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Abstract

This paper does not propose a new method; rather, we find that simple adjustments
of the fine-tuning recipes of vision language models (VLM) are sufficient to mitigate
catastrophic forgetting. Using visual question answering tasks, we design a 2x2
experimental framework to assess model performance across in-distribution and
out-of-distribution image and text inputs. Our results show that appropriate regular-
ization, such as constraining the number of trainable parameters or adopting a low
learning rate, effectively prevents forgetting when dealing with out-of-distribution
images. However, we uncover a distinct form of forgetting in settings with in-
distribution images and out-of-distribution text. We attribute this forgetting as
task-specific overfitting and address this issue by introducing a data-hybrid train-
ing strategy that combines datasets and tasks. Finally, we demonstrate that this
approach naturally extends to continual learning, outperforming existing methods
without the need for complex auxiliary mechanisms. In general, our findings
challenge the prevailing assumptions by highlighting the inherent robustness of
VLMs and providing practical guidelines for adapting them while preserving their
general-purpose capabilities.

1 Introduction

The remarkable success of vision language models (VLMs) in general-purpose visual reasoning
(Alayrac et al.|[2022; [Liu et al.,|2023} |/Achiam et al.,2023) has spurred significant interest in adapting
them to specialized downstream applications. Compared to large language models (LLMs), VLM
fine-tuning is not merely beneficial, but often necessary, as visual data presents distinct challenges
compared to text. Visual inputs are exceptionally high-dimensional, and many specialized domains
are poorly represented in the web-scale data used for pre-training. Consequently, out-of-the-box
VLMs can struggle in critical applications, whether it is a robot not able to generalize to unseen
rooms (Shi et al.| [2025)), a web agent misinterpreting novel screenshot layouts (Xie et al., 2024, or a
biological application unable to identify specific cell types (Burgess et al., [2025).

However, the prevailing wisdom suggests that fine-tuning VLMs is risky due to catastrophic forgetting,
a phenomenon in which specialization on a new task severely degrades a model’s general capabilities
(Zhai et al., [2024; Shuttleworth et al., |2024). To address this, previous work has proposed a suite
of complex solutions, ranging from sophisticated regularization schemes and parameter isolation
techniques to intricate methods (Wang et al., 2023 |Shuttleworth et al., [2024; |Chen et al., 2023}
Li et al.| 2025). These approaches often introduce significant architectural or training overhead,
reinforcing the notion that preserving general VLM knowledge is an inherently difficult problem
(McCloskey & Cohenl [1989; |Andreassen et al., [2021]).

Surprisingly, our rigorous and systematic study reveals that for VLMs, catastrophic forgetting is
largely not a problem. We fine-tune state-of-the-art VLMs, Qwen2.5-VL-3B (Bai et al.,[2025)), on
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Figure 1: Evaluation matrix. A 2x?2 design crossing fext and image. In this work, for both text and
images, we define in-distribution (ID) data as samples drawn from the same probability distribution
as the training set. Conversely, out-of-distribution (OOD) data originates from a distribution not
encountered during training; during evaluation, we report average accuracy within each quadrant.
This setup allows us to systematically evaluate a comprehensive range of training and evaluation
scenarios. Further details on the datasets are provided in Appendix@

the ImageNet image classification task and evaluate them on a comprehensive 2x2 matrix, testing
performance on both in-distribution (ID) and out-of-distribution (OOD) image and text inputs
(§2). Our central finding is that with a simple and proper fine-tuning recipe, such as using a low
learning rate or employing parameter-efficient fine-tuning, VLMs maintain their robust general-
purpose performance, especially when handling OOD visual inputs (§3.1] §3.2). We verify that this
conclusion holds across various VLM architectures, including LLaVA1.5-7B (Liu et al.L and
Qwen2.5-VL-7B, as well as in extremely OOD fine-tuning domains, such as surgery and microscopy,
challenging the idea that a trade-off between specialization and generalization is inevitable (§3.3).

However, our investigation revealed one specific and important failure mode (§4.1)): forgetting occurs
on tasks involving ID images paired with OOD text (e.g., the same ImageNet image but with different
questions about the objects than classification). We determine that this scenario reduces the problem
to a uni-modal language task; since the images are familiar, the model’s behavior is dictated by its
language component. Here, the model overfits to the linguistic patterns of the training prompts and
fails to follow new instructions at inference time, which we call task-specific overfitting (§4.2). We
demonstrate that this issue can be resolved with a simple data-hybrid training strategy, which involves
mixing a small amount of general-purpose data with the task-specific fine-tuning dataset to prevent
this narrow overfitting (§4.3).

Armed with this complete understanding of VLM fine-tuning, we extend our findings from single
fine-tuning to the challenging continual learning setting (Luo et al., 2025} [Chen et al.l [2024b). In
the newly created continual learning benchmark, which requires the VLM to learn five challenging
remote sensing, medical, autonomous driving, science, and finance knowledge, we show that our
straightforward approach allows VLMs to sequentially learn new tasks while preserving prior knowl-
edge (§0)), outperforming all complex methods that rely on mechanisms like data replay buffers
2025). This result underscores that the intrinsic capacity of VLM:s for continual learning is
much greater than previously understood.

Although this paper does not introduce novel technical methods, its primary contribution is to reframe
the community’s understanding of VLM adaptation. We demonstrate that the perceived threat of
catastrophic forgetting has been overstated and that effective, robust fine-tuning can be achieved
with a remarkably simple recipe. We hope these findings encourage practitioners to move beyond
unnecessarily complex solutions and adopt this parsimonious approach to unlock the full potential of
VLMs in diverse real-world applications.
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2 VLM Fine-tuning: Evaluation Protocols and Training Recipes

This section specifies how we evaluate and how we fine-tune vision—-language models (VLMs). We
first define a controlled protocol built around a 2 x2 distribution shift matrix, then describe the models,
training setup, and prompting templates used throughout.

2.1 Evaluation Protocols

Fine-tuning task and dataset. We establish a consistent starting point by fine-tuning a multiple-
choice visual question answering task constructed from ImageNet, which we call ImageNet-VQA.
For each ImageNet image, we pose a single question asking for its class label (e.g., “What is the
class of this image?”’) with four options (A-D): one ground-truth label and three distractors. To
increase the difficulty of the fine-tuning task, we employ CLIP (Radford et al.,[2021) to select the
most challenging distractors, with the methodology detailed in Appendix [B.1]

We choose ImageNet because it provides (i) large-scale, diverse, natural images with standardized
labels; (ii) a clean mapping to unambiguous multiple-choice questions; and (iii) a familiar in-
distribution (ID) reference point for studying shifts in either text or image domains.

