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ABSTRACT

Training a diffusion model approximates a map from a data distribution p to the
optimal score function s; for that distribution. Can we differentiate this map? If
we could, then we could predict how the score, and ultimately the model’s sam-
ples, would change under small perturbations to the training set before committing
to costly retraining. We give a closed-form procedure for computing this map’s
directional derivatives, relying only on black-box access to a pre-trained score
model and its derivatives with respect to its inputs. We extend this result to es-
timate the sensitivity of a diffusion model’s samples to additive perturbations of
its target measure, with runtime comparable to sampling from a diffusion model
and computing log-likelihoods along the sample path. Our method is robust to
numerical and approximation error, and the resulting sensitivities correlate with
changes in an image diffusion model’s samples after retraining and fine-tuning.

1 INTRODUCTION

Diffusion models form a powerful class of generative models that allow users to generate images
of nearly any subject in nearly any style in just a few keystrokes. However, this flexibility also
allows diffusion models to engage in legally fraught behavior, such as generating images that mimic
an artist’s style. This has put diffusion models at the center of recent litigation' alleging that they
facilitate copyright and trademark infringement. Understanding and mitigating the causes of this
behavior have therefore become pressing challenges as businesses seek to integrate diffusion models
into their consumer offerings.

Diffusion models generate images by iteratively transforming Gaussian noise using the score func-
tion of a distribution over noisy images, which is learned in practice from a large set of training
images. Since the learned score is, in principle, determined by the training images, a natural strat-
egy for understanding a diffusion model’s behavior is to study how it depends on the training data.
A sensible framework for this task should be able to answer questions such as: “What would the
score function be if a sample were added or removed from the training set?” and “What would a
generated image have looked like if a sample were added or removed from the training set?”

This work introduces a principled framework for answering such questions about diffusion models in
the perturbative regime, where one considers infinitesimal changes in a model’s training distribution.
Because a diffusion model’s output depends on the score function, which is itself determined by
the training distribution, the core of our framework is a tractable closed-form expression for the
directional derivatives of a score function with respect to the training distribution. This sensitivity
analysis measures how the score function changes as a probability measure is up- or down-weighted
in the training distribution; when this measure is a Dirac point mass, we obtain an exact expression
for the influence function of the score. Crucially, our sensitivity analysis requires only black-box
access to a pre-trained score function, and it does not require any knowledge of its training data or
training procedure.

Using the adjoint method, we extend our sensitivity analysis for score functions to obtain schemes
for computing the sensitivity of a diffusion model’s samples to perturbations in the training data.
These enable us to predict how a generated image would change if a collection of samples were
added or removed from the training set. We demonstrate our method’s robustness to a variety of
sources of numerical error and show that its predictions are correlated with changes in a diffusion
model’s samples after retraining and after fine-tuning.

'Andersen v. Stability Al Ltd., U.S. District Court, Northern District of California (2024).
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2 RELATED WORK

Influence functions. Influence functions (Hampel, 1974) linearly approximate the change in a sta-
tistical estimator in response to infinitesimally upweighting a single training sample. Koh & Liang
(2017) introduced influence functions to deep learning as a method for estimating the change in a
neural network’s parameters in response to perturbing its training set. Influence functions for generic
optima of a training loss require the user to compute a costly inverse Hessian-vector product. Previ-
ous work (Guo et al., 2021; Schioppa et al., 2022) responds to this challenge by developing efficient
approximations to this operation. In addition to this difficulty, influence functions assume that the
learned model parameters minimize a strictly convex loss. This assumption is violated for neural
networks, and Basu et al. (2020) find that in practice, influence functions for deep learning are brittle
to network hyperparameters. Kwon et al. (2024); Mlodozeniec et al. (2025) introduce influence ap-
proximations that are specially adapted to generative models, including diffusion models, but these
works follow Koh & Liang (2017) in estimating the influence of training samples on the learned net-
work weights. In contrast, our sensitivity analysis uses the structure of diffusion models to directly
compute the influence of training samples on the value of the score function and on model samples.

Data attribution for diffusion models. An emerging literature develops data attribution meth-
ods for diffusion models, which seek to estimate the impact of training samples on model outputs.
Georgiev et al. (2023) use TRAK (Park et al., 2023), a gradient-based data attribution method de-
veloped primarily for supervised learning, to compute a per-example attribution score for a diffu-
sion model’s training data. This score estimates the change in the model’s training loss induced
by adding a particular sample to the training set. Following Park et al. (2023), they measure their
method’s effectiveness using the linear datamodeling score, which measures the rank correlation
between their attribution score and actual training loss values attained by retrained models. Zheng
et al. (2024) observe that one can improve upon the method from Georgiev et al. (2023) by comput-
ing their attribution scores using the gradients of the “wrong” model output function. Mlodozeniec
et al. (2025) introduce an efficient approximation to the denoising loss Hessian and use it to esti-
mate influence functions for attributing several proxies for model log-probabilities. Lin et al. (2025)
propose attributing the KL divergence between the model distribution before and after deleting a
training sample. Li et al. (2025) perform gradient-based data attribution using learnable weights for
gradients with respect to different parameter groups. Whereas these methods estimate the impact of
training samples on scalar quantities such as the training loss or proxies for log-probabilities, our
sensitivity analysis estimates the effect of perturbations in the target distribution on the values of the
score function and on model samples.

3 METHOD

In this section, we first observe that a diffusion model defines a map from its training distribution p to
a score function s; and show how to tractably compute its directional derivatives. Using this result,
we estimate how a diffusion model’s samples change when its training distribution is perturbed.

3.1 PRELIMINARIES

Diffusion models sample from a target distribution p by drawing samples from a Gaussian base
distribution A/(0, I) and flowing them through a possibly noisy velocity field v; from ¢ = #; to
t = t;. This yields a curve of probability distributions {p; : t € [tg, t1]} for which p; is the marginal
distribution of the random variable Z; := a; X1 + oe. Here, X1 ~ p, ¢ ~ N(0,1), and o and
o, are scale and noise schedules, respectively. These schedules are chosen so that at ¢ = %, the
samples have a Gaussian distribution, and at ¢t = ¢;, the samples are distributed according to p.

A diffusion model’s velocity field v; depends on p through the score function s;(z) := V log p;(2)
of p;, which one learns in practice by solving a score-matching problem (Hyvirinen & Dayan,
2005). If one does not impose any restrictions on the hypothesis class, the optimal solution to this
problem is in fact available in closed form (Miyasawa, 1961), yielding a vector field pointing from z
toward a distance-weighted average of rescaled samples a;x from the target distribution p. Solving
the score-matching problem therefore maps a measure p to a function sy, which is fully determined
by p and the scale and noise schedules.
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We would like to estimate how the outputs of a diffusion model would change in response to per-
turbations of the training data. These outputs depend on the training data only through the velocity
field v; and, in turn, through the score function s;. We will therefore begin by introducing a tractable
closed-form expression for the directional derivatives of the map from p to s;, which will describe
how s; responds to additive perturbations of the target distribution p.

3.2 SENSITIVITY ANALYSIS FOR SCORE FUNCTIONS

Solving the score-matching problem maps a target distribution p to a score function s;. To under-
stand how s; changes in response to small perturbations of p, intuitively one would like to differ-
entiate s; with respect to the probability measure p. However, it is not obvious how to compute
this derivative in practice. In this section, we present a tractable formula for such a derivative with
respect to additive perturbations of p. This class of perturbations includes many cases of interest,
such as the addition of new samples and the removal of existing samples from the training set.

Suppose that p" := (1 — n)p + nv is a mixture of two probability measures p and v supported on
R?, and let sy : R? — R? be the score function of a diffusion model with target distribution p"
at time ¢. Differentiating s with respect to n and evaluating this derivative at 77 yields a function
g/ : RY — R? describing how s} changes as one infinitesimally upweights v given initial weight 7.

