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ABSTRACT

Modern neural networks are able to perform at least as well as humans in numerous tasks involving
object classification and image generation. However, small perturbations which are imperceptible
to humans may significantly degrade the performance of well-trained deep neural networks. We
provide a Distributionally Robust Optimization (DRO) framework which integrates human-based
image quality assessment methods to design optimal attacks that are imperceptible to humans but
significantly damaging to deep neural networks. Our attack algorithm can generate better-quality
(less perceptible to humans) attacks than other state-of-the-art human imperceptible attack methods.
We provide an algorithmic implementation of independent interest which can speed up DRO train-
ing significantly. Finally, we demonstrate how DRO training using our optimally designed human
imperceptible attacks can improve group fairness in image classification while maintaining a similar
accuracy level.

1 INTRODUCTION

Deep learning models are making strides into our daily life with tremendous successes in diverse areas of applications,
such as self-driving cars and face recognition. However, we still lack fundamental understanding in how deep neural
networks (DNNs) perceive and process information. One behavior of DNNs that we do not fully understand is how
they are impacted by adversarial attacks. The potential implication of these attacks involve threats in, for instance,
safety and fairness. A formal definition of adversarial attacks on image classification (Moosavi-Dezfooli et al., 2016)
is the following. Given the classifier f , an image x, and a cost function c on the image space, an optimal adversarial
attack solves δ that can change the model’s classification results with the smallest budget:

min
δ
c(x,x+ δ), with f(x+ δ) 6= f(x). (1)

Our goal in this paper is in the systematic study of adversarial attack which are imperceptible to humans. So, we con-
strain the attacked image to be close to the original image in a chosen cost function which models human perception.
This is one of the key features of our contribution, which is distinct relative to the literature on adversarial attacks.
Traditional cost functions involve Lp distances, see (Goodfellow et al., 2014; Madry et al., 2017; Moosavi-Dezfooli
et al., 2016; Tramèr et al., 2018). However, as reported in recent literature (Sharif et al., 2018; Wang et al., 2004), Lp
distances do not accurately measure differences in human perception. In this paper, we study two better choices of
cost function and demonstrate that we generate adversarial attacks of better quality (less perceptible to humans). We
also combine Distributionally Robust Optimization (DRO) training with our attack method and test that our training
algorithm improves fairness in classification.

Neural network design, over the years, has been inspired by the ways in which the human brain responds to visual
stimuli (Xu & Vaziri-Pashkam, 2021; Voulodimos et al., 2018). On the other hand, in traditional computer vision,
scientists handcraft features, for example SIFT (Lowe, 1999) and HOG (Dalal & Triggs, 2005), that they believe are
important in classification. Modern DNNs, instead of relying on handcrafted features, focus on learning them for the
task on hand (LeCun et al., 2015). Although adversarial attacks are targeted toward DNNs, they may cause differences
to human vision systems as well (Zhou & Firestone, 2019; Elsayed et al., 2018). In our work, we study adversarial
attacks that only have effects to machine vision and demonstrate that by making algorithms more resilient to these
attacks, we are able to improve the performance of these algorithms in tasks that are important from a human vision
standpoint.

To design adversarial attacks that humans cannot perceive, the choice of cost function c in equation 1 is important.
As mentioned before, Lp cost functions may not constrain adversarial attacks to be imperceptible to humans. In our
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work, we use human perceptual distances SSIM (Wang et al., 2004) and PieAPP (Prashnani et al., 2018) as our cost
functions. Moreover, we aim to align machine vision or machine perception to human perception by DRO training with
our attacks. The relationship between our human-imperceptible attacks, other adversarial attacks, machine perception,
and human perception is illustrated in Figure 1. The two images from left to right also demonstrate how DRO training
with our attack method aligns machine perception with human perception.

Figure 1: Left: The two big circles represent the attacks or small perturbations that can cause changes visually in
machines perception and human perception respectively. Commonly used adversarial attacks (the red circle), for
example Lp based adversarial attacks, are visually perceived by both machines and humans. We design our attacks
(the green circle) to be imperceptible to humans and only affect machine perception. Then we start adversarial training
with our attack method and move the relationship as displayed in the left image to the right image. Right: Adversarial
training with our attacks discourages the model perceiving the attacks in the green circle, so it pushes the machine
perception circle to the direction of human perception. In the end of the adversarial training, the perturbations that
machines perceive and humans perceive overlap more, so that the two perception systems align more closely.

DRO framework is studied extensively in machine learning, because it can compute the best model under distributional
uncertainty (Blanchet et al., 2018; Rahimian & Mehrotra, 2019). DRO-trained models are able to achieve uniform
performance across all groups of data, even on out of sample data (Blanchet & Kang, 2021). DRO framework has been
studied with data-driven distances (Blanchet et al., 2019b). In our work, our adversarial attack method solves exactly
the inner sup problem with the cost function informed by human-based IQA methods (mathematical formulations
are in Section 3). Solving the whole DRO mini-max problem trains the model to advance in the direction of human
perception. We show that DRO training with our adversarial attacks improves group fairness compared to DRO
training using PGD attack method.