Axes of variation: text and image. Our evaluation isolates two sources of distribution shift: Text
(the question form) and Image (the visual domain). ID text is the same classification question
format used for fine-tuning; OOD text uses question styles that require different reasoning skills or
external knowledge. ID images are natural photographs similar to ImageNet; OOD images come
from different object sets or visual domains (e.g., flowers or stylized drawings).

The 2x2 evaluation matrix. Crossing the two axes yields four standardized scenarios (Figure [I)):

+ ID Text + ID Image (ID”-ID’): in-distribution questions on in-distribution images. Datasets:
ImageNet (Deng et al.,2009) (validation split) and ImageNetV2 (Recht et al.| 2019).

« ID Text + OOD Image (ID”—00D?): in-distribution questions on out-of-distribution images.
Datasets: Flowers102 (Nilsback & Zisserman, 2008)), Caltech101 (Fei-Fei et al.,|2004), Stanford
Cars (Krause et al., [2013)).

+ OOD Text + ID Image (OOD”-ID’): novel questions on in-distribution images. Dataset:
ImageWikiQA (Zhang et al.,[2024).

+ OOD Text + OOD Image (OOD”-00D/): novel questions on out-of-distribution images.
Datasets: MMMU (Yue et al.,|2024), VMCBench (Zhang et al.| [2025]).

2.2 Training Recipes

Base models. We study two widely used VLM families, Qwen2.5-VL (Bai et al., |2025) and
LLaVA (Liu et al.l 2023). Our main ablations in §E] and §[Z_f] use Qwen2.5-VL-3B; we additionally
validate our findings on Qwen2.5-VL-7B and LLaVA-1.5-7B. For comparisons on the MLLM-CL
benchmark in §E} we adopt LLaVA-1.5-7B to align with previous work (Zhao et al.,2025)).

Codebase and hyperparameters. We train with LLaMA-Factory (Zheng et al., 2024). Unless
specified, we use a batch size of 16 and ablate the learning rate of {le—5, le—6}. Training runs
for one epoch on ImageNet-VQA (approximately 80,000 steps). We compare different trainable
parameters (e.g., full-model, projector, or low-rank adaptation) and keep other settings fixed for fair
comparison; full configurations are listed in Appendix [C|

Prompts and templates. We use the system templates provided by LLaMA-Factory for Qwen2.5-VL
and LLaVA. All evaluations in §3|and §4]follow the multiple-choice format. To avoid formatting con-
founding, the prompts explicitly instruct the model to output a single option letter (A-D). Illustrative
prompt templates are included in Appendix [D.1]

3 Fine-tuning Without Forgetting: A Simple Recipe without Performance
Trade-off

Can a vision language model (VLM) be specialized to new tasks without erasing general capabilities?
Using the 2x2 evaluation matrix (§2), we vary the trainable components (LLM backbone, vision
encoder, projector), optimization method (full fine-tuning vs. LoRA), and learning rate.
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Figure 2: Single-task fine-tuning across the evaluation matrix. Each curve traces checkpoints
during fine-tuning: x-axis = ID accuracy on ImageNet validation (the fine-tuned task), y-axis =
accuracy on an ID/OOD evaluation. Layout and colors follow Figure|l] Legends show trainable
part (method, learning rate). Performance is largely maintained in ID”~0OOD! and 0OD”-00D?
with simplest regularization on parameter updata, with a notable drop only in OOD”—ID’. Full
hyperparameters are in Appendix [C.1]

Three consistent findings emerge: (I) with simple regularization (small learning rate or LoRA),
forgetting on OOD images is nearly absent as ID accuracy increases; (II) avoiding forgetting does
not reduce target-task accuracy; and (IIT) these patterns hold across model sizes/families, rare visual
domains, and low-data regimes.

3.1 Finding I: Simple Regularization Prevents (Nearly All) Forgetting

Research question. Catastrophic forgetting is often attributed to architectural limits: specializing on
a new task is thought to overwrite broad, pre-trained knowledge. If that were the case, the gains on
the ID data should come with the losses on the OOD data.

Results. In Figure 2] high-learning-rate full fine-tuning (le-5) increases ID accuracy but substantially
degrades OOD performance, consistent with catastrophic forgetting: relative to zero-shot, LLM
Backbone, Full, 1e-5 yields —16.56 pp on OOD”-ID’ and —33.64 pp on OOD?-OO0OD/ (Table .
In contrast, conservative settings (small learning rate or LoRA) keep the OOD accuracy essentially
stable as the ID accuracy increases. Restricting the magnitude and scope of parameter updates elimi-
nates these drops: LLM Backbone, Full, 1e-6 changes are 4-1.06 pp (OOD”-ID’) and —1.51 pp
(00D7-00D); LLM Backbone, LoRA, 1e-4 changes are +0.46 pp and —2.97 pp, respectively.

Takeaway 1: Forgetting is not inevitable; it arises from over-optimization. Simple regular-
ization (small learning rate or parameter-efficient training) preserves capabilities.

3.2 Finding II: No Trade-off Between Specialization and Preservation

Research question. Prior reports suggest a performance gap between full fine-tuning and LoRA on
the target task. If regularization preserves OOD performance, does it cost ID accuracy?
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Final Acc. A vs. zero-shot

Trainable Part  Settings Validation (%) OODT-ID! (pp) OODT-00D/ (pp)
LLM Backbone Full, 1e-5 91.56 -16.56 -33.64

LLM Backbone LoRA, le-4 91.08 (-0.48) 0.46 -2.97

LLM Backbone Full, 1e-6 91.37 (-0.19) 1.06 -1.51
Vision Encoder  Full, 1le-6 90.96 (-0.60) -1.36 0.49

Vision Encoder  Full, le-5 91.08 (-0.48) -9.90 -2.76
Projector Full, 1e-6 86.86 (-4.70) 0.26 0.05
Projector Full, 1e-5 89.68 (-1.88) -0.64 -0.26

Table 1: ID accuracy and robustness deltas across recipes. “Final Acc” is ImageNet-VQA
validation accuracy; in parentheses we show the difference to LLM Backbone, Full, 1e-5. “A vs.
zero-shot” reports percentage-point change relative to the pre-trained model on OOD”-ID! and
00D”-00D!. To enhance visual clarity, we use red to highlight performance degradations >3pp
and blue for changes within a £3pp margin. Rows corresponding to settings where all results fall
within this margin are shaded gray . This suggests that most of regularization strategies mitigate

catastrophic forgetting without compromising the model’s learning capacity.

