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ABSTRACT

Large Language Models (LLMs) increasingly rely on Chain-of-Thought (CoT)
reasoning to solve complex problems. Contrary to the common belief that longer
CoTs always improve performance, we demonstrate that longer is not always bet-
ter. Across both real-world LLMs and theoretical models, task accuracy follows an
inverted U-shaped curve with respect to CoT length: performance rises initially but
declines once reasoning chains become too long. Through controlled experiments,
we uncover scaling behaviors of the optimal CoT length: it increases with task
difficulty but decreases with model capability. This exposes a significant mismatch
with current practice, where supervised training often reuses the same CoT data
across models and tasks without adaptivity. We further show that Reinforcement
Learning (RL) can mitigate this gap by dynamically calibrating CoT length, thereby
improving accuracy and offering a new perspective on differences between su-
pervised fine-tuning and RL training. To explain these phenomena, we introduce
an error-accumulation analysis that characterizes how reasoning errors propagate
across steps and derives the scaling behaviors of CoT length observed empirically.
Building on these insights, we show that training with optimally sized CoTs and
applying length-aware filtering during inference yields substantial improvements
in performance. Taken together, these findings establish a principled explanation of
the “overthinking” effect and yield practical guidelines for calibrating CoT length
in accordance with task complexity and model capability.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities in solving complex
reasoning tasks (Brown et al., 2020; Touvron et al., 2023). A central technique enabling these
advances is Chain-of-Thought (CoT) reasoning (Wei et al., 2022), where models generate explicit
intermediate steps to decompose complex problems into simpler, more manageable sub-problems,
akin to a divide-and-conquer strategy (Zhang et al., 2024).

A widely held intuition, supported by prior studies (Fu et al., 2023; Jin et al., 2024), is that longer and
more detailed CoTs generally yield better performance, especially on difficult tasks. At the same
time, recent evidence shows that concise CoTs can sometimes be more effective, though often with
trade-offs on challenging problems (Nayab et al., 2024). This raises a fundamental question: does
reasoning performance consistently improve as CoTs grow longer, or is there an inherent limit?

In this paper, we provide a comprehensive answer through evidence from real-world LLMs, synthetic
experiments, and theoretical modeling. We show that for CoT reasoning, longer is not always better.
As illustrated in Figures 1a and 1b, task accuracy typically follows an inverted U-shaped curve with
respect to CoT length: performance improves when the chain appropriately decomposes the task,
but deteriorates when the chain becomes excessively long (due to error accumulation) or too short
(leaving individual steps overly complex). This reveals the existence of an optimal CoT length that
balances these competing forces. Identifying and calibrating to this optimal length is crucial for
building reasoning models that are both efficient and accurate.

To uncover the mechanisms underlying this optimality, we design controlled experiments on arithmetic
and dynamic programming tasks, and identify clear scaling behaviors: (1) harder tasks generally
require longer CoTs to reach peak performance, (2) more capable models often achieve their maximum
accuracy with shorter CoTs, and (3) solving harder tasks at the optimal length involves tackling
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Figure 1: (a) Accuracy of a 6-layer GPT-2 on arithmetic tasks, showing inverted U-shaped curves
with peaks shifting to longer CoTs as task difficulty increases. (b) Accuracy of a 5-layer GPT-2 on
dynamic programming tasks, also following an inverted U-curve with respect to CoT length. (c) On
the MMLU STEM dataset, CoTs of optimal length significantly outperform the longest CoTs.

increasingly difficult sub-tasks, motivating the need for adaptive reasoning strategies such as iterative
or looping processes. Experiments on LLMs ranging from 1.5B to 72B parameters further confirm
these trends. Together, these findings demonstrate that the optimal CoT length should adapt to
both the problem and the model. As shown in Figure 1c, reasoning with the optimal length can
significantly outperform the longest-possible CoTs (by more than 60% on a 72B model). In contrast,
current practice often applies uniform CoT strategies across tasks and models during supervised
learning, leading to systematic misspecification and suboptimal reasoning—sometimes causing larger
models to perform worse than smaller ones. We further show that reinforcement learning (RL)
can mitigate this gap by adaptively calibrating CoTs to their optimal lengths in pursuit of higher
rewards. This sheds new light on why RL fine-tuning often yields superior reasoning performance
and generalization compared to supervised learning (Huan et al., 2025).

To deepen our understanding, we develop a simple theoretical model based on an error-accumulation
perspective: each model has a per-step success probability, so excessively long CoTs suffer from
compounding errors, while overly short CoTs struggle with high per-step difficulty. This analysis not
only explains the existence of an optimal length but also derives scaling laws that align closely with
empirical observations. Extensions to nonlinear and stochastic error functions show the robustness of
this perspective. At last, building on these insights, we demonstrate practical benefits: (i) training with
optimally sized CoTs allows small models to outperform much larger ones trained on uniform-length
data, and (ii) at inference time, filtering CoTs by estimated entropy yields consistent gains, improving
majority-vote performance on LLaMA3-8B-Instruct and Qwen2.5-7B-Instruct.

In summary, our work makes the following contributions:

• Longer is not always better. We demonstrate the existence of an optimal CoT length
across both real-world LLMs and synthetic tasks, challenging the prevailing intuition that
performance monotonically improves with longer reasoning chains.

• Scaling of optimal CoT length. Through carefully controlled experiments, we systemat-
ically investigate how the optimal length depends on task difficulty and model capability,
revealing consistent scaling laws: harder tasks require longer chains, while more capable
models peak with shorter ones.

• RL improves reasoning by calibrating CoT length. We show that reinforcement learning
adaptively steers CoT generation toward the optimal length, thereby explaining its superior
reasoning performance compared to supervised finetuning.

• An error-accumulation analysis. We develop a simple yet useful theoretical model for
understanding the observed CoT behaviors. From an error-accumulative perspective, This
analysis explains the inverted U-shaped performance curve, derives the existence of an
optimal CoT length, and recovers the observed scaling laws.

• Practical implications. We demonstrate actionable applications of our findings: (i) training
with optimally sized CoT data enables smaller models to outperform larger ones trained
with uniform-length chains, and (ii) a length-aware majority voting strategy that filters by
entropy yields consistent gains at inference.
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(c) Evolution of LLMs’ CoT lengths
during RL

Figure 2: Real-world observations of CoT length. (a) Larger models reach peak performance with
shorter CoTs. (b) Harder tasks (lower baseline accuracy) require longer optimal CoTs, with a
significant positive correlation (p ≪ 0.05). (c) During RL training with GRPO on LeetCode-2K
using Qwen2.5-7B-Instruct, average CoT length decreases as accuracy improves, suggesting that RL
can also promote more efficient and concise reasoning paths.

Overall, our findings move beyond the assumption that “longer is better” and establish a principled
foundation for calibrating CoT generation. By adapting to the optimal CoT length, we can develop
LLMs that reason more effectively, avoiding both underthinking and counterproductive overthinking.

2 UNDERSTANDING COT LENGTHS IN REAL-WORLD LLMS

To ground our investigation in practical scenarios, we first examine the relationship between CoT
length and reasoning performance in publicly available LLMs, and then study how reinforcement
learning (RL) influences this relationship. We evaluate the Qwen2.5 series of Instruct models (Qwen
et al., 2025) on the MMLU STEM benchmark, which contains challenging competition-level science
and engineering problems (Hendrycks et al., 2021a). For each question, we generate 60 solutions
spanning a wide range of lengths, where CoT length is measured by the number of intermediate
reasoning steps. The optimal CoT length is defined as the one that yields the highest average
accuracy. Additional details on step segmentation and length control are reported in Appendix D. To
ensure diversity, we also consider tasks from mathematics (MATH), science (MMLU STEM), and
commonsense reasoning (WinoGrande) across four different Qwen2.5-Instruct model sizes, though
for clarity we present the MMLU STEM results in the main text and defer the rest to Appendix F.

Optimal Length Decreases with Stronger Model Capabilities: As depicted in Figure 2a, there is a
clear trend where the optimal CoT length decreases as the model size increases. For instance, the
optimal length shifts from 11, 10 steps for the 1.5B and 7B parameter model to 3, 4 steps for the 32B
and 72B parameter model. This suggests that more capable models can consolidate reasoning into
fewer, more potent steps, aligning with the Simplicity Bias concept where stronger models prefer
shorter effective paths.

Optimal Length Grows with Harder Tasks: We also investigate how task difficulty influences the
optimal CoT length. We use (1 - accuracy) on these questions as a proxy for the difficulty. Figure 2b
shows a statistically significant positive correlation (notably p = 1 × 10−4 ≪ 0.05) between task
difficulty and the optimal CoT length of Qwen2.5-7B-Instruct model. This indicates that more
challenging problems will significantly benefit from a longer CoT with more extended decomposition
steps. Similar trends for other models are provided in Appendix F.1.

RL does not always yield longer CoTs. A common belief in the development of advanced reasoning
models is that reinforcement learning (RL) naturally produces longer reasoning traces. However,
recent studies (Gandhi et al., 2025) suggest that the effect of RL on CoT length is strongly tied to
the underlying base model, and that observed increases in length may reflect phenomena such as
backtracking rather than genuinely deeper reasoning. To better understand this process, we monitor
the evolution of CoT length during GRPO training (Shao et al., 2024) on LeetCode-2K (Xia et al.,
2025) with Qwen2.5-7B-Instruct (Qwen et al., 2025). As shown in Figure 2c, optimizing outcome-
based rewards can actually reduce the average response length as training converges. Consequently,
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the RL-trained model produces shorter CoTs than its base counterpart on average, indicating that RL
can exert mixed and non-monotonic influences on CoT length.