Recently, fairness in machine learning has become a crucial topic. As we apply machine learning models in daily
applications, we need models to be fair across the whole distribution, especially the data from underrepresented
groups. Unfortunately, current datasets do not have a uniform distribution on images from all demographics. In
both of the two popular open-source data sets: ImageNet and Open Images, approximately half of the images
are collected from 2 countries: the United States and Great Britain (Shankar et al., 2017). Moreover, DNNs are
suspected to learn spurious features to help classification and the spurious features are learned from the major-
ity groups (de Vries et al., 2019). Both Shankar et al. (2017) and de Vries et al. (2019) define image groups as
the country where images are collected, so we follow the definition and collect our Imagenet geo-location dataset.

Figure 2: Mailbox from
United Kingdom (Left) and
from Cambodia (Right).

In the class mailbox in our collected dataset, we count over half of the mailboxes
are red, so a DNN is likely to learn the spurious feature that mailboxes are all red
and the probability of correctly classifying the mailbox from Cambodia (in Figure 2)
decreases. However, as humans understand the meaning of word ”mailbox”, we are
unlikely to use the color to classify mailboxes. There are other features that DNNs
can perceive and possibly learn, for example, noises or textures in the images. By our
proposed adversarial attack method and DRO training algorithms, we train the models
to perceive information as humans perceive and perform more equally on the groups.

Our work’s contributions are as follows:

1. We connect a human perception distance PieAPP with the DRO framework to generate adversarial attacks
that are imperceptible to humans and successfully attack the classification models. We use two methods
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introduced in the human vision learning area to show that our attacks are less perceptible to humans than
other state-of-the-art (SOTA) imperceptible attacks. We incorporate confidence in our algorithm, so our
method with high confidence attacks successfully against 2 defense methods.

2. We provide an algorithmic implementation of independent interest which can speed up DRO training signifi-
cantly. We add a few speed-up techniques to make generating attacks and DRO training more practical.

3. We collect a dataset from ImageNet (Russakovsky et al., 2015) with country information1, and design two
hypothesis tests to test that DRO training with our attacks improves fairness in classification. The hypothesis
tests can serve as a general methodology to test group fairness.

This paper unfolds as follows. In Section 2, we list related publications. In Section 3, we introduce our adversarial
attack method that computes optimal imperceptible attacks. We also show numerical comparison results and image
comparison examples. In Section 4, we demonstrate two algorithms and design two hypothesis tests to compare
fairness on our method and PGD method. All the dataset, code and figures are available in the supplementary file.

2 RELATED WORK

Adversarial attacks. Since the seminal work (Goodfellow et al., 2014), there is a surge of papers studying adversar-
ial attacks: Carlini & Wagner (2017); Madry et al. (2017); Moosavi-Dezfooli et al. (2016); Kurakin et al. (2016); Dong
et al. (2018); Chakraborty et al. (2018). There are papers that use Wasserstein distance (Wong et al., 2019), human
perception distance (Zhao et al., 2020; Laidlaw et al., 2021), attacks in feature space (Xu et al., 2020). Other non-
conventional adversarial attacks are: sparse adversarial attacks (Andriushchenko et al., 2020; Zhu et al., 2021), spatial
perturbations (Engstrom et al., 2019; Zeng et al., 2019), and one-pixel attack (Su et al., 2019). Other than white-box
attack methods, there are many successful black-box attack methods (Guo et al., 2019; Ilyas et al., 2018). We cannot
include all the adversarial attack papers here, so refer to the review papers (Akhtar & Mian, 2018; Chakraborty et al.,
2018) for more references.

Adversarial attack and human vision. There is literature studying the influences of adversarial attacks on human
vision (Zhou & Firestone, 2019; Elsayed et al., 2018). Zhao et al. (2017) generate adversarial attacks that are seman-
tically meaningful, which the contents of images are changed in human eyes as well. Madry et al. (2017) also report
that L2 based attacks can be large enough to cause misclassification by humans.

Human perceptual distance. In order to truly restrict the influences of adversarial attacks in human eyes, we
need distance functions to measure differences in human vision. Image quality assessment (IQA) is a line of work to
measure human perceptual distances. Traditional IQA methods include SSIM (Wang et al., 2004), MS-SSIM (Wang
et al., 2003), and FSIM (Zhang et al., 2011). Deep neural network based IQA methods include DISTS (Ding et al.,
2020), PieAPP (Prashnani et al., 2018), LPIPS (Zhang et al., 2018), and SWD (Gu et al., 2020).

