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Abstract

Advances in large language models have accelerated progress in text-to-SQL,
methods for converting natural language queries into valid SQL queries. A key
bottleneck for developing generalizable text-to-SQL models is the lack of large-
scale datasets with sufficient schema and query complexity, domain coverage, and
task diversity. We introduce SQALE, a large-scale semi-synthetic text-to-SQL
dataset built on 135,875 relational database schemas expanded from a collection
of real-world schemas, SchemaPile. We establish a principled generation pipeline
which combines schema sampling, question synthesis, and SQL construction, and
produce 517,676 high-quality (question, schema, query) triples. The SQALE
dataset captures realistic schema size variability, diverse query patterns, and nat-
ural language ambiguity while maintaining execution validity. We provide an
analysis of its contents and characteristics, and find that SQALE introduces the
most realistic large-scale text-to-SQL dataset to date in comparison with existing
benchmarks and datasets. We discuss how SQALE enables our vision for data
scaling and model generalization in text-to-SQL research. The dataset is accessible
at: https://huggingface.co/datasets/trl-lab/SQaLe-text-to-SQL-dataset.

1 Introduction

When it comes to the retrieval of insight from large document stores, large language models (LLMs)
and retrieval-augmented generation (RAG) have significantly advanced natural language understand-
ing and question answering by reducing bottlenecks in unstructured document retrieval [20, 11].
However, when it comes to structured data, the development of dedicated models for accessing struc-
tured data through text-to-SQL remains constrained by the limited availability of large, diverse, and
high-quality datasets [23]. Although LLMs have enabled rapid progress in text-to-SQL generation,
building new and generalizable models from scratch still faces major challenges due to insufficient
data scale and schema diversity [10]. This problem is fundamental to enabling natural language
interfaces for databases.

Over the past years, the field has evolved through successive generations of datasets that attempt
to balance realism, schema complexity, and linguistic variety. The first common benchmark was
Spider 1.0 [32], which introduced cross-database generalization and multi-table reasoning, containing
around 10,000 questions across hundreds of databases. It quickly became the de facto standard for
Text-to-SQL evaluation. It was later largely replaced by BIRD [22], which placed greater emphasis
on realism by incorporating practical database contexts. Other corpora such as KaggleDBQOA [17]
contributed similar aims, while domain-specific datasets including EHRSQL [18] and others [29]
targeted specialized applications. More recently, Spider 2.0 [19] has extended this line of work
to enterprise settings, featuring more diverse schemas and queries, and is rapidly becoming a new
common benchmark. Despite these advances, the overall scale of available resources remains orders
of magnitude smaller than standard NLP corpora [24], making them insufficient under established
scaling laws for training large models [13, 12]. While synthetic and semi-synthetic approaches
have begun to address these gaps, only a few datasets, such as SynSQL-2.5M [21], have reached
million-scale coverage, relying primarily on artificial schemas and programmatic question generation.
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Yet, the used schemas often lack the scale, complexity, and other real-world characteristics needed to
fully capture the challenges of practical Text-to-SQL tasks [10, 31, 23].

To address the limitations of scale, diversity, and realism, we construct a large-scale Text-to-SQL
dataset with broad schema coverage and naturally phrased questions. The SQALE dataset con-
tains 135,875 relational database schemas extracted from SchemaPile’s 22,989 real-world database
schemas [8] and contains 517,676 (question, schema, query) triples. Unlike fully synthetic resources,
our generation pipeline is grounded in real schemas and guided by principled linguistic and structural
criteria to ensure both realism and diversity in queries, resulting in distinctive characteristics such as .
We also provide a descriptive analysis of SQALE in comparison with existing datasets, and discuss
its implications for training generalizable text-to-SQL models. Our contributions are as follows: (1) a
data generation pipeline for synthesizing text-to-SQL data from real schemas; (2) the creation of a
large-scale text-to-SQL dataset; and (3) an in-depth characterization of the dataset, highlighting its
scalability potential and relevance for model training and evaluation.

2 Creating Text-to-SQL Data at Scale

Here, we describe our methodology for producing SQALE: a principled, scalable pipeline that
synthesizes representative (schema, question, query) triples corresponding with real database schemas.

2.1 Dataset Design Criteria

The design of large-scale text-to-SQL datasets should follow principles that ensure both representa-
tional realism and linguistic-semantic diversity. We distinguish between schema-level and query-level
considerations. These criteria are grounded in empirical analyses of production databases and in-
formed by benchmarks such as Spider 2.0 [19], BIRD [22], and SQLStorm [27]. All of these criteria
were furthermore confirmed through expert interviews with data engineers and practitioners.

