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Abstract
Consistency models exhibit superior sample
quality with few steps of sampling, even without
relying on pre-trained teacher diffusion models.
However, as the number of total discretization
steps increases, they suffer from unstable train-
ing due to large variance which leads to subop-
timal performance. It is known that this can be
mitigated by initializing their weights with pre-
trained diffusion models, which suggests the po-
tential effectiveness of adopting diffusion models
to solve the problem. Inspired by this, we intro-
duce a transformation layer termed score head,
which is trained in conjunction with consistency
model to form a larger diffusion model. Addi-
tionally updating consistency model with gradi-
ents coming from score head reduces variance
during training. We also observe that this joint
training scheme aids consistency model to learn
common low-level features acquired by diffusion
model. The sample quality improves accordingly
when measured on CIFAR-10.

1. Introduction
Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021) have emerged as a de-
facto choice for high-fidelity image generation (Dhari-
wal & Nichol, 2021; Rombach et al., 2022; Karras et al.,
2022; 2023). The superior scalability of DMs for high-
dimensional data allows their success to extend beyond
image synthesis, finding active applications in various do-
mains including point clouds, graphs, texts, and neural net-
work weights (Luo & Hu, 2021; Jo et al., 2022; Huang
et al., 2022; Li et al., 2022; Erkoç et al., 2023).

Nonetheless, for real-time applications, the potential of DM

*Equal contribution 1Kim Jaechul Graduate School of AI, Ko-
rea Advanced Institute of Science and Technology, Seoul, Repub-
lic of Korea 2AITRICS, Seoul, Republic of Korea. Correspon-
dence to: Juho Lee <juholee@kaist.ac.kr>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

is hindered by the sequential nature of its sampling process,
as it demands considerable Number of Function Evalua-
tions (NFE). Improving the ODE solvers or introducing new
distillation techniques (Dockhorn et al., 2022a; Lu et al.,
2022; Zhang & Chen, 2022; Luhman & Luhman, 2021;
Salimans & Ho, 2022) have been proposed to remedy the
issue.

Among these, Song et al. (2023) proposed Consistency
Models (CMs) that map the perturbed data at any noise
scale into the original data along the Probability Flow ODE
(PF-ODE) trajectory. That is to say, given the PF-ODE

dxt

dt
= −ts(xt, t), t ∈ [0, T ]. (1)

the CM, denoted fθ, learns to approximate the following
integration

fθ(xt, t) ≈ xt +

∫ ϵ

t

−τs(xτ , τ)dτ (2)

where s(xt, t) is the score and ϵ > 0 is a small number
to avoid numerical instability. Here, the score is obtained
either from a teacher DM in distillation scenarios, or esti-
mated using the unbiased estimator (Efron, 2011)

s(xt, t) =
E[x0 |xt]− xt

t2
(3)

upon training in isolation.

The second way, namely consistency training, is achieved
by minimizing the following objective

LCM(θ)

= E [λCM d(fθ(x0 + tnz, tn),fθ−(x0 + tn−1z, tn−1))]
(4)

where θ− = stopgrad(θ), {tn}Ni=1 are the discretization
steps, λ is the weighting function and d(x,y) is the metric
to compare between two vectors x and y. Here, the training
stability depends heavily on the total number of discretiza-
tion steps N . Setting N to be large, ideally to infinity, is
desirable as it introduces lesser bias but this severely dis-
turbs the training due to the increased variance.

Two methods are known to be effective in mitigating the
high variance problem. The first is to anneal the model by
gradually increasing N as training proceeds, and the sec-
ond is to initialize the weights of the neural network with
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Figure 1. Overall structure of the proposed method. The CM part
is trained to be a consistency model as usual, while it is also
trained as a part of a larger diffusion model together with the SH.
The output and features from CM’s U-Net is fed into SH.

that of a pre-trained teacher DM (Song et al., 2023; Song &
Dhariwal, 2024). While the former has been successfully
adopted in consistency training scenarios, the latter is lim-
ited in that it can only be applied in consistency distillation
scenarios where teacher models are available.

