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ABSTRACT

Activation compressed training (ACT) has been shown to be a promising way
to reduce the memory cost of training deep neural networks (DNNs). However,
existing work of ACT relies on searching for optimal bit-width during DNN train-
ing to reduce the quantization noise, which makes the procedure complicated
and less transparent. To this end, we propose a simple and effective method
to compress DNN training. Our method is motivated by an instructive obser-
vation: DNN backward propagation mainly utilizes the low-frequency compo-
nent (LFC) of the activation maps, while the majority of memory is for caching
the high-frequency component (HFC) during the training. This indicates the HFC
of activation maps is highly redundant and compressible during DNN training,
which inspires our proposed Dual ActIVation PrecISION (DIVISION). During
the training, DIVISION preserves the high-precision copy of LFC and compresses
the HFC into a light-weight copy with low numerical precision. This can sig-
nificantly reduce the memory cost without negatively affecting the precision of
backward propagation such that DIVISION maintains competitive model accu-
racy. Experimental results show DIVISION achieves over 10× compression of
activation maps, and significantly higher training throughput than state-of-the-
art ACT methods, without loss of model accuracy. The code is available at
https://anonymous.4open.science/r/division-5CC0/.

1 INTRODUCTION

Deep neural networks (DNNs) have been widely applied to real-world tasks such as language un-
derstanding (Devlin et al., 2018), machine translation (Vaswani et al., 2017), visual detection and
tracking (Redmon et al., 2016). With increasingly larger and deeper architectures, DNNs achieve
remarkable improvement in representation learning and generalization capacity (Krizhevsky et al.,
2012). Generally, training a larger model requires more memory resources to cache the activation
values of all intermediate layers during the back-propagation1. For example, training a DenseNet-
121 (Huang et al., 2017) on the ImageNet dataset (Deng et al., 2009) requires to cache over 1.3
billion float activation values (4.8GB) during back-propagation; and training a ResNet-50 (He et al.,
2016) requires to cache over 4.6 billion float activation values (17GB). Some techniques have been
developed to reduce the training cache of DNNs, such as checkpointing (Chen et al., 2016; Gruslys
et al., 2016), mix precision training (Vanholder, 2016), low bit-width training (Lin et al., 2017; Chen
et al., 2020) and activation compressed training (Georgiadis, 2019; Liu et al., 2022). Among these,
the activation compressed training (ACT) has emerged as a promising method due to its significant
reduction of training memory and the competitive learning performance (Liu et al., 2021b).

Existing work of ACT relies on quantizing the activation maps to reduce the memory consumption
of DNN training, such as BLPA (Chakrabarti & Moseley, 2019), TinyScript (Fu et al., 2020) and
ActNN (Chen et al., 2021). Although ACT could significantly reduce the training memory cost, the
quantization process introduces noises in backward propagation, which makes the training suffer
from undesirable degradation of accuracy (Fu et al., 2020). Due to this reason, BLPA requires 4-
bit ACT to ensure the convergence to optimal solution on the ImageNet dataset, which has only
6× compression rate2 of activation maps (Chakrabarti & Moseley, 2019). Other works propose to

1The activation map of each layer is required for estimating the gradient during backward propagation.
26× compression rate indicates the memory of cached activation maps is 1/6 of that of normal training.

1

https://anonymous.4open.science/r/division-5CC0/


Under review as a conference paper at ICLR 2023

search for optimal bit-width to match different samples during training, such as ActNN (Chen et al.,
2021) and AC-GC (Evans & Aamodt, 2021). Although it can moderately reduce the quantization
noise and achieves optimal solution under 2-bit ACT (nearly 10×compression rate), the following
issues cannot be ignored. First, it is time-consuming to search for optimal bit-width during training.
Second, the framework of bit-width searching is complicated and non-transparent, which brings new
challenges to follow-up studies on the ACT and its real-world applications.

In this work, we propose a simple and transparent method to reduce the memory cost of DNN
training. Our method is motivated by an instructive observation: DNN backward propagation mainly
utilizes the low-frequency component (LFC) of the activation maps, while the majority of memory is
for the storage of high-frequency component (HFC) during the training. This indicates the HFC of
activation map is highly redundant and compressible during the training. Following this direction,
we propose Dual Activation Precision (DIVISION), which preserves the high-precision copy of LFC
and compresses the HFC into a light-weight copy with low numerical precision during the training.
In this way, DIVISION can significantly reduce the memory cost. Meanwhile, it will not negatively
affect the quality of backward propagation and could maintain competitive model accuracy.

Compared with existing work that integrates searching into learning (Liu et al., 2022), DIVISION
has a more simplified compressor and decompressor, speeding up the procedure of ACT. More
importantly, it reveals the compressible (HFC) and non-compressible factors (LFC) during DNN
training, improving the transparency of ACT. Experiments are conducted to evaluate DIVISION in
terms of memory cost, model accuracy, and training throughput. An overall comparison is given in
Figure 1 (a). Our proposed DIVISION consistently outperforms state-of-the-art baseline methods in
the above three aspects. The contributions of this work are summarized as follows:
• We experimentally demonstrate and theoretically prove that DNN backward propagation mainly

utilizes the LFC of the activation maps. The HFC is highly redundant and compressible.
• We propose a simple framework DIVISION to effectively reduce the memory cost of DNN train-

ing via removing the redundancy in the HFC of activation maps during the training.
• Experiments on three benchmark datasets demonstrate the effectiveness of DIVISION in terms of

memory cost, model accuracy, and training throughput.

2 PRELIMINARY
2.1 NOTATIONS

Without loss of generality, we consider an L-layer deep neural network in this work. During the
forward pass, for each layer l (1 ≤ l ≤ L), the activation map is calculated by

Hl = forward(Hl−1;Wl), (1)
where Hl denotes the activation map of layer l; H0 takes a mini-batch of input images; Wl denotes
the weight of layer l; and forward(·) denotes the feed-forward operation. During the backward pass,
the gradients of the loss value towards the activation maps and weights are be estimated by[

∇̂Hl−1
, ∇̂Wl

]
= backward(∇̂Hl

,Hl−1,Wl), (2)

where ∇̂Hl−1
and ∇̂Hl

denote the gradient towards the activation map of layer l− 1 and l, re-
spectively; ∇̂Wl

denotes the gradient towards the weight of layer l; and backward(·)3 denotes the
backward function which takes ∇̂Hl

, Hl−1 and Wl, and outputs the gradients ∇̂Hl−1
and ∇̂Wl

.
Equation (2) indicates it is required to cache the activation maps H0, · · · ,HL−1 after the feed-
forward operations for gradient estimation during backward propagation.

2.2 ACTIVATION COMPRESSED TRAINING

It has been proved in existing work (Chen et al., 2020) that majority of memory (nearly 90%) is
for caching activation maps during the training of DNNs. Following this direction, the activation
compressed training (ACT) reduces the memory cost via real-time compressing the activation maps
during the training. A typical ACT framework in existing work (Chakrabarti & Moseley, 2019) is
shown in Figure 1 (b). Specifically, after the feed-forward operation of each layer l, activation map
Hl−1 is compressed into a representation for caching. The compression enables a significant reduc-
tion of memory compared with caching the original (exact) activation maps. During the backward
pass of layer l, ACT decompresses the cached representation into Ĥl−1, and estimates the gradient
by taking the reconstructed Ĥl−1 into Equation (2): [∇̂Hl−1

, ∇̂Wl
] = backward(∇̂Hl

, Ĥl−1,Wl).
3We do not focus on the closed from the backward function, which is implemented by torch.autograd.
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Figure 1: (a) Overall performance of DIVISION versus baseline methods. (b) Activation compressed training.
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Figure 2: (a) Adopting DCT to estimate the low frequency component (LFC) and high frequency compo-
nent (HFC) of an image. (b) Top-1 accuracy and (c) Memory cost of normal training, LFC-ACT and HFC-ACT,
where RN-18, DN-121, and SN refer to the ResNet-18, DenseNet-121, and ShuffleNet-V2, respectively.

Even though the pipeline of compression and decompression is lossy, i.e. Ĥl ̸= Hl for 1 ≤ l ≤ L.
It has been proved ACT can limit the reconstruction error flowing back to early layers and enables
the training to approach an approximately optimal solution (Chen et al., 2021).

2.3 DISCRETE COSINE TRANSFORMATION

Discrete Cosine Transformation (DCT) projects the target data from the spatial domain to the fre-
quency domain via the inner-production of the data and a collection of cosine functions with different
frequency (Rao & Yip, 2014). We focus on the 2D-DCT in this work, where the target data is the in-
put image and activation maps of DNNs. Specifically, for 2D-matrix data H, the frequency-domain
feature H̃ is estimated by H̃ = DCT(H), where H and H̃ have the same shape of N×N . and each
of the element h̃i,j is given by

h̃i,j =

N−1∑
m=0

N−1∑
n=0

hm,n cos

[
π

N

(
m+

1

2

)
i

]
cos

[
π

N

(
n+

1

2

)
j

]
, (3)

where hm,n, 0 ≤ m,n ≤ N −1, are elements in the original matrix H. During the training of
DNNs, an image or activation map has the shape of Minibatch×Channel×N×N . In this case, the
frequency-domain feature is estimated via operating 2D-DCT for each N×N matrix in each channel.

With DCT, we could extract the low-frequency/high-frequency component (LFC/HFC) of an image
or activation map, using a pipeline of low-pass/high-pass masking and inverse DCT, as shown in
Figure 2. To be concrete, the estimation of LFC and HFC is given by

HL = iDCT(H̃⊙M) (4)
HH = iDCT(H̃⊙ (1N×N −M)), (5)

where iDCT(·) denotes the inverse DCT (Rao & Yip, 2014); M = [mi,j |1 ≤ i, j ≤ N ] denotes an
N×N low-pass mask satisfying mi,j =1 for 1 ≤ i, j ≤ W and mi,j =0 for other elements; and
1N×N −M indicates the high-pass mask. Intuitively, HL has W 2 non-zero float numbers in each
channel, in contrast with N2−W 2 non-zero float numbers in each channel of HH. Generally, we
have W ≪N in practical scenarios, e.g. W/N = 0.1 in Figure 2 (a). This indicates the HFC takes
the majority of the memory cost in the caching of activation maps.

