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ABSTRACT

Training a diffusion model approximates a map from a data distribution ρ to the
optimal score function st for that distribution. Can we differentiate this map? If
we could, then we could predict how the score, and ultimately the model’s sam-
ples, would change under small perturbations to the training set before committing
to costly retraining. We give a closed-form procedure for computing this map’s
directional derivatives, relying only on black-box access to a pre-trained score
model and its derivatives with respect to its inputs. We extend this result to es-
timate the sensitivity of a diffusion model’s samples to additive perturbations of
its target measure, with runtime comparable to sampling from a diffusion model
and computing log-likelihoods along the sample path. Our method is robust to
numerical and approximation error, and the resulting sensitivities correlate with
changes in an image diffusion model’s samples after retraining and fine-tuning.

1 INTRODUCTION

Diffusion models form a powerful class of generative models that allow users to generate images
of nearly any subject in nearly any style in just a few keystrokes. However, this flexibility also
allows diffusion models to engage in legally fraught behavior, such as generating images that mimic
an artist’s style. This has put diffusion models at the center of recent litigation1 alleging that they
facilitate copyright and trademark infringement. Understanding and mitigating the causes of this
behavior have therefore become pressing challenges as businesses seek to integrate diffusion models
into their consumer offerings.

Diffusion models generate images by iteratively transforming Gaussian noise using the score func-
tion of a distribution over noisy images, which is learned in practice from a large set of training
images. Since the learned score is, in principle, determined by the training images, a natural strat-
egy for understanding a diffusion model’s behavior is to study how it depends on the training data.
A sensible framework for this task should be able to answer questions such as: “What would the
score function be if a sample were added or removed from the training set?” and “What would a
generated image have looked like if a sample were added or removed from the training set?”

This work introduces a principled framework for answering such questions about diffusion models in
the perturbative regime, where one considers infinitesimal changes in a model’s training distribution.
Because a diffusion model’s output depends on the score function, which is itself determined by
the training distribution, the core of our framework is a tractable closed-form expression for the
directional derivatives of a score function with respect to the training distribution. This sensitivity
analysis measures how the score function changes as a probability measure is up- or down-weighted
in the training distribution; when this measure is a Dirac point mass, we obtain an exact expression
for the influence function of the score. Crucially, our sensitivity analysis requires only black-box
access to a pre-trained score function, and it does not require any knowledge of its training data or
training procedure.

Using the adjoint method, we extend our sensitivity analysis for score functions to obtain schemes
for computing the sensitivity of a diffusion model’s samples to perturbations in the training data.
These enable us to predict how a generated image would change if a collection of samples were
added or removed from the training set. We demonstrate our method’s robustness to a variety of
sources of numerical error and show that its predictions are correlated with changes in a diffusion
model’s samples after retraining and after fine-tuning.

1Andersen v. Stability AI Ltd., U.S. District Court, Northern District of California (2024).
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2 RELATED WORK

Influence functions. Influence functions (Hampel, 1974) linearly approximate the change in a sta-
tistical estimator in response to infinitesimally upweighting a single training sample. Koh & Liang
(2017) introduced influence functions to deep learning as a method for estimating the change in a
neural network’s parameters in response to perturbing its training set. Influence functions for generic
optima of a training loss require the user to compute a costly inverse Hessian-vector product. Previ-
ous work (Guo et al., 2021; Schioppa et al., 2022) responds to this challenge by developing efficient
approximations to this operation. In addition to this difficulty, influence functions assume that the
learned model parameters minimize a strictly convex loss. This assumption is violated for neural
networks, and Basu et al. (2020) find that in practice, influence functions for deep learning are brittle
to network hyperparameters. Kwon et al. (2024); Mlodozeniec et al. (2025) introduce influence ap-
proximations that are specially adapted to generative models, including diffusion models, but these
works follow Koh & Liang (2017) in estimating the influence of training samples on the learned net-
work weights. In contrast, our sensitivity analysis uses the structure of diffusion models to directly
compute the influence of training samples on the value of the score function and on model samples.

Data attribution for diffusion models. An emerging literature develops data attribution meth-
ods for diffusion models, which seek to estimate the impact of training samples on model outputs.
Georgiev et al. (2023) use TRAK (Park et al., 2023), a gradient-based data attribution method de-
veloped primarily for supervised learning, to compute a per-example attribution score for a diffu-
sion model’s training data. This score estimates the change in the model’s training loss induced
by adding a particular sample to the training set. Following Park et al. (2023), they measure their
method’s effectiveness using the linear datamodeling score, which measures the rank correlation
between their attribution score and actual training loss values attained by retrained models. Zheng
et al. (2024) observe that one can improve upon the method from Georgiev et al. (2023) by comput-
ing their attribution scores using the gradients of the “wrong” model output function. Mlodozeniec
et al. (2025) introduce an efficient approximation to the denoising loss Hessian and use it to esti-
mate influence functions for attributing several proxies for model log-probabilities. Lin et al. (2025)
propose attributing the KL divergence between the model distribution before and after deleting a
training sample. Li et al. (2025) perform gradient-based data attribution using learnable weights for
gradients with respect to different parameter groups. Whereas these methods estimate the impact of
training samples on scalar quantities such as the training loss or proxies for log-probabilities, our
sensitivity analysis estimates the effect of perturbations in the target distribution on the values of the
score function and on model samples.

3 METHOD

In this section, we begin by observing that a diffusion model defines a map from its training distri-
bution ρ to a score function st and then show how to tractably compute its directional derivatives.
We then use this result to estimate how a diffusion model’s samples change in response to small
perturbations of its training distribution.

3.1 PRELIMINARIES

Diffusion models sample from a target distribution ρ by drawing samples from a Gaussian base
distribution N (0, I) and flowing them through a possibly noisy velocity field vt from t = t0 to
t = t1. This yields a curve of probability distributions {ρt : t ∈ [t0, t1]} for which ρt is the marginal
distribution of the random variableZt := αtX1+σtϵ. Here,X1 ∼ ρ, ϵ ∼ N (0, I), and αt and σt are
scale and noise schedules, respectively. These schedules are chosen so that at t = t0, the samples are
distributed according to a Gaussian distribution, and at t = t1, the samples are distributed according
to the target distribution ρ.

A diffusion model’s velocity field vt depends on ρ through the score function st(z) := ∇ log ρt(z) of
ρt, which one learns in practice by solving a score-matching problem (Hyvärinen & Dayan, 2005).
If one does not impose any restrictions on the hypothesis class, the optimal solution to this problem
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is in fact available in closed form (Miyasawa, 1961):

st(z)=
1

σ2
t

(∫
wt(z, x)αtx dρ(x)−z

)
,where wt(z, x) :=

exp
(
− 1

2σ2
t
∥z − αtx∥22

)
∫
exp

(
− 1

2σ2
t
∥z − αtx∥22

)
dρ(x)

. (1)

=⇒

Figure 1: Solving the score-matching problem maps a mea-
sure ρ (left) to a vector-valued function st (right). We will
compute this map’s first variation in Section 3.2.

