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Abstract

This paper does not propose a new method; rather, we find that simple adjustments1

of the fine-tuning recipes of vision language models (VLM) are sufficient to mitigate2

catastrophic forgetting. Using visual question answering tasks, we design a 2×23

experimental framework to assess model performance across in-distribution and4

out-of-distribution image and text inputs. Our results show that appropriate regular-5

ization, such as constraining the number of trainable parameters or adopting a low6

learning rate, effectively prevents forgetting when dealing with out-of-distribution7

images. However, we uncover a distinct form of forgetting in settings with in-8

distribution images and out-of-distribution text. We attribute this forgetting as9

task-specific overfitting and address this issue by introducing a data-hybrid train-10

ing strategy that combines datasets and tasks. Finally, we demonstrate that this11

approach naturally extends to continual learning, outperforming existing methods12

without the need for complex auxiliary mechanisms. In general, our findings13

challenge the prevailing assumptions by highlighting the inherent robustness of14

VLMs and providing practical guidelines for adapting them while preserving their15

general-purpose capabilities.16

1 Introduction17

The remarkable success of vision language models (VLMs) in general-purpose visual reasoning18

(Alayrac et al., 2022; Liu et al., 2023; Achiam et al., 2023) has spurred significant interest in adapting19

them to specialized downstream applications. Compared to large language models (LLMs), VLM20

fine-tuning is not merely beneficial, but often necessary, as visual data presents distinct challenges21

compared to text. Visual inputs are exceptionally high-dimensional, and many specialized domains22

are poorly represented in the web-scale data used for pre-training. Consequently, out-of-the-box23

VLMs can struggle in critical applications, whether it is a robot not able to generalize to unseen24

rooms (Shi et al., 2025), a web agent misinterpreting novel screenshot layouts (Xie et al., 2024), or a25

biological application unable to identify specific cell types (Burgess et al., 2025).26

However, the prevailing wisdom suggests that fine-tuning VLMs is risky due to catastrophic forgetting,27

a phenomenon in which specialization on a new task severely degrades a model’s general capabilities28

(Zhai et al., 2024; Shuttleworth et al., 2024). To address this, previous work has proposed a suite29

of complex solutions, ranging from sophisticated regularization schemes and parameter isolation30

techniques to intricate methods (Wang et al., 2023; Shuttleworth et al., 2024; Chen et al., 2023;31

Li et al., 2025). These approaches often introduce significant architectural or training overhead,32

reinforcing the notion that preserving general VLM knowledge is an inherently difficult problem33

(McCloskey & Cohen, 1989; Andreassen et al., 2021).34

Surprisingly, our rigorous and systematic study reveals that for VLMs, catastrophic forgetting is35

largely not a problem. We fine-tune state-of-the-art VLMs, Qwen2.5-VL-3B (Bai et al., 2025), on36
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Figure 1: Evaluation matrix. A 2×2 design crossing text and image. In this work, for both text and
images, we define in-distribution (ID) data as samples drawn from the same probability distribution
as the training set. Conversely, out-of-distribution (OOD) data originates from a distribution not
encountered during training; during evaluation, we report average accuracy within each quadrant.
This setup allows us to systematically evaluate a comprehensive range of training and evaluation
scenarios. Further details on the datasets are provided in Appendix B.1.

the ImageNet image classification task and evaluate them on a comprehensive 2x2 matrix, testing37

performance on both in-distribution (ID) and out-of-distribution (OOD) image and text inputs38

(§2). Our central finding is that with a simple and proper fine-tuning recipe, such as using a low39

learning rate or employing parameter-efficient fine-tuning, VLMs maintain their robust general-40

purpose performance, especially when handling OOD visual inputs (§3.1, §3.2). We verify that this41

conclusion holds across various VLM architectures, including LLaVA1.5-7B (Liu et al., 2023) and42

Qwen2.5-VL-7B, as well as in extremely OOD fine-tuning domains, such as surgery and microscopy,43

challenging the idea that a trade-off between specialization and generalization is inevitable (§3.3).44

However, our investigation revealed one specific and important failure mode (§4.1): forgetting occurs45

on tasks involving ID images paired with OOD text (e.g., the same ImageNet image but with different46

questions about the objects than classification). We determine that this scenario reduces the problem47

to a uni-modal language task; since the images are familiar, the model’s behavior is dictated by its48

language component. Here, the model overfits to the linguistic patterns of the training prompts and49

fails to follow new instructions at inference time, which we call task-specific overfitting (§4.2). We50

demonstrate that this issue can be resolved with a simple data-hybrid training strategy, which involves51

mixing a small amount of general-purpose data with the task-specific fine-tuning dataset to prevent52

this narrow overfitting (§4.3).53

Armed with this complete understanding of VLM fine-tuning, we extend our findings from single54

fine-tuning to the challenging continual learning setting (Luo et al., 2025; Chen et al., 2024b). In55

the newly created continual learning benchmark, which requires the VLM to learn five challenging56

remote sensing, medical, autonomous driving, science, and finance knowledge, we show that our57

straightforward approach allows VLMs to sequentially learn new tasks while preserving prior knowl-58

edge (§5), outperforming all complex methods that rely on mechanisms like data replay buffers (Zhao59

et al., 2025). This result underscores that the intrinsic capacity of VLMs for continual learning is60

much greater than previously understood.61

Although this paper does not introduce novel technical methods, its primary contribution is to reframe62

the community’s understanding of VLM adaptation. We demonstrate that the perceived threat of63

catastrophic forgetting has been overstated and that effective, robust fine-tuning can be achieved64

with a remarkably simple recipe. We hope these findings encourage practitioners to move beyond65

unnecessarily complex solutions and adopt this parsimonious approach to unlock the full potential of66

VLMs in diverse real-world applications.67
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2 VLM Fine-tuning: Evaluation Protocols and Training Recipes68

This section specifies how we evaluate and how we fine-tune vision–language models (VLMs). We69

first define a controlled protocol built around a 2×2 distribution shift matrix, then describe the models,70

training setup, and prompting templates used throughout.71

2.1 Evaluation Protocols72

Fine-tuning task and dataset. We establish a consistent starting point by fine-tuning a multiple-73

choice visual question answering task constructed from ImageNet, which we call ImageNet-VQA.74

