{X}^{tr}$ .}
16:    $\mathbf{Z}_{<j}^{ts} \leftarrow \mathbf{Z}^{ts}[:, 1 : (j - 1)]$  {Select the first  $j - 1$  columns of  $\mathbf{Z}^{ts}$ .}
17:    $\mathbf{Z}^{ts}[:, j] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{Z}_{<j}^{ts}, \mathbf{X}_{<j}^{tr}, \mathbf{x}_j^{tr})$  {Predict  $\mathbf{x}_j^{ts}$  using  $\mathbf{Z}_{<j}^{ts}$  and  $\mathbf{x}_j^{tr}$  as context, and  $\mathbf{Z}_{<j}^{ts}$  as query. The prediction can be from a regression or classification TabPFN model, depending on whether  $\mathbf{x}_j^{tr}$  is continuous or categorical.}
18: end for
19: Output: synthetic data  $\mathbf{Z}^{ts}$ 

```

1069 **Algorithm 9** UpdatedJointFactorizationTabPFNGenerator(\mathbf{X})
1070

```

1: Input: the original data,  $\mathbf{X}$ 
2:  $\mathbf{X}_1, \mathbf{X}_2 \leftarrow \text{DataSplit}(\mathbf{X})$  {Split the original data  $\mathbf{X}$  into two subsets,  $\mathbf{X}_1$  and  $\mathbf{X}_2$ .}
3:  $\mathbf{Z}_1 \leftarrow \text{ICLwithUpdatedJointFactorizationTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_2, \mathbf{X}^{ts} = \mathbf{X}_1)$  {Generate a synthetic data copy of  $\mathbf{X}_1$  using Algorithm 8.}
4:  $\mathbf{Z}_2 \leftarrow \text{ICLwithUpdatedJointFactorizationTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_1, \mathbf{X}^{ts} = \mathbf{X}_2)$  {Generate a synthetic data copy of  $\mathbf{X}_2$  using Algorithm 8.}
5:  $\mathbf{Z} \leftarrow \text{Concatenate}(\mathbf{Z}_1, \mathbf{Z}_2)$  {Concatenate the synthetic datasets  $\mathbf{Z}_1$  and  $\mathbf{Z}_2$ .}
6: Output: synthetic data  $\mathbf{Z}$ 

```

1078 This intuition is confirmed in Figure 10, which shows the application of version 1 of the UJF strategy
1079 in purple (panels f to j) and of version 2 (panels l to p) in cyan. For comparison, the plot also include

Figure 10: Comparison of JF and the UJF approaches.

the results from the JF approach (panels r to v). Even in version 1, where the algorithm samples the first variable from the correct distribution, the distributions of the synthetic data still ends drifting away from the original data distributions at later steps of the data generation approach. (Note that UJF1 performs considerably worse than the JF approach for variables X_3 , X_4 , and X_5 .) In version 2 (panels l to p) the performance is even worse because the quality of the X_1 data generated in the first step is already very poor.

F ADDITIONAL ALGORITHMS

Algorithm 10 NumericRankEncodingOfCategoricalVariables(\mathbf{x}_j)

```

1: Input: categorical variable data  $\mathbf{x}_j$ 
2:  $levels \leftarrow \text{ExtractLevels}(\mathbf{x}_j)$  {Obtain levels of variable  $\mathbf{x}_j$ .}
3:  $tb \leftarrow \text{Table}(\mathbf{x}_j[, i])$  {Obtain level counts of variable  $\mathbf{x}_j$ .}
4:  $cumcounts \leftarrow \text{CumulativeSum}(tb)$  {Compute cumulative counts from the table counts.}
5:  $numlevels \leftarrow \text{Length}(levels)$  {Obtain number of levels.}
6:  $r \leftarrow []$  {Create empty vector to store the numeric rank encodings.}
7: for  $k = 1$  to  $numlevels$  do
8:    $idx \leftarrow \text{Which}(\mathbf{x}_j == levels[k])$  {Obtain the indexes of the records for which  $\mathbf{x}_j$  equals level  $k$ .}
9:    $lowerbound \leftarrow cumcounts[k] + 1$  {Compute the lower bound for the numerical encoding of level  $k$  of  $\mathbf{x}_j$ .}
10:   $upperbound \leftarrow cumcounts[k + 1]$  {Compute the upper bound for the numerical encoding of level  $k$  of  $\mathbf{x}_j$ .}
11:   $nrseq \leftarrow \text{Sequence}(lowerbound, upperbound)$  {Create a sequence of numeric rank values starting at lower-bound and ending at upper-bound.}
12:   $r[idx] \leftarrow \text{RandomPermutation}(nrseq)$  {Assign randomly shuffled numeric rank values to the positions of  $\mathbf{x}_j$  corresponding to level  $k$ .}
13: end for
14: Output: numerical rank encoding  $r$ 

```

As an example, suppose $\mathbf{x}_j = (A, A, A, A, B, B, B, C, C, C, C, C, D, D, D)^t$. This categorical variable has four levels A, B, C and D with counts $n_A = 4, n_B = 3, n_C = 5$ and $n_D = 3$. To generate the numerical rank encoding \mathbf{r} presented in Table 1, the algorithm transforms the categorical values according to the mapping, map_r , in Table 1. Note that this mapping corresponds to an arbitrary ranking of the categorical levels according to the arbitrary order $A < B < C < D$. That is, starting with class A , the mapping assigns ranks 1, 2, 3, and 4 (in random order) to the four tied elements A in \mathbf{x}_j . (Note that by assigning the ranks in random order the mapping is effectively using the “at random” method to break ties among identical values of the categorical variable.) For class B , the mapping assigns ranks 5, 6, and 7 (in random order) to the three tied elements B in \mathbf{x}_j . For class C it assigns ranks 8 to 12 (in random order) to the five tied elements C . Finally, for class D , the mapping assigns ranks 13, 14, and 15 (in random order) to the three tied elements D in \mathbf{x}_j .

Table 1: Toy example illustrating the application of the numeric rank encoding procedure for categorical variables implemented by Algorithm 10 to $\mathbf{x}_j = (A, A, A, A, B, B, B, C, C, C, C, C, D, D, D)^t$.

map_r	$A = \{1, 2, 3, 4\}$				$B = \{5, 6, 7\}$			$C = \{8, 9, 10, 11, 12\}$				$D = \{13, 14, 15\}$			
\mathbf{x}_j	A	A	A	A	B	B	B	C	C	C	C	C	D	D	D
\mathbf{r}	3	1	4	2	7	5	6	9	8	11	12	10	14	15	13

G PROOF OF THEOREM 1

Consider variables X_j, Y , and M_j , where Y is a placeholder notation for any variable other than X_j or M_j (Y could, for example, be any other $X_{j'}$ or $M_{j'}$ for $j' \neq j$). Variables X_j and Y might be continuous or categorical. Variable M_j is always continuous by construction. To prove the result in a non-parametric setting, we treat any continuous variable as a categorical variable with n distinct levels (where n represents the number of samples in the data). We also assume the independent samples setting, where the rows of dataset \mathbf{X} are independent.

G.1 PROOF OF STATEMENT 1, WHEN X_j AND Y ARE CONTINUOUS

Proof. We consider first the case where X_j and Y are originally continuous variables. In this case, all variables are treated as categorical variables with n levels, where $i = 1, \dots, n$, $l = 1, \dots, n$, and $k = 1, \dots, n$ indexes the categorical levels of variables X_j, Y , and M_j , respectively.

The conditional mutual information (CMI) of X_j and Y given M_j is defined as,

$$\begin{aligned}
 I(X_j; Y|M_j) &= \\
 &= \sum_{i=1}^n \sum_{l=1}^n \sum_{k=1}^n P(X_j = i, Y = l, M_j = k) \log \left(\frac{P(X_j = i, Y = l \mid M_j = k)}{P(X_j = i \mid M_j = k) P(Y = l \mid M_j = k)} \right) \\
 &= \sum_{i=1}^n \sum_{l=1}^n \sum_{k=1}^n P(X_j = i, Y = l, M_j = k) \log \left(\frac{P(X_j = i, Y = l, M_j = k) P(M_j = k)}{P(X_j = i, M_j = k) P(Y = l, M_j = k)} \right), \tag{11}
 \end{aligned}$$

where the joint probabilities are defined from the joint frequency counts in a finite population. For instance, $P(X_j = i, Y = l, M_j = k) = f(X_j = i, Y = l, M_j = k)/n$ where $f(X_j = i, Y = l, M_j = k)$ corresponds to the number of instances in a population of size n for which $X_j = i$ and $Y = l$ and $M_j = k$. Note that because all three variables have n distinct levels, these frequencies will be either 1 or 0 depending on whether the combination of values is observed or not in the dataset.