3 A CONTROLLED STUDY OF COT LENGTH ON SYNTHETIC DATASETS

The real-world CoTs usually involve numerous uncontrolled variables (e.g., diverse reasoning
strategies, planning, backtracking) and heterogeneous pre-training of base models, which makes
precise mechanistic understanding difficult. To overcome these limitations and rigorously examine
our hypotheses about optimal CoT length and Simplicity Bias, we design controlled synthetic
experiments.

3.1 EXPERIMENTAL SETUP

A Simple Arithmetic Problem. Our first synthetic dataset consists of arithmetic problems involving
sequences of addition operations. The intrinsic difficulty of a problem is quantified by the total
number of addition operators, T . For each problem with T operators, we construct multiple valid
CoT solutions that differ in length and granularity. The CoT length N is defined as the number
of intermediate reasoning steps, where each step i processes ti operators. For simplicity in this
controlled study, we enforce ti ≈ t across steps, where t denotes the step size (operators per step)
and N ≈ T/t.

For example, consider the problem "1+2+3+4+5+6+7", which contains T = 6 addition operators.
We can construct different CoT solutions:

• A long CoT solution with t = 1 (one operator per step), yielding N = 6 steps:

Problem: 1+2+3+4+5+6+7
Step 1: 1+2 = 3. (Remaining: 3+3+4+5+6+7)
Step 2: 3+3 = 6. (Remaining: 6+4+5+6+7)
...
Step 6: 21+7 = 28. (Final Answer)

• A shorter CoT solution with t = 3 (three operators per step), yielding N = 2 steps:

Problem: 1+2+3+4+5+6+7
Step 1: 1+2+3+4 = 10. (Remaining: 10+5+6+7)
Step 2: 10+5+6+7 = 28. (Final Answer)

This dataset design enables systematic variation of CoT length (N ) and step size (t) for problems
with fixed total difficulty (T ). It allows us to isolate how the structure of the reasoning process itself
influences performance. Additional details on problem formulation, data format, and CoT generation
are provided in Appendix B.

A Dynamic Programming Problem. Beyond arithmetic tasks, we also consider a more general
dynamic programming (DP) setting: the Maximum Path Sum in a Number Triangle, as studied in
prior CoT theory (Feng et al., 2023). The objective is to find a path from the apex to the base that
maximizes the sum. The canonical bottom-up DP algorithm solves this by iteratively updating values
from the second-to-last row upward. By varying how many rows are merged in each update, we can
directly control the effective CoT length while still guaranteeing correctness. This property makes the
problem naturally decomposable into solutions of different lengths, closely mirroring the arithmetic
case. Results on this DP task are consistent with our observations on arithmetic addition, further
reinforcing the generality of the phenomena. For brevity, we focus on the arithmetic results in the
main text and defer the DP experiments and details to Appendix C.

Model and Training: We train GPT-2 models (Radford et al., 2019) of varying depths (number
of layers), keeping other hyperparameters fixed. Model depth is known to be a significant factor
representing model capabilities for reasoning tasks (Ye et al., 2024; Chen et al., 2024a). Controlling
this hyperparameter alone allows us to study the impact of model capability on optimal CoT length.
Models are trained with CoT solutions that can be automatically synthesized for this task, with varying
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Figure 3: CoT behaviors in synthetic experiments. (a) Optimal per-step difficulty (t) increases with
task difficulty, indicating that harder tasks requires solving more complex sub-steps. (b) Optimal CoT
length decreases with larger model size, while harder tasks require longer optimal CoTs at any fixed
size. (c) Accuracy comparison between 6-loop and 9-loop models across task difficulties. As per-step
difficulty grows, the performance gap widens, indicating that allocating additional loops, i.e., greater
per-step reasoning effort, provides clear benefits on harder sub-problems.

total operators T and CoT lengths N (or equivalently the step sizes t). For testing, we can guide the
model to produce a CoT of a specific length (e.g., by prompting with a control token indicating the
desired number of operators t per step) or allow it to choose its preferred length. Further details are
in Appendix H.

3.2 SCALING LAWS OF THE OPTIMAL COT LENGTH AND PRACTICAL INSIGHTS

Our controlled experiments not only corroborate the CoT behaviors observed in real-world scenarios
but also allow for a more fine-grained analysis. These findings uncover several key scaling behaviors
of the optimal CoT length that shed light into the practical designs of LLM reasoning.

I. Harder-Tasks’ CoTs Peak at Longer Lengths (Adaptive CoT Length Matters): Our synthetic
experiments further confirm the existence of an optimal CoT length, which manifests itself as an
inverted U-shaped performance curve when plotting accuracy against the number of reasoning steps,
as shown in Figure 1a and 1b. This clearly indicates that both "underthinking" (CoT too short) and
"overthinking" (CoT too long) are detrimental, underscoring the critical benefit of generating CoTs
with adaptive lengths tailored to the problem’s demands. Moreover, we observe that the optimal CoT
length shifts right as the task difficulty T gets larger, indicating that solving a harder task optimally
requires a longer CoT (also observable numerically from Figure 3b). This suggests that a good
reasoning model should be able to vary CoT lengths w.r.t. the overall task complexity.

II. Harder Tasks Peak at Harder Sub-tasks (Adaptive Per-Step Computation Helps): Figure 3a
illustrates how the number of operators per step (t) impacts accuracy across different task difficulties
(T ). The envelope curve, tracing peak performance, shows that as tasks become harder (larger T ),
optimal accuracy is often achieved by CoTs that involve more complex computations per step (i.e.,
a larger optimal t∗). This indicates that for difficult problems, simply increasing the number of
short, simple steps is insufficient—effective reasoning also requires increasing the complexity of the
sub-tasks addressed at each step.

Implication on Model Choice. Current LLMs, with fixed Transformer depth, have limited ability
to adapt their per-step computation, which constrains their reasoning strategies. In contrast, recent
designs such as looped Transformers, which allow adaptive recurrent depth (Geiping et al., 2025;
Chen et al., 2025), provide a mechanism to dynamically adjust per-step reasoning effort. This property
directly aligns with the observed need for adaptive per-step computation.

To further validate this, we study looped Transformers where the same model can allocate more
recurrent loops to increase reasoning effort at each step (Appendix E). Figure 3c plots accuracy
against CoT length under fixed task complexity. As per-step difficulty increases, the performance
gap between using 6 loops and 9 loops widens, showing that models benefit from allocating more
reasoning effort (loops) when sub-tasks are harder. This finding highlights the importance of adaptive
reasoning depth: looped Transformers should be trained not only to handle longer CoTs but also
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to adjust their per-step computation according to task difficulty. To our knowledge, this direction
remains underexplored but offers substantial potential for advancing reasoning performance.

III. Stronger Models Achieve Optimal Performance with Shorter CoTs (Model-Aware CoT
Data Matter): We also examine how model capability (number of layers) influences the optimal CoT
length. Figure 3b indicates that, across different task complexities, the optimal number of CoT steps
(N∗) consistently decreases as the model’s capability (number of layers) increases. This is because
stronger models can effectively handle more complex sub-tasks in each step, thus requiring fewer
overall steps to reach the solution optimally. This finding has significant implications for training
data curation. It suggests that to achieve peak performance, models of different sizes or capabilities
require CoT data tailored to their respective optimal per-step complexities. Current practices, such as
using the same CoT datasets to train LLMs of varying sizes or directly distilling CoTs from large
models to small ones without adapting complexity, may be suboptimal. For instance, a small model
might struggle to learn effectively from overly complex CoT demonstrations designed for a larger
model. Our analysis advocates for training each model with CoT data of adaptive complexity, aligned
with its specific capabilities, to help it reach its optimal reasoning performance.
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Figure 4: Change of CoT length during
RL on the arithmetic task. RL gradually
shifts CoTs towards the optimal length
(t∗ = 5), which is shorter than the initial
CoTs in average.

IV. RL Training Converges to Optimal CoT Length
(RL Calibrates Reasoning Behaviors): As discussed
in Section 2, RL training of LLMs tends to shorten CoT
length. Our synthetic experiments replicate this effect.
Starting from a GPT-2 model pre-trained on CoT solutions
of mixed lengths for a task with difficulty T = 24, we
apply RL with rule-based outcome rewards using PPO on
VERL (Schulman et al., 2017; Sheng et al., 2025). In our
synthetic setup, each question comes with demonstrations
of multiple CoT lengths, so the model naturally devel-
ops its own length preference. Figure 4 tracks how this
preference shifts under RL, as reflected by the probabil-
ity (shown on the y-axis) that the model spontaneously
selects CoTs of different lengths. The base model spreads
probability across lengths around 5, 12, and 24, but as
RL training progresses, this distribution shifts to shorter
CoTs and finally collapses toward the length 5, which is
the accuracy-optimal length under controlled evaluation.

