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ABSTRACT

Identifying time-delayed temporal latent process is crucial for understanding
temporal dynamics and enabling downstream reasoning. Although recent
methods have made remarkable progress in this field, they cannot address the
dynamics in which the influence of some latent factors on both the subsequent
latent states and the observed data can become inactive or irrelevant at different
time steps. Therefore, we introduce intermittent temporal latent processes, where:
(1) any subset of latent factors may be missing during nonlinear data generation
at any time step, and (2) the active latent factors at each step are unknown. This
framework encompasses both nonstationary and stationary transitions, accom-
modating changing or consistent active factors over time. Our work shows that
under certain assumptions, the latent variables are block-wise identifiable. With
further conditional independence assumption, each latent variable can even be
recovered up to component-wise transformations. Using this identification theory,
we propose an unsupervised approach, InterLatent , to reliably uncover the
representations of the intermittent temporal latent process. The experiments on
both synthetic and real-world datasets verify our theoretical claims.

1 INTRODUCTION

Learning meaningful representations from sequential data remains a fundamental challenge across
various fields. Time series data, such as financial markets and climate observations, are ubiquitous
and exhibit high nonlinearity Berzuini et al. (2012); Ghysels et al. (2016). This inspires a extensive
line of works to temporal latent representation learning Yao et al. (2022b;a); Chen et al. (2024),
upon the recent advancement in nonlinear ICA Khemakhem et al. (2020); Zhang et al.; Kong et al.
(2022); Zheng et al. (2022); Li et al. (2023); von Kügelgen et al. (2024); Ng et al. (2023); Zheng
& Zhang (2024); Morioka & Hyvarinen (2024); Yao et al. (2024); Zheng et al. (2024); Kong et al.
(2024); Lachapelle et al. (2024a). However, many real-world systems exhibit latent time-delayed
dynamics where the influence of certain latent factors on both subsequent latent states and
observed data can be inactive or irrelevant at specific time steps. Consider, for example, a complex
manufacturing process: various machine components contribute to the final product quality at
different stages, with some components becoming temporarily inactive or irrelevant during certain
production phases. Current works may struggle to capture these intermittent influences, potentially
missing crucial aspects of the underlying dynamics. This highlights the need for a more flexible
and robust framework to identify such temporal processes with intermittence of latent variables.

In this work, we investigate the identification of representations of intermittent temporal latent pro-
cesses. Two key properties characterize the intermittence of a temporal latent process: (1) any subset
of latent factors can be missing during the nonlinear time-delayed data generation at any time step,
and (2) the specific set of active latent factors at a time step is unknown. Figure 1 takes an example
of data generating mechanism of an intermittent latent temporal process to illustrate its concept. In
the transition mechanism (top of Figure 1b), we see the zero entries in Jacobians indicating that
not all latent variables influence each other’s transitions. Similarly, in the generating mechanism
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(bottom of Figure 1b), the sparse Jacobians show that not all latent variables contribute to every
observed variable. We define the “support” as the set of active latent factors at each time step, for
both the transition and generating mechanisms. “Missingness” occurs when a latent factor is absent
from the support, having no influence on the subsequent latent state or the observed data.

The intermittent nature of these processes presents two significant challenges for representation
learning: (1) The supports for both transition and generating mechanisms are unknown, requiring
methods to adapt to the data generated by only active latent factors at each time step. (2) The in-
teractions between intermittently active latent variables may be intricate and time-varying in both
mechanisms, necessitating the models that can capture the possible various support and missingness.
The existing literature has yet to fully address these challenges. Wiedemer et al. (2024) relies on
compositional mixing functions and requires supervision on the latent variables. Lachapelle et al.
(2023); Fumero et al. (2023); Xu et al. (2024) are restricted to linear or piecewise linear settings.
CaRiNG Chen et al. (2024) tackles missingness only within the mixing function by leveraging his-
torical information during the unmixing process.

In contrast to previous works, we present identification guarantees for uncovering intermittent tem-
poral latent processes. Our theoretical analysis begins with establishing block-wise identifiability
under assumptions of sufficient variability of transitions of latent variables (Theorem 1). Block-wise
identifiability ensures that blocks of true latent variables can be uniquely recovered from estimated
latent variables up to a certain indeterminacy. Notably, this outcome holds regardless of whether
latent variables are within the support or missingness. Building on this foundation, we further
prove component-wise identifiability for latent variables within the support in Theorem 2, given
an additional assumption of independence of latent variables conditioning on previous time steps.
Component-wise identifiability guarantees that each individual component within the support can
be uniquely recovered from estimated latent variables up to a certain indeterminacy. Moreover, our
identifiability results are able to handle both nonstationary and stationary temporal latent process,
allowing for changing or consistent active factors over time without compromising identifiability
guarantees. These theoretical contributions establish, to the best of our knowledge, one of the first
general frameworks for uncovering latent variables in intermittent temporal processes with appro-
priate identifiability guarantees.

Leveraging these theoretical insights, we introduce a novel unsupervised method that extends
the Sequential Variational Autoencoder Li & Mandt (2018). Our method, InterLatent ,
accommodates supports and missingnesses through sparsity regularizations on both mixing and
transition functions, enabling it to model complex interactions between intermittently active latent
variables and handle sparse, temporally variable latent spaces. We evaluate our approach on
synthetic and real-world datasets, demonstrating its effectiveness in uncovering complex hidden
temporal processes, as well as validating the proposed identifiability theory.

2 PROBLEM SETTING

Given a temporal sequence ranging from t = 1 to t = T , let x = {x1,x2, . . . ,xT } denote the
K-dimensional observations. At each time step t, N latent causal variables zt = {z1t , . . . , zNt }
generate xt ∈ RK . We formalize the data generating process as follows:

xt = g(zt), znt = fn(Pa(znt ), ϵ
n
t ) for n ∈ [1, N ] (1)

Here, g is assumed to be an injective, nonlinear, non-parametric mixing function: RN → RK . In
this work, we work on the undercomplete case, where K ≥ N to ensure the injectivity of g. fn
denotes the nonlinear, nonparametric time-delayed transition function for the n-th latent variable.
Pa(znt ) represents the parent nodes of znt from previous time steps. Without loss of generality, we
assume a time lag of 1 in Eq. equation 1, i.e., Pa(znt ) ⊂ zt−1. The general case of multiple lags
and sequence lengths is discussed in Appendix B.1. ϵnt is the noise term, sampled independently for
each znt from a standard normal distribution N (0, 1).

We are now ready to introduce the intermittent temporal latent process upon the concept of miss-
ingness of latent variables. In particular, not all components of zt participate in the data generating
process at a time step. Formally, there exists a u ∈ [1, N ] such that the u-th row of Jacobian of the
transition function fu, denoted as Ju,:

f,t , and the u-th column of the Jacobian of the mixing function,
J :,u
g,t , are zero. This implies that when zut is missing, it neither receives influence from zt−1 nor
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exerts influence on zt+1 or xt in the data generation process. Figure 1 illustrates this concept, where
z12 and z23 are examples of such missing latent variables.