To avoid division by 0, we consider the smoothed version of the CMI where an arbitrarily small constant ϵ is added to the frequency counts of each cell in the contingency tables defining these probabilities. Namely,

$$f^\epsilon(X_j = i, Y = l, M_j = k) = f(X_j = i, Y = l, M_j = k) + \epsilon, \tag{12}$$

1188 and $P^\epsilon(X_j = i, Y = l, M_j = k)$ is obtained by normalization as,
 1189

$$\begin{aligned}
 1190 \quad P^\epsilon(X_j = i, Y = l, M_j = k) &= \frac{f(X_j = i, Y = l, M_j = k) + \epsilon}{\sum_{i=1}^n \sum_{l=1}^n \sum_{k=1}^n (f(X_j = i, Y = l, M_j = k) + \epsilon)} \\
 1191 \quad &= \frac{f(X_j = i, Y = l, M_j = k) + \epsilon}{\sum_{i=1}^n \sum_{l=1}^n \sum_{k=1}^n f(X_j = i, Y = l, M_j = k) + \sum_{i=1}^n \sum_{l=1}^n \sum_{k=1}^n \epsilon} \\
 1192 \quad &= \frac{f(X_j = i, Y = l, M_j = k) + \epsilon}{n + n^3 \epsilon}. \tag{13}
 \end{aligned}$$

1198 Similarly, we have that,
 1199

$$1200 \quad P^\epsilon(X_j = i, M_j = k) = \frac{f(X_j = i, M_j = k) + \epsilon}{n + n^2 \epsilon}, \tag{14}$$

$$1205 \quad P^\epsilon(Y = l, M_j = k) = \frac{f(Y = l, M_j = k) + \epsilon}{n + n^2 \epsilon}, \tag{15}$$

$$1209 \quad P^\epsilon(M_j = k) = \frac{f(M_j = k) + \epsilon}{n + n \epsilon} = \frac{1 + \epsilon}{n(1 + \epsilon)} = \frac{1}{n}. \tag{16}$$

1213 Now, because the rank-matching procedure used in the construction of M_j implies a perfect monotonic
 1214 relation between the values of X_j and M_j we have that the discretized versions of X_j and M_j will
 1215 be identical (see Table 2 for an illustrative toy example). This correspondence between X_j and M_j
 1216 implies that these variables cannot concomitantly assume different values at the same time (i.e., the
 1217 joint frequency $f(X_j = i, M_j = k)$ will always be 0 if $i \neq k$). It also implies that the joint counts
 1218 $f(X_j = i, M_j = k)$ will always be equal to the marginal counts $f(M_j = k)$ when $i = k$. Hence, we
 1219 have that,

$$1221 \quad f(X_j = i, M_j = k) = \begin{cases} f(M_j = k) = 1, & \text{if } i = k \\ 0, & \text{if } i \neq k \end{cases}, \tag{17}$$

1224 and we can re-express equation (14) as,
 1225

$$1226 \quad P^\epsilon(X_j = i, M_j = k) = \begin{cases} \frac{f(M_j = k) + \epsilon}{n + n^2 \epsilon} = \frac{1 + \epsilon}{n + n^2 \epsilon}, & \text{if } i = k \\ \frac{\epsilon}{n + n^2 \epsilon}, & \text{if } i \neq k \end{cases}. \tag{18}$$

1231 Similarly, we have that,
 1232

$$1234 \quad f(X_j = i, Y = l, M_j = k) = \begin{cases} f(Y = l, M_j = k), & \text{if } i = k \\ 0, & \text{if } i \neq k \end{cases}, \tag{19}$$

1237 and we can re-express equation (13) as,
 1238

$$1239 \quad P^\epsilon(X_j = i, Y = l, M_j = k) = \begin{cases} \frac{f(Y = l, M_j = k) + \epsilon}{n + n^3 \epsilon}, & \text{if } i = k \\ \frac{\epsilon}{n + n^3 \epsilon}, & \text{if } i \neq k \end{cases}. \tag{20}$$

Re-expressing the conditional mutual information in terms of the smoothed probabilities and separating the summation over the cases where $k = i$ from the cases where $k \neq i$ we have,

$$\begin{aligned}
& I^\epsilon(X_j; Y|M_j) = \\
&= \sum_{i=1}^n \sum_{l=1}^n P^\epsilon(X_j = i, Y = l, M_j = i) \log \left(\frac{P^\epsilon(X_j = i, Y = l, M_j = i)}{P^\epsilon(X_j = i, M_j = i)} \frac{P^\epsilon(M_j = i)}{P^\epsilon(Y = l, M_j = i)} \right) + \\
&+ \sum_{i=1}^n \sum_{l=1}^n \sum_{k \neq i} P^\epsilon(X_j = i, Y = l, M_j = k) \log \left(\frac{P^\epsilon(X_j = i, Y = l, M_j = k)}{P^\epsilon(X_j = i, M_j = k)} \frac{P^\epsilon(M_j = k)}{P^\epsilon(Y = l, M_j = k)} \right) \\
&= \sum_{i=1}^n \sum_{l=1}^n \frac{f(Y = l, M_j = i) + \epsilon}{n + n^3 \epsilon} \log \left(\frac{\left(\frac{f(Y = l, M_j = i) + \epsilon}{n + n^3 \epsilon} \right) \left(\frac{f(M_j = i) + \epsilon}{n + n \epsilon} \right)}{\left(\frac{f(M_j = i) + \epsilon}{n + n^2 \epsilon} \right) \left(\frac{f(Y = l, M_j = i) + \epsilon}{n + n^2 \epsilon} \right)} \right) + \\
&+ \sum_{i=1}^n \sum_{l=1}^n \sum_{k \neq i} \frac{\epsilon}{n + n^3 \epsilon} \log \left(\frac{\left(\frac{\epsilon}{n + n^3 \epsilon} \right) \left(\frac{f(M_j = k) + \epsilon}{n + n \epsilon} \right)}{\left(\frac{\epsilon}{n + n^2 \epsilon} \right) \left(\frac{f(Y = l, M_j = k) + \epsilon}{n + n^2 \epsilon} \right)} \right) \\
&= \sum_{i=1}^n \sum_{l=1}^n \frac{f(Y = l, M_j = i) + \epsilon}{n + n^3 \epsilon} \log \left(\frac{(n + n^2 \epsilon) (n + n^2 \epsilon)}{(n + n^3 \epsilon) (n + n \epsilon)} \right) + \\
&+ \sum_{i=1}^n \sum_{l=1}^n \sum_{k \neq i} \frac{\epsilon}{n + n^3 \epsilon} \log \left(\frac{(n + n^2 \epsilon) (n + n^2 \epsilon) (f(M_j = k) + \epsilon)}{(n + n^3 \epsilon) (n + n \epsilon) (f(Y = l, M_j = k) + \epsilon)} \right)
\end{aligned} \tag{21}$$

Taking the limit as $\epsilon \rightarrow 0$ we have that $I^\epsilon(X_j; Y|M_j)$ converges to

$$\sum_{i=1}^n \sum_{l=1}^n \frac{f(Y = l, M_j = i)}{n} \log(1) + \sum_{i=1}^n \sum_{l=1}^n \sum_{k \neq i} 0 \log \left(\frac{f(M_j = k)}{f(Y = l, M_j = k)} \right) = 0. \quad (22)$$

Observe that the term $0 \log(f(M_j = k)/f(Y = l, M_j = k))$ in the above equation equals 0 because it can be rewritten as $0 \log f(M_j = k) - 0 \log f(Y = l, M_j = k)$ and $0 \log f(M_j = k) = 0 \log(1/n) = 0$ and $0 \log f(Y = l, M_j = k)$ equals $0 \log 1 = 0$ if $l = k$ or $0 \log 0 = 0$ if $l \neq k$. (Note that in this last case, we are adopting the convention that $0 \log 0 = 0$, as customary in information theory.)

G.2 PROOF OF STATEMENT 1, WHEN X_i AND Y ARE CATEGORICAL

Proof. We now consider the case where X_j and Y are categorical variables. Let b_x and b_y represent the number of levels of X_j and Y , and let $i = 1, \dots, b_x$, $l = 1, \dots, b_y$, and $k = 1, \dots, n$ represent the indexes of the levels of variables X_j , Y , and M_j , respectively.

Now, the CMI of X_j and Y conditional of M_j is given by,

1296 To avoid division by 0, we again consider the smoothed version of the CMI with smoothed probabilities
 1297 given by,
 1298

$$1300 P^\epsilon(X_j = i, Y = l, M_j = k) = \frac{f(X_j = i, Y = l, M_j = k) + \epsilon}{n + b_x b_y n \epsilon} . \quad (24)$$

1302

1303

1304

$$1305 P^\epsilon(X_j = i, M_j = k) = \frac{f(X_j = i, M_j = k) + \epsilon}{n + b_x n \epsilon} , \quad (25)$$

1307

1308

1309

1310

$$1311 P^\epsilon(Y = l, M_j = k) = \frac{f(Y = l, M_j = k) + \epsilon}{n + b_y n \epsilon} , \quad (26)$$

1312

1313

1314

1315

$$1316 P^\epsilon(M_j = k) = \frac{f(M_j = k) + \epsilon}{n + n \epsilon} = \frac{1 + \epsilon}{n(1 + \epsilon)} = \frac{1}{n} . \quad (27)$$

1317

1318

1319

1320

1321 By construction, when X_j is categorical, we have that the following relations hold between X_j and
 1322 the discretized M_j ,

1323

$$1324 f(X_j = i, M_j = k) = \begin{cases} f(M_j = k) , & \text{if } k \in I_i \\ 0 , & \text{if } k \notin I_i \end{cases} , \quad (28)$$

1325

1326

1327

1328

1329

$$1330 f(X_j = i, Y = l, M_j = k) = \begin{cases} f(Y = l, M_j = k) , & \text{if } k \in I_i \\ 0 , & \text{if } k \notin I_i \end{cases} , \quad (29)$$

1331

1332

1333

1334 where I_i represents the set of indexes of the discretized M_j variable for which $X_j = i$, and $\mathbb{1}\{k \in I_i\}$
 1335 represents the indicator function assuming value 1 when k belongs to I_i , and 0 otherwise. (Table 3
 1336 provides an illustrative example explaining the above relations.)