This is a vector field pointing from
z toward a distance-weighted average
of rescaled samples αtx from the tar-
get distribution ρ. Solving the score-
matching problem therefore maps a
measure ρ to a function st, which is
fully determined by ρ and the scale
and noise schedules.

We would like to estimate how the
outputs of a diffusion model would
change in response to perturbations
of the training data. These outputs depend on the training data only through the velocity field vt
and, in turn, through the score function st. We will therefore begin by introducing a tractable
closed-form expression for the first variation of the map from ρ to st, which will describe how st
responds to additive perturbations of the target distribution ρ.

3.2 SENSITIVITY ANALYSIS FOR SCORE FUNCTIONS

Equation 1 expresses the score function st of a diffusion model in terms of its target distribution ρ.
To understand how st changes in response to small perturbations of ρ, intuitively one would like to
differentiate st with respect to the probability measure ρ. However, it is not obvious how to compute
this derivative in practice. In this section, we present a tractable formula for such a derivative with
respect to additive perturbations of ρ. This class of perturbations includes many cases of interest,
such as the addition of new samples and the removal of existing samples from the training set.

Suppose that ρη := (1 − η)ρ + ην is a mixture of two probability measures ρ and ν supported on
Rd, and let sηt : Rd → Rd be the score function of a diffusion model with target distribution ρη
at time t. Differentiating sηt with respect to η and evaluating this derivative at η̄ yields a function
gη̄t : Rd → Rd describing how sηt changes as one infinitesimally up-weights ν given initial weight
η̄.

The case η̄ = 0 is of particular interest. For example, if η̄ = 0, then gη̄t describes how a score func-
tion trained on ρ would vary as one introduces samples from ν. On the other hand, to approximate
how the score function of a diffusion model trained on ρ would change in response to removing
training data lying in some region Ω ⊆ Rd, one would define ν := ρΩ, where ρΩ is the restriction
of ρ to Ω, and consider −gη̄t evaluated at η̄ = 0.

Our key result is the following theorem, which provides a tractable closed-form expression for g0t :

Theorem 3.1 (Sensitivity analysis for score functions) For η ∈ [0, 1], let ρη := (1 − η)ρ + ην
be a mixture of probability measures ρ and ν with compact support on Rd. Let ρηt : Rd → R and
sηt : Rd → Rd be the density and score function, resp., of a diffusion model with target distribution
ρη at time t ∈ [t0, t1). Then the Fréchet derivative in L2(Rd, ρηt ) of the map Tt(η) : η 7→ sηt
evaluated at η̄ = 0 is the function g0t : Rd → Rd defined by the formula:

g0t (z) =
νt(z)

ρt(z)
(sνt (z)− sρt (z)) , (2)

where νt(z), ρt(z) are the respective densities and sνt (z), s
ρ
t (z) the respective scores at time t of

diffusion models with target measures ν, ρ.

We prove this result in Appendix A.1. Whereas Equation 1 shows that there exists a well-defined
map from a measure ρ to the optimal score function st of a diffusion model with ρ as its target,
Equation 2 now provides a formula for the directional derivative of this map in the direction of
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ν − ρ. In Figure 2, we depict an instance of this directional derivative g0t when ρ is supported on
a curve in 2D and ν is a Gaussian measure centered just off the curve. g0t is a vector field pointing
away from the support of ρ and towards the support of ν; on account of the νt(z)/ρt(z) scaling factor,
∥g0t (z)∥2 is large at points z that are closer to the support of ν than to the support of ρ.

Figure 2: The score sensitivity g0t is a
vector field pointing away from the sup-
port of ρ and towards the support of ν.

In a typical use case, ρt is the distribution at time t of a
diffusion model trained on ρ, and ν = 1

K

∑K
k=1 δxk

is the
empirical distribution on K samples xk that one wishes
to add or remove from ρ; if K = 1, we recover the in-
fluence function of Tt (Hampel, 1974). In this setting, we
may use Equation 2 to compute gt(z) given only black-
box access to the score function sρt (z) and the K sam-
ples xk. The density ρt(z) of the diffusion model can be
computed from its score using the continuous change of
variables (CCoV) formula (Song et al., 2021), and since
νt is a mixture of Gaussians when ν is an empirical dis-
tribution, its density and score function can be computed in closed form or efficiently approximated
using techniques from Scarvelis et al. (2025). For perturbation sets S = {xk}Kk=1 of moderate size,
the cost of evaluating Equation 2 is dominated by the cost of the density computations.

Theorem 3.1 shows how to tractably estimate the response of a pre-trained score function to additive
perturbations in its target distribution. However, in practice, we are typically interested in how the
samples generated by a diffusion model would change in response to perturbing its target distribu-
tion. Because samples are obtained by solving an ODE or SDE determined by the score function,
Equation 2 should provide enough information to estimate the sensitivity of model samples to ad-
ditive perturbations of ρ. We show this to be the case in the following section, using the adjoint
method to obtain an analogous perturbation formula for a diffusion model’s samples.

3.3 SENSITIVITY ANALYSIS FOR MODEL SAMPLES

Diffusion models generate samples from their target distribution ρ by solving a stochastic differential
equation (SDE) or an ordinary differential equation (ODE) whose drift or velocity field, respectively,
depend on the score sηt . Because this dependence is typically simple, often consisting of an affine
transformation of sηt , it is easy to differentiate the drift or velocity field with respect to η given
Equation 2. In this section, we will exploit this fact to compute the sensitivity of a diffusion model’s
samples with respect to additive perturbations.

ODE sampling. We begin with the simpler case of ODE sampling. Song et al. (2021) show that
one may sample a diffusion model by solving a probability flow ODE (PF-ODE), whose initial
condition is drawn from the Gaussian base distribution: dzt

dt = vηt (zt) with z0 ∼ N (0, I). Because
the Lipschitz constant of sηt – and consequently vηt – may blow up as t → t1, we follow a common
convention from the theory of diffusion models and truncate integration of vηt at some t̃1 < t1 (De
Bortoli, 2022). This convention aligns with typical diffusion model sampling schemes, which return
samples at some time t̃1 slightly earlier than the theoretical sampling interval endpoint t1.

If one further assumes that the target distributions µ, ν are compactly supported on Rd, then a typical
vηt (z) will be globally Lipschitz for z ∈ Rd and t ∈ [t0, t̃1]. Khalil (2002, Theorem 3.2) then shows
that there exists a unique solution to the PF-ODE for any initial condition z0 ∈ Rd. This allows us
to define a solution map Φη

s(z0) : Rd → Rd that maps an initial condition z0 ∈ Rd to the unique
solution at time s ∈ [t0, t̃1] of the initial value problem (IVP) defined by vηt . Intuitively, Φη

s(z0)
maps an initial noise sample z0 ∼ N (0, I) to the sample’s position at time s along the diffusion
model’s sample path; at time s = t̃1, this is simply a model sample.