For each ImageNet image, we pose a single question asking for its class label (e.g., “What is the75

class of this image?”) with four options (A–D): one ground-truth label and three distractors. To76

increase the difficulty of the fine-tuning task, we employ CLIP (Radford et al., 2021) to select the77

most challenging distractors, with the methodology detailed in Appendix B.1.78

We choose ImageNet because it provides (i) large-scale, diverse, natural images with standardized79

labels; (ii) a clean mapping to unambiguous multiple-choice questions; and (iii) a familiar in-80

distribution (ID) reference point for studying shifts in either text or image domains.81

Axes of variation: text and image. Our evaluation isolates two sources of distribution shift: Text82

(the question form) and Image (the visual domain). ID text is the same classification question83

format used for fine-tuning; OOD text uses question styles that require different reasoning skills or84

external knowledge. ID images are natural photographs similar to ImageNet; OOD images come85

from different object sets or visual domains (e.g., flowers or stylized drawings).86

The 2×2 evaluation matrix. Crossing the two axes yields four standardized scenarios (Figure 1):87

• ID Text + ID Image (IDT –IDI ): in-distribution questions on in-distribution images. Datasets:88

ImageNet (Deng et al., 2009) (validation split) and ImageNetV2 (Recht et al., 2019).89

• ID Text + OOD Image (IDT –OODI ): in-distribution questions on out-of-distribution images.90

Datasets: Flowers102 (Nilsback & Zisserman, 2008), Caltech101 (Fei-Fei et al., 2004), Stanford91

Cars (Krause et al., 2013).92

• OOD Text + ID Image (OODT –IDI ): novel questions on in-distribution images. Dataset:93

ImageWikiQA (Zhang et al., 2024).94

• OOD Text + OOD Image (OODT –OODI ): novel questions on out-of-distribution images.95

Datasets: MMMU (Yue et al., 2024), VMCBench (Zhang et al., 2025).96

2.2 Training Recipes97

Base models. We study two widely used VLM families, Qwen2.5-VL (Bai et al., 2025) and98

LLaVA (Liu et al., 2023). Our main ablations in §3 and §4 use Qwen2.5-VL-3B; we additionally99

validate our findings on Qwen2.5-VL-7B and LLaVA-1.5-7B. For comparisons on the MLLM-CL100

benchmark in §5, we adopt LLaVA-1.5-7B to align with previous work (Zhao et al., 2025).101

Codebase and hyperparameters. We train with LLaMA-Factory (Zheng et al., 2024). Unless102

specified, we use a batch size of 16 and ablate the learning rate of {1e−5, 1e−6}. Training runs103

for one epoch on ImageNet-VQA (approximately 80,000 steps). We compare different trainable104

parameters (e.g., full-model, projector, or low-rank adaptation) and keep other settings fixed for fair105

comparison; full configurations are listed in Appendix C.106

Prompts and templates. We use the system templates provided by LLaMA-Factory for Qwen2.5-VL107

and LLaVA. All evaluations in §3 and §4 follow the multiple-choice format. To avoid formatting con-108

founding, the prompts explicitly instruct the model to output a single option letter (A–D). Illustrative109

prompt templates are included in Appendix D.1.110

3 Fine-tuning Without Forgetting: A Simple Recipe without Performance111

Trade-off112

Can a vision language model (VLM) be specialized to new tasks without erasing general capabilities?113

Using the 2×2 evaluation matrix (§2), we vary the trainable components (LLM backbone, vision114

encoder, projector), optimization method (full fine-tuning vs. LoRA), and learning rate.115
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(a) ImageNet V2 v.s ImageNet-val (b) Flowers 102, Stanford Cars, Caltech 101 v.s ImageNet-val

(c) ImageWikiQA v.s ImageNet-val (d) MMMU-val, VMCBench-dev v.s ImageNet-val

Figure 2: Single-task fine-tuning across the evaluation matrix. Each curve traces checkpoints
during fine-tuning: x-axis = ID accuracy on ImageNet validation (the fine-tuned task), y-axis =
accuracy on an ID/OOD evaluation. Layout and colors follow Figure 1. Legends show trainable
part (method, learning rate). Performance is largely maintained in IDT –OODI and OODT –OODI

with simplest regularization on parameter updata, with a notable drop only in OODT –IDI . Full
hyperparameters are in Appendix C.1.

Three consistent findings emerge: (I) with simple regularization (small learning rate or LoRA),116

forgetting on OOD images is nearly absent as ID accuracy increases; (II) avoiding forgetting does117

not reduce target-task accuracy; and (III) these patterns hold across model sizes/families, rare visual118

domains, and low-data regimes.119

3.1 Finding I: Simple Regularization Prevents (Nearly All) Forgetting120

Research question. Catastrophic forgetting is often attributed to architectural limits: specializing on121

a new task is thought to overwrite broad, pre-trained knowledge. If that were the case, the gains on122

the ID data should come with the losses on the OOD data.123

Results. In Figure 2, high-learning-rate full fine-tuning (1e-5) increases ID accuracy but substantially124

degrades OOD performance, consistent with catastrophic forgetting: relative to zero-shot, LLM125

Backbone, Full, 1e-5 yields −16.56 pp on OODT –IDI and −33.64 pp on OODT –OODI (Table 1).126

In contrast, conservative settings (small learning rate or LoRA) keep the OOD accuracy essentially127

stable as the ID accuracy increases. Restricting the magnitude and scope of parameter updates elimi-128

nates these drops: LLM Backbone, Full, 1e-6 changes are +1.06 pp (OODT –IDI ) and −1.51 pp129

(OODT –OODI ); LLM Backbone, LoRA, 1e-4 changes are +0.46 pp and −2.97 pp, respectively.130

Takeaway 1: Forgetting is not inevitable; it arises from over-optimization. Simple regular-
ization (small learning rate or parameter-efficient training) preserves capabilities.