1337

1338 Using equations 28 and 29 we can re-express equations (25) and (24) as,

1339

$$1340 P^\epsilon(X_j = i, M_j = k) = \begin{cases} \frac{f(M_j = k) + \epsilon}{n + b_x n \epsilon} , & \text{if } k \in I_i \\ \frac{0}{n + b_x n \epsilon} , & \text{if } k \notin I_i \end{cases} , \quad (30)$$

1341

1342

1343

1344

1345

1346 and,

$$1347 P^\epsilon(X_j = i, Y = l, M_j = k) = \begin{cases} \frac{f(Y = l, M_j = k) + \epsilon}{n + b_x b_y n \epsilon} , & \text{if } k \in I_i \\ \frac{0}{n + b_x b_y n \epsilon} , & \text{if } k \notin I_i \end{cases} . \quad (31)$$

1348

1349

1350
1351 Re-expressing the conditional mutual information in terms of the smoothed probabilities and separating
1352 the summation over the cases where $k \in I_i$ from the cases where $k \notin I_i$ we have,

$$\begin{aligned}
 1353 \quad & I^\epsilon(X_j; Y|M_j) = & (32) \\
 1354 \quad & = \sum_{i=1}^{b_x} \sum_{l=1}^{b_y} \sum_{k \in I_i} P^\epsilon(X_j = i, Y = l, M_j = k) \log \left(\frac{P^\epsilon(X_j = i, Y = l, M_j = k) P^\epsilon(M_j = k)}{P^\epsilon(X_j = i, M_j = k) P^\epsilon(Y = l, M_j = k)} \right) + \\
 1355 \quad & + \sum_{i=1}^{b_x} \sum_{l=1}^{b_y} \sum_{k \notin I_i} P^\epsilon(X_j = i, Y = l, M_j = k) \log \left(\frac{P^\epsilon(X_j = i, Y = l, M_j = k) P^\epsilon(M_j = k)}{P^\epsilon(X_j = i, M_j = k) P^\epsilon(Y = l, M_j = k)} \right) \\
 1356 \quad & = \sum_{i=1}^{b_x} \sum_{l=1}^{b_y} \sum_{k \in I_i} \frac{f(Y = l, M_j = k) + \epsilon}{n + b_x b_y n \epsilon} \log \left(\frac{\left(\frac{f(Y = l, M_j = k) + \epsilon}{n + b_x b_y n \epsilon} \right) \left(\frac{f(M_j = k) + \epsilon}{n + n \epsilon} \right)}{\left(\frac{f(M_j = k) + \epsilon}{n + b_x n \epsilon} \right) \left(\frac{f(Y = l, M_j = k) + \epsilon}{n + b_y n \epsilon} \right)} \right) + \\
 1357 \quad & + \sum_{i=1}^{b_x} \sum_{l=1}^{b_y} \sum_{k \notin I_i} \frac{\epsilon}{n + b_x b_y n \epsilon} \log \left(\frac{\left(\frac{\epsilon}{n + b_x b_y n \epsilon} \right) \left(\frac{f(M_j = k) + \epsilon}{n + n \epsilon} \right)}{\left(\frac{\epsilon}{n + b_x n \epsilon} \right) \left(\frac{f(Y = l, M_j = k) + \epsilon}{n + b_y n \epsilon} \right)} \right) \\
 1358 \quad & = \sum_{i=1}^{b_x} \sum_{l=1}^{b_y} \sum_{k \in I_i} \frac{f(Y = l, M_j = k) + \epsilon}{n + b_x b_y n \epsilon} \log \left(\frac{(n + b_x n \epsilon)(n + b_y n \epsilon)}{(n + b_x b_y n \epsilon)(n + n \epsilon)} \right) + \\
 1359 \quad & + \sum_{i=1}^{b_x} \sum_{l=1}^{b_y} \sum_{k \notin I_i} \frac{\epsilon}{n + b_x b_y n \epsilon} \log \left(\frac{(n + b_x n \epsilon)(n + b_y n \epsilon)(f(M_j = k) + \epsilon)}{(n + b_x b_y n \epsilon)(n + n \epsilon)(f(Y = l, M_j = k) + \epsilon)} \right)
 \end{aligned}$$

1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376 Taking the limit as $\epsilon \rightarrow 0$ we have that $I^\epsilon(X_j; Y|M_j)$ converges to,

$$\sum_{i=1}^{b_x} \sum_{l=1}^{b_y} \sum_{k \in I_i} \frac{f(Y = l, M_j = i)}{n} \log(1) + \sum_{i=1}^{b_x} \sum_{l=1}^{b_y} \sum_{k \notin I_i} 0 \log \left(\frac{f(M_j = k)}{f(Y = l, M_j = k)} \right) = 0. \quad (33)$$

□

1382 G.3 PROOF OF STATEMENT 1, IN THE REMAINING CASES

1383
1384 *Proof.* In the case where X_j is continuous and Y is categorical, a similar argument to the proof in
1385 the case that both variables are continuous shows that,

$$\begin{aligned}
 1386 \quad & I^\epsilon(X_j; Y|M_j) = & (34) \\
 1387 \quad & = \sum_{i=1}^n \sum_{l=1}^{b_y} \frac{f(Y = l, M_j = i) + \epsilon}{n + b_y n^2 \epsilon} \log \left(\frac{(n + n^2 \epsilon)(n + b_y n \epsilon)}{(n + b_y n^2 \epsilon)(n + n \epsilon)} \right) + \\
 1388 \quad & + \sum_{i=1}^n \sum_{l=1}^{b_y} \sum_{k \neq i} \frac{\epsilon}{n + b_y n^2 \epsilon} \log \left(\frac{(n + n^2 \epsilon)(n + b_y n \epsilon)(f(M_j = k) + \epsilon)}{(n + b_y n^2 \epsilon)(n + n \epsilon)(f(Y = l, M_j = k) + \epsilon)} \right),
 \end{aligned}$$

1394 which again converges to 0 as $\epsilon \rightarrow 0$.

1395
1396 In the case that X_j is categorical and Y is continuous, a similar argument to the proof in the case that
1397 both variables are categorical shows that,

$$\begin{aligned}
 1398 \quad & I^\epsilon(X_j; Y|M_j) = & (35) \\
 1399 \quad & = \sum_{i=1}^{b_x} \sum_{l=1}^n \sum_{k \in I_i} \frac{f(Y = l, M_j = k) + \epsilon}{n + b_x n^2 \epsilon} \log \left(\frac{(n + b_x n \epsilon)(n + n^2 \epsilon)}{(n + b_x n^2 \epsilon)(n + n \epsilon)} \right) + \\
 1400 \quad & + \sum_{i=1}^{b_x} \sum_{l=1}^n \sum_{k \notin I_i} \frac{\epsilon}{n + b_x n^2 \epsilon} \log \left(\frac{(n + b_x n \epsilon)(n + n^2 \epsilon)(f(M_j = k) + \epsilon)}{(n + b_x n^2 \epsilon)(n + n \epsilon)(f(Y = l, M_j = k) + \epsilon)} \right)
 \end{aligned}$$

1404 which again converges to 0 as $\epsilon \rightarrow 0$.
 1405 □

1406
 1407 **G.4 PROOF OF STATEMENT 2**

1408 *Proof.* By definition, the conditional entropy of X_j given M_j is given by,
 1409

$$\begin{aligned} 1411 \quad H(X_j \mid M_j) &= \sum_i \sum_k P(X_j = i, M_j = k) \log \left(\frac{P(X_j = i, M_j = k)}{P(M_j = k)} \right) \\ 1412 \\ 1413 \quad &= \sum_i \sum_k P(X_j = i \mid M_j = k) P(M_j = k) \log P(X_j = i \mid M_j = k) \end{aligned} \quad (36)$$

1416 In the case where X_j is continuous (and discretized into n classes) we have that equation (36) reduces
 1417 to,
 1418

$$\begin{aligned} 1419 \quad H(X_j \mid M_j) &= \sum_{i=1}^n P(X_j = i \mid M_j = i) P(M_j = i) \log P(X_j = i \mid M_j = i) \\ 1420 \\ 1421 \quad &+ \sum_{i=1}^n \sum_{k \neq i} P(X_j = i \mid M_j = k) P(M_j = k) \log P(X_j = i \mid M_j = k), \end{aligned} \quad (37)$$

1425 after we split the summation over k into the cases where $k = i$ and $k \neq i$. Since, by construction, we
 1426 have that,

$$P(X_j = i \mid M_j = k) = \begin{cases} 1, & \text{if } k = i \\ 0, & \text{if } k \neq i \end{cases}, \quad (38)$$

1429 if follows that,

$$H(X_j \mid M_j) = \sum_{i=1}^n P(M_j = i) \log 1 + \sum_{i=1}^n \sum_{k \neq i} 0 P(M_j = k) \log 0 = 0 \quad (39)$$

1433 where we take $0 \log 0$ to be defined as 0 (as its is customary in information theory).

1435 Similarly, in the case where X_j is categorical (with b_x classes) equation (36) reduces to,
 1436

$$\begin{aligned} 1437 \quad H(X_j \mid M_j) &= \sum_{i=1}^{b_x} \sum_{k \in I_i} P(X_j = i \mid M_j = k) P(M_j = k) \log P(X_j = i \mid M_j = k) \\ 1438 \\ 1439 \quad &+ \sum_{i=1}^{b_x} \sum_{k \notin I_i} P(X_j = i \mid M_j = k) P(M_j = k) \log P(X_j = i \mid M_j = k), \end{aligned} \quad (40)$$

1443 after we split the summation over k into the cases where $k \in I_i$ and $k \notin I_i$. Since, by construction,
 1444 we also have that in the categorical case,

$$P(X_j = i \mid M_j = k) = \begin{cases} 1, & \text{if } k \in I_i \\ 0, & \text{if } k \notin I_i \end{cases}, \quad (41)$$

1448 if follows again that,

$$H(X_j \mid M_j) = \sum_{i=1}^{b_x} \sum_{k \in I_i} P(M_j = i) \log 1 + \sum_{i=1}^{b_x} \sum_{k \notin I_i} 0 P(M_j = k) \log 0 = 0. \quad (42)$$

1453 □

1454
 1455
 1456
 1457

1458
1459
1460
1461

Table 2: Illustrative toy example showing the generation of M_j using Algorithm 1 when X_j is continuous. The sample $\mathbf{x}_j = (0.92, -1.29, 0.34, -0.93, 0.71, 0.39, 0.65, 0.85, 0.84, 1.38, -0.32)^t$ (with $n = 11$) represents observations from X_j . Rows (i) and (ii) display the original values of X_j and their corresponding ranks. Row (iii) shows the generated variable M_j , which is uniformly distributed and rank-matched to X_j (i.e., the ordering of M_j is identical to that of X_j). Row (iv) confirms this by showing that the ranks of M_j match those of row (ii). Because of this perfect monotonic correspondence, the discretized versions of X_j and M_j are identical for any chosen number of bins. Rows (v) and (vi) illustrate this fact by presenting the discretizations of X_j and M_j based on n bins.