DRO. As people care more about models’ robustness in the extreme circumstances, DRO framework emerged to
gain a lot of interests. There have been a number of theorectical work on DRO and Optimal Transport, see Blanchet
et al. (2018); Blanchet & Murthy (2019); Duchi & Namkoong (2021); Rahimian & Mehrotra (2019); Kuhn et al.
(2019); Staib & Jegelka (2019); Van Parys et al. (2021). In particular, Esfahani & Kuhn (2018); Shafieezadeh-Abadeh
et al. (2015); Gao & Kleywegt (2016); Gao et al. (2017); Blanchet et al. (2019a) study the theory and applications of
DRO problems using Wasserstein distance to parameterize the constaint set. Volpi et al. (2018) generalizes models
to unseen domains by training the models with DRO. Sinha et al. (2018) first introduces combining DRO framework
and adversarial attacks. Dong et al. (2020) introduces adversarial distributional training (ADT) to generalize the usual
adversarial training as a special case, and solve the usual AT deficiencies introduced in Tramèr et al. (2018); Zhang &
Wang (2019).

Fairness. Many recent papers discover unfairness in image classification and object detection models (de Vries
et al., 2019; Wilson et al., 2019; Buolamwini & Gebru, 2018). Specifically, these papers point out that neural network
models discriminate against underrepresented groups. One possible explanatory factor of unfairness is that the open-
source datasets are unbalanced (Shankar et al., 2017). Yang et al. (2020); Gong et al. (2012) starts to fix the datasets
by collecting data that are representative among all demographics. In natural language processing community, recent
work discovers that word embedding models learn the biases from data (Bolukbasi et al., 2016; Caliskan et al., 2017).
Mehrabi et al. (2021) is a recent review paper on fairness in machine learning community.

1The dataset is public and the link is in README file in the supplementary file.
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3 METHOD

To adversarially train the model, we consider the following DRO problem, which calculates the model that could
perform well in the worst case scenario:

min
θ

sup
P :D(P,P0)<δ

EP [`(θ;X,Y )], (2)

where θ is the model parameter, ` is the loss function, P0 is the empirical distribution of training data (X,Y ), and D
is the distance metric to characterize the set of distributions we want to generalize to.

Similar to Sinha et al. (2018), we choose Wasserstein distance as our metric D. Specifically, let c((x, y), (x′, y′))
denote the cost function to measure the distances between two training samples (x, y) and (x′, y′) and Γ(P, P0)
denote the set of all joint distributions of P and P0, then our distance metric is given by

D(P, P0) = inf
γ∈Γ(P,P0)

Eγ [c((x, y), (x′, y′))],

where c((x, y), (x′, y′)) = c0(x,x′) +∞ · 1{y 6= y′} = c0(x,x′), as we are only interested in adversarial attacks
and adversarial attacks that do not change the label.

To obtain a computationally feasible solution for equation 2, we consider its Lagrangian relaxation with penalty
parameter λ

min
θ

sup
P

EP [`(θ;X,Y )− λD(P, P0)].

By Lemma 1 of Volpi et al. (2018), the inner optimization over P can be explicitly solved by
min
θ

sup
P

EP [`(θ;X,Y )− λD(P, P0)] = min
θ

EP0
[φλ(θ;X,Y )], (3)

where the robust surrogate loss φλ is defined by
φλ(θ;x0, y0) = sup

x
(`(θ;x, y0)− λc0(x,x0)) . (4)

Note that {x0, y0} is one data sample, where x0 ∈ Rn is a high-dimensional vector representation of the image and
y0 is its label.

As discussed in Section 1, instead of using Lp distances, we will define c0 by two distances that better represent human
perceptual distances, c0 = 1− SSIM and c0 = PieAPP, which are discussed below in more detail:

1. c0 = 1 − SSIM. Structural similarity index measure (SSIM) (Wang et al., 2004) is a reward function on two
grayscale images that captures structural similarity in the two images. Wang & Bovik (2009) shows a table of
the same image distorted by different methods. The table of images demonstrate that even with the same MSE
error, two images have drastically different quality in human eyes, but two images with similar SSIM values are of
similar quality in human eyes. SSIM’s formula is stated in Section A. SSIM ≤ 1, so we use 1 − SSIM as a cost
function. 1 − SSIM satisfy three properties: symmetry, boundedness, and unique minimum, which makes it very
close to a distance function.

2. c0 = PieAPP. PieAPP (Prashnani et al., 2018) uses a DNN to measure two images’ visual differences in human
judgement. PieAPP can be applied on RGB images of size greater than 64×64. PieAPP measures a novel pairwise
preference probability, for instance, the probability that humans prefer image A over image B with respect to a
reference image R, which is more robust because humans may have clear preferences between all pairs of images
but do not have a clear ranking over all images. Another advantage is that PieAPP does not depend on any existed
architectures or pretrained models, as opposed to LPIPS and DISTS.

3.1 SSIM BASED ATTACK

In this section, we focus on c0 = 1−SSIM. Let dx = c0(x,x+ ∆) andHx(∆) denote its Hessian matrix. We solve
a one-step type of attack by solving equation 4:

xadv = x+ ε
∆∗

‖∆∗‖2
, with ∆∗ =

1

λ
Hx(0)−1∇x`(θ;x, y), (5)

the derivation of equation 5 can be found in Section A. Due to the size and computation cost of the Hessian matrix,
the above method is only practical with small images, for example on MNIST images of size 1 × 28 × 28. We use
this simple example to show that using 1−SSIM as our cost function does discourage any structural changes that may
change the true meaning of the images.
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The classified labels are: 1, 8, 4 The classified labels are: 1, 4, 4

Figure 3: Left: Original, Middle: Our one-step method, Right: PGD (L2). We compare our one-step method and
one-step PGD attack using L2 cost function, both with ε = 10. Here are the first two 1’s in MNIST test split that are
successfully attacked by both methods. Our attack does not change the structure nor the true class of the numbers, but
L2 attacks make the digits unrecognizable and more similar to the mis-classified label. More examples can be found
in Section B.