131

3.2 Finding II: No Trade-off Between Specialization and Preservation132

Research question. Prior reports suggest a performance gap between full fine-tuning and LoRA on133

the target task. If regularization preserves OOD performance, does it cost ID accuracy?134
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Final Acc. ∆ vs. zero-shot
Trainable Part Settings Validation (%) OODT –IDI (pp) OODT –OODI (pp)
LLM Backbone Full, 1e-5 91.56 -16.56 -33.64
LLM Backbone LoRA, 1e-4 91.08 (-0.48) 0.46 -2.97
LLM Backbone Full, 1e-6 91.37 (-0.19) 1.06 -1.51
Vision Encoder Full, 1e-6 90.96 (-0.60) -1.36 0.49
Vision Encoder Full, 1e-5 91.08 (-0.48) -9.90 -2.76
Projector Full, 1e-6 86.86 (-4.70) 0.26 0.05
Projector Full, 1e-5 89.68 (-1.88) -0.64 -0.26

Table 1: ID accuracy and robustness deltas across recipes. “Final Acc” is ImageNet-VQA
validation accuracy; in parentheses we show the difference to LLM Backbone, Full, 1e-5. “∆ vs.
zero-shot” reports percentage-point change relative to the pre-trained model on OODT –IDI and
OODT –OODI . To enhance visual clarity, we use red to highlight performance degradations >3pp
and blue for changes within a ±3pp margin. Rows corresponding to settings where all results fall
within this margin are shaded gray . This suggests that most of regularization strategies mitigate
catastrophic forgetting without compromising the model’s learning capacity.

(a) Model size and family.

Model Version Validation (%) ImageNetV2 (%) ID–OOD (%) OOD–OOD (%)
Qwen2.5-VL-3B 80.11→91.37 75.29→86.72 86.80→87.87 61.82→60.31
Qwen2.5-VL-7B 83.20→92.66 78.61→88.05 90.35→91.24 62.57→62.62
LLaVA-7B 65.53→91.43 61.55→86.76 66.44→70.05 41.45→37.73

(b) Rare domains.

Dataset Validation (%) OOD–OOD (%)
ImageNet 80.11→89.88 61.82→59.48
BSCCM 18.15→84.34 61.82→61.19
PitVis 25.61→51.33 61.82→61.56

(c) Dataset size.

Dataset fraction Validation (%)
lr=1e-6 lr=1e-5

100% 91.42 91.60
25% 90.18 89.08
2.5% 86.99 87.46
0.25% 82.03 81.82

Table 2: Generalization of the recipe. The default setting referenced in §3.2 is shaded in gray . The
results show that all findings in §3.1 are consistent across: (a) different model sizes and families; (b)
rare domains including surgery and microscopy; (c) different fine-tuning datasets size; Full training
details are in Appendix C.2.

Results. Table 1 shows that the regularized settings match the aggressive baseline on the ID task while135

avoiding OOD forgetting. Validation accuracy differences relative to LLM Backbone, Full, 1e-5136

are ≤ 0.6pp for LLM Backbone, Full, 1e-6 (−0.19pp), LLM Backbone, LoRA, 1e-4 (−0.48pp),137

and Vision Encoder, Full, 1e-6 (−0.60pp). Projector-only fine-tuning is the sole exception (e.g.,138

−4.70pp at 1e-6) and is therefore not recommended when target-task accuracy is critical.139

Takeaway 2: Specialization and preservation are not at odds: Under regularized fine-tuning,
ID and OOD performance do not trade off.

140

3.3 Finding III: Consistency across Models, Domains, and Data Regimes141

Research question. If the recipe is principled, it should transfer across architectures, uncommon142

visual domains, and data-scarce settings.143

Results. Models. The trends persist across sizes and families (Table 2a): Qwen2.5-VL-3B improves144

ImageNet validation 80.11→91.37 with OODT –OODI 61.82→60.31 (−1.51pp); Qwen2.5-VL-7B145

improves 83.20→ 92.66 with OODT –OODI +0.05pp; LLaVA-1.5-7B improves 65.53→ 91.43146

with a modest OODT –OODI drop (−3.72pp).147
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Figure 3: ImageWikiQA with class-label distractors. Left: an example transformation where one
distractor is replaced by the correct class name. Right: accuracy with/without a class-name distractor,
before fine-tuning and after fine-tuning, using LLM Backbone, Full, 1e-6. The substantial decrease
in accuracy and the concurrent increase in “mischoice on class name” after fine-tuning indicate that
the model ceases to follow prompt instructions, instead defaulting to outputting the choice with
class label directly. Therefore, the primary issue is task-specific overfitting rather than catastrophic
forgetting.

Rare domains. The same recipe holds for microscopy (BSCCM (Pinkard et al., 2024)) and surgical148

(PitVis (Das et al., 2025)) data (Table 2b), keeping OODT –OODI within ≤2.5pp while yielding149

large ID gains (+66pp on BSCCM, +26pp on PitVis).150

Data size. Even at 0.25% of the data, a small learning rate (1e-6) remains competitive in the ID task151

(82.03 vs. 81.82 at 1e-5; Table 2c).152

Takeaway 3: These findings generalize across architectures, domains, and data regimes,
implying that forgetting in VLM fine-tuning is generally not a concern.