This demonstrates that RL, by directly optimizing task success, implicitly steers the model’s CoT
generation policy toward the optimal length regime, thereby calibrating mismatches between training
data and task-model requirements. From this viewpoint, the benefit of RL in LLM training extends
beyond reward shaping or exploration: it also serves as an adaptive mechanism for aligning reasoning
length. Even when the CoT data used in supervised learning is suboptimal (e.g., misaligned with task
complexity or model capability), RL can automatically adjust the model’s behavior toward generating
more effective, optimally sized CoTs.

V. Self-Correction Training Shortens Optimal CoTs by Hardening Per-Step Reliability (Error-
Tolerant Reasoning Improves Efficiency): To study how self-correction interacts with optimal CoT
length, we modify the training traces so that the model occasionally encounters an intentionally incor-
rect intermediate result, immediately followed by a local repair. Concretely, instead of exposing the
model only to clean chains of the form question + step1 + ans1 + step2 + . . . , we sometimes replace
the first occurrence of a sub-result with a corrupted one and then show the corrected computation:
question + [step1 + wrong_ans1] (optionally) + step1 + correct_ans1 + step2 + . . . . We control
the fraction of such injected erroneous segments by a parameter p and, through preliminary sweeps,
set p = 0.3, which strikes a balance between preserving core computational ability and providing
sufficient exposure to local error repair. All other training configurations are kept fixed, and we train
a 6-layer GPT-2 model under this setting.

At test time, we evaluate the model on arithmetic tasks of fixed difficulty and vary the CoT length,
selecting the optimal length as the one that maximizes accuracy, as in our previous synthetic analyses.
Importantly, when the model executes a self-correction within a single logical step, we count the
original erroneous computation and its immediate correction as one CoT step, since our notion of
CoT length reflects how finely the problem is decomposed, not how many times a local computation

6
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Table 1: Optimal CoT length N∗ and per-step difficulty t∗ with and without self-correction (SC)
across task difficulties T .

Task difficulty T 16 24 32 40
Optimal CoT length N∗ w/o SC 4 5 8 10
Optimal CoT length N∗ w/ SC 2 2 3 5
Optimal subtask difficulty t∗ w/o SC 4 5 4 4
Optimal subtask difficulty t∗ w/ SC 8 12 11 8

is revised. We then extract both the optimal number of steps N∗ and the corresponding optimal
per-step difficulty t∗ (operators per step) across task difficulties T ∈ {16, 24, 32, 40}.

As shown in Table 1, self-correction training substantially reduces the optimal CoT length across
all task difficulties (first two rows), while simultaneously shifting the optimal per-step difficulty to
significantly larger values (last two rows). Although the shorter N∗ might appear counter-intuitive
given the extra “thinking” introduced during training, it is fully consistent with our broader picture:
by learning to reliably repair local mistakes, the model becomes more robust to error accumulation
within each step, which in turn allows it to tackle harder sub-tasks per step (larger t∗) without
sacrificing accuracy. From a data-design perspective, these results suggest that injecting structured
self-correction signals into CoT training can be an effective way to teach models to use fewer, but
more powerful, steps.

4 AN ERROR ACCUMULATION ANALYSIS ON CHAIN-OF-THOUGHT

Empirical studies on both real-world and synthetic datasets consistently suggest the existence of an
optimal Chain-of-Thought (CoT) length. To explain this, we develop a theoretical model based on
an intuitive analysis of accumulated errors and extend it to more general settings. Remarkably, the
predictions of this simple model align closely with the empirically observed scaling behaviors of CoT
length in our toy model and large language models. While not exhaustive, these insights provide a
useful lens for understanding and anticipating how CoT length influences reasoning performance. All
proofs are deferred to Appendix J.

Setup. Consider the arithmetic task with T operators and an N -step CoT as in Section 3.1.
At step i, the model produces a sub-question qi and a sub-answer ai, with history Hi−1 =
[q1, a1, . . . , qi−1, ai−1]. We use the likelihood factorization

P (afinal|q, θ,N) =

N∏
i=1

P (qi|Hi−1, q, θ,N)︸ ︷︷ ︸
sub-question

P (ai|qi, Hi−1, q, θ,N)︸ ︷︷ ︸
sub-answer

,

We abstract diverse “reasoning behaviors” (reflection, verification, backtracking) as particular choices
of task decomposition and focus on two error sources: (i) sub-question error σ(T ) ∈ [0, 1),
increasing with difficulty T ; (ii) sub-answer error E(N,M, T ) ∈ [0, 1], depending on model
capability M and effective per-step difficulty T/N . For each model with parameters θ, we define its
capability M(θ) using the reasoning boundary (Chen et al., 2024b):

M = M(θ) = max
t

{Pr(ai = a∗i | ti, θ) > ε, |ti| = t},

where |ti| is the number of operators in the subtask ti. Intuitively, M(θ) represents the largest
sub-problem size the model can reliably solve in a single reasoning step.
Proposition 4.1. Assuming stepwise stationarity and independence conditioned on history, the final
accuracy takes the form

A(N) = P (afinal = a∗final | q, θ,N) = α
(
(1− σ(T ))(1− E(N,M, T ))

)N
, (1)

where α denotes a constant independent of N .

A solvable special case. For intuition, consider a linear sub-question error rate σ(T ) = T
C , where

C denotes the maximum task difficulty the model family is trained to handle, which is the largest

7
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operator count present in the training distribution (with T/C ≤ 0.9 within the training regime).
Similarly, assume a linear sub-answer error E(N,M, T ) = T/(NM), which captures the number of
operators processed per step relative to the model’s capability M . Then

A(N) = α
(
1− T

C

)N(
1− T

NM

)N
, (2)

which increases for small N (decomposition helps) and decreases for large N (errors accumulate).

Theorem 4.2 (Optimal CoT length). There exists an optimal N∗(M,T ) maximizing A(N):

N∗(M,T ) =
T Z

M(Z + 1)
, Z = W−1

(
−
(
1− T

Ce

))
,

where W−1 is the negative branch of the Lambert W function (wew = x).

This theorem establishes the inverted U-shaped relationship between CoT length and accuracy, and
provides an explicit formula for the optimal length N∗. From this expression, we can formally derive
the first three scaling behaviors characterized in Section 3.2.

Corollary 4.3 (Scaling laws). From Theorem 4.2:

• N∗(M,T ) increases with T (harder tasks warrant longer CoT).

• The optimal operators per step t∗ = T/N∗(M,T ) = M(1 + 1/Z) increases with T
(envelope behavior).

• N∗(M,T ) decreases with M (stronger models need fewer steps).

How RL Calibrates CoT. The same analysis also sheds light on why reinforcement learning (RL)
with outcome supervision help calibrates CoT length (Section 3.2). During RL, the choice of CoT
length can be viewed as selecting an action Ni from a discrete set A = {N1, . . . , Nk}. Each Ni

produces a binary reward r ∈ {0, 1} with success probability A(Ni) from Proposition 4.1, reducing
the setting to a stateless bandit. With a softmax policy πθ(Ni) =

eθi∑
j eθj

, the RL objective is

J(θ) =

k∑
i=1

πθ(Ni)A(Ni), ∇θiJ =

k∑
j=1

A(Nj)πθ(Nj)(δij − πθ(Ni)).

Corollary 4.4 (RL Converges to Optimal CoT Length). For gradient ascent on J(θ) with sufficiently
small step size, the policy converges to a deterministic solution πθ(Ni) = 1 iff i = argmaxj A(Nj).
Thus, RL training converges to the optimal CoT length N∗ = argmaxN∈A A(N).

This result shows that RL will automatically prefer the optimal length and hence calibrates the CoT
length. In this way, our framework unifies the explanation of optimal CoT length, its scaling laws,
and RL’s calibration effects of reasoning lengths.

Extension to Nonlinear and Stochastic Error Functions. In the analysis above, we adopted a sim-
ple linear model with a closed-form solution for the optimal length to provide intuitive understanding.
This framework can be extended to more general settings, including nonlinear error functions that
are monotone and convex, as well as stochastic error models where each subtask may exhibit a
different error rate. These extensions introduce additional technical subtleties but follow the same
underlying principles. Overall, it shows that the accumulative error analysis can explain a broad class
of reasoning process, including the arithmetic and dynamic programming problems we covered in
Section 3. Due to space limitations, we defer the formal treatment to Appendix I.

5 PRACTICAL APPLICATIONS OF OPTIMAL COT LENGTH

Guided by the understanding above, in this section, we illustrate via some proof-of-concept experi-
ments that adapting LLM training and inference configurations to the optimal CoT length can improve
the model’s reasoning performance.

8
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Figure 5: (a) and (b) compare model performance under different pretraining data distributions:
Mixed Length (uniform over all lengths) vs. Optimal Length (only optimal-length solutions). Despite
its smaller size, the small (6 layer) model trained on optimal-length data outperforms the large (9
layer) model trained on mixed-length data, with the performance gap widening as task difficulty in-
creases. (c) and (d) validate our Length-Filtered Vote method on different models, which consistently
outperforms vanilla majority vote and random-filtered vote on the GPQA dataset, maintaining strong
performance even as the number of samples increases.

5.1 TRAINING WITH DATA OF OPTIMAL COT LENGTH

Training with Optimal-Length CoT Data: The existence of an adaptive, optimal CoT length
suggests that one should design the CoT training data adaptively to fully optimize the model’s
reasoning performance. To examine the influence of the CoT length of the training data, we train a
model on a specialized dataset that contains CoT solutions with lengths known to be optimal for the
given model size and task difficulty (T ). We compare this model against a baseline model trained on
a dataset of CoT solutions with uniformly distributed step lengths t. During testing, models were
allowed to freely choose their CoT strategy.

