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ABSTRACT

Localizing keypoints of an object is a basic visual problem. However, supervised
learning of a keypoint localization network often requires a large amount of data,
which is expensive and time-consuming to obtain. To remedy this, there is an
ever-growing interest in semi-supervised learning (SSL), which leverages a small
set of labeled data along with a large set of unlabeled data. Among these SSL
approaches, pseudo-labeling (PL) is one of the most popular. PL approaches apply
pseudo-labels to unlabeled data, and then train the model with a combination of
the labeled and pseudo-labeled data iteratively. The key to the success of PL is the
selection of high-quality pseudo-labeled samples. Previous works mostly select
training samples by manually setting a single confidence threshold. We propose
to automatically select reliable pseudo-labeled samples with a series of dynamic
thresholds, which constitutes a learning curriculum. Extensive experiments on six
keypoint localization benchmark datasets demonstrate that the proposed approach
significantly outperforms the previous state-of-the-art SSL approaches.

1 INTRODUCTION

Keypoints (also termed as landmarks) are a popular representation of objects that precisely represent
locations of object parts and contain concise information about shapes and poses. Example keypoints
are ”right shoulder” on a human body or the ”tail tip” of a cat. Keypoint localization is the basis of
many visual tasks, including action recognition (Yan et al., 2018), fine-grained classification (Gavves
et al., 2013; 2015), pose tracking (Jin et al., 2017; 2019) and re-identification (Zhao et al., 2017).

Keypoint localization has achieved great success with the advent of deep learning in recent
years (Newell et al., 2016; Xiao et al., 2018; Duan et al., 2019; Sun et al., 2019; Jin et al., 2020a; Xu
et al., 2021; Geng et al., 2021; Li et al., 2021b). However, the success of deep networks relies on vast
amounts of labeled data, which is often expensive and time-consuming to collect. Semi-supervised
learning (SSL) is one of the most important approaches for solving this problem. It leverages exten-
sive amounts of unlabeled data in addition to sparsely labeled data to obtain gains in performance.
Pseudo-labeling (PL) has become one of the most popular SSL approaches due to its simplicity.
PL-based methods iteratively add unlabeled samples into the training data by pseudo-labeling them
with a model trained on a combination of labeled and pseudo-labeled samples.

PL-based methods commonly require a predefined handpicked threshold (Lee et al., 2013; Oliver
et al., 2018), to filter out low-confidence noisy predictions. However, a single fixed threshold does
not take into account the dynamic capacity of the current model for handling noisy pseudo-labels,
leading to sub-optimal performance. In this work, we borrow ideas from Curriculum Learning
(CL) (Bengio et al., 2009) and design our curriculum as a series of thresholds for PL, which is
tuned according to the feedback from the model. CL is a widely used strategy to control the model
training pace by selecting from easier to harder samples. With a carefully designed curriculum,
noticeable improvement is obtained. However, traditional CL methods suffer from hand-designed
curricula, which heavily rely on expertise and detailed analysis for specific domains. Manual cur-
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riculum design based on handcrafted criteria is always tedious and sub-optimal. Moreover, curricu-
lum design (or threshold setting) is complicated. High-confidence pseudo-labels typically corre-
spond to easier samples with clean labels, while low-confidence pseudo-labels correspond to harder
samples with noisy labels. How to design a curriculum to balance the correctness, representative-
ness, and difficulty of pseudo-labeled data is an open problem. This paper is devoted to tackling
the aforementioned problem, i.e. how to automatically learn an optimal learning curriculum for
pseudo-labeling in a data-driven way. To this end, we propose a novel method, called Pseudo-
Labeled Auto-Curriculum Learning (PLACL). PLACL formulates the curriculum design problem
as a decision-making problem and leverages the reinforcement learning (RL) framework to solve it.

Additionally, PL-based methods suffer from confirmation bias (Tarvainen & Valpola, 2017), also
known as noise accumulation (Zhang et al., 2016), and concept drift (Cascante-Bonilla et al., 2021).
This long-standing issue stems from the use of noisy or incorrect pseudo-labels in subsequent train-
ing stages. As a consequence, the noise accumulates and the performance degrades as the learning
process evolves over time. To mitigate this problem, we propose the cross-training strategy which
alternatively performs pseudo-label prediction and model training on separate sub-datasets.

We benchmark PLACL on six keypoint localization datasets, including LSPET (Johnson & Ever-
ingham, 2011), MPII (Andriluka et al., 2014), CUB-200-2011 (Welinder et al., 2010), ATRW (Li
et al., 2019c), MS-COCO (Lin et al., 2014), and AnimalPose (Cao et al., 2019). We empirically
show that PLACL is general and can be applied to various keypoint localization tasks (human and
animal pose estimation) and different keypoint localization networks. With a simple yet effective
search paradigm, our method significantly boosts the keypoint estimation performance and achieves
superior performance to other SSL methods. We hope our method will inspire the community to
rethink the potential of PL-based methods for semi-supervised keypoint localization.

Our main contributions can be summarized as follows:

• We propose Pseudo-Labeled Auto-Curriculum Learning (PLACL). It is an an automatic
pseudo-labeled data selection method, which learns a series of dynamic thresholds (or cur-
riculum) via reinforcement learning. To the best of our knowledge, this is the first work
that explores automatic curriculum learning for semi-supervised keypoint localization.

• We propose the cross-training strategy for pseudo-labeling to mitigate the long-standing
problem of confirmation bias.