3.2 HUMAN PERCEPTION BASED ATTACK

In this section, our choice of human perceptual distance c0 is PieAPP. On ImageNet like data sets, we attack 3×299×
299 size images and use gradient descent method to solve equation 4, as described in Algorithm 1. Specifically, we
choose a pretrained ResNet-50 on ImageNet (He et al., 2016) as our model θ, cross-entropy loss as our loss function
`, and N = 100, ε = 0.1 and confidence a = {0, 1, 5}. We incorporate confidence level in our early-stop step (line 4
in Algorithm 1) to enhance the strength of our attacks, so they successfully attack defended images in Section 3.3.

Algorithm 1 Human Perc OT: attack an image
Input: image x, label y, loss function `, cost function c0, number of iterations N , model θ, step size ε, confidence a
Output: adversarial image xadv

1: Initialize: xadv ← x
2: for k = 1, 2, . . . , N do
3: logits = θ(xadv) . the logits before the softmax layer
4: If max logitsi 6=y − logitsy > a then Output xadv end if . logitsi means the logit for class i

5: ∆ = ∂`(θ;xadv,y)
∂xadv

− λ∂c0(xadv,x)
∂xadv

. We compute ∂c0(xadv,x)
∂xadv

every 5 steps for performance
6: xadv ← xadv + ε ∗∆
7: validate xadv . Force xadv to be a valid RGB image
8: end for

We compare our method with PGD (L2), and with SOTA methods NPTM (Laidlaw et al., 2021) and PerC (Zhao et al.,
2020) in terms of total time, success rate and human perceptibility. Specifically, we compare with NPTM (PPGD) and
NPTM (LPA) (two methods proposed in the NPTM paper), and PerC AL (the faster and less perceptible method in the
paper). Different from PerC and NPTM, our attack method directly solves the inner optimization problem (equation 4
of the DRO problem). PerC AL alternates between the two goals of attacking the image successfully and minimizing
the perceptual distance, while our method combines the two goals in a single step (line 7 in Algorithm 1). NPTM
(PPGD) and NPTM (LPA) requires an extra projection step, while our method does not.

Our attack method is evaluated on the development set of the ImageNet-Compatible dataset (same as Zhao et al.
(2020)). Since the dataset has 1000 images and we plan to compare against four other methods, involving humans
to judge every pair of images is expensive. Other than displaying images to qualitatively judge the attacks’ imper-
ceptibility, we apply two human perceptual distances and a salient object detection network to measure the quality of
attacks.

We apply two Image Quality Assessment (IQAs) methods, LPIPS (Zhang et al., 2018) and DISTS (Ding et al., 2020),
to quantify perceptual distance between two images in human vision. The numerical results are given in Table 1.
Figure 4 provides two examples to visually compare the quality of attacks.

The last comparison method is applying EGNet (Zhao et al., 2019) to images. EGNet is a model to predict human
saliency map, which means the object in an image that draws attention the most. We compute the human saliency
maps of original images and the attacked images, and compute multiple distances between the original and attacked
human saliency maps. Figure 6 illustrates two examples to qualitatively compare human saliency maps and Table 2
includes all the numerical comparison results.
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Figure 4: The comparison between the original image and adversarial attacks. Our method and PGD method generate
images of similar visual quality, so we do not put PGD images here. PerC AL has marble effects (in the background of
the first image and around the beak in the second image). The image quality of LPA degrades, as there are noticeable
sand effects in the second image, compared with other images. PPGD has an area of noises in the first image. The
images in full resolution are available in the supplementary file. More results can be found in Figure 10.

Table 1: Each row shows one attack method. The first column is each method’s success rate, which is defined as,
the number of attacked images that labels change from being correct to incorrect divided by the number of correctly
classified images. Remaining columns represent the distance functions to measure the difference between attacked
images and original images. We embolden the smallest values in each column. Our method with a = 0 has the
smallest human perceptual distances, despite larger Lp distances than PGD.