We are interested in the derivative d
dηΦ

η

t̃1
(z0) for fixed initial conditions z0, which describes how the

model sample Φη

t̃1
(z0) generated from the Gaussian sample z0 varies as one perturbs the target dis-

tribution µ in the direction of ν. Khalil (2002, Section 3.3) shows that under certain regularity con-
ditions, this derivative solves an ODE known as the sensitivity equation. Defining ψs := d

dηΦ
η
s(z0)
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and letting zs := Φη
s(z0) for s ∈ [t0, t̃1] be a solution path for the PF-ODE, this equation is:

d
ds
ψs =

d
dη
vηs (zs) + Jz[v

η
s ](zs)ψs, (3)

Figure 3: A solution to Equation 3 ap-
proximates the change in a diffusion
model’s samples as the target distribu-
tion ρ is perturbed in the direction of ν.

where the initial condition is ψt0 = 0 and Jz[v
η
s ](zs)

denotes the spatial Jacobian of vηs evaluated at zs. A
solution ψt̃1

= d
dηΦ

η

t̃1
(z0) to Equation 3 approximates

the change in a sample zt̃1 = Φη

t̃1
(z0) in response to

additive perturbations of the target distribution ρ. Cru-
cially, one may solve this IVP given black-box access to
the score function sηs and its spatial derivatives. To esti-
mate how a sample Φη

s(z0) generated from initial noise z0
would change in response to perturbing ρ, one should (1)
compute a sample path zt and model densities ρt(zt) by
jointly integrating the PF-ODE and the CCoV formula,
(2) evaluate Equation 2 along the sample path, which also entails computing the density and score
of the perturbation measure ν, and (3) integrate Equation 3, using autograd to compute the spatial
Jacobian-vector products Jz[vηs ](zs)ψs. Figure 3 depicts a solution to Equation 3 for when ρ (in
blue) is supported on a curve in 2D and ν (in red) is a Gaussian measure centered just off the curve.

SDE sampling. In practice, it is more common to sample a diffusion model by solving an SDE
dzt = fηt (zt)dt + gtdWt, where Wt denotes a Wiener process on Rd. Only the drift coefficient
fηt depends on the score function sηt and consequently on η; conversely, the diffusion coefficient gt
is independent of η. Kunita (2019, Theorem 3.3.2) provides an analogous sensitivity analysis for
the solution of an SDE whose coefficients depend on a parameter. Suppose the SDE has a unique
solution and let Γη

s,ω : Rd → Rd be the solution map sending an initial condition z0 to the solution
to the SDE at time s ∈ [t0, t1] for some fixed realization ω of the Wiener process. Kunita (2019,
Theorem 3.3.2) shows that under certain regularity conditions, which are satisfied for typical drifts
if one truncates the integration at t̃1 < t1, d

dηΓ
η
s,ω(z0) satisfies a particular SDE for almost all

ω. Moreover, when the diffusion coefficient gt is independent of η and the spatial variable, this
differential equation is, in fact, deterministic and coincides with the sensitivity analysis for ODE
sampling specified by Equation 3. We may therefore use Equation 3 to approximate the change in
a diffusion model’s SDE samples in response to perturbations of its target distribution. In practice,
one follows the recipe from the previous section on ODE sampling, but replaces the ODE sample
path zt with an SDE sample path.

4 EXPERIMENTS

In this section, we empirically validate our sensitivity analysis for diffusion models. We initially
study the impact of approximation error on our method’s accuracy using synthetic examples where
exact score functions and log-probabilities are available. We then experiment with neural diffusion
models trained on image datasets and show that our sample sensitivities correlate with changes in
model samples after retraining and after fine-tuning.

4.1 FIRST-ORDER APPROXIMATION FOR PERTURBED MODEL SAMPLES

A solution ψt̃1
= d

dηΦ
η

t̃1
(z0)|η=0 to Equation 3 estimates the change in a diffusion model’s samples

in response to an additive perturbation of the target distribution. Using this sensitivity analysis, one
may compute a first-order approximation of the samples a diffusion model trained on ρ0 would have
generated if its target distribution were ρη̄:

Φη̄

t̃1
(z0) ≈ Φ0

t̃1
(z0) + η̄

d
dη

Φη

t̃1
(z0)

∣∣∣
η=0

. (4)

Taylor’s theorem states that this approximation converges at rate o(η̄). However, because we esti-
mate the derivative by solving a differential equation (3), numerical error may render this approxi-
mation inaccurate for practical step sizes. Furthermore, evaluating Equation 2 requires the density
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Figure 4: The approximation error of our first-order approximation to a perturbed model’s samples
decays at rate o(η̄) for a variety of ODE step sizes (left) and SDE step sizes (center), and this rate is
robust to noise from Hutchinson’s estimator (right).

ρt of a score model, typically approximated using the CCoV formula. In practice, this formula
involves a noisy estimate of div(vt) using Hutchinson’s trace estimator, introducing numerical er-
ror. In this section, we use synthetic data for which exact score functions and log-densities are
available to study the impact of numerical error in ODE integration and density estimation on the
convergence of our linear approximation to a perturbed model’s samples. Appendix C.1.1 provides
implementation details.

Effect of step size. In this experiment, we analyze the impact of step size on the convergence
of our first-order approximation to the perturbed model’s samples when solving Equation 3 using
a forward Euler scheme. We let the initial target measure ρ be an equally-weighted mixture of
well-separated Gaussians on R100. This multimodal, high-dimensional target distribution simulates
some of the pathologies of real-world data, and for all t, the distribution of the resulting diffusion
model ρt is a mixture of Gaussians, whose score and density are available in closed form. We
perturb ρ in the direction of a second Gaussian distribution ν, which ensures that the perturbed
target ρη̄ = (1− η̄)ρ+ η̄ν remains a mixture of Gaussians.

We obtain sample paths zt for ρt and ρη̄t by numerically integrating the PF-ODE and variance-
preserving SDE using a forward Euler scheme and an Euler-Maruyama scheme, resp., with sev-
eral step sizes, and exactly compute the Gaussian mixture densities ρt(zt) along each sample
path. We then integrate Equation 3 using the same forward Euler scheme to obtain the sensitivities
d

dηΦ
η

t̃1
(z0)|η=0 of samples from the initial target to perturbations in direction ν. Equation 4 suggests

that we may use these sensitivities to estimate the final positions of samples from the perturbed
model ρη̄ , and Taylor’s theorem implies that the error R(η̄) of this estimate is o(η̄), so R(η̄)/η̄ → 0
as η̄ → 0. We compute R(η̄) for a variety of η̄ ∈ [0, 1] and verify that this rate holds in practice.

The left and center panels of Figure 4 depicts the results of this experiment for ODE and SDE
sample paths. Linearly approximating samples from a perturbed target measure ρη̄ using our sample
sensitivity analysis (3) is accurate within o(η̄) for a variety of realistic step sizes and η̄. For very
small values of η̄, R(η̄)/η̄ plateaus and begins to increase again. This may reflect a noise floor in the
accuracy of model samples Φη̄

t̃1
(z0) and Φ0

t̃1
(z0), which are themselves computed by numerically

integrating an ODE or SDE.