(a) Model size and family.

Model Version | Validation (%) ImageNetV2 (%) ID-OOD (%) OOD-0OD (%)
Qwen2.5-VL-3B | 80.11—91.37 75.29—86.72 86.80—87.87  61.82—60.31
Qwen2.5-VL-7B | 83.20—92.66 78.61—88.05 90.35—91.24  62.57—62.62

LLaVA-7B 65.53—91.43 61.55—86.76 66.44—70.05 41.45—37.73
(c) Dataset size.
(b) Rare domains. . L
Dataset fraction Validation (%)
Dataset \ Validation (%) OOD-OO0OD (%) Ir=1e-6 Ir=le-5
ImageNet | 80.11—89.88 61.82—59.48 100% 91.42 91.60
BSCCM 18.15—84.34 61.82—61.19 25% 90.18 89.08
PitVis 25.61—51.33 61.82—61.56 2.5% 86.99 87.46
0.25% 82.03 81.82

Table 2: Generalization of the recipe. The default setting referenced in is shaded in gray . The

results show that all findings in §3.T]are consistent across: (a) different model sizes and families; (b)

rare domains including surgery and microscopy; (c) different fine-tuning datasets size; Full training
details are in Appendix|C.2]

Results. Table[T|shows that the regularized settings match the aggressive baseline on the ID task while
avoiding OOD forgetting. Validation accuracy differences relative to LLM Backbone, Full, 1e-5
are < 0.6pp for LLM Backbone, Full, 1e-6 (—0.19pp), LLM Backbone, LoRA, 1e-4 (—0.48pp),
and Vision Encoder, Full, 1e-6 (—0.60pp). Projector-only fine-tuning is the sole exception (e.g.,
—4.70pp at 1e-6) and is therefore not recommended when target-task accuracy is critical.

Takeaway 2: Specialization and preservation are not at odds: Under regularized fine-tuning,
ID and OOD performance do not trade off.

3.3 Finding III: Consistency across Models, Domains, and Data Regimes

Research question. If the recipe is principled, it should transfer across architectures, uncommon
visual domains, and data-scarce settings.

Results. Models. The trends persist across sizes and families (Table[2h): Qwen2.5-VL-3B improves
ImageNet validation 80.11 — 91.37 with OOD”-00D’ 61.82 — 60.31 (—1.51pp); Qwen2.5-VL-7B
improves 83.20 — 92.66 with OOD”-O0D’ +0.05pp; LLaVA-1.5-7B improves 65.53 — 91.43
with a modest OOD”-00D? drop (—3.72pp).
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. is this object predominantly found?
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B. Polar and subpolar zones
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- Replace one distractor with class name

Before Fine-tuning After Fine-tuning

Class: jacamar

Figure 3: ImageWikiQA with class-label distractors. Left: an example transformation where one
distractor is replaced by the correct class name. Right: accuracy with/without a class-name distractor,
before fine-tuning and after fine-tuning, using LLM Backbone, Full, 1e-6. The substantial decrease
in accuracy and the concurrent increase in “mischoice on class name” after fine-tuning indicate that
the model ceases to follow prompt instructions, instead defaulting to outputting the choice with
class label directly. Therefore, the primary issue is task-specific overfitting rather than catastrophic
forgetting.

Rare domains. The same recipe holds for microscopy (BSCCM (Pinkard et al.| [2024)) and surgical

(PitVis (Das et al., 2025)) data (Table IZ'J), keeping OODT-O0D! within < 2.5pp while yielding
large ID gains (+66pp on BSCCM, +26pp on PitVis).

Data size. Even at 0.25% of the data, a small learning rate (1e-6) remains competitive in the ID task
(82.03 vs. 81.82 at 1e-5; Table@:).

Takeaway 3: These findings generalize across architectures, domains, and data regimes,
implying that forgetting in VLM fine-tuning is generally not a concern.

4 When OOD Text Meets ID Images: Diagnosis and a Simple Remedy

Our 2x2 evaluation reveals a single weak spot: OOD?-ID’ (novel text over familiar images),
exemplified by ImageWikiQA. In contrast to ID”—-O0D’ and OOD”-00D’, where regularization
preserves performance, Figure 2k shows a clear drop on OOD text with ID images. We (i) diagnose
this failure as fask-specific overfitting in the ID image distribution and (ii) demonstrate that a simple
data-hybrid recipe prevents it with minimal impact on the target task.

4.1 Finding IV: Forgetting Appears Only with OOD Text over ID Images

Research question. In OOD”-ID’ | the image distribution matches fine-tuning (ID), but the text
distribution shifts. The test set, ImageWikiQA (Zhang et al, 2024)), asks the model to link an
ImageNet image to external knowledge (e.g., the habitat of a species or the use of an artifact) rather
than to perform the ImageNet classification task. This setup closely parallels standard LLM fine-
tuning, where inputs remain in-domain while the instruction distribution changes. Prior work on
LLM:s has shown that single-task fine-tuning can impair other capabilities and encourage instruction-

ignoring (Cuo et al, 2025} [Ung et al.} 2024} [Lyu et al.| [2024).

Results. Even with regularized fine-tuning (e.g., small learning rates or LoRA), ImageWikiQA
performance drops relative to zero-shot (Figure[2t). For example, the LLM Backbone, Full, 1e-6
configuration falls from 53.35% to 42.95% (—10.40pp) after fine-tuning on ImageNet. This contrasts
sharply with ID7”—-00D’ and OOD?-00D’, where performance remains stable under the same
settings.




