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Abstract
Recent advances in Reinforcement Learning from
Human Feedback (RLHF) have shown that KL-
regularization plays a pivotal role in improv-
ing the efficiency of RL fine-tuning for large
language models (LLMs). Despite its empiri-
cal advantage, the theoretical difference between
KL-regularized RL and standard RL remains
largely under-explored. While there is a recent
line of work on the theoretical analysis of KL-
regularized objective in decision making (Xiong
et al., 2024a; Xie et al., 2024; Zhao et al., 2024),
these analyses either reduce to the traditional
RL setting or rely on strong coverage assump-
tions. In this paper, we propose an optimism-
based KL-regularized online contextual bandit al-
gorithm, and provide a novel analysis of its regret.
By carefully leveraging the benign optimization
landscape induced by the KL-regularization and
the optimistic reward estimation, our algorithm
achieves an O

(
η log(NRT ) · dR

)
logarithmic re-

gret bound, where η,NR, T, dR denote the KL-
regularization parameter, the cardinality of the
reward function class, number of rounds, and the
complexity of the reward function class. Further-
more, we extend our algorithm and analysis to
reinforcement learning by developing a novel de-
composition over transition steps and also obtain
a similar logarithmic regret bound.

1. Introduction
We study the KL-regularized contextual bandit (Langford
& Zhang, 2007; Xiong et al., 2024a) and Markov decision
processes (MDPs) (Sutton, 2018) in this paper. These two
frameworks have received significant attention due to their
tremendous successes in the post-training stage of modern
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large language models (LLMs), which is commonly referred
to as the Reinforcement Learning from Human Feedback
(RLHF) (Bai et al., 2022; Ouyang et al., 2022). The RLHF
learning paradigm has been used to make a powerful chatbot
by aligning the LLMs with human preference, making the
model generation helpful, honest, and harmless (Bai et al.,
2022). Notable examples include the OpenAI’s Chat-GPT
(OpenAI, 2023), Anthropic’s Claude (Bai et al., 2022), and
Google’s Gemini (Team et al., 2023). More recently, the KL-
regularized RL framework has also been applied to enhance
multi-turn reasoning capabilities, resulting in powerful rea-
soning models such as GPT4-o1 and DeepSeek-R1.

However, the RLHF process also faces challenges. It often
causes a decline in certain abilities acquired during pre-
training and supervised fine-tuning (SFT), a phenomenon
commonly known as “alignment tax” (Askell et al., 2021;
Lin et al., 2023). For instance, contrastive learning without
regularization, as observed in Meng et al. (2024), can de-
grade performance on standard reasoning benchmarks like
MATH (Hendrycks et al., 2021) and GSM8K (Cobbe et al.,
2021). Additionally, unregularized RL training presents sig-
nificant challenges on computational efficiency and training
stability (Casper et al., 2023). To address these issues, prac-
titioners often optimize a KL-regularized objective (defined
formally in Section 4) to balance reward optimization and
mitigate alignment tax.

Moreover, these KL-regularized frameworks often demon-
strate superior sample efficiency compared to standard
deep RL tasks. For example, models with 52B parameters
(Claude (Bai et al., 2022)) and 671B parameters (DeepSeek-
R1 (DeepSeek-AI et al., 2025)) achieve substantial policy
improvement with only tens of thousands of samples or thou-
sands of training steps. Similar observations apply to direct
preference alignment algorithms (Rafailov et al., 2023; Tun-
stall et al., 2023; Chen et al., 2024; Dong et al., 2024), which
develop state-of-the-art open-source chatbots using fewer
than 100K samples. These results highlight the superior
sample efficiency of KL-regularized RL, surpassing tradi-
tional deep RL applications (Silver et al., 2016) and their
analyses in the RL theory literature.