1470
1471
1472
1473
1474
1475

(i):	ORIGINAL X_j	0.92	-1.29	0.34	-0.93	0.71	0.39	0.65	0.85	0.84	1.38	-0.32
(ii):	RANKS OF X_j	10	1	4	2	7	5	6	9	8	11	3
(iii):	ORIGINAL M_j	0.69	0.12	0.41	0.20	0.61	0.44	0.50	0.67	0.62	0.74	0.39
(iv):	RANKS OF M_j	10	1	4	2	7	5	6	9	8	11	3
(v):	X_j (DISCRETIZED)	10	1	4	2	7	5	6	9	8	11	3
(vi):	M_j (DISCRETIZED)	10	1	4	2	7	5	6	9	8	11	3

1476
1477
1478
1479
1480
1481
1482

Table 3: Toy illustrative example of the generation of M_j using Algorithms 1 and 10 in the case where X_j is categorical. Let $\mathbf{x}_j = (A, A, A, A, B, B, B, C, C, C)^t$ represent a sample of size $n = 11$ from the categorical variable X_j , which has 3 distinct levels, $\{A, B, C\}$. Let $i = 1, 2, 3$ represent the indexes of the levels of X_j . Row (i) shows the data in its original format, while row (ii) shows the same data in terms of the level indexes representation, where level A is indexed as 1, level B as 2, and level C as 3. Row (iii) shows the output, \mathbf{r} , of Algorithm 10 which generates a numeric rank encoding of the categorical variable X_j . (It adopts the arbitrary order $A < B < C$ to the categorical levels of X_j and starting with class A , it assigns ranks 1, 2, 3, and 4 (in random order) to the four tied elements A in \mathbf{x}_j . For class B , it assigns ranks 5, 6, and 7 (in random order) to the three tied elements B in \mathbf{x}_j . Finally, for class C it assigns ranks 8 to 11 (in random order) to the four tied elements C .) Row (iv) shows the output of Algorithm 1. It first sample and sort 11 values from a uniform distribution in the $[0, 1]$ range (line 2) given, in this example, by $(0.12, 0.20, 0.39, 0.41, 0.44, 0.50, 0.61, 0.62, 0.67, 0.69, 0.74)$ and then rank match this sorted random noise vector to the numeric rank encodings \mathbf{r} show in line (iii). The result is a random noise vector with identical ranks as \mathbf{r} . Row (v) shows M_j after discretization into $n = 11$ levels (in terms of level indexes representation). Clearly, when we discretize M_j into n levels we recover the numerical rank encoding in row (iii). Now, let I_i represent the indexes of the M_j values for which $X_j = i$. In this example $I_1 = \{1, 2, 3, 4\}$, $I_2 = \{5, 6, 7\}$, and $I_3 = \{8, 9, 10, 11\}$. Note that, by construction, whenever M_j equals 1, 2, 3, or 4, the value of X_j will be 1. This implies that $f(X_j = 1, M_j = k) = f(M_j = k) = 1$ if $k \in \{1, 2, 3, 4\}$, and $f(X_j = 1, M_j = k) = 0$ if $k \notin \{1, 2, 3, 4\}$. Similarly, $f(X_j = 2, M_j = k) = f(M_j = k) = 1$ if $k \in \{5, 6, 7\}$, and $f(X_j = 2, M_j = k) = 0$ if $k \notin \{5, 6, 7\}$, and so on for other values of i . Clearly, this result holds in general, as stated in equation 28. A similar argument justifies equation 29.

1503
1504
1505
1506
1507
1508
1509
1510
1511

(i):	ORIGINAL X_j	A	A	A	A	B	B	B	C	C	C
(ii):	X_j LEVEL INDEXES	1	1	1	1	2	2	2	3	3	3
(iii):	NUMERIC RANK ENCODING	3	1	4	2	7	5	6	9	8	11
(iv):	M_j (CONTINUOUS)	0.39	0.12	0.41	0.20	0.61	0.44	0.50	0.67	0.62	0.74
(v):	M_j (DISCRETIZED)	3	1	4	2	7	5	6	9	8	11
(vi):	I_i MAPPING	$I_1 = \{1, 2, 3, 4\}$,			$I_2 = \{5, 6, 7\}$,			$I_3 = \{8, 9, 10, 11\}$			

1512 H COMPLEXITY ANALYSIS AND RUNTIME EXPERIMENTS

1514 H.1 COMPLEXITY ANALYSIS

1516 As pointed in Hollmann et al. (2025) the complexity of the TabPFN algorithm scales quadratically
 1517 with the number of samples (n) and the number of features (p), i.e., $O(n^2 + p^2)$.

1518 The generation of synthetic data with the MIAV strategy (Algorithm 7) involves calling Algorithm 6
 1519 two times (see lines 3 and 4). Algorithm 6, by its turn, involves p calls to TabPFN models trained
 1520 with a single feature (see the *for loop* in lines 4 to 8 of Algorithm 6). Since the complexity of a
 1521 TabPNF model trained with a single feature is $O(n^2 + 1) = O(n^2)$, it follows that the complexity
 1522 of Algorithm 6 is $O(p n^2)$.³ Consequently, the complexity of the MIAV strategy (Algorithm 7) is
 1523 $O(2 p n^2) = O(p n^2)$.

1524 The FC approach (Algorithm 5), on the other hand, has complexity $O(p n^2 + p^3)$, since Algorithm 4
 1525 involves p calls to TabPFN models with $p - 1$ features, so that,

$$1527 O(p(n^2 + (p - 1)^2)) = O(p n^2 + p^3). \quad (43)$$

1529 Similarly, the JF approach (Algorithm 3) also has complexity $O(p n^2 + p^3)$, since Algorithm 2
 1530 involves p calls to TabPFN models with number of features increasing from 1 to $p - 1$ whose total
 1531 complexity is given by,

$$1532 \sum_{k=1}^{p-1} O(n^2 + k^2) = O\left(\sum_{k=1}^{p-1} n^2\right) + O\left(\sum_{k=1}^{p-1} k^2\right) = O((p-1)n^2) + O\left(\frac{(p-1)p(2p-1)}{6}\right) \\ 1535 = O(p n^2) + O(p^3) = O(p n^2 + p^3). \quad (44)$$

1537 These analyses show that, for fixed n , the MIAV strategy scales linearly with increasing number of
 1538 variables, whereas the FC and JF approaches scale cubically with increasing number of variables.

1540 H.2 RUNTIME EXPERIMENTS

1542 We performed 7 runtime experiments comparing the MIAV, JF, and FC synthetic data generation
 1543 strategies. The experiments were based on simulated datasets containing 1000, 2000, 3000, 4000,
 1544 5000, 10000, or 20000 samples (rows) with number of variables (columns) varying from 10 to 100,
 1545 in increments of 10. (The data was simulated from correlated beta distributions as described in
 1546 Appendix C, using $a \sim \text{Uniform}(0, 10)$, $b \sim \text{Uniform}(0, 10)$, and $\rho = 0.5$.) In each experiment,
 1547 the runtime was measured with the `perf_counter()` function from the `time` Python module.
 1548 Results are reported in seconds and based on 5 replications of each experiment. All experiments were
 1549 performed on an AWS EC2 g5.xlarge instance with 1 NVIDIA A10G GPU (24 GiB), 4 vCPUs,
 1550 16 GiB RAM, 250 GB NVMe SSD, and up to 10 Gbps network bandwidth.

1551 **Figure 11** reports the runtime results for number of rows (n) increasing from 1000 to 5000, while
 1552 **Figure 12** reports results for n equal to 5000, 10000, and 20000. As expected, both figures show that,
 1553 as the number of features increases, we observe considerably longer runtimes for FC (blue curves)
 1554 and JF (orange curves) when compared to the MIAV (red curves). The figures also illustrate that the
 1555 runtimes of the FC and JF strategies scale cubically with increasing number of features, whereas the
 1556 runtime of the MIAV approach scales linearly. **Panel f in Figure 11 and panel d in Figure 12** report
 1557 the results for the MIAV approach for the distinct sample sizes side by side. (The red lines represent
 1558 the median values across the 5 replications.)

1559 ³Note that the complexity of the other computations in Algorithm 6 are dominated by the TabPFN computation.
 1560 Explicitly, the MIAV generation (line 5 and line 6 of Algorithm 6) has complexity $O(n \log n)$ since,
 1561 as shown in Algorithm 1, it: (i) involves sorting of a random noise vector (line 2 of Algorithm 1), which has
 1562 complexity $O(n \log n)$ (since random noise generation of a vector of length n has complexity $O(n)$ and it's
 1563 sorting has complexity $O(n \log n)$); (ii) involves the ranking of a vector of length n (line 4 of Algorithm 1), which has
 1564 complexity $O(n \log n)$; and (iii) involves a call to Algorithm 10 (line 7 of Algorithm 1), which has
 1565 complexity $O(n)$ (as both the CummulativeSum operation (line 4 of Algorithm 10) has complexity $O(n)$ and
 1566 the repeated applications of the RandomPermutation operation (line 12 of Algorithm 10) inside the *for loop* also
 1567 have total complexity $O(n)$).