Success Rate L1 L2 L∞ LPIPS (x1000) DISTS (x1000)

PerC AL 100% 633.116 2.216 0.085 33.960 33.819
PGD (L2) 100% 592.737 1.561 0.005 7.823 8.770
NPTM (PPGD) 95.75% 2544.206 6.604 0.115 81.569 51.083
NPTM (LPA) 99.78% 2157.771 5.309 0.049 51.644 35.920

Human Perc OT (a = 0) (ours) 100% 783.855 1.905 0.006 7.303 8.165

Figure 5: DISTS distances comparison between the attacks and original images. Left: boxplots of empirical DISTS
distance distribution of all methods. The box’s 3 bars each represents the distribution’s 3rd quantile, median, and
1st quantile respectively. Our method with a = 0’s distribution has the smallest quantiles. Right: the cumulative
distribution function (CDF) of empirical DISTS distance distribution of all attack methods. At any DIST distance d,
our method with a = 0 has the largest IP(xadv ≤ d). Our method with a = 1 has smaller perceptual distances than
PerC AL, NPTM (LPA), and NPTM (PPGD). The same plots for LPIPS distance can be found in Figure 12.
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Figure 6: Comparison between the human saliency maps of the original image and attacked images. Compared with
the original saliency map, our method generates the map with the least distinction. In the second image, NPTM
(PPGD) shifts the attention from the mushrooms in the middle to the right. More results can be found in Figure 11.

Table 2: Comparing differences in human saliency maps for all methods. The first column is the attack’s success
rate (same values as Table 1) and rest columns are the distances between attacked images’ saliency maps and original
images’ saliency maps. We embolden the smallest distance value. Our method with a = 0 generates attack images
with the smallest distances in human saliency map, which means they induce the smallest changes in human saliency.

Success Rate L1 L2 L∞ SSIM

PerC AL 100% 1129.920 10.803 0.319 0.093
PGD (L2) 100% 385.700 3.880 0.132 0.020
NPTM (PPGD) 95.75% 946.390 9.068 0.276 0.086
NPTM (LPA) 99.78% 522.030 5.337 0.188 0.036

Human Perc OT (a = 0) (ours) 100% 325.729 3.339 0.118 0.016

3.3 COMPARISON WITH OTHER ATTACKS ON DEFENSES

Without knowing which adversarial attack is applied on the image, there are generic defense methods against attacks.
We test our method on two such defense methods: jpeg compression (Das et al., 2018; Dong et al., 2019; Dziugaite
et al., 2016; Guo et al., 2017) and bit depth reduction (Guo et al., 2017; He et al., 2017; Xu et al., 2017). The
comparison result is shown in Figure 7.

Figure 7: After the attacked being processed with jpeg compression defense and bit depth compression defense, our
method with confidence 5 has the highest attack success rate in both defense methods and the images are still less
perceptible than NPTM (PPGD)’s images (Figure 5). Our method with confidence 1 generates less perceptible attack
images than PerC AL and has a better attack success rate in jpeg compression defense.

4 FAIRNESS

Recent works reveal that current open-source large datasets are severely unbalanced in the geographical location of
images, and public object recognition systems do not perform uniformly on images from different locations (Shankar
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et al., 2017; de Vries et al., 2019). Our collected ImageNet geo-location dataset is also amerocentric and eurocentric
as discovered in Shankar et al. (2017), see Figure 13. The detailed procedure of collecting the dataset is in Section E.

In this section, we introduce a method to measure the level of fairness. We first fix a dataset and the empirical
distribution is a uniform distribution. With the dataset, we can train a model with stochastic gradient descent and the
model is a random vector based on the dataset, where randomness comes from the training process. Then we group
our dataset into sets of images by their country information: {S1, S2, ...}. For each country, we know its income level
g(Si). Now we sample countries independently and denote accuracy of images in Si as p(θ;Si). Ideally, for a country
Si and random vector θ, classification accuracy should be independent of the income level of the country:

P (p(θ;Si) ≤ r|g(Si)) = P(p(θ;Si) ≤ r), ∀r ∈ [0, 1]. (6)

After we sample a θ0 from the model space, we can test independence based on model by testing whether there
exists relationship between p(θ0;Si) and g(Si). If there exists a relationship for a significant probability of all the
models, we know equation 6 cannot hold. For example, we know p(θ;Si) = g(Si) for 80% of the models and all
models have an accuracy between [0.6, 0.7] over the whole dataset, then P(p(θ;Si) ≤ 0.1|g(Si) = 0.1) > 0.8, but
P(p(θ;Si) ≤ 0.1) = 0.

We design Algorithm 2 to approximate the solution to equation 3 and generate an augmented dataset D. Algorithm 3
samples a number of θ based on D. More implementation details can be found in Section D.

Algorithm 2 Generate adversarial dataset D
Input: Initial model θ0, learning rate α, dataset D = {xi, yi}i=1,...N , number of steps T1 Output: dataset D =
{xi, yi, Pi}i=1,...M , optimal model θ

1: Initialize: θ = θ0,D = {xi, yi, Pi}i=1,...N with Pi = 1
2: for k = 1, 2, . . . , T1 do
3: Sample {xi, yi, Pi}i=1,...N proportionally to the weights Pi with replacement from dataset D
4: for i = 1, 2, . . . , N do
5: θ ← θ − αPi∇θ`(θ;xi, yi)
6: Input θ, xi, yi to Algorithm 1 to generate attack {x′i, yi}
7: append {x′i, yi, Pi} to dataset D with weight Pi = (k − 1)N + i
8: end for
9: end for

Algorithm 3 DRO training with a given adversarial dataset
Input: Initial model θ0, learning rate α, adversarial dataset D = {xi, yi, Pi}i=1,...M , number of steps T2