Results. As shown in Figures 5a and 5b, the model trained on optimal-length CoTs significantly
outperforms the models trained on mixed-length solutions. Remarkably, a smaller model (e.g., 6
layers) trained on optimal-length data can even outperform a larger model (e.g., 9 layers) trained on
randomly chosen CoT lengths. This proof-of-concept experiment underscores the critical influence of
the suitability of the CoT length in training data for the model. While it is generally hard to exactly
estimate optimal CoT lengths in real-world problems, our theoretical and empirical studies provide
valuable guidelines for a coarse estimate. We leave more in-depth studies to future work.

5.2 ADAPTIVE LENGTH-FILTERED VOTE AT INFERENCE TIME

The observation that CoTs of optimal length yield higher accuracy suggests that inference-time
strategies could benefit from this insight. Standard approaches like majority voting over multiple
sampled CoTs, such as self-consistency (Wang et al., 2023), treat all valid reasoning paths equally,
regardless of their length. However, paths that are too short (underthinking) or too long (overthinking
and error-prone) may contribute noisy or incorrect answers to the voting pool.

While Fu et al. (2023) previously proposed filtering out short CoTs, it worked for smaller 2023-era
models where “longer is better.” Inspired by our findings, we propose Length-Filtered Vote, an
adaptive method that enhances standard majority voting by preferentially weighting or exclusively
considering answers derived from CoTs whose lengths fall within a proper range. Specifically, in
majority vote, given a model fθ, a question q, a ground truth answer a∗, we first sample a set of
answer candidates c1, . . . , cn

i.i.d.∼ fθ(q) independently. After that, instead of a direct vote, we group
the answers by their corresponding CoT length ℓ(ci) (discussed in Appendix D) into groups with
equal bin size D (by default, we set D = 2), denoted as {Lj}mj=1. As our theory suggests that
the prediction accuracy is peaked around a certain range of CoT length, we identify such groups
through the prediction uncertainty of the answers within each group, based on the intuition that lower
uncertainty implies better predictions. Specifically, we calculate the Shannon entropy H(Li) of the
final answers given by the CoT chains in each group Li. We use a majority vote only for the K (by
default, we set K = 3) groups with the smallest entropy. For Random-filtered Vote, we do a random
grouping of samples (i.e., not based on length), and repeat the same entropy-based filtering process,
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averaging the final results over 100 trials to account for the randomness of the grouping. A detailed
description of the algorithm is in Appendix K.

Results. We evaluate the proposed method against vanilla majority vote (i.e., self-consistency (Wang
et al., 2023)) on a randomly chosen subset from the GPQA dataset (Rein et al., 2023). The results
in Figure 5c and 5d show that our filtered vote consistently outperforms vanilla majority vote and
random-filtered vote and shows little performance degradation as the sample number increases. In
summary, our findings show that CoT length, as one of the most easily computable feature in
scenarios where token-level probabilities are unavailable, is correlated with the final accuracy.

6 RELATED WORK

Chain-of-Thought for LLM Reasoning. CoT has become a core technique for LLMs to solve
complex reasoning tasks by generating intermediate steps (Wei et al., 2022). Numerous variants arise
to enhance CoT reasoning with more structural substeps, such as least-to-most prompting (Zhou
et al., 2023), tree of Thoughts (Yao et al., 2023), and divide-and-conquer methods (Zhang et al., 2024;
Meng et al., 2024). These methods fundamentally treat CoT as a framework for task decomposition
and subtask solving that falls in our analysis in Section 4.

Overthinking in CoT Reasoning. With the rise of powerful reasoning models like OpenAI o1,
scaling test-time compute with long CoT has gained prominence (Snell et al., 2024; Chen et al.,
2024d; Wu et al., 2024; Brown et al., 2024). These studies often suggest that more computation like
longer CoT can lead to better results. However, this is not always true. With similar interests as
ours, a few concurrent works also investigated the “overthinking” phenomenon (Chen et al., 2024c)
where reasoning models generate excessively long CoTs for simple problems and proposed some
mitigation strategies Han et al. (2024); Luo et al. (2025); Ma et al. (2025); Sui et al. (2025). Our
analysis goes beyond these observations by formally establishing the existence of an optimal CoT
length and its scaling behaviors. Supported by both controlled experiments and theoretical analysis,
it offers principled guidelines for designing more effective CoT strategies.

Theoretical Understanding of CoT. Numerous studies aim to theoretically formalize the Chain-of-
Thought (CoT) process and understand its effectiveness. They include analyzing CoT’s computational
advantages via circuit complexity (Feng et al., 2023; Li et al., 2024), and quantifying step-wise
information gain from an information-theoretic standpoint (Ton et al., 2024). While Schaeffer et al.
(2023) uses error accumulation to explain emergent abilities via a monotonic pL formulation with
fixed reasoning length, our work is the first to leverage error accumulation to analyze the influence of
CoT length. In addition, Bao et al. (2024) and FU et al. (2025) identify and characterize the latent
causal structures and robustness of model reasoning. Ye et al. (2024) conducted controlled synthetic
experiments to help uncover underlying problem-solving mechanisms in LLMs. While Jiang et al.
(2025) presents an automated framework that converts sequential Long CoTs into hierarchical tree
structures. Distinct from these varied theoretical explorations, our findings on CoT scaling behaviors
and the consequent need for model-specific CoT structures (as discussed in Section 3.2) resonate
with the concept of algorithmic alignment (Xu et al., 2019), which suggests that models perform best
when the problem structure aligns with their computational structure.

7 CONCLUSION

This work revisits a prevailing assumption in reasoning with large language models: that longer Chain-
of-Thoughts (CoTs) are always better. Through controlled experiments and theoretical analysis, we
showed that accuracy instead follows an inverted U-shaped curve with respect to CoT length, revealing
the existence of an optimal length that balances finer task decomposition against compounding errors.
Our systematic study further uncovered scaling behaviors of this optimal length across task difficulty,
model size, per-step computation, and RL training.

Building on these insights, we demonstrated that training with optimally sized CoTs improves
performance, and introduced Length-Filtered Vote as an effective inference strategy. Together, these
findings highlight the importance of calibrating reasoning length rather than adopting a one-size-fits-
all approach. We advocate for a principled framework in which LLMs adaptively allocate the right
amount of reasoning effort, ultimately leading to more reliable and efficient problem solving.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs are primarily employed for two purposes: (1) polishing the language of the
manuscript to ensure grammatical correctness and coherence, and (2) assisting in the standardized
organization and documentation of the released codebase. Importantly, all conceptual development,
theoretical analysis, experimental design, and result interpretation are conducted independently
by the authors. The use of LLMs is strictly limited to auxiliary tasks, ensuring that the scientific
contributions of this paper remain entirely unaffected by such tools.

B FORMAL DEFINITIONS OF SIMPLIFIED ARITHMETIC PROBLEM

+

5 +

4 +

+

2 1

3

Figure 6: Computation tree of arithmetic expres-
sion 5 + (4 + ((2 + 1) + 3)).

To begin, we aim to empirically investigate
the relationship between reasoning performance
and CoT length. Therefore, we need to con-
trol a given model to generate reasoning chains
of varying lengths for a specific task. Un-
fortunately, no existing real-world dataset or
model fully meets these strict requirements.
Real-world reasoning tasks, such as GSM8K
or MATH (Cobbe et al., 2021; Hendrycks et al.,
2021b), do not provide multiple solution paths
of different lengths, and manually constructing
such variations is challenging. Moreover, it is
difficult to enforce a real-world model to generate a diverse range of reasoning paths for a given
question. Given these limitations, we begin our study with experiments on synthetic datasets.

B.1 PROBLEM FORMULATION

To investigate the effect of CoT length in a controlled manner, we design a synthetic dataset of
simplified arithmetic tasks with varying numbers of reasoning steps in the CoT solutions.

Definition B.1 (Problem). In a simplified setting, an arithmetic task q is defined as a binary tree
of depth T . The root and all non-leaf nodes are labeled with the + operator, while each leaf node
contains a numerical value (mod 10). In addition, we impose a constraint that every non-leaf node
must have at least one numerical leaf as a child.

The bidirectional conversion method between arithmetic expressions and computation trees is as
follows: keeping the left-to-right order of numbers unchanged, the computation order of each "+"
or tree node is represented by tree structure or bracket structures. For example, consider the task
5 + (4 + ((2 + 1) + 3)) with T = 4. The corresponding computation tree is defined as Figure 6.

To ensure that CoT solutions of the same length have equal difficulty for a specific problem, we
assume that each reasoning step performs the same operations within a single CoT process.

Definition B.2 (Solution). We define a t-hop CoT with a fixed each step length of t as a process that
executes t operations starting from the deepest level and moving upward recursively.
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According to this definition, the execution sequence is uniquely determined. For example, one way to
solve expression in Figure 6 is by performing one addition at a time:

5 + (4 + ((2 + 1) + 3)) = <1> (3)
2 + 1 = 3 (4)
3 + 3 = 6

4 + 6 = 0

5 + 0 = 5<END>.

Another approach is to perform two additions at a time:

5 + (4 + ((2 + 1) + 3)) = <2> (5)
(2 + 1) + 3 = 6

5 + (4 + 6) = 5<END>.