153

4 When OOD Text Meets ID Images: Diagnosis and a Simple Remedy154

Our 2×2 evaluation reveals a single weak spot: OODT –IDI (novel text over familiar images),155

exemplified by ImageWikiQA. In contrast to IDT –OODI and OODT –OODI , where regularization156

preserves performance, Figure 2c shows a clear drop on OOD text with ID images. We (i) diagnose157

this failure as task-specific overfitting in the ID image distribution and (ii) demonstrate that a simple158

data-hybrid recipe prevents it with minimal impact on the target task.159

4.1 Finding IV: Forgetting Appears Only with OOD Text over ID Images160

Research question. In OODT –IDI , the image distribution matches fine-tuning (ID), but the text161

distribution shifts. The test set, ImageWikiQA (Zhang et al., 2024), asks the model to link an162

ImageNet image to external knowledge (e.g., the habitat of a species or the use of an artifact) rather163

than to perform the ImageNet classification task. This setup closely parallels standard LLM fine-164

tuning, where inputs remain in-domain while the instruction distribution changes. Prior work on165

LLMs has shown that single-task fine-tuning can impair other capabilities and encourage instruction-166

ignoring (Luo et al., 2025; Ung et al., 2024; Lyu et al., 2024).167

Results. Even with regularized fine-tuning (e.g., small learning rates or LoRA), ImageWikiQA168

performance drops relative to zero-shot (Figure 2c). For example, the LLM Backbone, Full, 1e-6169

configuration falls from 53.35% to 42.95% (−10.40pp) after fine-tuning on ImageNet. This contrasts170

sharply with IDT –OODI and OODT –OODI , where performance remains stable under the same171

settings.172
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Figure 4: Ablations for data-hybrid training. (a) Mixing ImageNet-VQA with Flowers102, OCR-
VQA, or LLaVA-665K (each at 50% of training instances). (b) Varying the LLaVA-665K mix from
0% to 70%; larger, darker markers denote higher ratios. Augmenting the training data with diverse
textual inputs helps to alleviate task-specific overfitting. Consequently, this data-hybrid method
improves model robustness in the OODT –IDI setting with minimal trade-offs for ID performance.
Training details are in Appendix C.3.

Takeaway 4: The sole exception in our study is the ID-image/OOD-text setting, where
forgetting persists and is not remedied by standard regularized fine-tuning, mirroring findings
from LLM fine-tuning.

173

4.2 Finding V: OODT –IDI Forgetting Arises from Task-Specific Overfitting174

Research question. We hypothesize that the model becomes over-attuned to the “classify-this-image”175

template when trained on ID images. To test this, we construct ImageWikiQA with class-label176

distractors by replacing one standard distractor with the correct class label (Figure 3, left). If the177

model has memorized the task, it should over-select the class label rather than the correct answer.178

Results. Using the LLM Backbone, Full, 1e-6 model, we observe severe task-specific overfitting:179

before fine-tuning, accuracy drops moderately when the class-name distractor is present (53.25% →180

42.05%, −11.2 pp); after fine-tuning, the drop is drastic (42.95% → 5.55%, −37.4 pp) (Figure 3,181

right). The much larger change after fine-tuning indicates a learned bias to “pick the class label,”,182

that is, prompt-ignoring rather than knowledge deletion.183

Takeaway 5: Forgetting in the ID-image/OOD-text case stems from task-specific overfitting:
the model memorizes the image-specific classification template during fine-tuning and ignores
the prompt.

184

4.3 Finding VI: Data-Hybrid Training Prevents Task Overfitting185

Research question. If overfitting arises from repeatedly pairing ID images with a single classification186

template, mixing in diverse tasks should force the model to attend to the prompt and avoid the187

shortcut. We therefore ablate both dataset type and mixing ratio.188

Results. Dataset type (50% mix). Figure 4a compares mixing ImageNet-VQA with: (i) Flowers102189

(ID-style text on OOD images), (ii) OCR-VQA (OOD text), and (iii) LLaVA-665K (broad OOD190

instructions). Hybrid training consistently improves OODT –IDI while keeping ImageNet-VQA191

strong. Flowers102 yields only marginal gains on ImageWikiQA (another classification-style dataset,192

hence weak against task overfitting). OCR-VQA helps more by requiring text-based reasoning.193

LLaVA-665K performs best, likely due to its breadth of instructions and reasoning styles.194

Mixing ratio (with LLaVA-665K). Figure 4b shows that increasing the proportion of LLaVA-665K to195

50% keeps ImageNet-VQA within ∼1 pp of the pure-ImageNet condition while markedly improving196
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ImageWikiQA; at 70%, we see no further OODT –IDI gains. This suggests that the effect is not just197

“more data,” but specifically task diversity mitigating overfitting.198

Finally, the effectiveness of co-training with OCR-VQA and LLaVA-665K indicates that, although199

overfitting manifests on ID images, the remedy does not require additional ID images. Greater task200

diversity alone is sufficient to counteract the bias, regardless of the image distribution.201

Takeaway 6: Data-hybrid fine-tuning—mixing diverse instruction data (without requiring
ID images)—preserves ID-task accuracy while overcoming ID-image/OOD-text forgetting.

202

5 From Single Task to Continual Learning: Simple Strategies Rival SOTA203

Our single-task study shows that catastrophic forgetting can be substantially reduced with regulariza-204

tion (§3) and data hybrid training (§4). The natural question is whether these observations carry over205

from one task to a sequence of tasks. We therefore turn to continual learning, where a model learns206

tasks one after another while preserving performance on earlier tasks. Perhaps unexpectedly, we find207

that very simple updates, either LoRA or a small learning rate, match or outperform prior methods208

purpose-built for continual learning, both with and without a replay buffer.209

5.1 Benchmark and Evaluation210

Benchmark. We use the VLM continual learning benchmark introduced by MLLM-CL (Zhao et al.,211

2025), spanning five domains in a fixed order: Remote Sensing → Medicine → Autonomous Driving212

→ Science → Finance. See §B.3 for more details.213

Evaluation. We report two standard metrics: Last (performance on each task after training on the214

full sequence) and Average (mean performance across tasks at the time each task is learned). Details215

appear in §D.4.216

Experimental setup. For comparability, we follow the MLLM-CL recipe exactly (optimizer, prompts,217

and models), adopt their evaluation protocol, and use the same dataset splits. The zero-shot row in218

Table 3 provides the pre-training baseline before any fine-tuning.219

5.2 Finding VII: Simple Strategies Compete with SOTA in Continual Learning220

Method. We evaluate two simple continual learning strategies: incremental LoRA (IncLoRA) and221

sequential full fine-tuning (SeqFull). For IncLoRA, we train a new LoRA adapter for each task222

and, after training, merge the adapter weights into the base model, which then initializes the next223

task. SeqFull simply fine-tunes all model parameters for each task in sequence, without additional224

mechanisms.225

Results. With a replay buffer (a bounded memory that retains a small sample of past tasks’ examples226

and replays them alongside the current task’s data to reduce catastrophic forgetting), many prior227

methods introduce sophisticated components to control forgetting, yet our simple approaches achieve228

performance comparable to state-of-the-art techniques. For example, SeqFull attains 78.94% on RS229

under the Last metric, closely matching MR-LoRA (79.87%) while outperforming it in Fin.230

The gap widens in the more restrictive no-replay setting, which is important for privacy-sensitive231

applications (e.g., medicine) where replay is infeasible. Except for the Average metric in the first task232

(RS) and the Last metric on the final task (Fin)—both of which do not reflect forgetting—IncLoRA233

and SeqFull outperform all competing methods in the remaining eight comparisons, establishing new234

state-of-the-art results in most domains.235

Takeaway 7: Simple update policies rival or exceed specialized continual-learning methods,
work in privacy-sensitive no-replay settings, and avoid additional complexity.