Output: DRO trained model: θ
1: Initialize: θ = θ0

2: for k = 1, 2, . . . , T2 do
3: for i = 1, 2, . . . ,M do
4: Sample {xi, yi} proportionally to the weights Pi with replacement from dataset D
5: θ ← θ − αPi∇θ`(θ;xi, yi)
6: end for
7: end for

The intuition behind Algorithm 2 is that the outer loop chooses batches of size N and the batches are sampled biased
towards recent iterations. In turn, adversarial examples are added in the inner loop corresponding to the current
optimization model parameters, which are updated according to standard stochastic gradient descent. The overall
result is similar to a two-time-scale stochastic approximation algorithm, (Borkar, 1997), which will be analyzed in
future work. We use Algorithm 2 to generate a dataset D of optimal adversarial perturbation corresponding to the
optimal solution of equation 3. Then, we run Algorithm 3 with dataset D 50 times to sample 50 models in the model
space. We use a significance level of 0.05 in the following tests.

Given all the images and one pretrained model θ0, we test θ0 on all images and compute accuracies by groups. We
denote the groups as {gi,pi}, where gi is the per capita GDP of ith country in log scale and pi is the accuracy of
classifying the images in ith country. We assume that there exists a postive correlation between g and p. We also
assume that the error in accuracy of each country is negatively related to the number of images in the country, so we
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write a covariance matrix as Σii = 1/
√
ni, where ni is the number of images in ith country. Then we run generalized

least square (GLS) with Σ on data {gi,pi} and obtain a linear estimator p = βg + ε.

Given the pretrained model θ0 and computed linear regression model p = β0g + ε (see Figure 8a), we hypothesis test
whether there exists exists significant linear relationship:

H0: β0 = 0. versus H1: β0 6= 0.

An F-test on linear regression models test whether g depends on p (Hahs-Vaughn & Lomax, 2020). We compute
F0 = 5.392 with degrees of freedom ν1 = 1, ν2 = 39 and IP(f > F0) = 0.02554. Thus, we can reject the null
hypothesis and conclude that there exists significant linear relationship between g and p. For this model, we know it
is not group-fair.

After we train 50 models and compute 50 linear estimators with our method and PGD method respectively, we use a
standard t-test to compare the two means of betas (Sheynin, 1995) to compare the magnitude of unfairness. We denote
βm as our model’s mean and β′m as PGD model’s mean. This corresponds to hypothesis testing

H0: βm ≥ β′m versus H1: βm < β′m.

We compute t-value is 3.852 with a probability 0.00017, so we can reject the null hypothesis and conclude that
βm < β′m.

The line shows a linear regression model with indepen-
dent variable g and dependent variable p. Each dot
represents one country and the color of dots denote the
number of images in this country.

The two boxes each shows the distribution of β obtained
from PGD method and our method respectively. The
blue dashed line represents β0 of the pretrained model.
Both methods reduce the correlation between g and p.
Training with our attack method improves fairness more
than PGD method.

5 CONCLUSION

We combine cost functions introduced from image quality assessment work with the DRO framework, and design two
DRO training algorithms to efficiently sample a number of models. We show that our adversarial attack method can
generate successful and the least human perceptible attacks, comparing with other SOTA methods. For specific Ima-
geNet datasets, we test the existence of inherent unfairness, such as geo-location biases. After testing two collections
of models that are respectively trained by DRO algorithm with our attack method and with PGD attack method, our
method improves fairness more significantly than PGD method. Our hypothesis tests provide a general framework to
test group fairness on the space of datasets and models based on the datasets. The limitation of our method is that
we do not have enough computational resources or data to sample datasets, and we can only condition on a given
dataset and randomize the models and attacks. With generating a variation of adversarial attacks, our training process
mitigates the biases in the given dataset. We hope future work will incorporate the randomness in datasets and conduct
the complete test in fairness. Given our results of human imperceptible adversarial attacks, we believe future work can
design methods to detect imperceptible attacks, so humans can recognize situations when imperceptible attacks are
applied. We also hope our work can help understand the gap between machine perception and human perception, and
bridge the two areas of adversarial attacks and fairness in machine learning.
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A METHOD

To measure the differences between two images, Wang et al. (2004) defines the SSIM function as a product of three
components: the luminance l, the contrast c, and structure s. More precisely, we have

SSIM(x,x′) = l(x,x′)c(x,x′)s(x,x′), (7)

where the formulae for the three components are:

l(x,x′) =
2µxµx′ + C1

µ2
x + µ2

x′ + C1
,

c(x,x′) =
2σxσx′ + C2

σ2
x + σ2

x′ + C2
,

s(x,x′) =
σx′ + C3

σxσx′ + C3
.