The latter approach is half as long as the former, but each reasoning step is more complex1. This
illustrates a clear trade-off between the difficulty of each subtask and the total number of reasoning
steps.

In practice, when t does not evenly divide T , the final step performs T mod t operations. To guide
the model in generating the desired CoT length, we insert the control token <t> after the question and
before the beginning of the solution. To preserve the parentheses that indicate the order of operations,
we construct expressions in Polish notation. However, for readability, we present each problem in its
conventional form throughout the article.

B.2 CONTRAST TO VANILLA ARITHMETIC PROBLEM

Why pruning? Initially, we intended to create a synthetic dataset for regular arithmetic tasks, but we
quickly realized that the computation tree for such tasks is uncontrollable. For example, consider
the task 1 ∗ 2 + 3 ∗ 4. We hoped to compute 2 operators in one step, but found it impossible
because the addition needs to be computed after the two multiplications, and we cannot aggregate
two multiplications in one subtask. Therefore, pruning the computation tree becomes essential.

Why only focusing on addition? There are two reasons why we focus on arithmetic tasks involving
only addition: first, it simplifies pruning, as the order of operations can be controlled solely by
parentheses; second, it facilitates the computation of sub-tasks, since parentheses do not affect the
final result, and the model only needs to compute the sum of all the numbers when solving a sub-task.
We aim for the model to handle longer sub-tasks, thereby allowing a broader study of the impact of
CoT length.

Will the simplified synthetic dataset impact the diversity of the data? We need to clarify that even
with pruning, the structure of the expressions will still vary because swapping the left and right child
nodes of each non-leaf node in the computation tree results in different expressions. When T > 30,
the number of possible variations exceeds 1× 109.

C DYNAMIC PROGRAMMING (DP) PROBLEMS

C.1 EXPERIMENTAL SETUP

To complement the arithmetic dataset, we design a classical dynamic programming (DP) problem —
the Maximum Path Sum in a Number Triangle. This task shares the same desirable decomposability
property as the arithmetic problems: it naturally admits multiple solutions of varying CoT lengths,
making it suitable for analyzing the scaling behavior of reasoning length.

We construct a dataset of number triangles with varying heights H . Each triangle consists of H rows,
where the i-th row contains i integers sampled uniformly from a predefined range (e.g., [1, 99]). The

1This is because performing two operations at once requires the model to either memorize all combinations
of numbers in a two-operator equation and their answers, apply techniques like commutativity to reduce memory
requirements, or use its mental reasoning abilities to perform the two operations without relying on CoT.
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total task difficulty is quantified by the number of rows H , since longer triangles require deeper
reasoning chains to propagate information from the base to the top.

For example, consider the following triangle of height H = 4:

7
3 8

8 1 0
2 7 4 4

The goal is to find a path from the apex (top) to the base that maximizes the sum of visited numbers.
The canonical solution employs a bottom-up dynamic programming algorithm: starting from the
second-to-last row, we update each entry as the sum of the current value and the maximum of its two
children in the row below. Repeating this process row by row eventually yields the maximum path
sum at the apex.

A long CoT solution might be designed to process t = 1 layer per step.

Row 3 update: [ 8 + max(2, 7), 1 + max(7, 4), 0 + max(4, 4) ]

= [ 15, 8, 4 ]

Row 2 update: [ 3 + max(15, 8), 8 + max(8, 4) ]

= [ 18, 16 ]

Row 1 update: [ 7 + max(18, 16) ]

= [ 25 ]

A shorter CoT solution for the same problem might process t = 2 layers per step.

Step 1 (Row 4 → Row 2):
{

For Row 2, Col 1: 3 + max(2 + 8, 7 + 8) = 3 +max(10, 15) = 18

For Row 2, Col 2: 8 + max(7 + 1, 4 + 1) = 8 +max(8, 5) = 16

⇒ Row 2 becomes [ 18, 16 ]

Step 2 (Row 2 → Row 1): 7 + max(18, 16) = 7 + 18 = 25

Thus, the maximum path sum is 25.

C.2 EVALUATION OF DYNAMIC-PROGRAMMING TASKS ON LARGER QWEN2.5 MODELS

To further validate the non-triviality of our dynamic-programming (DP) benchmark and examine its
behavior on stronger models, we evaluate Qwen2.5 instruct models of varying sizes on DP tasks of
depths 6, 8, and 10. For each difficulty level, we generate 100 problem instances and sample 10 CoT
responses per instance. Following our real-world evaluation protocol, we determine the optimal CoT
length for each model–task pair by selecting the chain length that achieves highest accuracy.

We omit the 1.5B model from analysis due to its low performance (<10% accuracy). Importantly,
even the 72B model does not achieve perfect accuracy on depth-6 tasks (81.8%), indicating that our
DP benchmark remains non-trivial and effectively probes structured algorithmic reasoning.

Table 2 summarizes optimal CoT lengths and corresponding accuracies. Two clear trends emerge:
1) larger models consistently require shorter optimal CoT lengths, and 2) deeper DP tasks require
longer optimal CoT lengths. Both findings are fully aligned with our theoretical predictions regarding
adaptive CoT behavior with respect to model capability and task difficulty.

D SUPPLEMENTARY DETAILS ON REAL WORLD EXPERIMENT FOR OPTIMAL
COT LENGTH

D.1 SOLUTION LENGTH CONTROL

To study the impact of CoT length on performance under a given problem difficulty, we need to
induce the model to naturally generate solutions of varying lengths. Simply adding prompts like

18
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Table 2: Optimal CoT length (accuracy %) across Qwen2.5 model sizes and DP task depths.

DP Depth 6 8 10
7B 5 (35.0%) 7 (30.3%) 8 (22.6%)
32B 4 (70.6%) 5 (45.8%) 8 (42.9%)
72B 3 (81.8%) 5 (66.7%) 6 (46.2%)

“please use 100 tokens to solve this problem” or “please use 10 steps to solve this problem” is not
ideal because the model’s ability to follow instructions regarding output length is limited, and such
fixed-length prompts may not ensure fairness across problems of different difficulties. Moreover,
prompting for a specific length might lead the model to generate irrelevant tokens or steps just to
“pad the length,” without actually changing the number of steps or the complexity of the reasoning.
Additionally, controlling max_length is also problematic, as overly long responses might get
truncated, which would directly lead to lower accuracy for longer outputs. What we really want is
for the model to generate a complete and coherent long response on its own, so we can observe the
corresponding accuracy.

To create solutions with varying step lengths with different complexity, we follow (Fu et al., 2023) by
using in-context examples (8-shots) with three different levels of complexity to guide the model in
generating solutions with different step counts. For each set of in-context examples, we sample 20
times, resulting in a total of 60 samples per question.

D.2 STEP SEGMENTATION

Simply measuring CoT length by counting tokens is neither rigorous nor meaningful. Since our
focus is on final performance rather than efficiency, we care more about using CoT length to reflect
the complexity of the reasoning pattern. In this sense, the number of reasoning steps can serve as a
more appropriate indicator of CoT length. As we discussed earlier, the step number captures how the
model decomposes the problem, which directly reflects the complexity of its reasoning. In contrast,
token length fails to capture this because, as the model thinks more deeply and the number of steps
increases, the number of tokens per step may decrease—making the total token count unpredictable
and unreliable as a proxy for reasoning complexity.

When calculating the number of steps, we separate the full reasoning chain using "\n"(Fu et al.,
2023) and remove empty lines caused by "\n\n". Then we consider the total number of lines as the
CoT length. Since questions in the MATH dataset are challenging and lead to high variability in final
CoT lengths, we normalize the lengths by applying length = length // bin_width. For
experiments comparing different models (e.g., optimal CoT length per model or optimal vs. longest
CoT), the questions within each length bin differ, which introduces variability. To reduce this variance
and ensure each bin has enough samples, we use a relatively large bin width of 5. In contrast, for
analyzing the influence of task difficulty, where each calculation on optimal CoT length only contains
one question, we adopt a finer bin width of 2 for better resolution (we also verified that using width 1
yields almost identical results).

D.3 MORE DETAILS OF FIGURE 2B.

When evaluating the results, questions with accuracy < 0.01 or > 0.99 (indicating all incorrect or all
correct responses) are excluded, as their accuracy does not vary with step length changes.

To better understand the reliability of the observed trend between task difficulty and optimal Chain-
of-Thought (CoT) length, we compute a 95% confidence interval around the linear regression line.
Specifically, we use standard methods based on the Student’s t-distribution to estimate uncertainty
in the predicted values. The confidence band reflects how much the estimated mean CoT length is
expected to vary given the finite sample size and the distribution of data points.
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D.4 ON THE DEFINITION OF TASK DIFFICULTY AND MITIGATING ACCURACY BIAS

Defining task difficulty requires particular care because raw accuracy can be biased by a model’s in-
herent preference for certain CoT lengths. We address this issue using two complementary strategies.

Controlling for CoT-Length Bias. Different questions may elicit different preferred CoT lengths
from the model, which can artificially inflate or deflate their measured difficulty. To reduce this
confounding factor, for each question we explicitly prompt the model to generate multiple CoT
lengths when producing the 60 responses used in our evaluation. This procedure minimizes the effect
of internal length biases on accuracy and yields a more reliable task-difficulty signal.

