

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SENSITIVITY ANALYSIS FOR DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Training a diffusion model approximates a map from a data distribution ρ to the optimal score function s_t for that distribution. Can we differentiate this map? If we could, then we could predict how the score, and ultimately the model’s samples, would change under small perturbations to the training set before committing to costly retraining. We give a closed-form procedure for computing this map’s directional derivatives, relying only on black-box access to a pre-trained score model and its derivatives with respect to its inputs. We extend this result to estimate the sensitivity of a diffusion model’s samples to additive perturbations of its target measure, with runtime comparable to sampling from a diffusion model and computing log-likelihoods along the sample path. Our method is robust to numerical and approximation error, and the resulting sensitivities correlate with changes in an image diffusion model’s samples after retraining and fine-tuning.

1 INTRODUCTION

Diffusion models form a powerful class of generative models that allow users to generate images of nearly any subject in nearly any style in just a few keystrokes. However, this flexibility also allows diffusion models to engage in legally fraught behavior, such as generating images that mimic an artist’s style. This has put diffusion models at the center of recent litigation¹ alleging that they facilitate copyright and trademark infringement. Understanding and mitigating the causes of this behavior have therefore become pressing challenges as businesses seek to integrate diffusion models into their consumer offerings.

Diffusion models generate images by iteratively transforming Gaussian noise using the *score function* of a distribution over noisy images, which is learned in practice from a large set of training images. Since the learned score is, in principle, determined by the training images, a natural strategy for understanding a diffusion model’s behavior is to study how it depends on the training data. A sensible framework for this task should be able to answer questions such as: “What would the score function be if a sample were added or removed from the training set?” and “What would a generated image have looked like if a sample were added or removed from the training set?”

This work introduces a principled framework for answering such questions about diffusion models in the perturbative regime, where one considers infinitesimal changes in a model’s training distribution. Because a diffusion model’s output depends on the score function, which is itself determined by the training distribution, the core of our framework is a tractable closed-form expression for the directional derivatives of a score function with respect to the training distribution. This *sensitivity analysis* measures how the score function changes as a probability measure is up- or down-weighted in the training distribution; when this measure is a Dirac point mass, we obtain an exact expression for the *influence function* of the score. Crucially, our sensitivity analysis requires only black-box access to a pre-trained score function, and it does not require any knowledge of its training data or training procedure.

Using the adjoint method, we extend our sensitivity analysis for score functions to obtain schemes for computing the sensitivity of a diffusion model’s samples to perturbations in the training data. These enable us to predict how a generated image would change if a collection of samples were added or removed from the training set. We demonstrate our method’s robustness to a variety of sources of numerical error and show that its predictions are correlated with changes in a diffusion model’s samples after retraining and after fine-tuning.

¹Andersen v. Stability AI Ltd., U.S. District Court, Northern District of California (2024).

054 **2 RELATED WORK**
 055

056 **Influence functions.** Influence functions (Hampel, 1974) linearly approximate the change in a sta-
 057 tistical estimator in response to infinitesimally upweighting a single training sample. Koh & Liang
 058 (2017) introduced influence functions to deep learning as a method for estimating the change in a
 059 neural network’s parameters in response to perturbing its training set. Influence functions for generic
 060 optima of a training loss require the user to compute a costly inverse Hessian-vector product. Previ-
 061 ous work (Guo et al., 2021; Schioppa et al., 2022) responds to this challenge by developing efficient
 062 approximations to this operation. In addition to this difficulty, influence functions assume that the
 063 learned model parameters minimize a strictly convex loss. This assumption is violated for neural
 064 networks, and Basu et al. (2020) find that in practice, influence functions for deep learning are brittle
 065 to network hyperparameters. Kwon et al. (2024); Młodożeniec et al. (2025) introduce influence ap-
 066 proximations that are specially adapted to generative models, including diffusion models, but these
 067 works follow Koh & Liang (2017) in estimating the influence of training samples on the learned net-
 068 work weights. In contrast, our sensitivity analysis uses the structure of diffusion models to directly
 069 compute the influence of training samples on the value of the score function and on model samples.
 070

071 **Data attribution for diffusion models.** An emerging literature develops *data attribution* meth-
 072 ods for diffusion models, which seek to estimate the impact of training samples on model outputs.
 073 Georgiev et al. (2023) use TRAK (Park et al., 2023), a gradient-based data attribution method de-
 074 veloped primarily for supervised learning, to compute a per-example attribution score for a diffu-
 075 sion model’s training data. This score estimates the change in the model’s training loss induced
 076 by adding a particular sample to the training set. Following Park et al. (2023), they measure their
 077 method’s effectiveness using the *linear datamodeling score*, which measures the rank correlation
 078 between their attribution score and actual training loss values attained by retrained models. Zheng
 079 et al. (2024) observe that one can improve upon the method from Georgiev et al. (2023) by comput-
 080 ing their attribution scores using the gradients of the “wrong” model output function. Młodożeniec
 081 et al. (2025) introduce an efficient approximation to the denoising loss Hessian and use it to esti-
 082 mate influence functions for attributing several proxies for model log-probabilities. Lin et al. (2025)
 083 propose attributing the KL divergence between the model distribution before and after deleting a
 084 training sample. Li et al. (2025) perform gradient-based data attribution using learnable weights for
 085 gradients with respect to different parameter groups. Whereas these methods estimate the impact of
 086 training samples on scalar quantities such as the training loss or proxies for log-probabilities, our
 087 sensitivity analysis estimates the effect of perturbations in the target distribution on the values of the
 088 score function and on model samples.
 089

090 **3 METHOD**
 091

092 In this section, we first observe that a diffusion model defines a map from its training distribution ρ to
 093 a score function s_t and show how to tractably compute its directional derivatives. Using this result,
 094 we estimate how a diffusion model’s samples change when its training distribution is perturbed.
 095

096 **3.1 PRELIMINARIES**
 097

098 *Diffusion models* sample from a target distribution ρ by drawing samples from a Gaussian base
 099 distribution $\mathcal{N}(0, I)$ and flowing them through a possibly noisy velocity field v_t from $t = t_0$ to
 100 $t = t_1$. This yields a curve of probability distributions $\{\rho_t : t \in [t_0, t_1]\}$ for which ρ_t is the marginal
 101 distribution of the random variable $Z_t := \alpha_t X_1 + \sigma_t \epsilon$. Here, $X_1 \sim \rho$, $\epsilon \sim \mathcal{N}(0, I)$, and α_t and
 102 σ_t are scale and noise schedules, respectively. These schedules are chosen so that at $t = t_0$, the
 103 samples have a Gaussian distribution, and at $t = t_1$, the samples are distributed according to ρ .
 104

105 A diffusion model’s velocity field v_t depends on ρ through the *score function* $s_t(z) := \nabla \log \rho_t(z)$
 106 of ρ_t , which one learns in practice by solving a *score-matching* problem (Hyvärinen & Dayan,
 107 2005). If one does not impose any restrictions on the hypothesis class, the optimal solution to this
 108 problem is in fact available in closed form (Miyasawa, 1961), yielding a vector field pointing from z
 109 toward a distance-weighted average of rescaled samples $\alpha_t x$ from the target distribution ρ . Solving
 110 the score-matching problem therefore maps a *measure* ρ to a *function* s_t , which is fully determined
 111 by ρ and the scale and noise schedules.

We would like to estimate how the outputs of a diffusion model would change in response to perturbations of the training data. These outputs depend on the training data only through the velocity field v_t and, in turn, through the score function s_t . We will therefore begin by introducing a tractable closed-form expression for the directional derivatives of the map from ρ to s_t , which will describe how s_t responds to additive perturbations of the target distribution ρ .

3.2 SENSITIVITY ANALYSIS FOR SCORE FUNCTIONS

Solving the score-matching problem maps a target distribution ρ to a score function s_t . To understand how s_t changes in response to small perturbations of ρ , intuitively one would like to differentiate s_t with respect to the probability measure ρ . However, it is not obvious how to compute this derivative in practice. In this section, we present a tractable formula for such a derivative with respect to *additive* perturbations of ρ . This class of perturbations includes many cases of interest, such as the addition of new samples and the removal of existing samples from the training set.

Suppose that $\rho^\eta := (1 - \eta)\rho + \eta\nu$ is a *mixture* of two probability measures ρ and ν supported on \mathbb{R}^d , and let $s_t^\eta : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be the score function of a diffusion model with target distribution ρ^η at time t . Differentiating s_t^η with respect to η and evaluating this derivative at $\bar{\eta}$ yields a *function* $g_t^{\bar{\eta}} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ describing how s_t^η changes as one infinitesimally upweights ν given initial weight $\bar{\eta}$.

The case $\bar{\eta} = 0$ is of particular interest. For example, if $\bar{\eta} = 0$, then $g_t^{\bar{\eta}}$ describes how a score function trained on ρ would vary as one introduces samples from ν . On the other hand, to approximate how the score function of a diffusion model trained on ρ would change in response to *removing* training data lying in some region $\Omega \subseteq \mathbb{R}^d$, one would define $\nu := \rho_\Omega$, where ρ_Ω is the restriction of ρ to Ω , and consider $-g_t^{\bar{\eta}}$ evaluated at $\bar{\eta} = 0$.

Our key result is the following theorem, which provides a tractable closed-form expression for g_t^0 :

Theorem 3.1 (Sensitivity analysis for score functions) *For $\eta \in [0, 1]$, let $\rho^\eta := (1 - \eta)\rho + \eta\nu$ be a mixture of probability measures ρ and ν with compact support on \mathbb{R}^d . Let $\rho_t^\eta : \mathbb{R}^d \rightarrow \mathbb{R}$ and $s_t^\eta : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be the density and score function, resp., of a diffusion model with target distribution ρ^η at time $t \in [t_0, t_1]$. Then the Fréchet derivative in $L^2(\mathbb{R}^d, \rho_t^\eta)$ of the map $T_t(\eta) : \eta \mapsto s_t^\eta$ evaluated at $\bar{\eta} = 0$ is the function $g_t^0 : \mathbb{R}^d \rightarrow \mathbb{R}^d$ defined by the formula:*

$$g_t^0(z) = \frac{\nu_t(z)}{\rho_t(z)} (s_t^\nu(z) - s_t^\rho(z)), \quad (1)$$

where $\nu_t(z), \rho_t(z)$ are the respective densities and $s_t^\nu(z), s_t^\rho(z)$ the respective scores at time t of diffusion models with target measures ν, ρ . Moreover, for every fixed $z \in \mathbb{R}^d$, the pointwise derivative satisfies $\frac{\partial}{\partial \eta} s_t^\eta(z) \Big|_{\eta=0} = g_t^0(z)$ without any assumptions on the support of μ or ν .

We prove this result in Appendix B.1. Whereas score-matching defines a map from a measure ρ to the unique optimal score function s_t of a diffusion model with ρ as its target, Equation 1 now provides a formula for the *directional derivative* of this map in the direction of $\nu - \rho$. In Figure 1, we depict an instance of this directional derivative g_t^0 when ρ is supported on a curve in 2D and ν is a Gaussian measure centered just off the curve. g_t^0 is a vector field pointing away from the support of ρ and towards the support of ν ; on account of the $\nu_t(z)/\rho_t(z)$ scaling factor, $\|g_t^0(z)\|_2$ is large at points z that are closer to the support of ν than to the support of ρ .