When implementing SSIM, Wang et al. (2004) shifts a 11×11 window with Gaussian weightsw = {wi|i = 1, ...., N}
over two images x,x′ simultaneously and compute the local statistics µx, σx, σxx′ as:

µx =

N∑
i=1

wixi, µx′ =

N∑
i=1

wix
′
i

σx =

(
N∑
i=1

wi(xi − µx)2

) 1
2

, σx′ =

(
N∑
i=1

wi(x
′
i − µx′)2

) 1
2

σxx′ =

N∑
i=1

wi(xi − µx)(x′i − µx′)

After shifting over the whole image withM windows, we can compute the SSIM score as a mean of all the local SSIM
scores:

MSSIM(x,x′) =
1

M

M∑
j=1

SSIM(xj ,x
′
j)

For a fixed image x, we now consider the difference dx brought by a small perturbation ∆, which is given by

dx(∆) = c0(x,x+ ∆) = 1− SSIM(x,x+ ∆).

Since SSIM has a unique maximum at 1, we may observe that dx(∆) > 0 = dx(0), hence 0 is a local minimum
and ∇dx(0) = 0. Let Hx(∆) denote the Hessian matrix of dx(∆), from Beck (2014, Thm 2.26), we know Hx(0)
is a positive semi-definite matrix. Although theoretically Hx is not positive definite, we have not encountered non-
invertible Hessian matrices when generating perturbations for MNIST images.

Since dx is twice continuously differentiable at ∆ = 0, we may consider its Taylor expansion at 0 and locally
approximate dx(0) by a quadratic form of ∆:

dx(∆) = dx(0) +∇dx(0)T∆ +
1

2
∆THx(0)∆ +O(||∆||3)

=
1

2
∆THx(0)∆ +O(‖∆‖3).

Assume our loss function `(θ;x, y0) is continuously differentiable at x, then we may also write

`(θ;x+ ∆, y) = `(θ;x, y) +∇x`(θ;x, y)T∆ +O(‖∆‖2).
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Then the robust surrogate loss φλ in equation 4 can be solved by

φλ(θ;x, y) = sup
x′

(`(θ;x′, y)− λc((x, y), (x′, y))

= sup
∆

(`(θ;x+ ∆, y)− λc0(x,x+ ∆))

= sup
∆

(
`(θ;x, y) +∇x`(θ;x, y)T∆− λ

2
∆THx(0)∆ +O(||∆||2))

)
≈ `(θ;x, y) + sup

∆

(
∇x`(θ;x, y)T∆− λ

2
∆THx(0)∆

)
.

Setting the gradient to zero, we get∇x`(θ;x, y)T = λHx(0)∆, which then gives us

∆∗ =
1

λ
Hx(0)−1∇x`(θ;x, y).

Note that x + ∆∗ is an approximation solution to φλ since we omit the O(||∆||2) term, in the final implementation
the adversarial image is actually generated by

xadv = x+ ε
∆∗

‖∆∗‖2
.

B MORE RESULTS

In this section, we show more images that do not fit in the main text.

The classified labels are: 0, 2, 2 The classified labels are: 1, 8, 4 The classified labels are: 2, 1, 1

The classified labels are: 3, 5, 5 The classified labels are: 4, 9, 9 The classified labels are: 5, 6, 6

The classified labels are: 6, 8, 8 The classified labels are: 7, 9, 9 The classified labels are: 8, 2, 2

The classified labels are: 9, 4, 4

Figure 9: Left: original, Middle: one-step our method, Right: one-step PGD (L2). Here are additional results of
Figure 3. Each image is the first example of each digit that is successfully attacked by our method and PGD method in
the MNIST test split. We show that using 1− SSIM as the cost function successfully penalize any stuctural changes.
On the contrary, attacks with L2 cost function change the true meaning of the images, for example, the digit 4 attacked
by PGD method on the right image looks like a 9.
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Figure 10: More qualitative results on image comparison. PerC AL has marble effects in the water in the first image
and above the car in the second image. The image quality of LPA degrades, as there are noticeable sand effects (in the
water in the first image). PPGD has an area of noticeable noises in the first image.

Figure 11: The comparison between the human saliency maps of the original image and adversarial attacked images.
Our method’s saliency maps are the most similar images to the original saliency maps in both examples.
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Table 3: Comparing results with different λ. Our method with λ = 1 balances the two goals of attacking the images
and minimizing the perceptual distances the best, because it has the smallest computation cost. Our method with λ = 2
minimizes DISTS distance better than with λ = 1.

Success Rate Time L1 L2 L∞ LPIPS (x1000) DISTS (x1000)

Human Perc OT (λ = 1) (ours) 100% 2491.13s 783.855 1.905 0.006 7.303 8.165
Human Perc OT (λ = 0.5) (ours) 100% 2686.08s 706.974 1.755 0.006 7.443 8.465
Human Perc OT (λ = 2.0) (ours) 100% 2757.73s 919.670 2.194 0.006 7.356 8.138

Table 4: Comparing results with different step size. Our method with ε = 0.05 has the smallest distance values in all
distance measures but requires the most time to attack all the images.