Model-Aware Difficulty Definition. Task difficulty is inherently model-dependent: a problem that
is easy for one model may be challenging for another due to differences in scale, data coverage, or
training. For this reason, we define difficulty in a model-aware manner by using the average accuracy
of the evaluated model as the difficulty indicator. This ensures that the difficulty metric faithfully
reflects the model’s actual competence rather than relying on externally imposed or model-agnostic
notions of hardness.

E LOOPED TRANSFORMER

Following Bae et al. (2025), we implement the looped Transformer architecture by iteratively applying
a single Transformer layer multiple times. Specifically, we train two variants with loops = 6 and
loops = 9, both configured with an embedding dimension of 64 × 9 and 9 attention heads (only
4 MB parameters in total). Training is conducted on a mixed dataset with maximum task difficulty
= 64 and maximum CoT hop size = 8. Detailed training procedures are provided in the released
code.

F EXTENDED EXPERIMENTS ON BROADER DOMAINS

To strengthen the generality of our experimental conclusions, we expanded both the scale of the data
and the diversity of reasoning domains considered. Specifically, we conducted experiments in the
following three areas:

• Mathematical reasoning: We employed the full MATH500 dataset (Lightman et al., 2023).
This dataset contains a curated subset of 500 problems from the original MATH benchmark.

• Scientific reasoning: We adopted the MMLU STEM (Hendrycks et al., 2021a) dataset,
which is a subset of STEM subjects defined in the original MMLU benchmark, which covers
a wide range of scientific and engineering domains.

• Commonsense reasoning: We used the full Winogrande (Sakaguchi et al., 2019) xs training
split. This dataset formulates a fill-in-the-blank task with binary options, designed to require
non-trivial commonsense reasoning.

F.1 ADDITIONAL RESULTS FOR FIGURE 2B.

Before presenting the results on additional datasets, we first further investigate the relationship
between task difficulty and optimal CoT length on real-world benchmarks using different models.
As shown in Figure 7, the findings are consistent and compelling: across all evaluated models, we
observe a clear and statistically significant correlation between task difficulty and the corresponding
optimal CoT length. These analyses are also validated on broader datasets such as MATH500,
MMLU STEM, and WINOGRANDE.

F.2 EXPERIMENTS ON THE FULL MATH500 DATASET

We acknowledge the need for broader validation beyond a single subset of data. Therefore, we
further conducted experiments on the complete MATH500 dataset. Specifically, we evaluated the
Qwen2.5-Instruct models (1.5B, 7B, 32B, and 72B) with 30 sampled solutions per question.
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Figure 7: Evaluation between task difficulties and optimal CoT lengths on MMLU STEM datasets.

Table 3 reports the comparison of accuracy achieved with the longest chain-of-thought (CoT) versus
the optimal CoT length, across different model sizes. Table 4 further examines the relationship
between optimal CoT length and problem difficulty.

Table 3: Optimal CoT length vs. model size on the full MATH500 dataset.

1.5B 7B 32B 72B

Accuracy (longest length) 0.18 0.27 0.40 0.08
Accuracy (optimal length) 0.38 (+0.20) 0.82 (+0.55) 0.81 (+0.41) 0.81 (+0.73)
Optimal length 5 2 1 2

Table 4: Correlation between optimal CoT length and task difficulty.

1.5B 7B 32B 72B

r 0.2092 0.2378 0.2266 0.1986
p 0.0068 0.0034 0.0029 0.0297

In this experiment, where problem difficulty was not explicitly controlled, we observed that the
7B, 32B, and 72B models achieved peak performance at shorter CoT lengths. This trend is likely
explained by the dataset’s high concentration of easier problems (levels 1–4), which, as shown in
our previous results, generally require shorter reasoning chains. By contrast, the much weaker 1.5B
model still benefited from longer reasoning (optimal length = 5).

Importantly, despite the skewed distribution of problem difficulty, the key relationship we aimed
to study remains intact: we consistently found a statistically significant correlation (p < 0.05)
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between task difficulty and optimal CoT length, which aligns with our earlier findings across all other
experiments.

F.3 EXPERIMENTS ON THE WINOGRANDE DATASET

We have also conducted new experiments on the WINOGRANDE (Sakaguchi et al., 2019) dataset to
assess commonsense reasoning. In particular, we evaluated the Qwen2.5-Instruct models (1.5B, 7B,
32B, and 72B) on the full WINOGRANDE-XS training split, replicating the experimental setup from
Figure 2 of our main paper.

Table 5 reports the comparison between the longest and optimal CoT lengths across different model
sizes, while Table 6 shows the correlation between optimal CoT length and task difficulty.

Table 5: Optimal CoT length vs. model size on the WINOGRANDE-XS dataset.

1.5B 7B 32B 72B

Accuracy (longest length) 0.56 0.69 0.72 0.85
Accuracy (optimal length) 0.63 (+0.07) 0.74 (+0.05) 0.80 (+0.08) 0.93 (+0.08)
Optimal length 15 15 10 9

Table 6: Correlation between optimal CoT length and task difficulty on WINOGRANDE-XS.

1.5B 7B 32B 72B

r 0.2201 0.4256 0.3886 0.2098
p 0.0052 < 1e-4 0.0120 0.0077

These experiments significantly broaden the generalizability of our conclusions. The results corrobo-
rate our earlier findings from the mathematical domain, demonstrating that the optimal CoT length
decreases as the model size increases and that it remains significantly correlated with task difficulty
(p < 0.05).

G SUPPLEMENTARY DETAILS ON REAL WORLD EXPERIMENT FOR RL
SIMPLICITY BIAS

For Figure 2c, we use Qwen2.5-7B-Instruct (Qwen et al., 2025) as the base model, Group Relative
Policy Optimization with R1-like prompting (Shao et al., 2024; Guo et al., 2025) for the reinforcement
learning process, and LeetCode-2K (Xia et al., 2025) as the training and evaluation dataset. We take
the following training configuration by default:

Table 7: Hyperparameter settings for real-world RL experiments with Qwen2.5-instruct models.

Learning Rate Max Epochs Rollout Samples Reverse KL Coefficient Entropy Loss Coefficient Effective Batch Size

5e-7 10 16 1e-3 5e-3 256

H ADDITIONAL SYNTHETIC EXPERIMENT DETAILS

H.1 TRAINING DETAILS

In default, we train different models (layers ranging from 5 to 9) on the same dataset, which included
mixed questions with total operators T ∈ [12, 80] and random sampled CoT solutions with each step
operators t ∈ [1, 12]. All other parameters are kept the same with the huggingface GPT-2 model.
During the training process, the CoT indicator token <t> is also trained, so that during test-time, we
can let the model decide which type of CoT it will use by only prompting the model with the question.
For each model, we train 25000 iterations with batch size that equals 256. During test-time, we test
100 questions for each T and t. All experiments can be conducted on one NVIDIA A800 80G GPU.
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H.2 OBSERVATION OF SUBTASK LOSS

As we observed in training losses, the loss of subtask generation tokens (e.g. 1 + 2) for the easiest
subtask(t = 1) is about 3 times larger than the hardest subtask (t = 12), while the loss ratio for
subtask answer tokens is 1e4. Therefore, it is acceptable for taking the subtask error rate constant
with t.

Besides, there is no obvious pattern showing the model sizes affect the subtask loss. Moreover, the
smallest model and the largest model have almost the same subtask loss. Therefore, in our settings,
we take model size as irrelevant with the subtask error rate.

I THEORETICAL RESULTS UNDER BROADER SCENARIOS

I.1 GENERAL ERRORS

In the simple case we discussed in Section 4, we discussed the trend of overall accuracy with respect
to N and the variation of optimal N with M and T , assuming the subtask error rate is a linear
function. In the following discussion, we aim to derive conclusions corresponding to more general
error rate functions. We find that as long as the error function satisfies some basic assumptions on the
monotonicity and convexity of the error functions, the above conclusions still hold.
Assumption I.1. E(N,M, T ) satisfies the following reasonable conditions:

• 0 < E(N = 1,M, T ) < 1

• limN→+∞ E(N,M, T ) = 0

• E(N,M, T ) is monotonically deceasing with N , since more detailed decomposition leads
to easier subtask.

• E(N,M, T ) is convex with N , since the benefits of further decomposing an already fine-
grained problem(N is large) are less than the benefits of decomposing a problem that has
not yet been fully broken down(N is small).

• E(N,M, T ) is monotonically deceasing with M , since stronger models have less subtask
error rate.

• E(N,M, T ) is monotonically increasing with T , since harder total task leads to harder
subtask while N,M are the same.

Assumption I.2. σ(T ) is monotonically increasing with T

With Assumption I.1 and I.2), the core insights from the linear case can be generalized.
Theorem I.3. For a noise function 0 < σ(T ) < 1 and a subtask error rate function 0 <
E(N,M, T ) < 1 satisfying Assumptions I.1 and I.2, the general final accuracy function A(N)
from Proposition 4.1 has the following properties:

• limN→+∞ A(N) = 0. (Excessively long chains always fail.)

• If A(N) has a maximum at N∗ > 1, then N∗ has a lower bound related to M and T :

N∗ ≥ NLB(M,T ) = E−1
N

(
1− 1

e2(1− σ(T ))
;M,T

)
, (6)

where E−1
N (·;M,T ) is the inverse of E(N,M, T ) with respect to N .