• Extensive experiments on a wide range of popular datasets demonstrate the superiority of
PLACL over the previous state-of-the-art SSL approaches. In addition, PLACL is model-
agnostic and can be easily applied to different keypoint localization networks.

2 RELATED WORKS

2.1 SEMI-SUPERVISED KEYPOINT LOCALIZATION

Keypoint localization focuses on predicting the keypoints of detected objects, e.g. human body
parts (Li et al., 2019b; Jin et al., 2020b), facial landmarks (Bulat & Tzimiropoulos, 2017), hand
keypoints (Zimmermann & Brox, 2017) and animal poses (Cao et al., 2019). However, training
a keypoint localization model often requires a large amount of data, which is expensive and time-
consuming to collect. Semi-supervised keypoint localization is one of the most promising ways to
solve this problem. Semi-supervised keypoint localization can be categorized into consistency reg-
ularization based methods and pseudo-labeling based methods. Consistency regularization meth-
ods (Honari et al., 2018; Moskvyak et al., 2020) assume that the output of the model should not be
invariant to realistic perturbations. These approaches typically rely on modality-specific augmen-
tation techniques for regularization. Pseudo-labeling methods (Ukita & Uematsu, 2018; Dong &
Yang, 2019; Cao et al., 2019; Li & Lee, 2021) use labeled data to predict the labels of the unla-
beled data, and then train the model in a supervised way with a combination of labeled and selected
pseudo-labeled data. Our approach also builds upon pseudo-labeling methods. In contrast to previ-
ous works, we propose to learn pseudo-labeled data selection via reinforcement learning.
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2.2 CURRICULUM LEARNING

Curriculum learning is firstly introduced by Bengio et al. (2009). It is a training strategy that trains
machine learning models from easy to complex samples, imitating human education. The curricu-
lum is often pre-determined by heuristics (Khan et al., 2011; Bengio et al., 2009; Spitkovsky et al.,
2009). However, it requires expert domain knowledge and exhaustive trials to find a good curricu-
lum suitable for a specific task and its dataset. Recently, automatic curriculum learning methods are
introduced to break through these limits. Popular ones include self-paced learning methods (Kumar
et al., 2010; Jiang et al., 2014; Zhao et al., 2015) and reinforcement learning (RL) based meth-
ods (Graves et al., 2017; Matiisen et al., 2019; Fan et al., 2018). Our approach can be categorized
as RL-based methods. Unlike previous works that focus on supervised learning, our approach is de-
signed for the SSL paradigm. Our work is mostly related to Curriculum Labeling (Cascante-Bonilla
et al., 2021). It adopts a hand-crafted curriculum based on Extreme Value Theory (EVT) to facili-
tate model training. In contrast, we propose an automatic curriculum learning approach by searching
for dynamic thresholds for pseudo-labeling. In addition, the curriculum of (Cascante-Bonilla et al.,
2021) is coarse-grained on the round level, while our curriculum is fine-grained on the epoch level.

2.3 REINFORCEMENT LEARNING FOR AUTOML

Reinforcement learning (RL) has shown impressive results in a range of applications. Well-known
examples include game playing (Mnih et al., 2015; Silver et al., 2016; 2017) and robotics con-
trol(Schulman et al., 2015; Lillicrap et al., 2016). Recent works have employed RL to the AutoML,
automating the design of a machine learning system, e.g. searching for neural architectures (Zoph
& Le, 2017; Zoph et al., 2018; Baker et al., 2017; Pham et al., 2018), augmentation policies (Cubuk
et al., 2019), activation functions (Ramachandran et al., 2017), loss functions (Li et al., 2019a;
2021a), and training hyperparameters (Dong et al., 2020). In contrast to these works, we apply RL
to the automatic selection of pseudo-labeled data in the context of pseudo-labeling.

3 PSEUDO-LABELED AUTO-CURRICULUM LEARNING (PLACL)

3.1 OVERVIEW

Our PLACL algorithm is illustrated in Fig. 1. The training process consists ofR self-training rounds
and each round consists of N training epochs. (0) In the initial round (r = 0), we pre-train a
keypoint localization network Θ0

ω on the labeled data, where ω denotes the weights of the network.
And for the r-th round, (1) The trained network Θr

ω is used to predict pseudo-labels for unlabeled
data. (2) We adopt reinforcement learning (RL) to automatically generate the learning curriculum.
Specifically, our curriculum (Γr) consists of a series of thresholds for pseudo-labeled data selection.
Γr = [γr1 , . . . , γ

r
N ], where γri ∈ [0, 1] is the threshold for each epoch i. (3) We then select reliable

pseudo-labeled data by the searched curriculum. (4) We retrain a new model (Θr+1
ω ) using both the

labeled samples and selected pseudo-labeled samples. (5) This process is repeated for R rounds.