3 CONTRIBUTION OF LFC AND HFC TO BACKWARD PROPAGATION

In this section, we experimentally prove the LFC of activation maps has significantly more contri-
bution to DNN backward propagation than the HFC. Moreover, our theoretical result indicates the
LFC enables the estimated gradient to be bounded into a tighter range around the optimal value,
leading to a more accurate learned model, which is consistent with the experimental results.
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(a) Epoch 20. (b) Epoch 40. (c) Epoch 60.
Figure 3: λL

l = ||H̃l⊙M||F versus λH
l = ||H̃l⊙(1−M)||F in the training (epoches 20, 40, and 60) of ResNet-

18. Hl takes the activation maps of four BasicBlocks in ResNet-18; □ indicates the mean values; W =0.5N .

3.1 EXPERIMENTAL ANALYSIS

To study the individual contribution of LFC and HFC to DNN backward propagation, we design
three training methods with different backward propagations: LFC-ACT takes LFC into the back-
ward function as shown in Equation (6), where HL

l is estimated by Equations (4); HFC-ACT takes
HFC into the backward function as given in Equation (7), where HH

l is according to Equation (5);
Normal training (for comparison) estimates the gradients by Equation (2).

[∇̂Hl−1
, ∇̂Wl

] = backward(∇̂Hl
,HL

l ,Wl), ▷LFC-ACT (6)
[∇̂Hl−1

, ∇̂Wl
] = backward(∇̂Hl

,HH
l ,Wl). ▷HFC-ACT (7)

We conduct the experiments on the CIFAR-10 dataset. The implementation details are given in
Appendix A. The top-1 accuracy and memory cost of LFC-ACT, HFC-ACT, and normal training
are shown in Figure 2 (b) and (c), respectively. Overall, we have the following observations:
• Accuracy drop: According to Figure 2 (b), HFC-ACT suffers from significantly more degrada-

tion of accuracy than LFC-ACT. This indicates DNN backward propagation mainly utilizes the
LFC of activation maps during the training.

• Memory cost: According to Figure 2 (c), the storage of HFC requires significantly more memory
than that of the LFC. i.e. The storage of HFC consumes the majority of memory.

To better understand the results of model accuracy, we theoretically prove the gradient for backward
propagation is bounded into a tighter range around the optimal value in LFC-ACT. This enables
LFC-ACT to learn a more accurate model than HFC-ACT.

3.2 THEORETICAL ANALYSIS

We theoretically analyze the gradient estimation error of LFC-ACT and HFC-ACT which adopt
Equations (6) and (7) for backward propagation, respectively. Generally, for the LFC-ACT and
HFC-ACT, let ∇̂L

Wl
and ∇̂H

Wl
denote the estimated gradient of layer l, respectively. In this way,

||∇̂L
Wl

−∇Wl
||F 4 and ||∇̂H

Wl
−∇Wl

||F indicates the gradient estimation errors, taking the complete
gradient ∇Wl

as a reference. To compare the distortion of backward propagation in LFC-ACT and
HFC-ACT, let GEBL

l and GEBH
l denote the gradient error upper bound (GEB), respectively, i.e.

||∇̂L
Wl

−∇Wl
||F ≤GEBL

l and ||∇̂H
Wl

−∇Wl
||F ≤GEBH

l . Intuitively, higher GEB indicates less
accurate backward propagation, leading to a less accurate model after training. To this end, we give
Theorem 1 to compare GEBL

l and GEBH
l , where a convolutional layer is considered. The proof is

given in Appendix B. A similar analysis of GEB for a linear layer is provided in Appendix C.
Theorem 1. During the backward pass of a convolutional layer l, GEBL

l and GEBH
l satisfy

GEBL
l −GEBH

l =
(
αl,l||HT

l−1||F +βl

)
(λH

l −λL
l )+ ||HT

l−1||F
L∑

i=l+1

αl,i(λ
H
i −λL

i )

i−1∏
j=l

γj , (8)

where αl,i, βl, γl > 0 for 1 ≤ l, i ≤ L depend on the model weights before backward propagation
(given by Equations (24) in Appendix B); λL

l = ||H̃l⊙M||F ; λH
l = ||H̃l⊙(1−M)||F ; H̃l=DCT(Hl);

and M denotes the loss-pass mask given by Equation (4).

Theorem 1 indicates the GEB difference depends on λH
l −λL

l for 1≤ l≤L during the training. Fol-
lowing this direction, we estimate λL

l and λH
l via λL

l = ||H̃l⊙M||F and λH
l = ||H̃l⊙(1−M)||F during

the training of ResNet-18 and DenseNet-121 on the CIFAR-10 dataset. Specifically, Hl takes the

4The Frobenius norm of n×n matrix A is given by ||A||F =
√∑n

i=1

∑n
j=1 a

2
ij .
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Figure 4: Framework of Dual Activation Precision Training.

activation maps of the BasicBlocks in ResNet-18, and Denseblocks in DenseNet-121. The estima-
tion of λL

l and λH
l is based on the checkpoint of ResNet-18 in epoches 20, 40, and 60, and visualized

in Figures 3 (a)-(c), respectively; and the results of DenseNet-121 are given in Appendix D. It is
consistently observed that λL

l >λH
l for different instances and layers. This leads to GEBL

l <GEBH
l

according to Theorem 1. Therefore, HFC-ACT suffers from a worse distortion of backward propa-
gation during the training, eventually leading to less accurate learned model than LFC-ACT.

In this section, from both experimental and theoretical perspectives, we prove the HFC of activation
maps has less contribution to backward propagation than LFC. However, according to Figure 2 (c),
the HFC takes the majority of memory cost during the training. This indicates the HFC is highly
redundant and compressible during the training. Following this direction, we propose DIVISION
to compress the activation maps into a dual precision representation: high-precision LFC combined
with low-precision HFC. On the one hand, both LFC and low-precision HFC requires much less
memory to cache. On the other hand, removing the redundancy of HFC cannot cause much distortion
of backward propagation. In this way, DIVISION enables effective compression of training memory
without degradation of model accuracy.

4 DUAL ACTIVATION PRECISION TRAINING

We introduce the proposed Dual ActIVation PrecISION (DIVISION) in this section. The framework
of DIVISION is shown in Figure 4. Specifically, after the feed-forward operation of each layer,
DIVISION estimates the LFC and compresses the HFC into a low-precision copy such that the total
memory cost is significantly decreased after the compression. Before the backward propagation
of each layer, the low-precision HFC is decompressed and combined with LFC to reconstruct the
activation map. The detailed compression and decompression are given as follows.

4.1 ACTIVATION MAP COMPRESSION

For compressing the activation map Hl of layer l, DIVISION estimates the LFC HL
l and HFC HH

l
after the feed-forward operation. However, the high computational complexity of DCT prevents us
from directly applying it to real-time algorithms. We thus give Theorem 2 to introduce a moving
average operation that can approximate the loss-pass filter. The proof is given in Appendix E.

Theorem 2. For any real-valued function f(x) and its moving average f̄(x) = 1
2B

∫ x+2B

x
f(t)dt,

let F (ω) and F (ω) denote the Fourier transformation of f(x) and f̄(x), respectively. Generally, we
have F (ω) = H(ω)F (ω), where |H(ω)| =

∣∣ sinωB
ωB

∣∣.
Remark 1. The frequency response of H(ω) depends on its envelope function 1

|ωB| . Note that 1
|ωB|

decreases with |ω| such that 1
|ωB| → 0 as ω → ∞. Hence, H(ω) is an approximate loss-pass filter.

According to Remark 1, we approximate the LFC HL
l into the moving average of Hl. Note that

the average pooling operator provides efficient moving average. DIVISION adopts average pooling
to estimate the LFC by HL

l =AveragePooling(Hl). The value of block-size and moving stride is
a unified hyper-parameter B, which controls the memory of HL

l
5. Moreover, HL

l is cached in the
format of bfloat16 for saving the memory. In our experiments, we found B = 8 can provide
representative LFC for backward propagation, where the memory cost of HL

l is only 0.8% of Hl.

To estimate the HFC, DIVISION calculates the residual value HH
l = Hl−UpSampling(HL

l ), where
the UpSampling(·) enlarges HL

l to shape Minibatch×Channel×N×N via nearest interpolation.
Then, DIVISION compress the HH

l into low-precision because it plays a less important role during
the backward propagation but consumes most of the memory. Specifically, DIVISION adopts Q-bit

5For the case N<B, the pooling block-size and stride will be N such that the shape of HL
l is Minibatch×Channel×1×1.
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per-channel quantization67 for the compression, where the bit-width Q controls the precision and
memory cost of HFC after the compression. Let VH

l denote a Q-bit integer matrix, as the low-
precision representation of HH

l . The detailed procedure of compressing HH
l into VH

l is given by

VH
l = Quant(HH

l ) =
⌊
∆−1

l (HH
l − δl)

⌉
, (9)

where δl denotes the minimum element in HH
l ; ∆l = (hmax−δl)/(2

Q−1) denotes the quantization
step; hmax denotes the maximum element in HH

l ; ⌊•⌉ denotes the stochastic rounding89 (Gupta et al.,
2015); and δl and ∆l are cached in the formate of bfloat16 for saving memory. In this way, the
memory cost of (VH

l , δl, hmax) is (N2Q/8+4) bytes per channel, in contrast with that of Hl being
4N2 bytes per channel. In our experiments, we found Q=2 can provide enough representation for
backward propagation, where the memory cost of VH

l is only 8.3% of Hl.

After the compression, as the representation of Hl, the tuple of (HL
l ,V

H
l ,∆l, δl) is cached to the

memory for reconstructing the activation maps during the backward pass.

4.2 ACTIVATION MAP DECOMPRESSION

During the backward pass, DIVISION adopts the cached tuples of {(HL
l ,V

H
l ,∆l, δl) | 0 ≤ l ≤

L−1} to reconstruct the activation map layer-by-layer. Specifically, for each layer l, DIVISION
dequantizes the HFC via ĤH

l =∆lV
H
l +δl, which is the inverse process of Equation (9). Then, the

activation map is reconstructed via

Ĥl = UpSampling(HL
l ) + ĤH

l , (10)
where UpSampling(·) enlarges HL

l to shape Minibatch×Channel×N×N via nearest interpolation.
After the decompression, DIVISION frees the caching of (HL

l ,V
H
l ,∆l, δl), and takes Ĥl into

[∇̂Hl−1
, ∇̂Wl

] = backward(∇̂Hl
, Ĥl−1,Wl) to estimate the gradient for backward propagation.

Without loss of generality, 1D/3D activation maps are considered for DIVISION in Appendix F.