In a typical use case, ρ_t is the distribution at time t of a diffusion model trained on ρ , and $\nu = \frac{1}{K} \sum_{k=1}^K \delta_{x_k}$ is the empirical distribution on K samples x_k that one wishes to add or remove from ρ ; if $K = 1$, we recover the *influence function* of T_t (Hampel, 1974). In this setting, we may use Equation 1 to compute $g_t(z)$ given *only black-box access* to the score function $s_t^\rho(z)$ and the K samples x_k . The density $\rho_t(z)$ of the diffusion model can be computed from its score using the continuous change of variables (CCoV) formula (Song et al., 2021), and since ν_t is a mixture of Gaussians when ν is an empirical distribution, its density and score function can be computed in closed form in $O(dK)$ time or efficiently

Figure 1: The score sensitivity g_t^0 is a vector field pointing away from the support of ρ and towards the support of ν .

162 approximated using techniques from Karppa et al. (2022); Scarvelis et al. (2025). For perturbation
 163 sets $S = \{x_k\}_{k=1}^K$ of moderate size, the cost of evaluating Equation 1 is dominated by the cost of
 164 the density computations $\rho_t(z)$ using the CCoV formula. Appendix A provides further background
 165 on the CCoV formula and score and density computations for mixtures of Gaussians.

166 Theorem 3.1 shows how to tractably estimate the response of a pre-trained score function to additive
 167 perturbations in its target distribution. However, in practice, we are typically interested in how the
 168 *samples* generated by a diffusion model would change in response to perturbing its target distribution.
 169 Because samples are obtained by solving an ODE or SDE determined by the score function,
 170 Equation 1 should provide enough information to estimate the sensitivity of model samples to ad-
 171 ditive perturbations of ρ . We show this to be the case in the following section, using the adjoint
 172 method to obtain an analogous perturbation formula for a diffusion model’s samples.
 173

174 3.3 SENSITIVITY ANALYSIS FOR MODEL SAMPLES

175 Diffusion models generate samples from their target distribution ρ by solving a stochastic differential
 176 equation (SDE) or an ordinary differential equation (ODE) whose *drift* or *velocity field*, respectively,
 177 depend on the score s_t^η . Because this dependence is typically simple, often consisting of an affine
 178 transformation of s_t^η , it is easy to differentiate the drift or velocity field with respect to η given
 179 Equation 1. In this section, we exploit this fact to compute the sensitivity of a diffusion model’s
 180 samples to additive perturbations of the target distribution.
 181

182 **ODE sampling.** We begin with the simpler case of ODE sampling. Song et al. (2021) show that
 183 one may sample a diffusion model by solving a *probability flow ODE* (PF-ODE), whose initial
 184 condition is drawn from the Gaussian base distribution: $\frac{dz_t}{dt} = v_t^\eta(z_t)$ with $z_0 \sim \mathcal{N}(0, I)$. Because
 185 the Lipschitz constant of s_t^η – and consequently v_t^η – may blow up as $t \rightarrow t_1$, we follow a common
 186 convention from the theory of diffusion models and truncate integration of v_t^η at some $\tilde{t}_1 < t_1$ (De
 187 Bortoli, 2022). This convention aligns with typical diffusion model sampling schemes, which return
 188 samples at some time \tilde{t}_1 slightly earlier than the theoretical sampling interval endpoint t_1 .

189 If one further assumes that the target distributions μ, ν are compactly supported on \mathbb{R}^d , then a typical
 190 $v_t^\eta(z)$ will be globally Lipschitz for $z \in \mathbb{R}^d$ and $t \in [t_0, \tilde{t}_1]$. Khalil (2002, Theorem 3.2) then shows
 191 that there exists a unique solution to the PF-ODE for any initial condition $z_0 \in \mathbb{R}^d$. This allows us
 192 to define a *solution map* $\Phi_s^\eta(z_0) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ that maps an initial condition $z_0 \in \mathbb{R}^d$ to the unique
 193 solution at time $s \in [t_0, \tilde{t}_1]$ of the initial value problem (IVP) defined by v_t^η . Intuitively, $\Phi_s^\eta(z_0)$
 194 maps an initial noise sample $z_0 \sim \mathcal{N}(0, I)$ to the sample’s position at time s along the diffusion
 195 model’s sample path; at time $s = \tilde{t}_1$, this is simply a model sample.

196 We are interested in the derivative $\frac{d}{d\eta} \Phi_{\tilde{t}_1}^\eta(z_0)$ for fixed initial conditions z_0 , which describes how the
 197 model sample $\Phi_{\tilde{t}_1}^\eta(z_0)$ generated from the Gaussian sample z_0 varies as one perturbs the target dis-
 198 tribution μ in the direction of ν . Khalil (2002, Section 3.3) shows that under certain regularity con-
 199 ditions, this derivative solves an ODE known as the *sensitivity equation*. Defining $\psi_s := \frac{d}{d\eta} \Phi_s^\eta(z_0)$
 200 and letting $z_s := \Phi_s^\eta(z_0)$ for $s \in [t_0, \tilde{t}_1]$ be a solution path for the PF-ODE, this equation is:

$$\frac{d}{ds} \psi_s = \frac{d}{d\eta} v_s^\eta(z_s) + J_z[v_s^\eta](z_s) \psi_s, \quad (2)$$

201 where the initial condition is $\psi_{t_0} = 0$ and $J_z[v_s^\eta](z_s)$ denotes the spatial Jacobian of v_s^η evaluated at z_s . A solution
 202 $\psi_{\tilde{t}_1} = \frac{d}{d\eta} \Phi_{\tilde{t}_1}^\eta(z_0)$ to Equation 2, which we will call
 203 a *sample sensitivity*, approximates the change in a sample
 204 $z_{\tilde{t}_1} = \Phi_{\tilde{t}_1}^\eta(z_0)$ in response to additive perturbations of the
 205 target distribution ρ . Figure 2 depicts a solution to Equation 2 when ρ is supported on a curve in 2D and ν is a
 206 Gaussian measure centered just off the curve.

207 Crucially, one may solve Equation 2 given black-box access to the score function s_t^η and its spatial derivatives.
 208 To estimate how a sample $\Phi_s^\eta(z_0)$ generated from initial
 209 noise z_0 would change in response to perturbing ρ , one should (1) compute a sample path z_t and

210 Figure 2: A solution to Equation 2 ap-
 211 proximates the change in a diffusion
 212 model’s samples as the target distribu-
 213 tion ρ is perturbed in the direction of ν .

216 **Algorithm 1** Sample sensitivity analysis

217 **Require:** Score model s_t^ρ ; perturbation measure ν ; initial noise $z_{t_0} \sim \rho_{t_0}$; time interval $[t_0, \tilde{t}_1]$

218 1: $\psi_{t_0} \leftarrow 0$ \triangleright Initialize sample sensitivity to 0

219 2: $z_t \leftarrow \text{SamplePath}(s_t, z_{t_0})$ \triangleright Compute z_t via ODE/SDE sampling

220 3: $v_t \leftarrow \mathcal{T}(s_t)$ \triangleright Transform score to PF-ODE velocity field

221 4: $\log \rho_t(z_t) \leftarrow \log \rho_{t_0}(z_{t_0}) - \int_{t_0}^t \nabla \cdot v_s(z_s) ds$ \triangleright Compute log-densities via CCoV formula (3)

222 5: **if** ν is an empirical measure on $\{x_i\}_{i=1}^N$ **then**

223 6: Compute $\nu_t(z_t)$ and $s_t^\nu(z_t)$ as closed-form density (9) and score (10) of a Gaussian mixture

224 7: **else if** ν is parametrized by a neural score model **then**

225 8: Compute $\nu_t(z_t)$ via the CCoV formula (3)

226 9: **end if**

227 10: $\left. \frac{d}{d\eta} s_t^\eta(z_t) \right|_{\eta=0} \leftarrow \frac{\nu_t(z_t)}{\rho_t(z_t)} (s_t^\nu(z_t) - s_t^\rho(z_t))$ \triangleright Compute score sensitivities via Eq. 1

228 11: $\psi_t \leftarrow \psi_{t_0} + \int_{t_0}^t \left(\left. \frac{d}{d\eta} v_s^\eta(z_s) \right|_{\eta=0} + J_z[v_s](z_s) \psi_s \right) ds$ \triangleright Compute sample sensitivity path via Eq. 2

229 12: **return** ψ_t \triangleright Return sample sensitivity path

230 model densities $\rho_t(z_t)$ by jointly integrating the PF-ODE and the CCoV formula, (2) evaluate Equation 1 along the sample path, which also entails computing the density and score of the perturbation measure ν , and (3) integrate Equation 2, using autograd to compute the spatial Jacobian-vector products $J_z[v_s^\eta](z_s) \psi_s$. We summarize this procedure in Algorithm 1. When ν is an empirical measure over K samples, our sample sensitivity analysis has time complexity $O((hP + dK)T)$, where h is the number of noise samples used in Hutchinson’s trace estimator, P is an architecture-dependent constant measuring the cost of evaluating the score network s_t^ρ , and T is the number of time steps in the ODE discretization. Its space complexity is $O(dT)$, where d is the ambient dimension.

231 **SDE sampling.** In practice, it is more common to sample a diffusion model by solving an SDE
232 $dz_t = f_t^\eta(z_t)dt + g_t dW_t$, where W_t denotes a Wiener process on \mathbb{R}^d . Only the drift coefficient f_t^η
233 depends on the score function s_t^η and consequently on η ; conversely, the *diffusion coefficient* g_t is
234 independent of η . Kunita (2019, Theorem 3.3.2) provides an analogous sensitivity analysis for the
235 solution of an SDE whose coefficients depend on a parameter. Suppose an SDE has a unique solution
236 and let $\Gamma_{s,\omega}^\eta : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be the solution map sending an initial condition z_0 to the SDE’s solution
237 at time $s \in [t_0, t_1]$ for a fixed realization ω of the Wiener process. Kunita (2019, Theorem 3.3.2)
238 shows that under certain regularity conditions, which are satisfied for typical drifts if one truncates
239 the integration at $t_1 < t_1$, $\left. \frac{d}{d\eta} \Gamma_{s,\omega}^\eta(z_0) \right|_{\eta=0}$ also satisfies some SDE for almost all ω . Moreover, when the
240 diffusion coefficient g_t is independent of η and the spatial variable, this differential equation is, in
241 fact, deterministic and coincides with the sensitivity analysis for ODE sampling from Equation 2.
242 We may therefore use Equation 2 to approximate the change in a diffusion model’s SDE samples
243 in response to perturbations of its target distribution. In practice, one follows the recipe from the
244 previous section on ODE sampling, but replaces the ODE sample path z_t with an SDE sample path.

256 **4 EXPERIMENTS**

257 This section empirically validates our sensitivity analysis for diffusion models. We begin by studying
258 the effect of approximation error using synthetic data with known scores and densities. We then
259 experiment with neural diffusion models trained on image datasets and show that our sample
260 sensitivities correlate with changes in model samples after retraining and fine-tuning. We conclude by
261 studying key statistics of our sample sensitivities for models trained on image datasets.