3.2 PSEUDO-LABEL SELECTION FOR SEMI-SUPERVISED KEYPOINT LOCALIZATION

We denote the labeled dataset with Nl samples as Dl =
{(

I li ,Y
l
i

)∣∣Nl

i=1

}
,where Ii and Yi denote

the i-th training image and its keypoint annotations (the x-y coordinates of K keypoints). The Nu
unlabeled images are denoted as Du =

{
(Iui )|Nu

i=1

}
, which are not associated with any ground-truth

keypoint labels. Generally, we have |Nl| � |Nu|.
Pseudo-labeling based method builds upon the general idea of self-training (McLachlan, 1975),
where the keypoint localization network Θω goes through multiple rounds of training. In the ini-
tialization round, the model is first trained with the small labeled training set Dtrain = Dl in a usual
supervised manner. In subsequent rounds, the trained model is used to estimate labels for the unla-

beled data D̃u =

{(
Iui , Ỹ

u
i

)∣∣∣Nu

i=1

}
. Here, we omit the superscript r for simplicity. Specifically,

given an unlabeled image Iui , the trained keypoint localization network Θω predicts K heatmaps.
Each heatmap is a 2D Gaussian centered on the joint location, which represents the confidence of
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Figure 1: Pseudo-Labeled Auto-Curriculum Learning (PLACL). (0) In the initial round, the model
Θ0
ω is pre-trained on the labeled data. And for the r-th round, (1) the trained network Θr

ω is used
to predict pseudo-labels for unlabeled data. (2) A learning curriculum consisting of a series of
thresholds (γri ) is generated. (3) Reliable pseudo-labeled data is selected by the searched curriculum.
(4) A new model Θr+1

ω is retrained using both the labeled samples and selected pseudo-labeled
samples. (5) This process is repeated by re-labeling unlabeled data using the new model.

the k-th keypoint. The output pseudo-labeled keypoint location (Ỹ u
i ) is the highest response in the

heatmap space. And the confidence score C (Θω(Iui )) is the response value at the keypoint location.

Then, pseudo-label selection process is adopted. Let g = [g1, ..., gNu ] ⊆ {0, 1}Nu be a binary
vector representing the selection of pseudo-labels, where gi denotes whether the keypoint prediction
on Iui is selected.

gi =

{
1, if C (Θω(Iui )) > γ
0, otherwise (1)

where γ ∈ (0, 1) is the confidence threshold. Pseudo-labeled samples with higher confidence are
added to the training set.

Dtrain =
{(

I li ,Y
l
i

)∣∣Nl

i=1

}
∪
{(

Iui , Ỹ
u
i

)∣∣∣Nu

i=1
where gi = 1

}
. (2)

Then the keypoint localization network is retrained with a combination of labeled and pseudo-
labeled training data Dtrain.

3.3 CROSS-TRAINING STRATEGY

In this section, we introduce the cross-training strategy in our curriculum learning framework. In
a typical self-training round, the model predicts noisy pseudo-labels which are used in subsequent
training stages. Since the pseudo-label prediction is performed on a dataset of known data (on
which training is performed), the noise accumulates in a positive feedback loop. This causes the
long-standing issue of confirmation bias (Tarvainen & Valpola, 2017). To mitigate this problem, we
propose the cross-training strategy. Specifically, we randomly partition the unlabeled data Du into
two complementary subsets D(1)

u and D(2)
u . The partition is fixed across all the training rounds. The

self-training conducts alternatively for D(1)
u and D(2)

u . For r = {1, . . . , R}, when r is odd, we use a
combination of D̃(1)

u and Dl to train the model, and the trained model predicts pseudo-labels for the
next round on D(2)

u . When r is even, we use a combination of D̃(2)
u and Dl to train the model, and

perform pseudo-label prediction on D(1)
u . Before each round, the model parameters are re-initialized

with random weights following Cascante-Bonilla et al. (2021) to avoid noise accumulation.

3.4 CURRICULUM RESIDUAL LEARNING

Directly learning for R rounds of curriculum parameters separately can be inefficient. Considering
that the model is reinitialized and retrained in each self-training round, we assume that the optimal
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curricula for different rounds should have some similar patterns. We propose a greedy multi-step
searching algorithm. For round r, we use the searched curriculum in the previous round r − 1 as
the base curriculum to guide the searching of current curricula Γr. Inspired by ResNet (He et al.,
2016), we propose the curriculum residual learning strategy. Formally, we learn a bias term ∆Γr

around the base curriculum, i.e. Γr = (Γr−1)∗ + ∆Γr, where (Γr−1)∗ means the searched optimal
curriculum for round r − 1, and (Γ0)∗ is initialized with all zeros. We empirically find that this
strategy accelerates the model convergence speed and achieves marginally better performance. To
further reduce the search space, we choose every G epochs as an epoch group, which shares the
same threshold parameters for pseudo-labeled data selection. In total, we have NG epoch groups,
and the size of each epoch group is G. Therefore, the search space is reduced by a factor of G,
where G = 10 in our implementation.

3.5 CURRICULUM SEARCH VIA REINFORCEMENT LEARNING

Our PLACL can be formulated as an optimization problem shown in Eq. 3. In the inner-loop, we
optimize the weights ω of the keypoint localization network Θω to minimize the training loss L
(see Alg. 1). In the outer-loop, we apply proximal policy optimization (PPO2) algorithm (Schulman
et al., 2017) to search for the curriculum Γ that maximize the evaluation metric ξ (e.g. PCK) on the
validation set Dval (see Alg. 2).

max
Γ

ξ(Γ) = ξ(Θω∗(Γ);Dval), s.t. ω∗(Γ) = arg min
ω

L(Θω;Dtrain,Γ). (3)

The training consists of R rounds. In each round r, the PPO2 search process consists of T sampling
steps. In each step, M sets of parameters are sampled independently from a truncated normal dis-
tribution (Nakano et al., 2012; Fujita & Maeda, 2018), ∆Γr ∼ Ntrunc[0,1]

(
µrt , σ

2I
)
, where µrt and

σ2I are the mean and covariance (σ is fixed to 0.2 in practice). These sampled parameters are used
to construct M different training curricula for training M keypoint localization networks separately.
Then the mean of the distribution is updated by PPO2 algorithm according to the evaluation score
of the M networks.