The monotonicity of E−1
N with respect to M (decreasing) and T (increasing, assuming σ(T ) doesn’t

dominate adversely) implies that the qualitative scaling laws (Corollaries stemming from Theorem 4.2)
still hold under general conditions, supporting the empirically observed Simplicity Bias and the
inverted U-shaped performance.
Corollary I.4. As the model becomes stronger, E−1 decreases monotonically with respect to M ,
which leads to a decrease of N(M,T ).
Corollary I.5. As the task becomes harder, E−1 is monotonically increasing with respect to T , which
leads to an increase in N(M,T ).
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I.2 RANDOM ERROR

In Theorem 4.2 and I.3, we make a strong assumption that all sub-question or sub-answer errors are
identical, which does not align well with real-world scenarios. In practice, each sub-task may exhibit
a different error rate. However, they generally follow a trade-off: the more the task is decomposed,
the easier each sub-task becomes. Specifically, we can model the error rate of each sub-task as a
random variable with a fixed expectation that monotonically decreases with the number of CoT steps
N .

To simplify the problem, here we assume σi ∼ B(α1(T ), β1(T )) to be the sub-question error rate,
and ei ∼ B(α2(N,M, T ), β2(N,M, T )) to be the sub-answer error rate. Then, as a variant of
Proposition 4.1, the expectation of final accuracy is E

[∏N
i=1(1− ei)(1− σi)

]
.

It is worth noting that each σi or ei is not independent. If most steps are easy (i.e., have low error
rates), the remaining steps are more likely to be easy as well. Moreover, if a particular step serves as
a self-validation step, its high accuracy can influence the correctness of other steps that depend on it.
This also provides an interpretation for reasoning models exhibiting backtracking behavior.

Theorem I.6. Let α1 = T , β1 = C − T , α2 = T , and β2 = NM − T . Then the expected error
rates for sub-questions and sub-answers are given by E[σi] =

T
C and E[ei] = T

MN , respectively.
Based on these estimates, we can derive an upper bound Â(N) on the final accuracy

E

[
N∏
i=1

(1− ei)(1− σi)

]
≤ Â(N) =

[(
1− T

C + 2N − 1

)(
1− T

NM + 2N − 1

)]N
,

which initially increases and then decreases as the number of CoT steps N grows.

This suggests that even with stochasticity, the fundamental trade-off leading to an optimal CoT length
persists.

J PROOF

In this section, we provide the proofs for all theorems.

J.1 PROOF OF PROPOSITION 4.1

Proposition 4.1. Assuming stepwise stationarity and independence conditioned on history, the final
accuracy takes the form

A(N) = P (afinal = a∗final | q, θ,N) = α
(
(1− σ(T ))(1− E(N,M, T ))

)N
, (1)

where α denotes a constant independent of N .

Proof. In each subtask ti, which contains t operators, there are 2t + 1 tokens (as the number of
numerical tokens is one more than the number of operators). Therefore, the accuracy of each subtask
is given by

P (ti = t∗i |Hi−1, q, θ) = (1− σ(T ))
2t+1

. (7)

In our theoretical analysis, for simplicity, we allow t to be a fraction, defined as t = T
N , and assume

that each subtask has the same level of difficulty given T and N . Under this assumption, we have the
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final accuracy:

A(N) = P (aN = a∗N |q, θ) (8)

=

N∏
i=1

P (ti = t∗i |Hi−1, q, θ)P (ai = a∗i |ti, Hi−1, q, θ) (9)

=

N∏
i=1

(1− σ(T ))
2t+1

(1− E(N,M, T )) (10)

= (1− σ(T ))
N(2t+1)

(1− E(N,M, T ))
N (11)

= (1− σ(T ))
2T

((1− E(N,M, T ))(1− σ(T )))
N (12)

= α ((1− E(N,M, T ))(1− σ(T )))
N (13)

J.2 PROOF OF THEOREM 4.2

Theorem 4.2 (Optimal CoT length). There exists an optimal N∗(M,T ) maximizing A(N):

N∗(M,T ) =
T Z

M(Z + 1)
, Z = W−1

(
−
(
1− T

Ce

))
,

where W−1 is the negative branch of the Lambert W function (wew = x).

Proof. Given Eq. (1) that

A(N) = α

((
1− T

C

)(
1− T

NM

))N

(14)

We consider function

f(x) =
[(
1− T

Mx

) (
1− T

C

)]x
. (15)

For convenience, define

g(x) = ln
(
f(x)

)
= x ln

[(
1− T

Mx

) (
1− T

C

)]
.

Thus,

g′(x) =
[
ln
(
1− T

Mx

)
+

T

Mx
(
1− T

Mx

)] + ln
(
1− T

C

)
.

Set g′(x) = 0:

ln
[(
1− T

Mx

) (
1− T

C

)]
+

T

Mx
(
1− T

Mx

) = 0.

Let A = 1
1− T

Mx

, then we have

ln
[ (

1− T
C

)]
+ A− 1 = ln(A).

Let z := 1− T/C. (Since T/C < 1, z = 1− T/C > 0.) By moving terms, we have:

−z

e
= −A exp(−A).
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Therefore,
A = −W−1(−z

e
) = −Z,

Finally, we have

N(M,T ) = x =
TZ

M(Z + 1)

Here W (·) is the Lambert W function, and for 0 < 1− T
C < 1, the argument α = − 1−T/C

e lies in
the interval

(
− 1

e , 0
)
. This means there are two real branches W0 and W−1 in that domain, but since

Z
Z+1 > 0,we have Z < −1. Therefore, we only take the solution on branch W−1.

J.3 PROOF OF COROLLARY 4.3

Corollary 4.3 (Scaling laws). From Theorem 4.2:

• N∗(M,T ) increases with T (harder tasks warrant longer CoT).

• The optimal operators per step t∗ = T/N∗(M,T ) = M(1 + 1/Z) increases with T
(envelope behavior).

• N∗(M,T ) decreases with M (stronger models need fewer steps).

Proof. The second and third conclusions can be easily derived through monotonic composition, so
we primarily focus on proving the first point. We begin the proof by incorporating the notation from
J.2. We have

g′(x) =
[
ln
(
1− T

Mx

)
+

T

Mx
(
1− T

Mx

)] + ln
(
1− T

C

)
,

and x∗(T ) such that g′(x∗(T )) = 0.

Let F (x∗(T ), T ) = g′(x∗(T )) = 0 We want to see how x∗(T ) changes as T changes, therefore we
take total derivative w.r.t. T . By the chain rule,

0 =
d

dT
F
(
x∗(T ), T

)
=

∂F

∂x

(
x∗(T ), T

)
︸ ︷︷ ︸

call this Fx

· ∂x
∗

∂T

(
T
)

+
∂F

∂T

(
x∗(T ), T

)
︸ ︷︷ ︸

call this FT

.

Hence

∂x∗

∂T

(
T
)
= −

FT

(
x∗(T ), T

)
Fx

(
x∗(T ), T

) .
So the sign of x′∗(T ) is the opposite of the sign of FT , provided Fx ̸= 0.

Since

Fx

(
x, T

)
= − T 2

x(Mx− T )2
< 0,∀x > 0, (16)

all we need to prove is

FT

(
x∗(T ), T

)
=

T

(Mx∗(T )− T )2
− 1

C − T
> 0. (17)

That is

√
T (C − T ) + T

M
> x∗(T ). (18)

Let x0(T ) =

√
T (C−T )+T

M be the test point.
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According to Lemma J.1, F (x0(T ), T ) < 0. Since F (x∗(T ), T ) = 0, and Fx

(
x∗(T ), T

)
< 0, we

have x0(T ) > x∗(T ).

Thus, FT

(
x∗(T ), T

)
> 0 holds and we have proved our corollary with ∂x∗

∂T

(
T
)
> 0.

J.4 PROOF OF THEOREM I.3

Theorem I.3. For a noise function 0 < σ(T ) < 1 and a subtask error rate function 0 <
E(N,M, T ) < 1 satisfying Assumptions I.1 and I.2, the general final accuracy function A(N)
from Proposition 4.1 has the following properties:

• limN→+∞ A(N) = 0. (Excessively long chains always fail.)

• If A(N) has a maximum at N∗ > 1, then N∗ has a lower bound related to M and T :

N∗ ≥ NLB(M,T ) = E−1
N

(
1− 1

e2(1− σ(T ))
;M,T

)
, (6)

where E−1
N (·;M,T ) is the inverse of E(N,M, T ) with respect to N .

Proof. (1) Since 0 < A(N) < (1 − σ(T ))N , and limN→+∞(1 − σ(T ))N = 0,
limN→+∞ A(N,M, T ) = 0

(2) Let g(x) denote E(x,M, T ) and define f(x) = lnA(x). Then,

f ′(x) = ln(1− σ(T )(1− g(x)))− xE′(x)

1− E(x)
(19)

< ln(1− σ(T )(1− g(x))) + 2, (since E is convex and x = N ≥ 1) (20)

If A(N) attains its maximum at some point N∗ > 1, then ln(1 − σ(T )) + 2 > 0. Otherwise, we
would have f ′(x) < ln(1− σ(T )) + 2 ≤ 0 ∀x > 1, leading to a contradiction.

Thus, it follows that e2(1− σ(T )) > 1.