The “non-missing” indices of zt help to define the support of the data generating process in Eq. 1
by:

st := {i ∈ [1, N ] | ∃zt−1 and zt, J
:,i
g,t(zt) ̸= 0 ∧ J i,:

f,t(zt−1) ̸= 0 ∧ J :,i
f,t+1(zt) ̸= 0} (2)

A similar formulation can define the missingness of zt by sct . We assume that st and sct partition the
index set [1, N ]

sct := {u ∈ [1, N ] | ∃zt−1 and zt, J
:,u
g,t (zt) = 0 ∧ Ju,:

f,t (zt−1) = 0 ∧ J :,u
f,t+1(zt) = 0} (3)

Figure 1: Data generations of Intermittent Temporal Latent
Process and its Jacobian Structures for a three-step sequence,
e.g., z13 means the latent variable z1 at t = 3. (a) illus-
trates the connections between time steps and how zt gener-
ates xt in intermittent temporal latent process. (b) Jacobian
structures reveals the definition of support and missingness
in Eq. 2 and Eq. 3 by • and 0, respectively.

Equations 2 and 3 sets the stage
for identifying zt by characterizing
a sparse support at t of both transi-
tion and mixing functions. Specif-
ically, there may exist latent vari-
ables {zut |u ∈ sct} that do not par-
ticipate in the data generating pro-
cess described in Eq. 1. The zero en-
tries in the Jacobian matrices of both
the transition and mixing functions,
as illustrated in Figure 1(b), provide
a clear visual representation of this
sparsity. Let dt = |st| denote the
cardinality of st, and consequently,
|sct | = dct = N − dt. In our anal-
ysis, we assume both st and sct are
non-empty for all time steps t. The
case where sct = ∅ can be considered
a special instance of the intermittent
temporal latent process. It is worth-
noting that the mixing function g it-
self remains unchanged across time
steps - only its Jacobian structure
varies based on the missingness in zt. To illustrate this, we give an example in the following.
Let g(zt) = sinh(zt) as our mixing function. When certain components of zt are missing, the
corresponding columns in the Jacobian become zero, but g remains the same function. For instance,
let us say N = 2, and K = 2, if z2t is missing at time t, the jacobian of the mixing function is:

∂g
∂zt

=

∂x1
t

z1
t

= cosh(z1t ) 0
∂x2

t

∂z1
t
= cosh(z1t ) 0


In order to introduce our identification resutls, we define the observational equivalence next.

Definition 1 (Observational Equivalence): Given a sequence of observed variables x =
{x1,x2, . . . ,xT } for t = 1 to T , let the true temporally causal latent process be specified by
f, g, p(ϵ) as in Eq. equation 1. A learned generative model f̂ , ĝ, p(ϵ̂) is observationally equivalent
to the ground truth if the model distribution matches the data distribution everywhere:

pf̂ ,ĝ,p(ϵ̂)(x1:T ) = pf,g,p(ϵ)(x1:T ) (4)

Both the mixing function and transition functions can be recovered (up to certain indeterminacies)
once zt is identified as we assume the injectivity of g and no latent causal confounders, respectively.

Suppose there exists an invertible mapping h, such that ẑt = h(zt). We further provide the definition
of block-wise identifiability and component-wise idenfiability in the following

Definition 2 (Block-wise Identifiability): h is considered block-wise identifiable if, given a block
of the true latent variables zBt , there exists an unique partitioning B′ of ẑt that matches zBt up to a
permutation π, such that ẑB

′

t = hB(π(zBt )). h
B is invertible, and its domain is zBt ∈ R|B|.
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Definition 3 (Component-wise Identifiability): For an individual component of the latent vari-
ables znt , there exists a unique component n′ of ẑt matches znt up to a permutation π, such that
ẑn

′

t = hn(π(znt )), where hn is invertible with a domain zt ∈ RN . znt is component-wise identifi-
able.

3 IDENTIFIABILITY THEORY

This section presents our identifiability results. We first leverage the assumptions of sufficient vari-
ability of temporal data and support sparsity to establish block-wise identifiability, as detailed in
Theorem 1. Building upon this foundation, we then demonstrate component-wise identifiability of
latent variables by exploiting conditional independence assumptions, as formalized in Theorem 2.

3.1 BLOCK-WISE IDENTIFIABILITY

Eq. 2 and 3 enable the partitioning of zt into two subsets: {zit|i ∈ st} and {zut |u ∈ sct}. We now
present our findings on the block-wise identifiability of these subsets:

Theorem 1 For the observations xt ∈ RK and estimated latent variables zt ∈ Z ⊆ RN , and
ẑ ∈ Ẑ ⊆ RN , suppose that there exist functions ĝ and f̂ satisfying observational equivalence in
Eq. 4 If the following assumptions and regularization hold:

i (Smoothness and positivity): The probability density function of the latent causal variables,
p(zt), has positive measure in the space of zt and is twice continuously differentiable.

ii (Path connected): For any z0, z1 ∈ Z , there is a continous function ϕ : [0, 1] → Z , s.t.
ϕ(0) = z0 and ϕ(1) = z1 .

iii (Sufficient variability of zt and ẑt): Let q(zt|zt−1) = log p(zt|zt−1), as well as q(ẑt|ẑt−1) =
log p(ẑt|ẑt−1), and Hzt,zt−1

q(zt|zt−1) denotes the Hessian matrix of q(zt|zt−1) w.r.t. zt
and zt−1. Suppose Gzt ∈ {0, 1}N×N as a binary adjacency matrix that indicates the ex-
istence of the transitions from zt−1 and zt, where Gzt

i1,i2 = 1 means that there exists a
transition from zi1t−1 to zi2t . We assume that: span{Hzt,zt−1

q(zt|zt−1)}dt
j=1 = Rdt×dt

Gzt and

span{Hẑt,ẑt−1
q(ẑt|ẑt−1)}d̂t

j=1 = Rd̂t×d̂t

Ĝẑt
.

iv (Support sparsity regularization): For any time step t, st is not an empty set, d̂t ≤ dt

There exists a permutation σ, such that

ŝt = σ(st) and ŝct = σ(sct).

In other words, ∀i, {zit|i ∈ st} are paritial identifiable from ∀u, {zut |u ∈ sct}.

Proof sketch The complete proof is provided in the Appendix B.1. Here, we outline the key steps:
First, let p(zt|zt−1) be the ground-truth transition pdf and p(ẑt|ẑt−1) be the estimated transition
pdf. Define q(zt|zt−1) = log p(zt|zt−1) and q(ẑt|ẑt−1) = log p(ẑt|ẑt−1). Using h defined in
ẑt = h(zt) helps us derive: Hẑt,ẑt−1

q(ẑt|ẑt−1) = (Jh−1(ẑt))
⊺Hzt,zt−1

q(zt|zt−1)Jh−1(ẑt−1),
where H denotes the Hessian matrix and Jh−1 is the inverse Jacobian of h. We further leverage the
sufficient variability assumption to establish a connection between the support sets st and ŝt, as well
as their complements sct and ŝct , respectively. By incorporating the support sparsity regularization
d̂t ≤ dt, we conclude the block-wise identifiability of both ∀i, {zit|i ∈ st} and ∀u, {zut |u ∈ sct}.