However, despite the empirical success, a fundamental con-
nection between KL regularization and learning efficiency
has not been established so far theoretically. While some
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recent studies have attempted to analyze these frameworks,
they often rely on standard analysis techniques, yielding
regret guarantees similar to those of standard RL (Xiong
et al., 2024a; Xie et al., 2024; Xiong et al., 2024b; Cen
et al., 2024), or they depend on strong coverage assump-
tions and restricted to the bandit settings (Zhao et al., 2024).
A notable exception is the approach of Tiapkin et al. (2023;
2024), which achieves Õ(H5d2η/ϵ) sample complexity for
KL-regularized linear MDPs, and Õ(H5S2Aη/ϵ) sample
complexity for tabular MDPs. However, their analysis fo-
cuses on the pure exploration or best policy identification
setting, where the goal is to find near-optimal policies using
the least possible amount of interactions with the environ-
ment, rather than the online setting where the agent needs to
trade off between exploration and exploitation. Therefore,
the following pivotal question remains open:

Is KL-regularized RL more efficient than standard RL in the
online setting without additional coverage assumption?

In this work, we address this question by designing provably
efficient algorithms based on the optimism in the face of
uncertainty (OFU) principle and develop refined policy sub-
optimimality decomposition for both contextual bandits
and MDPs.

We establish the theoretical guarantees for the algorithms
and demonstrate their statistical advantages over standard
RL scenarios. We summarize our contributions as follows.

• For KL-regularized contextual bandits, we establish
the first O

(
η log(NRT ) · dR

)
regret bound that scales

logarithmically with time steps T in the standard on-
line RL setting, where η is the KL-regularization pa-
rameter, NR, dR denote the cardinality of the reward
function class R, and its eluder dimension. This re-
sult significantly improves upon the previous O(

√
T )

bound (Xiong et al., 2024a) and eliminates the strong
coverage condition in prior work (Zhao et al., 2024).

• Distinct from the previous analyses that solely rely on
the learned policy maximizing the KL-regularized ob-
jective, we take a novel approach by expressing the
suboptimality gap in terms of a functional gap with
respect to the policy πR induced by a proxy reward
function R. With a fine-grained analysis for the deriva-
tive of the gap, we then establish the monotonicity in
the sub-optimality gap via the optimistic reward estima-
tion. This allows us to obtain the uncertainty induced
by the policy at the current time step so that the sum
of squared uncertainty can be bounded by the eluder
dimension.

• We extend these techniques to KL-regularized MDPs
and establish the first O(log T ) regret bound in the
literature. The key to this improved regret bound is a

novel policy decomposition technique through multi-
steps. These techniques may be of independent interest
and have the potential to inspire future research on
KL-regularized decision-making problems.

2. Related Work
RLHF. Reinforcement Learning from Human Feedback
(RLHF) has achieved tremendous successes in the modern
large language model post training (OpenAI, 2023; Bai et al.,
2022; Ouyang et al., 2022; Team et al., 2023). The dominant
approach in the area is based on the reward training and
policy optimization with the PPO algorithm (Schulman et al.,
2017). However, applying PPO effectively in the context of
LLMs presents significant challenges (Choshen et al., 2019).
However, getting the PPO work is challenging in the context
of LLMs (Choshen et al., 2019). In view of this, researchers
have spent great efforts in proposing alternative approaches
to the PPO algorithm.

One line of research revisits REINFORCE-based variants
such as ReMAX and GRPO (Li et al., 2023a; Shao et al.,
2024), with the KL-regularized objective. Another approach
focuses on direct preference learning (Zhao et al., 2023b;
Rafailov et al., 2023; Azar et al., 2023), which bypasses
the reward modeling stage and directly optimizes the policy
using the preference dataset in a supervised manner. A no-
table example is the Direct Preference Optimization (DPO)
algorithm (Rafailov et al., 2023), which has gained great
attention in both the open-source community (Tunstall et al.,
2023; Lambert et al., 2024) and industrial applications such
as Llama (Dubey et al., 2024). All approaches mentioned
above are derived under the KL-regularized framework stud-
ied in this paper. An exception to this trend is best-of-n
(BoN) sampling and rejection sampling fine-tuning (Bai
et al., 2022; Dong et al., 2023; Touvron et al., 2023), where
a reward model is used to filter samples for final output or
select training samples. However, recent works show that
the success of BoN sampling may essentially result from
the fact that it is optimal in terms of the KL-reward trade-off
(Gui et al., 2024; Yang et al., 2024).