264 **4.1 FIRST-ORDER APPROXIMATION FOR PERTURBED MODEL SAMPLES**

265 A solution $\psi_{\tilde{t}_1} = \left. \frac{d}{d\eta} \Phi_{\tilde{t}_1}^\eta(z_0) \right|_{\eta=0}$ to Equation 2 estimates how a diffusion model’s samples
266 change under an additive perturbation of the target distribution, yielding a first-order approximation
267 $\Phi_{\tilde{t}_1}^{\bar{\eta}}(z_0) \approx \Phi_{\tilde{t}_1}^0(z_0) + \bar{\eta} \left. \frac{d}{d\eta} \Phi_{\tilde{t}_1}^\eta(z_0) \right|_{\eta=0}$ that converges at rate $o(\bar{\eta})$ by Taylor’s theorem. However, in
268 practice, error from numerically solving Equation 2 can degrade the accuracy of this approximation

Figure 3: The approximation error of our first-order approximation to a perturbed model’s samples decays at rate $o(\bar{\eta})$ for a variety of ODE step sizes (left) and SDE step sizes (center), and this rate is robust to noise from Hutchinson’s estimator (right).

for realistic step sizes, and evaluating Equation 1 requires computing ρ_t using the CCoV formula, which introduces additional noise through Hutchinson’s estimator for $\text{div}(v_t)$. In this section, we use synthetic data with exact scores and densities to study the effects of ODE integration error and density estimation error on the convergence of our linear approximation to perturbed model samples. Appendix F.1.1 provides implementation details.

Effect of step size. In this experiment, we study how step size affects the convergence of our first-order approximation to the perturbed model’s samples when solving Equation 2 with a forward Euler scheme. We choose the initial target measure ρ to be an equally weighted mixture of well-separated Gaussians in \mathbb{R}^{100} . This multimodal, high-dimensional target distribution simulates some of the mathematical pathologies of real-world data; in particular, its score function is nearly discontinuous near Voronoi boundaries between the mixture means. For every t , the corresponding ρ_t remains a Gaussian mixture with closed-form score and density, allowing us to isolate the effect of ODE/SDE discretization error, density approximation error, and score approximation error on our sensitivity analysis. Because we perturb ρ toward a second Gaussian ν , the perturbed target $\rho^{\bar{\eta}} = (1 - \bar{\eta})\rho + \bar{\eta}\nu$ also remains a Gaussian mixture. Since the first-order approximation uses only pointwise derivatives, ρ and ν need not have compact support.

We generate sample paths z_t for ρ_t and $\rho_t^{\bar{\eta}}$ by numerically integrating the PF-ODE and the VP-SDE using forward Euler and Euler–Maruyama with several step sizes, and exactly compute $\rho_t(z_t)$ along each path. We then integrate Equation 2 with the same forward Euler scheme to compute the sensitivities $\frac{d}{d\bar{\eta}}\Phi_{t_1}^{\bar{\eta}}(z_0)|_{\bar{\eta}=0}$ of initial samples to perturbations toward ν . Taylor’s theorem implies that a first-order approximation’s error $R(\bar{\eta})$ is $o(\bar{\eta})$, so we compute $R(\bar{\eta})$ for $\bar{\eta} \in [0, 1]$ and verify this rate in practice.

The left and center panels of Figure 3 depicts the results of this experiment for ODE and SDE sample paths. Linearly approximating samples from a perturbed target $\rho^{\bar{\eta}}$ using our sample sensitivity analysis (2) is accurate within $o(\bar{\eta})$ for a variety of step sizes and $\bar{\eta}$. For very small values of $\bar{\eta}$, $R(\bar{\eta})/\bar{\eta}$ plateaus and begins to increase again. This reflects a noise floor in the accuracy of model samples, which are themselves computed by numerically integrating an ODE or SDE.

Effect of Hutchinson’s estimator. In the previous experiment, we computed the model densities $\rho_t(z)$ in (1) exactly by choosing a target distribution for which ρ_t has a closed form. In practice, however, diffusion models approximate $\nabla \log \rho_t(z)$ with a neural network, from which we may recover densities via the CCoV formula $\frac{d \log \rho_t(z_t)}{dt} = -\text{tr}(J_{z_t}[v_t](z_t))$. To avoid forming a large Jacobian, one uses Hutchinson’s estimator $\text{tr}(A) = \mathbb{E}[\epsilon^\top A \epsilon]$, whose accuracy depends on the number of ϵ samples. To study this estimator’s impact on the accuracy of our first-order approximation, we repeat the previous experiment with step size 10^{-3} but estimate $\rho_t(z)$ using the CCoV formula with a varying number of ϵ samples. The right panel of Figure 3 plots the scaled remainders $R(\bar{\eta})/\bar{\eta}$ when using exact densities (dashed line) and Hutchinson’s estimator with 1, 10, and 100 ϵ samples. Our method’s convergence rate is robust to noise in Hutchinson’s estimator, with even a single ϵ achieving nearly the same approximation error as the exact densities for all but the largest η .

4.2 STABILITY OF SAMPLE SENSITIVITY UNDER SCORE APPROXIMATION ERROR

324 Section 4.1 showed that one may approximate perturbed samples $\Phi_{\tilde{t}_1}^{\bar{\eta}}(z_0)$ using our sensitivity analysis formula (2) and recover the expected $o(\bar{\eta})$ convergence rate despite errors from numerical integration and Hutchinson’s estimator. To isolate the effects of these errors, we used the exact score $\nabla \log \rho_t$ of the mixture of Gaussians ρ_t throughout our computations. In practice, however, one typically *learns* this score function by training a neural network on a score-matching objective, introducing additional error. Here, we show that our sample sensitivity analysis (2) is stable to approximation error in the score function.

335 We take ρ to be a mixture of well-separated Gaussians on \mathbb{R}^{10}
 336 and perturb it toward a Gaussian measure ν . Rather than evaluating
 337 the score of ρ_t in closed form as in Section 4.1, we train a
 338 neural network to approximate it. We fix $z_0 \sim \rho_0$ and compute
 339 the exact and approximate models’ sample sensitivities every
 340 1000 training steps. We discretize all ODEs with forward Euler
 341 and estimate $\rho_t(z)$ using Hutchinson’s estimator. At each step, we compute the median correlation
 342 between the exact and approximate sample sensitivities and compare it to the score-matching
 343 loss. Appendix F.1.2 gives additional implementation details.

344 Figure 4 shows the relationship between the training loss and the median correlation. Points are
 345 colored by training step; we omit the first two early measurements where the loss is very large.
 346 The correlations rise rapidly as the loss decreases, indicating that our sample sensitivity analysis is
 347 robust to score-approximation error and remains informative even when the exact score is replaced
 348 by a learned approximation. In the next section, we build on this observation by showing that our
 349 sample sensitivities predict the direction of change in a diffusion model’s samples after retraining
 350 on a perturbed target distribution.

351 4.3 PREDICTING CHANGES IN MODEL SAMPLES VIA SAMPLE SENSITIVITY ANALYSIS

353 **Predicting change in model samples after retraining.** In the previous section, we used synthetic
 354 data from a mixture of Gaussians to study the robustness of our sensitivity analysis to various sources
 355 of numerical error. In practice, diffusion models are trained on large datasets of images, with training
 356 often stopped well before convergence to prevent memorization (Favero et al., 2025). In this
 357 section, we demonstrate that our sample sensitivities $\psi_{\tilde{t}_1}$ are correlated with differences between an
 358 image diffusion model’s samples before and after retraining on a perturbed target distribution. We
 359 experiment with UNet-based diffusion models trained on a mixture of the MNIST and Typography-
 360 MNIST (TMNIST) datasets (Magre & Brown, 2022) and on the CelebA dataset (Liu et al., 2015).

361 For each dataset, we train a base model and a perturbed model whose target distribution $\rho^{\bar{\eta}}$ is a
 362 mixture of the base model’s target distribution and the empirical measure on a set of new samples
 363 S . We employ mixture weights $\bar{\eta} = 0.1$ and $1 - \bar{\eta} = 0.9$, resp. For our MNIST experiment, the
 364 new samples S are drawn from TMNIST, and for our CelebA experiment, S consists of samples
 365 with a large CLIP score for “a photo of an old man.” We integrate the PF-ODE to obtain model
 366 samples from ρ^0 and $\rho^{\bar{\eta}}$, and also integrate Equation 2 with the perturbation measure ν set to the
 367 empirical distribution over S to estimate the sensitivity of the base model’s samples to upweighting
 368 S . We compare the sample sensitivities $\frac{d}{d\eta} \Phi_{\tilde{t}_1}^{\eta}(z_0)|_{\eta=0}$ to the difference $\Phi_{\tilde{t}_1}^{\bar{\eta}}(z_0) - \Phi_{\tilde{t}_1}^0(z_0)$ between
 369 PF-ODE samples from the perturbed and base model given the same initial noise. This measures
 370 how much our sample sensitivity analysis predicts actual changes in model samples after retraining
 371 on the perturbed target distribution $\rho^{\bar{\eta}}$. Appendix F.2 provides further implementation details.

372 Figure 5 depicts histograms of the correlations between our sample sensitivities and the actual
 373 change in model samples. As a baseline, we also compute the entropic optimal transport (OT)
 374 coupling (Cuturi, 2013) between the base model samples $\Phi_{\tilde{t}_1}^0(z_0)$ and the target distribution for the
 375 perturbed model and use the resulting transport rays as predicted directions of change in the model
 376 samples after retraining. These transport rays are line segments connecting the base model samples
 377 to their coupled samples from the perturbed model’s target distribution under the entropic OT
 coupling, providing a robust, *training-free* baseline for how the base model outputs might respond

Figure 4: The correlation between sample sensitivities for an exact diffusion model and its neural approximation rises rapidly as the training loss falls. Points are colored from purple to yellow according to the training step.

Figure 5: Correlations between predicted and actual change in model samples after retraining on a perturbed dataset. Our sample sensitivity analysis (blue) outperforms an optimal transport baseline (orange), achieving a median correlation (dashed blue line) of 0.46 on CelebA and 0.31 on MNIST.

to perturbations of the training set. Our sample sensitivity scores correlate with actual changes in model samples after retraining on $\rho^{\bar{\eta}}$ and substantially outperform the OT baseline, achieving a median correlation of 0.46 on CelebA and 0.31 on MNIST, compared 0.04 and 0.15, resp., for the OT baseline. We conjecture that our method’s especially strong performance on CelebA reflects the structure of the dataset, which contains face images with large regions of relatively uniform pixel values. Our sensitivity analysis achieves high correlations by accurately predicting the pixel-level changes in these regions, whose near-uniformity simplifies the task.

In this setting, we do not expect our sensitivity analysis to perfectly predict how model samples respond to perturbations of the training set. One reason is that neural score models trained on large datasets of images are typically *not* optimal solutions to the score-matching problem; in fact, [Pidsrighach \(2022\)](#) shows that any score-based generative model that generalizes must incur unbounded approximation error. While Section 4.2 shows that our sensitivity analysis is stable to reasonable score approximation error, this approximation error is large for typical neural diffusion models. Furthermore, diffusion models trained via gradient descent are *stable* to small perturbations in their training set ([Favero et al., 2025](#)), so the experiments in this section necessarily operate outside the small-perturbation regime where our sensitivity analysis is most predictive.

Predicting change in model samples after fine-tuning. The previous experiment shows that our sample sensitivities $\frac{d}{d\eta}\Phi_{\bar{t}_1}^{\eta}(z_0)|_{\eta=0}$ correlate with changes in model samples after retraining on a perturbed target distribution. We will now show that our sample sensitivities are more strongly predictive of changes in model samples after *fine-tuning* on new training samples S . We use the same base models and the same S as in the previous experiment, but fine-tune on S rather than retraining from scratch on the mixture distribution $\rho^{\bar{\eta}}$.

Figure 6: Our sample sensitivities (blue) are correlated with changes in model samples after fine-tuning, and continue to outperform an optimal transport baseline (orange).