We aim to supplement this limitation by regularizing the
CM to be a part of a larger diffusion model. Specifically,
we introduce an additional layer called score head at the
rear of the CM, and train these two together as a whole to
be a diffusion model. Then, the training will be dominated
by gradients from DM loss in the early stages of training as
the variance of CM loss’ gradients is small, resulting in the
neural network closer to a DM. Afterwards, the gradients
from CM loss will dominate as its variance increases. The
intuition is that this will effectively bring similar results as
initializing the network with a pre-trained DM.

In this paper, we first introduce a novel aggregation of con-
sistency and diffusion models, while justifying how our
modification elucidates a connection between the ground-
truth consistency model and the score. Then, we empir-
ically demonstrate that training consistency model with
score head improves its performance. The overall structure
of our method is outlined in Figure 1.

2. Methods
2.1. Aggregating Score Head with Consistency Model

Differentiating (2) with respect to t yields the following
relationship between CM and DM (Song et al., 2023)

∂f(xt, t)

∂t
− t

∂f(xt, t)

∂xt
s(xt, t) = 0 (5)

where f(xt, t) is the ground-truth CM and s(xt, t) is the
score. As the ground-truth CM f(·, t) is invertible at t ∈
[ϵ, T ], we can express the score using the ground-truth CM.
However, in practice, as it is not guaranteed that the CM
neural network fθ(·, t) is invertible, we instead take the

pseudo-inverse of the Jacobian to approximate the inverse
Jacobian term as

sθ(xt, t) =
1

t

(
∂fθ(xt, t)

∂xt

)†
∂fθ(xt, t)

∂t
(6)

where A† denotes the pseudo-inverse of the matrix A.
Needless to say, computing (6) is highly infeasible since
the dimension of the Jacobian of CM would be extremely
large. Nevertheless, (6) still suggests that we can obtain
the score by transforming CM at a single instance of the
input (xt, t).

We therefore introduce a transformation layer hϕ that
transforms CM into DM.

hϕ ◦ fθ(xt, t) ≈ E[x0 |xt] (7)

In other words, hϕ ◦ fθ as a whole is trained to approxi-
mate the denoiser while fθ alone still learns to be CM on
its own. The particular choice of parametrizing the neural
network to predict the denoiser was adopted from Karras
et al. (2022), as it is known to improve the performance by
maintaining the variance of neural network outputs within
a narrow scale. An approximation of the score sθ,ϕ can
then be obtained using Tweedie’s formula (3).

sθ,ϕ(xt, t) =
hϕ ◦ fθ(xt, t)− xt

t2
(8)

Along with CM inputs xt and t, hϕ receives features
Fθ(xt, t) produced from the CM neural network as its in-
puts.

hϕ ◦ fθ(xt, t) = hϕ(xt, t,Fθ(xt, t)). (9)

Specifically, Fθ(xt, t) include (i) stopgrad of the CM
output stopgrad(fθ(xt, t)), (ii) timestep embedding of
CM and (iii) features from the last ResNet block of CM’s U-
Net. Such a configuration was largely adopted from Dock-
horn et al. (2022b), where they proposed to distill an ad-
ditional head from the pre-trained diffusion model to ap-
proximate higher-order gradients of the score. Utilizing
the features of neural networks for other downstream tasks
has also been widely adopted in the diffusion model litera-
ture (Baranchuk et al., 2021; Luo et al., 2023). We refer to
the proposed transformation layer as Score Head (SH).