4.3 ALGORITHM OF DIVISION Algorithm 1 Mini-batch updating of DIVISION
Input: Mini-batch samples x and labels y.
Output: Weight and bias {Wl,Bl|1≤ l≤L}.
1: for layer l := 1 to L do
2: Hl = f(WlHl−1 +Bl) // H0 = x
3: HL

l−1 = AveragePooling(Hl−1)

4: HH
l−1 = Hl−1 −UpSampling(HL

l−1)
5: VH

l−1,∆l−1, δl−1 = Quant(HH
l−1)

6: Cache (HL
l−1,V

H
l−1,∆l−1, δl−1)

7: end for
8: Estimate the loss value and gradient ∇̂HL .
9: for layer l := L to 1 do

10: ĤH
l−1 = Dequant(VH

l−1,∆l−1, δl−1)

11: Ĥl−1 = UpSampling(HL
l−1) + ĤH

l−1

12: Estimate [∇̂Hl−1 , ∇̂Wl ] and update Wl.
13: Free (HL

l−1,V
H
l−1,∆l−1, δl−1).

14: end for

Algorithm 1 demonstrates a mini-batch updat-
ing of DIVISION, which includes a forward
pass and backward pass. During the forward
pass of each layer, DIVISION first forwards
the exact activation map to the next layer (line
2); then, estimates the LFC and HFC (line 3-
4); after this, achieves the low precision copy
of HFC (lines 5); finally caches the represen-
tation to the memory (line 6). During the
backward pass of each layer, DIVISION first
decompresses the HFC (line 10); then recon-
structs the activation map (line 11); after this,
estimates the gradients and updates the weights
of layer l (line 12); finally frees the caching of
(HL

l−1,V
H
l−1,∆l−1,δl−1) (line 13). For each mini-

batch updating, the memory usage reaches the
maximum value after the forward pass (caching the representation of activation maps layer-by-
layer), and reduces to the minimum value after the backward pass (freeing the cache layer-by-layer).
Existing work (Chen et al., 2021) estimates the memory cost of activation maps by

Memory Cost = Memory Utilizationafter forward − Memory Utilizationafter backward, (11)
where existing deep learning tools provide APIs10 to estimate the memory utilization.

The theoretical compression rate R of DIVISION is given in Appendix G, where general cases of
convolutional neural networks and multi-layer perception are considered for the estimation. For the
model architectures in our experiments, we have RResNet-50, RWRN-50-2 ≥ 10.35.

6A fixed bit-width is adopted for the quantization of all layers to maximize the efficiency of data processing.
7Per-channel quantization is more efficient and light than per-group quantization in state-of-the-art work.
8⌊x⌉ takes the value of ⌊x⌋ with a probability of x−⌊x⌋ and takes ⌈x⌉ with a probability of ⌈x⌉−x.
9The stochastic rounding enables the quantization-dequantization pipeline to be unbiased, i.e. E[VH

l ]=HH
l .

10
torch.cuda.memory allocated returns the memory occupied by tensors in bytes.
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Figure 5: Top-1 accuracy (%) ↑ of Normal training, DIVISION, BLPA (a), AC-GC (b), and ActNN (c).

5 EVALUATION OF DIVISION

We conduct the experiments to evaluate DIVISION by answering the following research questions.
RQ1: How does DIVISION perform compared with state-of-the-art baseline methods in terms of the
model accuracy, memory cost, and training throughput? RQ2: Does the strategy of dual-precision
compression contribute to DIVISION? RQ3: What is the effect of hyper-parameters on DIVISION?

The experiment setting including the datasets, baseline methods and DNN architectures is speci-
fied in Appendix H. The implementation details including the hyper-parameters of DIVISION and
configuration of baseline methods are given in Appendix I. More experiments on MLPs, vision
transformers, depthwise, and pointwise convolutional layers are given in Appendix K, L, and M.

5.1 EVALUATION BY MODEL ACCURACY (RQ1)

In this section, we evaluate the training methods in terms of model accuracy on the CIFAR-10,
CIFAR-100 and ImageNet datasets. Specifically, DIVISION is compared with BLPA (Chakrabarti
& Moseley, 2019), AC-GC (Evans & Aamodt, 2021) and ActNN (Chen et al., 2021) in Figure 5 (a)-
(c), respectively, where different model architectures are considered. Here, Checkpoint and SWAP
are not considered in this section because they are able to reduce the training memory without
degradation of model accuracy. Overall, we have the following observations:

• DIV vs Baseline Methods: Compared with normal training, DIVISION achieves almost the same
top-1 validation accuracy. In contrast, the baseline methods suffer from slightly higher validation
error. This indicates DIVISION provides nearly loss-less compression of DNN training.

• Flexibility of DIV: DIVISION consistently achieves competitive model accuracy in the training
of different architectures on different datasets. This indicates DIVISION is a flexible framework
that can be applied to different scenarios.

• Compressibility of HFC: Note that DIVISION adopts a significantly high compression rate 12×
for the HFC during the training, and achieves nearly loss-less accuracy. This result indicates the
HFC of activation map is highly redundant and compressible during the training.

5.2 EVALUATION BY MEMORY COST (RQ1)

We evaluate the training methods in terms of the training memory cost on the ImageNet datasest,
where the configuration of our computational infrastructure is given in Appendix R. Table 1 indi-
cates the training memory cost and practical compression rate of DIVISION and baseline methods.
Moreover, DIVISION is compared with the checkpoint strategy of Megatron-LM (Shoeybi et al.,
2019) in Appendix O. Overall, we have the following observations:

• DIV vs SWAP, Checkpoint & BLPA: SWAP reduces the GPU memory cost merely by transfer-
ring the overhead from GPU to CPU, which is non-effective if considering the memory utilization
of both GPU and CPU. Checkpoint shows considerable memory overhead because it caches some
key activation maps to reconstruct other activation maps during backward pass. BLPA is less
effective than DIVISION because it relies on at least 4-bit compression.

• DIV vs AC-GC: The practical memory cost of AC-GC should be greater than the values given
in Table 1. AC-GC searches the bit-width from an initial maximum value, and finalizes with an
optimal bit-width. Thus, the average memory cost should be greater than that in the last epoch.

• DIV vs ActNN: DIVISION has approximately the same memory cost as ActNN. Beyond the
storage of 2-bit activation maps, DIVISION has overhead for caching the LFC; and ActNN spends
almost equal overhead for storing the parameters of per-group quantization.

7
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Table 1: Memory cost↓ and compression rate↑. Total Mem refers to total memory cost of weights, optimizer,
data and activation maps. Act Mem refers to memory cost of activation maps. OOM refers to out of memory.

Architecture ResNet-50 WRN-50-2
Batch-size 64 128 256 512 64 128 256 512

Total Mem
(GB)

Normal 5.46 10.62 20.92 OOM 7.52 14.23 27.68 OOM
SWAP 5.46 (1×) 10.62 (1×) 20.92 (1×) OOM 7.52 (1×) 14.23 (1×) 27.68 (1×) OOM

Checkpoint 1.23 (4.4×) 2.16 (4.9×) 4.03 (5.2×) 7.76 1.71 (4.4×) 2.65 (5.4×) 4.51 (6.1×) 8.25
BLPA 1.15 (4.7×) 2.01 (5.3×) 3.72 (5.6×) 7.14 1.87 (4.0×) 2.96 (4.8×) 5.15 (5.4×) 9.51

AC-GC 1.80 (3.0×) 3.31 (3.2×) 6.31 (3.3×) 12.33 2.72 (2.8×) 4.66 (3.1×) 8.53 (3.2×) 16.27
ActNN 0.81 (6.7×) 1.34 (7.9×) 2.39 (8.8×) 4.47 1.44 (5.2×) 2.09 (6.8×) 3.41 (8.1×) 6.03

DIVISION 0.82 (6.7×) 1.35 (7.9×) 2.41 (8.7×) 4.52 1.45 (5.2×) 2.12 (6.7×) 3.44 (8.0×) 6.08

Act. Mem
(GB)

Normal 5.14 10.25 20.48 OOM 6.70 13.38 26.75 OOM
SWAP 5.14 (1×) 10.25 (1×) 20.48 (1×) OOM 6.70 (1×) 13.38 (1×) 26.75 (1×) OOM

Checkpoint 0.90 (5.7×) 1.80 (5.7×) 3.59 (5.7×) 7.18 0.90 (7.4×) 1.80 (7.4×) 3.59 (7.5×) 7.18
BLPA 0.82 (6.3×) 1.64 (6.2×) 3.28 (6.2×) 6.56 1.06 (6.3×) 2.11 (6.3×) 4.22 (6.3×) 8.44

AC-GC 1.47 (3.5×) 2.94 (3.5×) 5.88 (3.5×) 11.75 1.91 (3.5×) 3.81 (3.5×) 7.61 (3.5×) 15.20
ActNN 0.49 (10.5×)0.97 (10.6×)1.94 (10.6×) 3.89 0.62 (10.8×)1.25 (10.7×)2.49 (10.7×) 4.97

DIVISION 0.49 (10.5×)0.99 (10.4×)1.97 (10.4×) 3.94 0.64 (10.5×)1.27 (10.5×)2.52 (10.6×) 5.02
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Figure 6: Training throughput ↑ of (a) Resnet-50 and (b) WRN-50-2 on the ImageNet dataset, where $
indicates out of memory. (c) Top-1 validation accuracy (%) ↑ of DIVISION, DIVISION w/o HFC, DIVISION
w/o LFC and fixed bit-width quantization on the ImageNet dataset.

• Act. Maps: For normal training, the caching of activation maps takes the majority of memory cost
(>90%, growing with the mini-batch size), which is consistent with our discussion in Section 1.

• Compression rate: The activation map compression rate of DIVISION is consistently with the
theoretical results (RResNet-50, RWRN-50-2 ≥ 10.35, see Appendix G), which is not influenced by
the mini-batch size. Moreover, the overall compression rate grows with the mini-batch size.

5.3 EVALUATION BY TRAINING THROUGHPUT (RQ1)

We now evaluate the training methods in terms of the training throughput on the Imagenet dataset.
Generally, the throughput indicates the running speed of a training method via counting the average
number of data samples processed per second. The throughput is given by Mini-batch Size

Tbatch
, where Tbatch

denotes the time consumption of single mini-batch updating. Each method is combined with the
automatic mixed precision (AMP)11 to speed up the training. Figures 6 (a) and (b) show the average
throughput of 20 times of mini-batch updating. Overall, we have the following observations:

• Reason for Time overhead: Compared with normal training, the time overhead of DIVISION
comes from the estimation of LFC and compression of HFC. In ActNN, the overhead mainly
comes from the the dynamic bit-width allocation and activation map quantization. In Checkpoint,
it comes from replaying the forward process of inter-media layers. In SWAP, the overhead mainly
derives from the communication cost between the CPUs and GPUs.