We depict histograms of the correlations between our sample sensitivities and actual change in model samples after fine-tuning in Figure 6. We use the same entropic OT baseline as in the previous experiment, but compute transport rays between the base model samples and the samples S on which we fine-tuned. Both our sample sensitivities and the OT baseline are better correlated with actual

Figure 7: Top rows show samples from the original models; second rows show samples after fine-tuning. The third rows display our sample sensitivities, which predict changes in model samples after fine-tuning (fourth row). On the left, the model is trained on MNIST and fine-tuned on TMNIST; on the right, the model is trained on CelebA and fine-tuned on a subset of faces with large CLIP score for “a photo of an old man.”

change in model samples after fine-tuning, but our method continues to outperform the baseline, achieving a median correlation of 0.66 on CelebA and 0.51 on MNIST, compared to 0.34 and 0.42, resp., for the baseline. We visually compare our sample sensitivities to actual changes in model samples after fine-tuning in Figure 7, which shows that our sample sensitivity analysis can provide coarse predictions of how a diffusion model’s samples might change after fine-tuning. We provide further illustrations of our sample sensitivity analysis in Appendix E.

4.4 EMPIRICAL PROPERTIES OF SAMPLE SENSITIVITIES

We now study certain empirical properties of our sample sensitivities. We begin by computing the sensitivity of four samples from the previous section’s CelebA model to each of its training samples. Each sample sensitivity in these experiments is a vector in \mathbb{R}^d that predicts how a model sample would change in response to infinitesimally upweighting a single training sample; we refer to their magnitudes as each training sample’s *influence score* with respect to the model sample. We present several notable findings below.

Figure 8: Most and least influential training samples (center, right, resp.) for the model sample on the left, with the corresponding sensitivities on the bottom row.

Influence scores are correlated with L_2 distances. In Figure 8, we visualize the top-10 and bottom-10 influential training samples for the model sample depicted on the left of the figure. (See Figure 12 in Appendix C for the remaining model samples.) These outliers are characterized by large regions of homogeneously bright or dark pixels, suggesting that influence scores may be correlated with the L_2 distance between the model sample and each training sample, which is sensitive to large differences in per-pixel intensity.

We validate this conjecture by regressing the training samples’ influence scores on their L_2 distance from each model sample. These regressions’ r^2 values are substantial, ranging from 0.80 to 0.91 for the model samples in this experiment, indicating that the distance from a training sample to a model sample predicts its influence score. However, there is useful information in this regression’s residuals, which capture how much more or less influential a training sample is than one would expect based on its distance to the model sample. Figure 9 shows the top-10 and bottom-10 training samples according to their residual influence scores. (See Figure 13 in Appendix C for the remaining model samples.) The training samples with the greatest residual influence tend to share the model sample’s pose but vary substantially in their facial expression, whereas the samples with the least residual influence possess outlier features such as hats or glasses.

Figure 9: Training samples with the largest and smallest residual influence scores (center, right, resp.) for the model sample on the left, with the corresponding sensitivities on the bottom row.

486
 487 **Sample sensitivities lie in low-dimensional subspaces.**
 488 We now compute the singular value decomposition
 489 (SVD) of the matrix of a fixed model sample’s sensi-
 490 tivities to each training sample and find that these sam-
 491 ple sensitivities are nearly low-dimensional, with 93% of
 492 their variance explained by the first 10 singular directions.
 493 Moreover, these directions are often interpretable. In Fig-
 494 ure 10, we depict perturbation rays of the model sample
 495 of the form $x + \alpha u$, where x is a model sample and u
 496 is a right-singular vector of its sensitivities with respect
 497 to each training sample. The first singular vector in the
 498 figure appears to control beard density, the second con-
 499 trols the direction of the light source, and the third controls
 500 color temperature. (See Figure 14 in Appendix D for raw singular vectors.) These results suggest that training set perturbations
 501 influence model samples along only a few degrees of freedom, a phenomenon which may arise from the
 502 low-dimensional structure of the data manifold.

Figure 10: Singular vectors of a model sample’s sensitivities to its training samples yield interpretable perturbations. (Top to bottom: beard, lighting, color temperature.)

501
 502 **Cross-class sensitivities are small.** We finally leverage the
 503 availability of class labels in the CIFAR-10 dataset to investi-
 504 giate how training samples from one class might influence sam-
 505 ples from another. For each class C_i in CIFAR-10, we compute
 506 the average magnitude of the sensitivity of model samples from
 507 class C_i to samples from every other class C_j . Figure 11 depicts
 508 a heatmap whose (i, j) -th entry represents the average sensitivity
 509 of samples from class C_i to training samples from class C_j . This
 510 heatmap is nearly diagonal, showing that model samples are pri-
 511 marily influenced by training samples from their own class. This
 512 may reflect the CIFAR-10 dataset’s union-of-manifolds structure,
 513 which has previously been observed by Brown et al. (2023).
 514

5 DISCUSSION

515 Understanding a diffusion model’s dependence on its training data is a critical challenge in machine
 516 learning. In general, one would expect the relationship between a large model and its training data
 517 to be complex and difficult to estimate. This paper shows that it is not only possible to compute
 518 directional derivatives of the map from a training distribution ρ to its optimal score function s_t ,
 519 but that this computation is (a) surprisingly cheap, costing roughly as much as sampling a model
 520 and computing log-probabilities along the sample path, and (b) requires only black-box access to
 521 the score function. One can then leverage this simple formula to estimate how a diffusion model’s
 522 samples change in response to perturbations to its target distribution before retraining or fine-tuning
 523 on new data. We propose several future directions for this line of work.

524 Throughout this paper, we perturbed a diffusion model’s target measure with empirical measures
 525 over finite samples. This need not be the case: Our score sensitivity formula (1) holds for any
 526 compactly-supported perturbation measure ν , and it can be implemented in practice for any sequence
 527 of measures ν_t provided we can access their scores and densities. For instance, ν_t can be a second
 528 diffusion model, in which case Equation 1 resembles the formula for classifier-free guidance (CFG)
 529 (Ho & Salimans, 2022) with time- and spatially-varying weights. Future work might interpret CFG
 530 in light of our sensitivity analysis and design new guidance schedules based on this formula.

531 By composing a model’s ODE sampling solution map with a text-conditioned classifier and apply-
 532 ing our sensitivity formulas, one might also use our method to estimate how the likelihood that a
 533 diffusion model’s samples match a prompt changes as one perturbs the training set. This would
 534 allow users to attribute a model’s qualitative behavior to subsets of training samples and use this
 535 information to curate the training set to steer a diffusion model’s behavior in a particular direction.

536 Finally, Kadkhodaie et al. (2024) find empirically that a diffusion model’s sampling map is often
 537 insensitive to changes in its training set, and Favero et al. (2025) clarify that this behavior is con-
 538 trolled by the number of training iterations, with models becoming increasingly sensitive to dataset
 539 perturbations throughout training. Our sample sensitivity formula (2) quantifies this dependence and
 540 may serve as a valuable tool for future work on generalization in diffusion models.

Figure 11: Cross-class sensitivities are small for CIFAR-10.

540 REFERENCES
541

542 Samyadeep Basu, Phillip E. Pope, and Soheil Feizi. Influence functions in deep learning are
543 fragile. *ArXiv*, abs/2006.14651, 2020. URL <https://api.semanticscholar.org/CorpusID:220127956>.

544 Bradley CA Brown, Anthony L. Caterini, Brendan Leigh Ross, Jesse C Cresswell, and Gabriel
545 Loaiza-Ganem. Verifying the union of manifolds hypothesis for image data. In *The Eleventh
546 International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Rvee9CAX4fi>.

547

548 Luis Caffarelli, Mikhail Feldman, and Robert McCann. Constructing optimal maps for monge's
549 transport problem as a limit of strictly convex costs. *Journal of the American Mathematical
550 Society*, 15, 03 2000. doi: 10.1090/S0894-0347-01-00376-9.

551

552 Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
553 ferential equations. In *Proceedings of the 32nd International Conference on Neural Information
554 Processing Systems*, NIPS'18, pp. 6572–6583, Red Hook, NY, USA, 2018. Curran Associates
555 Inc.

556

557 Marco Cuturi. Sinkhorn distances: lightspeed computation of optimal transport. In *Proceedings
558 of the 27th International Conference on Neural Information Processing Systems - Volume 2,
559 NIPS'13*, pp. 2292–2300, Red Hook, NY, USA, 2013. Curran Associates Inc.

560

561 Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypoth-
562 sis. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL <https://openreview.net/forum?id=MhK5aXo3gB>. Expert Certification.

563

564 Alessandro Favero, Antonio Sclocchi, and Matthieu Wyart. Bigger isn't always memorizing:
565 Early stopping overparameterized diffusion models, 2025. URL <https://arxiv.org/abs/2505.16959>.

566

567 Rémi Flamary, Cédric Vincent-Cuaz, Nicolas Courty, Alexandre Gramfort, Oleksii Kachaiev, Huy
568 Quang Tran, Laurène David, Clément Bonet, Nathan Cassereau, Théo Gnassounou, Eloi Tanguy,
569 Julie Delon, Antoine Collas, Sonia Mazelet, Laetitia Chapel, Tanguy Kerdoncuff, Xizheng Yu,
570 Matthew Feickert, Paul Krzakala, Tianlin Liu, and Eduardo Fernandes Montesuma. Pot python
571 optimal transport (version 0.9.5), 2024. URL <https://github.com/PythonOT/POT>.

572

573 Kristian Georgiev, Joshua Vendrow, Hadi Salman, Sung Min Park, and Aleksander Madry. The
574 journey, not the destination: How data guides diffusion models. *arXiv preprint arXiv:2312.06205*,
575 2023.

576

577 Andreas Griewank and Andrea Walther. *Evaluating Derivatives: Principles and Techniques of Al-
578 gorithmic Differentiation*. Society for Industrial and Applied Mathematics, USA, second edition,
579 2008. ISBN 0898716594.

580

581 Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. FastIF: Scalable in-
582 fluence functions for efficient model interpretation and debugging. In Marie-Francine Moens,
583 Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Con-
584 ference on Empirical Methods in Natural Language Processing*, pp. 10333–10350, Online and
585 Punta Cana, Dominican Republic, November 2021. Association for Computational Linguis-
586 tics. doi: 10.18653/v1/2021.emnlp-main.808. URL <https://aclanthology.org/2021.emnlp-main.808/>.

587

588 Frank R. Hampel. The influence curve and its role in robust estimation. *Journal of the American
589 Statistical Association*, 69(346):383–393, 1974. ISSN 01621459, 1537274X. URL <http://www.jstor.org/stable/2285666>.

590

591 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
592 arXiv:2207.12598*, 2022.

594 M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
 595 smoothing splines. *Communications in Statistics - Simulation and Computation*, 19(2):433–
 596 450, 1990. doi: 10.1080/03610919008812866. URL <https://doi.org/10.1080/03610919008812866>.

598 Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6(4), 2005.

601 Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization in
 602 diffusion models arises from geometry-adaptive harmonic representations. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=ANvmVS2Yr0>.

605 Matti Karppa, Martin Aumüller, and Rasmus Pagh. DEANN: speeding up kernel-density estimation
 606 using approximate nearest neighbor search. In *AISTATS*, volume 151 of *Proceedings of Machine Learning Research*, pp. 3108–3137. PMLR, 2022.

609 H.K. Khalil. *Nonlinear Systems*. Pearson Education. Prentice Hall, 2002. ISBN 9780130673893.

612 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In *International Conference on Machine Learning*, pp. 1885–1894. PMLR, 2017.

613 Hiroshi Kunita. *Stochastic Flows and Jump-Diffusions*. Springer, 2019.

615 Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
 616 in loRA-tuned LLMs and diffusion models. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=9m02ib92Wz>.