173

174

175
176
177
178

179
180
181
182
183

184

185

186
187
188

189
190
191
192
193
194

195
196

(a) Mixing different datasets (50%).
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Figure 4: Ablations for data-hybrid training. (a) Mixing ImageNet-VQA with Flowers102, OCR-
VQA, or LLaVA-665K (each at 50% of training instances). (b) Varying the LLaVA-665K mix from
0% to 70%; larger, darker markers denote higher ratios. Augmenting the training data with diverse
textual inputs helps to alleviate task-specific overfitting. Consequently, this data-hybrid method
improves model robustness in the OOD”—ID? setting with minimal trade-offs for ID performance.
Training details are in Appendix[C.3]

Takeaway 4: The sole exception in our study is the ID-image/OOD-text setting, where
forgetting persists and is not remedied by standard regularized fine-tuning, mirroring findings
from LLM fine-tuning.

4.2 Finding V: OOD”-ID’ Forgetting Arises from Task-Specific Overfitting

7

Research question. We hypothesize that the model becomes over-attuned to the “classify-this-image’
template when trained on ID images. To test this, we construct ImageWikiQA with class-label
distractors by replacing one standard distractor with the correct class label (Figure 3] left). If the
model has memorized the task, it should over-select the class label rather than the correct answer.

Results. Using the LLM Backbone, Full, 1e-6 model, we observe severe task-specific overfitting:
before fine-tuning, accuracy drops moderately when the class-name distractor is present (53.25% —
42.05%, —11.2 pp); after fine-tuning, the drop is drastic (42.95% — 5.55%, —37.4 pp) (Figure 3]
right). The much larger change after fine-tuning indicates a learned bias to “pick the class label,”,
that is, prompt-ignoring rather than knowledge deletion.

Takeaway 5: Forgetting in the ID-image/OOD-text case stems from task-specific overfitting:
the model memorizes the image-specific classification template during fine-tuning and ignores
the prompt.

4.3 Finding VI: Data-Hybrid Training Prevents Task Overfitting

Research question. If overfitting arises from repeatedly pairing ID images with a single classification
template, mixing in diverse tasks should force the model to attend to the prompt and avoid the
shortcut. We therefore ablate both dataset type and mixing ratio.

Results. Dataset type (50% mix). Figure falcompares mixing ImageNet-VQA with: (i) Flowers102
(ID-style text on OOD images), (ii)) OCR-VQA (OOD text), and (iii) LLaVA-665K (broad OOD
instructions). Hybrid training consistently improves OOD?-ID? while keeping ImageNet-VQA
strong. Flowers102 yields only marginal gains on ImageWikiQA (another classification-style dataset,
hence weak against task overfitting). OCR-VQA helps more by requiring text-based reasoning.
LLaVA-665K performs best, likely due to its breadth of instructions and reasoning styles.

Mixing ratio (with LLaVA-665K). Figure b]shows that increasing the proportion of LLaVA-665K to
50% keeps ImageNet-VQA within ~1 pp of the pure-ImageNet condition while markedly improving
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ImageWikiQA; at 70%, we see no further OOD?-ID? gains. This suggests that the effect is not just
“more data,” but specifically task diversity mitigating overfitting.

Finally, the effectiveness of co-training with OCR-VQA and LLaVA-665K indicates that, although
overfitting manifests on ID images, the remedy does not require additional ID images. Greater task
diversity alone is sufficient to counteract the bias, regardless of the image distribution.

Takeaway 6: Data-hybrid fine-tuning—mixing diverse instruction data (without requiring
ID images)—preserves ID-task accuracy while overcoming ID-image/OOD-text forgetting.

5 From Single Task to Continual Learning: Simple Strategies Rival SOTA

Our single-task study shows that catastrophic forgetting can be substantially reduced with regulariza-
tion (§B) and data hybrid training (§4). The natural question is whether these observations carry over
from one task to a sequence of tasks. We therefore turn to continual learning, where a model learns
tasks one after another while preserving performance on earlier tasks. Perhaps unexpectedly, we find
that very simple updates, either LoORA or a small learning rate, match or outperform prior methods
purpose-built for continual learning, both with and without a replay buffer.

5.1 Benchmark and Evaluation

Benchmark. We use the VLM continual learning benchmark introduced by MLLM-CL (Zhao et al.,
2025)), spanning five domains in a fixed order: Remote Sensing — Medicine — Autonomous Driving
— Science — Finance. See §B.3]for more details.

Evaluation. We report two standard metrics: Last (performance on each task after training on the
full sequence) and Average (mean performance across tasks at the time each task is learned). Details

appear in §D.4]
Experimental setup. For comparability, we follow the MLLM-CL recipe exactly (optimizer, prompts,

and models), adopt their evaluation protocol, and use the same dataset splits. The zero-shot row in
Table 3 provides the pre-training baseline before any fine-tuning.

5.2 Finding VII: Simple Strategies Compete with SOTA in Continual Learning

Method. We evaluate two simple continual learning strategies: incremental LoORA (IncLoRA) and
sequential full fine-tuning (SeqFull). For IncLoRA, we train a new LoRA adapter for each task
and, after training, merge the adapter weights into the base model, which then initializes the next
task. SeqFull simply fine-tunes all model parameters for each task in sequence, without additional
mechanisms.

Results. With a replay buffer (a bounded memory that retains a small sample of past tasks’ examples
and replays them alongside the current task’s data to reduce catastrophic forgetting), many prior
methods introduce sophisticated components to control forgetting, yet our simple approaches achieve
performance comparable to state-of-the-art techniques. For example, SeqFull attains 78.94% on RS
under the Last metric, closely matching MR-LoRA (79.87%) while outperforming it in Fin.

The gap widens in the more restrictive no-replay setting, which is important for privacy-sensitive
applications (e.g., medicine) where replay is infeasible. Except for the Average metric in the first task
(RS) and the Last metric on the final task (Fin)—both of which do not reflect forgetting—IncLoRA
and SeqFull outperform all competing methods in the remaining eight comparisons, establishing new
state-of-the-art results in most domains.

Takeaway 7: Simple update policies rival or exceed specialized continual-learning methods,
work in privacy-sensitive no-replay settings, and avoid additional complexity.