The objective function of PPO2 is formulated in Eq. 4.

J (µr) = Eπ

[
min

(
πµr

(
∆Γrj ;µ

r, σ2I
)

πµr
t

(
∆Γrj ;µ

r
t , σ

2I
) ξ̃ (Γrj) , CLIP

(
πµr

(
∆Γrj ;µ

r, σ2I
)

πµr
t

(
∆Γrj ;µ

r
t , σ

2I
) , 1− ε, 1 + ε

)
ξ̃
(
Γrj
))]

,

(4)

where the function CLIP(x, 1 − ε, 1 + ε) clips x to be no more than 1 + ε and no less than 1 − ε.
Following the common practice (Li et al., 2021a), the mean reward is subtracted for better conver-
gence. ξ̃

(
Γrj
)

= ξ
(
Γrj
)
− 1

M

∑M
j=1 ξ

(
Γrj
)

and the policy πµr is defined as the probability density
function (PDF) of the truncated normal distribution. PPO2 enforces the probability ratio between
old and new policies πµr

(
∆Γrj ;µ

r, σ2I
)
/πµr

t

(
∆Γrj ;µ

r
t , σ

2I
)

to stay within a small interval to
control the size of each policy update. We then compute the gradients and update the parameters by
µrt+1 ← µrt + α∇µrJ (µr) with a learning rate of α > 0. After T sampling steps, we choose µrt
with the highest average evaluation score as (Γr)∗. And (Γr)∗ is used as the base curriculum for the
next round. And after R rounds, our final optimal curriculum is obtained, Γ∗ = [(Γ1)∗, . . . , (ΓR)∗].

Training details In the training phase, the keypoint localization network and the curriculum search
policy are simultaneously optimized. For the outer-loop, the PPO2 (Schulman et al., 2017) search
procedure is conducted for T = 16 sampling steps, and in each step M = 8 sets of parameters (cur-
riculum) are sampled. The clipping threshold is ε = 0.2, and µrt+1 is updated with the learning rate
of α = 0.2. We empirically use R = 6 self-training rounds, and group size G = 10 for curriculum
search. For the inner-loop, we follow the common practice (Sun et al., 2019; Contributors, 2020) to
train the keypoint localization network with Mean-Squared Error (MSE) loss for N = 210 epochs
per round. Adam (Kingma & Ba, 2015) with a learning rate of 0.001 is adopted. We reduce the
learning rate by a factor of 10 at the 170-th and 200-th epochs. Although the RL search process in-
creases the training complexity, the total training cost is not too high (only 1.5 days with 32 NVIDIA
Tesla V100 GPUs). More detailed training settings for each task are provided in §4.2 and §4.3.
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Table 1: Keypoint localization with different percentage of labeled images. We report mean and
standard deviation from three runs for different randomly sampled labeled subsets. Pseudo-labeling
(PL) based methods are not evaluated for 100% of labeled data because there is no unlabeled data
to generate pseudo-labels for. The results marked with ‘*’ are from (Moskvyak et al., 2020).

Percentage of labeled images
Method 5% 10% 20% 50% 100%

Dataset 1: LSPET
HRNet∗ (Sun et al., 2019) 40.19±1.46 45.17±1.15 55.22±1.41 62.61±1.25 72.12±0.30
ELT∗ (Honari et al., 2018) 41.77±1.56 47.22±0.91 57.34±0.94 66.81±0.62 72.22±0.13
Gen∗ (Jakab et al., 2018) 61.01±1.41 67.75±1.00 68.80±0.91 69.70±0.77 72.25±0.55
SSKL∗ (Moskvyak et al., 2020) 66.98±0.94 69.56±0.66 71.85±0.33 72.59±0.56 74.29±0.21
PL∗ (Radosavovic et al., 2018) 37.36±1.89 42.05±1.68 48.86±1.23 64.45±0.96 -
CL (Cascante-Bonilla et al., 2021) 61.27±1.54 65.43±1.19 69.14±0.93 70.29±1.18 -
PLACL (Ours) 70.76±1.47 71.91±1.15 72.30±0.88 72.73±1.23 -

Dataset 2: MPII
HRNet∗ (Sun et al., 2019) 66.22±1.60 69.18±1.03 71.83±0.87 75.73±0.35 81.11±0.15
ELT∗ (Honari et al., 2018) 68.27±0.64 71.03±0.46 72.37±0.58 77.75±0.31 81.01±0.15
Gen∗ (Jakab et al., 2018) 71.59±1.12 72.63±0.62 74.95±0.32 79.86±0.19 80.92±0.32
SSKL∗ (Moskvyak et al., 2020) 74.15±0.83 76.56±0.48 78.46±0.36 80.75±0.32 82.12±0.14
PL∗ (Radosavovic et al., 2018) 62.44±1.75 64.78±1.44 69.35±1.11 77.43±0.48 -
CL (Cascante-Bonilla et al., 2021) 72.03±1.56 73.15±0.95 75.80±0.92 77.49±0.35 -
PLACL (Ours) 77.83±1.41 78.36±0.92 79.68±0.72 80.81±0.24 -