618 Shuangqi Li, Hieu Le, Jingyi Xu, and Mathieu Salzmann. Learning to weight parameters for data
 619 attribution. *arXiv preprint arXiv:2506.05647*, 2025.

621 Jinxu Lin, Linwei Tao, Minjing Dong, and Chang Xu. Diffusion attribution score: Evaluating training
 622 data influence in diffusion model. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=kuutidLf6R>.

624 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
 625 In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.

627 Nimish Magre and Nicholas Mainey Brown. Typography-mnist (tmnist): an mnist-style image
 628 dataset to categorize glyphs and font-styles. *ArXiv*, abs/2202.08112, 2022. URL <https://api.semanticscholar.org/CorpusID:246867440>.

630 Koichi Miyasawa. An empirical bayes estimator of the mean of a normal population. *Bulletin of the International Statistical Institute*, 38(4):181–188, 1961.

633 Bruno Kacper Młodożeniec, Runa Eschenhagen, Juhan Bae, Alexander Immer, David Krueger,
 634 and Richard E. Turner. Influence functions for scalable data attribution in diffusion models.
 635 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=esYrEndGsr>.

637 Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
 638 Attributing model behavior at scale. *arXiv preprint arXiv:2303.14186*, 2023.

640 Gabriel Peyré and Marco Cuturi. Computational optimal transport, 2020. URL <https://arxiv.org/abs/1803.00567>.

642 Jakiw Pidstrigach. Score-based generative models detect manifolds. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

646 Christopher Scarvelis, Haitz Sáez de Ocáriz Borde, and Justin Solomon. Closed-form diffusion
 647 models. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=JkMifrl7wc>.

648 Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence func-
 649 tions. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 8179–
 650 8186, 2022.

651
 652 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 653 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 654 national Conference on Learning Representations*, 2021. URL [https://openreview.net/
 655 forum?id=PxTIG12RRHS](https://openreview.net/forum?id=PxTIG12RRHS).

656 Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
 657 Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let net-
 658 works learn high frequency functions in low dimensional domains. *NeurIPS*, 2020.

659 Xiaosen Zheng, Tianyu Pang, Chao Du, Jing Jiang, and Min Lin. Intriguing properties of data
 660 attribution on diffusion models. In *The Twelfth International Conference on Learning Repres-
 661 entations*, 2024. URL <https://openreview.net/forum?id=vKVicCoKGcB>.

664 A EXTENDED PRELIMINARIES

665 For the sake of completeness, this appendix summarizes known results that have been used else-
 666 where in this manuscript.

667 **The continuous change of variables (CCoV) formula.** Let ρ_t be a continuous family of time-
 668 indexed probability measures on \mathbb{R}^d whose densities we denote by $\rho_t(z)$. Suppose that samples
 669 $z_t \sim \rho_t$ evolve according to the ODE $\frac{d}{dt}z_t = f(z_t, t)$, where $f : \mathbb{R}^d \times \mathbb{R} \rightarrow \mathbb{R}^d$ is uniformly
 670 Lipschitz in z_t and continuous in t . Then the log-density $\log \rho_t(z_t)$ of z_t evolves according to the
 671 *continuous change of variables formula*:

$$672 \frac{d}{dt} \log \rho_t(z_t) = -\nabla \cdot f(z_t, t), \quad (3)$$

673 where $\nabla \cdot f(z_t, t) = \text{tr}(J_{z_t} f(z_t, t))$ denotes the divergence of $f(z_t, t)$ with respect to its first ar-
 674 gument. This result appears in [Chen et al. \(2018, Theorem 1\)](#). In the setting of diffusion models,
 675 $f(z_t, t)$ is the PF-ODE velocity field ([Song et al., 2021](#)), which we denote by v_t in this manuscript.

676 In practice, it is often prohibitive to compute $\nabla \cdot f(z_t, t) = \text{tr}(J_{z_t} f(z_t, t))$ by explicitly forming the
 677 $d \times d$ Jacobian matrix $J_{z_t} f(z_t, t)$. To mitigate the computational burden, one typically employs
 678 *Hutchinson’s trace estimator* ([Hutchinson, 1990](#)) $\text{tr}(A) = \mathbb{E}_\epsilon[\epsilon^\top A \epsilon]$, which holds for any random
 679 variable ϵ with mean 0 and identity covariance. The key advantage of this estimator is that one
 680 can compute Monte Carlo approximations $\text{tr}(J_{z_t} f(z_t, t)) \approx \frac{1}{h} \sum_{i=1}^h \epsilon_i^\top J_{z_t} f(z_t, t) \epsilon_i$ using only
 681 Jacobian-vector products (JVPs), whose time complexity via automatic differentiation is at most
 682 $\frac{5}{2} \times$ the complexity of evaluating f ([Griewank & Walther, 2008](#), Chapter 3).

683 **Entropy-regularized optimal transport.** The results in this section are drawn from [Peyré & Cu-
 684 turi \(2020\)](#). Let μ and ν be two probability measures on \mathbb{R}^d . *Monge’s problem* seeks a pushforward
 685 $T : \mathbb{R}^d \rightarrow \mathbb{R}^d$ of μ onto ν that minimizes the average distance $\|x - T(x)\|_2$ between coupled units
 686 of probability mass:

$$687 \min_{T: \nu = T_\# \mu} \int \|x - T(x)\|_2 d\mu(x). \quad (4)$$

688 This map has appealing geometric properties: for instance, *transport rays* $T(x) - x$ do not cross on
 689 their interior ([Caffarelli et al., 2000](#)). As Monge’s problem may not have a solution, one typically
 690 relaxes this problem to a search for a *coupling*: A probability measure π on $\mathbb{R}^d \times \mathbb{R}^d$ whose marginals
 691 are μ and ν . This relaxation yields the well-known *Kantorovich problem*:

$$692 \quad 693 \quad 694 \quad 695 \quad 696 \quad 697 \quad 698 \quad 699 \quad 700 \quad 701 \quad W_1(\mu, \nu) := \min_{\pi \in \Pi(\mu, \nu)} \int \|x - y\|_2 d\pi(x, y), \quad (5)$$

where Π denotes the set of probability measures whose marginals are μ, ν . The optimal value of this problem is the *1-Wasserstein distance* between μ and ν . When μ, ν are discrete measures supported on $\{x_i\}_{i=1}^N, \{y_j\}_{j=1}^M$, Equation 5 reduces to:

$$W_1(\mu, \nu) := \min_{T \in \Pi(\mu, \nu)} \sum_{i=1}^N \sum_{j=1}^M T_{ij} \|x_i - y_j\|_2, \quad (6)$$

where $T \in \Pi(\mu, \nu)$ is now a $n \times m$ matrix whose row and column sums are equal to μ and ν , respectively. When $N = M$, there exists a solution to the linear program (6) that also solves the Monge problem (4). One may interpolate between μ and ν by moving samples from the support of μ along transport rays, which are straight line segments connecting x to $T(x)$.

While Equation 6 is defined by a linear program which can be solved in principle, doing so is costly, especially for large-scale problems in machine learning and graphics. To mitigate this cost, [Cuturi \(2013\)](#) proposes to regularize Equation 6 with an entropy term:

$$\text{Sinkhorn}(\mu, \nu) := \min_{T \in \Pi(\mu, \nu)} \sum_{i=1}^N \sum_{j=1}^M T_{ij} \|x_i - y_j\|_2 + \epsilon \sum_{i=1}^N \sum_{j=1}^M T_{ij} \log T_{ij}. \quad (7)$$

This approximation enables the use of *Sinkhorn’s algorithm* to solve the entropy-regularized optimal transport problem in quadratic time. In addition to its computational benefits, entropy regularization is often desirable for high-dimensional machine learning problems with noisy data. We use Sinkhorn’s algorithm to approximate the optimal coupling between the base model samples and samples from the perturbed model’s target distribution to compute our baseline in Section 4.3.

ODE sensitivity equation. The results in this section are drawn from Khalil (2002, Section 3.3). Given a function $f(z, t, \lambda)$, suppose that z_t satisfies the ODE $\frac{d}{dt}z_t = f(z_t^\lambda, t, \lambda)$, where $\lambda \in \mathbb{R}^p$ is a parameter that may be interpreted as a control vector. Suppose also that f is continuous in all its arguments and is continuously differentiable with respect to z_t and λ for all t . Let λ_0 be a parameter for which the initial value problem $\frac{d}{dt}z_t^{\lambda_0} = f(z_t, t, \lambda_0)$ with initial condition z_0 has a unique solution over some interval $[t_0, t_1]$. Then the solution path $z_t^{\lambda_0}$ is differentiable with respect to λ near λ_0 , and this derivative $S_t := \left. \frac{d}{d\lambda} z_t^\lambda \right|_{\lambda=\lambda_0}$ satisfies the *sensitivity equation*:

$$\frac{d}{dt} S_t = \frac{\partial f}{\partial z}(z_t^{\lambda_0}, t, \lambda_0) \cdot S_t + \frac{\partial f}{\partial \lambda}(z_t^{\lambda_0}, t, \lambda_0). \quad (8)$$

We use this ODE sensitivity equation to derive our sample sensitivity analysis in Section 3.3.

Score functions and density functions for mixtures of Gaussians. In practice, the perturbation measure ν is typically the empirical measure on K samples $x_k \in \mathbb{R}^d$ that one wishes to add or remove from ρ . In this case, ν_t is a mixture of isotropic Gaussians for all $t \in [t_0, t_1]$:

$$\nu_t(z) = \frac{1}{K} \sum_{k=1}^K \mathcal{N}(z; \alpha_t x_k; \sigma_t^2 I), \quad (9)$$

where α_t and σ_t are the scaling and noise schedules, respectively. One may therefore compute the exact density of ν_t with time complexity $O(dK)$. The score of ν_t is also available in closed form:

$$\nabla \log \nu_t(z) = \frac{1}{\sigma_t^2} (k_t(z) - z), \quad (10)$$

$$\text{where } k_t(z) = \sum_{k=1}^K \text{softmax} \left(-\frac{\|z - \alpha_t X\|^2}{2\sigma_t^2} \right)_i \alpha_t x_k, \quad (11)$$

in which we let $\|z - \alpha_t X\|^2$ denote the vector whose k -th entry is $\|z - \alpha_t x_k\|^2$. This score can also be computed exactly in $O(dK)$ time.

In settings where K is large, these density and score computations may be prohibitive. Fortunately, the large sums in the density and score computations are well-structured: For small σ_t , both sums are dominated by the term involving the x_k nearest to z , and for large σ_t the scalar terms in each sum are approximately uniform. [Karppa et al. \(2022\)](#) show how to exploit this structure to efficiently approximate densities of the form (9) using approximate nearest-neighbor queries, and [Scarvelis et al. \(2025\)](#) use similar techniques to efficiently approximate score functions of the form (10).

B PROOFS

B.1 PROOF OF THEOREM 3.1

We will prove this theorem in two parts. We will first show that $\frac{\partial}{\partial \eta} s_t^\eta(z) \Big|_{\eta=0} = g_t(z)$ at any fixed $z \in \mathbb{R}^d$. This shows that $g_t(z)$ is the pointwise derivative of s_t^η evaluated at $\eta = 0$ at any $z \in \mathbb{R}^d$. We will then extend this pointwise argument to the space of functions by using the dominated convergence theorem (DCT) to prove that g_t is the Fréchet derivative in $L^2(\mathbb{R}^d, \rho_t^0)$ of the map $T(\eta) : \eta \mapsto s_t^\eta$.