Remarks Assumptions i and ii have been commonly adopted for the identification theory Chen et al.
(2024); Lachapelle et al. (2024b). These assumptions provide the foundations to present Theorem 1,
which concerns the transitions from zt−1 to zt over the space Z .

Recall that this work does not require all components of zt to actively participate in the data gener-
ation process. The crux of our identification approach lies in formalizing the relationships between
the support sets st and ŝt, as well as their complements sct and ŝct . To this end, we further intro-
duce the sufficient variability in assumption iii to ensure the span of the Hessian matrices of the
log-transition probabilities covers the full space of ∀i, {zit|i ∈ st}. We can thus establish our main
result on partial identifiability by leveraging support sparsity regularization to reach our conclusion
of the block-wise identifiability.
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Notably, we do not assume the invariance of the support set st over time. Regardless of whether
st changes or remains constant, we demonstrate in Section 3.2 that for all i, {zit|i ∈ st} can be
recovered up to a component-wise invertible transformation and a permutation.

3.2 COMPONENT-WISE IDENTIFIABILITY

In this section, we exploit the conditional independence assumption to establish the component-wise
identifiability of {zit|i ∈ st}.

Theorem 2 Let all assumptions from the Theorem 1 hold. Additionally, suppose the following
assumption is exposed to data generating process in Eq. 1 as well:

i (Conditional independence): At t, we assume that each component of zt is conditional indepen-
dent given the previous latent variables zt−1. For any i1, i2 ∈ [N ]:

zi1t ⊥⊥ zi2t |zt−1 (5)

Then {ẑjt |j ∈ ŝt} must be a component-wise transformation of a permuted version of true {zit|i ∈
st}.

Proof Sketch: Our main idea rests on proving component-wise identifiability by contradiction. We
demonstrate that if component-wise identifiability does not hold, it would violate the conditional in-
dependence assumption. More specifically, The proof proceeds as follows: 1. From the Theorem 1,
we have: Hẑt,ẑt−1

q(ẑt|ẑt−1) = (Jh−1(ẑt))
⊺Hzt,zt−1q(zt|zt−1)Jh−1(ẑt−1); 2. the conditional in-

dependence of q(zt|zt−1) as established in Eq. 5 only hold if J−1
h (ẑt) is a diagonal matrix.

Remarks: The conditional independence is widely adopted in identification results for time-series
data, as evidenced in recent works Yao et al. (2022b;a); Chen et al. (2024). Our analysis demon-
strates that this regularization plays a crucial role in establishing our identification results.

The conclusions derived from Theorem 1 and Theorem 2 are applicable to both stationary and non-
stationary processes. We consider the process is nonstationary if the support sets st and sct vary over
time since the transition from zt−1 to zt changes as well. Conversely, the process is stationary if
these support sets remains unchanged over time. Our framework allows for temporal variation in the
support sets st and their complements sct , subject only to the constraint that neither is an empty set
at any time point.

Our proposed data generating process encompasses previous models as special cases. For instance,
if we remove the intermittent feature described in Eq. 2 and Eq. 3, our model reduces to LEAP Yao
et al. (2022b) without the domain index. When handling non-stationary sequences, our identifia-
bility results removes the assumption of known auxiliary variables, which is required by Yao et al.
(2022b;a); Chen et al. (2024).

4 INTERLATENT APPROACH

Building upon our identifiability results, we now introduce InterLatent to estimate the latent causal
variables. Our approach aims to achieve the observational equivalence by modeling the support
sparsity and the conditional independence assumptions for the data generating process in Eq. 1. In
general, InterLatent formalizes the probabilistic joint distribution of Eq. 1 as:

p(x1:T , z1:T ) = pγ(x1|z1)pϕ(z1)
T∏

t=2

pγ(xt|zt)pϕ(zt|zt−1). (6)

where γ denotes the parameters for the mixing function g, and ϕ denotes the parameters for the
transition function f . To learn zt from the observations xt, we also introduce the encoder qω(zt|xt)
with parameters ω. We build our approach upon Sequential Variational Auto-Encoders Li & Mandt
(2018). Figure 2 illustrates the overall framework of InterLatent . In what follows, we introduce
each part of our network individually.
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4.1 NETWORK DESIGN

Eq. 6 suggests that the architecture of InterLatent comprises of three key components. The encoder
acquires latent causal representations by inferring qω(ẑt|xt) from observations. These learned latent
variables are then used by the step-to-step decoder pγ(x̂t|ẑt) to reconstruct the observations, imple-
menting the mixing function g in Eq. 1. To learn the latent variables, we constrain them through the
KL divergence between their posterior distribution and a prior distribution, which is estimated using
a normalizing flow that converts the prior into Gaussian noise. A detailed exploration of all modules
is forthcoming.

Figure 2: The overall framework of
InterLatent consists of: (1) an en-
coder that maps observations xt to la-
tent variables ẑt (t ∈ [1, T ]), (2) a de-
coder that reconstructs observations x̂t

(t ∈ [1, T ]) from zt, and (3) a tempo-
ral prior estimation module that models
the transition dynamics between latent
states. We train InterLatent by LRecon
along LKLD. ϵ̂t (t ∈ [1, T ]) denotes
the estimation of the true noise terms
ϵt (t ∈ [1, T ]).

Encoder qω(ẑt|xt): We assume ẑt is independent of ẑt′
conditioning on x, where t ̸= t′. Therefore, the decom-
position of joint probability distribution of the posterior

is qω(ẑ|x) =
T∏

t=1
qω(ẑt|xt). We choose to approximate

q by an isotropic Gaussian characterized by mean µt and
covariance σt. To learn the posterior we use an encoder
composed of an MLP followed by leaky ReLU activation:

ẑt ∼ N (µt, σt), µt, σt = LeakyReLU(MLP(xt)). (7)

Temporal Prior Estimation pϕ(zt|zt−1): To enforce the
conditional independence assumption in Eq. 5, we min-
imize the KL divergence between the posterior distribu-
tion and a prior distribution. This approach encourages the
posterior to adopt the independence property as well, such
that ẑt|xt are mutually independent. To address the chal-
lenges of directly estimating the arbitrary density function
pϕ(zt|zt−1), we introduce a transition prior module based
on normalizing flows. This design represents the prior
as a Gaussian distribution transformed by the Jacobian of
the transition function, enabling efficient computing. For-
mally, ∀j, {ẑjt |j ∈ ŝt}, we formulate the prior module as
ϵ̂jt = f̂−1

j (ẑjt |ẑt−1). This computation meets the require-
ment that fn to be invertible. Then the prior distribution of the j-th dimension of the temporal

dynamics, ẑjt , can be computed as pϕ(ϵ̂
j
t )|

∂f̂j
−1

∂ẑj
t

| = pϕ(f̂
−1
j (ẑjt |ẑt−1))|∂f̂j

−1

∂ẑj
t

|.