236

6 Related Work237

Vision language models. Vision language models (VLMs) such as Flamingo (Alayrac et al., 2022),238

LLaVA (Liu et al., 2023), and GPT-4V (Achiam et al., 2023) demonstrate strong visual–linguistic239
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Method RS (%) Med (%) AD (%) Sci (%) Fin (%)
Last Average Last Average Last Average Last Average Last Average

Zero-shot 32.29 - 28.28 - 15.59 - 35.55 - 62.56 -

w/ replay buffer
LoRA 29.57 80.87 29.19 58.60 7.09 38.95 19.55 36.41 63.60 36.78
MoELoRA 40.23 80.00 23.58 56.91 5.19 34.69 18.35 31.70 74.89 31.36
O-LoRA 76.21 80.13 51.34 70.23 36.50 61.35 42.64 53.34 90.20 59.38
L2P 75.21 80.09 38.50 68.64 32.31 54.79 41.05 48.68 88.05 55.02
ModalPrompt 64.77 80.11 38.60 60.99 20.61 50.67 29.98 41.97 88.22 48.44
HiDe-LLaVA 75.36 81.51 39.23 62.37 37.17 49.37 45.02 50.61 81.89 55.73
MR-LoRA 79.87 80.82 62.71 72.19 51.89 65.41 52.48 62.52 89.69 67.31
IncLoRA (Ours) 77.43 78.30 62.57 71.93 52.00 65.38 52.48 62.12 90.41 66.98
SeqFull (Ours) 78.94 75.62 62.45 72.16 51.50 65.77 52.08 62.32 91.21 67.24

w/o replay buffer
LoRA 26.75 80.72 25.76 59.68 0.79 40.51 18.69 18.64 70.44 28.49
MoELoRA 21.42 80.05 25.29 57.26 0.79 37.03 17.01 19.65 60.34 24.97
O-LoRA 62.68 80.22 35.17 67.56 16.93 51.51 34.44 44.28 92.16 48.28
L2P 63.82 80.02 34.63 68.86 22.96 51.57 38.58 45.12 92.98 50.59
ModalPrompt 65.99 80.11 37.35 59.66 23.27 46.86 37.61 42.97 87.60 50.36
HiDe-LLaVA 41.17 80.91 30.33 65.47 18.73 39.78 37.08 32.92 92.21 43.90
IncLoRA (Ours) 77.20 77.59 58.97 71.59 51.43 64.40 47.44 60.22 90.24 65.06
SeqFull (Ours) 79.10 77.06 61.22 72.75 52.36 66.09 50.52 62.49 91.29 67.44

Table 3: Continual learning on the MLLM-CL benchmark. We highlight best and second best
separately for with and without replay. Our simple methods (IncLoRA, SeqFull) are competitive with
specialized approaches under replay, and dominate most columns without replay.

understanding and reasoning (Xu et al., 2024). Recent work has emphasized scaling, architectural240

refinements, and training strategies to improve zero-/few-shot generalization Tong et al. (2024); Chen241

et al. (2024c); Bai et al. (2025). In this work, we study how to adapt strong base VLMs to diverse242

downstream tasks while preserving zero-shot performance, a problem that is arguably more acute for243

VLMs than for LLMs, yet comparatively underexplored.244

Catastrophic forgetting. Catastrophic forgetting is the loss of previously acquired knowledge when245

a model is trained on new tasks (Kemker et al., 2018; Chen & Liu, 2022; Goodfellow et al., 2013).246

In LLMs, catastrophic forgetting has been extensively studied—empirically (Kalajdzievski, 2024;247

Scialom et al., 2022), theoretically (Shuttleworth et al., 2024), methodologically (Chen et al., 2023;248

Li et al., 2025), and from an evaluation point of view (Ung et al., 2024). In contrast, catastrophic249

forgetting in VLMs has received less attention (Zhai et al., 2024). We address this gap with a250

systematic study of catastrophic forgetting in VLMs and find that, under simple fine-tuning recipes,251

VLMs exhibit substantial robustness to forgetting.252

Continual learning. Continual learning aims to acquire new capabilities without erasing prior253

knowledge (Wang et al., 2024; Chen & Liu, 2022; Hadsell et al., 2020). It is critical in real-world254

settings where data distributions and taxonomies evolve, centralized retraining may be impractical255

due to cost or privacy, and preserving generalist abilities is important for safety and robustness. To256

mitigate forgetting, previous work explores replay, regularization, and parameter isolation approaches,257

but these often add considerable compute, memory, and engineering complexity (Zhao et al., 2025;258

Van de Ven & Tolias, 2019). Although continual learning for VLMs has begun to be explored (Chen259

et al., 2024a; Huang et al., 2024), we show that—with appropriate training recipes—forgetting can260

be largely mitigated, yielding state-of-the-art results with simple and compute-efficient methods.261

7 Conclusion262

While the paper does not introduce a new algorithm, it reframes how to fine-tune vision-language263

models. We find that concerns about catastrophic forgetting are often overstated. In practice,264

simple recipes yield specialized models that remain strong generalists. Our analysis isolates a single265

failure mode: overfitting to linguistic patterns rather than visual content. We address this with a266

straightforward hybrid-data mix. On a challenging continual learning benchmark, this recipe performs267

on par with or better than more complex alternatives. We hope these results encourage simpler, more268

transparent adaptation methods and provide a stable foundation for future work.269
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A Reproducibility statement394