6 Related Work

Vision language models. Vision language models (VLMs) such as Flamingo (Alayrac et al., 2022),
LLaVA (Liu et al.,|2023)), and GPT-4V (Achiam et al.,|2023) demonstrate strong visual-linguistic
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Method RS (%) Med (%) AD (%) Sci (%) Fin (%)
Last  Average Last Average Last Average Last Average Last Average

Zero-shot 32.29 - 28.28 - 15.59 - 35.55 - 62.56 -
w/ replay buffer

LoRA 29.57 80.87  29.19  58.60 7.09 38.95 19.55 36.41 63.60  36.78
MoELoRA 40.23 80.00 23.58 5691 5.19 34.69 18.35 31.70 7489  31.36
O-LoRA 76.21 80.13 5134 7023 3650 6135 42.64 5334  90.20  59.38
L2P 75.21 80.09 3850 68.64 3231 5479  41.05 48.68  88.05  55.02
ModalPrompt 64.77  80.11 38.60  60.99  20.61 50.67 2998 4197 8822 4844
HiDe-LLaVA 75.36  81.51 39.23 6237  37.17 4937  45.02  50.61 81.89  55.73
MR-LoRA 79.87 80.82  62.71 72.19 51.89 6541 5248 6252 89.69  67.31

IncLoRA (Ours) 77.43 78.30  62.57 71.93 52.00 6538 5248 62.12 9041 66.98
SeqFull (Ours) 78.94  75.62 6245 72.16  51.50  65.77  52.08 6232 91.21 67.24

w/o replay buffer

LoRA 2675  80.72 25776  59.68 0.79 40.51 18.69 18.64  70.44  28.49
MoELoRA 21.42  80.05 2529 57.26 0.79 37.03 17.01 19.65 6034 2497
O-LoRA 62.68  80.22  35.17  67.56 1693  51.51 3444 4428 92.16  48.28
L2P 63.82 80.02 3463 6886 2296 5157 3858 4512 9298  50.59
ModalPrompt 6599 80.11 3735 59.66 2327 46.86 37.61 4297 87.60 50.36
HiDe-LLaVA 41.17 8091 3033 6547 1873 3978  37.08 3292 9221 43.90

IncLoRA (Ours) 7720 77.59 5897 7159 5143 6440 4744 6022 9024  65.06
SeqFull (Ours) 7910 77.06 6122 7275 5236 66.09 50.52 6249 9129 67.44

Table 3: Continual learning on the MLLM-CL benchmark. We highlight best and second best
separately for with and without replay. Our simple methods (IncLoRA, SeqFull) are competitive with
specialized approaches under replay, and dominate most columns without replay.

understanding and reasoning (Xu et al.,[2024). Recent work has emphasized scaling, architectural
refinements, and training strategies to improve zero-/few-shot generalization [Tong et al.|(2024); [Chen
et al.| (2024c)); Bai et al.|(2025). In this work, we study how to adapt strong base VLMs to diverse
downstream tasks while preserving zero-shot performance, a problem that is arguably more acute for
VLMs than for LLMs, yet comparatively underexplored.

Catastrophic forgetting. Catastrophic forgetting is the loss of previously acquired knowledge when
a model is trained on new tasks (Kemker et al.l[2018; |Chen & Liul 2022} |Goodfellow et al., [2013]).
In LLMs, catastrophic forgetting has been extensively studied—empirically (Kalajdzievski, [2024;
Scialom et al.| 2022])), theoretically (Shuttleworth et al.,|2024), methodologically (Chen et al.| |2023;
L1 et al.L|2025), and from an evaluation point of view (Ung et al.,|2024). In contrast, catastrophic
forgetting in VLMs has received less attention (Zhai et al.l [2024). We address this gap with a
systematic study of catastrophic forgetting in VLMs and find that, under simple fine-tuning recipes,
VLMs exhibit substantial robustness to forgetting.

Continual learning. Continual learning aims to acquire new capabilities without erasing prior
knowledge (Wang et al.| 2024} |Chen & Liu, |2022; Hadsell et al., 2020). It is critical in real-world
settings where data distributions and taxonomies evolve, centralized retraining may be impractical
due to cost or privacy, and preserving generalist abilities is important for safety and robustness. To
mitigate forgetting, previous work explores replay, regularization, and parameter isolation approaches,
but these often add considerable compute, memory, and engineering complexity (Zhao et al., 2025}
Van de Ven & Tolias, [2019). Although continual learning for VLMs has begun to be explored (Chen
et al.| 2024a; [Huang et al.| 2024), we show that—with appropriate training recipes—forgetting can
be largely mitigated, yielding state-of-the-art results with simple and compute-efficient methods.

7 Conclusion

While the paper does not introduce a new algorithm, it reframes how to fine-tune vision-language
models. We find that concerns about catastrophic forgetting are often overstated. In practice,
simple recipes yield specialized models that remain strong generalists. Our analysis isolates a single
failure mode: overfitting to linguistic patterns rather than visual content. We address this with a
straightforward hybrid-data mix. On a challenging continual learning benchmark, this recipe performs
on par with or better than more complex alternatives. We hope these results encourage simpler, more
transparent adaptation methods and provide a stable foundation for future work.
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A Reproducibility statement

To ensure the full reproducibility of our work, we provide our code, adapted datasets, and detailed
hyperparameter specifications, which include all scripts to generate the necessary configuration files
and perform the training and evaluations presented in this paper.

Code: https://anonymous.4open.science/r/VLM-Forgetting-C1CE/.
Datasets: https://huggingface.co/datasets/VLM-Forgetting/vim-forgetting-datasets.

Hyperparameters: Appendix

B Datasets Details

B.1 2x2 Evaluation Matrix Details

Classification Datasets (Deng et al., 2009; Nilsback & Zisserman), 2008; [Fei-Fei et al., 2004}
Krause et al.,[2013). For all classification datasets in the evaluation matrix, we follow the same
protocol to turn them into multiple-choice questions. The question text are fixed to What is the class
of this image? Please answer with a single letter (A, B, C, or D)., where the formatting instructions
are concatenated to ensure the evaluation result will not be greatly influenced by output format of the
model.

To increase the difficulty of the task and test the model’s fine-grained discrimination ability, distractors
are strategically selected. We use CLIP (Radford et al.l [2021)) to identify the five incorrect class
labels with the highest semantic similarity scores to the image. From this pool of five candidates, we
randomly sample three to serve as distractors. This methodology ensures that incorrect options are
semantically plausible, requiring the model to perform a more precise identification. By fine-tuning on
ImageNet-VQA, the model is trained to perform a standard, in-distribution (ID) image classification
task.