In addition, for any v, such that {ẑvt |v ∈ ŝct}, we evaluate that ϵ̂vt = f̂−1
v (ẑvt ). The prior distribution

is calculated by pϕ(ϵ̂
v
t )|

∂f̂v
−1

∂ẑv
t

| = pϕ(f̂
−1
v (ẑvt ))|

∂f̂v
−1

∂ẑv
t

| as ẑvt is independent of ẑt−1. Combing
together, the total prior distribution is:

pϕ(ẑt|ẑt−1) =

N∏
n=1

pϕ(ϵ̂
n
t )|

∂f̂−1
n

∂ẑnt
| (8)

The flow model f in Eq. 8 is built with the MLP layers. For more details on the derivations of prior
estimation, please refer to Appendix C.1.

Decoder pγ(x̂t|ẑt): The decoder pairs with our encoder to generate an reconstruct of the observation
x̂t from the estimated latent variables ẑt, which consists of a stacked MLP followed by leaky ReLU
activation:

x̂t = LeakyReLU(MLP(ẑt)). (9)

4.2 LEARNING OBJECTIVE

In this work, we extend our learning objective from Sequential Variational Autoencoder Li & Mandt
(2018) with a modified ELBO. In general, the ELBO implements the observational equivalence
requirement from Definition 1, which ensures our learned model matches the data-generating distri-
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Figure 3: Mean Correlation Coefficient (MCC) scores for various methods for both ”Nonstationary”
and ”Stationary” settings. dc means the size of sct in a sequence. Higher MCC scores indicate better
performance in identifying latent variables.

bution. We formulate the entire ELBO objective in the following:

LELBO =

T∑
t=1

Eẑt∼qω log pγ(x̂t|ẑt)︸ ︷︷ ︸
LRecon

−
T∑

t=1

βEẑt∼qω

(
log q (ẑt|xt)− log pϕ(ẑt|ẑt−1)

)
︸ ︷︷ ︸

LKLD

+

T∑
t=1

(|Jĝ,t|2,1 + |Jf̂ ,t|1,1) +
T∑

t=2

|Jf̂ ,t|2,1︸ ︷︷ ︸
Sparsity Regularization

(10)

where β is the hyperparameter to balance the two losses. The reconstruction loss LRecon minimizes
the discrepancy between xt and x̂t using mean-squared error.

The KL divergence loss LKLD serves dual theoretical purposes. It enforces the conditional inde-
pendence assumption from Theorem 2 through the factorized prior pϕ(ẑt|ẑt−1) by Eq. 8, while
simultaneously satisfying the sufficient variability assumption from Theorem 1 by encouraging di-
verse transitions in the latent space. When computing LKLD, we follow Yao et al. (2022a); Chen
et al. (2024) employ a sampling method since the prior distribution lacks an explicit form.

The sparsity regularization implements the support sparsity of intermittent sequences through three
terms. The L1 norm on decoder Jacobian columns Jĝ,t|2,1 enforces sparse mixing patterns. The L1
norm on transition Jacobian rows ||Jf̂ ,t|1,1 ensures sparse transitions from zt−1 to zt. The L1 norm
on transition Jacobian columns |Jf̂ ,t|2,1 maintains consistent sparsity structure. Following standard
practice, we use these L1 norms to approximate the L0 norm for differentiability.

5 EXPERIMENTS

5.1 SYNTHETIC EXPERIMENTS

Experimental Setup To evaluate InterLatent ability to learn causal processes and identify
latent variables in non-invertible scenarios, we conduct simulation experiments using random causal
structures with specified sample and variable sizes. We generate synthetic dataset satisfying the
identifiability assumptions outlined in Theorem 1 and 2 (details in Appendix D.1), considering both
nonstationary (st varying across the sequence) and stationary (st constant throughout) settings.
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Figure 4: Visualization of the correlations between zt and ẑt at time steps t = 2, 5, and 8. The top
row represents a scatter plot on a nonstationary sequence, while the bottom row depicts a scatter
plot on a stationary sequence. The red bounding boxes depicts the missing part of zt, i.e, {zu|u ∈
sct}. The green bounding boxes highlight the latent variables that are component-wise identified for
{zit|i ∈ st}. The results confirm that InterLatent successfully identifies {zit|i ∈ st} in both
nonstationary and stationary sequences. Also, we can observe that {zu|u ∈ sct} is distinguishable
from {zit|i ∈ st}.

For each setting, we generate three scenarios of sequences, resulting in six scenarios in total.
Each scenario has a particular value of dct . This design allows us to assess the performance of
InterLatent under different complexities of missingness. The Mean Correlation Coefficient
(MCC) serves as our evaluation metric, measuring latent factor recovery by computing absolute cor-
relation coefficients between ground-truth and estimated latent variables. MCC scores range from 0
to 1, with higher values indicating better identifiability.

Results Figure 3 summarizes our main results on our simulations. We evaluate InterLatent
against several state-of-the-art approaches in identifying time-series causal variables and represen-
tation learning, such as LEAP Yao et al. (2022b), TDRL Yao et al. (2022a) and CaRiNG Chen
et al. (2024). Additionally, we include classic representation learning approaches, such as BetaVAE
Higgins et al. (2016), i-VAE Khemakhem et al. (2020) and SlowVAE Klindt et al. (2020).

The results from Figure 3 demonstrate that InterLatent consistently achieves higher Mean Cor-
relation Coefficient (MCC) across both nonstationary and stationary scenarios. For instance, in the
nonstationary sequence with dct = 1, InterLatent outperforms all other methods by a substan-
tial margin, exceeding 0.1 in MCC. We attribute the superior performance of InterLatent to its
capability of handling missingness in zt, a feature not present in the comparative methods. This key
distinction enables our approach to more accurately capture the temporal dynamics of the latent vari-
ables. Figure 4 visualizes the disentanglement between the true latent variable and the estimations
at different time steps from a sequence.

Ablation Study and Discussions To elucidate the key assumptions of our data generating process
in Eq. 1, we further conduct ablation study focusing on the impact of sparse support. We introduce
three baselines: (1) “W/O s of f”, which removes sparsity regularization on transition functions;
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(2) “W/O s of g”, which removes sparsity regularization on mixing functions; (3) “WS”, a weakly
supervised variant drops all sparse regularizations as having access to st and sct during training.

We summarize our experimental results in Figure 3. InterLatent obtains the scores on par with
“WS” baseline. This speaks the effectiveness of using the sparsity regularization terms against
using st and sct for g and f directly. The “W/O S of f” baseline, which assumes sct = ∅, yields
a significantly lower Mean Correlation Coefficient (MCC) compared to InterLatent approach.
Similarly, “W/O S of g” fails to achieve competitive results due to its disregard for missingness in
the mixing function. These outcomes confirm that without accounting for missing components, the
baselines are unable to adequately model our simulated data.

5.2 REAL-WORLD EXPERIMENTS

Task setup To evaluate our proposed identification theories in complex real-world scenarios, we
apply them to the task of Group Activity Recognition (GAR) using the Volleyball dataset Ibrahim
et al. (2016). GAR aims to categorize the activity for an individual frames in multi-actor scenes,
aligning well with our scenario of intermittent temporal latent processes. This is because not all
actors participate in every activity, reflecting real-world dynamics where some may be occluded
or out of view in fast-evolving sporting scenarios. In our implementation, each actor at a given
time point is modeled as a specific component of the latent variables, with occluded or out-of-view
actors treated as ”missing” in the activity representations. This setup provides a solid testbed for our
identification theory, allowing us to assess its robustness and effectiveness in handling real-world
complexities such as partial observations and dynamic participant involvement.