2.2. Jointly Training CM and SH

CM and SH are jointly trained to minimize the following
loss

L(θ, ϕ) = LCM(θ) + LSH(θ, ϕ) (10)

where LCM(θ) is as defined in (4),

LSH(θ, ϕ) = E
[
λSH ∥hϕ(xt, t,Fθ(xt, t))− x0∥22

]
(11)
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Algorithm 1 Jointly Training CM and SH

Require: Initial CM parameters θ and SH parameters ϕ,
learning rates η1 and η2, total number of discretization
steps N(·), noise schedule distribution P , metric d(·, ·),
weighting functions λCM and λSH.
k ← 0
repeat

Sample x0 ∼ pdata, z ∼ N (0, I), n ∼ P[1, N(k)]
xtn ← x0 + tnz
xtn−1 ← x0 + tn−1z
θ− ← stopgrad(θ)

LCM(θ)← λCM d(fθ(xtn , tn),fθ−(xtn−1
, tn−1))

x̂← stopgrad(fθ(xtn , tn))
Fθ(xtn , tn)←

{
x̂, timestep embedding,
last U-Net block output

}
LSH(θ, ϕ)← λSH ∥hϕ(xtn , tn,Fθ(xtn , tn))− x0∥22

L(θ, ϕ)← LCM(θ)+LSH(θ, ϕ)

(θ, ϕ)←
(
θ − η1

∂L(θ,ϕ)
∂θ , ϕ− η2

∂L(θ,ϕ)
∂ϕ

)
k ← k + 1

until θ, ϕ are converged

is the denoising score matching objective and λSH is a
weighting function. Note that minimizing the LSH will up-
date not only SH but also CM, as the gradients from SH flow
through Fθ(x, t). However, as the gradients directly affect
the CM output fθ(x, t) we observe that it is severely dam-
aged occasionally, and thus the stopgrad operation is
taken before being fed into SH. The overall training scheme
is depicted in Algorithm 1.

We conjecture that initializing the weights of CM with
a pre-trained DM is effective because both models might
share similar low-level features. Given some hints on how
to synthesize the denoised images, CMs would more con-
cretely be able to learn the remaining parts. Based on this,
we further suppose that the proposed joint training scheme,
i.e., training the CM to be a part of a larger DM, benefits
CM to more easily learn the common low-level features be-
tween CM and DM. As this is achieved by incorporating an
additional denoising score matching objective LSH on CM,
we refer to it as score guidance. We observe that the out-
puts of CM trained in this manner align more closely with
ground-truth denoiser, as shown in § 3.

3. Experiments
For the subsequent experiments, we largely employed im-
plementation details from iCT (Song & Dhariwal, 2024)
and used our re-implementation of the model upon train-

Table 1. FID scores of various score-based generative models
measured on CIFAR-10. The rows marked with * represent our
re-implementation.

Method NFE FID (↓) IS (↑)
Diffusion-based

DDPM (Ho et al., 2020) 1000 3.17 9.46
DDIM (Song et al., 2020) 50 4.67 -
EDM (Karras et al., 2022) 35 2.01 -

Distillation-based
KD (Luhman & Luhman, 2021) 1 9.36 -
PD (Salimans & Ho, 2022) 1 9.12 -
PD (Salimans & Ho, 2022) 2 4.51 -
CD (Song et al., 2023) 1 3.55 9.48
CD (Song et al., 2023) 2 2.93 9.75

Consistency Models
CT (Song et al., 2023) 1 8.70 8.49
CT (Song et al., 2023) 2 5.83 8.85
iCT (Song & Dhariwal, 2024) 1 2.83 9.54
iCT (Song & Dhariwal, 2024) 2 2.46 9.80

Ours
iCT* 1 3.55 9.50
iCT* 2 2.84 9.65
iCT (+ SH) (Ours) 1 3.37 9.53
iCT (+ SH) (Ours) 2 2.79 9.74

ing CMs, as the official code is unavailable at the time of
writing. For SH, we adopted the U-Net architecture of VP-
EDM (Karras et al., 2022), but with fewer parameters by
reducing the number of ResNet blocks from 4 to 1. Further
details are available in Appendix B.