Figure 11: Runtime experiments. Panels a, b, c, d and e report runtime benchmark results comparing the FC, JF, and MIAV synthetic data generation strategies for datasets containing 1,000, 2,000, 3,000, 4,000 and 5,000 samples, respectively. Panel f compares the MIAV results across the different sample sizes.

Figure 12: Runtime experiments. Panels a, b, and c report runtime benchmark results comparing the FC, JF, and MIAV synthetic data generation strategies for datasets containing 5,000, 10,000, and 20,000 samples, respectively. Panel d compares the MIAV results across the different sample sizes.

Note that in the computation of the JF approach we use a single variable order for the factorization of the joint posterior predictive distribution in all experiments in this paper. Hollmann et al. (2025) suggest using a permutation sampling approximation of Janossy pooling for combining results across different permutations of the order of the variables. (This is done to account for the fact that the variable order influences the quality of the synthesized data.) Implementation of this strategy would, however, increase the computation time by a factor of k , where k represents the number of variable order permutations used by the approximation. (Hollmann et al. adopted $k = 24$ in their experiments.)

I EXTENDED EXPERIMENTS SECTION

I.1 OVERVIEW OF DATA SPLITTING INTO ORIGINAL, HOLDOUT, TRAINING, AND TEST SETS

Our experiments are performed as follows. Each dataset \mathbf{D} is first split into two datasets \mathbf{X} and \mathbf{X}^h , denoted as the “original” and the “holdout” datasets, respectively. In our evaluations, the original dataset, \mathbf{X} , plays the role of the “real” data, from which we generate a synthetic data copy. (We denote it as the “original” data because \mathbf{D} might be a real-world dataset or a simulated dataset in our experiments.) The holdout dataset, \mathbf{X}^h , is used to “estimate” the performance of an ideal data generator capable of generating data from the same distribution as the original data. In our

1620 experiments, in addition to evaluating the synthetic datasets using the metrics described in Section I.5
 1621 below, we also compute the metric values for the holdout set in order to get a sense about the range
 1622 of values we would expect to see for the metric in the ideal case of a generator truly able to draw
 1623 independent samples from the same distribution as the original data.

1624 For the generation of synthetic data, based on ICL using the TabPFN-based strategies described in the
 1625 main test, namely, JF, FC, and MIAV, we further split the original data, \mathbf{X} , into two subsets, \mathbf{X}_1 and
 1626 \mathbf{X}_2 . As described in Algorithms 3, 5, and 7 in Section B, the synthetic data generation is performed
 1627 as follows. First, the algorithms generate a synthetic copy of \mathbf{X}_1 , using \mathbf{X}_2 as the training set and \mathbf{X}_1
 1628 as the test set. Second, the algorithms generate a synthetic copy of \mathbf{X}_2 , by using \mathbf{X}_1 as the training
 1629 set and \mathbf{X}_2 as the test set. Third, the algorithms concatenate the datasets generated in the previous
 1630 steps to obtain the full synthetic dataset copy of \mathbf{X} .

1631 For the generation of synthetic data using SMOTE (and other baselines), the original data \mathbf{X} is
 1632 directly fed into the synthesizer with no need for further data splits.
 1633

1634 I.2 SIMULATED DATA EXPERIMENTS

1635 For the simulated data experiments we evaluate the synthetic data generators over 5 distinct settings
 1636 spanning different correlation structures among the variables. In all settings, we generate datasets
 1637 with 5 variables from correlated beta distributions as described in Section C. The correlation structure
 1638 (Toeplitz) is controlled by a single parameter ρ , and in our experiments we adopt correlation strengths,
 1639 $|\rho|$, in the range $|\rho| = \{0, 0.25, 0.5, 0.75, 0.95\}$.

1640 For each experimental setting (i.e., $|\rho|$ value) we simulate 10 distinct datasets, \mathbf{D} , of size 800, using
 1641 Toeplitz correlation parameter randomly set to either ρ or $-\rho$ with equal probability, and adopting
 1642 different shape parameters, a and b , for the beta distributions. For each variable $X_j \sim \text{Beta}(a, b)$, the
 1643 a and b parameters are randomly sampled from uniform distributions as follows:

- 1646 • $a \sim U(0.1, 0.9)$, $b \sim U(0.1, 0.9)$, for X_1 .
- 1647 • $a \sim U(0.1, 0.9)$, $b \sim U(1, 10)$, for X_2 .
- 1648 • $a \sim U(10, 50)$, $b \sim U(1, 10)$, for X_3 .
- 1649 • $a \sim U(5, 15)$, $b \sim U(5, 15)$, for X_4 .
- 1650 • $a \sim U(1, 10)$, $b \sim U(5, 15)$, for X_5 .

1652 Each dataset \mathbf{D} is split into original (\mathbf{X}) and holdout (\mathbf{X}^h) datasets of size 400. Only the \mathbf{X} datasets
 1653 are used by the synthetic data generators.
 1654

1655 I.3 REAL-WORLD DATA EXPERIMENTS

1656 For the real-world data experiments we selected a subset of the datasets from the OpenML-CC18
 1657 benchmark suite (Bischl et al., 2021), which were analyzed in Hollmann et al. (2023, 2025). The
 1658 OpenML-CC18 suite contains 72 datasets but, similarly to Hollmann et al. (2025), we selected
 1659 datasets with at most 10,000 rows (examples), at most 500 columns (features), and containing
 1660 categorical variables with at most 10 classes. Furthermore, because most of the evaluation metrics
 1661 used in this paper are tailored to numeric data, we applied the additional filter that the datasets needed
 1662 to contain more numerical variables than categorical ones. After applying these filters to the 72
 1663 datasets in OpenML-CC18 we were left with the 36 datasets listed in Table 4.

1664 We also compared the proposed synthetic data generation strategies against popular synthetic data
 1665 generators using a subset of the datasets evaluated in Hansen et al. (2023) and Chaibub Neto (2025)
 1666 listed on Table 5. Note that while Table 5 contains datasets with more than 10,000 samples, we
 1667 are still able to fit TabPFN models because in our evaluations we split the datasets into original
 1668 and holdout sets, and the synthetic data generation is only applied to the original set (which, by its
 1669 turn, is further split in 2 subsets during the ICL learning step). We allowed for larger datasets in
 1670 these baseline comparison experiments because the deep-learning based baselines benefit from larger
 1671 datasets. (We constrained the maximum number of samples to be less than 20,000, however, because
 1672 the computation of the evaluation metrics became too slow for larger datasets.)
 1673

Similarly to Chaibub Neto (2025), the Abalone data was fetched using the commands:

1674
 1675 Table 4: Datasets used in the real-world data evaluations. These include all 36 datasets in the OpenML-
 1676 CC18 benchmark suite with at most 10,000 samples, 500 variables, 10 classes per categorical
 1677 variables, and a larger number of numeric variables than categorical ones. In the first column we
 1678 assign simplified dataset names (D1 to D36) to the original dataset names. The number of categorical
 1679 variables is abbreviated as #cat, and the number of classes of the categorical variable with most
 1680 classes is abbreviated as #class.

NAME	ORIGINAL DATASET NAME	#SAMPLES	#COLUMNS	#CAT	#CLASS	OPENML ID
D1	BALANCE-SCALE	625	5	1	3	11
D2	MFEAT-FACTORS	2000	217	1	10	12
D3	MFEAT-FOURIER	2000	77	1	10	14
D4	BREAST-W	699	10	1	2	15
D5	MFEAT-KARHUNEN	2000	65	1	10	16
D6	MFEAT-MORPHOLOGICAL	2000	7	1	10	18
D7	MFEAT-ZERNIKE	2000	48	1	10	22
D8	OPTDIGITS	5620	65	1	10	28
D9	DIABETES	768	9	1	2	37
D10	SPAMBASE	4601	58	1	2	43
D11	VEHICLE	846	19	1	4	53
D12	SATIMAGE	6430	37	1	6	2074
D13	ANALCATDATA-AUTHORSHIP	841	71	1	4	3549
D14	PC4	1458	38	1	2	3902
D15	PC3	1563	38	1	2	3903
D16	KC2	522	22	1	2	3913
D17	KC1	2109	22	1	2	3917
D18	PC1	1109	22	1	2	3918
D19	WDBC	569	31	1	2	9946
D20	PHONEME	5404	6	1	2	9952
D21	QSAR-Biodeg	1055	42	1	2	9957
D22	WALL-ROBOT-NAVIGATION	5456	25	1	4	9960
D23	SEMEION	1593	257	1	10	9964
D24	ILPD	583	11	2	2	9971
D25	OZONE-LEVEL-8HR	2534	73	1	2	9978
D26	FIRST-ORDER-THEOREM-PROVING	6118	52	1	6	9985
D27	BANKNOTE-AUTHENTICATION	1372	5	1	2	10093
D28	BLOOD-TRANSFUSION-SERVICE-CENTER	748	5	1	2	10101
D29	GESTUREPHASESEGMENTATIONPROCESSED	9873	33	1	5	14969
D30	MICEPROTEIN	1080	78	1	8	146800
D31	STEEL-PLATES-FAULT	1941	28	1	7	146817
D32	CLIMATE-MODEL-SIMULATION-CRASHES	540	19	1	2	146819
D33	WILT	4839	6	1	2	146820
D34	SEGMENT	2310	17	1	7	146822
D35	MFEAT-PIXEL	2000	241	1	10	146824
D36	CHURN	5000	21	5	10	167141

1706
 1707 Table 5: Datasets used in the baseline comparison experiments. See Table 4 for the column descrip-
 1708 tions.