2.1.1 Schema-Level Criteria

Schema Size (C1). A realistic dataset should include schemas ranging from small, domain-specific
databases to large, enterprise-scale systems containing hundreds of tables. This variety reflects the
scale of modern data ecosystems observed in industry and academic corpora [4, 5, 19].

Schema Density and Normalization (C2). Text-to-SQL datasets should capture variation in schema
density, the average number of columns per table, as a proxy for normalization depth and granularity,
as observed in real-world databases [8, 2]. Furthermore, including both highly normalized and
denormalized schemas reflects different relational schema principles[15].

Foreign Key Integrity (C3). Datasets should represent realistic variability in referential integrity.
Many real-world databases contain incomplete or implicit foreign key relationships; including such
cases ensures that models are exposed to typical challenges of schema reasoning and foreign-key
inference. This aspect of real-world databases has been a research topic for years and therefore should
be reflected in the dataset [26, 33, 14].

Naming Conventions (C4). Schema naming should reflect authentic, heterogeneous practices,
including inconsistent abbreviations, mixed casing, and domain specific terms. Preserving this
variability enhances validity and prevents overfitting to overly sanitized or idealized schemas [8, 19].

2.1.2 Query-Level Criteria

Join Complexity (C5). A well-designed text-to-SQL dataset should span a distribution of SQL
join complexities, from single-table to multi-join analytical queries. This range allows for balanced
evaluation of compositional reasoning and structural generalization [19, 27, 3].

Operator Diversity (C6). Queries should include diverse SQL constructs such as aggregations,
comparisons, nested subqueries, set operations, and logical combinations to represent the breadth of
real analytical workloads and support model training on varied syntactic and semantic forms [23, 16].

Intent Diversity (C7). Natural language inputs should encompass a wide spectrum of user intents,
such as lookup, aggregation, filtering, comparison, and ranking. Coverage of distinct intent categories
enables more comprehensive assessment of a model’s semantic understanding capabilities [7, 16].
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Figure 1: Overview of the data creation pipeline for the SQALE dataset. The displayed prompts are
simplified for clarity.

Query Ambiguity (C8). High-quality datasets should contain controlled linguistic and semantic
ambiguity, reflecting the uncertainty that stems from a user’s incomplete understanding of the
underlying data, such as unfamiliarity with the schema or the specific values of interest [1, 9, 28].

2.2 The SQALE Generation Pipeline

The SQALE generation pipeline (Figure 1) follows a structured, multi-stage approach that integrates
schema extension, question synthesis, and SQL generation. It begins with a repository of real-world
database schemas, SchemaPile [8], which serves as the foundation for realistic structural diversity
(C2). Using a large language model (Qwen3 30B [30]), existing schemas are extended incrementally,
for example by including 5 to 25 synthetic tables, until the target query complexity distribution is
balanced around a median of 4 joins per query, informed by SQLStorm metrics [27] (C1). The
targeted schema size, in number of tables, follows a smooth gamma-like probability distribution,
where the mode is set to 100 and the maximum value to 350 based on the maximum in Spider 2.0 [19].
During the extension process, the LLM is prompted to maintain style, naming conventions and level
of normalization of the original schema from SchemaPile (C2, C4). All intermediate schema sizes
generated during the iterative extension process are also retained in the dataset, ensuring balanced
representation across schema scales. Furthermore, for all schemas inferred from schemas without
foreign key relations, any foreign keys added during extension process are removed (C3).

In the next stages, the pipeline performs question generation and SQL query creation using the
same LLM with guided prompting. For each extended schema, natural language questions are
synthesized from examples drawn from BIRD and Spider2.0, ensuring linguistic diversity, while
questions are selected in line with the targeted join distribution (C6-C8). We chose this open question
generation over a completely template based approach like in [25] in order to maximize the variety of
questions in terms of style, length and complexity. Example selection also balances easy and difficult
joins to ensure diversity (C5). These questions are then paired with candidate SQL statements in a
query creation phase using the ReFoRCE text-to-SQL framework [6], which generates multiple SQL
candidates, applies a voting process to select the best one, and validates executability by executing the
SQL statement against the schema and filter for outliers in terms of prompt and query length. Finally,
we manually randomly checked 300 samples from the dataset to ensure quality and correctness.