• DIV vs ActNN: DIVISION shows higher throughput than ActNN as a result of more simplified
data compression. To be concrete, DIVISION adopts average-pooling to extract the LFC, and
a fixed bit-width per-channel quantization to compress the HFC. In contrast, ActNN relies on
searching optimal bit-width to match different samples, and per-group quantization based on the
searched bit-width. ActNN has more complex processing, which leads to its lower throughput.

• DIV vs SWAP: SWAP is less efficient than ACT-based methods (DIVISION and ActNN), which
indicates the CPU-GPU communication cost is larger than the cost of activation map processing.
11https://pytorch.org/docs/stable/amp.html
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5.4 EFFECT OF DUAL PRECISION STRATEGY (RQ2)
To study the effect of our proposed dual precision strategy, DIVISION is compared with three train-
ing methods: DIVISION w/o HFC: Merely caching the high-precision LFC for back-propagation.
DIVISION w/o LFC: Merely caching the low-precision HFC for back-propagation. Fixed Quant:
Compressing the activation maps using a fixed bit-width quantization. The experiments are con-
ducted on the ImageNet dataset using the hyper-parameters given in Appendix S. More experiments
of Fixed Quant with different bit-width are given in Appendix P. The model accuracy are given in
Figure 6 (c). Overall, we have the following insights:

• LFC & Low Precision HFC: Removing either HFC or LFC from DIVISION, the training con-
verges to far lower levels of accuracy. This indicates both the LFC and low precision HFC of
activation maps are necessary for leading the training to converge to an optimal solution.

• Benifits of Dual Precision: The fixed bit-width quantization fails to converge to an optimal
solution. This indicates the noise caused by the fixed bit-width quantization can terribly disturb
the back-propagation. DIVISION solves this problem by combining a high-precision LFC and a
fixed bit-width quantization for compressing the activation maps.

5.5 HYPER-PARAMETER TUNING FOR DIVISION (RQ3)
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Figure 7: (a) Top-1 Accuracy
and compression rate of DI-
VISION in different settings.
(b) Top-1 accuracy and train-
ing throughput of DIVISION
w/ and w/o AMP.

We study the effect of hyper-parameters B (block-size) and Q (bit-
width) on the accuracy and compression rate. Specifically, we adopt
DIVISION to train ResNet-18 on the CIFAR-10 dataset with B ∈
{8, 12, 18} and Q∈ {2, 4, 8}. The accuracy versus compression rate
is shown in Figure 7 (a). Overall, we have the following insights:
• Effect of Q: The accuracy is stable (consistently nearly 95%) when

reducing the precision-level of HFC (Q reduces from 8 to 2). This
indicates DIVISION only requires approximate values of HFC dur-
ing backward propagation.

• Effect of B: Lower-precision LFC for backward propagation leads
to significant degradation of accuracy (as B grows from 8 to 18).
This is because DIVISION relies on a high-precision LFC to re-
construct the activation maps for backward propagation.

• Optimal Setting: DIVISION has optimal accuracy-compression
trade-off taking B = 8 and Q = 2, where the degradation of ac-
curacy is less than 0.4%. According to more empirical studies in
Appendix N, B=8 and Q=2 can be a default setting effective for
most of model architectures and datasets.

Note that normal training can be accelerated by the automatic mixed
precision (AMP) (Micikevicius et al., 2017) without loss of accuracy.
We study whether AMP can speed up DIVISION without loss of accuracy. Specifically, we follow
the setting of DIVISION B=8, Q=2 to train ResNet-18 on the CIFAR-10 dataset. The accuracy
and training throughput of DIVISION w/ and w/o AMP are shown in Figure 7 (b). More experiments
with different mini-batch size are given in Appendix Q. It is observed that AMP can significantly
speed up the DIVISION when MiniBatch-size≥256 without loss of model accuracy. This indicates
DIVISION has the potential to be applied to scenarios where both time and memory are limited.

6 CONCLUSION

In this work, we propose a simple framework of activation compressed training. Our framework is
motivated by an instructive observation: DNN backward propagation mainly depends on the LFC
of the activation maps, while the majority of memory is for the storage of HFC during the training.
This indicates back-propagation mainly utilizes the LFC to estimate the gradient, while the HFC is
highly redundant and compressible. Following this direction, our proposed DIVISION compresses
the activation maps into dual precision representations: high-precision LFC and low-precision HFC,
according to their contributions to the back-propagation. This dual precision compression can sig-
nificantly reduce the memory cost of activation maps without disturbing the training.

Different from the existing work of ACT, DIVISION is a simple and transparent framework, where
the simplicity enables efficient compression and decompression; and transparency allows us to un-
derstand the compressible (HFC) and non-compressible factors (LFC) during DNN training. To this
end, we hope our work could provide some inspiration for the compression of DNN training.
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APPENDIX

A IMPLEMENTATION DETAILS OF SECTION 3

We give the details of the experiment in Section 3. Without loss of generality, the experiment is
conducted on the CIFAR-10 dataset using ResNet-18, DenseNet-121 and ShuffleNet-V2. During
the backward propagation of normal training, the gradient of each layer l is estimated by

[∇̂Hl−1
, ∇̂Wl

] = backward(∇̂Hl
,Hl,Wl) (12)

For LFC-ACT, the gradient is estimated by

[∇̂Hl−1
, ∇̂Wl

] = backward(∇̂Hl
,HL

l ,Wl), (13)
where HFC-ACT denotes the HFC of Hl; for HFC-ACT, the gradient is estimated by

[∇̂Hl−1
, ∇̂Wl

] = backward(∇̂Hl
,HH

l ,Wl), (14)

where HH
l denotes the HFC of Hl. Note that Equations (13) and (14) causes the distortion of

backward propagation in LFC-ACT and HFC-ACT, respectively. The objective of this experiment
is to investigate whether this distortion of back-propagation may be powerful enough to lead training
to a non-optimal solution. The hyper-parameter setting of the training is given in Table 2.

Table 2: Hyper-parameter setting.
Architecture ResNet-18 DenseNet-121 ShuffleNet-V2
Epoch 100 100 100
Batch-size 256 256 256
Initial LR 0.1 0.1 0.1
LR scheduler Step LR Step LR Step LR
Weight-decay 0.0005 0.0005 0.0005
Optimizer SGD SGD SGD
SGD Momentum 0.9 0.9 0.9
Ratio of LFC (W/N ) 0.3 0.3 0.5

B PROOF OF THEOREM 1

We prove Theorem 1 in this section.

Theorem 1 During the backward pass of a convolutional layer l, GEBL
l and GEBH

l satisfy

GEBL
l −GEBH

l =
(
αl,l||HT

l−1||F +βl

)
(λH

l −λL
l )+ ||HT

l−1||F
L∑

i=l+1

αl,i(λ
H
i −λL

i )

i−1∏
j=l

γj , (15)

where αl,i, βl, γl > 0 for 1 ≤ l, i ≤ L are given by Equation (24); λL
l = ||H̃l⊙M||F ; λH

l =

||H̃l⊙(1−M)||F ; H̃l = DCT(Hl); and M denotes the loss-pass mask given by Equation (4).

Proof. For simplicity of derivation, we study the case with a single input channel and output channel
number. In this case, Hl and Wl are 2-D matrix for each layer l, where 1 ≤ l ≤ L. The backward
propagation of a convolutional layer is given by

∇̂Zl
= ∇̂Zl+1

∗Wrot
l+1 ⊙ σ′(Ẑl),

∇̂Wl
= ∇̂Zl

∗ ĤT
l−1,

(16)

where ∗ denotes a convolutional operation; Ẑl = Wl ∗ Ĥl−1 + bl; bl denotes the bias of layer l; and
Wrot

l denotes to rotate Wl by 180◦. The case of multiple input and output channels can be proved
in an analogous way, which is omitted in this work.

12
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According to Equation (16), we have the gradient of Zl given by

∇̂Zl
−∇Zl

= ∇̂Zl+1
∗Wrot

l+1 ⊙ σ′(Ẑl)−∇Zl+1
∗Wrot

l+1 ⊙ σ′(Zl),

=∇̂Zl+1
∗Wrot

l+1⊙σ′(Ẑl)−∇̂Zl+1
∗Wrot

l+1⊙σ′(Zl)+∇̂Zl+1
∗Wrot

l+1⊙σ′(Zl)−∇Zl+1
∗Wrot

l+1⊙σ′(Zl),

= ∇̂Zl+1
∗Wrot

l+1 ⊙ [σ′(Ẑl)− σ′(Zl)] + (∇̂Zl+1
−∇Zl+1

) ∗Wrot
l+1 ⊙ σ′(Zl). (17)

For the activation functions ReLu(·), LeakyReLu(·), Sigmoid(·), Tanh(·) and SoftPlus(·), the
gradient σ′(·) satisfies |σ′′(·)| ≤ 1 in the differentable domains. Note that we have ||Wl∗Hl−1||F ≤
(Kl +Nl − 1)||Wl||F ||Hl−1||F according to Corollary 1. ||σ′(Ẑl)− σ′(Zl)||F satisfies

||σ′(Ẑl)− σ′(Zl)||F ≤ ||Ẑl − Zl||F ≤ (Kl +Nl − 1)||Ĥl−1 −Hl−1||F ||W′
l||F , (18)

where Kl and Nl denote the size of convolutional kernel Wl and activation map Hl in layer l,
respectively. After taking Equation (18) into Equation (17), we have

||∇̂Zl
−∇Zl

||F ≤ (Kl +Nl − 1)||∇̂Zl+1
||F ||Wrot

l+1||F ||σ′(Ẑl)− σ′(Zl)||F
+ (Kl +Nl − 1)||∇̂Zl+1

−∇Zl+1
||F ||Wrot

l+1||F ||σ′(Zl)||F ,
= (Kl +Nl − 1)2||∇̂Zl+1

||F ||Wrot
l+1||F ||Ĥl−1−Hl−1||F ||W′

l||F
+ (Kl +Nl − 1)||∇̂Zl+1

−∇Zl+1
||F ||Wrot

l+1||F ||σ′(Zl)||F ,
= ηl||Ĥl−1 −Hl−1||F + γl||∇̂Zl+1

−∇Zl+1
||F , (19)

where ηl and γl are given by

ηl = (Kl +Nl − 1)2||∇̂Zl+1
||F ||Wl+1||F ||W′

l||F ;
γl = (Kl +Nl − 1)||Wl+1||F ||σ′(Zl)||F ;