Let x = {xn
t }

T,N
t=1,n=1 denote a video consisting of T -frame observations and N agents. For each

time step t and agent n, there exists a latent variable znt ∈ {znt }
T,N
t=1,n=1 that generates xn

t according
to Equation 1.

We take inspirations from the two-phase training pipeline from Li et al. (2024) to modify our train-
ing objective. First, we train InterLatent using the objective function defined in Eq. 10. Sub-
sequently, a classifier ĉ predicts the one-hot activity label ŷ from the learned sequence of latent
representations ẑ1:T using an MLP: ŷ = MLP(Concat(ẑ1:T )). The classifier is trained using a cross-
entropy loss with a L1 regularization on its Jacobian: LCE

cls = −Eŷ

(
one-hot(y) · log(softmax(ŷ))

)
+

|Jĉ|2,1, where one-hot(y) denotes the one-hot embedding of the true activity label. More data pre-
processing details can be found in Appendix D.2.

Methods MCA
SACRF Pramono et al. (2020) 83.3
AT Gavrilyuk et al. (2020) 84.3
SAM Yan et al. (2020) 86.3
DIN Yuan et al. (2021) 86.5
DFGAR Kim et al. (2022) 90.5
HiGCIN Yan et al. (2023) 91.4
PAP Nakatani et al. (2024) 91.8
Dual-AI Han et al. (2022) 93.2
BiCausal Zhang et al. (2024) 93.4
TDRL Yao et al. (2022a) 92.9
CaRiNG Chen et al. (2024) 94.0
InterLatent 95.7

Table 1: Comparison with the
state-of-the-art methods on Volle-
ball dataset

Data and Comparing Methods The Volleyball dataset
Ibrahim et al. (2016) contains 55 video recordings of vol-
leyball games and is split into 3493 training clips and 1337
testing clips. The center frame of each clip is annotated with
one group activity label out of eight labels (i.e. right set, right
spike, right pass, right winpoint, left set, left spike, left pass,
and left winpoint).

The comparing methods include the state-of-the-art methods
on GAR task, such as SAM Yan et al. (2020), AT Gavrilyuk
et al. (2020), ASACRF Pramono et al. (2020), DIN Yuan et al.
(2021), DFGAR Kim et al. (2022), HiGCIN Yan et al. (2023),
PAP Nakatani et al. (2024), and BiCausal Zhang et al. (2024).
We also benchmark against TDRL Yao et al. (2022a) and
CaRiNG Chen et al. (2024) to evaluate the efficacy of iden-
tifying the intermittent temporal latent process. For fair com-
parisons, InterLatent adopts the ResNet-18 backbone He
et al. (2016) and weakly supervised setting from Yan et al.
(2020) for feature extractions from the RGB frames, which is also commonly utilized by other ap-
proaches.

Results and Discussions Table 1 presents a comparison of Multi-class Classification Accuracy
(MCA) on the Volleyball dataset. Notably, InterLatent demonstrates superior performance with
respect to those do not consider the missingness in both transition and mixing functions, i.e., CaR-
iNG and TDRL. For example, InterLatent achieves the highest accuracy of 95.7, significantly
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a b

c d

Figure 5: The visual examples of InterLatent on Volleyball dataset. Highlighted frames show
the annotated activity, with yellow bounding boxes indicating occluded actors. InterLatent
correctly predicts the three activities but misclassifies a video of left spike” as left set”. Note that the
spike activity is performed by a actor that is severely occluded. This implies the misclassification
may stem from that the label itself is not grounded by the true process.

surpassing the previous best result of 94.0 obtained by CaRiNG. InterLatent also outperforms
the state-of-the-art approaches on GAR, such as Dual-AI and BiCausal by significant margins of 2.5
and 2.3 points, respectively.

Figure 5 illustrates the visual examples of activity classification outcomes produced by
InterLatent . The model demonstrates robust performance in handling occlusion-induced miss-
ingness, accurately categorizing activities in challenging scenarios. Figure 5a∼ 5c showcase suc-
cessful classifications of “right set”, “left set” and “left pass” respectively, despite partial occlusions
of key players. We also present a failure case in Figure 5d, where InterLatent misclassifies
a “left spike” as a “left set.” However, this misclassification stems from that the label itself is not
grounded by the true process, since the spike activity is performed by a player that is severely oc-
cluded.

6 CONCLUSION

We establish a set of novel identifiability results for intermittent latent temporal processes, extend-
ing the identifiability theory to scenarios where latent factors may be missing or inactive at different
time steps. Specifically, we prove block-wise identifiability under assumptions on support spar-
sity, and further demonstrate component-wise identifiability within the support given conditional
independence assumption. These results hold for both nonstationary and stationary transitions, ac-
commodating a wide range of real-world temporal dynamics. Our theoretical findings are validated
through experiments on both synthetic and real-world datasets, demonstrating the practical applica-
bility of our approach. The proposed InterLatent framework not only advances our understanding
of complex temporal processes but also provides a principled method for uncovering hidden struc-
tures in time-delayed systems with variable latent factor participation. Future work could explore
the application of this framework to related tasks such as temporal disentanglement, transfer learn-
ing in time series data, and causal discovery in dynamic systems. While we have demonstrated the
effectiveness of our approach on visual-based task, the lack of other applications is a limitation of
this work.
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A NOTIONS

Table of notions

Data and estimations

xt ∈ RK Observations x̂t ∈ RK Reconstructions
zt ∈ RN Latent variables ẑt ∈ RN Latent variable estimations
ϵt True noise term ϵ̂t Estimated noise term
st The support of zt ŝt The support of ẑt
sct The missingness of zt ŝct The missingness of ẑt
dt The cardinality of st d̂t The cardinality of ŝt
dct The cardinality of sct d̂ct The cardinality of ŝct

Indices

t ∈ [1, T ] Time step n ∈ [N ] The indices of zt
i ∈ st The indices of zt within st j ∈ ŝt The indices of ẑt within ŝt

u ∈ sct The indices of zt within sct v ∈ ŝct The indices of ẑt within ŝct

Ground-truth & Learned model

g True mixing function ĝ Learned mixing function
f True transition function f̂ Learned transition function
Jg Jacobian of g Jĝ Jacobian of ĝ
Jf Jacobian of f Jf̂ Jacobian of f̂

Optimizations

ϕ True parameters of f ϕ̂ Learned parameters of f̂
γ True parameters of g γ̂ Learned parameters of ĝ
ω True parameters of encoder ω̂ Learned parameters of encoder
| ∗ |2,1 L1 norm on columns of ∗ | ∗ |1,1 L1 norm on rows of ∗

B PROOF OF THEOREM1 AND THEOREM2

In this section, we provide proof of our identifiability results in Theorem1 and Theorem2. To this
end, we take insiprations from Lemma B.1 of Lachapelle et al. (2023) to present a Lemma that is
throughout our proof.