B.1.1 $g_t(z)$ IS THE POINTWISE DERIVATIVE OF s_t^η AT $\eta = 0$

In this part of the proof, we will rely heavily on [Młodożeniec et al. \(2025, Lemma 1\)](#). A version of their lemma adapted to our setting states the following:

Lemma B.1 *Let $\mathcal{L} : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}$ be a C^2 function of additive form $\mathcal{L}(\eta, s_z) := \mathcal{L}_1(s_z) + \eta \mathcal{L}_2(s_z)$, and suppose that the map $s_z \mapsto \mathcal{L}(\eta, s_z)$ is strictly convex for all $\eta \in \mathbb{R}$. Fix $\bar{\eta}$ and choose s_z^* such that $\frac{\partial \mathcal{L}}{\partial s_z}(\bar{\eta}, s_z^*) = 0$. Then, by applying the implicit function theorem to $\frac{\partial \mathcal{L}}{\partial s_z}$, one obtains an open interval $(-\delta, \delta) \subseteq \mathbb{R}$ containing $\bar{\eta}$ and a unique function $\phi : (-\delta, \delta) \rightarrow \mathbb{R}^d$ such that $\phi(\bar{\eta}) = s_z^*$ and such that for all $\eta \in (-\delta, \delta)$, $\phi(\eta)$ is the unique minimizer of $s_z \mapsto \mathcal{L}(\eta, s_z)$. Moreover, ϕ is C^1 with the following derivative:*

$$\frac{\partial}{\partial \eta} \phi(\eta) = - \left[\frac{\partial^2 \mathcal{L}}{\partial s_z^2}(\eta, \phi(\eta)) \right]^{-1} \frac{\partial \mathcal{L}_2}{\partial s_z}(\phi(\eta)). \quad (12)$$

To apply this lemma, we will first show that the score function $s_t(z)$ of the marginal distribution of $Z_t = \alpha_t X_1 + \sigma_t \epsilon$ can be characterized pointwise at any $z \in \mathbb{R}^d$ as the minimizer of a score-matching objective. For the sake of simplicity, we will assume a constant scale schedule $\alpha_t \equiv 1$; our argument can be easily adapted to arbitrary scale schedules at the cost of additional notation.

Let $s_t(z) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be the score function for some distribution $\rho_t := \rho * \mathcal{N}(0, \sigma_t^2 I)$, where ρ is a target distribution on \mathbb{R}^d . [Kadkhodaie et al. \(2024, Eqs. 14, 19\)](#) and the variational characterization of conditional expectation imply that this score function has the following pointwise variational characterization:

$$\begin{aligned} s_t(z) &= \nabla \log \rho_t(z) \\ &= \int_{\mathbb{R}^d} \left(\frac{x - z}{\sigma_t^2} \right) p(x|z) dx \\ &= \underset{s(z)}{\operatorname{argmin}} \int \frac{1}{2} \left\| \frac{x - z}{\sigma_t^2} - s(z) \right\|^2 p(x|z) dx, \end{aligned}$$

where $p(x|z)$ is the conditional distribution of x given $z \sim \rho_t$. While $p(x|z)$ is intractable a priori, $p(z|x) \sim \mathcal{N}(x, \sigma_t^2 I)$ is Gaussian, so we rewrite $p(x|z)$ in this integral using Bayes' theorem:

$$\begin{aligned}
s_t(z) &= \underset{s_z \in \mathbb{R}^d}{\operatorname{argmin}} \int \frac{1}{2} \left\| \frac{x-z}{\sigma_t^2} - s_z \right\|^2 p(x|z) dx \\
&= \underset{s_z \in \mathbb{R}^d}{\operatorname{argmin}} \int \frac{1}{2} \left\| \frac{x-z}{\sigma_t^2} - s_z \right\|^2 \frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t(z)} \rho(x) dx \\
&= \underset{s_z \in \mathbb{R}^d}{\operatorname{argmin}} \mathbb{E}_{x \sim \rho} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t(z)} \frac{1}{2} \left\| \frac{x-z}{\sigma_t^2} - s_z \right\|^2 \right]. \tag{SM}
\end{aligned}$$

Here, we use $\mathcal{N}(z; x, \sigma_t^2 I)$ to denote the density of a Gaussian distribution with mean x and covariance $\sigma_t^2 I$ evaluated at $z \in \mathbb{R}^d$. This provides a pointwise definition of the score $s_t(z)$ of ρ_t evaluated at $z \in \mathbb{R}^d$ as the minimizer of the score-matching problem (SM). In particular, applying this argument to the target distribution ρ^η shows that:

$$s_t^\eta(z) = \underset{s_z \in \mathbb{R}^d}{\operatorname{argmin}} \mathbb{E}_{x \sim \rho^\eta} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \frac{1}{2} \left\| \frac{x-z}{\sigma_t^2} - s_z \right\|^2 \right].$$

Now, define the following objective functions, in which we take $z \in \mathbb{R}^d$ to be fixed:

$$\mathcal{L}_\rho(s_z) = \mathbb{E}_{x \sim \rho} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \frac{1}{2} \left\| \frac{x-z}{\sigma_t^2} - s_z \right\|^2 \right]$$

and

$$\mathcal{L}_\nu(s_z) = \mathbb{E}_{x \sim \nu} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \frac{1}{2} \left\| \frac{x-z}{\sigma_t^2} - s_z \right\|^2 \right].$$

Using these two objectives, we can define an objective $\mathcal{L}(\eta, s_z) := \underbrace{\mathcal{L}_\rho(s_z)}_{:= \mathcal{L}_1} + \eta \underbrace{(\mathcal{L}_\nu(s_z) - \mathcal{L}_\rho(s_z))}_{:= \mathcal{L}_2}$

whose minimizer is $s_t^\eta(z)$. This objective is in the additive form prescribed by Lemma B.1, which will put us in position to apply the lemma once we verify that its remaining hypotheses are satisfied.

To this end, note that \mathcal{L} is clearly a C^2 function of the prescribed additive form. Furthermore, as we will see below via a Hessian computation, the map $s_z \mapsto \mathcal{L}(\eta, s_z)$ is strictly convex for all $\eta \in \mathbb{R}$ and for all $z \in \mathbb{R}^d$. Fixing a point $(\bar{\eta}, s_z^*) = (\bar{\eta}, s_t^\eta(z))$ yields a critical point of \mathcal{L} with respect to s_z , which puts us in position to apply Lemma B.1.

Lemma B.1 gives us a function $\phi(\eta)$ defined on an open set containing $\bar{\eta}$ that maps η to the unique minimizer $s_t^\eta(z)$ of $\mathcal{L}(\eta, s_z)$. Crucially, it gives us a formula for the derivative $\frac{\partial}{\partial \eta} \phi(\eta)$, which involves the derivative $\frac{\partial \mathcal{L}_2}{\partial s_z}(\phi(\eta))$ and the Hessian $\frac{\partial^2 \mathcal{L}}{\partial s_z^2}(\eta, \phi(\eta))$. We will compute each of these terms separately.

We begin by computing the derivative $\frac{\partial \mathcal{L}_2}{\partial s_z}(\phi(\eta))$. We have

864

865

$$\begin{aligned}
866 \quad \frac{\partial \mathcal{L}_2}{\partial s_z}(\phi(\eta)) &= \frac{\partial}{\partial s_z} \left[\mathbb{E}_{x \sim \nu} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \frac{1}{2} \left\| \frac{x-z}{\sigma_t^2} - s_z \right\|^2 \right] - \mathbb{E}_{x \sim \rho} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \frac{1}{2} \left\| \frac{x-z}{\sigma_t^2} - s_z \right\|^2 \right] \right] \Big|_{s_t^\eta(z)} \\
867 \\
868 \quad &= \frac{\partial}{\partial s_z} \mathbb{E}_{x \sim (\nu - \rho)} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \frac{1}{2} \left\| \frac{x-z}{\sigma_t^2} - s_z \right\|^2 \right] \Big|_{s_t^\eta(z)} \\
869 \\
870 \quad &= \mathbb{E}_{x \sim (\nu - \rho)} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \frac{\partial}{\partial s_z} \frac{1}{2} \left\| \frac{x-z}{\sigma_t^2} - s_z \right\|^2 \right] \Big|_{s_t^\eta(z)} \\
871 \\
872 \quad &= \mathbb{E}_{x \sim \nu} \left[-\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \left(\frac{x-z}{\sigma_t^2} - s_z \right) \right] \Big|_{s_t^\eta(z)} - \mathbb{E}_{x \sim \rho} \left[-\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \left(\frac{x-z}{\sigma_t^2} - s_z \right) \right] \Big|_{s_t^\eta(z)} \\
873 \\
874 \quad &= \mathbb{E}_{x \sim \rho} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \left(\frac{x-z}{\sigma_t^2} - s_t^\eta(z) \right) \right] - \mathbb{E}_{x \sim \nu} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \left(\frac{x-z}{\sigma_t^2} - s_t^\eta(z) \right) \right]
\end{aligned}$$

880

We now rewrite each expectation in the last line in terms of the scores of ρ_t and ν_t . To rewrite the first expectation, we pull out the factor of $\frac{1}{\rho_t^\eta(z)}$, which does not depend on x , and multiply by $1 = \frac{\rho_t(z)}{\rho_t^\eta(z)}$ to obtain the following:

885

$$\begin{aligned}
886 \quad \mathbb{E}_{x \sim \rho} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \left(\frac{x-z}{\sigma_t^2} - s_t^\eta(z) \right) \right] &= \frac{\rho_t(z)}{\rho_t^\eta(z)} \mathbb{E}_{x \sim \rho} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t(z)} \left(\frac{x-z}{\sigma_t^2} - s_t^\eta(z) \right) \right] \\
887 \\
888 \quad &= \frac{\rho_t(z)}{\rho_t^\eta(z)} \left(\underbrace{\mathbb{E}_{x \sim \rho} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t(z)} \left(\frac{x-z}{\sigma_t^2} \right) \right]}_{=s_t^\rho(z)} - \underbrace{\mathbb{E}_{x \sim \rho} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t(z)} \right]}_{=1} s_t^\eta(z) \right) \\
889 \\
890 \quad &= \frac{\rho_t(z)}{\rho_t^\eta(z)} (s_t^\rho(z) - s_t^\eta(z)).
\end{aligned}$$

895

Analogous reasoning allows us to conclude that

896

897

898

899

900

$$\mathbb{E}_{x \sim \nu} \left[\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \left(\frac{x-z}{\sigma_t^2} - s_t^\eta(z) \right) \right] = \frac{\nu_t(z)}{\rho_t^\eta(z)} (s_t^\nu(z) - s_t^\eta(z)),$$

901

and putting these together, we obtain

902

903

904

905

$$\frac{\partial \mathcal{L}_2}{\partial s_z}(\phi(\eta)) = \frac{\rho_t(z)}{\rho_t^\eta(z)} s_t^\rho(z) - \frac{\nu_t(z)}{\rho_t^\eta(z)} s_t^\nu(z) + \left(\frac{\nu_t(z) - \rho_t(z)}{\rho_t^\eta(z)} \right) s_t^\eta(z). \quad (13)$$

906

907

908

We now compute the Hessian term $\frac{\partial^2 \mathcal{L}}{\partial s_z^2}(\eta, \phi(\eta))$. Note that $\frac{\partial^2 \mathcal{L}}{\partial s_z^2} = \frac{\partial^2 \mathcal{L}_\rho}{\partial s_z^2} + \eta \left(\frac{\partial^2 \mathcal{L}_\nu}{\partial s_z^2} - \frac{\partial^2 \mathcal{L}_\rho}{\partial s_z^2} \right)$, and that we have already computed the relevant first derivatives:

909

910

911

912

913

914

$$\frac{\partial}{\partial s_z} \mathcal{L}_\rho = \mathbb{E}_{x \sim \rho} \left[-\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \left(\frac{x-z}{\sigma_t^2} - s_z \right) \right]$$

915

916

917

and

$$\frac{\partial}{\partial s_z} \mathcal{L}_\nu = \mathbb{E}_{x \sim \nu} \left[-\frac{\mathcal{N}(z; x, \sigma_t^2 I)}{\rho_t^\eta(z)} \left(\frac{x-z}{\sigma_t^2} - s_z \right) \right].$$

Differentiating again and simplifying, we see that

918
919
920
921

$$\frac{\partial^2}{\partial s_z^2} \mathcal{L}_\rho = \frac{\rho_t(z)}{\rho_t^\eta(z)} I$$

922 and

923
924
925
926

$$\frac{\partial^2}{\partial s_z^2} \mathcal{L}_\nu = \frac{\nu_t(z)}{\rho_t^\eta(z)} I.$$

Combining these and noting that $\rho_t^\eta = (1 - \eta)\rho_t + \eta\nu_t$, we conclude that $\frac{\partial^2 \mathcal{L}}{\partial s_z^2}(\eta, s_z) = I$ for all $\eta \in \mathbb{R}$ and for all s_z . In particular, the map $s_z \mapsto \mathcal{L}(\eta, s_z)$ is strictly convex for all $\eta \in [0, 1]$ as required by Lemma B.1.