Now, define N(M,T ) = E−1
(
1− 1

e2(1−σ(T ))

)
, which satisfies

ln(1− σ(T )(1− g(N(M,T )))) + 2 = 0.

If there exists x∗ < N(M,T ) such that f ′(x∗) = 0, then we obtain

0 = f ′(x∗) < ln(1− σ(T )(1− E(x))) + 2 < 0,

which is a contradiction. Hence, the assumption that x∗ < N(M,T ) must be false.

Therefore, we conclude that x∗ = N∗ > N(M,T ).

J.5 PROOF OF THEOREM I.6

Theorem I.6. Let α1 = T , β1 = C − T , α2 = T , and β2 = NM − T . Then the expected error
rates for sub-questions and sub-answers are given by E[σi] =

T
C and E[ei] = T

MN , respectively.
Based on these estimates, we can derive an upper bound Â(N) on the final accuracy

E

[
N∏
i=1

(1− ei)(1− σi)

]
≤ Â(N) =

[(
1− T

C + 2N − 1

)(
1− T

NM + 2N − 1

)]N
,

which initially increases and then decreases as the number of CoT steps N grows.
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Proof. According to the multidimensional version of Hölder’s inequality,

E

[
N∏
i=1

(1− ei)(1− σi)

]
≤

N∏
i=1

(
E[(1− ei)

2N ]E[(1− σi)
2N ]
) 1

2N (21)

(Lemma J.2) ≤
N∏
i=1

(
1− T

C + 2N − 1

)(
1− T

NM + 2N − 1

)
(22)

=

[(
1− T

C + 2N − 1

)(
1− T

NM + 2N − 1

)]N
(23)

J.6 PROOF OF COROLLARY 4.4

Corollary 4.4 (RL Converges to Optimal CoT Length). For gradient ascent on J(θ) with sufficiently
small step size, the policy converges to a deterministic solution πθ(Ni) = 1 iff i = argmaxj A(Nj).
Thus, RL training converges to the optimal CoT length N∗ = argmaxN∈A A(N).

Proof. We treat the choice of CoT length as a k-armed stochastic bandit with action set A =
{N1, . . . , Nk} and unknown success probabilities2 A(Ni) ∈ (0, 1). Without loss of generality,
relabel the arms so that

A(N1) = max
j

A(Nj) =: A
∗, A(N1) ≥ A(N2) ≥ · · · ≥ A(Nk).

The agent uses a softmax (Gibbs) policy

πθ(Ni) =
eθi∑k
j=1 e

θj
, θ ∈ Rk, (24)

and maximises the expected reward

J(θ) =

k∑
i=1

πθ(Ni)A(Ni). (25)

Because πθ is C∞ in θ and A(Ni) are constants, J is smooth.

Under the REINFORCE estimator with sufficiently small, fixed step size η > 0, gradient ascent
updates take the form

θ(t+1) = θ(t) + η∇θJ
(
θ(t)
)
, (26)

where
∂J

∂θi
= πθ(Ni)

(
A(Ni)− J(θ)

)
. (27)

Eq. (27) is the classical replicator (or logit) gradient. Define the simplex ∆k−1 := {π ∈ (0, 1]k |∑
i πi = 1} and write πθ = (πθ(N1), . . . , πθ(Nk)).

Letting η → 0 yields the ODE

π̇i = πi

(
A(Ni)− ⟨π,A⟩

)
, i = 1, . . . , k, (28)

with ⟨π,A⟩ =
∑

j πjA(Nj). Eq. (28) is the replicator dynamics for a fitness landscape A on ∆k−1.

Consider the Kullback–Leibler divergence to the optimal pure strategy e1 = (1, 0, . . . , 0),

V (π) =

k∑
i=1

πi ln
(

πi

e1,i

)
= − lnπ1.

2By Proposition 4.1, A(Ni) is the probability that the final answer is correct when a chain of length Ni is
used. The bandit is stationary because A(Ni) does not depend on time or the agent’s past actions.
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V is non-negative on ∆k−1 and V (π) = 0 iff π = e1.

Taking the time derivative along Eq. (28) gives

dV

dt
= − π̇1

π1
= −

(
A(N1)− ⟨π,A⟩

)
≤ 0,

with equality iff π1 = 1 or A(N1) = ⟨π,A⟩. The latter can only happen if π1 = 1 because A(N1) >
A(Nj) for j > 1. Hence V is a strict Lyapunov function, and e1 is the unique asymptotically stable
equilibrium of Eq. (28). All other stationary points (mixtures over sub-optimal arms) are unstable.

For sufficiently small but fixed η (choose η < 1
A∗ , which always exists), projected gradient ascent is

a perturbed discretisation of Eq. (28). Standard results for primal-space mirror descent imply that the
discrete iterates π(t) ≡ πθ(t) converge almost surely to the set of asymptotically stable equilibria of
the ODE, i.e. to {e1}. Therefore

lim
t→∞

πθ(t)(Ni) =

{
1, if i = argmaxj A(Nj),

0, otherwise.

Because A may attain its maximum at several arms, the limit is a deterministic policy that places all
probability on some maximiser of A.

Thus gradient ascent on Eq. (25) converges to a deterministic policy that always selects an optimal
CoT length N∗ = argmaxN∈A A(N), completing the proof.

J.7 TECHNICAL LEMMAS

Lemma J.1 (test point). Let F (x) be defined as

F (x) = ln

(
1− T

Mx

)
+

T

Mx
(
1− T

Mx

) + ln

(
1− T

C

)
,

where T,M,C ∈ R+ satisfy the conditions:

• 0 < T
C < 0.9,

• 0 < T
Mx < 1.

Define x0 as

x0 =

√
T (C − T ) + T

M
.

Then, we have
F (x0) < 0.

Proof. At x = x0, note that
Mx0 =

√
T (C − T ) + T.

Thus,

1− T

Mx0
= 1− T

T +
√
T (C − T )

=

√
T (C − T )

T +
√
T (C − T )

.

Therefore,

ln
(
1− T

Mx0

)
= ln

( √
T (C − T )

T +
√
T (C − T )

)
= ln

√
T (C − T )− ln

(
T +

√
T (C − T )

)
.

Also, observe that

T

Mx0

(
1− T

Mx0

) =
T

(T +
√
T (C − T ))

( √
T (C−T )

T+
√

T (C−T )

) =
T√

T (C − T )
=

√
T

C − T
.
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It is convenient to introduce the change of variable

u =

√
T

C − T
,

so that
T = u2(C − T ),

√
T (C − T ) = u(C − T ).

Then we have

T +
√

T (C − T ) = u2(C − T ) + u(C − T ) = u(C − T )(u+ 1).

In these terms we have:

ln
√

T (C − T ) = ln
[
u(C − T )

]
= lnu+ ln(C − T ),

ln
(
T +

√
T (C − T )

)
= ln

[
u(C − T )(u+ 1)

]
= lnu+ ln(C − T ) + ln(u+ 1),

and √
T

C − T
= u.

Finally, we have

ln
(
1− T

C

)
= − ln(

C

C − T
) = − ln(u2 + 1)

Thus, the function F (x0) becomes

F (x0) = lnu+ ln(C − T )−
(
lnu+ ln(C − T ) + ln(u+ 1)

)
+ u− ln(u2 + 1) (29)

= − ln(u+ 1) + u− ln(u2 + 1) , (30)

where u =
√

T
C−T ∈ (0, 3) . It is easy to show F (x0) < 0 when u ∈ (0, 3).

Lemma J.2 (Estimation of the n-th Moment of the Beta Distribution). Let x ∼ Beta(α, β). Then

E[(1− x)n] ≤
(
1− α

α+ β + n− 1

)n

.

Proof.

E[(1− x)n] =
1

B(α, β)

∫ 1

0

(1− x)nxα−1(1− x)β−1 dx

=
1

B(α, β)

∫ 1

0

xα−1(1− x)β+n−1 dx

=
B(α, β + n)

B(α, β)

=
Γ(α)Γ(β + n)

Γ(α+ β + n)
· Γ(α+ β)

Γ(α)Γ(β)

=
Γ(β + n)

Γ(β)
· Γ(α+ β)

Γ(α+ β + n)

=

n−1∏
i=0

β + i

α+ β + i

≤
(

β + n− 1

α+ β + n− 1

)n

=

(
1− α

α+ β + n− 1

)n

.
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K PSEUDO-CODE OF LENGTH-FILTERED VOTE

Algorithm 1 Length-filtered Vote

1: Input: Model fθ, Question q, Space of All Possible Answers A, Number of Total Groups M ,
Number of Selected Groups K, Group Width D

2: Output: Final Answer â
3: Sample candidates c1, . . . , cn

i.i.d.∼ fθ(q)
4: Define A(c) as the corresponding answer of candidates c.
5: Define pj ∈ [0, 1]|A| as the frequency of each answer in length group Lj .
6: for j = 1 to m do

Lj = {ci | ℓ(ci) ∈ [D ∗ (j − 1), D ∗ j) , i = 1, · · · , n}
7: for a ∈ A do

pj [a] =

∑
c∈Lj

I(A(c) = a)

|Lj |
8: end for
9: end for

10: {s1, . . . , sK} = argminS⊆{1,...,M},|S|=K

∑
s∈S H(ps)

11: â = argmaxa∈A

∑
c∈Ls1∪···∪LsK

I(A(c) = a)

12: return â
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