Effect of Hutchinson’s estimator. In the previous experiment, we exactly computed the model
densities ρt(z) that appear in the score sensitivity analysis (2). This was possible because we se-
lected the target distribution ρ to ensure that the densities ρt(z) are available in closed form. In
practice, one trains a neural network to approximate a diffusion model’s score function ∇ log ρt(z)

and obtains model densities via the continuous change of variables (CCoV) formula d log ρt(zt)
dt =

−tr(Jzt [v
η
t ](zt)). To avoid materializing a large Jacobian, one typically employs Hutchinson’s trace

estimator tr(A) = E[ϵ⊤Aϵ] to approximate the RHS, whose estimates are noisy due to the small
number of ϵ samples used to compute the estimator. To study the impact of this noise on the con-
vergence of Equation 4, we repeat the previous experiment with step size 10−3 while estimating the
model densities ρt(z) using the CCoV formula with a varying number of Hutchinson ϵ samples.

We depict the results of this experiment in the right panel of Figure 4, where the scaled remainders
R(η̄)/η̄ arising from using exact densities ρt are represented by the dashed line, and we experiment
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with 1, 10, and 100 ϵ samples in Hutchinson’s trace estimator. Our method’s convergence rate is
robust to noise in Hutchinson’s trace estimator, with even a single draw of ϵ achieving nearly the
same approximation error as the exact densities for all but the largest values of η.

4.2 STABILITY OF SAMPLE SENSITIVITY UNDER SCORE APPROXIMATION ERROR

Figure 5: The correlation between sample sensi-
tivities for an exact diffusion model and its neu-
ral approximation rises rapidly as the training loss
falls. Points are colored from purple to yellow ac-
cording to the training step.

Section 4.1 showed that one may approximate
perturbed samples Φη̄

t̃1
(z0) using our sensitivity

analysis formula (3) and recover the expected
o(η̄) convergence rate in spite of errors from
numerical integration and Hutchinson’s estima-
tor. To isolate the effects of these errors, we
used the exact score ∇ log ρt of the mixture
of Gaussians ρt throughout our computations.
In practice, however, one typically learns this
score function by training a neural network to
optimize a score-matching objective. Here, we
show that our sample sensitivity analysis (3) is
stable to error from neural approximations of
the true score function.

In this experiment, our initial target measure
ρ is a mixture of well-separated Gaussians on
R10, and we perturb ρ in the direction of a
Gaussian measure ν. Instead of evaluating the
score of ρt in closed form as in Section 4.1, we train a neural network to approximate this score
function. We fix the base samples z0 ∼ ρ0 and evaluate the sensitivity of samples from the exact
diffusion model ρt and its neural approximation every 1000 training steps. We discretize all ODEs
using forward Euler and use Hutchinson’s estimator to estimate the model densities ρt(z). We mea-
sure the median correlation between the exact and approximate sample sensitivities and compare
it to the value of the score-matching loss at that training step. Appendix C.1.2 provides further
implementation details.

Figure 5 shows the relationship between the training loss and the median correlation between the
exact and approximate sample sensitivities at each model sample. The points are colored from
purple to yellow according to the training step at which the loss and sensitivities were measured. Our
sample sensitivity analysis is stable to approximation error in the score function, with correlations
between sample sensitivities computed with the exact diffusion model and its neural approximation
rising rapidly as the training loss falls. This shows that our formulas may provide useful information
even when an exact score function is replaced by a neural approximation. In the following section,
we build on this observation by showing that our sample sensitivities are correlated with the direction
of change in a diffusion model’s samples after retraining on a perturbed training distribution.

4.3 IMAGE DATASETS

Predicting change in model samples after retraining. In the previous section, we used synthetic
data from a mixture of Gaussians to study the robustness of our sensitivity analysis to various sources
of numerical error. In practice, diffusion models are trained on large datasets of images, with train-
ing often stopped well before convergence to prevent memorization (Favero et al., 2025). In this
section, we demonstrate that our sample sensitivities ψt̃1

are correlated with differences between an
image diffusion model’s samples before and after retraining on a perturbed target distribution. We
experiment with UNet-based diffusion models trained on a mixture of the MNIST and Typography-
MNIST (TMNIST) datasets (Magre & Brown, 2022) and on the CelebA dataset (Liu et al., 2015).

For each dataset, we train a base model and a perturbed model whose target distribution ρη̄ is a
mixture of the base model’s target distribution and the empirical measure on a set of new samples
S. We employ mixture weights η̄ = 0.1 and 1 − η̄ = 0.9, resp. For our MNIST experiment, the
new samples S are drawn from TMNIST, and for our CelebA experiment, S consists of samples
with a large CLIP score for “a photo of an old man.” We integrate the PF-ODE to obtain model
samples from ρ0 and ρη̄, and also integrate Equation 3 with the perturbation measure ν set to the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

empirical distribution over S to estimate the sensitivity of the base model’s samples to upweighting
S. We compare the sample sensitivities d

dηΦ
η

t̃1
(z0)|η=0 to the difference Φη̄

t̃1
(z0)−Φ0

t̃1
(z0) between

PF-ODE samples from the perturbed and base model given the same initial noise. This measures
how much our sample sensitivity analysis predicts actual changes in model samples after retraining
on the perturbed target distribution ρη̄. Appendix C.2 provides further implementation details.

Figure 6: Correlations between predicted and actual change in model samples after retraining on a
perturbed dataset. Our sample sensitivity analysis (blue) outperforms an optimal transport baseline
(orange), achieving a median correlation (dashed blue line) of 0.46 on CelebA and 0.31 on MNIST.

Figure 6 depicts histograms of the correlations between our sample sensitivities and the actual
change in model samples. As a baseline, we also compute the entropic optimal transport (OT)
coupling (Cuturi, 2013) between the base model samples Φ0

t̃1
(z0) and the target distribution for the

perturbed model and use the resulting transport rays as predicted directions of change in the model
samples after retraining. Our sample sensitivity scores correlate with actual changes in model sam-
ples after retraining on ρη̄ and substantially outperform the OT baseline, achieving a median corre-
lation of 0.46 on CelebA and 0.31 on MNIST, compared 0.04 and 0.15, resp., for the OT baseline.

Predicting change in model samples after fine-tuning. The previous experiment shows that our
sample sensitivities d

dηΦ
η

t̃1
(z0)|η=0 correlate with changes in model samples after retraining on a

perturbed target distribution. We will now show that our sample sensitivities are more strongly
predictive of changes in model samples after fine-tuning on new training samples S. We use the
same base models and the same S as in the previous experiment, but fine-tune on S rather than
retraining from scratch on the mixture distribution ρη̄.

Figure 7: Our sample sensitivities (blue) are correlated with changes in model samples after fine-
tuning, and continue to outperform an optimal transport baseline (orange).