Dataset 3: CUB-200-2011
HRNet∗ (Sun et al., 2019) 85.77±0.38 88.62±0.14 90.18±0.22 92.60±0.28 93.62±0.13
ELT∗ (Honari et al., 2018) 86.54±0.34 89.48±0.25 90.86±0.13 92.26±0.06 93.77±0.18
Gen∗ (Jakab et al., 2018) 88.37±0.40 90.38±0.22 91.31±0.21 92.79±0.14 93.62±0.25
SSKL∗ (Moskvyak et al., 2020) 91.11±0.33 91.47±0.36 92.36±0.30 92.80±0.24 93.81 ±0.13
PL∗ (Radosavovic et al., 2018) 86.31±0.45 89.51±0.32 90.88±0.28 92.78±0.27 -
CL (Cascante-Bonilla et al., 2021) 91.46±0.41 92.35±0.34 92.74±0.27 92.97±0.21 -
PLACL (Ours) 93.01±0.33 93.28±0.29 93.45±0.25 93.84±0.18 -

Dataset 4: ATRW
HRNet∗ (Sun et al., 2019) 69.22±0.87 77.55±0.84 86.41±0.45 92.17±0.18 94.44±0.10
ELT∗ (Honari et al., 2018) 74.53±1.24 80.35±0.96 87.98±0.47 92.80±0.21 94.75±0.14
Gen∗ (Jakab et al., 2018) 89.54±0.57 90.48±0.49 91.16±0.13 92.27±0.24 94.80±0.13
SSKL∗ (Moskvyak et al., 2020) 92.57±0.64 94.29±0.66 94.49±0.36 94.63±0.18 95.31±0.12
PL∗ (Radosavovic et al., 2018) 67.97±1.07 75.26±0.74 84.69±0.57 92.15±0.24 -
CL (Cascante-Bonilla et al., 2021) 87.01±1.08 89.13±0.94 92.34±0.51 93.57±0.26 -
PLACL (Ours) 94.37±0.86 94.59±0.80 94.85±0.48 95.01±0.17 -

Dataset 5: MS-COCO’2017
HRNet (Sun et al., 2019) 62.44±1.26 66.02±1.07 69.62±0.84 72.81±0.73 74.61±0.58
CL (Cascante-Bonilla et al., 2021) 64.47±1.18 67.82±0.95 70.36±0.89 72.92±0.84
PLACL (Ours) 69.39±1.03 70.11±0.89 71.84±0.66 73.42±0.57 -

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Datasets: To show the versatility of PLACL, we conduct experiments on 5 diverse datasets.
LSPET (Leeds Sports Pose Extended Dataset) (Johnson & Everingham, 2010; 2011) consists of im-
ages of people doing sports activities. We use 10,000 images from (Johnson & Everingham, 2011)
for training and 2,000 images from (Johnson & Everingham, 2010) for validation and testing. MPII
Human Pose dataset (Andriluka et al., 2014) is a well-known benchmark for human pose estimation.
The images are collected from YouTube videos, showing people doing daily human activities. We
follow (Moskvyak et al., 2020) to use 10,000 random images from MPII train for training, 3,311
images from MPII train for validation and MPII val for evaluation. CUB-200-2011 (Caltech-
UCSD Birds-200-2011) (Welinder et al., 2010) dataset is a well-known dataset for SSL. It consists
of 200 fine-grained bird species with 15 keypoint annotations. We follow (Moskvyak et al., 2020) to
split dataset into training (100 categories with 5,864 images), validation (50 categories with 2,958
images) and testing (50 categories with 2,966 images). ATRW (Li et al., 2019c) dataset contains
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images of 92 Amur tigers captured from multiple wild zoos in challenging and unconstrained con-
ditions. For each tiger, 15 body keypoints are annotated. The dataset consists of 3,610 images for
training, 516 for validation, and 1,033 for testing. MS-COCO’2017 (Lin et al., 2014) is a popular
large-scale benchmark for human pose estimation, which contains over 150,000 annotated people.
We randomly select 500 images from COCO train for validation, the remaining training set (115k
images) for training, and COCO val (5k images) for evaluation. We use this dataset to validate the
applicability of our approach on large-scale data. AnimalPose (Cao et al., 2019) dataset contains
5,517 instances of five animal categories: dog, cat, horse, sheep, and cow. It consists of 2,798 im-
ages for training, and the 810 images for validation and 1,000 images for testing. We use it to test
the generalization and domain-transfer capacity of our proposed method.

Evaluation Metrics: PCK (Probability of Correct Keypoint): A detected keypoint is considered
correct if the distance between the predicted and true keypoint is within a certain threshold (αl),
where α is a constant and l is the longest side of the bounding box. We adopt PCK@0.1 (α = 0.1)
for LSPET (Johnson & Everingham, 2011), CUB-200-2011 (Welinder et al., 2010), and ATRW (Li
et al., 2019c) datasets. PCKh is adapted from PCK, where l is the head size that corresponds
to 60% of the diagonal length of the ground-truth head box. We adopt PCKh@0.5 (α = 0.5) for
MPII (Andriluka et al., 2014) dataset. Standard AP (Average Precision) is another commonly used
evaluation metric. It is based on object keypoint similarity (OKS), which measures the distance
between predicted keypoints and ground-truth keypoints normalized by the scale of the object. We
use mAP for AnimalPose (Cao et al., 2019) datasets.