To ensure the full reproducibility of our work, we provide our code, adapted datasets, and detailed395

hyperparameter specifications, which include all scripts to generate the necessary configuration files396

and perform the training and evaluations presented in this paper.397

Code: https://anonymous.4open.science/r/VLM-Forgetting-C1CE/.398

Datasets: https://huggingface.co/datasets/VLM-Forgetting/vlm-forgetting-datasets.399

Hyperparameters: Appendix C.400

B Datasets Details401

B.1 2x2 Evaluation Matrix Details402

Classification Datasets (Deng et al., 2009; Nilsback & Zisserman, 2008; Fei-Fei et al., 2004;403

Krause et al., 2013). For all classification datasets in the evaluation matrix, we follow the same404

protocol to turn them into multiple-choice questions. The question text are fixed to What is the class405

of this image? Please answer with a single letter (A, B, C, or D)., where the formatting instructions406

are concatenated to ensure the evaluation result will not be greatly influenced by output format of the407

model.408

To increase the difficulty of the task and test the model’s fine-grained discrimination ability, distractors409

are strategically selected. We use CLIP (Radford et al., 2021) to identify the five incorrect class410

labels with the highest semantic similarity scores to the image. From this pool of five candidates, we411

randomly sample three to serve as distractors. This methodology ensures that incorrect options are412

semantically plausible, requiring the model to perform a more precise identification. By fine-tuning on413

ImageNet-VQA, the model is trained to perform a standard, in-distribution (ID) image classification414

task.415

ImageWikiQA (Zhang et al., 2024). Since the ImageWikiQA dataset is already in a format of416

multple-choice question, we directly use adapt it.417

MMMU and VMCBench (Yue et al., 2024; Zhang et al., 2025). Since the MMMU and VM-418

CBench datasets are already in a format of multple-choice question, we directly use adapt them. For419

all the numbers reported in this paper, we use the MMMU-val split for the evaluation.420

B.2 Rare Datasets Details421

BSCCM. We use the original BSCCM (Pinkard et al., 2024) dataset and follow the official guide at422

https://github.com/Waller-Lab/BSCCM/blob/main/Getting_started.ipynb to create a423

classification question-answering dataset. We collect images from all 23 available channels, including:424

• Brightfield425

• DF_50, DF_50_Bottom, DF_50_Right,426

• DF_55,427

• DF_60, DF_60_Bottom, DF_60_Right,428

• DF_65,429

• DF_70, DF_70_Bottom, DF_70_Right,430

• DF_75,431

• DF_80, DF_80_Bottom, DF_80_Right,432

• DF_85,433

• DF_90,434

• DPC_Bottom, DPC_Left, DPC_Right, DPC_Top,435

• LED119436

There are 10 classes in total, and for each question we ask the model to choose from 6 possible437

choices. The 5 distractors are randomly sampled from all possible choices and we provide the list of438

classes as follows:439
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1. neutrophil440

2. nk_lymphocyte441

3. eosinophil442

4. lymphocyte443

5. basophil444

6. monocyte445

7. plasma_cell446

8. blast_cell447

9. b_lymphocyte448

10. t_lymphocyte449

To increase the type of questions, we provide multiple choices of prompt while all of them are sharing450

the same semantic meaning.451

• What type of white blood cell is shown in this {channel_type} microscopy image?452

• Based on the morphological features visible in this {channel_type} image, what is the cell type?453

• What is the most likely classification of this blood cell captured with {channel_type} illumination?454

• Which white blood cell type does this {channel_type} image represent?455

• What type of immune cell is depicted in this {channel_type} microscopy image?456

• Looking at the cell morphology in this {channel_type} image, which cell type is this?457

• What is the identity of this cell captured using {channel_type} in LED array microscopy?458

We provide the following samples in Table 4 from curated dataset. During training and inference, a459

prompt of "Please answer with a single letter (A, B, C, D, E or F)" is appended at the end to avoid the460

influence from model response formatting.461

Table 4: VQA Dataset Curated from BSCCM
Image Question Choices

What is the identity of this cell captured
using brightfield in LED array microscopy?

A. eosinophil
B. neutrophil
C. t_lymphocyte
D. plasma_cell
E. debris_or_artifact
F. unclassified_cell

What type of white blood cell is shown in
this dark field (50 illumination) microscopy
image?

A. plasma_cell
B. nk_lymphocyte
C. b_lymphocyte
D. neutrophil
E. unclassified_cell
F. debris_or_artifact

Based on the morphological features visi-
ble in this differential phase contrast (left
illumination) image, what is the cell type?

A. basophil
B. unclassified_cell
C. debris_or_artifact
D. t_lymphocyte
E. blast_cell
F. lymphocyte

PitVis. We use the PitVis Challenge (Das et al., 2025) to create a classification dataset aiming to462

categorize the frame sampled from video according to the surgical instrument appeared. We fix the463

sample rate to be 1 out of every 6 frames. The total 21 instrument classes are as follows.464

Fixed choices:465

1. no_secondary_instrument466

2. out_of_patient467

3. no_visible_instrument/occluded_image_inside_patient468

Other choices:469
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1. bipolar_forceps470

2. cottle471

3. cup_forceps472

4. dural_scissors473

5. freer_elevator474

6. haemostatic_foam475

7. irrigation_syringe476

8. kerrisons477

9. micro_doppler478

10. nasal_cutting_forceps479

11. pituitary_rongeurs480

12. retractable_knife481

13. ring_curette482

14. spatula_dissector483

15. stealth_pointer484

16. suction485

17. surgical_drill486

18. tissue_glue487

We still ask the model to choose from 6 possible choices. For every question, there will be 3 fixed488

choices to be no_secondary_instrument, out_of_patient, no_visible_instrument and we will randomly489

sample 2 or 3 distractors from all other classes (2 if the ground truth is not one of the 3 fixed classes).490

We provide the following samples in Table 5 from curated dataset. During training and inference, a491

prompt of "Please answer with a single letter (A, B, C, D, E or F)" is appended at the end to avoid the492

influence from model response formatting.493

Table 5: VQA Dataset Curated from BSCCM
Image Question Choices

What is the
major surgical
instrument be-
ing used in
this frame?