(20)

the value ηl and γl depend on the model weight before backward propagation, which is constant
with respect to the gradient. Iterate Equation (19) until l=L where ||∇̂ZL

−∇ZL
||F ≤ηL||ĤL−1−

HL−1||F . In this way, we have

||∇̂Zl
−∇Zl

||F ≤ηl||Ĥl−1−Hl−1||F +

L∑
i=l+1

ηi||Ĥi−1−Hi−1||F
i−1∏
j=l

γj . (21)

According to Equation (16), we have the gradient of Wl given by

∇̂Wl
−∇Wl

= ∇̂Zl
∗ ĤT

l−1 −∇Zl
∗HT

l−1,

= ∇̂Zl
∗ ĤT

l−1 − ∇̂Zl
∗HT

l−1 + ∇̂Zl
∗HT

l−1 −∇Zl
∗HT

l−1,

= ∇̂Zl
∗ (ĤT

l−1 −HT
l−1) + (∇̂Zl

−∇Zl
) ∗HT

l−1. (22)

Taking Equation (21) into Equation (22), we have

||∇̂Wl
−∇Wl

||F
≤ (Kl +Nl − 1)||∇̂Zl

||F ||ĤT
l−1 −HT

l−1||F + (Kl +Nl − 1)||∇̂Zl
−∇Zl

||F ||HT
l−1||F ,

≤(Kl+Nl−1)

(
||∇̂Zl

||F||ĤT
l−1−HT

l−1||F+||HT
l−1||F

[
ηl||Ĥl−1−Hl−1||F+

L∑
i=l+1

ηi||Ĥi−1−Hi−1||F
i−1∏
j=l

γj

])

=(Kl+Nl−1)

[(
||∇̂Zl

||F +ηl||HT
l−1||F

)
||ĤT

l−1−HT
l−1||F +||HT

l−1||F
L∑

i=l+1

ηi||Ĥi−1−Hi−1||F
i−1∏
j=l

γj

]
,

=
(
βl+αl,l||HT

l−1||F
)
||ĤT

l−1−HT
l−1||F +||HT

l−1||F
L∑

i=l+1

αl,i||ĤT
i−1−HT

i−1||F
i−1∏
j=l

γj , (23)
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where
αl,i = (Kl +Nl − 1)(Ki +Ni − 1)2||∇̂Zi+1

||F ||Wi+1||F ||W′
i||F ;

βl = (Kl +Nl − 1)||∇̂Zl
||F ;

γl = (Kl +Nl − 1)||Wl+1||F ||σ′(Zl)||F ;
(24)

Kl and Nl denote the size of convolutional kernel Wl and activation map Hl in layer l, respectively.

During the LFC-ACT and HFC-ACT trainings, the activation map of a convolutional layer satisfies

||Hl −HL
l ||F = ||H̃l − H̃L

l ||F = ||H̃l ⊙ (1−M)||F ≜ λH
l , (25)

||Hl −HH
l ||F = ||H̃l − H̃H

l ||F = ||H̃l ⊙M||F ≜ λL
l . (26)

Taking Equations (25) and (26) into (23), we have GEBL
l and GEBH

l of a convolutional layer by

||∇̂Wl
−∇L

Wl
||F ≤

(
αl,l||HT

l−1||F +βl

)
λH
l + ||HT

l−1||F
L∑

i=l+1

αl,iλ
H
i

i−1∏
j=l

γj ≜ GEBL
l , (27)

||∇̂Wl
−∇H

Wl
||F ≤

(
αl,l||HT

l−1||F +βl

)
λL
l + ||HT

l−1||F
L∑

i=l+1

αl,iλ
L
i

i−1∏
j=l

γj ≜ GEBH
l . (28)

Given the expression of GEBL
l and GEBH

l by Equations (27) and (28), respectively, we have the
GEB for a convolutional layer given by

GEBL
l −GEBH

l =
(
αl,l||HT

l−1||F +βl

)
(λH

l −λL
l )+ ||HT

l−1||F
L∑

i=l+1

αl,i(λ
H
i −λL

i )

i−1∏
j=l

γj .

Corollary 1. For a K ×K convolutional kernel and a N ×N square matrix H, we have the

||W ∗H||F ≤ (K +N − 1)||W||F ||H||F (29)

Proof. According to the relations between convolutional operation and Discrete Fourier Transfor-
mation (Sundararajan, 2001), W ∗H satisfies

FFT(W ∗H) = FFT(ZP(W))⊙ FFT(ZP(H)), (30)

where FFT(·) denotes the discrete Fourier transformation; ZP(W) denotes zero-padding W into
a (K + N − 1)×(K + N − 1) matrix. According to the Parseval’s theorem (Diniz et al., 2010),
FFT(ZP(W)) and FFT(ZP(H)) and FFT(W ∗H) satisfy

||FFT(ZP(W))||F = (K +N − 1)||W||F ,
||FFT(ZP(H))||F = (K +N − 1)||H||F ,
||FFT(W ∗H)||F = (K +N − 1)||W ∗H||F .

(31)

Taking ||A1 ⊙A2||F ≤ ||A1||F ||A2||F into Equation (31), we have

FFT(ZP(W))⊙ FFT(ZP(H)) ≤ ||FFT(W)||F ||FFT(H)||F (32)

Taking Equation (31) into Equation (32), we have

(K +N − 1)||W ∗H||F = ||FFT(W)⊙ FFT(H)||F
≤ ||FFT(W)||F ||FFT(H)||F
= (K +N − 1)||W||F (K +N − 1)||H||F

14
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C GRADIENT ERROR BOUND (GEB) OF A LINEAR LAYER

We give the Gradient Error upper Bound (GEB) of a linear layer and proof in this section.

Theorem 1B. During the backward pass of a linear layer l, GEBL
l and GEBH

l satisfy

GEBL
l −GEBH

l =
(
αl||HT

l−1||F +βl

)
(λH

l −λL
l )+||HT

l−1||F
L∑

i=l+1

αi(λ
H
i −λL

i )

i−1∏
j=l

γj , (33)

where αl, βl, γl > 0 for 1≤ l≤L are given by Equation (42); λL
l = ||H̃l⊙M||F ; λH

l = ||H̃l⊙(1−
M)||F ; H̃l = DCT(Hl); and M denotes the 1-D loss-pass mask.

Proof. For simplicity of derivation, we consider the case MiniBatch=1. In this case, Hl is a vector;
and Wl is a 2-D matrix, for 1≤ l≤L. The backward propagation of a linear layer is given by

∇̂Zl
= (Wl+1∇̂Zl+1

)⊙ σ′(Ẑl),

∇̂Wl
= ∇̂Zl

ĤT
l−1,

(34)

where Ẑl = WT
l Ĥl−1 + bl; and bl denotes the bias of layer l. The case of MiniBatch≥ 2 can be

proved in an analogous way, which is omitted in this work.

According to Equation (34), we have the gradient of Zl given by

∇̂Zl
−∇Zl

= Wl+1∇̂Zl+1
⊙ σ′(Ẑl)−Wl+1∇Zl+1

⊙ σ′(Zl),

=Wl+1∇̂Zl+1
⊙σ′(Ẑl)−Wl+1∇̂Zl+1

⊙σ′(Zl)+Wl+1∇̂Zl+1
⊙σ′(Zl)−Wl+1∇Zl+1

⊙σ′(Zl),

= Wl+1∇̂Zl+1
⊙ [σ′(Ẑl)− σ′(Zl)] + (∇̂Zl+1

−Wl+1∇Zl+1
)⊙ σ′(Zl). (35)

For activation functions ReLu(·), LeakyReLu(·), Sigmoid(·), Tanh(·) and SoftPlus(·), the gra-
dient σ′(·) satisfies |σ′′(·)| ≤ 1 in each differentiable domain. Combined with Cauchy–Schwarz
inequality ||A1A2||F ≤ ||A1||F ||A2||F (Horn & Johnson, 2012), we have

||σ′(Ẑl)− σ′(Zl)||F ≤ ||Ẑl − Zl||F ≤ ||Wl||F ||Ĥl−1 −Hl−1||F . (36)

According to inequality ||A1⊙A2||F ≤||A1||F ||A2||F (Horn & Johnson, 2012), we have the upper
bound of ||∇̂Zl

−∇Zl
||F given by

||∇̂Zl
−∇Zl

||F
≤ ||Wl+1||F ||∇̂Zl+1

||F ||σ′(Ẑl)− σ′(Zl)||F + ||Wl+1||F ||∇̂Zl+1
−∇Zl+1

||F ||σ′(Zl)||F ,
= ||Wl+1||F ||∇̂Zl+1

||F ||Ĥl−1−Hl−1||F ||W′
l||F + ||Wl+1||F ||∇̂Zl+1

−∇Zl+1
||F ||σ′(Zl)||F ,

= αl||Ĥl−1 −Hl−1||F + γl||∇̂Zl+1
−∇Zl+1

||F , (37)

where αl and γl are given by

αl = ||Wl+1||F ||∇̂Zl+1
||F ||W′

l||F ;
γl = ||Wl+1||F ||σ′(Zl)||F ;

(38)

the value αl and γl depend on the model weight before backward propagation, which are constant
with respect to the gradient. Iterate Equation (37) until l = L where ||∇̂ZL

−∇ZL
||F ≤ αl||ĤL−1−

HL−1||F . In such a manner, we have

||∇̂Zl
−∇Zl

||F ≤ αl||Ĥl−1−Hl−1||F +

L∑
i=l+1

αi||Ĥi−1−Hi−1||F
i−1∏
j=l

γj . (39)