The case 77 = 0 is of particular interest. For example, if 77 = 0, then g;' describes how a score func-
tion trained on p would vary as one introduces samples from v. On the other hand, to approximate
how the score function of a diffusion model trained on p would change in response to removing
training data lying in some region Q C R<, one would define v := pg, where pq is the restriction
of p to €, and consider —g,’ evaluated at ;7 = 0.

Our key result is the following theorem, which provides a tractable closed-form expression for g}

Theorem 3.1 (Sensitivity analysis for score functions) For n € [0,1], let p" := (1 — n)p + v
be a mixture of probability measures p and v with compact support on R%. Let p] : RY — R and
s : RY — R? be the density and score function, resp., of a diffusion model with target distribution
p" at time t € [tg,t1). Then the Fréchet derivative in L*(R, p}!) of the map Ty(n) : n — s
evaluated at 7} = 0 is the function g9 : RY — R? defined by the formula:

0 Vi (Z) v P
g: (2) = si(z) = sb(2)), (1)
Pe) = 2 (1) - ()
where v4(2), pi(z) are the respective densities and s¥ (z), s (z) the respective scores at time t of dif-
fusion models with target measures v, p. Moreover, for every fixed z € RY, the pointwise derivative

satisfies 3%3? (2) ’7720 = g9 (z) without any assumptions on the support of ji or v.

We prove this result in Appendix B.1. Whereas score-matching defines a map from a measure
p to the unique optimal score function s; of a diffusion model with p as its target, Equation 1
now provides a formula for the directional derivative of this map in the direction of v — p. In
Figure 1, we depict an instance of this directional derivative g when p is supported on a curve
in 2D and v is a Gaussian measure centered just off the curve. ¢ is a vector field pointing
away from the support of p and towards the support of v; on account of the v:(2)/p,(z) scaling

factor, ||g¥(2)||2 is large at points z that are closer to the support of v than to the support of p.

In a typical use case, p; is the distribution at time ¢ of a
diffusion model trained on p, and v = + Zle 0z, is the
empirical distribution on K samples z that one wishes
to add or remove from p; if K = 1, we recover the in-
Sfluence function of Ty (Hampel, 1974). In this setting, we
may use Equation 1 to compute g;(z) given only black-
box access to the score function s/(z) and the K sam-
ples xj. The density p;(z) of the diffusion model can be
computed from its score using the continuous change of
variables (CCoV) formula (Song et al., 2021), and since
1 1s a mixture of Gaussians when v is an empirical distri-
bution, its density and score function can be computed in closed form in O(dK) time or efficiently

Figure 1: The score sensitivity ¢! is a
vector field pointing away from the sup-
port of p and towards the support of ».
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approximated using techniques from Karppa et al. (2022); Scarvelis et al. (2025). For perturbation
sets S = {xk}szl of moderate size, the cost of evaluating Equation 1 is dominated by the cost of
the density computations p;(z) using the CCoV formula. Appendix A provides further background
on the CCoV formula and score and density computations for mixtures of Gaussians.

Theorem 3.1 shows how to tractably estimate the response of a pre-trained score function to additive
perturbations in its target distribution. However, in practice, we are typically interested in how the
samples generated by a diffusion model would change in response to perturbing its target distribu-
tion. Because samples are obtained by solving an ODE or SDE determined by the score function,
Equation 1 should provide enough information to estimate the sensitivity of model samples to ad-
ditive perturbations of p. We show this to be the case in the following section, using the adjoint
method to obtain an analogous perturbation formula for a diffusion model’s samples.

3.3 SENSITIVITY ANALYSIS FOR MODEL SAMPLES

Diffusion models generate samples from their target distribution p by solving a stochastic differential
equation (SDE) or an ordinary differential equation (ODE) whose drift or velocity field, respectively,
depend on the score s;. Because this dependence is typically simple, often consisting of an affine
transformation of s}, it is easy to differentiate the drift or velocity field with respect to 7 given
Equation 1. In this section, we exploit this fact to compute the sensitivity of a diffusion model’s
samples to additive perturbations of the target distribution.

ODE sampling. We begin with the simpler case of ODE sampling. Song et al. (2021) show that
one may sample a diffusion model by solving a probability flow ODE (PF-ODE), whose initial
condition is drawn from the Gaussian base distribution: %t = v{(z,) with 29 ~ N(0, I). Because
the Lipschitz constant of s — and consequently v,/ — may blow up as ¢ — ¢1, we follow a common
convention from the theory of diffusion models and truncate integration of v; at some #; < t; (De
Bortoli, 2022). This convention aligns with typical diffusion model sampling schemes, which return
samples at some time 7, slightly earlier than the theoretical sampling interval endpoint ¢; .

If one further assumes that the target distributions 1, v are compactly supported on R?, then a typical
vy () will be globally Lipschitz for z € R? and t € [tg, #1]. Khalil (2002, Theorem 3.2) then shows
that there exists a unique solution to the PF-ODE for any initial condition zy € R?. This allows us
to define a solution map ®"(z) : R? — R? that maps an initial condition zy € R¢ to the unique
solution at time s € [to, ;] of the initial value problem (IVP) defined by v;'. Intuitively, ®7(zo)
maps an initial noise sample zo ~ N(0, ) to the sample’s position at time s along the diffusion
model’s sample path; at time s = £y, this is simply a model sample.

We are interested in the derivative %@g (z0) for fixed initial conditions 2z, which describes how the

model sample @Zfl (20) generated from the Gaussian sample zo varies as one perturbs the target dis-
tribution g in the direction of v. Khalil (2002, Section 3.3) shows that under certain regularity con-
ditions, this derivative solves an ODE known as the sensitivity equation. Defining 5 := %@Q(zo)

and letting z, := ®"(zg) for s € [to, 1] be a solution path for the PF-ODE, this equation is:

d d
@% = @U?(zs) + JZ[U;?](zS)wsv 2
where the initial condition is ¢y, = 0 and J, [v7](zs) de-
notes the spatial Jacobian of v evaluated at z;. A solu-
tion ¢ = %(I)gl (z0) to Equation 2, which we will call
a sample sensitivity, approximates the change in a sample
25, = @?1 (z0) in response to additive perturbations of the
target distribution p. Figure 2 depicts a solution to Equa-
tion 2 when p is supported on a curve in 2D and v is a Figure 2: A solution to Equation 2 ap-
Gaussian measure centered just off the curve. proximates the change in a diffusion
model’s samples as the target distribu-
tion p is perturbed in the direction of v.

Crucially, one may solve Equation 2 given black-box ac-
cess to the score function s} and its spatial derivatives.
To estimate how a sample ®7(zy) generated from initial
noise zyp would change in response to perturbing p, one should (1) compute a sample path z; and
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Algorithm 1 Sample sensitivity analysis

Require: Score model st ; perturbation measure v; initial noise z¢, ~ py,; time interval [to, tl]

Ly, <0 > Initialize sample sensitivity to 0
2: z < SamplePath(sy, 2¢,) > Compute 2; via ODE/SDE sampling
3: v < T (s¢) > Transform score to PF-ODE velocity field
4: log pi(zt) < log pr,y (2t,) ft V - vs(zs)ds > Compute log-densities via CCoV formula (3)
5: if v is an empirical measure on {x;} ; then
6: Compute v¢(z:) and sy (z;) as closed-form density (9) and score (10) of a Gaussian mixture
7: else if v is parametrized by a neural score model then
8: Compute v4(z;) via the CCoV formula (3)
9: end if
o d e s .
10: g s () ‘nzo +— ZZEZ% (s¥(z) — st (1)) > Compute score sensitivities via Eq. 1
11: )y < g, + ft ( 1(zs) +J, [vs](zs)1,bs> ds > Compute sample sensitivity path via Eq. 2
n=0
12: return v, > Return sample sensitivity path

model densities p;(z;) by jointly integrating the PF-ODE and the CCoV formula, (2) evaluate Equa-
tion 1 along the sample path, which also entails computing the density and score of the perturbation
measure v, and (3) integrate Equation 2, using autograd to compute the spatial Jacobian-vector prod-
ucts J, [v7](zs)1s. We summarize this procedure in Algorithm 1. When v is an empirical measure
over K samples, our sample sensitivity analysis has time complexity O((hP + dK)T), where h is
the number of noise samples used in Hutchinson’s trace estimator, P is an architecture-dependent
constant measuring the cost of evaluating the score network s7, and T is the number of time steps
in the ODE discretization. Its space complexity is O(dT'), where d is the ambient dimension.