4.2 COMPARISONS WITH THE STATE-OF-THE-ART SSL APPROACHES

In Table 1, we compare with the supervised baseline (HRNet (Sun et al., 2019)) and other state-
of-the-art SSL approaches. We experiment with different percentages of labeled images (5%, 10%,
20%, 50%, and 100%). For fair comparisons, all results are obtained using HRNet-w32 backbone
with the input size of 256× 256. We follow (Moskvyak et al., 2020) to prepare datasets and exclude
half body transforms, and testing tricks (post-processing, and flip testing).

Comparisons with consistency regularization methods. ELT (Honari et al., 2018) (equivariant
landmark transformation) loss encourages the model to output keypoints that are equivariant to in-
put transformations. Gen (Jakab et al., 2018) learns to extract geometry-related features through
conditional image generation. SSKL (Moskvyak et al., 2020) learns the pose invariant keypoint
representations with semantic keypoint consistency constraints. These consistency regularization
methods have shown superior results over the supervised baseline, however, they are inferior to our
PLACL method on all datasets and different percentages of labeled samples. Especially we show that
PLACL is mostly effective for low data regimes. For example, in CUB-200-2011 dataset, PLACL
with only 5% labeled data achieves better performance (93.01 vs 92.80) than SSKL with 50% la-
beled data. And in LSPET dataset, we show that PLACL improves the performance of baseline by
a large margin from 40.19 to 70.76 with 5% labeled images.

Comparisons with pseudo-labeling method. We also compare with a pseudo-labeling (PL) base-
line (Radosavovic et al., 2018). Overall PLACL significantly outperforms the PL baseline on all
datasets. As pointed out by Moskvyak et al. (2020), the vanilla PL approach does not perform well
for the keypoint localization task with a low data regime, due to the lack of an effective pseudo-
label selection scheme. Instead, PLACL is able to automatically select high-quality pseudo-labeled
samples, which is the key to the success of pseudo-labeling based methods.

Comparisons with curriculum-learning method. Curriculum Labeling (CL) (Cascante-Bonilla
et al., 2021) is a recently proposed approach that applies a hand-crafted curriculum to facilitate
training of SSL. We observe that our proposed PLACL significantly outperforms CL, which vali-
dates the effectiveness of our proposed automatic curriculum learning.

Experiments on large-scale datasets. Inspired by Zhou et al. (2020), in order to decrease the RL
curriculum search cost for the large-scale MS-COCO (Lin et al., 2014) and full MPII (Andriluka
et al., 2014) datasets, we use a light proxy task with reduced number of training samples (5k) for RL
curriculum search. After the search procedure, we re-train the keypoint networks with the searched
curriculum on the full training set and evaluate them on the test set. Please refer to A.4 for more
analysis about proxy tasks and A.5 for experiments on the full MPII (Andriluka et al., 2014) dataset.
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Figure 2: (a) Accuracy on different datasets (5% labeled data) with various rounds (R). (b) Com-
parisons with different fixed thresholds (blue dots) and different group sizes G. Experiments are
conducted on LSPET dataset (5% labeled data).

4.3 EVALUATION OF GENERALIZATION CAPACITY

Generalization to different domains. We investigate the generalization ability of our proposed
model on domain transfer. To this end, we conduct experiments on AnimalPose (Cao et al., 2019)
dataset in Table 2. Specifically, we follow (Cao et al., 2019) to choose one animal class (e.g. cat) as
the target domain and the remaining four classes for the source domain. The images of the source do-
main are fully annotated, while the images of the target domain are unlabeled. For fair comparisons,
we adopt the AlphaPose model (Fang et al., 2017), which uses ResNet-101 (Xiao et al., 2018) as
the backbone. All models are trained with the pose-labeled human dataset involved. The AlphaPose
baseline model is pre-trained on the human dataset and fine-tuned on the labeled source animal data.
For pseudo-labeling based approaches (Inoue et al., 2018; Cao et al., 2019), the unlabeled target an-
imal data is used for pseudo-labeling. For domain adaptation approaches (Tzeng et al., 2015; Long
et al., 2016), the unlabeled target data is used for domain transfer. Please refer to Cao et al. (2019)
for details about the compared approaches. We observe that our proposed approach consistently
outperforms the previous state-of-the-art methods on cross-domain semi-supervised learning.

Table 2: Dataset 6: AnimalPose. Evaluation of generalization capacity to the target unseen animal
class. All results are obtained using the AlphaPose model (Fang et al., 2017) with ResNet-101 (He
et al., 2016) as the backbone. Results marked with ‘*’ are from Cao et al. (2019).

mAP for each class
Method cat dog sheep cow horse
AlphaPose Baseline∗ (Fang et al., 2017) 37.6 37.3 49.4 50.3 47.9
Dom Confusion∗ (Tzeng et al., 2015) 38.0 37.7 49.5 50.6 48.5
Residual Transfer∗ (Long et al., 2016) 37.8 38.2 49.1 50.8 48.6
CycleGAN+PL∗ (Inoue et al., 2018) 35.9 36.7 48.0 50.1 48.1
WS-CDA+PPLO∗ (Cao et al., 2019) 42.3 41.0 54.7 57.3 53.1
PLACL (Ours) 47.1 42.9 59.5 58.4 66.0

4.4 ANALYSIS

Number of self-training rounds. Along with the increasing of self-training rounds (R), the quality
of the pseudo-labels gradually improves (see Fig. 3) and the test accuracy increases (see Fig. 2a)
until saturation. The experiments are conducted on multiple datasets with 5% labeled data. Interest-
ingly, different datasets require a different number of rounds to achieve optimal, because four-legged
animals (ATRW (Li et al., 2019c)) have more pose variations than birds (CUB-200-2011 (Welinder
et al., 2010)). We use R = 6, because further increasing R does not bring significant gains.
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Comparisons with pseudo-labeling with different fixed thresholds. As shown in Fig. 2b, we
compare our PLACL with 10 static thresholds from 0.0 to 0.9. We observe that PLACL clearly
outperforms all these fixed threshold alternatives. Moreover, we find that the accuracy will be sig-
nificantly affected by different thresholds (61.01% PCK for γ = 0.0 vs 67.35% PCK for γ = 0.7).