We depict histograms of the correlations between our sample sensitivities and actual change in
model samples after fine-tuning in Figure 7. We use the same entropic OT baseline as in the previous
experiment, but compute transport rays between the base model samples and the samples S on which
we fine-tuned. Both our sample sensitivities and the OT baseline are better correlated with actual
change in model samples after fine-tuning, but our method continues to outperform the baseline,
achieving a median correlation of 0.66 on CelebA and 0.51 on MNIST, compared to 0.34 and 0.42,
resp., for the baseline. We visually compare our sample sensitivities to actual changes in model
samples after fine-tuning in Figure 8, which shows that our sample sensitivity analysis can provide

8
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Figure 8: Our sample sensitivities (top rows) predict changes in model samples after fine-tuning
(bottom rows). The models that generated the samples on the left were trained on MNIST and fine-
tuned on TMNIST. The models that generated the samples on the right were trained on CelebA and
fine-tuned on a subset of photos with a large CLIP score for “a photo of an old man.”

coarse predictions of how a diffusion model’s samples might change after fine-tuning. We provide
further illustrations of our sample sensitivity analysis in Appendix B.

5 DISCUSSION

Understanding a diffusion model’s dependence on its training data is a critical challenge in machine
learning. In general, one would expect the relationship between a large model and its training data
to be complex and difficult to estimate. This paper shows that it is not only possible to compute
directional derivatives of the map from a training distribution ρ to its optimal score function st,
but that this computation is (a) surprisingly cheap, costing roughly as much as sampling a model
and computing log-probabilities along the sample path, and (b) requires only black-box access to
the score function. One can then leverage this simple formula to estimate how a diffusion model’s
samples change in response to perturbations to its target distribution before retraining or fine-tuning
on new data. We propose several future directions for this line of work.

Throughout this paper, we perturbed a diffusion model’s target measure with empirical measures
over finite samples. This need not be the case: Our score sensitivity formula (2) holds for any
compactly-supported perturbation measure ν, and it can be implemented in practice for any sequence
of measures νt provided we can access their scores and densities. For instance, νt can be a second
diffusion model, in which case Equation 2 resembles the formula for classifier-free guidance (CFG)
(Ho & Salimans, 2022) with time- and spatially-varying weights. Future work might interpret CFG
in light of our sensitivity analysis and design new guidance schedules based on this formula.

By composing a model’s ODE sampling solution map with a text-conditioned classifier and apply-
ing our sensitivity formulas, one might also use our method to estimate how the likelihood that a
diffusion model’s samples match a prompt changes as one perturbs the training set. This would
allow users to attribute a model’s qualitative behavior to subsets of training samples and use this
information to curate the training set to steer a diffusion model’s behavior in a particular direction.

Finally, Kadkhodaie et al. (2024) find empirically that a diffusion model’s sampling map is often
insensitive to changes in its training set, and Favero et al. (2025) clarify that this behavior is con-
trolled by the number of training iterations, with models becoming increasingly sensitive to dataset
perturbations throughout training. Our sample sensitivity formula (3) quantifies this dependence and
may serve as a valuable tool for future work on generalization in diffusion models.

Reproducibility statement. In the interest of reproducibility, we have included a complete proof
of Theorem 3.1 in Appendix A.1, implementation details for our experiments in Appendix C, and
we have attached a zip file with code to this submission.
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A PROOFS

A.1 PROOF OF THEOREM 3.1

We will prove this theorem in two parts. We will first show that ∂
∂η s

η
t (z)

∣∣∣
η=0

= gt(z) at any fixed

z ∈ Rd. This shows that gt(z) is the pointwise derivative of sηt evaluated at η = 0 at any z ∈
Rd. We will then extend this pointwise argument to the space of functions by using the dominated
convergence theorem (DCT) to prove that gt is the Fréchet derivative in L2(Rd, ρ0t ) of the map
T (η) : η 7→ sηt .

A.1.1 gt(z) IS THE POINTWISE DERIVATIVE OF sηt AT η = 0

In this part of the proof, we will rely heavily on Mlodozeniec et al. (2025, Lemma 1). A version of
their lemma adapted to our setting states the following:

Lemma A.1 Let L : R×Rd → R be a C2 function of additive form L(η, sz) := L1(sz)+ηL2(sz),
and suppose that the map sz 7→ L(η, sz) is strictly convex for all η ∈ R. Fix η̄ and choose s∗z such
that ∂L

∂sz
(η̄, s∗z) = 0. Then, by applying the implicit function theorem to ∂L

∂sz
, one obtains an open

interval (−δ, δ) ⊆ R containing η̄ and a unique function ϕ : (−δ, δ) → Rd such that ϕ(η̄) = s∗z
and such that for all η ∈ (−δ, δ), ϕ(η) is the unique minimizer of sz 7→ L(η, sz). Moreover, ϕ is C1

with the following derivative:

∂

∂η
ϕ(η) = −

[
∂2L
∂s2z

(η, ϕ(η))

]−1
∂L2

∂sz
(ϕ(η)). (5)

11

https://api.semanticscholar.org/CorpusID:246867440
https://api.semanticscholar.org/CorpusID:246867440
https://openreview.net/forum?id=esYrEndGsr
https://openreview.net/forum?id=JkMifr17wc
https://openreview.net/forum?id=JkMifr17wc
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=vKViCoKGcB


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

To apply this lemma, we will first show how to specify a score function st(z) of the form in Equa-
tion 1 evaluated at any z ∈ Rd as the minimizer of a score-matching objective. For the sake of
simplicity, we will assume a constant scale schedule αt ≡ 1; our argument can be easily adapted to
arbitrary scale schedules at the cost of additional notation.

Let st(z) : Rd → Rd be the score function for some distribution ρt := ρ ∗ N (0, σ2
t I), where ρ is a

target distribution on Rd. Kadkhodaie et al. (2024, Eqs. 14, 19) and the variational characterization
of conditional expectation imply that this score function has the following pointwise variational
characterization:

st(z) = ∇ log ρt(z)

=

∫
Rd

(
x− z

σ2
t

)
p(x|z)dx

= argmin
s(z)

∫
1

2

∥∥∥∥x− z

σ2
t

− s(z)

∥∥∥∥2 p(x|z)dx,
where p(x|z) is the conditional distribution of x given z ∼ ρt. While p(x|z) is intractable a priori,
p(z|x) ∼ N (x, σ2

t I) is Gaussian, so we rewrite p(x|z) in this integral using Bayes’ theorem:

st(z) = argmin
sz∈Rd

∫
1

2

∥∥∥∥x− z

σ2
t

− sz

∥∥∥∥2 p(x|z)dx
= argmin

sz∈Rd

∫
1

2

∥∥∥∥x− z

σ2
t

− sz

∥∥∥∥2 N (z;x, σ2
t I)

ρt(z)
ρ(x)dx

= argmin
sz∈Rd

E
x∼ρ

[
N (z;x, σ2

t I)

ρt(z)

1

2

∥∥∥∥x− z

σ2
t

− sz

∥∥∥∥2
]
. (SM )

Here, we use N (z;x, σ2
t I) to denote the density of a Gaussian distribution with mean x and co-

variance σ2
t I evaluated at z ∈ Rd. This provides a pointwise definition of the score st(z) of ρt

evaluated at z ∈ Rd as the minimizer of the score-matching problem (SM). In particular, applying
this argument to the target distribution ρη shows that:

sηt (z) = argmin
sz∈Rd

E
x∼ρη

[
N (z;x, σ2

t I)

ρηt (z)

1

2
∥x− z

σ2
t

− sz∥2
]
.