3 The SQALE Dataset

Using the outlined generation pipeline, the SQALE dataset represents a large-scale, semi-synthetic
Text-to-SQL resource grounded in real-world database structures. The generation pipeline, executed
with up to 100x H100 GPUs in parallel, results in 517,676 validated (schema, question, query) triples.



Table 1: Schema statistics for datasets. M. stands for median.

Dataset #Schemas M. #cols/schema M. #tables/schema #FKs
BIRD (train & dev) 80 39 5.0 526
EHRSQL 2 92 13.5 34
Spider2 236 89 7.0 0
SynSQL 16,575 72 10.0 159,547
SQALE 135,875 435.0 91.0 13,201,052

Table 2: Query statistics for datasets. Where and Join columns indicate the share of queries using
those operators and the Func column contains multiple operators”. M. indicates the median.

Dataset #queries M. #tables/query M. #tokens/query Func. (%) Where (%) Join (%)
BIRD (train & dev) 10,962 2 41 13.8 88.1 76.2
EHRSQL 9,270 2 83 76.9 99.9 19.7
Spider2 250 3 229.5 452 94.4 72.0
SynSQL 2,544,390 3 85 12.1 75.6 89.4
SQALE 517,676 3 61 26.9 78.9 76.1

Compared to existing datasets, SQALE offers a substantially broader and more realistic schema distri-
bution (Table 1 and Figure 2). With 135,875 schemas, a median of 91 tables and 435 columns/schema,
and over 13 million Foreign Keys (FK) relations, it far exceeds the structural diversity of Spider 2.0,
SynSQL and BIRD. While not as large as SynSQL in terms of total number of queries, our dataset
features vastly more and more complex schemas, emphasizing depth and structural realism over
volume. In terms of query composition (Table 2 and Figure 2), SQALE shows rich operator diversity
and join complexity, with 76.1% involving joins. These proportions closely match the complexity of
BIRD and Spider 2.0 while extending further into multi-join and nested queries.

The scale of SQALE is deliberately chosen to support the development of new small-scale text-to-SQL
models and fine-tuning of larger foundation models. Grounded in authentic schema patterns and
validated through the rigorous ReFoRCE-based SQL validation process, the dataset balances realism
and efficiency, providing high-quality data for building and adapting text-to-SQL models. It addresses
current inefficiencies seen in leaderboards [19, 22], where large models and complex pipelines
dominate, and even ReFoRCE requires 12 seconds on an H100 to generate a single SQL query. The
dataset can be accessed at https://huggingface.co/datasets/trl-lab/SQaLe-text-to-SQL-dataset.

Toward scaling text-to-SQL with SQALE. Scaling laws in machine learning suggest that larger
datasets yield larger models that will continue to perform better [13, 12]. Informed by task-specific
scaling studies, we hypothesize that through significantly larger, more complex and diverse text-
to-SQL datasets we can achieve proportional gains in model performance as a function of dataset
scale. To explore the effectiveness of large-scale pretraining of text-to-SQL models, we introduce
the text-to-SQL dataset SQALE consisting of 517,676 semi-synthetic (schema,query,SQL) triples
grounded in real-world schemas and queries. A sample of the dataset can be seen in appendix A.
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Figure 2: SQALE data statistics. Left: distribution of column counts. Center: Distribution of the
number of tables involved in queries. Right: Share of specific operators among all operators.

2CAST, COALESCE, SUBSTR, LENGTH, UPPER, LOWER, ROUND, ABS, DATE, DATETIME, STRFTIME.
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A Dataset Sample

Below are two representative entries from the SQALE dataset illustrating the DDL of real schemas,
the corresponding natural-language questions, the validated SQL queries, and concise metadata
(token counts, join counts, involved tables, and columns) like it can be found on HuggingFace.

Schema (DDL) Question Query Token Count | Joins | Tables | Cols
CREATE TABLE List all tasks with | SELECT tasks.name, | {q:57, s:338,| 3 6 25
courses (course_id | course names and | courses.name FROM tot:505}

TEXT, name TEXT, task states. tasks JOIN courses

teacher_id TEXT... ON ...;

CREATE TABLE Find total salary by | SELECT dept, {q:22, s:120, | O 2 5
employees (id department. SUM(salary) FROM tot: 142}

INT, name TEXT, employees GROUP BY

dept TEXT, salary dept;

Table 3: Example entries illustrating the structure of the SQL generation dataset.
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