Choice of epoch group size. In Fig. 2b, we also compare the performance of different epoch group
sizes (G). We empirically find that smaller G will produce better performance, but at the cost of
increased search space. We choose G = 10 to trade-off between accuracy and efficiency.

4.5 ABLATION STUDIES

In Table 3, we present ablation studies to measure the contribution of each component. All ablative
experiments are conducted on LSPET (Johnson & Everingham, 2011) dataset with 5% labeled data.
PCK@0.1 is adopted as the evaluation metric.

Effect of cross-training strategy. We find that without cross-training strategy the accuracy signif-
icantly drops from 70.76 to 67.13, due to noise accumulation over time. Especially, we find that
there is little to no improvement after the first self-training round.

Effect of curriculum learning. We compare PLACL with the alternative that only searches for a
fixed threshold via RL. We find that using dynamic thresholds improves upon the fixed-threshold
alternative by a large margin, which validates the effectiveness of curriculum learning.

Effect of parameter search. We compare PPO2 (Schulman et al., 2017) search with Random
Search (w/o PPO2 search). We randomly sampled T ×M curricula and pick out the best one for
comparisons. PPO2 search obtains much better performance (70.76 vs 65.42). This indicates that
the searching problem is non-trivial and that our searching algorithm is very effective.

We also compare with manually designed curricula whose thresholds are gradually decreasing on
the epoch level. We tried five curricula with different decrease slopes and reported the best one
as Manually Design. We observe that PLACL significantly outperforms the manually-designed
curriculum baseline which validates the effectiveness of automatic curriculum search.

Table 3: Ablation studies on LSPET dataset with 5% labeled data.

Method PCK@0.1
PLACL, w/o cross-training strategy 67.13
PLACL, w/o curriculum learning 68.51
PLACL, w/o PPO2 search (Random Search) 65.42
PLACL, w/o PPO2 search (Manually Design) 65.71
PLACL, full method 70.76

5 CONCLUSIONS

We propose a novel Pseudo-labeled Auto-Curriculum Learning (PLACL) for the task of semi-
supervised keypoint localization. We propose to learn a curriculum to automatically select reliable
pseudo-labels and propose cross-training strategy to mitigate the confirmation bias problem. Ex-
tensive experiments on 6 diverse datasets validate the effectiveness and versatility of the proposed
method. We believe that our proposed approach is generic and we plan to investigate the applicabil-
ity of PLACL on other visual tasks, such as object detection and semantic segmentation.
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Ping Luo is supported by the General Research Fund of HK No.27208720 and 17212120. Wanli
Ouyang was supported by the Australian Research Council Grant DP200103223, FT210100228,
and Australian Medical Research Future Fund MRFAI000085.

9



Published as a conference paper at ICLR 2022

REFERENCES

Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human pose estimation: New
benchmark and state of the art analysis. In IEEE Conf. Comput. Vis. Pattern Recog., 2014. 2, 6, 7, 16

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architectures using
reinforcement learning. Int. Conf. Learn. Represent., 2017. 3
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A APPENDIX

A.1 PSEUDO-CODE FOR PLACL ALGORITHM

Here we present the pseudo-code for the proposed Pseudo-Labeled Auto-Curriculum Learning
(PLACL) algorithm. In PLACL, the keypoint localization network and the curriculum policy are
jointly optimized. In the inner-loop, we optimize the keypoint localization network as shown in
Algorithm 1. In the outer-loop, the curriculum policy is updated according to the performance of
the keypoint localization network, as shown in Algorithm 2.

Algorithm 1: Inner-loop network training
Input:

1. Labeled data Dl, pseudo-labeled data D̃u.
2. Number of training groups per round NG;
3. Curriculum Γ;

Output: Obtained optimal network weights ω∗(Γ).

Random initialization of network weights ;
for g = 1 to NG do

Update current threshold γg = Γ[g] ;
Compute data selection vector g (Eq. 1) ;
Construct the training set Dtrain (Eq. 2) ;
Update network weights ω via back-propagation;

return ω∗(Γ) ;

Algorithm 2: Pseudo-Labeled Auto-Curriculum Learning (PLACL)
Input:

1. Labeled data Dl, unlabeled data Du.
2. Initialized distribution µ and σ2.
3. Number of rounds R.
3. Searching steps T ; Sampling number M .
4. Evaluation metric (e.g. PCK@0.1) ξ.

Output: Obtained the optimal curriculum Γ∗ and the final network Θω∗ .