ImageWikiQA (Zhang et al.,[2024). Since the ImageWikiQA dataset is already in a format of
multple-choice question, we directly use adapt it.

MMMU and VMCBench (Yue et al., 2024; Zhang et al., 2025). Since the MMMU and VM-
CBench datasets are already in a format of multple-choice question, we directly use adapt them. For
all the numbers reported in this paper, we use the MMMU-val split for the evaluation.

B.2 Rare Datasets Details

BSCCM. We use the original BSCCM (Pinkard et al., 2024) dataset and follow the official guide at
https://github.com/Waller-Lab/BSCCM/blob/main/Getting_started.ipynbto create a
classification question-answering dataset. We collect images from all 23 available channels, including:

Brightfield

DF_50, DF_50_Bottom, DF_50_Right,
DF_55,

DF_60, DF_60_Bottom, DF_60_Right,
DF_65,

DF_70, DF_70_Bottom, DF_70_Right,
DF_75,

DF_80, DF_80_Bottom, DF_80_Right,
DEF_85,

DF_90,

DPC_Bottom, DPC_Left, DPC_Right, DPC_Top,
LEDI119

There are 10 classes in total, and for each question we ask the model to choose from 6 possible
choices. The 5 distractors are randomly sampled from all possible choices and we provide the list of
classes as follows:
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neutrophil

eosinophil

sl N

lymphocyte

To increase the type of questions, we provide multiple choices of prompt while all of them are sharing

nk_lymphocyte

444

basophil 448
445 monocyte 449
446 plasma_cell

blast_cell

® N

447

the same semantic meaning.

9. b_lymphocyte
10. t_lymphocyte

* What type of white blood cell is shown in this {channel_type} microscopy image?

* Based on the morphological features visible in this {channel_type} image, what is the cell type?
* What is the most likely classification of this blood cell captured with {channel_type} illumination?

Which white blood cell type does this {channel_type} image represent?

Looking at the cell morphology in this {channel_type} image, which cell type is this?

* What type of immune cell is depicted in this {channel_type} microscopy image?

What is the identity of this cell captured using {channel_type} in LED array microscopy?

We provide the following samples in Table ] from curated dataset. During training and inference, a
prompt of "Please answer with a single letter (A, B, C, D, E or F)" is appended at the end to avoid the

influence from model response formatting.

Table 4: VQA Dataset Curated from BSCCM

Image

Question

Choices

What is the identity of this cell captured
using brightfield in LED array microscopy?

A. eosinophil

C. t_lymphocyte

D. plasma_cell

E. debris_or_artifact
F. unclassified_cell

What type of white blood cell is shown in
this dark field (50 illumination) microscopy
image?

A. plasma_cell
B. nk_lymphocyte
C. b_lymphocyte

E. unclassified_cell
F. debris_or_artifact

Based on the morphological features visi-
ble in this differential phase contrast (left
illumination) image, what is the cell type?

A. basophil

B. unclassified_cell
C. debris_or_artifact
D. t_lymphocyte

E. blast_cell

PitVis.

We use the PitVis Challenge (Das et al., 2025)) to create a classification dataset aiming to
categorize the frame sampled from video according to the surgical instrument appeared. We fix the

sample rate to be 1 out of every 6 frames. The total 21 instrument classes are as follows.

Fixed choices:

1. no_secondary_instrument

2. out_of_patient

3. no_visible_instrument/occluded_image_inside_patient

Other choices:

14
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504

1. bipolar_forceps 476 7. irrigation_syringe 482 13. ring_curette

2. cottle 477 8. kerrisons 483 14. spatula_dissector
3. cup_forceps 478 9. micro_doppler 484 15. stealth_pointer
4. dural_scissors 479 10. nasal_cutting_forcepss 16. suction

5. freer_elevator 480 11. pituitary_rongeurs 4g6 17. surgical_drill

6. haemostatic_foam 481 12. retractable knife 487 18. tissue_glue

We still ask the model to choose from 6 possible choices. For every question, there will be 3 fixed
choices to be no_secondary_instrument, out_of _patient, no_visible_instrument and we will randomly
sample 2 or 3 distractors from all other classes (2 if the ground truth is not one of the 3 fixed classes).

We provide the following samples in Table 5] from curated dataset. During training and inference, a
prompt of "Please answer with a single letter (A, B, C, D, E or F)" is appended at the end to avoid the
influence from model response formatting.

Table 5: VQA Dataset Curated from BSCCM

Image Question Choices

What is the
major surgical
instrument be-
ing used in
this frame?

A. tissue_glue

B. retractable_knife

C. haemostatic_foam

D. no_secondary_instrument

F. no_visible_instrument/occluded_image_inside_patient

What is the A.plasma_cell

major surgical
instrument be-
ing used in
this frame?

B. nk_lymphocyte
C. b_lymphocyte

E. unclassified_cell
F. debris_or_artifact

What is the
major surgical
instrument be-
ing used in
this frame?

A. out_of_patient

C. no_visible_instrument/occluded_image_inside_patient
D. freer_elevator

E. micro_doppler

F. no_secondary_instrument

B.3 MLLM-CL Details

This sequential learning benchmark MLLM-CL contains:

RS: Remote Sensing Data RSVQA (60k Training Data)
Med:Medical Data PathVQA (23k Training Data)

Sci:Science Data AI2D, SciVerse, MapQA, TQA (33k Training Data)

* AD:Auto-Driving Data DriveLM (60k Training Data)

Fin:Financial Data StockQA (60k Training Data).