SDE sampling. In practice, it is more common to sample a diffusion model by solving an SDE
dz; = f/(2¢)dt + g:dW;, where W; denotes a Wiener process on R%. Only the drift coefficient f;’
depends on the score function s; and consequently on 7; conversely, the diffusion coefficient g; is
independent of 7. Kunita (2019, Theorem 3.3.2) provides an analogous sensitivity analysis for the
solution of an SDE whose coefficients depend on a parameter. Suppose an SDE has a unique solution
and let I'7 - R? — R? be the solution map sending an initial condition zq to the SDE’s solution
at time s € [to,t;] for a fixed realization w of the Wiener process. Kunita (2019, Theorem 3.3.2)
shows that under certain regularity conditions, which are satisfied for typical drifts if one truncates
the integration at #; < t1, %I‘ZW (20) also satisfies some SDE for almost all w. Moreover, when the
diffusion coefficient g; is independent of 7 and the spatial variable, this differential equation is, in
fact, deterministic and coincides with the sensitivity analysis for ODE sampling from Equation 2.
We may therefore use Equation 2 to approximate the change in a diffusion model’s SDE samples
in response to perturbations of its target distribution. In practice, one follows the recipe from the
previous section on ODE sampling, but replaces the ODE sample path z; with an SDE sample path.

4 EXPERIMENTS

This section empirically validates our sensitivity analysis for diffusion models. We begin by study-
ing the effect of approximation error using synthetic data with known scores and densities. We then
experiment with neural diffusion models trained on image datasets and show that our sample sen-
sitivities correlate with changes in model samples after retraining and fine-tuning. We conclude by
studying key statistics of our sample sensitivities for models trained on image datasets.

4.1 FIRST-ORDER APPROXIMATION FOR PERTURBED MODEL SAMPLES

A solution 7 = %@g(zoﬂnzo to Equation 2 estimates how a diffusion model’s samples

change under an additive perturbation of the target distribution, yielding a first-order approximation
@?1 (20) = <I>0 (20) + 17 dn(I’ (20)|n=0 that converges at rate o(77) by Taylor’s theorem. However, in

practice, error from numerically solving Equation 2 can degrade the accuracy of this approximation
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Figure 3: The approximation error of our first-order approximation to a perturbed model’s samples
decays at rate o(7)) for a variety of ODE step sizes (left) and SDE step sizes (center), and this rate is
robust to noise from Hutchinson’s estimator (right).

for realistic step sizes, and evaluating Equation 1 requires computing p; using the CCoV formula,
which introduces additional noise through Hutchinson’s estimator for div(v;). In this section, we
use synthetic data with exact scores and densities to study the effects of ODE integration error and
density estimation error on the convergence of our linear approximation to perturbed model samples.
Appendix F.1.1 provides implementation details.

Effect of step size. In this experiment, we study how step size affects the convergence of our
first-order approximation to the perturbed model’s samples when solving Equation 2 with a for-
ward Euler scheme. We choose the initial target measure p to be an equally weighted mixture of
well-separated Gaussians in R'%°, This multimodal, high-dimensional target distribution simulates
some of the mathematical pathologies of real-world data; in particular, its score function is nearly
discontinuous near Voronoi boundaries between the mixture means. For every ¢, the corresponding
p: remains a Gaussian mixture with closed-form score and density, allowing us to isolate the effect
of ODE/SDE discretization error, density approximation error, and score approximation error on
our sensitivity analysis. Because we perturb p toward a second Gaussian v, the perturbed target
p" = (1 —77)p + 7v also remains a Gaussian mixture. Since the first-order approximation uses only
pointwise derivatives, p and v need not have compact support.

We generate sample paths z, for p; and p? by numerically integrating the PF-ODE and the VP-
SDE using forward Euler and Euler—-Maruyama with several step sizes, and exactly compute p;(2;)
along each path. We then integrate Equation 2 with the same forward Euler scheme to compute the

e el d 77 e . N . .
sensitivities an)fl (20)|n=0 of initial samples to perturbations toward ». Taylor’s theorem implies

that a first-order approximation’s error R(7) is o(7]), so we compute R(7}) for 7j € [0, 1] and verify
this rate in practice.

The left and center panels of Figure 3 depicts the results of this experiment for ODE and SDE sample
paths. Linearly approximating samples from a perturbed target p” using our sample sensitivity
analysis (2) is accurate within o(7}) for a variety of step sizes and 7. For very small values of 7,
R(n)/5 plateaus and begins to increase again. This reflects a noise floor in the accuracy of model
samples, which are themselves computed by numerically integrating an ODE or SDE.

Effect of Hutchinson’s estimator. In the previous experiment, we computed the model densities
pt(2z) in (1) exactly by choosing a target distribution for which p; has a closed form. In practice,
however, diffusion models approximate V log p;(z) with a neural network, from which we may
recover densities via the CCoV formula % = —tr(J,,[v](2)). To avoid forming a large
Jacobian, one uses Hutchinson’s estimator tr(A) = E[e" Ae], whose accuracy depends on the num-
ber of € samples. To study this estimator’s impact on the accuracy of our first-order approximation,
we repeat the previous experiment with step size 10~3 but estimate p;(z) using the CCoV formula
with a varying number of € samples. The right panel of Figure 3 plots the scaled remainders E(1)/
when using exact densities (dashed line) and Hutchinson’s estimator with 1, 10, and 100 € samples.
Our method’s convergence rate is robust to noise in Hutchinson’s estimator, with even a single €
achieving nearly the same approximation error as the exact densities for all but the largest 7.

4.2  STABILITY OF SAMPLE SENSITIVITY UNDER SCORE APPROXIMATION ERROR
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Correlation between Exact and Neural
Section 4.1 showed that one may approximate perturbed sam- 10 Sample Sensitivities

ples CDZ (20) using our sensitivity analysis formula (2) and re- g os] ¢ W .

cover the expected o(7]) convergence rate despite errors from % 0.6 ° j"o@

numerical integration and Hutchinson’s estimator. To isolate & o4 ®e

the effects of these errors, we used the exact score Vlogp; = o2 * e

of the mixture of Gaussians p; throughout our computations. ‘% 00 ‘

In practice, however, one typically learns this score function =, i

by training a neural network on a score-matching objective, i i ein i el o
introducing additional error. Here, we show that our sample Train loss

sensitivity analysis (2) is stable to approximation error in the

score function. Figure 4: The correlation between

sample sensitivities for an exact
We take p to be a mixture of well-separated Gaussians on R'®  {iffusion model and its neural ap-

and perturb it toward a Gaussian measure v. Rather than evalu-  proximation rises rapidly as the
ating the score of p; in closed form as in Section 4.1, we traina  training loss falls. Points are col-
neural network to approximate it. We fix zo ~ po and compute  ored from purple to yellow accord-
the exact and approximate models’ sample sensitivities every ing to the training step.

1000 training steps. We discretize all ODEs with forward Eu-

ler and estimate p;(z) using Hutchinson’s estimator. At each step, we compute the median correla-
tion between the exact and approximate sample sensitivities and compare it to the score-matching
loss. Appendix F.1.2 gives additional implementation details.