3.1. Increased Training Stability of CM

We measured L2 norm of the gradients of CM trained with
and without score guidance, as shown in the left-hand side
of Figure 2. As the total number of discretization steps
doubles every 50,000 training steps, the gradient norm also
jumps suddenly every 50,000 steps. We thus calculated the
variance of measured gradient norms for each interval of
50,000 training steps accordingly.

As the training progresses, the variance of CM trained with
score guidance goes lower than that of vanilla iCT, which
indicates a more stable training. This further leads to a
more improved sample quality, i.e., a lower FID score,
demonstrating the superiority of score guidance in reduc-
ing the variance in the later stages of training.

3.2. Alignment of CM and SH

To verify that score guidance leads CM to learn common
low-level features between CM and DM, we evaluated the
cosine similarity between the outputs from jointly trained
CM and SH given the same inputs, across different noise
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Figure 2. (Left) The gradient norm of CM (dimmed) and its variance (vivid) over the training. The variance is measured for every interval
of 50,000 steps. Jointly training SH reduces the variance of the gradient norm in later stages of training. (Right) Evolution of FID scores
during training with CIFAR-10. Our joint training scheme excels the baseline after 200,000 steps.

Figure 3. (Left) Cosine similarity between the output of SH and (i) the output of CM jointly trained with SH, (ii) the output of a separately
trained iCT. (Right) The difference of the two plots shown on the left. Cosine similarity between the jointly trained CM and SH is higher
across almost all noise scales, suggesting that SH indeed guides CM to learn similar low-level features with that of a DM.

scales. Compared to the cosine similarity between the
outputs of CM trained separately, CM trained with score
guidance show higher correlations with the outputs of SH.
This supports our hypothesis that score guidance might as-
sist CM to learn the common low-level features of a DM,
thereby leading to improved sample quality.

3.3. Quantitative Results

As shown in Table 1, the proposed method achieves FID
scores of 3.37 with one-step generation and 2.79 with two-
step generation on the unconditional CIFAR-10 genera-
tion task, which outperforms our re-implemented iCT that
achieved FID scores of 3.55 and 2.84 for one-step and two-
step generation respectively. As we were not able to re-
produce iCT, this falls short of the reported FID scores of
2.83 and 2.46. Nonetheless, we still expect that applying
our method to the original iCT implementation will further
enhance performance.

4. Conclusion
In this paper, we proposed a novel method to stabilize the
training of Consistency Model (CM) and improve the sam-
ple quality. Specifically, we introduced an additional layer
called the Score Head (SH), which takes the CM’s output
and features as its inputs to approximate the score. In addi-
tion to minimizing the CM loss, our method also leverages
the gradients of denoising score matching objective coming
from SH to train CM. We also demonstrated that SH guides
CM to learn common low-level features between CM and
DM by observing that the output of CM and SH are highly
correlated. Experiment results show that score guidance re-
duces the variance of CM during training, thereby stabiliz-
ing the training process and improving the sample quality
when measured on CIFAR-10.
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A. Related Works
Links between CM and score The keen relationship between CM and score, e.g. (5) which is our primary motivation for
the proposed method, can be viewed as a consequence of the consistency property of the score. Daras et al. (2023) demon-
strated the consistency property of the score and aimed to enhance the sample quality of diffusion models by incorporating
an additional regularization to the denoising score matching objective. Lai et al. (2023b) pointed out that satisfying the
consistency property is equivalent to fulfilling score-FPE (Lai et al., 2023a), and that training consistency models can be
viewed as enforcing the consistency property along PF-ODE. We note that following the derivation of the PDE in Daras
et al. (2023), i.e., the PDE that denoiser should satisfy, for the case of PF-ODE yields (5).