More details about the dataset can be found in MLLM-CL paper (Zhao et al.| 2025)). We adapt the
number reported in original MLLM-CL paper, including LoRA |Hu et al.| (2022), MoELoRA [Chen
et al.| (20244), O-LoRA [Wang et al.|(2023)), L2P [Wang et al.| (2022)), ModalPrompt |Zeng et al.| (2024),
HiDe-LLaVA*|Guo et al.| (2025), MR-LoRA [Zhao et al.|(2025)
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ss C Training Hyper-parameters and Details

506

C.1 Training Hyper-parameters for Figure 2]

so7 In this section, we align the table caption with Figure 2]

Config Value
Optimizer AdamW
Batch Size 32
Learning Rate Schedule cosine decay
Warmup Ratio 0.1
Learning Rate 1x1074
Training Steps 40000
LoRA Rank 8

Freeze Vision Tower True
Freeze Multi Modal Projector | True
Freeze Language Model False

(a) LLM Backbone (LoRA, le-4)

Config | Value Config | Value
Optimizer AdamW Optimizer AdamW
Batch Size 16 Batch Size 16

Learning Rate Schedule cosine decay Learning Rate Schedule cosine decay
Warmup Ratio 0.1 Warmup Ratio 0.1

Learning Rate 1x107° Learning Rate 1x 1076
Training Steps 80000 Training Steps 80000
Freeze Vision Tower True Freeze Vision Tower True

Freeze Multi Modal Projector | True Freeze Multi Modal Projector | True

Freeze Language Model False Freeze Language Model False

(b) LLM Backbone (Full, le-5)

(c) LLM Backbone (Full, le-6)

Config | Value Config | Value
Optimizer AdamW Optimizer AdamW
Batch Size 16 Batch Size 16
Learning Rate Schedule cosine decay Learning Rate Schedule cosine decay
Warmup Ratio 0.1 Warmup Ratio 0.1
Learning Rate 1x107° Learning Rate 1x10°°
Training Steps 80000 Training Steps 80000
Freeze Vision Tower False Freeze Vision Tower False
Freeze Multi Modal Projector | True Freeze Multi Modal Projector | True
Freeze Language Model True Freeze Language Model True

(d) Vision Encoder (Full, le-5) (e) Vision Encoder (Full, 1e-6)
Config | Value Config | Value
Optimizer AdamW Optimizer AdamW
Batch Size 16 Batch Size 16
Learning Rate Schedule cosine decay Learning Rate Schedule cosine decay
Warmup Ratio 0.1 Warmup Ratio 0.1
Learning Rate 1x107° Learning Rate 1x10°6
Training Steps 80000 Training Steps 80000
Freeze Vision Tower True Freeze Vision Tower True
Freeze Multi Modal Projector | False Freeze Multi Modal Projector | False
Freeze Language Model True Freeze Language Model True

(f) Projector (Full, 1le-5)

16

(g) Projector (Full, 1e-6)
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C.2 Training Hyper-parameters for Table

In the ablation across different setting, we study the fine-tuning recipt of full fine-tuning LLM
backbone. Since LoRA fine-tuning or fine-tuning other parts is more regularized, doing validation
study on the simplest fine-tuning LLM backbone is the most convincible choice.

Config | Value Config Value
Optimizer AdamW Optimizer AdamW
Batch Size 16 Batch Size 16

Learning Rate Schedule cosine decay Learning Rate Schedule cosine decay
Warmup Ratio 0.1 Warmup Ratio 0.1

Learning Rate 1x10° Learning Rate 1x10°
Training Steps 80000 Training Steps 20000
Freeze Vision Tower True Freeze Vision Tower True

Freeze Multi Modal Projector | True Freeze Multi Modal Projector | True

Freeze Language Model False Freeze Language Model False

(a) Configuration for ablation study across model size
and model family, all the 3 models share the above

(b) Configuration for ablation study across rare
datasets, all the 3 datasets share the above hyper-

hyper-parameters . parameter S.
Config Value Config Value
Optimizer AdamW Optimizer AdamW
Batch Size 16 Batch Size 16
Learning Rate Schedule linear Learning Rate Schedule linear
Warmup Ratio 0.1 Warmup Ratio 0.0025
Learning Rate 1x10°6 Learning Rate 1x10°6
Training Steps 2000 Training Steps 80000
Freeze Vision Tower True Freeze Vision Tower True
Freeze Multi Modal Projector | True Freeze Multi Modal Projector | True
Freeze Language Model False Freeze Language Model False

(c) Ablation study across dataset size, 2000 training (d) Ablation study across dataset size, 80000 training

steps corresponding to 2.5% dataset, the warmup steps
1s 2000*0.1=200. This configuration produce the re-

sults of 0.25% and 2.5%.

C.3 Training Hyper-parameters for Figure 4]

steps corresponding to the 100% dataset, the warmup
steps is 80000%0.0025=200. This configuration pro-

duce the results of 25% and 100%.

In this part, we still use full fine-tuning LLM backbone (learning rate le-6) as the default setting for
the same reason with Appendix|[C.2] For hybriding different datasets, we use a fixed hybriding ratio
of 0.5. The datasets will be oversampling if all the samples has been used at least once.

Config | Value
Optimizer AdamW
Batch Size 16

Learning Rate Schedule cosine decay
Warmup Ratio 0.1

Learning Rate 1x10°6
Training Steps 80000
Freeze Vision Tower True

Freeze Multi Modal Projector | True

Freeze Language Model False

(a) Configuration for ablation study across hybriding different datasets and different hybrid ratio, all experiments
share the above hyper-parameters.
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We follow the configuration from MLLM-CL(Zhao et al.l[2025) to achiece a fair comparison with

their results.

Config Value
Optimizer AdamW
Batch Size 64
Learning Rate Schedule | cosine decay
Warmup Ratio 0.1
Learning Rate 8 x 1075
Epoch for RS 1

Epoch for Med 3

Epoch for AD 1

Epoch for Sci 2

Epoch for Fin 1

LoRA rank 8

(a) Hyperparameters of IncLoRA in MLLM-CL

Benchmark w/o replay buffer.

Config Value
Optimizer AdamW
Batch Size 16

Learning Rate Schedule

Warmup Ratio
Learning Rate
Epoch for RS
Epoch for Med
Epoch for AD
Epoch for Sci
Epoch for Fin

cosine decay
0.1
1x1076

—_ DN = ) =

(c) Hyperparameters of SeqFull in MLLM-CL Bench-

mark w/o replay buffer.

C.5 Replay Buffer Implementation

Config Value
Optimizer AdamW
Batch Size 64
Learning Rate Schedule | cosine decay
Warmup Ratio 0.1
Learning Rate 8 x 1075
Epoch for RS 1

Epoch for Med 3

Epoch for AD 1

Epoch for Sci 2

Epoch for Fin 1

LoRA rank 16

(b) Hyperparameters of IncLoRA in MLLM-CL

Benchmark w/ replay buffer.