NAME	ORIGINAL DATASET NAME	# SAMPLES	#COLUMNS	#CAT	#CLASS	OPENML ID
AB	ABALONE	4177	9	1	2	-
BM	BANK MARKETING	10578	8	1	2	44126
CR	CREDIT	16714	11	1	2	44089
EM	EYE MOVEMENTS	7608	21	1	2	44130
HO	HOUSE 16H	13488	17	1	2	44123
MT	MAGIC TELESCOPE	13376	11	1	2	44125
PO	POL	10082	27	1	2	44122

1717
 1718 from sklearn.datasets import fetch_openml
 1719 fetch_openml(name="abalone", version=1, as_frame=True)
 1720
 1721 The other datasets were fetched using:
 1722
 1723 openml.datasets.get_dataset(openmlid).

1728 I.4 HYPERPARAMETERS FOR THE BASELINE MODELS
17291730 Table 6: Hyperparameters used for the generative models trained on the Abalone (AB) dataset.
1731

Model	Parameters
DDPM	n_iter: 7605 lr: 0.002991978123076162 batch_size: 970 num_timesteps: 407 is_classification: False
ARF	num_trees: 80 delta: 0 max_iters: 2 early_stop: False min_node_size: 2
TVAE	n_iter: 400 lr: 0.001 decoder_n_layers_hidden: 5 weight_decay: 0.0001 batch_size: 128 n_units_embedding: 200 decoder_n_units_hidden: 150 decoder_nonlin: tanh decoder_dropout: 0.19964446358158816 encoder_n_layers_hidden: 4 encoder_n_units_hidden: 100 encoder_nonlin: relu encoder_dropout: 0.0820245231222064
CTGAN	n_iter: 700 generator_n_layers_hidden: 1 generator_n_units_hidden: 100 generator_nonlin: elu generator_dropout: 0.13836424598477665 discriminator_n_layers_hidden: 2 discriminator_n_units_hidden: 100 discriminator_nonlin: tanh discriminator_n_iter: 5 discriminator_dropout: 0.023861565936528797 lr: 0.001 weight_decay: 0.0001 batch_size: 200 encoder_max_clusters: 8

1755 Table 7: Hyperparameters used for the generative models trained on Bank marketing (BM), Credit
1756 (CR), Eye movements (EM), House 16H (HO), Magic telescope (MT), and Pol (PO) datasets.
1757

Model	Parameters
DDPM	n_iter: 1051 lr: 0.0009375080542687667 batch_size: 2929 num_timesteps: 998 is_classification: True
ARF	num_trees: 30 delta: 0 max_iters: 10 early_stop: True min_node_size: 5
TVAE	n_iter: 300 lr: 0.0002 decoder_n_layers_hidden: 4 weight_decay: 0.001 batch_size: 256 n_units_embedding: 200 decoder_n_units_hidden: 300 decoder_nonlin: elu decoder_dropout: 0.194325119117226 encoder_n_layers_hidden: 1 encoder_n_units_hidden: 450 encoder_nonlin: leaky_relu encoder_dropout: 0.04288563703094718
CTGAN	n_iter: 1000 generator_n_layers_hidden: 2 generator_n_units_hidden: 50 generator_nonlin: tanh generator_dropout: 0.0575 discriminator_n_layers_hidden: 4 discriminator_n_units_hidden: 150 discriminator_nonlin: relu discriminator_n_iter: 1 discriminator_dropout: 0.1 lr: 0.001 weight_decay: 0.001 batch_size: 200 encoder_max_clusters: 10

1782 1783 I.5 EVALUATION METRICS

1784 We evaluated the quality of the synthetic data in terms of **data utility**, data fidelity, and data privacy.1785 1786 **Data utility** was evaluated using the machine learning efficiency (MLE) metric for measuring utility
1787 in downstream predictive tasks. MLE was computed using a random forest learner trained in the
1788 synthetic data and evaluated in the holdout set (which corresponds to real data). (To measure the
1789 ground truth performance, we train the random forest learner on the original data and evaluate
1790 its performance on the holdout set.) The predictive performance was measured using AUROC in
1791 classification tasks and R^2 in regression tasks. Hence, larger values of MLE imply better utility of the
1792 synthetic data in downstream ML tasks.1793 Data fidelity was evaluated with respect to the quality of the marginal distributions, quality of the
1794 pairwise statistical associations, overall data quality, and **quality of the joint distribution** according to
1795 the following metrics:

- 1796 1797 1798 1799 1800 1801 • **Average KS-statistic (KS).** This metric is used to evaluate the quality of the synthetic
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 data marginal distributions. It is based on the Kolmogorov-Smirnov two-sample statistical
1812 1813 1814 1815 1816 1817 1818 1819 1820 test (KS-test) for the equality of distributions. For each variable it computes the KS-test
1821 1822 1823 1824 1825 1826 1827 1828 statistic between the synthetic and original data, and the metric corresponds to the average
1829 1830 1831 1832 1833 1834 1835 KS-statistic across all variables. Lower values of this metric indicate better agreement
between the synthetic and original marginal distributions.
- **L2 distance between association matrices (L2D).** This metric is used to evaluate how
well the synthetic data recovers the pairwise statistical associations observed in the original
data. The L2 distance is computed as the average of the squared difference between the
elements of the synthetic and original data association matrices. Lower values of this
metric indicate better agreement between the synthetic and original data pairwise statistical
associations. Since the datasets might include both numerical and categorical variables, we
assess pairwise associations as follows: for numerical pairs we use Pearson correlation; for
categorical pairs we use the Cramer's V statistic; for numeric/categorical pairs we regress
the numeric variable on the categorical one and use the square root of the R^2 statistic as our
association measure (this reduces to the absolute correlation coefficient when both variables
are numerical).
- **Wasserstein distance (WD).** The WD metric, also known as the Earth Mover's Distance,
quantifies the dissimilarity between two probability distributions by measuring the minimum
"cost" of transporting probability mass from one distribution to the other. It is used to
evaluate how well the joint probability distribution of the synthetic data approximates the
joint distribution of the original data. Lower values of this metric indicate better agreement
between the synthetic and original joint probability distributions. Because we adopt the
squared Euclidean distance cost matrix for the computation of the transport cost, this metric
is sensitive to scale (i.e., variables with larger numerical ranges dominate the distance).
Hence, we first re-scale all variables before computing the WD.
- **Energy distance (ED).** This metric is also used to evaluate how well the joint probability
distribution of the synthetic data approximates the joint distribution of the original data.
Again, lower values of this metric indicate better agreement between the synthetic and original
joint probability distributions. (Energy distance (Szekely and Rizzo, 2023) represents a
special case of the maximum mean discrepancy statistic.) Since ED uses Euclidean norms
to compare observations, it is also sensitive to scale (i.e., variables with larger numerical
ranges dominate the distance). Hence, we first re-scale all variables before computing the
ED.
- **Detection test (DT).** This metric measures the overall quality of the synthetic data by
evaluating the performance of a classifier trained to discriminate between synthetic and
original data examples. When the synthetic data is indistinguishable from the original data
the classifier should achieve a random guess performance level, otherwise the classifier
performance should be better than random. In our experiments, we use a random forest
classifier and evaluate classification performance using AUROC. Values closer to AUROC =
0.5 indicate better agreement between the synthetic and original data.

1835 Data privacy was evaluated according to the following metrics:

- **Distance to closest record (DCR).** This represents a record-level privacy metric that measures how similar a synthetic record is to the closest record in the original dataset. It is computed by measuring, for each synthetic record, the minimum distance to any record in the original dataset using Euclidean distance; values close to zero indicate higher disclosure risk because synthetic records are nearly indistinguishable from the original data ones, whereas larger values suggest safer privacy protection by ensuring greater separation between synthetic and real data (this might be achieved at the cost of lower data fidelity, though). Since Euclidean distance is sensitive to scale (i.e., variables with larger numerical ranges dominate the distance), we first re-scale all variables before computing the DCR.
- **Sorted distance-based record linkage (SDBRL).** This metric represents a variant of the Distance-Based Record Linkage (DBRL) metric. The DBRL metric (Pagliuca and Seri, 1999; Domingo-Ferrer and Torra, 2001) is a widely used method for evaluating re-identification risk of perturbation methods within the Statistical Disclosure Control field (Drechsler, 2011). It operates by computing the Euclidean distance between each record in the perturbed dataset and all records in the original dataset, designating a perturbed record as 'linked' when its nearest neighbor corresponds to its true original record. The DBRL value is then given by the proportion of perturbed records successfully linked back to their original counterparts. Strictly speaking, the DBRL metric is only intended for evaluating data perturbation methods, since it assumes the existence of a direct mapping between the original and perturbed values (for example, when perturbed data are obtained by adding noise to the original data). In the case of synthetic data, where such a mapping is absent, an approximate correspondence can still be established following the approach of Domingo-Ferrer et al. (2020) and Chaibub Neto (2024, 2025). The idea is to sort the rows of both the original and synthetic datasets by the values of a chosen attribute (column) and then compute the metric on these sorted datasets. (A rationale for this procedure is given in section 3 of Domingo-Ferrer et al. (2020).) This adapted version of the DBRL metric is referred to as the "sorted DBRL" metric, or SDBRL for short.
- **Sorted standard deviation interval distance (SSDID).** This metric represents a variant of the Standard Deviation Interval Distance (SDID) metric. The SDID metric Mateo-Sanz et al. (2004) is a commonly used method for evaluating attribute disclosure risk of perturbation methods in the Statistical Disclosure Control literature. It corresponds to the proportion of original records inside a standard deviation interval whose center is the corresponding perturbed record (where the interval width is computed in terms of a percentage p of the standard deviation of the variable). A record i in the original dataset is considered to be inside the standard deviation interval of the perturbed record i if, for all variables j , it is inside the respective standard deviation interval. Similarly to DBRL, the SDID metric also assumes the existence of a mapping between the original and perturbed values, and we adopted the sorted version of this metric (SSDID) proposed by Chaibub Neto (2024, 2025) in our synthetic data evaluations.