Figure 4 shows the relationship between the training loss and the median correlation. Points are
colored by training step; we omit the first two early measurements where the loss is very large.
The correlations rise rapidly as the loss decreases, indicating that our sample sensitivity analysis is
robust to score-approximation error and remains informative even when the exact score is replaced
by a learned approximation. In the next section, we build on this observation by showing that our
sample sensitivities predict the direction of change in a diffusion model’s samples after retraining
on a perturbed target distribution.

4.3 PREDICTING CHANGES IN MODEL SAMPLES VIA SAMPLE SENSITIVITY ANALYSIS

Predicting change in model samples after retraining. In the previous section, we used synthetic
data from a mixture of Gaussians to study the robustness of our sensitivity analysis to various sources
of numerical error. In practice, diffusion models are trained on large datasets of images, with train-
ing often stopped well before convergence to prevent memorization (Favero et al., 2025). In this
section, we demonstrate that our sample sensitivities 1/151 are correlated with differences between an
image diffusion model’s samples before and after retraining on a perturbed target distribution. We
experiment with UNet-based diffusion models trained on a mixture of the MNIST and Typography-
MNIST (TMNIST) datasets (Magre & Brown, 2022) and on the CelebA dataset (Liu et al., 2015).

For each dataset, we train a base model and a perturbed model whose target distribution p7 is a
mixture of the base model’s target distribution and the empirical measure on a set of new samples
S. We employ mixture weights 7 = 0.1 and 1 — 77 = 0.9, resp. For our MNIST experiment, the
new samples S are drawn from TMNIST, and for our CelebA experiment, S consists of samples
with a large CLIP score for “a photo of an old man.” We integrate the PF-ODE to obtain model
samples from p° and p”, and also integrate Equation 2 with the perturbation measure v set to the
empirical distribution over S to estimate the sensitivity of the base model’s samples to upweighting
S. We compare the sample sensitivities %@?1 (20)|n=0 to the difference @?1 (20) — @% (20) between
PF-ODE samples from the perturbed and base model given the same initial noise. This measures
how much our sample sensitivity analysis predicts actual changes in model samples after retraining
on the perturbed target distribution p”. Appendix F.2 provides further implementation details.

Figure 5 depicts histograms of the correlations between our sample sensitivities and the actual
change in model samples. As a baseline, we also compute the entropic optimal transport (OT)
coupling (Cuturi, 2013) between the base model samples (ID% (z0) and the target distribution for the
perturbed model and use the resulting transport rays as predicted directions of change in the model
samples after retraining. These transport rays are line segments connecting the base model sam-
ples to their coupled samples from the perturbed model’s target distribution under the entropic OT
coupling, providing a robust, training-free baseline for how the base model outputs might respond
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Figure 5: Correlations between predicted and actual change in model samples after retraining on a
perturbed dataset. Our sample sensitivity analysis (blue) outperforms an optimal transport baseline
(orange), achieving a median correlation (dashed blue line) of 0.46 on CelebA and 0.31 on MNIST.

to perturbations of the training set. Our sample sensitivity scores correlate with actual changes in
model samples after retraining on p” and substantially outperform the OT baseline, achieving a me-
dian correlation of 0.46 on CelebA and 0.31 on MNIST, compared 0.04 and 0.15, resp., for the OT
baseline. We conjecture that our method’s especially strong performance on CelebA reflects the
structure of the dataset, which contains face images with large regions of relatively uniform pixel
values. Our sensitivity analysis achieves high correlations by accurately predicting the pixel-level
changes in these regions, whose near-uniformity simplifies the task.

In this setting, we do not expect our sensitivity analysis to perfectly predict how model samples
respond to perturbations of the training set. One reason is that neural score models trained on large
datasets of images are typically not optimal solutions to the score-matching problem; in fact, Pid-
strigach (2022) shows that any score-based generative model that generalizes must incur unbounded
approximation error. While Section 4.2 shows that our sensitivity analysis is stable to reasonable
score approximation error, this approximation error is large for typical neural diffusion models. Fur-
thermore, diffusion models trained via gradient descent are stable to small perturbations in their
training set (Favero et al., 2025), so the experiments in this section necessarily operate outside the
small-perturbation regime where our sensitivity analysis is most predictive.

Predicting change in model samples after fine-tuning. The previous experiment shows that our
sample sensitivities %@g’l (20)|y=0 correlate with changes in model samples after retraining on a
perturbed target distribution. We will now show that our sample sensitivities are more strongly
predictive of changes in model samples after fine-funing on new training samples S. We use the
same base models and the same S as in the previous experiment, but fine-tune on S rather than
retraining from scratch on the mixture distribution p.

Predicted vs. actual change in model samples Predicted vs. actual change in model samples
after fine-tuning (MNIST) after fine-tuning (CelebA)
1 50 1
40 Ours : Ours :
Baseline 1 40 Baseline 1
1 1
230 1 g 1
g ! 0 i
= =

S i g L
= 1 =20 1
= 1 = 1
1 1
10 1 10 !
1 1
1 1
1 1

“1.00 075 —050 025 000 025 050 075 1.00 “1.00 075 —050 025 000 025 050 075 1.00

Correlation Correlation

Figure 6: Our sample sensitivities (blue) are correlated with changes in model samples after fine-
tuning, and continue to outperform an optimal transport baseline (orange).

We depict histograms of the correlations between our sample sensitivities and actual change in
model samples after fine-tuning in Figure 6. We use the same entropic OT baseline as in the previous
experiment, but compute transport rays between the base model samples and the samples .S on which
we fine-tuned. Both our sample sensitivities and the OT baseline are better correlated with actual
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Figure 7: Top rows show samples from the original models; second rows show samples after fine-
tuning. The third rows display our sample sensitivities, which predict changes in model samples after
fine-tuning (fourth row). On the left, the model is trained on MNIST and fine-tuned on TMNIST; on
the right, the model is trained on CelebA and fine-tuned on a subset of faces with large CLIP score
for “a photo of an old man.”

change in model samples after fine-tuning, but our method continues to outperform the baseline,
achieving a median correlation of 0.66 on CelebA and 0.51 on MNIST, compared to 0.34 and 0.42,
resp., for the baseline. We visually compare our sample sensitivities to actual changes in model
samples after fine-tuning in Figure 7, which shows that our sample sensitivity analysis can provide
coarse predictions of how a diffusion model’s samples might change after fine-tuning. We provide
further illustrations of our sample sensitivity analysis in Appendix E.

4.4 EMPIRICAL PROPERTIES OF SAMPLE SENSITIVITIES

We now study certain empirical properties of our sample sensitivities. We begin by computing the
sensitivity of four samples from the previous section’s CelebA model to each of its training samples.
Each sample sensitivity in these experiments is a vector in R? that predicts how a model sample
would change in response to infinitesimally upweighting a single training sample; we refer to their
magnitudes as each training sample’s influence score with respect to the model sample. We present
several notable findings below.

[& FML@W S8, V@‘T@ !&\

e e 4 PN 4)‘4
Figure 8: Most and least 1nﬂuent1al tralnlng samples (center, right, resp.) for the model sample on
the left, with the corresponding sensitivities on the bottom row.

Influence scores are correlated with L, distances. In Figure 8, we visualize the top-10 and
bottom-10 influential training samples for the model sample depicted on the left of the figure. (See
Figure 12 in Appendix C for the remaining model samples.) These outliers are characterized by large
regions of homogeneously bright or dark pixels, suggesting that influence scores may be correlated
with the L, distance between the model sample and each training sample, which is sensitive to large
differences in per-pixel intensity.