According to Equation (34), we have the gradient of Wl given by

∇̂Wl
−∇Wl

= ∇̂Zl
ĤT

l−1 −∇Zl
HT

l−1,

= ∇̂Zl
ĤT

l−1 − ∇̂Zl
HT

l−1 + ∇̂Zl
HT

l−1 −∇Zl
HT

l−1,

= ∇̂Zl
(ĤT

l−1 −HT
l−1) + (∇̂Zl

−∇Zl
)HT

l−1. (40)
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Taking Equation (39) into Equation (40), we have

||∇̂Wl
−∇Wl

||F
≤ ||∇̂Zl

||F ||ĤT
l−1 −HT

l−1||F + ||∇̂Zl
−∇Zl

||F ||HT
l−1||F ,

≤ ||∇̂Zl
||F ||ĤT

l−1−HT
l−1||F +||HT

l−1||F
[
αl||Ĥl−1−Hl−1||F +

L∑
i=l+1

αi||Ĥi−1−Hi−1||F
i−1∏
j=l

γj

]
,

=
(
βl+αl||HT

l−1||F
)
||ĤT

l−1−HT
l−1||F +||HT

l−1||F
L∑

i=l+1

αi||ĤT
i−1−HT

i−1||F
i−1∏
j=l

γj , (41)

where βl is given by
αl = ||Wl+1||F ||∇̂Zl+1

||F ||W′
l||F ;

βl = ||∇̂Zl
||F ;

γl = ||Wl+1||F ||σ′(Zl)||F .
(42)

During the LFC-ACT and HFC-ACT trainings, the activation map of a linear layer satisfies

||Hl −HL
l ||F = ||H̃l − H̃L

l ||F = ||H̃l ⊙ (1−M)||F ≜ λH
l , (43)

||Hl −HH
l ||F = ||H̃l − H̃H

l ||F = ||H̃l ⊙M||F ≜ λL
l . (44)

Taking Equations (43) and (44) into (41), we have the GEBL
l and GEBH

l of a linear layer given by

||∇̂Wl
−∇L

Wl
||F ≤

(
αl||HT

l−1||F + βl

)
λH
l + ||HT

l−1||F
L∑

i=l+1

αiλ
H
i

i−1∏
j=l

γj ≜ GEBL
l , (45)

||∇̂Wl
−∇H

Wl
||F ≤

(
||αl||HT

l−1||F + βl

)
λL
l + ||HT

l−1||F
L∑

i=l+1

αiλ
L
i

i−1∏
j=l

γj ≜ GEBH
l . (46)

Given the expression of GEBL
l and GEBH

l by Equations (45) and (46), we have the GEB difference
for a linear layer given by

GEBL
l −GEBH

l =
(
||αl||HT

l−1||F + βl

)
(λH

l −λL
l )+ ||HT

l−1||F
L∑

i=l+1

αi(λ
H
i −λL

i )

i−1∏
j=l

γj .

D λL
l VERSUS λH

l IN DENSENET-121

A further experiment is conducted to study whether λL
l > λH

l can be guaranteed for DenseNet-121.
Specifically, the values of λL

l and λH
l in the training (epoches 20, 40, and 60) of DenseNet-121

are given in Tables 3 and 4, where the low-pass M mask satisfies W/N = 0.1 and W/N =
0.2, respectively; and λL

l and λH
l are estimated based on the input activation maps of the four

DenseBlocks. It is consistently observed that λL
l > λH

l for W/N = 0.1 and W/N = 0.2 in
different training epochs. This indicates our proposed Theorem 1 holds without loss of generality.

E PROOF OF THEOREM 2

We give the proof of Theorem 2 in this section.

Theorem 2. For any real-valued function f(x) and its moving average f̄(x) = 1
2B

∫ x+2B

x
f(t)dt,

let F (ω) and F (ω) denote the Fourier transformation (Madisetti, 1997) of f(x) and f̄(x), respec-
tively. Generally, we have F (ω) = H(ω)F (ω), where |H(ω)| =

∣∣ sinωB
ωB

∣∣.
16
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Table 3: W/N = 0.1.
Epoch 20 40 60 Average λL

λH

DenseBlock-1 λL
l = 298.281

λH
l = 218.605

λL
l = 184.913

λH
l = 138.069

λL
l = 142.668

λH
l = 104.755

1.36

DenseBlock-2 λL
l = 3.245

λH
l = 1.713

λL
l = 1.284

λH
l = 0.689

λL
l = 0.687

λH
l = 0.372

1.87

DenseBlock-3 λL
l = 0.387

λH
l = 0.260

λL
l = 0.160

λH
l = 0.086

λL
l = 0.084

λH
l = 0.048

1.70

DenseBlock-4 λL
l = 0.062

λH
l = 0.009

λL
l = 0.011

λH
l = 0.001

λL
l = 0.006

λH
l = 0.001

7.56

Average λL
l /λ

H
l 2.95 3.12 3.30 3.12

Table 4: W/N = 0.2.
Epoch 20 40 60 Average λL

l /λ
H
l

DenseBlock-1 λL
l = 362.672

λH
l = 154.214

λL
l = 225.543
λH
l = 97.439

λL
l = 173.595
λH
l = 73.828

2.34

DenseBlock-2 λL
l = 3.632

λH
l = 1.326

λL
l = 1.440

λH
l = 0.533

λL
l = 0.774

λH
l = 0.285

2.72

DenseBlock-3 λL
l = 0.445

λH
l = 0.202

λL
l = 0.179

λH
l = 0.067

λL
l = 0.095

λH
l = 0.037

2.49

DenseBlock-4 λL
l = 0.062

λH
l = 0.009

λL
l = 0.011

λH
l = 0.001

λL
l = 0.006

λH
l = 0.001

7.56

Average λL
l /λ

H
l 3.58 3.78 3.97 3.78

Proof. We adopt the limit operator to reformulate f̄(x) into

f̄(x) =
1

2B

∫ x+2B

x

f(t)dt =
1

2B
lim

N→∞

N−1∑
n=0

2B

N
f(x+

2Bn

N
) = lim

N→∞

N−1∑
n=0

1

N
f(x+

2Bn

N
) (47)

Taking Equation (47) into the Fourier Transform of f̄(x), we have

F ′(ω) =

∫ ∞

−∞
f̄(x)e−iωxdx =

∫ ∞

−∞

1

N
lim

N→∞

N−1∑
n=0

f(x+
2Bn

N
)e−iωxdx

= lim
N→∞

1

N

N−1∑
n=0

∫ ∞

−∞
f(x+

2Bn

N
)e−iωxdx

= lim
N→∞

1

N

N−1∑
n=0

eiω
2Bn
N

∫ ∞

−∞
f(x)e−iωxdx = F (ω) lim

N→∞

1

N

N−1∑
n=0

eiω
2Bn
N

= F (ω)(1− eiω2B) lim
N→∞

1

N(1− eiω
2B
N )

= F (ω)
1− eiω2B

−iω2B
,

(48)

where i denotes the imaginary unit.

Let H(ω) = 1−eiω2B

−iω2B . The magnitude of H(ω) is given by

∣∣∣H(ω)
∣∣∣ = |1− cosω2B + i sinω2B|

|ω2B|
=

√
(1− cosω2B)2 + sin2 ω2B|

|ω2B

=

√
4 sin4 ωB + 4 sin2 ωB cos2 ωB

|ω2B|
=

√
4 sin2 ωB(sin2 ωB + cos2 ωB)

|ω2B|

=
∣∣∣ sinωB

ωB

∣∣∣
(49)
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F COMPRESSION OF 1D AND 3D ACTIVATION MAPS BY DIVISION

We give more details about DIVISION considering 1D, 2D and 3D activation maps in this section.

F.1 ACTIVATION MAP COMPRESSION

DIVISION adopts average pooling to estimate the LFC by HL
l =AveragePooling(Hl). The value

of block-size and moving stride is a unified hyper-parameter B, which controls the memory of HL
l .

The average pooling of 1D, 2D and 3D activation maps are considered as follows,

Minibatch×Channel×N
AveragePooling1D−→ Minibatch×Channel×

⌊
N/B

⌋
(50)

Minibatch×Channel×N×N
AveragePooling2D−→ Minibatch×Channel×

⌊
N/B

⌋
×
⌊
N/B

⌋
Minibatch×Channel×N×N×N AveragePooling3D−→ Minibatch×Channel×

⌊
N/B

⌋
×
⌊
N/B

⌋
×
⌊
N/B

⌋
To estimate the HFC, DIVISION calculates the residual value HH

l = Hl−UpSampling(HL
l ), where

the UpSampling(·) enlarges HL
l to the shape of Hl via nearest interpolation. The up sampling of

1D, 2D and 3D activation maps are considered as follows,

Minibatch×Channel×
⌊
N/B

⌋ UpSampling1D−→ Minibatch×Channel×N (51)

Minibatch×Channel×
⌊
N/B

⌋
×
⌊
N/B

⌋ UpSampling2D−→ Minibatch×Channel×N×N

Minibatch×Channel×
⌊
N/B

⌋
×
⌊
N/B

⌋
×
⌊
N/B

⌋ UpSampling3D−→ Minibatch×Channel×N×N×N

Then, DIVISION adopts Q-bit per-channel quantization for the compression, where the bit-width
Q controls the precision and memory cost of HFC after the compression. Let VH

l denote a Q-bit
integer matrix, as the low-precision representation of HH

l . The detailed procedure of compressing
HH

l into VH
l is given by

VH
l = Quant(HH

l ) =
⌊
∆−1

l (HH
l − δl)

⌉
, (52)

where δl denotes the minimum element in HH
l ; ∆l = (hmax−δl)/(2

Q−1) denotes the quantization
step; hmax denotes the maximum element in HH

l ; ⌊•⌉ denotes the stochastic rounding.

After the compression, as the representation of Hl, the tuple of (HL
l ,V

H
l ,∆l, δl) is cached to the

memory for reconstructing the activation maps during the backward pass.

F.2 ACTIVATION MAP DECOMPRESSION

During the backward pass, DIVISION adopts the cached tuples of {(HL
l ,V

H
l ,∆l, δl) | 0 ≤ l ≤

L−1} to reconstruct the activation map layer-by-layer. Specifically, for each layer l, DIVISION
dequantizes the HFC via ĤH

l =∆lV
H
l +δl, which is the inverse process of Equation (52). Then, the

activation map is reconstructed via Ĥl = UpSampling(HL
l )+ ĤH

l , where UpSampling(·) enlarges
HL

l to the shape of Hl via nearest interpolation. The cases of 1D, 2D and 3D activation maps are
considered in Equation (51).

After the decompression, DIVISION frees the caching of (HL
l ,V

H
l ,∆l, δl), and takes Ĥl into

[∇̂Hl−1
, ∇̂Wl

] = backward(∇̂Hl
, Ĥl−1,Wl) to estimate the gradient for backward propagation.