A. tissue_glue
B. retractable_knife
C. haemostatic_foam
D. no_secondary_instrument
E. out_of_patient
F. no_visible_instrument/occluded_image_inside_patient

What is the
major surgical
instrument be-
ing used in
this frame?

A. plasma_cell
B. nk_lymphocyte
C. b_lymphocyte
D. neutrophil
E. unclassified_cell
F. debris_or_artifact

What is the
major surgical
instrument be-
ing used in
this frame?

A. out_of_patient
B. ring_curette
C. no_visible_instrument/occluded_image_inside_patient
D. freer_elevator
E. micro_doppler
F. no_secondary_instrument

B.3 MLLM-CL Details494

This sequential learning benchmark MLLM-CL contains:495

• RS: Remote Sensing Data RSVQA (60k Training Data)496

• Med:Medical Data PathVQA (23k Training Data)497

• AD:Auto-Driving Data DriveLM (60k Training Data)498

• Sci:Science Data AI2D, SciVerse, MapQA, TQA (33k Training Data)499

• Fin:Financial Data StockQA (60k Training Data).500

More details about the dataset can be found in MLLM-CL paper (Zhao et al., 2025). We adapt the501

number reported in original MLLM-CL paper, including LoRA Hu et al. (2022), MoELoRA Chen502

et al. (2024a), O-LoRA Wang et al. (2023), L2P Wang et al. (2022), ModalPrompt Zeng et al. (2024),503

HiDe-LLaVA* Guo et al. (2025), MR-LoRA Zhao et al. (2025)504
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C Training Hyper-parameters and Details505

C.1 Training Hyper-parameters for Figure 2506

In this section, we align the table caption with Figure 2.507

Config Value
Optimizer AdamW
Batch Size 32
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−4

Training Steps 40000
LoRA Rank 8
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(a) LLM Backbone (LoRA, 1e-4)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−5

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(b) LLM Backbone (Full, 1e-5)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(c) LLM Backbone (Full, 1e-6)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−5

Training Steps 80000
Freeze Vision Tower False
Freeze Multi Modal Projector True
Freeze Language Model True

(d) Vision Encoder (Full, 1e-5)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower False
Freeze Multi Modal Projector True
Freeze Language Model True

(e) Vision Encoder (Full, 1e-6)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−5

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector False
Freeze Language Model True

(f) Projector (Full, 1e-5)

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector False
Freeze Language Model True

(g) Projector (Full, 1e-6)
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C.2 Training Hyper-parameters for Table 2508

In the ablation across different setting, we study the fine-tuning recipt of full fine-tuning LLM509

backbone. Since LoRA fine-tuning or fine-tuning other parts is more regularized, doing validation510

study on the simplest fine-tuning LLM backbone is the most convincible choice.511

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(a) Configuration for ablation study across model size
and model family, all the 3 models share the above
hyper-parameters.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 20000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(b) Configuration for ablation study across rare
datasets, all the 3 datasets share the above hyper-
parameters.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule linear
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 2000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(c) Ablation study across dataset size, 2000 training
steps corresponding to 2.5% dataset, the warmup steps
is 2000*0.1=200. This configuration produce the re-
sults of 0.25% and 2.5%.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule linear
Warmup Ratio 0.0025
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(d) Ablation study across dataset size, 80000 training
steps corresponding to the 100% dataset, the warmup
steps is 80000*0.0025=200. This configuration pro-
duce the results of 25% and 100%.

C.3 Training Hyper-parameters for Figure 4512

In this part, we still use full fine-tuning LLM backbone (learning rate 1e-6) as the default setting for513

the same reason with Appendix C.2. For hybriding different datasets, we use a fixed hybriding ratio514

of 0.5. The datasets will be oversampling if all the samples has been used at least once.515

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Training Steps 80000
Freeze Vision Tower True
Freeze Multi Modal Projector True
Freeze Language Model False

(a) Configuration for ablation study across hybriding different datasets and different hybrid ratio, all experiments
share the above hyper-parameters.
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C.4 Training Hyper-parameters for Table 3516

We follow the configuration from MLLM-CL(Zhao et al., 2025) to achiece a fair comparison with517

their results.518

Config Value
Optimizer AdamW
Batch Size 64
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 8× 10−5

Epoch for RS 1
Epoch for Med 3
Epoch for AD 1
Epoch for Sci 2
Epoch for Fin 1
LoRA rank 8

(a) Hyperparameters of IncLoRA in MLLM-CL
Benchmark w/o replay buffer.

Config Value
Optimizer AdamW
Batch Size 64
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 8× 10−5

Epoch for RS 1
Epoch for Med 3
Epoch for AD 1
Epoch for Sci 2
Epoch for Fin 1
LoRA rank 16

(b) Hyperparameters of IncLoRA in MLLM-CL
Benchmark w/ replay buffer.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Epoch for RS 1
Epoch for Med 3
Epoch for AD 1
Epoch for Sci 2
Epoch for Fin 1

(c) Hyperparameters of SeqFull in MLLM-CL Bench-
mark w/o replay buffer.

Config Value
Optimizer AdamW
Batch Size 16
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1× 10−6

Epoch for RS 1
Epoch for Med 3
Epoch for AD 1
Epoch for Sci 2
Epoch for Fin 1

(d) Hyperparameters of SeqFull in MLLM-CL Bench-
mark w/ replay buffer.