Lemma 1 (Invertible matrix contains a permutation) Let L ∈ RN×N be an invertible matrix.
Then, there exists a permutation σ such that Ln,σ(n) ̸= 0 for all n, In other words, P⊺ ⊂ L where
P is the permutation matrix associated with σ, i.e. Pen = eσ(n).

Proof: Since the matrix L is invertible, its determinant is nonzero. We can obtain the following with
the assistance of Leibniz formula:

|det L| =
∑
σ∈S

sign(σ)
∏
i

Ln,σ(n) ̸= 0 (11)

where S denotes a set of permutation. Eq. 11 suggests that at least one term of the sum is non-zero,
meaning there exists σ ∈ S, such that ∀n,Ln,σ(n) ̸= 0.

B.1 PROOF OF THEOREM 1

Theorem 1 is where most of the theoretical contribution of this work lies. Let us recall Theorem 1:
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Theorem 1 (Block-wise identifiability): For the observations xt ∈ RK and estimated latent vari-
ables ẑt ∈ RN , suppose there exist functions ĝ satisfying observational equivalence in Eq. 4 If the
following assumptions and regularization hold:

i (Smoothness and positivity): The probability density function of the latent causal variables,
p(zt), has positive measure in the space of zt and is twice continuously differentiable.

ii (Path connected): For any z0, z1 ∈ Z , there is a continous function ϕ : [0, 1] → Z , s.t.
ϕ(0) = z0 and ϕ(1) = z1 .

iii (Sufficient variability of zt and ẑt): Let q(zt|zt−1) = log p(zt|zt−1), as well as q(ẑt|ẑt−1) =
log p(ẑt|ẑt−1), and Hzt,zt−1

q(zt|zt−1) denotes the Hessian matrix of q(zt|zt−1) w.r.t. zt and
zt−1. Suppose Gzt ∈ {0, 1}N×N as a binary adjacency matrix that indicates the existence of
the transitions from zt−1 and zt. Gzt

i1,i2 = 1 means that there exists a transition from zi1t−1 to zi2t .

We assume that: span{Hzt,zt−1
q(zt|zt−1)}dt

i=1 = Rdt×dt

Gzt and span{Hẑt,ẑt−1
q(ẑt|ẑt−1)}d̂t

j=1 =

Rd̂t×d̂t

Ĝẑt

iv (Support sparsity regularization): For any time step t, st is not an empty set, d̂t ≤ dt

There exists a permutation σ, such that

ŝt = σ(st) and ŝct = σ(sct)

In other words, both ∀i, {zit|i ∈ st} and ∀u, {zut |u ∈ sct} are block-wise identifiable.

Proof: Taking inspirations from Zheng & Zhang (2024), applying the chain rule to our definition in
Definition 1 leads to:

xt = x̂t =⇒ g(zt) = g(h−1(ẑt)) = ĝ(ẑt) =⇒ Jg(zt) · Jh−1(ẑt) = Jĝ(ẑt), (12)

where Jg , Jh−1 , and Jĝ denote the Jacobian matrices of g, h−1, and ĝ, respectively. Eq. 12 provides
a rigorous definition of observational equivalence in the context of intermittent temporal latent pro-
cesses, establishing the relationship between the true and learned models through their distributions
and Jacobians.

We follow Yao et al. (2022b;a); Song et al. (2023); Chen et al. (2024); Song et al. (2024) to connect
Jh−1(ẑt) in Eq. 12 with the transition probability density function p(zt|zt−1) as we work on identi-
fication over the time-series data. Given the fact that p(zt|zt−1) = p(zt|g(zt−1)) = p(zt|xt−1) as
well as p(ẑt|ẑt−1) = p(ẑt|g(ẑt−1)) = p(zt|xt−1), we are able to map (xt−1, zt) to (xt−1, ẑt) with

the jaocbian
(
I 0
0 Jh(zt)

)
:

p(zt|xt−1) = p(ẑt|x̂t−1)|det Jh(zt)| ⇒ p(zt|zt−1) = p(ẑt|ẑt−1)|detJh(zt)|, (13)

where h is an invertible mapping, such that ẑt = h(zt). |det Jh(zt)| denotes the determinant of
h(zt).

Taking the logarithm on both sides of Eq. 13, we have:

log p(zt|zt−1)− log |det Jh(zt)| = log p(ẑt|ẑt−1). (14)

We replace q(ẑt|ẑt−1) = log p(ẑt|ẑt−1)) as well as q(zt|zt−1) = log p(zt|zt−1), and calculate the
Hessian with ẑt and ẑt−1 on both sides of Eq. 14 using change-of-variable and chain rule:

Hẑt,ẑt−1
q(ẑt|ẑt−1) = (Jh−1(ẑt))

⊺Hzt,zt−1q(zt|zt−1)Jh−1(ẑt−1). (15)

We can rewrite Eq. 15 based on assumption iii by:

span{Hẑt,ẑt−1
q(ẑt|ẑt−1)}d̂t

j=1 = (Jh−1(ẑt))
⊺span{Hzt,zt−1q(zt|zt−1)}dt

i=1Jh−1(ẑt−1), (16)

where ◦ denotes the Hadmard product.

For any i1, i2 ∈ st, (i1 ̸= i2) we can obtain the standrad one-hot basis vector ei1 and ei2 of Hessian
matrix, such that ei1(ei2)⊺ ∈ Rdt×dt

Gzt . Eq. 16 indicates the existence of a permutation matrix P
associated with the permutation σ of Jh−1 (Lemma 1), such that:

P⊺ei1 ◦ (ei2)⊺P = eσ(i1)(eσ(i2))
⊺ ⊆ Rd̂t×d̂t

Ĝẑt ,
(17)
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which implies:

(σ(i1), σ(i2)) ∈ Hẑt,ẑt−1
q(ẑt|ẑt−1). (18)

The support sparsity constraint suggests that:

d̂t = |Hẑt,ẑt−1
q(ẑt|ẑt−1)|1,0 ≤ |Hzt,zt−1

q(zt|zt−1)|1,0 = dt

where | ∗ |1,0 denotes the ℓ0-norm of the rows of matrix ∗.

Combining this with Equation 18, we can conclude that:

ŝt = σ(st). (19)

If this were not the case, there would exist a pair (i′1, i
′
2) ∈ Gzt , where i′1 ̸= i′2, that contradicts

Equation 18.

Eq. 19 suggests that, ∀i ∈ st and v ∈ ŝct :

∂zit
∂ẑvt

= 0 (20)

Also, as h is a invertible mapping, we can conclude that det(J−1
h−1) ̸= 0. Therefore, ∂ẑj

t

∂zu
t
= 0, which

supports conclusion of block-wise identification.

Generalize from zt−1 to z<t: Notably we can easily generalize Theorem 1 by replacing zt−1 with
z<t, and ẑt−1 with ẑ<t from Eq. 13 to Eq. 16, respectively. In other words, we can extend the condi-
tional probability density function into a non-markov setting. Accordingly, Gzt ∈ {0, 1}dt×dt(t−1)

and Gẑt ∈ {0, 1}d̂t×d̂t(t−1), if both z<t and ẑ<t start from t = 1 in Eq. 13.