We validate this conjecture by regressing the training samples’ influence scores on their Lo distance
from each model sample. These regressions’ 72 values are substantial, ranging from 0.80 to 0.91
for the model samples in this experiment, indicating that the distance from a training sample to a
model sample predicts its influence score. However, there is useful information in this regression’s
residuals, which capture how much more or less influential a training sample is than one would
expect based on its distance to the model sample. Figure 9 shows the top-10 and bottom-10 training
samples according to their residual influence scores. (See Figure 13 in Appendix C for the remaining
model samples.) The training samples with the greatest residual influence tend to share the model
sample’s pose but vary substantially in their facial expression, whereas the samples with the least
residual influence possess outlier features such as hats or glasses.

X 16 ﬂ@ & 55 u el ]&‘bél‘/ mx‘nl
o Bl & 0 ISR 2 e E

Figure 9: Tralnlng samples with the largest and smallest residual influence scores (center, right,
resp.) for the model sample on the left, with the corresponding sensitivities on the bottom row.
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Sample sensitivities lie in low-dimensional subspaces. h*‘ L(,, -
We now compute the singular value decomposition -

V] ) & & 2
(SVD) of the matrix of a fixed model sample’s sensi- ! I' Iarl @I QI al g
tivities to each training sample and find that these sam- L . A M
ple sensitivities are nearly low-dimensional, with 93% of ’ I I I I l I
their variance explained by the first 10 singular directions. = : ‘a{ a: @ @ @

Moreover, these directions are often interpretable. In Fig-
ure 10, we depict perturbation rays of the model sample
of the form z + au , where x is a model sample and
is a right-singular vector of its sensitivities with respect
to each training sample. The first singular vector in the
figure appears to control beard density, the second con-
trols the direction of the light source, and the third controls color temperature. (See Figure 14 in
Appendix D for raw singular vectors.) These results suggest that training set perturbations influ-
ence model samples along only a few degrees of freedom, a phenomenon which may arise from the
low-dimensional structure of the data manifold.

Figure 10: Singular vectors of a model
sample’s sensitivities to its training
samples yield interpretable perturba-
tions. (Top to bottom: beard, lighting,
color temperature.)

Cross-class sensitivities are small. We finally leverage the Magnitude of cross-class sensitivities
availability of class labels in the CIFAR-10 dataset to investi- (CIFAR-10)

gate how training samples from one class might influence sam- o " u B
ples from another. For each class C; in CIFAR-10, we compute = bira ®
the average magnitude of the sensitivity of model samples from 3 - .. 2
class C; to samples from every other class C;. Figure 11 depicts § dog 20
a heatmap whose (4, j)-th entry represents the average sensitivity 3 o .. 5
of samples from class C; to training samples from class C;. This S aip

heatmap is nearly diagonal, showing that model samples are pri- truck 0
marily influenced by training samples from their own class. This &I A ESE
may reflect the CIFAR-10 dataset’s union-of-manifolds structure, Train sample class

which has previously been observed by Brown et al. (2023). Figure 11: Cross-class sensitiv-

5 DISCUSSION ities are small for CIFAR-10.

Understanding a diffusion model’s dependence on its training data is a critical challenge in machine
learning. In general, one would expect the relationship between a large model and its training data
to be complex and difficult to estimate. This paper shows that it is not only possible to compute
directional derivatives of the map from a training distribution p to its optimal score function s,
but that this computation is (a) surprisingly cheap, costing roughly as much as sampling a model
and computing log-probabilities along the sample path, and (b) requires only black-box access to
the score function. One can then leverage this simple formula to estimate how a diffusion model’s
samples change in response to perturbations to its target distribution before retraining or fine-tuning
on new data. We propose several future directions for this line of work.

Throughout this paper, we perturbed a diffusion model’s target measure with empirical measures
over finite samples. This need not be the case: Our score sensitivity formula (1) holds for any
compactly-supported perturbation measure v, and it can be implemented in practice for any sequence
of measures v; provided we can access their scores and densities. For instance, 14 can be a second
diffusion model, in which case Equation 1 resembles the formula for classifier-free guidance (CFG)
(Ho & Salimans, 2022) with time- and spatially-varying weights. Future work might interpret CFG
in light of our sensitivity analysis and design new guidance schedules based on this formula.

By composing a model’s ODE sampling solution map with a text-conditioned classifier and apply-
ing our sensitivity formulas, one might also use our method to estimate how the likelihood that a
diffusion model’s samples match a prompt changes as one perturbs the training set. This would
allow users to attribute a model’s qualitative behavior to subsets of training samples and use this
information to curate the training set to steer a diffusion model’s behavior in a particular direction.

Finally, Kadkhodaie et al. (2024) find empirically that a diffusion model’s sampling map is often
insensitive to changes in its training set, and Favero et al. (2025) clarify that this behavior is con-
trolled by the number of training iterations, with models becoming increasingly sensitive to dataset
perturbations throughout training. Our sample sensitivity formula (2) quantifies this dependence and
may serve as a valuable tool for future work on generalization in diffusion models.
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A EXTENDED PRELIMINARIES

For the sake of completeness, this appendix summarizes known results that have been used else-
where in this manuscript.

The continuous change of variables (CCoV) formula. Let p; be a continuous family of time-
indexed probability measures on R? whose densities we denote by p;(z). Suppose that samples
z ~ pg evolve according to the ODE £z, = f(z,t), where f : RY x R — R? is uniformly
Lipschitz in z; and continuous in ¢. Then the log-density log p;(z;) of z; evolves according to the
continuous change of variables formula:

d

dt IOgPt(Zt) = *V'f(Zt,t), (3)
where V - f(z,t) = tr(Jy, f(z,t)) denotes the divergence of f(z,t) with respect to its first ar-
gument. This result appears in Chen et al. (2018, Theorem 1). In the setting of diffusion models,
f(24,t) is the PF-ODE velocity field (Song et al., 2021), which we denote by v; in this manuscript.

In practice, it is often prohibitive to compute V - f(z,t) = tr(J,, f(2¢,t)) by explicitly forming the
d x d Jacobian matrix .J,, f(z¢,t)). To mitigate the computational burden, one typically employs
Hutchinson’s trace estimator (Hutchinson, 1990) tr(A) = E.[e" Ae], which holds for any random
variable ¢ with mean O and identity covariance. The key advantage of this estimator is that one
can compute Monte Carlo approximations tr(.J., f(z¢,t)) ~ Zl L€0 J5, f(z1,1))e; using only
Jacobian-vector products (JVPs), whose time complexity via automatic dlfferentlatlon is at most
g x the complexity of evaluating f (Griewank & Walther, 2008, Chapter 3).

Entropy-regularized optimal transport. The results in this section are drawn from Peyré & Cu-
turi (2020). Let 1 and v be two probability measures on R%. Monge’s problem seeks a pushforward
T : R4 — R? of y onto v that minimizes the average distance ||z — T'(x)|| between coupled units
of probability mass:

i [ e = T(@)|adi(a). @)

This map has appealing geometric properties: for instance, transport rays T'(x) — 2 do not cross on
their interior (Caffarelli et al., 2000). As Monge’s problem may not have a solution, one typically
relaxes this problem to a search for a coupling: A probability measure  on R% x R? whose marginals
are p and v. This relaxation yields the well-known Kantorovich problem:

Wi(u,v) := min /||x — y|l2dn(z,y), (3)
mEel(p,v)
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where II denotes the set of probability measures whose marginals are y, v. The optimal value of this
problem is the /-Wasserstein distance between i and v. When p, v are discrete measures supported
on {z; }¥ 1, {y; };‘il Equation 5 reduces to:

Wi(p,v) == min ZZ illzs — yill2, (6)

Tell
elllwr) i i3

where T € II(u,v) is now a n x m matrix whose row and column sums are equal to u and v,
respectively. When N = M, there exists a solution to the linear program (6) that also solves the
Monge problem (4). One may interpolate between p and v by moving samples from the support of
w along transport rays, which are straight line segments connecting z to T'(x).