G THEORETICAL COMPRESSION RATE OF DIVISION

The compression rate of DIVISION is estimated in this section. A general case of convolutional
neural networks (CNN) and multi-layer perceptron (MLP) are considered for the estimation.

18



Under review as a conference paper at ICLR 2023

G.1 COMPRESSION RATE OF CNN TRAINING

Without loss of generality, we estimate the compression rate for a block of convolutional
layer (conv), batch normalization layer (BN) and Relu activation. Most of existing backbones
purely stacks conv-BN-Relu blocks (He et al., 2016; Huang et al., 2017; Szegedy et al., 2015;
Tan & Le, 2019; Simonyan & Zisserman, 2014), which makes our estimated compression rate hold
in practice. Generally, the compression rate is defined as the memory reduction ratio after the com-
pression. To be concrete, let Minibatch×Channel×N×N denote the shape of activaition maps for
a conv-BN-Relu block; given the block-size B and bit-width Q, DIVISION has the compression
rate of activation maps given by Theorem 3A.

Theorem 3A. DIVISION has average activation map compression rate for a conv-BN-Relu block
given by

R =
Mem of H

Mem of (HL,VH,∆, δ)
=

9
4

min{B2,N2} + Q
4 + 8

N2 + 1
8

, (53)

where Minibatch×Channel×N×N is the shape of activation map H l; B denotes the block-size
of LFC average pooling; and Q denotes the bit-width of HFC quantization.

Proof. For each mini-batch updating of normal training, a conv-layer or BN-layer caches
N2float32× 4byte/float32 = 4N2byte activation map; a Relu operator caches N2int8×
1byte/int8 = N2byte activation map. For each mini-batch updating of DIVISION, a conv-layer
or BN-layer caches N2

min{B2,N2}bfloat16 × 2byte/bfloat16 = 2N2

min{B2,N2}byte LFC; and

QN2bit× 1
8bit/byte =

Q
8 N

2byte HFC; and spends 2bfloat16× 2byte/bfloat16 = 4byte

for ∆l and δl. Moreover, a Relu operator caches N2bit× 1
8byte/bit = N2

8 byte activation map.
Therefore, the average activation map compression rate of a conv-BN-Relu block is given by

R =
4N2 × 2 +N2(

2N2

min{B2,N2} + Q
8 N

2 + 4
)
× 2 + 1

8N
2
=

9
4

min{B2,N2} + Q
4 + 8

N2 + 1
8

. (54)

A higher compression rate indicates more effective compression. It is observed that the compression
rate grows with B and N , and decreases with Q. In our experiments, we found B=8 and Q=2 can
provide loss-less model accuracy. In this condition, the shape of activation maps satisfies N ≥ 7 for
ResNet-50 and WRN-50-2 on the ImageNet dataset (He et al., 2016). According to Equation (53),
we have RResNet-50, RWRN-50-2 ≥ 10.35.

G.2 COMPRESSION RATE OF MLP TRAINING

We estimate the compression rate for a linear-Relu block in Theorem 3B. An MLP simply stacks
multiple linear-Relu blocks, such that our estimated compression rate holds for MLP models.

Theorem 3B. DIVISION has average activation map compression rate for a linear-Relu block
given by

R =
Mem of H

Mem of (HL,VH,∆, δ)
=

5
2

min{B,N} + Q
8 + 4

N + 1
8

, (55)

where Minibatch×N is the shape of activation map H l; B denotes the block-size of LFC average
pooling; and Q denotes the bit-width of HFC quantization.

Proof. For each mini-batch updating of normal training, a linear-layer caches Nfloat32 ×
4byte/float32 = 4Nbyte activation map; a Relu operator caches Nint8 × 1byte/int8 =
Nbyte activation map. For each mini-batch updating of DIVISION, a linear-layer caches

N
min{B,N}bfloat16 × 2byte/bfloat16 = 2N

min{B,N}byte LFC; and QNbit × 1
8bit/byte =

Q
8 Nbyte HFC; and spends 2bfloat16 × 2byte/bfloat16 = 4byte for ∆l and δl. Moreover,
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a Relu operator caches Nbit × 1
8byte/bit = N

8 byte activation map. Therefore, the average
activation map compression rate of a linear-Relu block given by

R =
4N +N

2N
min{B,N} + Q

8 N + 4 + 1
8N

=
5

2
min{B,N} + Q

8 + 4
N + 1

8

. (56)

H EXPERIMENT SETTING

We give the experiment setting including the datasets, baseline methods and model architectures in
this section.

Datasets. We consider CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al.,
2009) datasets in our experiments. CIFAR-10: An image dataset with 60,000 color images in 10
different classes, where each image has 32×32 pixels. CIFAR-100: An image dataset with 60,000
color images in 100 different classes, where each image has 32×32 pixels. ImageNet: A large scale
image dataset which has over one million color images covering 1000 categories, where each image
has 224×224 pixels.

Baseline Methods. Normal: Caching the exact activation map for backward propagation. BLPA: A
systemic implementation of ACT by (Chakrabarti & Moseley, 2019), which only supports ResNet-
related architectures. AC-GC: A framework of ACT with automatic searched bit-width for the
quantization of activation maps (Evans & Aamodt, 2021). ActNN: Activation compression training
with dynamic bit-width quantization, where the bit-allocation minimizes the variance of activation
maps via dynamic processing (Chen et al., 2021). Checkpoint: Caching some key activation maps
to reconstruct other activation maps via replaying parts of the forward pass during the backward
pass (Chen et al., 2016). SWAP: Swapping the activation maps to the CPU during the forward
pass the memory consumption of GPU, and reload the activation maps to GPU during the backward
pass (Huang et al., 2020).

DNN Architectures. For benchmarking the model accuracy, we consider ResNet-18 (top-1 ac-
curacy 94.89%) and ResNet-164 (top-1 accuracy 94.9%) on the CIFAR-10 dataset; DenseNet-
121 (top-1 accuracy 79.75%) and ResNet-164 (top-1 accuracy 77.3%) on the CIFAR-100 dataset;
and ResNet-50 (top-1 accuracy 76.15%) as well as DenseNet-161 (top-1 accuracy 77.65%) on the
ImageNet dataset. Our reproduced validating accuracy is consistent with the official results of
torchvision12. Moreover, for benchmarking the memory cost and training throughput, we consider
the large models ResNet-50 and WRN-50-2 on the ImageNet dataset.

I IMPLEMENTATION DETAILS ABOUT DIVISION AND BASELINE METHODS

DIVISION: DIVISION adopts block-size 8 (B = 8) and 2-bit quantization (Q = 2) to compress the
activation maps of linear, convolutional and BatchNorm layers, where the theoretical compression
rate is not less than 10.35×. For the operators without quantization error during backward propa-
gation such as pooling layers, ReLu activation, and Dropout, DIVISION follows the algorithms in
Appendix J to compress the activation maps. Other hyper-parameter settings are given in Table 5.

BLPA: Existing work (Chakrabarti & Moseley, 2019) has shown that BLPA requires at least 4-bit
ACT for loss-less DNN training. We follow this setting for BLPA, where the compression rate of
activation maps is not more than 8×. AC-GC: AC-GC follows existing work (Evans & Aamodt,
2021) to take the multiplicative error (1+ e2AC-GC) = 1.5, where the searched bit-width enables AC-
GC to satisfy this loss bound (training loss not more than 150% of normal training). In this setting,
AC-GC finalizes the bit-with as 7.01 after the searching, which has a nearly 4.57× compression
rate of activation maps. ActNN: ActNN adopts 2-bit ACT and dynamic programming for searching
the optimal bit-width specific for each layer, and uses per-group quantization for compressing the
activation map, which has approximately 10.5× compression rate of activation maps. Such experi-
mentally setting is denoted as L3 strategy in the original work (Chen et al., 2021), and we follow this

12https://paperswithcode.com/lib/torchvision
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Table 5: Hyper-parameter setting.
Dataset CIFAR-10 CIFAR-100 ImageNet
Architecture ResNet-18 ResNet-164 ResNet-164 DenseNet-121 ResNet-50 DenseNet-161
Epoch 100 100 200 100 120 120
Batch-size 256 256 256 256 256 256
Initial LR 0.1 0.1 0.15 0.1 0.1 0.1
LR scheduler Cos LR Cos LR Cos LR Cos LR Cos LR Cos LR
Weight-decay 0.0005 0.0005 0.0005 0.0005 0.0001 0.0001
Optimizer SGD SGD SGD SGD SGD SGD
SGD Momentum 0.9 0.9 0.9 0.9 0.9 0.9
Block-size B 8 8 8 8 8 8
Bit-width Q 2 2 2 2 2 2

import torch.utils.checkpoint as checkpoint
import torch.nn as nn

class ResNet(nn.Module):
...

def forward(self, x: Tensor) -> Tensor:
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = checkpoint.checkpoint(self.bottleneck_layer1, x)
x = checkpoint.checkpoint(self.bottleneck_layer2, x)
x = checkpoint.checkpoint(self.bottleneck_layer3, x)
x = checkpoint.checkpoint(self.bottleneck_layer4, x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x

...

Figure 8: Implementation of checkpointed ResNet-50 and WRN-50-2.

setting in this section. Checkpoint: Checkpoint relies on the model-specific design of the check-
pointed layers. We find that it provides a good trade-off between memory cost and running speed to
checkpoint the activation map of each Botteneck block in ResNet-50 and WRN-50-2 (a ResNet-50
or WRN-50-2 has four Botteneck blocks). To implement the checkpointing of inter-media layers, we
revised the forward function of the ResNet-50 and WRN-50-2 as Figure 8. SWAP: For the SWAP
method, the memory utilization is considered both GPU and CPU because the activation maps are
stored on both GPU and CPU in SWAP.