Initialize (Γ0)∗ with all zeros.
Pre-train keypoint localization network Θ0

ω using labeled data Dl.
for r = 1 to R do

if r%2 == 1 then
Predict keypoint pseudo-labels D̃(1)

u with Θr−1
ω∗ ;

D̃u = D̃(1)
u

else
Predict keypoint pseudo-labels D̃(2)

u with Θr−1
ω∗ ;

D̃u = D̃(2)
u

for t = 1 to T do
for j = 1 to M do

Sample parameter ∆Γrj,t ∼ Ntrunc [0,1]

(
µrt , σ

2I
)

;
Γrj,t = ∆Γrj,t + (Γr−1)∗ ;
Get Θr

ω∗,j,t via inner-loop network training using Γrj,t (Alg. 1) ;
Compute the evaluation metric ξ

(
Γrj,t
)

= ξ(Θr
ω∗,j,t;Dval) ;

Compute the objective function J (µ) (Eq. 4);
Update µrt+1 ← µrt + α∇µrJ (µr) ;

(Γr)∗ = arg maxµr
t

∑M
j=1 ξ

(
Γrj,t
)
,∀t = 1, . . . , T ;

Get Θr
ω∗ via network training using (Γr)∗ (Alg. 1) ;

return Γ∗ = [(Γ1)∗, . . . , (ΓR)∗] and ΘR
ω∗ ;
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A.2 VISUALIZATION OF PSEUDO-LABELED SAMPLES

In order to provide a better illustration of how pseudo-labels evolve in self-training rounds, we
visualize some pseudo-labeled samples for different datasets. We observe that the quality of pseudo-
labels gradually improves with the increase of the self-training rounds.

Round 0 Round 1 Round 2 Round 3 Round 4

Figure 3: Visualization of how pseudo-labels evolve in self-training rounds.

A.3 GENERALIZATION TO DIFFERENT KEYPOINT LOCALIZATION MODELS.

Table 4 shows the improvement when PLACL is applied to the recent state-of-the-art keypoint local-
ization models which vary in model architectures and training/testing techniques. The experiments
are conducted on LSPET dataset with 5% labeled images and 95% unlabeled images. We show that
PLACL consistently improves the performance of the state-of-the-art approaches by a large margin.
PLACL does not require any knowledge of the keypoint localization models, making it easy to use
in practice.

Table 4: Performance improvement of different keypoint localization methods by PLACL. Experi-
ments are conducted on CUB-200-2011 dataset (5% labeled data) with PCK@0.1 as the metric.

Method Backbone w/o PLACL w/ PLACL
SimpleBaseline (Xiao et al., 2018) ResNet-50 79.16 93.51
SimpleBaseline (Xiao et al., 2018) ResNet-101 81.34 93.66
SimpleBaseline (Xiao et al., 2018) ResNet-152 86.15 94.27
HRNet (Sun et al., 2019) HRNet-w32 85.86 93.01
HRNet (Sun et al., 2019) HRNet-w48 85.89 94.26
DARK (Zhang et al., 2020) HRNet-w32 86.67 94.18
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A.4 ANALYSIS OF PROXY TASKS

There are a lot of methods that target at improving the searching efficiency in literature, e.g. using
reduced-training proxy tasks (input size, model size, training samples, and training epochs can be
reduced (Zhou et al., 2020)). With these techniques, we are able to get orders of magnitude less
computation cost, but can still match the performance. Therefore, we believe that the scalability is
not a problem. For example, in order to further reduce the complexity, we use a light proxy task
(with reduced training samples) for the RL search process. Specifically, we randomly select a small
proportion of the training data (e.g. 5k images) for efficient curriculum search. After the search
procedure, we re-train the keypoint networks with the searched curriculum on the full training set
and evaluate them on the test set.

As shown in Table 5, we randomly select different number of training images (5k and 10k) for
RL curriculum search. We find that reducing the number of training images by half (from 10k to
5k) does not decrease the final performance much, which validates the effect of using proxy tasks.
Such a strategy enables us to apply the proposed PLACL approach to large-scale datasets, such as
MS-COCO (Lin et al., 2014) and the full MPII (Andriluka et al., 2014) datasets.

Table 5: We randomly select different number of training images (#Images) for RL curriculum
search, and re-train the keypoint networks with the searched curriculum on the full training set.

#Images 5% 10% 20% 50% 100%
LSPET

5k 70.72±1.49 71.93±1.17 72.24±0.82 72.71±1.19 -
10k 70.76±1.47 71.91±1.15 72.30±0.88 72.73±1.23 -

MS-COCO’2017
5k 69.39±1.03 70.11±0.89 71.84±0.66 73.42±0.57 -
10k 69.24±1.02 70.12±0.87 71.61±0.63 73.43±0.61 -

A.5 EXPERIMENTS ON THE FULL MPII DATASET

As shown in Table 6, we provide the results on the full MPII (Andriluka et al., 2014) dataset.
Since the codes of SSKL (Moskvyak et al., 2020) are not publicly available, we only compare with
CL (Cascante-Bonilla et al., 2021) in the experiments. We see that our proposed PLACL consis-
tently outperforms CL, especially for low labeled data regime (5% and 10%). Note that our results
on the full MPII are obtained using reduced-training proxy tasks, i.e. we use 5K images for RL
curriculum search, and re-train the model with the obtained curriculum on the full training set.

Table 6: Comparisons with CL on the full MPII dataset.

Method 5% 10% 20% 50% 100%
Full MPII

HRNet (Sun et al., 2019) 78.00±1.35 81.89±0.94 82.94±0.67 88.34±0.45 89.76±0.17
CL (Cascante-Bonilla et al., 2021) 80.38±1.31 83.06±0.89 84.57±0.68 88.72±0.34
PLACL (Ours) 82.21±1.22 85.42±0.85 86.24±0.56 89.16±0.21 -
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