While Equation 6 is defined by a linear program which can be solved in principle, doing so is costly,
especially for large-scale problems in machine learning and graphics. To mitigate this cost, Cuturi
(2013) proposes to regularize Equation 6 with an entropy term:

N M N M

Sinkhorn(u, v) := min Z ZT”H:Q —yjll2te Z ZTij log Tj;. @)

Tel
elllur) =53 i=1 j=1

This approximation enables the use of Sinkhorn’s algorithm to solve the entropy-regularized optimal
transport problem in quadratic time. In addition to its computational benefits, entropy regulariza-
tion is often desirable for high-dimensional machine learning problems with noisy data. We use
Sinkhorn’s algorithm to approximate the optimal coupling between the base model samples and
samples from the perturbed model’s target distribution to compute our baseline in Section 4.3.

ODE sensitivity equation. The results in this section are drawn from Khalil (2002, Section 3.3).
Given a function f(z,t,\), suppose that z; satisfies the ODE %zt = f(z}t,\), where A € R?
is a parameter that may be interpreted as a control vector. Suppose also that f is continuous in
all its arguments and is continuously differentiable with respect to z; and A for all . Let A\g be a
parameter for which the initial value problem 4 e /\D = f(z,t, Ao) with initial condition 2 has a

unique solution over some interval [to,¢;]. Then the solution path z;\" is differentiable with respect

to A near A, and this derivative S; := ddA zt’\‘ satisfies the sensitivity equation:

d of
dt @ 0z

of

== (20, o) - StJra

(205, M) ®)
We use this ODE sensitivity equation to derive our sample sensitivity analysis in Section 3.3.

Score functions and density functions for mixtures of Gaussians. In practice, the perturbation
measure v is typically the empirical measure on K samples x;, € R¢ that one wishes to add or
remove from p. In this case, 14 is a mixture of isotropic Gaussians for all ¢ € [to, t1]:

1 K
v(2) = 22 > N(z oan; o} ), ©)

k=1

where a; and o are the scaling and noise schedules, respectively. One may therefore compute the
exact density of v; with time complexity O(dK ). The score of v is also available in closed form:

Viogu(z) = 7 (ke(2) — 2), (10)

where k; ( Zsoftmax — X’ T (11)
t 20',52 . tdk,

in which we let ||z — a; X || denote the vector whose k-th entry is ||z — a;xx||?. This score can also
be computed exactly in O(dK) time.
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In settings where K is large, these density and score computations may be prohibitive. Fortunately,
the large sums in the density and score computations are well-structured: For small o;, both sums are
dominated by the term involving the zj, nearest to z, and for large o; the scalar terms in each sum
are approximately uniform. Karppa et al. (2022) show how to exploit this structure to efficiently
approximate densities of the form (9) using approximate nearest-neighbor queries, and Scarvelis
et al. (2025) use similar techniques to efficiently approximate score functions of the form (10).

B PROOFS

B.1 PROOF OF THEOREM 3.1

We will prove this theorem in two parts. We will first show that 6—‘3}31’(2) = g¢(2) at any fixed
n=0

z € R® This shows that g;(z) is the pointwise derivative of s evaluated at n = 0 at any z €
R?. We will then extend this pointwise argument to the space of functions by using the dominated
convergence theorem (DCT) to prove that g; is the Fréchet derivative in L?(R¢, p9) of the map
T(n):nw—sj.

B.1.1 g:(z) IS THE POINTWISE DERIVATIVE OF s AT =0

In this part of the proof, we will rely heavily on Mlodozeniec et al. (2025, Lemma 1). A version of
their lemma adapted to our setting states the following:

Lemma B.1 Let £ : R x R? — R be a C? function of additive form L(n, s.) := L1(s.) +nLa(s,),
and suppose that the map s, — L(n, s, ) is strictly convex for all € R. Fix 7j and choose s% such
that %(ﬁ, s%) = 0. Then, by applying the implicit function theorem to %, one obtains an open
interval (—8,0) C R containing 7 and a unique function ¢ : (—6,8) — RY such that ¢(7) = s*
and such that for all ) € (=38, 6), ¢(n) is the unique minimizer of s, — L(n,s,). Moreover, ¢ is C!
with the following derivative:

5 -1
oL } 92 (5(m)). (12)

son == | G5 mom] 5

To apply this lemma, we will first show that the score function s;(z) of the marginal distribution of
Z; = oy X1 +0y€ can be characterized pointwise at any z € R? as the minimizer of a score-matching
objective. For the sake of simplicity, we will assume a constant scale schedule oy = 1; our argument
can be easily adapted to arbitrary scale schedules at the cost of additional notation.

Let 5¢(2) : R? — R< be the score function for some distribution p; := p x N'(0,52I), where p is a
target distribution on R<. Kadkhodaie et al. (2024, Egs. 14, 19) and the variational characterization
of conditional expectation imply that this score function has the following pointwise variational
characterization:

si(z) = Viog pi(2)

_ /]R (ﬁ;) p(z|2)de

. ljjz—=2
= argmin [ o 5 — s(2)

s(z) 0

where p(x|z) is the conditional distribution of 2 given z ~ p;. While p(x|z) is intractable a priori,
p(z|x) ~ N(z,021) is Gaussian, so we rewrite p(z|z) in this integral using Bayes’ theorem:
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2
1 _
si(z) = argmin/ il 22 — s,|| p(z|z)dz
s, ERd 2 O't
1 _ 2 . 2]
= argmln/ — LQZ — 8, Mp(:ﬂ)dl’
5. €R4 2| o; pe(z)
c2,02) 1 ||z — ?
— aremin E Nzzoil)1 e = s | (SM)
s, €Rd TP pi(2) 21 o

Here, we use N(z;2,021) to denote the density of a Gaussian distribution with mean x and co-
variance 071 evaluated at z € R?. This provides a pointwise definition of the score s,(z) of p;
evaluated at z € R? as the minimizer of the score-matching problem (SM). In particular, applying
this argument to the target distribution p” shows that:

. 2[ 1 _
s{(z) = argmin E Nz o)l z—z

[
s.€Rd TP" Pl (2) 2" of

—s.1%|.

Now, define the following objective functions, in which we take z € R< to be fixed:

N(z;z,020)1 ||z — 2 2
E — IE ek A - _
p(s2) Zrop [ pi(2) 21 o? o
and
N(z;z,02) 1 ||z — 2 2
L,(s.)= E S S - :
(Sz) s l pg(z) 9 0'? Sz

Using these two objectives, we can define an objective £(7,s.) := L,(s.) +1 (L, (s2) — L,(52))
——
::[:1 2:£,2

whose minimizer is s} (z). This objective is in the additive form prescribed by Lemma B.1, which
will put us in position to apply the lemma once we verify that its remaining hypotheses are satisfied.

To this end, note that L is clearly a C? function of the prescribed additive form. Furthermore, as we
will see below via a Hessian computation, the map s, — £(7, s,) is strictly convex for all € R
and for all z € RY. Fixing a point (7, s*) = (], s} (2)) yields a critical point of £ with respect to s,
which puts us in position to apply Lemma B.1.

Lemma B.1 gives us a function ¢(n) defined on an open set containing 7 that maps 7 to the unique
minimizer s} (z) of £(n,s,). Crucially, it gives us a formula for the derivative 8%(/)(77), which

oL

involves the derivative 5z
-

(¢(n)) and the Hessian %(77, #(n)). We will compute each of these
terms separately.