Now, define the following objective functions, in which we take z ∈ Rd to be fixed:

Lρ(sz) = E
x∼ρ

[
N (z;x, σ2

t I)

ρηt (z)

1

2

∥∥∥∥x− z

σ2
t

− sz

∥∥∥∥2
]

and

Lν(sz) = E
x∼ν

[
N (z;x, σ2

t I)

ρηt (z)

1

2

∥∥∥∥x− z

σ2
t

− sz

∥∥∥∥2
]
.

Using these two objectives, we can define an objective L(η, sz) := Lρ(sz)︸ ︷︷ ︸
:=L1

+η (Lν(sz)− Lρ(sz))︸ ︷︷ ︸
:=L2

whose minimizer is precisely sηt (z). This objective is in the additive form prescribed by Lemma
A.1, which will put in position to apply the lemma once we check that its remaining hypotheses are
satisfied.
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To this end, note that L is clearly a C2 function of the prescribed additive form. Furthermore, as we
will see below via a Hessian computation, the map sz 7→ L(η, sz) is strictly convex for all η ∈ R
and for all z ∈ Rd. Fixing a point (η̄, s∗z) = (η̄, sηt (z)) yields a critical point of L with respect to sz ,
which puts us in position to apply Lemma A.1.

Lemma A.1 gives us a function ϕ(η) defined on an open set containing η̄ that maps η to the unique
minimizer sηt (z) of L(η, sz). Crucially, it gives us a formula for the derivative ∂

∂ηϕ(η), which

involves the derivative ∂L2

∂sz
(ϕ(η)) and the Hessian ∂2L

∂s2z
(η, ϕ(η)). We will compute each of these

terms separately.

We begin by computing the derivative ∂L2

∂sz
(ϕ(η)). We have

∂L2

∂sz
(ϕ(η)) =

∂

∂sz

[
E

x∼ν

[
N (z;x, σ2

t I)

ρηt (z)

1

2

∥∥∥∥x− z

σ2
t

− sz

∥∥∥∥2
]
− E

x∼ρ

[
N (z;x, σ2

t I)

ρηt (z)

1

2

∥∥∥∥x− z

σ2
t

− sz

∥∥∥∥2
]] ∣∣∣∣∣

sηt (z)

=
∂

∂sz
E

x∼(ν−ρ)

[
N (z;x, σ2

t I)

ρηt (z)

1

2

∥∥∥∥x− z

σ2
t

− sz

∥∥∥∥2
] ∣∣∣∣∣

sηt (z)

= E
x∼(ν−ρ)

[
N (z;x, σ2

t I)

ρηt (z)

∂

∂sz

1

2

∥∥∥∥x− z

σ2
t

− sz

∥∥∥∥2
] ∣∣∣∣∣

sηt (z)

= E
x∼ν

[
−N (z;x, σ2

t I)

ρηt (z)

(
x− z

σ2
t

− sz

)] ∣∣∣∣∣
sηt (z)

− E
x∼ρ

[
−N (z;x, σ2

t I)

ρηt (z)

(
x− z

σ2
t

− sz

)] ∣∣∣∣∣
sηt (z)

= E
x∼ρ

[
N (z;x, σ2

t I)

ρηt (z)

(
x− z

σ2
t

− sηt (z)

)]
− E

x∼ν

[
N (z;x, σ2

t I)

ρηt (z)

(
x− z

σ2
t

− sηt (z)

)]
We now rewrite each expectation in the last line in terms of the scores of ρt and νt. To rewrite
the first expectation, we pull out the factor of 1

ρη
t (z)

, which does not depend on x, and multiply by

1 = ρt(z)
ρt(z)

to obtain the following:

E
x∼ρ

[
N (z;x, σ2

t I)

ρηt (z)

(
x− z

σ2
t

− sηt (z)

)]
=
ρt(z)

ρηt (z)
E

x∼ρ

[
N (z;x, σ2

t I)

ρt(z)

(
x− z

σ2
t

− sηt (z)

)]

=
ρt(z)

ρηt (z)

 E
x∼ρ

[
N (z;x, σ2

t I)

ρt(z)

(
x− z

σ2
t

)]
︸ ︷︷ ︸

=sρt (z)

− E
x∼ρ

[
N (z;x, σ2

t I)

ρt(z)

]
︸ ︷︷ ︸

=1

sηt (z)


=
ρt(z)

ρηt (z)
(sρt (z)− sηt (z)) .

Analogous reasoning allows us to conclude that

E
x∼ν

[
N (z;x, σ2

t I)

ρηt (z)

(
x− z

σ2
t

− sηt (z)

)]
=
νt(z)

ρηt (z)
(sνt (z)− sηt (z)) ,

and putting these together, we obtain

∂L2

∂sz
(ϕ(η)) =

ρt(z)

ρηt (z)
sρt (z)−

νt(z)

ρηt (z)
sνt (z) +

(
νt(z)− ρt(z)

ρηt (z)

)
sηt (z). (6)

We now compute the Hessian term ∂2L
∂s2z

(η, ϕ(η)). Note that ∂2L
∂s2z

= ∂2

∂s2z
Lρ + η( ∂2

∂s2z
Lν − ∂2

∂s2z
Lρ),

and that we have already computed the relevant first derivatives:
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∂

∂sz
Lρ = E

x∼ρ

[
−N (z;x, σ2

t I)

ρηt (z)

(
x− z

σ2
t

− sz

)]
and

∂

∂sz
Lν = E

x∼ν

[
−N (z;x, σ2

t I)

ρηt (z)

(
x− z

σ2
t

− sz

)]
.

Differentiating again and simplifying, we see that

∂2

∂s2z
Lρ =

ρt(z)

ρηt (z)
I

and

∂2

∂s2z
Lν =

νt(z)

ρηt (z)
I.

Combining these and noting that ρηt = (1 − η)ρt + ηνt, we conclude that ∂2L
∂s2z

(η, sz) = I for all
η ∈ R and for all sz . In particular, the map sz 7→ L(η, sz) is strictly convex for all η ∈ [0, 1] as
required by Lemma A.1.

We finally substitute these first and second derivatives into Equation 5 to obtain:

∂

∂η
ϕ(η) = −

[
∂2L
∂s2z

(η, ϕ(η))

]−1
∂L2

∂sz
(ϕ(η))

= −[I]−1

(
ρt(z)

ρηt (z)
sρt (z)−

νt(z)

ρηt (z)
sνt (z) +

(
νt(z)− ρt(z)

ρηt (z)

)
sηt (z)

)
=
νt(z)

ρηt (z)
sνt (z)−

ρt(z)

ρηt (z)
sρt (z) +

(
ρt(z)− νt(z)

ρηt (z)

)
sηt (z).