In our evaluations, we only compute the KS, WD, ED, DCR, SDBRL, and SSDID metrics for numeric variables. (Note that our simulated datasets contain only numeric variables and, as shown in Table 4, the real-world datasets contained mostly numeric variables as well.)

I.6 RESULTS FOR ADDITIONAL EVALUATION METRICS

In the main text, we present evaluation results for three fidelity metrics (namely, KS, L2D, and DT) and three privacy metrics (namely, DCR, SDBRL, and SSDID). Here, we present additional evaluation results for the: machine learning efficiency (MLE) metric, which measures data utility in downstream predictive tasks; and the Wasserstein distance and the energy distance metrics, both of which measure data fidelity by evaluating how well the joint probability distribution of the synthetic data approximates the joint distribution of the original data.

Figure 13 report the results (which were computed in the exact same data splits and synthetic datasets as the previous evaluation metrics). Panels a, b, and c show the results from the experiments based on simulated data draw from correlated beta distributions. Panels d, e, and f report the results for the 36 real-world datasets from the OpenML-CC18 benchmark suite described in Table 4. Panels g, h, and i show the results for the 7 additional datasets evaluated in Hansen et al. (2023) and Chaibub Neto et al. (2025) described in Table 5.

Figure 13: Pooled experimental results. Top panels show results pooled across the 5 simulated dataset settings. The middle panels show results pooled across the 36 real-world datasets selected from the OpenML-CC18 suite. The bottom panels show results pooled across the 7 real-world datasets used for the baseline generator comparisons. For the MLE metric, higher values indicate better data utility (MLE is measured by AUROC in classification tasks and R^2 in regression tasks). For the WD and ED metrics, lower values indicate better fidelity.

In terms of MLE (panels a, d, and g), where larger values indicate better utility, the MIAV approach (red boxplots) performs consistently well across all experiments, closely tracking the ground truth performance, reported by the holdout set results (green boxplots). Overall, most baselines tended to show comparable performances, with the exception of the JF and the bayesian-network (BN) generators in panel g (and the FC generator in panel a), which tended to underperform when compared to the other generators.

In terms of the WD and ED fidelity metrics, where lower values indicate better fidelity, the SMOTE and MIAV approaches tended to outperform the JF and FC methods in all experiments. Interestingly, the comparisons of WD and ED across the other baselines (panels h and i) show some surprising results. In particular, the bayesian-network (BN) generator, which achieved the worse data utility performance as measured by MLE (panel g) as well as the worse data fidelity performances in terms of the L2D and DT metrics (see panels n and o in Figure 4 in the main text), tended to produce surprisingly strong results in terms of WD and ED. The DDPM baseline, on the other hand, achieved weak performance in terms of WD and ED despite ranking among the strongest baselines in all other data utility and data fidelity metrics. These observations corroborate similar surprising results reported by Hansen et al. (2023), which also observed better fidelity scores for bayesian-network than for the DDPM model in their experiments. These findings provide yet another example of how distinct performance metrics do not always generate consistent conclusions, and underscore the need for evaluations based on multiple metrics.

I.7 EXTENDED RESULTS

Due to space limitations, in the main text we only present experimental results pooled across all datasets. Here we provide more detailed results. Figure 14 presents the results from the simulated data experiments separated by simulation setting. Figures 15, 16, 17, and 18 present separated results for each of the OpenML-CC18 real-world datasets. Figure 19 presents separated results for each of the real-world datasets in Table 5.

Figure 14: Simulated data experiments separated by simulation setting. Each boxplot displays the results from 10 separate replications based on different simulation parameters.

Figure 15: Experiment results for datasets D1 to D9 (see Table 4 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

Figure 16: Experiment results for datasets D10 to D18 (see Table 4 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

Figure 17: Experiment results for datasets D19 to D27 (see Table 4 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

Figure 18: Experiment results for datasets D28 to D36 (see Table 4 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

Figure 19: Experiment results for datasets in Table 5. Each boxplot displays the results from 10 distinct original/holdout data splits.

2268 **J THE NOISY-MIAV STRATEGY**
2269

2270 A simple way to improve the privacy of the MIAV synthetic data generation approach is to add
2271 controlled amounts of noise to the MIAV before generating the synthetic data with the TabPFN
2272 model. The details are presented in Algorithms 11 and 12. As shown in lines 7 and 9 of Algorithm
2273 11, we generate noisy versions of the MIAV by adding Gaussian noise with mean 0 and standard
2274 deviance equal to a fixed percentage of the standard deviation of the respective MIAV. By increasing
2275 the percent of noise parameter we generate increasingly noisier versions of the MIAV.
2276

2277 **Algorithm 11** ICLwithNoisyMIAVTabPFN(\mathbf{X}^{tr} , \mathbf{X}^{ts} , percent)
2278

2279 1: **Input:** training data for ICL, \mathbf{X}^{tr} ; query data for ICL, \mathbf{X}^{ts}
2280 2: $n \leftarrow \text{NumberOfRows}(\mathbf{X}^{ts})$ {Obtain number of rows of \mathbf{X}^{ts} .}
2281 3: $p \leftarrow \text{NumberOfColumns}(\mathbf{X}^{ts})$ {Obtain number of columns of \mathbf{X}^{ts} .}
2282 4: $\mathbf{Z}^{ts} \leftarrow []$ {Create empty matrix to store the synthetic data.}
2283 5: **for** $j = 1$ to p **do**
2284 6: $\mathbf{m}_j^{tr} \leftarrow \text{GenerateMaximalInformationAuxiliaryVariable}(\mathbf{x}_j^{tr})$ {Generate the MIAV for \mathbf{x}_j^{tr} using Algo-
2285 rithm 1.}
2286 7: $\mathbf{m}_j^{tr} \leftarrow \mathbf{m}_j^{tr} + \text{GenerateNormalVariable}(\text{size} = n, \text{mean} = 0, \text{sd} = \text{percent} * \text{sd}(\mathbf{m}_j^{tr}))$ {Add
2287 Gaussian noise to the MIAV according to a specified percent of the MIAV's standard deviation.}
2288 8: $\mathbf{m}_j^{ts} \leftarrow \text{GenerateMaximalInformationAuxiliaryVariable}(\mathbf{x}_j^{ts})$ {Generate the MIAV for \mathbf{x}_j^{ts} using Algo-
2289 rithm 1.}
2290 9: $\mathbf{m}_j^{ts} \leftarrow \mathbf{m}_j^{ts} + \text{GenerateNormalVariable}(\text{size} = n, \text{mean} = 0, \text{sd} = \text{percent} * \text{sd}(\mathbf{m}_j^{ts}))$ {Add
2291 Gaussian noise to the MIAV according to a specified percent of the MIAV's standard deviation.}
2292 10: $\mathbf{Z}^{ts}[., j] \leftarrow \text{GeneratePredictionUsingTabPFN}(\mathbf{m}_j^{ts}, \mathbf{m}_j^{tr}, \mathbf{x}_j^{tr})$ {Predict \mathbf{x}_j^{ts} using \mathbf{m}_j^{tr} and \mathbf{x}_j^{tr} as context,
2293 and \mathbf{m}_j^{ts} as query. The prediction can be from a regression or classification TabPFN model, depending on whether \mathbf{x}_j^{tr} is continuous
2294 or categorical.}
2295 11: **end for**
2296 12: **Output:** synthetic data \mathbf{Z}^{ts}

2297

2298 **Algorithm 12** NoisyMIAVTabPFNGenerator(\mathbf{X} , percent)
2299

2300 1: **Input:** the original data, \mathbf{X}
2301 2: $\mathbf{X}_1, \mathbf{X}_2 \leftarrow \text{DataSplit}(\mathbf{X})$ {Split the original data \mathbf{X} into two subsets, \mathbf{X}_1 and \mathbf{X}_2 .}
2302 3: $\mathbf{Z}_1 \leftarrow \text{ICLwithNoisyMIAVTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_2, \mathbf{X}^{ts} = \mathbf{X}_1, \text{percent})$ {Generate a synthetic data copy of
2303 \mathbf{X}_1 using Alg. 6.}
2304 4: $\mathbf{Z}_2 \leftarrow \text{ICLwithNoisyMIAVTabPFN}(\mathbf{X}^{tr} = \mathbf{X}_1, \mathbf{X}^{ts} = \mathbf{X}_2, \text{percent})$ {Generate a synthetic data copy of
2305 \mathbf{X}_2 using Alg. 6.}
2306 5: $\mathbf{Z} \leftarrow \text{Concatenate}(\mathbf{Z}_1, \mathbf{Z}_2)$ {Concatenate the synthetic datasets \mathbf{Z}_1 and \mathbf{Z}_2 .}
2307 6: $\mathbf{Z} \leftarrow \text{RoundIntegerVariables}(\mathbf{X}, \mathbf{Z})$ {This function uses \mathbf{X} to determine which variables have integer type and round the
2308 values of the corresponding variables in \mathbf{Z} to the nearest integer.}
2309 7: **Output:** synthetic data \mathbf{Z}

2310

2311 Figure 20 shows an illustrative example (using simulated dataset with correlated beta distributed
2312 data). Panels a1 to e1 show a scatterplots of the MIAVs, M_j versus the original variable, X_j . Panel
2313 a2 to e2 show the respective scatterplots for the noisy MIAVs obtained by adding Gaussian noise
2314 with standard deviation given by $0.1 \times \text{sd}(M_j)$ (where $\text{sd}(M_j)$ represents the standard deviation of
2315 the MIAV M_j). Similarly, panels a3 to e3 and panels a4 to e4 show the scatterplots for the noisy
2316 MIAVs obtained with standard deviations $0.2 \times \text{sd}(M_j)$, and $0.3 \times \text{sd}(M_j)$, respectively.
2317

2318 Figure 21 compares the densities of synthetic data generated with the MIAV approach (panels a1
2319 to e1) against synthetic data generated with the noisy-MIAV approach using increasing amounts of
2320 noise (namely, $0.1 \times \text{sd}(M_j)$ for panels a2 to e2, $0.2 \times \text{sd}(M_j)$ for panels a3 to e3, and $0.3 \times \text{sd}(M_j)$
2321 for panels a4 to e4).