B.2 PROOF OF THEOREM 2

Theorem 1 allows us to further explore the identifiability ∀i, {zit|i ∈ st}. In what follows, we
provide the proof of Theorem 2 in details.

Theorem 2 (Component-wise identifiability ∀i, {zit|i ∈ st}): Let all assumptions from the Theorem
hold. Additionally, suppose the following assumption is true for data generating process in Eq. 1 as
well:

i (Conditional independence): At t, we assume that each component of zt is conditional indepen-
dent given the previous latent variables zt−1. For any i1, i2 ∈ [N ]:

zi1t ⊥⊥ zi2t |zt−1

Then for {ẑjt |j ∈ ŝt} must be a component-wise transformation of a permuted version of true
{zit|i ∈ st}.

Proof: Following previous works Zheng & Zhang (2024), our goal can be rewritten as demonstrating
that Jh−1(ẑt) = D(ẑt)P , where D denotes an diagonal matrix. P is a permutation matrix that is
defined in Lemma 1, and has been proven in Theorem 1. If Jh−1(ẑt) ̸= D(ẑt)P , there must exist i1
and i2 (i1 ̸= i2), such that j1, j2 ∈ J :,i1

g−1 , and j2 ∈ J :,i2
h−1 . J :,i1

h−1 is the i1-th column of Jh−1 , which

corresponds to zi1t . Similarly, J :,i2
h−1 corresponds to zi2t . Given Eq. 15, we can obtain:

ẑj1t , ẑj2t ∈ J :,i1
h−1(ẑt)

⊺Hzt,zt−1
q(zt|zt−1)Jh−1(ẑt−1). (21)

Also,

ẑj2t ∈ J :,i2
h−1(ẑt)

⊺Hzt,zt−1
q(zt|zt−1)Jh−1(ẑt−1). (22)

Therefore, zi1t and zi2t are dependent as given they are both dependent on ẑj2t . This contradicts with
our conditional independence assumption.
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B.3 EXTENSION OF TEMPORAL SUPPORT SPARSITY

Proosition 1(Identifiability under temporal support sparsity): In addition to the assumptions of The-
orem 1, if the following assumption and regularization hold:

i (positivity and independence of the support): For any time step t, there exists the probability
density function of the support, p(st), has positive measure in the space of st. The support at
any time step t is independent of the supports at other time steps, thus can be factorized by

p(s1:T ) =
T∏

t=1
st

ii (temporal support sparsity regularization): For any time step t, st is not an empty set, E(d̂1:T ) ≤
E(d1:T )

There exists a permutation σ, such that

ŝt = σ(st) and ŝct = σ(sct)

In other words, both ∀i, {zit|i ∈ st} and ∀u, {zut |u ∈ sct} are block-wise identifiable.

Proof:

We start from Eq. 18 in Theorem 1 to prove the Theorem 3. Let Ht = Hzt,zt−1
q(zt|zt−1), and

Ĥt = Hzt,zt−1
q(zt|zt−1), the expected sparsity constraint can be reformulated by:

E(d1:T ) = E|H1:T |1,0 = Ep(s1:T )E(
N∑

n=1

1(Hn,:
t ̸= 0)|st)

= Ep(s1:T )

N∑
n=1

E(1(Hn,:
t ̸= 0)|st)

= Ep(s1:T )(

N∑
n=1

PHt|st(H
n,:
t ̸= 0)) (23)

where 1(∗) denotes the indicator function of ∗, PH|st denotes the

Let J = Jh−1(ẑt−1), and J−1 = Jh−1(ẑt). We can perform the similar steps to obtain:

E(d̂1:T ) = E|Ĥ1:T |1,0 = Ep(s1:T )E(
N∑

n=1

1(J−1Hn,:
t J ̸= 0)|st)

= Ep(s1:T )

N∑
n=1

E(1(J−1Hn,:
t J ̸= 0)|st)

= Ep(s1:T )(

N∑
n=1

PHt|st(J
−1Hn,:

t J ̸= 0)) (24)

The temporal support sparsity constraint suggests that: E(d̂1:T ) ≤ E(d1:T ), which leads to

Ep(s1:T )(

N∑
n=1

PHt|st(J
−1Hn,:J ̸= 0))− Ep(s1:T )(

N∑
n=1

PHt|st(H
n,: ̸= 0)) ≤ 0

= Ep(s1:T )(

N∑
n=1

(PHt|st(J
−1Hn,:

t J )− PHt|st(H
n,:
t )) ≤ 0 (25)

Eq. 18 suggests that ∀n ∈ [1, N ],∃σ(n), s.t.PHt|st(H
n,:
t ) = (PHt|st(J−1Hσ(n),:

t J ), the L.H.S. of
Eq. 25 is a sum of non-negative terms which is itself non-positive. This means that every term in
the sum is zero. The rest of the proof remains the same with Theorem 1 to obtain the block-wise
identifiability. Moreover, if the conditional independence assumption in Theorem 2 holds, we can
further obtain the component-wise identifiability.
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B.4 ESTIMATING st AND MODIFIED ELBO

The temporal support sparsity in Theorem 3 requires to obtain p(s1:T ) for the identifiability results.
In order to allow for gradient-based optimization of ŝ1:T , we take inspirations from the structure
learning Brouillard et al. (2020); Lorch et al. (2021) to treat ŝt ∪ ŝct = S as a 1 × N vector. Each
entries of this vector is a independent Bernoulli random variable with probability of success σ(αn),
where σ is the sigmoid function and αn is a parameter learned using the Gumbel-Softmax trick.
Accordingly, our ELBO needs to be modified as following:

LELBO = LRecon + LKLD, subject to ES∼σ(α)|S| ≤ β (26)

where β is an hyperparameter (which should be set ideally to the true dt) and S ∼ σ(α) means that
each entry of S are independent and distributed according to σ(α). Comparing to Eq. 10, Eq. 26
drops the sparsity regularization terms as we use Gumbel-Softmax instead.

C IMPLEMENTATION DETAILS

C.1 PRIOR LIKELIHOOD DERIVATION

Consider a paradigmatic instance of latent causal processes. In this case, we are concerned with two
time-delayed latent variables, namely, zt = [z1t , z

2
t ]. We set time lag is defined as 1 for simplicity.