Config Value
Optimizer AdamW
Batch Size 16

Learning Rate Schedule

Warmup Ratio
Learning Rate
Epoch for RS
Epoch for Med
Epoch for AD
Epoch for Sci
Epoch for Fin

cosine decay
0.1
1x1075

—_ DN = ) =

(d) Hyperparameters of SeqFull in MLLM-CL Bench-

mark w/ replay buffer.

We exactly follow the setting in MLLM-CL (Zhao et al., [2025)), specifically, for each task of RS,
Med, AD, Sci, Fin, we collect a replay data buffer of size 20 samples. Then, for every downstream
sequential fine-tuning, we directly hybrid all the replay data of previous tasks into the current training
data. No over-sampling mechanism is adapted.

D Evaluation Protocols

D.1 Prompt Templates

Qwen2.5-VL.
Qwen2.5-VL repository.

System Prompt

user

You are a helpful assistant. {User’s prompt}
assistant
{Model’s response}

We use the default LLaMA-Factory prompt, which is also the official prompt from
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542 6
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544 3
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54812
54913
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556
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564
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LLaVA-1.5. We use the default LLaMA-Factory prompt, which is also the official prompt from
LLaVA-1.5 repository.

System Prompt

A chat between a curious user and an artificial intelligence assistant. The assistant gives

helpful, detailed, and polite answers to the user’s questions.
USER: {User’s prompt}
ASSISTANT: {Model’s response}

D.2 Evaluation of 2x2 Evaluation Matrix

Result Matcher. We use aresult_matcher. py file to evaluate the answer accuracy of predictions.
All the questions in this part are multiple-choice questions and the answer is a single letter. All
predictions are stored in a json file £, each entry has a predict key containing the model’s output
to the question and a 1abel key containing a single letter as the ground truth. The logic is as follows:

correct_predictions = 0
total_predictions = len(f)
for entry in f:
predict = str(entry[’predict’]).strip()

label = str(entry[’label’]).strip()

if ":" in predict:
predict = predict.split(":")[-1].strip()

predict = predict.upper ()

label = label.upper ()

if predict == label or predict.startswith(f"{labell}."):
correct_predictions += 1

accuracy = correct_predictions / total_predictions

Listing 1: Pseudo code snippet for result_matcher.py.

This above script is adapted for evaluations curated from ImageNet, Flowers 102, Caltech 101,
Stanford Cars, ImageWikiQA.

VLMEvalKit. For evaluation of MMMU and VMCBench, we directly use the code in
VLMEvalKit (Duan et al., [2024)) to get the results.

D.3 Evaluation of Rare Datasets

Since the questions we curated from BSCCM and PitVis are all multiple-choice questions, we use
the same protocols as Appendix adapting the Result Matcher code in Listing

D.4 Evaluation of MLLM-CL

Last and Average. Last is the accuracy of all seen tasks after learning the last task. Average is the

average accuracy of each task during the training process, i.e., Average = 2221 acc;, where t is the
task that the model is learning, acc; is the accuracy of the i-th previous learned task.

Result Matching. For turning the generation result, we directly adapt the script from MLLM-CL
to ensure the fair comparison. The only change is in the Sci script. The original script use the image
storage path to distinguish different kind of types of questions, we find that this is detecting the
multiple-choice question with one single choice letter as the ground truth. Thus, we replace the judge
condition of image.split(’/?) [-1].split(’_’) [0]=="AI2D"orimage.split(’/’) [-1].s
plit(’_?) [0]=="TQA"orimage.split(’/?) [-1].split(’_’) [0]=="VQA"orimage.split
(/) [-1].split(’_?) [0]=="SciVerse" with len(gt) == 1.
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Evaluation code snippet for evaluating RS and AD. All the namings follows Appendix

right = 0
total = len(f)
for entry in f:
ground_truth = entry[’label’]
if ’Unanswerable’ in entry[’predict’]
continue

pred: str = entry[’predict’].lower ()
gt: str = ground_truth.lower ()

score = 0
if 7 ? in gt:
if gt in pred:
right += 1
else:
gt = gt.replace(’.’, ?7)
if ? 7 in pred:
if (’ ’+gt) in pred or (gt+’ ’) in pred or (gt+’.’) in
pred or (gt+’,’) in pred:

right += 1

else:
if gt in pred:
right += 1

accuracy = right / total

Listing 2: Pseudo code snippet for evaluating RS and AD.

Evaluation code snippet for evaluating Med. All the namings follows Appendix

right = 0
total = len(f)
for entry imn f:
ground_truth = entry[’label’].lower ()
pred = entry[’predict’].lower ()
if ’Unanswerable’ in entry[’predict’]
continue

if ground_truth in pred:
right += 1

accuracy = right / total

Listing 3: Pseudo code snippet for evaluating Med.

Evaluation code snippet for evaluating Sci. All the namings follows Appendix the prompt
key containing the question description.

right = 0

total = len(f)

for entry in f£:
ground_truth = entry[’label’].strip()
problem = entry[’prompt’]

pred: str = entry[’predict’].strip().lower().replace(’.’, ?7).
replace(’,’, ’’).replace(’neither’, ’no’)
gt: str = ground_truth.strip().lower().replace(’.’, ’’).replace(’
,?, ?’).replace(’neither’, ’no’)
if len(gt) == 1:

if gt == pred:

right += 1

else:
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62714 if ’Which states’ in problem:

1
62815 gt_list = gt.split(’,’)
62916 len_gt = len(gt_list)
63017 pred_map_list = pred.split(’,’)
63118
63219 count = 0
63320 for gt in gt_list:
63421 if gt in pred_map_list:
63522 count += 1
63623 right += count / len_gt
63724 elif gt in pred or pred in gt:
63825 right += 1
63926
647 accuracy = right / total

Listing 4: Pseudo code snippet for evaluating Sci.

s+t Evaluation code snippet for evaluating Fin. All the namings follows Appendix [D.2]

6421 right = 0
6432 total = len(f)
6443 for entry in f:

645 4 ground_truth = entry[’label’]

646 5

647 6 pred: str = entry[’predict’].lower().replace(’ ’, ’’).replace(’.’,
648 >7)

649 7 gt: str = ground_truth.lower ()

650 8 score = 0

651 9 if gt == pred:

65210 right += 1

6531 1

6542 accuracy = right / total

Listing 5: Pseudo code snippet for evaluating Fin.
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