We begin by computing the derivative g—fj (¢(n)). We have
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oL 0 N(ziz,02) 1 ||z — 2 2] N(zz, 021 ||z — 2 2
o) = — | g |(MEnoill oz ) g (MenoDljeoz
0s, 0s, |z~v pi(z) 2| of zrp pi(z) 2| o; 7(3)
0 N(z2,071) 1 roz 2
6SZIN(V_P) p?(Z) 2 Ut2 : s7(2)
N(z;2,02I) 0 1||z—=z 2
= E T NN 9. ol 2 TS
x~(v—p) Py (Z) Js, 2 o S1(2)

N(z;x,021) <xz )] { N (z;z,02) <1’z )]
= FE |— 2 — 5, - E |- ¢ — s,
= { I AL P B O RN

P )] P ()

We now rewrite each expectation in the last line in terms of the scores of p; and v;. To rewrite
the first expectation, we pull out the factor of p%(z), which does not depend on x, and multiply by
t

— pt(z)
pt(2)

IIEP [N(Z;f(gtz]) <=’f *22 S?(z)ﬂ _ P;(Z) B [N(Z;%U?I) <x *22 5?(?:))}

Py o
-5 2l - £ P oo

=sf(z) =1

s7(2)

to obtain the following:

Analogous reasoning allows us to conclude that

5, [MEReD (12| - 43 - stea.

pi(z)

and putting these together, we obtain

gfj (¢(n)) = z;t'(Z) st(z) — Vf,(z) s¥(2) + (M) s1(z). (13)

. 02 2 2 2 2
We now compute the Hessian term %(n,¢(n)). Note that 25 = 2.2, + n(g—szﬁ,, 9.L,),

952 = 952 ~ 2sZ
and that we have already computed the relevant first derivatives:

0 N(z;x,021) (2 — 2
Y r_F |- _
9s. * xNﬂ{ pi(2) ( of Szﬂ

and

0 B N(z;2,020) (2 — 2
et 2 ()]

Differentiating again and simplifying, we see that
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0? ~pe(2)

o520 = i)
and

02  (2) I

Combining these and noting that p; = (1 — n)p; + nvi, we conclude that %255 (n,s.) = I for all

7 € R and for all s,. In particular, the map s, — L(, s.) is strictly convex for all n € [0,1] as
required by Lemma B.1.

We finally substitute these first and second derivatives into Equation 12 to obtain:

5o == G5 mom] - 52 @)

0 RZ16))
an (n) =

(s7(2) = s7(2)) =: gue(2).
This completes the first part of the proof.

B.1.2 g, IS THE FRECHET DERIVATIVE OF T3(n) : )+ s/ ATn =0

We now extend this pointwise argument to the space of functions. Consider the map 7; : R —
L2(R?, p}') that maps 7 to s;. We will show that g; is the Fréchet derivative of T} at = 0 for any
t € [to, t1]. To do so, we need to show that for any ¢ € [to, 1],

h 0
St — 5¢

=0.
L2(R4,p9)

lim
h—0

— Gt

The previous section shows that g;(z) is the pointwise derivative of s} with respect to 7 at 5 = 0.
This means that for any z € R%, ¢ € [tg, 1],

= gt(2).

h_ 0
St —S¢

Hence converges pointwise to g; for all ¢ € [tg,t1]. We will use the dominated convergence

theorem (DCT) to lift this pointwise convergence to L%(R<, p¥) convergence. Define the following
function:

Fa(z1) = M

We need to show that there exists some real-valued function G(z;t) € L2?(R%, p?) such that
|Ex(z;t)||l2 < G(z;t) uniformly in h for all z,¢. To this end, note that by the mean value theo-
rem, there exists some 6 € [0, 1] such that:
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Sh z —SO z
HFh(ZQt)”Q: t( )h t( ) i
0
= 8777 t( ‘n:@h 2
N2 E) oy oy 2B iy g,
- peh(z)(t() t()) gh(z)(t() t()) 27

where the last line follows from a rearrangement of Equation 13. We can further simplify this bound
to eliminate the dependence on h. First, note that p{" = (1 — 6h)p; + 6huy, so that for h < %, we
have

1 1 1 2

) A0 p(2) + 00 (2) = (L= 0p(2) = (o)

Hence, for h sufficiently small, we have:

PE) ()~ tn(z)) = 2L (o) ()

pi"(2) P (2)

[le(2) (s7(2) = s¢"(2)) = wa(2) (s (2) = s{"(2)) ] -

1Fu(z )] < \

2
= pe(2)

Applying the triangle inequality, we then obtain:

L 2) (sP(2) — s2(2)) — v (2) (s¥(2) — 7" (2
@) |pe(2) (s7(2) = 57" (2)) = vi(2) (57 (2) = 57" (2)) ][,
< pjz) (pe(2)lls? (2) = 87" (2) |2 + ve(2) st (2) — 57" (2)|2) -
Now, define

ki (2) == /wt(z, z)xdp(z)

and similarly for k¥ (z) and k¢"(z). Then Equation ?? tells us that

and similar identities hold for the other score functions. Furthermore,

1 1
Is5() = 5" (2)ll> = — 167 (2) = k2" ()12 < — (167 ()2 + 16" (2)]l2)
t t

where the last line follows from the triangle inequality. Because k% (z) is a convex combination of
points in the compact support of p, we can bound ||k (z)|l2 < D? < 400, where D? is the diameter
of the support of p. Similarly, ||k¥ (z)||2 < D < +o0, and because supp(p®*) C supp(p)Usupp(v),
we have ||k¢"(2)||s < DP + D¥. Substituting these bounds into the above and simplifying, we
obtain:
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[Fn(z5t)l2 < pjz) (pe(2)|187(2) = s{"(2) 12 + ve(2) |5} (2) = s7"(2)]2)
< pjz) pta(? (2D’ + D¥) + ”;(tf) (2D + D”))
=: G(z;t)

This function G(z;t) dominates ||F},(z;t)||2 uniformly in h for all z,¢. It remains to show that
G(z;t) € L3(R%, p?). To this end, first note that p = p;. Then,

[at) = [ Gnan)

:/pjz) (pt(f) (2D + DV) + V;(;) (2D”+Dp)> pr(2)dz

0% t
2(2D? + D¥ 2(2DY + D?P

= (72)/pt(z)dz+(72)/ut(z)dz

O 0%

-1 =1

= E(D” + DY)
= G?
< Ho0.

This shows that G(z;t) € L?(R%, p¥). As the hypotheses of the DCT are satisfied, we finally

conclude that g; is the Fréchet derivative of T} at = 0 for any ¢ € [tg, t1]. This completes the proof
of Theorem 3.1. W
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C MOST AND LEAST INFLUENTIAL SAMPLES

Figure 12: Most and least influential training samples (center, right, resp.) for the model sample on
the left, with the corresponding sensitivities on the bottom row.

fel=ie] 2zl ]tv?ll N2
-~ BEIRORT WSS |

b Al ik =l e T =
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Figure 13: Training samples with the largest and smallest residual influence scores (center, right,
resp.) for the model sample on the left, with the corresponding sensitivities on the bottom row.

D SINGULAR VECTORS OF SAMPLE SENSITIVITIES

Figure 14: Top 10 right-singular vectors of the N x d matrix formed from the sensitivities of a single
model sample (left) to each of its N training samples. These are interpretable directions in image
space; see Figure 10 for examples of perturbing a model sample along several singular directions.
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E VISUALIZING THE SAMPLE SENSITIVITIES

In this appendix, we illustrate our sample sensitivity analysis on images from the CelebA dataset. We
draw four samples from a base model trained on CelebA and solve Equation 2 for each model sample
and for four perturbation measures v/, each of which is an empirical measure over a perturbation set
S. These perturbation sets consist of samples from the CelebA test set possessing the attribute
labels “bald”, “goatee”, “smiling”, and “eyeglasses”, respectively. We depict model samples in
the top row of Figure 15 and solutions to the sample sensitivity ODE for each perturbation set in
the bottom four rows. Solutions to this ODE should approximate changes in the model samples
in the top row in response to perturbing the base model’s target distribution, and many of these
predictions are intuitively reasonable in practice. For instance, base model samples representing
people without glasses are pushed towards samples of people with glasses in response to perturbing
the target distribution towards CelebA samples with the “eyeglasses” attribute, and one observes
similar phenomena for the other perturbation sets.