This implies that each latent variable, znt , is formulated as znt = fn(Pa(znt ), ϵ
n
t ), where Pa(znt ) ⊂

zt−1 is the parent of znt . The noise terms, ϵnt , are mutually independent. To represent this latent
process more succinctly, we introduce a transformation map, denoted as f . It’s worth noting that
in this context, we employ an overloaded notation; specifically, the symbol f serves dual purposes,
representing both transition functions and the transformation map.

z
1
t−1

z2t−1

z1t
z2t

 = f


z

1
t−1

z2t−1

ϵ1t
ϵ2t


 (27)

By leveraging the change of variables formula on the map f , we can evaluate the joint distribution
of the latent variables p(z1t−1, z

2
t−1, z

1
t , z

2
t ) as:

p(z1t−1, z
2
t−1, z

1
t , z

2
t ) = p(z1t−1, z

2
t−1, ϵ

1
t , ϵ

2
t )/ |det Jf | , (28)

where Jf is the Jacobian matrix of the map f , which is naturally a low-triangular matrix:

Jf =


1 0 0 0
0 1 0 0

∂z1
t

∂z1
t−1

∂z1
t

∂z2
t−1

∂z1
t

∂ϵ1t
0

∂z2
t

∂z1
t−1

∂z2
t

∂z2
t−1

0
∂z2

t

∂ϵ2t

 .

Given that this Jacobian is triangular, we can efficiently compute its determinant as
∏
n

∂zn
t

∂ϵnt
. Further-

more, because the noise terms are mutually independent, and hence ϵ1t ⊥ ϵ2t , and ϵt ⊥ zt−1, we can
write Eq. 28 as:

p(z1t−1, z
2
t−1, z

1
t , z

2
t ) = p(z1t−1, z

2
t−1)× p(ϵ1t , ϵ

2
t )/ |det Jf | (because ϵt ⊥ zt−1)

= p(z1t−1, z
2
t−1)×

∏
i

p(ϵit)/ |det Jf | (because ϵ1t ⊥ ϵ2t ).
(29)

Let {f−1
n }n=1,2,3... be a set of learned inverse dynamics transition functions that take the estimated

latent causal variables in the dynamics subspace and lagged latent variables, and output the noise
terms, i.e., ϵnt = f−1

n (znt ,Pa(znt )). By eliminating the marginals of the lagged latent variable
p(z1t−1, z

2
t−1) on both sides, we derive the total transition prior likelihood as:

p(z1t , z
2
t |z1t−1, z

2
t−1) =

∏
n

p(ϵit)/ |det Jf | =
∏
n

p(f−1
n (znt ,Pa(znt )))×

∣∣∣det J−1
f

∣∣∣ (30)
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in which, ∀i, {zit|i ∈ st}, the prior likelihood is:

p(zit|zt−1) =
∏
i

p(ϵit)/ |det Jf | =
∏
i

p(f−1
i

(
zit,Pa(zit)

)
)×

∣∣∣det J−1
f

∣∣∣ . (31)

Then, ∀u, {zut |u ∈ smt }, given Pa(zut ) = ∅, the prior likelihood is:

p(zut ) =
∏
u

p(ϵut )/ |det Jf | =
∏
u

p(f−1
u (zut ))×

∣∣∣det J−1
f

∣∣∣ . (32)

C.2 NETWORK ARCHITECTURES

Configuration Description Output dimensions

Encoder
Input: concat(x1:T ) BS × T ×K
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense Temporal embeddings BS × T × 2N
Bottleneck Compute mean and variance of posterior µ, σ
Reparameterization Sequential sampling ẑ1:T

Decoder
Input: ẑ1:T BS × T ×N
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense input embeddings BS × T ×K

Temporal prior module
Input ẑ1:T BS × T ×N
InverseTransition ϵ̂t BS × T ×N
JacobianCompute log |detJf | BS

Table 2: The details of our network architectures for InterLatent , where BS means batch size.

Table 2 summarizes the network architectures of InterLatent .

C.3 TRAINING DETAILS

Simulation Experiments

We implemented our models using PyTorch 1.11.0. For optimization, we employed the AdamW op-
timizer Loshchilov & Hutter (2019), which has been shown to improve generalization performance
in deep learning models. The hyperparameters were set as follows: learning rate of 1e-3 and mini-
batch size of 64. To ensure robustness and statistical significance, we trained each model under 10
different random seeds and report the overall performance as mean ± standard deviation across these
runs. The loss function balances reconstruction error and KL-divergence, with the latter weighted
by β = 0.02. This choice of β was determined through preliminary experiments to achieve an
optimal trade-off between reconstruction quality and latent space regularity. All experiments were
conducted on a single NVIDIA GeForce RTX 2080 Ti GPU with 11GB meory.

Real-World Experiments

We employ the AdamW optimizer with cosine annealing for training our network. The initial learn-
ing rate is set to 2e-3, with a weight decay of 1e-2 to mitigate overfitting. For all video sequences
in Volleyball dataset, we uniformly sample T = 10 frames as input. The ELBO loss is computed
with a β value of 0.02. We utilize a batch size of 128, which we found to provide a good trade-off
between computational efficiency and optimization stability. The network is implemented using Py-
Torch [2], leveraging its dynamic computational graph and GPU acceleration capabilities. Training
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is conducted for 80 epochs on a multi-GPU setup consisting of four NVIDIA GeForce RTX 2080 Ti
GPUs, providing a total of 44GB of meory.

D ADDITIONAL EXPERIMENTS DETAILS

D.1 SYNTHETIC DATA GENERATION PROCESS

Our approach generates six distinct scenarios of sequences, encompassing both stationary and non-
stationary settings with varying degrees of missingness. Each sequence consists of 9 time steps,
with latent variables zt ∈ R5 and observations xt ∈ R5. Missingness is introduced by selecting
a constant value dc ∈ {1, 2, 3} for each sequence, representing the number of missing dimensions
throughout that sequence. The set of missing dimensions, sct , is then determined based on dct . We
generate six scenarios in total: (1). non-stationary sequences with dct = 1; (2). non-stationary
sequences with dct = 2; (3). non-stationary sequences with dct = 3; (4). stationary sequences with
dct = 1; (5). stationary sequences with dct = 2; (6). stationary sequences with dct = 3. In non-
stationary sequences, sct varies every 3 time steps, while in stationary sequences, it remains fixed
throughout.

For each scenario, the data generation process begins with 10,000 initial states drawn from z0 ∼
U(0, 1). From t = 1 to t = 9, zt within st is generated using a nonlinear function f with non-

additive, zero-biased Gaussian noise ϵit, where (σ = 0.1): ∀i ∈ st, z
i
t = fi(z

{i′}dt
i′=1

t−1 , ϵit), where

z
{i′}dt

i′=1
t−1 is the set of zi

′

t−1 within st−1. The missing dimensions are set as ∀u ∈ sct , z
u
t = fu(ϵt).

Observations are then generated using a mixing function g that only considers zt within st: xt =

g(z
{i}dt

i=1
t ), where z

{i}dt
i=1

t is the set of zit within st.

D.2 ADDITOINAL DETAILS OF THE VOLLEYBALL DATASET

Our preprocessing and feature extraction pipeline builds upon the procedure from Yan et al. (2023).
We leverage a pretrained Faster R-CNN model Ren et al. (2016) implemented via the MMDetection
toolbox Chen et al. (2019) to detect potential persons in each frame. These detections are then
tracked across frames using the method proposed by Danelljan et al. (2014). For feature extraction,
we utilize ResNet-18 He et al. (2016). We apply RoIAlign He et al. (2017) with a crop size of 5× 5.
The resulting features are embedded into a K = 1024 vector. we select the top N = 20 person
proposals based on detection confidence scores.
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