2322

2323 Finally, in Figure 22 we report the results from synthetic and real-world data experiments evaluating
2324 the noisy-MIAV approach w.r.t. the same fidelity and privacy metrics using the same 43 datasets
2325 evaluated in the main paper. As before, the results were based on 10 distinct random splits of the data
2326 into original and holdout datasets and the figure report results pooled across all datasets. As expected,
2327 the noisy-MIAV approach trades an increase in data privacy by a decrease in data fidelity.
2328

2345 Figure 20: MIAV and noisy-MIAV versus original data scatterplots. Panels a1-e1, a2-e2, a3-e3, and
 2346 a4-e4 show scatterplots of the original data versus MIAV and original data versus noisy-MIAVs
 2347 generated with increasing amounts of noise.

2371 Figure 21: Marginal distributions generated with the noisy-MIAV strategy. Panels a1 to e1 report the
 2372 densities based on the standard MIAV. Panel a2-e2, a3-e3, and a4-e4 show densities based on the
 2373 noisy-MIAV (NMIAV) generated with noise percent set to 0.1, 0.2, and 0.3, respectively.

Figure 22: Experiment results for the noisy-MIAV strategy with noise percent increasing from 0.05 to 0.3 (in 0.05 increments). Increasing amounts of noise lead to decreasing data fidelity (larger values for the KS, L2D, and DT metrics), but improved data privacy (larger DCR values and lower SDBRL and SSDID values). Each boxplot displays the results from 10 distinct original/holdout data splits. Top panels show the pooled results for the synthetic data experiments. Middle panels show the pooled results for the OpenML-CC18 datasets in Table 4. Bottom panels show pooled results for the datasets in Table 5. (The boxplots omit outliers to improve visualization.)

K SYNTHETIC DATA GENERATION BASED ON TABICL PFN MODELS

To illustrate that our proposed synthetic data generation strategy is not restricted to TabPFN models, here we illustrate its application in conjunction with the TabICL model (Qu et al., 2025), which corresponds to an alternative PFN-based tabular foundation model. TabICL provides a much more scalable alternative to TabPFN, being able to handle datasets with up to 500,000 examples using affordable compute resources. However, similarly to TabPFN, it is still constrained to datasets with at most 500 features. (Observe, however, that because the MIAV strategy only requires training of TabPFN (or TabICL) models with a single feature per variable, this constraint has no impact on the MIAV approach, which can potentially be used to generate synthetic data versions of datasets containing more than 500 variables.)

Because TabICL currently can only handle classification tasks, our illustrations are restricted to datasets containing only categorical variables. Since we are also comparing the TabICL-based synthetic data generation against the strategies based on TabPFN we restrict our comparisons to the datasets in the OpenML-CC18 benchmark suite with at most 10,000 samples, 500 features, containing categorical variables with at most 10 level classes, and which contain more categorical variables than numeric ones. (We dropped the numerical variables from the few datasets that contained both numeric and categorical variables.) Table 8 shows the selected datasets for these comparisons.

As before, we consider 3 data generation strategies, namely, the MIAV-TabICL, the JF-TabICL, and the FC-TabICL and compare it against the corresponding TabPFN based MIAV, JF, and FC strategies (denoted as MIAV-TabPFN, the JF-TabPFN, and the FC-TabPFN in the plots below).

Table 8: Datasets used for the TabICL illustrations and comparisons with TabPFN. These include all 8 datasets in the OpenML-CC18 benchmark suite with at most 10,000 samples, 500 variables, 10 classes per categorical variables, and a larger number of categorical variables than numeric ones. In the first column we assign simplified dataset names (C1 to C8) to the original dataset names. The number of categorical variables is abbreviated as #cat, and the number of classes of the categorical variable with most classes is abbreviated as #class. In datasets C2 and C3 we remove the numerical variables before running the analyses.

NAME	ORIGINAL DATASET NAME	#SAMPLES	#COLUMNS	#CAT	#CLASS	OPENML ID
C1	KR-VS-KP	3196	37	37	3	3
C2	CMC	1473	10	8	4	23
C3	CREDIT-G	1000	21	14	10	31
C4	SPLICE	3190	61	61	6	45
C5	TIC-TAC-TOE	958	10	10	3	49
C6	ANALCATDATA-DMFT	797	5	5	9	3560
C7	CAR	1728	7	7	4	146821
C8	DNA	3186	181	181	3	167140

The implementation of the TabICL-based strategies is analogous to the TabPFN ones (we just need to switch the `GeneratePredictionsUsingTabPFN()` function in Algorithms 2, 4, and 6 by the corresponding `GeneratePredictionsUsingTabICL()` function).

The experiments were run as before, where each dataset was first randomly split into approximately equal sized original and holdout sets, and we report the results from 10 data splits. Since we only consider categorical datasets, we adopt: (i) the average KL-divergence metric to measure the quality of the synthetic data marginal distributions (where we compute separate KL-divergence scores for each column of the dataset and take the average across all columns as the final metric); and (ii) the L2D metric for measuring how well the synthetic data captures the pairwise statistical associations observed in the original data (where the pairwise associations of the categorical variables are measured with the Cramer-V statistic.). For both of these metrics, lower values indicate better data fidelity.

Figures 23 to 24 report the results for the average KL-divergence and L2D metrics, respectively. For comparison, the figures also show the results for the holdout datasets. For all datasets, the results for MIAV-TabICL and MIAV-TabPFN were very close. As before, the MIAV-based strategies tended to outperform the JF and FC ones.

Figure 23: KL-divergence comparison for categorical datasets C1 to C8 (see Table 8 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

Figure 24: L2D comparison for categorical datasets C1 to C8 (see Table 8 for the original dataset names). Each boxplot displays the results from 10 distinct original/holdout data splits.

L INSENSITIVITY TO THE CHOICE OF THE RANDOM NOISE DISTRIBUTION

In all experiments reported in this paper, we construct MIAV variables with random noise sampled from a uniform distribution. A natural question is whether the MIAV approach is sensitive to the choice of the distribution used to generate the MIAV variable. Here, we clarify that the MIAV approach based on the TabPFN model is insensitive to the choice of noise distribution because, internally, TabPFN pre-processes all features to approximately standard normal distributions before running them through the transformer. (As described in the Methods section Hollmann et al. (2025), the neural network of TabPFN expects approximately normal features after all pre-processing steps. To this end, for each input, TabPFN employs a Yeo-Johnson power transformation to stabilize variance and make the distributions approximately normal, followed by a z-transformation to center the inputs at 0 and scale their variance to 1.) As a consequence, the choice of noise distribution does not have an impact on the performance of the MIAV approach since the MIAV input variable is internally transformed to approximate a standard normal distribution.

To illustrate this point we compare the performance of the MIAV approach implemented with different random noise distributions including uniform ($U(0, 1)$), gaussian ($N(0, 1)$), and exponential ($Exp(1)$) noise. We again simulate data from correlated beta distributions and evaluate qualitatively the quality of the MIAV-based synthetic data generated with different random noise distributions. (In all these illustrations we use the same original data. Only the synthetic datasets generated with the MIAV approach differ.). Figure 25 reports the marginal distributions of the original data (black densities) and their respective MIAVs (red densities) (panels a to e), alongside scatter-plots of the original and MIAV variables (panels f to j), for synthetic data generated with MIAVs following a uniform distribution. Figures 26 and 27 report analogous comparisons for synthetic data generated with MIAVs following gaussian and exponential distributions.

Figure 28 reports the marginal densities of the original data (black) and the synthetic data (red) generated with uniformly distributed MIAVs. The figure shows the results from 3 separate replications based on different random seeds, where the top, middle, and bottom panels report the results generated with distinct random seeds. Figures 29 and 30 report the analogous results for synthetic data generated with gaussian and exponential random noise distributions, respectively. Comparison of Figures 28, 29, and 30 shows that the quality of the synthetic data remains unchanged with the different choices of random noise distributions.

Figure 25: Illustrative example with MIAVs generated with uniform random noise.

Figure 26: Illustrative example with MIAVs generated with gaussian random noise.

Figure 27: Illustrative example with MIAVs generated with exponential random noise.

2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Figure 28: Marginal distributions of the original data (black densities) and the synthetic data (red densities) generated with uniformly distributed MIAVs. The top, middle, and bottom panels report results generated with different random seeds.

Figure 29: Marginal distributions of the original data (black densities) and the synthetic data (red densities) generated with normally distributed MIAVs. The top, middle, and bottom panels report results generated with different random seeds.

Figure 30: Marginal distributions of the original data (black densities) and the synthetic data (red densities) generated with exponentially distributed MIAVs. The top, middle, and bottom panels report results generated with different random seeds.

2700 M LLM USAGE
27012702 ChatGPT-5 was used to refine the grammar and clarity of some paragraphs of the paper and to
2703 translate R code into Python code. We reviewed and verified all AI-generated content for accuracy
2704 and take full responsibility for the paper's final content.
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753