Success Rate Time L1 L2 L∞ LPIPS (x1000) DISTS (x1000)

Human Perc OT (ε = 0.1) (ours) 100% 2491.13s 783.855 1.905 0.006 7.303 8.165
Human Perc OT (ε = 0.05) (ours) 100% 2755.56s 782.530 1.902 0.005 7.240 8.143
Human Perc OT (ε = 0.20) (ours) 100% 2444.25s 784.145 1.906 0.010 7.301 8.220

Figure 12: LPIPS distances comparison between all the attacks and the original images. Similar to Figure 5, our
method with a = 0 has the lowest boxplot and the CDF curve enclosing the largest area. Both of the plots show that
our method generates attack images with the smallest perceptual distances.

C ABLATION STUDY

We will conduct ablation study on choices of parameters: λ, ε in Algorithm 1. The results are in Table 3 and Table 4.
The default parameters are ε = 0.1, λ = 1 and appear as the first row in both tables.

In equation 3, λ means how much penalty of cost function we add to the optimization goal. In DRO formulation,
a larger λ corresponds to smaller δ and a smaller distributional neighborhood around P0. As for Algorithm 1, with
larger λ, we penalize the human perception distance more, but we may require more steps to successfully attack one
image, because the direction of each step deviates from the gradient’s direction more.

ε represents the step size of gradient descent method when attacking one image in Algorithm 1. Smaller ε means the
final perturbation is likely to be smaller but the total time to find a successful attack is longer.
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D IMPLEMENTATION DETAILS AND SPEEDUP TECHNIQUES

The algorithms are implemented with Pytorch (Paszke et al., 2019) and Pytorch Lightning (Falcon et al., 2019).
Algorithm 2 is run on 4 NVIDIA V100 Tensor Core GPUs; Algorithm 1 and Algorithm 3 are run on 1 NVIDIA V100
Tensor Core GPU. See Table 5 for implementation details. When computing distances on images, we normalize the
images to the [0, 1] range, except that SSIM takes in images in [0, 255] range.

Table 5: Implementation details in Algorithm 2 and Algorithm 3

ImageNet

Learning rate α 0.1
Optimizer SGD
Momentum 5e−4

T1, T2 3
ε 0.1
` Cross entropy
λ 1

In Algorithm 1, in each step, our algorithm requires the gradient of PieAPP model with respect to images and com-
puting the gradient is expensive. First, we sped up our algorithm by adding a early-stop mechanism, which means we
will stop adding perturbation if the attack is successful. Second, we reuse the gradient of PieAPP model with respect
to images ∂c0(xadv,x)/∂xadv every 5 steps. Leveraging these two techniques, our method is comparably fast with
PerC AL, see Table 6. NPTM (PPGD) and NPTM (LPA) are both faster than our method, but they both do not reach
100% success rate and are much more perceptible in both distance measures we use.

During the DRO training procedure in Algorithm 2, we use k-means to group images of the same label into clusters.
Approximately 5 images are in the same cluster. Before training starts, we run k-means clustering to establish the
clusters and for each cluster, one image cloesest to the cluster’s mean is called the cluster center. During training, on
step 6 of Algorithm 2, we look up the cluster the image belongs to and load in the cluster center’s attack. First we test
whether the cluster center’s attack is successful on the current image. If not, we will follow step 6. If one image is
a cluster center, we update this image’s attack every epoch. We anticipate this technique will degrade the quality of
attacks severely.

We include the links to the methods that we use or compare with:

1. PieAPP (Prashnani et al., 2018)2

2. LPIPS (Zhang et al., 2018)3

3. DISTS (Ding et al., 2020)4

4. EGNet (Zhao et al., 2019)5

E IMAGENET WITH GEO-LOCATION DATASET

From the images of 1000 classes from ILSVRC2012 (Russakovsky et al., 2015), we select the subset of images that
are from Flickr, and we use the Flickr’s API6 to obtain the geo-information of each corresponding image. Using this
geo-information (latitude and longitude coordinates), we retrieve the country information of this image. The dataset
has 103995 images in total, we split the datasets into 60% train split, 20% validation split, and 20% test split.

In the dataset, the images are collected from 207 countries. We put a pie chart Figure 13 to demonstrate the distribution
of images’ geo-locations. When we conduct the hypothesis testings in Section 4, we also filter out the countries with
less than 50 images. We download all the countries’ per capita GDP from the World Bank website7.

2https://github.com/prashnani/PerceptualImageError
3https://github.com/richzhang/PerceptualSimilarity
4https://github.com/dingkeyan93/DISTS
5https://github.com/JXingZhao/EGNet
6https://www.flickr.com/services/api/
7https://data.worldbank.org/indicator/NY.GDP.PCAP.CD.
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Table 6: Total time to attack 1000 images.

Time (s)

PerC AL 2386.77
PGD (L2) 73.63
NPTM (PPGD) 281.86
NPTM (LPA) 551.87

Human Perc OT (a = 0) (ours) 2491.13

Figure 13: This pie chart shows the percentage of images coming from each country, which has a similar distribution
as collected in Shankar et al. (2017). For a clearer visualization, we unfortunately cannot fit the country’s names and
percentage if it has < 1000 images.

Our Algorithm 2 with T1 = 3 takes about 9 hours and Algorithm 3 with T2 = 3 50 times takes about 25 hours.
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