C.5 Replay Buffer Implementation519

We exactly follow the setting in MLLM-CL (Zhao et al., 2025), specifically, for each task of RS,520

Med, AD, Sci, Fin, we collect a replay data buffer of size 20 samples. Then, for every downstream521

sequential fine-tuning, we directly hybrid all the replay data of previous tasks into the current training522

data. No over-sampling mechanism is adapted.523

D Evaluation Protocols524

D.1 Prompt Templates525

Qwen2.5-VL. We use the default LLaMA-Factory prompt, which is also the official prompt from526

Qwen2.5-VL repository.527

System Prompt

user
You are a helpful assistant. {User’s prompt}
assistant
{Model’s response}

528
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LLaVA-1.5. We use the default LLaMA-Factory prompt, which is also the official prompt from529

LLaVA-1.5 repository.530

System Prompt

A chat between a curious user and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the user’s questions.
USER: {User’s prompt}
ASSISTANT: {Model’s response}

531

D.2 Evaluation of 2x2 Evaluation Matrix532

Result Matcher. We use a result_matcher.py file to evaluate the answer accuracy of predictions.533

All the questions in this part are multiple-choice questions and the answer is a single letter. All534

predictions are stored in a json file f, each entry has a predict key containing the model’s output535

to the question and a label key containing a single letter as the ground truth. The logic is as follows:536

1 correct_predictions = 0537

2 total_predictions = len(f)538

3 for entry in f:539

4 predict = str(entry[’predict ’]).strip()540

5 label = str(entry[’label ’]).strip()541

6542

7 if ":" in predict:543

8 predict = predict.split(":")[-1]. strip()544

9545

10 predict = predict.upper ()546

11 label = label.upper ()547

12548

13 if predict == label or predict.startswith(f"{label}."):549

14 correct_predictions += 1550

15551

16 accuracy = correct_predictions / total_predictions552

Listing 1: Pseudo code snippet for result_matcher.py.

This above script is adapted for evaluations curated from ImageNet, Flowers 102, Caltech 101,553

Stanford Cars, ImageWikiQA.554

VLMEvalKit. For evaluation of MMMU and VMCBench, we directly use the code in555

VLMEvalKit (Duan et al., 2024) to get the results.556

D.3 Evaluation of Rare Datasets557

Since the questions we curated from BSCCM and PitVis are all multiple-choice questions, we use558

the same protocols as Appendix D.2, adapting the Result Matcher code in Listing 1.559

D.4 Evaluation of MLLM-CL560

Last and Average. Last is the accuracy of all seen tasks after learning the last task. Average is the561

average accuracy of each task during the training process, i.e., Average =
∑t

i=1 acci, where t is the562

task that the model is learning, acci is the accuracy of the i-th previous learned task.563

Result Matching. For turning the generation result, we directly adapt the script from MLLM-CL564

to ensure the fair comparison. The only change is in the Sci script. The original script use the image565

storage path to distinguish different kind of types of questions, we find that this is detecting the566

multiple-choice question with one single choice letter as the ground truth. Thus, we replace the judge567

condition of image.split(’/’)[-1].split(’_’)[0]=="AI2D"orimage.split(’/’)[-1].s568

plit(’_’)[0]=="TQA"orimage.split(’/’)[-1].split(’_’)[0]=="VQA"orimage.split569

(’/’)[-1].split(’_’)[0]=="SciVerse" with len(gt) == 1.570
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Evaluation code snippet for evaluating RS and AD. All the namings follows Appendix D.2.571

1 right = 0572

2 total = len(f)573

3 for entry in f:574

4 ground_truth = entry[’label’]575

5 if ’Unanswerable ’ in entry[’predict ’] :576

6 continue577

7578

8 pred: str = entry[’predict ’]. lower()579

9 gt: str = ground_truth.lower()580

10581

11 score = 0582

12 if ’ ’ in gt:583

13 if gt in pred:584

14 right += 1585

15 else:586

16 gt = gt.replace(’.’, ’’)587

17 if ’ ’ in pred:588

18 if (’ ’+gt) in pred or (gt+’ ’) in pred or (gt+’.’) in589

pred or (gt+’,’) in pred:590

19 right += 1591

20 else:592

21 if gt in pred:593

22 right += 1594

23595

24 accuracy = right / total596

Listing 2: Pseudo code snippet for evaluating RS and AD.

Evaluation code snippet for evaluating Med. All the namings follows Appendix D.2.597

1 right = 0598

2 total = len(f)599

3 for entry in f:600

4 ground_truth = entry[’label’]. lower()601

5 pred = entry[’predict ’].lower()602

6 if ’Unanswerable ’ in entry[’predict ’] :603

7 continue604

8605

9 if ground_truth in pred:606

10 right += 1607

11608

12 accuracy = right / total609

Listing 3: Pseudo code snippet for evaluating Med.

Evaluation code snippet for evaluating Sci. All the namings follows Appendix D.2, the prompt610

key containing the question description.611

1 right = 0612

2 total = len(f)613

3 for entry in f:614

4 ground_truth = entry[’label’]. strip()615

5 problem = entry[’prompt ’]616

6617

7 pred: str = entry[’predict ’]. strip().lower ().replace(’.’, ’’).618

replace(’,’, ’’).replace(’neither ’, ’no’)619

8 gt: str = ground_truth.strip().lower ().replace(’.’, ’’).replace(’620

,’, ’’).replace(’neither ’, ’no’)621

9622

10 if len(gt) == 1:623

11 if gt == pred:624

12 right += 1625

13 else:626
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14 if ’Which states ’ in problem:627

15 gt_list = gt.split(’,’)628

16 len_gt = len(gt_list)629

17 pred_map_list = pred.split(’,’)630

18631

19 count = 0632

20 for gt in gt_list:633

21 if gt in pred_map_list:634

22 count += 1635

23 right += count / len_gt636

24 elif gt in pred or pred in gt:637

25 right += 1638

26639

27 accuracy = right / total640

Listing 4: Pseudo code snippet for evaluating Sci.

Evaluation code snippet for evaluating Fin. All the namings follows Appendix D.2.641

1 right = 0642

2 total = len(f)643

3 for entry in f:644

4 ground_truth = entry[’label’]645

5646

6 pred: str = entry[’predict ’]. lower().replace(’ ’, ’’).replace(’.’,647

’’)648

7 gt: str = ground_truth.lower()649

8 score = 0650

9 if gt == pred:651

10 right += 1652

11653

12 accuracy = right / total654

Listing 5: Pseudo code snippet for evaluating Fin.
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