We finally substitute these first and second derivatives into Equation 12 to obtain:

930
931
932
933
934
935
936
937
938
939
940

$$\begin{aligned} \frac{\partial}{\partial \eta} \phi(\eta) &= - \left[\frac{\partial^2 \mathcal{L}}{\partial s_z^2}(\eta, \phi(\eta)) \right]^{-1} \frac{\partial \mathcal{L}_2}{\partial s_z}(\phi(\eta)) \\ &= -[I]^{-1} \left(\frac{\rho_t(z)}{\rho_t^\eta(z)} s_t^\rho(z) - \frac{\nu_t(z)}{\rho_t^\eta(z)} s_t^\nu(z) + \left(\frac{\nu_t(z) - \rho_t(z)}{\rho_t^\eta(z)} \right) s_t^\eta(z) \right) \\ &= \frac{\nu_t(z)}{\rho_t^\eta(z)} s_t^\nu(z) - \frac{\rho_t(z)}{\rho_t^\eta(z)} s_t^\rho(z) + \left(\frac{\rho_t(z) - \nu_t(z)}{\rho_t^\eta(z)} \right) s_t^\eta(z). \end{aligned}$$

In particular, if $\eta = 0$, then $\rho_t^\eta(z) = \rho_t(z)$ and this simplifies to:

941
942
943
944
945

$$\frac{\partial}{\partial \eta} \phi(\eta) = \frac{\nu_t(z)}{\rho_t(z)} (s_t^\nu(z) - s_t^\rho(z)) =: g_t(z).$$

This completes the first part of the proof.

B.1.2 g_t IS THE FRÉCHET DERIVATIVE OF $T_t(\eta) : \eta \mapsto s_t^\eta$ AT $\eta = 0$

We now extend this pointwise argument to the space of functions. Consider the map $T_t : \mathbb{R} \rightarrow L^2(\mathbb{R}^d, \rho_t^\eta)$ that maps η to s_t^η . We will show that g_t is the Fréchet derivative of T_t at $\eta = 0$ for any $t \in [t_0, t_1]$. To do so, we need to show that for any $t \in [t_0, t_1]$,

946
947
948
949
950
951
952
953
954
955
956

$$\lim_{h \rightarrow 0} \left\| \frac{s_t^h - s_t^0}{h} - g_t \right\|_{L^2(\mathbb{R}^d, \rho_t^0)} = 0.$$

The previous section shows that $g_t(z)$ is the *pointwise* derivative of s_t^η with respect to η at $\eta = 0$. This means that for any $z \in \mathbb{R}^d$, $t \in [t_0, t_1]$,

957
958
959
960
961
962

$$\frac{s_t^h(z) - s_t^0(z)}{h} \rightarrow g_t(z).$$

Hence $\frac{s_t^h - s_t^0}{h}$ converges pointwise to g_t for all $t \in [t_0, t_1]$. We will use the dominated convergence theorem (DCT) to lift this pointwise convergence to $L^2(\mathbb{R}^d, \rho_t^0)$ convergence. Define the following function:

963
964
965
966
967
968
969

$$F_h(z; t) := \frac{s_t^h(z) - s_t^0(z)}{h}$$

We need to show that there exists some real-valued function $G(z; t) \in L^2(\mathbb{R}^d, \rho_t^0)$ such that $\|F_h(z; t)\|_2 \leq G(z; t)$ uniformly in h for all z, t . To this end, note that by the mean value theorem, there exists some $\theta \in [0, 1]$ such that:

$$\begin{aligned}
\|F_h(z; t)\|_2 &= \left\| \frac{s_t^h(z) - s_t^0(z)}{h} \right\|_2 \\
&\leq \left\| \frac{\partial}{\partial \eta} s_t^\eta(z) \Big|_{\eta=\theta h} \right\|_2 \\
&= \left\| \frac{\rho_t(z)}{\rho_t^{\theta h}(z)} (s_t^\rho(z) - s_t^{\theta h}(z)) - \frac{\nu_t(z)}{\rho_t^{\theta h}(z)} (s_t^\nu(z) - s_t^{\theta h}(z)) \right\|_2,
\end{aligned}$$

where the last line follows from a rearrangement of Equation 13. We can further simplify this bound to eliminate the dependence on h . First, note that $\rho_t^{\theta h} = (1 - \theta h)\rho_t + \theta h\nu_t$, so that for $h \leq \frac{1}{2}$, we have

$$\frac{1}{\rho_t^{\theta h}(z)} = \frac{1}{(1 - \theta h)\rho_t(z) + \theta h\nu_t(z)} \leq \frac{1}{(1 - \theta h)\rho_t(z)} \leq \frac{2}{\rho_t(z)}.$$

Hence, for h sufficiently small, we have:

$$\begin{aligned}
\|F_h(z; t)\|_2 &\leq \left\| \frac{\rho_t(z)}{\rho_t^{\theta h}(z)} (s_t^\rho(z) - s_t^{\theta h}(z)) - \frac{\nu_t(z)}{\rho_t^{\theta h}(z)} (s_t^\nu(z) - s_t^{\theta h}(z)) \right\|_2 \\
&\leq \frac{2}{\rho_t(z)} \left\| \rho_t(z) (s_t^\rho(z) - s_t^{\theta h}(z)) - \nu_t(z) (s_t^\nu(z) - s_t^{\theta h}(z)) \right\|_2.
\end{aligned}$$

Applying the triangle inequality, we then obtain:

$$\begin{aligned}
\frac{2}{\rho_t(z)} \left\| \rho_t(z) (s_t^\rho(z) - s_t^{\theta h}(z)) - \nu_t(z) (s_t^\nu(z) - s_t^{\theta h}(z)) \right\|_2 \\
\leq \frac{2}{\rho_t(z)} (\rho_t(z) \|s_t^\rho(z) - s_t^{\theta h}(z)\|_2 + \nu_t(z) \|s_t^\nu(z) - s_t^{\theta h}(z)\|_2).
\end{aligned}$$

Now, define

$$k_t^\rho(z) := \int w_t(z, x) x d\rho(x)$$

and similarly for $k_t^\nu(z)$ and $k_t^{\theta h}(z)$. Then Equation ?? tells us that

$$s_t^\rho(z) = \frac{1}{\sigma_t^2} (k_t^\rho(z) - z),$$

and similar identities hold for the other score functions. Furthermore,

$$\|s_t^\rho(z) - s_t^{\theta h}(z)\|_2 = \frac{1}{\sigma_t^2} \|k_t^\rho(z) - k_t^{\theta h}(z)\|_2 \leq \frac{1}{\sigma_t^2} (\|k_t^\rho(z)\|_2 + \|k_t^{\theta h}(z)\|_2),$$

where the last line follows from the triangle inequality. Because $k_t^\rho(z)$ is a convex combination of points in the compact support of ρ , we can bound $\|k_t^\rho(z)\|_2 \leq D^\rho < +\infty$, where D^ρ is the diameter of the support of ρ . Similarly, $\|k_t^\nu(z)\|_2 \leq D^\nu < +\infty$, and because $\text{supp}(\rho^{\theta h}) \subseteq \text{supp}(\rho) \cup \text{supp}(\nu)$, we have $\|k_t^{\theta h}(z)\|_2 \leq D^\rho + D^\nu$. Substituting these bounds into the above and simplifying, we obtain:

1026

1027

$$\begin{aligned}
1028 \quad \|F_h(z; t)\|_2 &\leq \frac{2}{\rho_t(z)} (\rho_t(z)\|s_t^\rho(z) - s_t^{\theta h}(z)\|_2 + \nu_t(z)\|s_t^\nu(z) - s_t^{\theta h}(z)\|_2) \\
1029 &\leq \frac{2}{\rho_t(z)} \left(\frac{\rho_t(z)}{\sigma_t^2} (2D^\rho + D^\nu) + \frac{\nu_t(z)}{\sigma_t^2} (2D^\nu + D^\rho) \right) \\
1030 &=: G(z; t)
\end{aligned}$$

1031

1032

1033

1034 This function $G(z; t)$ dominates $\|F_h(z; t)\|_2$ uniformly in h for all z, t . It remains to show that1035 $G(z; t) \in L^2(\mathbb{R}^d, \rho_t^0)$. To this end, first note that $\rho_t^0 = \rho_t$. Then,

1036

$$\begin{aligned}
1037 \quad \int G(z; t) d\rho_t^0(z) &= \int G(z; t) d\rho_t(z) \\
1038 &= \int \frac{2}{\rho_t(z)} \left(\frac{\rho_t(z)}{\sigma_t^2} (2D^\rho + D^\nu) + \frac{\nu_t(z)}{\sigma_t^2} (2D^\nu + D^\rho) \right) \rho_t(z) dz \\
1039 &= \frac{2(2D^\rho + D^\nu)}{\sigma_t^2} \underbrace{\int \rho_t(z) dz}_{=1} + \frac{2(2D^\nu + D^\rho)}{\sigma_t^2} \underbrace{\int \nu_t(z) dz}_{=1} \\
1040 &= \frac{6}{\sigma_t^2} (D^\rho + D^\nu) \\
1041 &< +\infty.
\end{aligned}$$

1042

1043

1044

1045

1046

1047

1048

1049

1050 This shows that $G(z; t) \in L^2(\mathbb{R}^d, \rho_t^0)$. As the hypotheses of the DCT are satisfied, we finally
1051 conclude that g_t is the Fréchet derivative of T_t at $\eta = 0$ for any $t \in [t_0, t_1]$. This completes the proof
1052 of Theorem 3.1. ■

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080
1081 C MOST AND LEAST INFLUENTIAL SAMPLES
1082
1083
1084
10851086
1087
1088
1089
1090
1091
1092
1093
Figure 12: Most and least influential training samples (center, right, resp.) for the model sample on the left, with the corresponding sensitivities on the bottom row.1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
Figure 13: Training samples with the largest and smallest residual influence scores (center, right, resp.) for the model sample on the left, with the corresponding sensitivities on the bottom row.1110 D SINGULAR VECTORS OF SAMPLE SENSITIVITIES
11111112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
Figure 14: Top 10 right-singular vectors of the $N \times d$ matrix formed from the sensitivities of a single model sample (left) to each of its N training samples. These are interpretable directions in image space; see Figure 10 for examples of perturbing a model sample along several singular directions.1131
1132
1133

1134 **E VISUALIZING THE SAMPLE SENSITIVITIES**
1135

1136 In this appendix, we illustrate our sample sensitivity analysis on images from the CelebA dataset. We
 1137 draw four samples from a base model trained on CelebA and solve Equation 2 for each model sample
 1138 and for four perturbation measures ν , each of which is an empirical measure over a perturbation set
 1139 S . These perturbation sets consist of samples from the CelebA test set possessing the attribute
 1140 labels “bald”, “goatee”, “smiling”, and “eyeglasses”, respectively. We depict model samples in
 1141 the top row of Figure 15 and solutions to the sample sensitivity ODE for each perturbation set in
 1142 the bottom four rows. Solutions to this ODE should approximate changes in the model samples
 1143 in the top row in response to perturbing the base model’s target distribution, and many of these
 1144 predictions are intuitively reasonable in practice. For instance, base model samples representing
 1145 people without glasses are pushed towards samples of people with glasses in response to perturbing
 1146 the target distribution towards CelebA samples with the “eyeglasses” attribute, and one observes
 1147 similar phenomena for the other perturbation sets.