Figure 15: The bottom four rows depict solutions %@g (zo)’ to the sample sensitivity equation
n=0

(2) for model samples <I>(t~)1 (zo) pictured in the top row. In each of the lower four rows, the pertur-
bation measure v is the empirical distribution over images from the CelebA test set with attributes

LLINT3

“bald”, “goatee”, “smiling”, and “eyeglasses”, respectively.

In Figure 16, we also depict line segments of the form <I>g1 (20) + a%fbg (20) . for o € [—2,2]

and for the sample sensitivity ODE solutions depicted in Figure 15. These line segments should
approximate samples from a model whose target distributed has been perturbed towards 4-v, where
v is the empirical measure over CelebA test images with the specified attributes. For « close to 0,
the perturbed samples resemble the original sample (6th from the left in each row), differing mainly
in the strength of the specified attribute. As o« moves farther from 0, the perturbed samples deviate
increasingly from the original.

F EXPERIMENT DETAILS

F.1 SYNTHETIC EXPERIMENTS
F.1.1 FIRST-ORDER APPROXIMATION FOR PERTURBED MODEL SAMPLES

In this experiment, the initial target measure p is an equally-weighted mixture of two Gaussians on
R!% with means (—1,...,—1) and (1, ..., 1), respectively, and shared covariance oI for ¢ = 0.1.
We perturb p in the direction of a Gaussian distribution v centred at (1, ..., 1) with covariance 021
for ¢ = 0.1. For any 7 € [0, 1], the perturbed target p7 = (1 — 77)p + 7jv is a mixture of Gaussians

with the same means and covariances as p, but with weights 17?7’ and HT"
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We obtain sample paths z; for p; and p; by fixing 1000 base samples zy ~ po and numerically
integrating the PF-ODE and variance-preserving SDE using a forward Euler scheme and Euler-
Maruyama scheme, resp., with step sizes At € {1 x 1074,5 x 107%,1 x 1072,5 x 1073}. Our
scale and noise schedules come from a linear DDPMScheduler from the di ffusers library with
Bstart = 107% and Beg = 0.02. We exactly compute the Gaussian mixture densities pt(z¢) along
each sample path. We then integrate Equation 2 using the same forward Euler scheme to obtain the

sensitivities %@g (z0) of samples from p;, . We compute the Taylor remainder:
n=0

R) = (8], () = 8, (o)) = 7580 (o)

and report the median value of across the 1000 batch samples in our plots.

B()
n
In our experiments studying the effect of using Hutchinson’s estimator to estimate model densities,
we use the same setup as in the step size experiments, but estimate the base model densities p;(2)
with Hutchinson’s estimator: tr(A) = E[e” Ae]. We use standard normal Gaussian samples for e

and report the number of noise samples we used in our plots.

F.1.2 STABILITY UNDER SCORE APPROXIMATION ERROR

Here, the initial target measure p is an equally-weighted mixture of two Gaussians on R19 with
means (—1,...,—1) and (1,...,1) and shared covariance o] for o = 0.1. We perturb p in the
direction of a Gaussian distribution v centred at (1, ..., 1) with covariance 0?1 for ¢ = 0.1. Instead
of evaluating the score of p; in closed form as in 4.1, we now train a neural network to approximate
this score function. Our neural network is a two-hidden-layer MLP with SiL.U activations and 512-
dimensional hidden layers. We also use Fourier features (Tancik et al., 2020) with 128 frequencies
and 0 = 2.0. We solve the score-matching problem using AdamW with a learning rate of 10~*
and a batch size of 100k. We train for 200k steps in total. In our plot, we omit the first two
measurements of the correlations for clarity, as the training loss was large and network was very far
from convergence during this phase of training.

We fix 1000 base samples zg ~ po and evaluate the sensitivity of model samples from the exact
diffusion model p; and its neural approximation every 1000 training steps. We discretize all ODEs
using a forward Euler scheme with step size 10~2 and use Hutchinson’s estimator with 100 samples
to estimate the model densities p;(z). We measure the median correlation between the exact and ap-
proximate sample sensitivities and compare it to the value of the score-matching loss at that training
step in Figure 4.

Computing correlation coefficients. In Sections 4.2 and 4.3, we measure correlations either be-
tween pairs of exact and approximate sample sensitivities, or between our sample sensitivities and
differences in model samples post- and pre-perturbation of the training set. In each case, we are
interested in the correlation between two tensors of shape (C, H, W), where C' is the number of
channels and H, W are the height and width, respectively, of image samples generated by the diffu-
sion model. To compute these correlations, we flatten each tensor so that it has shape (CHW, ) and
use numpy . corrcoef to compute the correlation coefficient between the pair of vectors. Given
two vectors u, v € R?, their correlation is computed as follows:

(u—1u,v— )

C =
o) = o = ol

where 4 := 52?:1 u; is the mean of u and ¥ is defined similarly. This is the cosine similarity
between u and v after centering. In the setting of Section 4.3, it measures the extent to which our

sample sensitivities can predict increases or decreases in pixel intensity across model samples after
retraining or fine-tuning on a perturbed training set.

F.2 IMAGE DATASETS

Retraining experiments. Each neural diffusion model in these experiments is parametrized
by a Unet2DModel from the diffusers library. For the CelebA experiments,
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we set layers_per_block=2, block_out_channels=(128, 256, 512, 512), and
norm_num_groups=32. We use a DDPMScheduler with By = 1074 and feng = 0.02. The
base model samples consist of 10k iid samples from the CelebA training set, and the new samples
S are 495 CelebA training samples with a large CLIP score for “a photo of an old man”. We pre-
process the training images by center-cropping to a size of 140 x 140, then resizing to 64 x 64 and
normalizing to [—1, 1]. We apply random horizontal flips as augmentations in training. We then train
the CelebA diffusion models for 1000 epochs with an effective batch size of 512. Our optimizer is
AdamW with a learning rate of 104,

For the MNIST experiments, we set layers_per block=2, block_out_channels= (32,
64, 128), and norm_num_groups=8. We use a DDPMScheduler with By = 10~% and
Bena = 0.02. We do not apply any preprocessing to these samples. We train the MNIST diffusion
models for iOO epochs with an effective batch size of 1024. Our optimizer is AdamW with a learning
rate of 107°.

We draw model samples by integrating the PF-ODE and estimate model densities along the sample
path using Hutchinson’s estimator with 1 sample. We numerically integrate the PF-ODE and our
sample sensitivity ODE (2) using a forward Euler scheme with a step size of 1073, We clamp

the :8 weights to [0.1, 10] for numerical stability. For the entropic OT baseline, we use the

sinkhorn_log algorithm from the POT package (Flamary et al., 2024) with a regularization value
of 0.05 to compute the coupling matrix.

Fine-tuning experiments These experiments mostly replicate the setup in our retraining exper-
iments, but implement the following changes. For CelebA, we train the base model on 10k iid
samples from the CelebA training set for 1k epochs with the same hyperparameters as in the retrain-
ing experiments, and then fine-tune for 200 epochs on 495 CelebA training samples with a large
CLIP score for “a photo of an old man”. We use the same learning rate of 10~ for fine-tuning.

For MNIST, we train the base model on the MNIST training set for 100 epochs with an effective
batch size of 1024 and a learning rate of 10~%, and then fine-tune on TMNIST for a single epoch at
a learning rate of 10~°.
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Figure 16: Line segments extending from model samples (center images) towards negative (left) and
positive (right) multiples of sample sensitivities an @" (zo)) . In each subfigure, the perturbation

measure v is the empirical distribution over CelebA test samples with the attribute listed in the
subcaption.
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