In particular, if η = 0, then ρηt (z) = ρt(z) and this simplifies to:

∂

∂η
ϕ(η) =

νt(z)

ρt(z)
(sνt (z)− sρt (z)) =: gt(z).

This completes the first part of the proof.

A.1.2 gt IS THE FRÉCHET DERIVATIVE OF Tt(η) : η 7→ sηt AT η = 0

We now extend this pointwise argument to the space of functions. Consider the map Tt : R →
L2(Rd, ρηt ) that maps η to sηt . We will show that gt is the Fréchet derivative of Tt at η = 0 for any
t ∈ [t0, t1]. To do so, we need to show that for any t ∈ [t0, t1],

lim
h→0

∥∥∥∥sht − s0t
h

− gt

∥∥∥∥
L2(Rd,ρ0

t )

= 0.

The previous section shows that gt(z) is the pointwise derivative of sηt with respect to η at η = 0.
This means that for any z ∈ Rd, t ∈ [t0, t1],

sht (z)− s0t (z)

h
→ gt(z).
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Hence sht −s0t
h converges pointwise to gt for all t ∈ [t0, t1]. We will use the dominated convergence

theorem (DCT) to lift this pointwise convergence to L2(Rd, ρ0t ) convergence. Define the following
function:

Fh(z; t) :=
sht (z)− s0t (z)

h

We need to show that there exists some real-valued function G(z; t) ∈ L2(Rd, ρ0t ) such that
∥Fh(z; t)∥2 ≤ G(z; t) uniformly in h for all z, t. To this end, note that by the mean value theo-
rem, there exists some θ ∈ [0, 1] such that:

∥Fh(z; t)∥2 =

∥∥∥∥sht (z)− s0t (z)

h

∥∥∥∥
2

≤
∥∥∥∥ ∂

∂η
sηt (z)

∣∣∣
η=θh

∥∥∥∥
2

=

∥∥∥∥ ρt(z)

ρθht (z)

(
sρt (z)− sθht (z)

)
− νt(z)

ρθht (z)

(
sνt (z)− sθht (z)

)∥∥∥∥
2

,

where the last line follows from a rearrangement of Equation 6. We can further simplify this bound
to eliminate the dependence on h. First, note that ρθht = (1 − θh)ρt + θhνt, so that for h ≤ 1

2 , we
have

1

ρθht (z)
=

1

(1− θh)ρt(z) + θhνt(z)
≤ 1

(1− θh)ρt(z)
≤ 2

ρt(z)
.

Hence, for h sufficiently small, we have:

∥Fh(z; t)∥2 ≤
∥∥∥∥ ρt(z)

ρθht (z)

(
sρt (z)− sθht (z)

)
− νt(z)

ρθht (z)

(
sνt (z)− sθht (z)

)∥∥∥∥
2

≤ 2

ρt(z)

∥∥ρt(z) (sρt (z)− sθht (z)
)
− νt(z)

(
sνt (z)− sθht (z)

)∥∥
2
.

Applying the triangle inequality, we then obtain:

2

ρt(z)

∥∥ρt(z) (sρt (z)− sθht (z)
)
− νt(z)

(
sνt (z)− sθht (z)

)∥∥
2

≤ 2

ρt(z)

(
ρt(z)∥sρt (z)− sθht (z)∥2 + νt(z)∥sνt (z)− sθht (z)∥2

)
.

Now, define

kρt (z) :=

∫
wt(z, x)xdρ(x)

and similarly for kνt (z) and kθht (z). Then Equation 1 tells us that

sρt (z) =
1

σ2
t

(kρt (z)− z) ,

and similar identities hold for the other score functions. Furthermore,
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∥sρt (z)− sθht (z)∥2 =
1

σ2
t

∥kρt (z)− kθht (z)∥2 ≤ 1

σ2
t

(
∥kρt (z)∥2 + ∥kθht (z)∥2

)
,

where the last line follows from the triangle inequality. Because kρt (z) is a convex combination of
points in the compact support of ρ, we can bound ∥kρt (z)∥2 ≤ Dρ < +∞, whereDρ is the diameter
of the support of ρ. Similarly, ∥kνt (z)∥2 ≤ Dν < +∞, and because supp(ρθh) ⊆ supp(ρ)∪supp(ν),
we have ∥kθht (z)∥2 ≤ Dρ + Dν . Substituting these bounds into the above and simplifying, we
obtain:

∥Fh(z; t)∥2 ≤ 2

ρt(z)

(
ρt(z)∥sρt (z)− sθht (z)∥2 + νt(z)∥sνt (z)− sθht (z)∥2

)
≤ 2

ρt(z)

(
ρt(z)

σ2
t

(2Dρ +Dν) +
νt(z)

σ2
t

(2Dν +Dρ)

)
=: G(z; t)

This function G(z; t) dominates ∥Fh(z; t)∥2 uniformly in h for all z, t. It remains to show that
G(z; t) ∈ L2(Rd, ρ0t ). To this end, first note that ρ0t = ρt. Then,

∫
G(z; t)dρ0t (z) =

∫
G(z; t)dρt(z)

=

∫
2

ρt(z)

(
ρt(z)

σ2
t

(2Dρ +Dν) +
νt(z)

σ2
t

(2Dν +Dρ)

)
ρt(z)dz

=
2(2Dρ +Dν)

σ2
t

∫
ρt(z)dz︸ ︷︷ ︸
=1

+
2(2Dν +Dρ)

σ2
t

∫
νt(z)dz︸ ︷︷ ︸
=1

=
6

σ2
t

(Dρ +Dν)

< +∞.

This shows that G(z; t) ∈ L2(Rd, ρ0t ). As the hypotheses of the DCT are satisfied, we finally
conclude that gt is the Fréchet derivative of Tt at η = 0 for any t ∈ [t0, t1]. This completes the proof
of Theorem 3.1. ■

B VISUALIZING THE SAMPLE SENSITIVITIES

In this appendix, we illustrate our sample sensitivity analysis on images from the CelebA dataset. We
draw four samples from a base model trained on CelebA and solve Equation 3 for each model sample
and for four perturbation measures ν, each of which is an empirical measure over a perturbation set
S. These perturbation sets consist of samples from the CelebA test set possessing the attribute
labels “bald”, “goatee”, “smiling”, and “eyeglasses”. We depict model samples in the top row
of Figure 9 and solutions to the sample sensitivity ODE for each perturbation set in the bottom
four rows. Solutions to this ODE should approximate changes in the model samples in the top
row in response to perturbing the base model’s target distribution, and many of these predictions
are intuitively reasonable. For instance, base model samples representing people without glasses
are pushed towards samples of people with glasses in response to perturbing the target distribution
towards CelebA samples with the “eyeglasses” attribute, and one observes similar phenomena for
the other perturbation sets.