1164 Figure 15: The bottom four rows depict solutions $\frac{d}{d\eta} \Phi_{\tilde{t}_1}^\eta(z_0) \Big|_{\eta=0}$ to the sample sensitivity equation
 1165 (2) for model samples $\Phi_{\tilde{t}_1}^0(z_0)$ pictured in the top row. In each of the lower four rows, the pertur-
 1166 bation measure ν is the empirical distribution over images from the CelebA test set with attributes
 1167 “bald”, “goatee”, “smiling”, and “eyeglasses”, respectively.

1169 In Figure 16, we also depict line segments of the form $\Phi_{\tilde{t}_1}^0(z_0) + \alpha \frac{d}{d\eta} \Phi_{\tilde{t}_1}^\eta(z_0) \Big|_{\eta=0}$ for $\alpha \in [-2, 2]$
 1170 and for the sample sensitivity ODE solutions depicted in Figure 15. These line segments should
 1171 approximate samples from a model whose target distributed has been perturbed towards $\pm\nu$, where
 1172 ν is the empirical measure over CelebA test images with the specified attributes. For α close to 0,
 1173 the perturbed samples resemble the original sample (6th from the left in each row), differing mainly
 1174 in the strength of the specified attribute. As α moves farther from 0, the perturbed samples deviate
 1175 increasingly from the original.

1177 **F EXPERIMENT DETAILS**
11781179 **F.1 SYNTHETIC EXPERIMENTS**1180 **F.1.1 FIRST-ORDER APPROXIMATION FOR PERTURBED MODEL SAMPLES**
1181

1184 In this experiment, the initial target measure ρ is an equally-weighted mixture of two Gaussians on
 1185 \mathbb{R}^{100} with means $(-1, \dots, -1)$ and $(1, \dots, 1)$, respectively, and shared covariance $\sigma^2 I$ for $\sigma = 0.1$.
 1186 We perturb ρ in the direction of a Gaussian distribution ν centred at $(1, \dots, 1)$ with covariance $\sigma^2 I$
 1187 for $\sigma = 0.1$. For any $\bar{\eta} \in [0, 1]$, the perturbed target $\rho^{\bar{\eta}} = (1 - \bar{\eta})\rho + \bar{\eta}\nu$ is a mixture of Gaussians
 1188 with the same means and covariances as ρ , but with weights $\frac{1-\bar{\eta}}{2}$ and $\frac{1+\bar{\eta}}{2}$.

We obtain sample paths z_t for ρ_t and $\rho_t^{\bar{\eta}}$ by fixing 1000 base samples $z_0 \sim \rho_0$ and numerically integrating the PF-ODE and variance-preserving SDE using a forward Euler scheme and Euler-Maruyama scheme, resp., with step sizes $\Delta t \in \{1 \times 10^{-4}, 5 \times 10^{-4}, 1 \times 10^{-3}, 5 \times 10^{-3}\}$. Our scale and noise schedules come from a linear DDPM Scheduler from the `diffusers` library with $\beta_{\text{start}} = 10^{-4}$ and $\beta_{\text{end}} = 0.02$. We exactly compute the Gaussian mixture densities $\rho_t(z_t)$ along each sample path. We then integrate Equation 2 using the same forward Euler scheme to obtain the sensitivities $\frac{d}{d\eta} \Phi_{\bar{t}_1}^{\eta}(z_0) \Big|_{\eta=0}$ of samples from $\rho_{\bar{t}_1}$. We compute the Taylor remainder:

$$R(\bar{\eta}) := \left(\Phi_{\bar{t}_1}^{\bar{\eta}}(z_0) - \Phi_{\bar{t}_1}^0(z_0) \right) - \bar{\eta} \frac{d}{d\eta} \Phi_{\bar{t}_1}^{\eta}(z_0) \Big|_{\eta=0}$$

and report the median value of $\frac{R(\bar{\eta})}{\bar{\eta}}$ across the 1000 batch samples in our plots.

In our experiments studying the effect of using Hutchinson’s estimator to estimate model densities, we use the same setup as in the step size experiments, but estimate the base model densities $\rho_t(z)$ with Hutchinson’s estimator: $\text{tr}(A) = \mathbb{E}[\epsilon^\top A \epsilon]$. We use standard normal Gaussian samples for ϵ and report the number of noise samples we used in our plots.

F.1.2 STABILITY UNDER SCORE APPROXIMATION ERROR

Here, the initial target measure ρ is an equally-weighted mixture of two Gaussians on \mathbb{R}^{10} with means $(-1, \dots, -1)$ and $(1, \dots, 1)$ and shared covariance $\sigma^2 I$ for $\sigma = 0.1$. We perturb ρ in the direction of a Gaussian distribution ν centred at $(1, \dots, 1)$ with covariance $\sigma^2 I$ for $\sigma = 0.1$. Instead of evaluating the score of ρ_t in closed form as in 4.1, we now train a neural network to approximate this score function. Our neural network is a two-hidden-layer MLP with SiLU activations and 512-dimensional hidden layers. We also use Fourier features (Tancik et al., 2020) with 128 frequencies and $\sigma = 2.0$. We solve the score-matching problem using AdamW with a learning rate of 10^{-4} and a batch size of 100k. We train for 200k steps in total. In our plot, we omit the first two measurements of the correlations for clarity, as the training loss was large and network was very far from convergence during this phase of training.

We fix 1000 base samples $z_0 \sim \rho_0$ and evaluate the sensitivity of model samples from the exact diffusion model ρ_t and its neural approximation every 1000 training steps. We discretize all ODEs using a forward Euler scheme with step size 10^{-2} and use Hutchinson’s estimator with 100 samples to estimate the model densities $\rho_t(z)$. We measure the median correlation between the exact and approximate sample sensitivities and compare it to the value of the score-matching loss at that training step in Figure 4.

Computing correlation coefficients. In Sections 4.2 and 4.3, we measure correlations either between pairs of exact and approximate sample sensitivities, or between our sample sensitivities and differences in model samples post- and pre-perturbation of the training set. In each case, we are interested in the correlation between two tensors of shape (C, H, W) , where C is the number of channels and H, W are the height and width, respectively, of image samples generated by the diffusion model. To compute these correlations, we flatten each tensor so that it has shape $(CHW,)$ and use `numpy.corrcoef` to compute the *correlation coefficient* between the pair of vectors. Given two vectors $u, v \in \mathbb{R}^d$, their correlation is computed as follows:

$$\text{Corr}(u, v) := \frac{\langle u - \bar{u}, v - \bar{v} \rangle}{\|u - \bar{u}\|_2 \|v - \bar{v}\|_2},$$

where $\bar{u} := \frac{1}{d} \sum_{i=1}^d u_i$ is the mean of u and \bar{v} is defined similarly. This is the cosine similarity between u and v after centering. In the setting of Section 4.3, it measures the extent to which our sample sensitivities can predict increases or decreases in pixel intensity across model samples after retraining or fine-tuning on a perturbed training set.

F.2 IMAGE DATASETS

Retraining experiments. Each neural diffusion model in these experiments is parametrized by a `Unet2DModel` from the `diffusers` library. For the CelebA experiments,

1242 we set `layers_per_block=2`, `block_out_channels=(128, 256, 512, 512)`, and
 1243 `norm_num_groups=32`. We use a DDPMscheduler with $\beta_{\text{start}} = 10^{-4}$ and $\beta_{\text{end}} = 0.02$. The
 1244 base model samples consist of 10k iid samples from the CelebA training set, and the new samples
 1245 S are 495 CelebA training samples with a large CLIP score for “a photo of an old man”. We pre-
 1246 process the training images by center-cropping to a size of 140×140 , then resizing to 64×64 and
 1247 normalizing to $[-1, 1]$. We apply random horizontal flips as augmentations in training. We then train
 1248 the CelebA diffusion models for 1000 epochs with an effective batch size of 512. Our optimizer is
 1249 AdamW with a learning rate of 10^{-4} .

1250 For the MNIST experiments, we set `layers_per_block=2`, `block_out_channels=(32,`
 1251 `64, 128)`, and `norm_num_groups=8`. We use a DDPMscheduler with $\beta_{\text{start}} = 10^{-4}$ and
 1252 $\beta_{\text{end}} = 0.02$. We do not apply any preprocessing to these samples. We train the MNIST diffusion
 1253 models for 100 epochs with an effective batch size of 1024. Our optimizer is AdamW with a learning
 1254 rate of 10^{-4} .

1255 We draw model samples by integrating the PF-ODE and estimate model densities along the sample
 1256 path using Hutchinson’s estimator with 1 sample. We numerically integrate the PF-ODE and our
 1257 sample sensitivity ODE (2) using a forward Euler scheme with a step size of 10^{-3} . We clamp
 1258 the $\frac{\nu_t(z)}{\rho_t(z)}$ weights to $[0.1, 10]$ for numerical stability. For the entropic OT baseline, we use the
 1259 `sinkhorn_log` algorithm from the `POT` package (Flamary et al., 2024) with a regularization value
 1260 of 0.05 to compute the coupling matrix.
 1261

1262 **Fine-tuning experiments** These experiments mostly replicate the setup in our retraining experi-
 1263 ments, but implement the following changes. For CelebA, we train the base model on 10k iid
 1264 samples from the CelebA training set for 1k epochs with the same hyperparameters as in the retrain-
 1265 ing experiments, and then fine-tune for 200 epochs on 495 CelebA training samples with a large
 1266 CLIP score for “a photo of an old man”. We use the same learning rate of 10^{-4} for fine-tuning.

1267 For MNIST, we train the base model on the MNIST training set for 100 epochs with an effective
 1268 batch size of 1024 and a learning rate of 10^{-4} , and then fine-tune on TMNIST for a single epoch at
 1269 a learning rate of 10^{-5} .
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

(a) "Bald"

(b) "Goatee"

(c) "Smiling"

(d) "Eyeglasses"

Figure 16: Line segments extending from model samples (center images) towards negative (left) and positive (right) multiples of sample sensitivities $\frac{d}{d\eta} \Phi_{\tilde{t}_1}^\eta(z_0) \Big|_{\eta=0}$. In each subfigure, the perturbation measure ν is the empirical distribution over CelebA test samples with the attribute listed in the subcaption.