Guidance on score-based model Improving diffusion models with guidance of auxiliary metrics have been widely
considered since the emergence of score-based generative models (Song et al., 2021). Inspired by the success of class-
conditional Generative Adversarial Network (GAN)s, Dhariwal & Nichol (2021) proposed classifier guidance that guides
the sampling process towards arbitrary class labels. However, as introducing an additional classifier over noisy data com-
plicates the training procedure, Ho (2022) introduced the classifier-free guidance that directly mixes the gradients of
conditional and unconditional diffusion models. Kim et al. (2023) improved the performance of the diffusion model with
discriminator guidance based on the adversarial loss widely covered in the GAN literature. Finally, benefitting from the
recent success of large language models, guidance of diffusion model with language models such as CLIP (Nichol et al.,
2022) has also been suggested. Guiding CM still remain largely unexplored as they are rather nascent. Yet, Kim et al.
(2024) proposed consistency trajectory model (CTM) that naturally includes consistency and diffusion models as its special
cases, and showed that incorporating denoising loss upon training CTM indeed leads to improved performance. However,
CTM is more complicated than CM as it requires two timesteps as its inputs and relies on adversarial training. To the best
of our knowledge, this is the first work that demonstrated the effect of guiding CM without altering its original structure.

B. Experimental Details
Training environment The experiments are conducted on the environment of TPU v3-8 and TPU v4-8. The model
architecture and training scheme are implemented with JAX 0.4.20, Flax 0.8.3, and Optax 0.2.2.

Architecture of CM For CIFAR-10, we re-implemented the CM architecture based on iCT (Song & Dhariwal, 2024),
conducting experiments with slightly modified of the hyperparameters. Specifically, we use the value of c in the pseudo-
Huber loss (Charbonnier et al., 1997) as 0.003 instead of 0.03. See Appendix C for more details.

Architecture of SH For the SH model architecture, we slightly modified the EDM-preconditioned VP architecture imple-
mented in EDM (Karras et al., 2022): we reduced the number of ResNet blocks for each resolution to 1. Additionally, for
the SH, we designed the architecture to apply normalization (Wu & He, 2018) to the last layer embedding of CM used in SH
training for training stabilization. Subsequently, we concatenated the perturbed data, outputs of CM, and last layer embed-
ding of CM, and utilized the composite of these three tensors for training. With these settings, the number of parameters of
SH is 26M which is less than half the number of parameters compared to CM(56M). Given that the size of the score head
is smaller than that used in previous EDM studies, the overfitting problem will not be a problem for training SH, so we set
the dropout probability for the score head to 0%.

Training For training, we used the RAdam optimizer with a learning rate of 1 × 10−4 for both CM and SH. We used
pseudo-Huber loss as the consistency model loss, LCM. The training batch size was set to 1024 and training was carried
out for 400k iterations. The paramters of CM and SH are updated simultaneously within each training iteration. For λCM,
total number of discretization steps N and noise schedule P , we followed (Song & Dhariwal, 2024). λSH was set to 0.3.

Evaluation FID scores (Heusel et al., 2017) and Inception scores (Salimans et al., 2016) were measured with 50,000
samples for both one-step and two-step generation tasks.
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C. Additional Experiments
C.1. Ablation Studies

We aimed to find optimal hyperparameters and experimental settings for the proposed method using CIFAR-10 dataset
(Krizhevsky, 2009) with a reduced batch size of 512. Experiments were conducted with varying the values of λSH in the
range of {1, 0.3, 0.1, 0.05}. After determining the λSH, we determined the c value in the Pseudo-Huber loss

LCM(θ) = λCM (((fθ(xtn , tn)− fθ−(xtn−1
, tn−1))

⊗2 + c2)⊗
1
2 − c) (12)

in the range of {0.03, 0.01, 0.003, 0.0003}. ⊗p denotes the element-wise power to p.

Experiment results are illustrated in Figure 4, which show that λSH = 0.3 and c = 0.003 are the most optimal choice.

Figure 4. Ablation studies on hyperparameters. (Left) Sample quality over varying λSH, (Right) Sample quality over varying c. FID
scores were calculated using 10,000 samples.
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D. Additional Samples

Figure 5. Uncurated generated images on CIFAR-10. (Top) One-step generation. (Bottom) Two-step generation.
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