In Figure 10, we also depict line segments of the form Φ0
t̃1
(z0) + α d

dηΦ
η

t̃1
(z0)

∣∣∣
η=0

for α ∈ [−2, 2]

and for the sample sensitivity ODE solutions depicted in Figure 9. These line segments should
approximate samples from a model whose target distributed has been perturbed towards ±ν, where
ν is the empirical measure over CelebA test images with the specified attributes. For α close to 0,
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Figure 9: The bottom four rows depict solutions d
dηΦ

η

t̃1
(z0)

∣∣∣
η=0

to the sample sensitivity equation (3)

for model samples Φ0
t̃1
(z0) pictured in the top row. In each of the lower four rows, the perturbation

measure ν is the empirical distribution over images from the CelebA test set with attributes “bald”,
“goatee”, “smiling”, and “eyeglasses”, resp.

the perturbed samples resemble the original sample (6th from the left in each row), differing mainly
in the strength of the specified attribute. As α moves farther from 0, the perturbed samples deviate
increasingly from the original.

C EXPERIMENT DETAILS

C.1 SYNTHETIC EXPERIMENTS

C.1.1 FIRST-ORDER APPROXIMATION FOR PERTURBED MODEL SAMPLES

In this experiment, the initial target measure ρ is an equally-weighted mixture of two Gaussians on
R100 with means (−1, ...,−1) and (1, ..., 1), respectively, and shared covariance σ2I for σ = 0.1.
We perturb ρ in the direction of a Gaussian distribution ν centred at (1, ..., 1) with covariance σ2I
for σ = 0.1. For any η̄ ∈ [0, 1], the perturbed target ρη̄ = (1− η̄)ρ+ η̄ν is a mixture of Gaussians
with the same means and covariances as ρ, but with weights 1−η̄

2 and 1+η̄
2 .

We obtain sample paths zt for ρt and ρη̄t by fixing 1000 base samples z0 ∼ ρ0 and numerically
integrating the PF-ODE and variance-preserving SDE using a forward Euler scheme and Euler-
Maruyama scheme, resp., with step sizes ∆t ∈ {1 × 10−4, 5 × 10−4, 1 × 10−3, 5 × 10−3}. Our
scale and noise schedules come from a linear DDPMScheduler from the diffusers library with
βstart = 10−4 and βend = 0.02. We exactly compute the Gaussian mixture densities ρt(zt) along
each sample path. We then integrate Equation 3 using the same forward Euler scheme to obtain the
sensitivities d

dηΦ
η

t̃1
(z0)

∣∣∣
η=0

of samples from ρt̃1 . We compute the Taylor remainder:

R(η̄) :=
(
Φη̄

t̃1
(z0)− Φ0

t̃1
(z0)

)
− η̄

d
dη

Φη

t̃1
(z0)

∣∣∣
η=0

and report the median value of R(η̄)
η̄ across the 1000 batch samples in our plots.

In our experiments studying the effect of using Hutchinson’s estimator to estimate model densities,
we use the same setup as in the step size experiments, but estimate the base model densities ρt(z)
with Hutchinson’s estimator: tr(A) = E[ϵ⊤Aϵ]. We use standard normal Gaussian samples for ϵ
and report the number of noise samples we used in our plots.
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C.1.2 STABILITY UNDER SCORE APPROXIMATION ERROR

Here, the initial target measure ρ is an equally-weighted mixture of two Gaussians on R10 with
means (−1, ...,−1) and (1, ..., 1) and shared covariance σ2I for σ = 0.1. We perturb ρ in the
direction of a Gaussian distribution ν centred at (1, ..., 1) with covariance σ2I for σ = 0.1. Instead
of evaluating the score of ρt in closed form as in 4.1, we now train a neural network to approximate
this score function. Our neural network is a two-hidden-layer MLP with SiLU activations and 512-
dimensional hidden layers. We also use Fourier features (Tancik et al., 2020) with 128 frequencies
and σ = 2.0. We solve the score-matching problem using AdamW with a learning rate of 10−4

and a batch size of 100k. We train for 200k steps in total. In our plot, we omit the first two
measurements of the correlations for clarity, as the training loss was large and network was very far
from convergence during this phase of training .

We fix 1000 base samples z0 ∼ ρ0 and evaluate the sensitivity of model samples from the exact
diffusion model ρt and its neural approximation every 1000 training steps. We discretize all ODEs
using a forward Euler scheme with step size 10−2 and use Hutchinson’s estimator with 100 samples
to estimate the model densities ρt(z). We measure the median correlation between the exact and ap-
proximate sample sensitivities and compare it to the value of the score-matching loss at that training
step in Figure 5.

C.2 IMAGE DATASETS

Retraining experiments. Each neural diffusion model in these experiments is parametrized
by a Unet2DModel from the diffusers library. For the CelebA experiments,
we set layers per block=2, block out channels=(128, 256, 512, 512), and
norm num groups=32. We use a DDPMScheduler with βstart = 10−4 and βend = 0.02. The
base model samples consist of 10k iid samples from the CelebA training set, and the new samples
S are 495 CelebA training samples with a large CLIP score for “a photo of an old man”. We pre-
process the training images by center-cropping to a size of 140× 140, then resizing to 64× 64 and
normalizing to [−1, 1]. We apply random horizontal flips as augmentations in training. We then train
the CelebA diffusion models for 1000 epochs with an effective batch size of 512. Our optimizer is
AdamW with a learning rate of 10−4.

For the MNIST experiments, we set layers per block=2, block out channels=(32,
64, 128), and norm num groups=8. We use a DDPMScheduler with βstart = 10−4 and
βend = 0.02. We do not apply any preprocessing to these samples. We train the MNIST diffusion
models for 100 epochs with an effective batch size of 1024. Our optimizer is AdamW with a learning
rate of 10−4.

We draw model samples by integrating the PF-ODE and estimate model densities along the sample
path using Hutchinson’s estimator with 1 sample. We numerically integrate the PF-ODE and our
sample sensitivity ODE (3) using a forward Euler scheme with a step size of 10−3. We clamp
the νt(z)

ρt(z)
weights to [0.1, 10] for numerical stability. For the entropic OT baseline, we use the

sinkhorn log algorithm from the POT package (Flamary et al., 2024) with a regularization value
of 0.05 to compute the coupling matrix.

Fine-tuning experiments These experiments mostly replicate the setup in our retraining experi-
ments but implement the following changes. For CelebA, we train the base model on 10k iid samples
from the CelebA training set for 1k epochs with the same hyperparameters as in the retraining ex-
periments, and then fine-tune for 200 epochs on 495 CelebA training samples with a large CLIP
score for “a photo of an old man”. We use the same learning rate of 10−4 for fine-tuning.

For MNIST, we train the base model on the MNIST training set for 100 epochs with an effective
batch size of 1024 and a learning rate of 10−4, and then fine-tune on TMNIST for a single epoch at
a learning rate of 10−5.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) “Bald”

(b) “Goatee”

(c) “Smiling”

(d) “Eyeglasses”

Figure 10: Line segments extending from model samples (center images) towards negative (left) and
positive (right) multiples of sample sensitivities d

dηΦ
η

t̃1
(z0)

∣∣∣
η=0

. In each subfigure, the perturbation

measure ν is the empirical distribution over CelebA test samples with an attribute listed in the
subcaption.
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