J COMPRESSION OF POOLING LAYERS, RELU ACTIVATIONS, AND DROPOUT

DIVISION follows Algorithms 2, 3, 4 and 5 to compresse the activation map of a Max-Pooling layer,
Average-Pooling layer, Relu activation and Dropout operator, respectively. For the pooling layers,
we consider a simple case kernelsize=movingstride= k. General cases with different kernelsize
and movingstride can be designed in analogous ways.
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Algorithm 2 Max-Pooling layer.
1: Function Forward (Hl−1, k, **kwargs)
2: Hl,Vl−1

12 =Max-Pooling(Hl−1, k, kwargs)
3: Pack & Cache Vl−1 using Int8.
4: return Hl

5:
6: Function Backward(∇Hl )
7: Load Vl−1 and k.
8: ∇′

Hl
= 1k×k ⊗∇Hl

9: ∇Hl−1 = Vl−1 ⊙∇′
Hl

10: return ∇Hl−1

Algorithm 3 Average-Pooling layer.
1: Function Forward (Hl−1, k, **kwargs)
2: Hl =Avg-Pooling(Hl−1, k, kwargs)
3: return Hl

4:
5:
6:
7: Function Backward(∇Hl )
8: ∇′

Hl
= 1k×k ⊗∇Hl

9: ∇Hl−1 = k−2∇Hl

10: return ∇Hl−1

Algorithm 4 Relu operator.
1: Function Forward (Hl−1)
2: Vl−1 = sgn(Hl−1)
3: Hl = Vl−1 ⊙Hl−1

4: Pack & Cache Vl−1 using Int8
5: return Hl

6:
7:
8: Function Backward(∇Hl )
9: Load Vl−1.

10: ∇Hl−1 = Vl−1 ⊙∇Hl

11: return ∇Hl−1

Algorithm 5 Dropout operator.
1: Function Forward (Hl−1)
2: Generate a Minibatch×Channel×N×N binary matrixVl−1
3: following the Bernoulli distribution with dropout probability p.
4: Hl = Vl−1 ⊙Hl−1

5: Pack & Cache Vl−1 using Int8.
6: return Hl

7:
8: Function Backward(∇Hl )
9: Load Vl−1.

10: ∇Hl−1 = Vl−1 ⊙∇Hl

11: return ∇Hl−1

K EVALUATION OF DIVISION ON MULTI-LAYER PERCEPTRONS (MLPS)

We conduct experiments on the GAS dataset (Dua & Graff, 2017) (128-dimensional features, 13910
instances, 6 classification task). The classification model is a 4-layer MLP (128 neuros in the input
layer, 6 neuros in the output layer, and 64 neuros in the hidden layer); The setting of DIVISION is
B = 16 and Q = 2. The model accuracy and memory cost of activation map are given in Table 6.
It is observed that DIVISION has 7.3× compression rate with only 0.07% degradation of model
accuracy. This indicates the effectiveness of DIVISION on the MLP models.

Table 6: Model Accuracy on the GAS dataset.
Training Testing Accuracy (%) Memory (KB) Compression Rate
Normal Training 98.92 250 N/A
DIVISION 98.85 34.2 7.3×

L EVALUATION OF DIVISION ON VISION TRANSFORMERS

We conduct experiments to study the performance of DIVISION on Swin Transformer (Liu et al.,
2021a). In this experiment, a Swin Transformer-T is trained on the ImageNet datset, where DIVI-
SION is compared with Mesa (Pan et al., 2021), an ACT framework for visual transformer. The
model accuracy and memory cost (with batch-size 128) are given in Table 7. It is observed that DI-
VISION achieves almost the same model accuracy compared with normal training. This indicates
DIVISION can effectively compress the training of the vision Transformer.

Although DIVISION shows slightly lower accuracy lower than Mesa, the compression rate is signif-
icantly higher than Mesa. Moreover, DIVISION can be applied to general vision models, including
MLPs, CNNs, and vision transformers; while Mesa is explicitly designed for vision transformers.

12Vl−1 reserves the locations of each kernel-wise max-values in Hl−1.
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Table 7: Accuracy of Swin Transformer-T on the ImageNet dataset.
Method Accuracy (%) Memory (GB) Compression Rate
Normal Training 81.2 11.81 N/A
DIVISION 81.0 4.19 2.8×
Mesa 81.3 5.37 2.2×

M EVALUATION OF DIVISION ON DEPTHWISE AND POINTWISE
CONVOLUTIONAL LAYERS

To evaluate DIVISION on the depthwise convlution and pointwise convulution layers, we conduct
experiments of MobileNet-V2 on the CIFAR-10 and CIFAR-100 datasets, where the model accuracy
are given Table 8. It is observed that DIVISION achieve nearly the same accuracy compared with
normal training. This indicates the effectiveness of DIVISION for the depthwise convlution and
pointwise convulution layers.

Table 8: Accuracy of MoblieNet-V2 on the CIFAR-10 and CIFAR-100 datasets.
Method MobileNet-V2 (CIFAR-10) MoblieNet-V2 (CIFAR-100)
Normal Training 91.9 71.0
DIVISION 91.8 70.6

N RE-UTILIZATION OF HYPER-PARAMETER SETTINGS ACROSS DIFFERENT
MODEL ARCHITECTURES AND DATASESTS

We conduct the follow-up experiments to study whether the hyper-parameter setting of DIVI-
SION has a consistent effect on different model architectures and datasets. Specifically, the hyper-
parameters of DIVISION are selected from B ∈ {8, 18} and Q ∈ {2, 8} to train ResNet-18 and
MobileNet-V2 on the CIFAR-10 and CIFAR-100 datasets. The model accuracy is given in Table 9.
It is observed B and Q have a consistent impact on different model architectures and datasets: the
accuracy slightly grows with Q and considerably reduces with B. This indicates we can reuse the
hyper-parameter setting of DIVISION on CIFAR-10 to CIFAR-100 with the same model architec-
ture, or we can reuse the setting with ResNet-18 and MobileNet-V2 on the same dataset.

Table 9: Accuracy of ResNet-18 and MoblieNet-V2 with different hyper-parameter settings.
B = 18 Q = 2 B = 8 Q = 2 B = 8 Q = 8

ResNet-18 CIFAR-10 78.7 94.6 94.9
ResNet-18 CIFAR-100 73.2 76.9 77.0
MobileNet-V2 CIFAR-10 10.0 91.7 91.0
MobileNet-V2 CIFAR-100 62.4 70.6 71.6

O COMPARISON OF DIVISION WITH CHECKPOINT STRATEGY OF
MEGATRON-LM

DIVISION is compared with the checkpointing strategy of Megatron-LM (Shoeybi et al., 2019).
According to the official guideline, Megatron-LM checkpoints the activation map after each trans-
former block. We follow this strategy to checkpoint the activation map after each transformer block
in the Swin Transformer, and after each Bottleneck block in the ResNet-50. The memory cost (on
the ImageNet dataset with batch-size 128) is given in Table 10. It is observed DIVISION has a
higher compression rate (2.8× for Swin Transformer-T and 7.9× for ResNet-50) than the Check-
point strategy of Megatron-LM (2.3× for Swin Transformer-T and 2.27× for ResNet-50). This
indicates the effectiveness of DIVISION over the checkpoint strategy of Megatron-LM.
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Table 10: Memory cost of DIVISION and Checkpoint strategy of Megatron-LM.
Memory cost (GB) Normal Training DIVISION Checkpoint strategy of Megatron-LM
Swin Transformer-T 11.81 4.19 (2.8×) 5.14 (2.3×)
ResNet-50 10.62 1.35 (7.9×) 4.68 (2.27×)

P EFFECT OF BIT-WIDTH ON THE FIXED QUANTIZATION

To demonstrate the effectiveness of dual activation precision, DIVISION (B = 8, Q = 2) is com-
pared with the fixed quantization under different bit-width. The model accuracy of ResNet-50 on
the ImageNet dataset is given in Table 11. It is observed the training fails to converge to an optimal
solution under 2-bit quantization, even though it performs favorably under 4-bit and 8-bit quantiza-
tion. This result is consistent with existing work (Chen et al., 2021) (Table 3 in (Chen et al., 2021)).
In contrast, DIVISION achieves 75.9% accuracy when adopting 2-bit quantization to compress the
HFC. This indicates the effectiveness of dual activation precision in terms of the model accuracy
under low bit-width quantization.

Table 11: Model accuracy of fixed quantization under different bit-width.
Bit-width 2 4 8
Fixed Quantization 0.1 76.05 76.35
DIVISION 75.9 omit omit

Q EFFECT OF MINI-BATCH SIZE ON THE THROUGHPUT

As a supplementary of Section 5.5, a follow-up experiment is conducted to study the effect of batch-
size on the training throughput. The result on the CIFAR-10 dataset is given in Table 12. It is
observed: for the experiment w/o AMP, the throughput significantly grows as the batch-size grows
from 64 to 128, but is almost unchanged when the batch-size ≥ 128; for the experiment w/ AMP,
it grows continuously when the batch-size grows from 64 to 256, and becomes stable when the
batch-size ≥ 256.

Table 12: Traininig throughput versus the batch-size.
images/s Batchsize=64 Batchsize=128 Batchsize=256 Batchsize=512 Batchsize=1024
w/o AMP 1185.27 2184.36 2335.41 2394.84 2409.99
w/ AMP 1273.46 2285.87 3753.06 3981.95 4068.67

Intuitively, as the batch-size grows, the GPU can parallel process more images per second, until
the GPU is 100% utilized (Goyal et al., 2017). In the experiment w/o AMP, the GPU is almost
100% utilized when batch-size ≥ 128; while this happens when batch-size ≥ 256 in the experi-
ment w/ AMP. More images can be processed in the experiment w/ AMP, since it employs bfloat16
operations in the training, in contrast with the float32 operations in the training w/o AMP, where
a bfloat16 operation has nearly half of the computation cost of a float32 operation. Therefore, the
training throughput significantly grows from 2086 (images/s) to 3753 (images/s) as the batch-size
grows from 128 to 256 in the experiment w/ AMP, but is almost unchanged (2184 images/s vs 2335
images/s) in the same condition in the experiment w/o AMP.

R DETAILS ABOUT THE COMPUTATION INFRASTRUCTURE

The details about our physical computing infrastructure for testing the training memory cost and
throughput are given in Table 13.
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Table 13: Computing infrastructure for the experiments.
Device Attribute Value
Computing infrastructure GPU
GPU model Nvidia-RTX3090
GPU number 1
GPU Memory 24567 MB

S IMPLEMENTATION DETAILS OF THE EXPERIMENT IN SECTION 5.4

We give the implementation details of the experiment in Section 5.4. Specifically, DIVISION w/o
HFC takes block-size B=4 for estimating LFC; DIVISION w/o LFC takes the bit-width Q=2 for
the quantization of HFC; DIVISION combines these settings for the training; and Fixed Quant has a
2-bit per-group quantization of activation maps during the backward pass of the training, where the
group size of quantization is 256. Other training hyper-parameters are given in Table 5.
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