Theory of RLHF. The theoretical foundation of RLHF
traces back to dueling bandits (e.g., Yue et al., 2012; Saha,
2021; Bengs et al., 2021), which studied preference feed-
back in non-regularized settings. This was later extended
to online reinforcement learning with finite state spaces

1Xiong et al. (2024a) studies relative-preference feedback, so
their sample complexity additionally depends on eη . Since our
work focuses on absolute rewards, we omit this dependence.

2Xiong et al. (2024b) considers the trajectory-level reward and
learns the reward inR and transition probability in P separately,
so the dependence on dR, NR and dcP,NP are separete.

3Xie et al. (2024) considers the deterministic-transition setting
and optimizes the policy directly.
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Table 1. Comparison of online KL-regularized algorithms in bandits and MDPs, where ϵ > 0 is the sub-optimality gap, T is the number
of rounds, d is the vector dimension for linear models, constant η > 0 is the KL-regularized parameter, CGL is the global coverage
condition, dR and dF are the complexity measure for general function classR and F , Õ omits the logarithmic order for T and 1/ϵ. The
notations N,NR, NF⊕B, NΠ represent the cardinality or covering number for the reward, value and bonus function classes. The fourth
column represents the number of samples needed to achieve an ϵ-suboplimality, and the last column shows whether they require the
coverage condition. We convert the regret bounds of our algorithms to sample complexity by Lemma D.2. We remark that the results of
Xiong et al. (2024a); Xie et al. (2024); Xiong et al. (2024b) are based on preference feedback. When comparing with them, we mainly
focus on the order of dependency on T . See Remark 3.1 for further discussion on the extension to preference feedback.

Setting Algorithm Regret Sample Complexity Coverage

Bandits

Online Iterative GSHF1

(Xiong et al., 2024a) − Õ
(
d2/ϵ2

)
×

Two-Stage Mixed-Policy Sampling
(Zhao et al., 2024) − Õ

(
(η2C2

GL + η/ϵ) logNR
)

✓

KL-UCB (Theorem 4.1) O
(
ηdRlog T · log(NR)

)
Õ
(
ηdR · log(NR)/ϵ

)
×

MDPs

Online Iterative M-GSHF2

(Xiong et al., 2024b)
Õ
(√

dRT logNR
+HdP logNP

) Õ
(
dR logNR/ϵ2

+HdP logNP/ϵ
) ×

XPO (Xie et al., 2024)3 − Õ
(
dF logNF/ϵ2

)
×

KL-LSVI-UCB (Theorem 5.1) O
(
ηH2dF log T · logNF⊕B)

)
Õ
(
ηH2dF · logNF⊕B)/ϵ

)
×

(tabular settings) and function approximation (Xu et al.,
2020; Novoseller et al., 2020; Pacchiano et al., 2021; Chen
et al., 2022). More recently, Zhan et al. (2023b); Wu &
Sun (2023) developed reward-free learning algorithms and
sampling-based methods for online RLHF. For the offline
learning, Zhu et al. (2023); Zhan et al. (2023a); Li et al.
(2023b); Zhong et al. (2024); Huang et al. (2024) propose
sample-efficient algorithms under suitable coverage condi-
tions. These works mainly develop techniques to estimate
the underlying reward model associated with the Bradley-
Terry model from querying the preference oracle (human)
and achieve similar order regret with the standard reward
learning. However, since they only consider reward maxi-
mization, the results deviate from the practical applications
of RLHF. For example, reward maximization frameworks
often assume a deterministic optimal policy, which is un-
suitable for generative models.

After these works, the recent project Xiong et al. (2024a)
provides the first provably efficient algorithm of RLHF un-
der the KL-regularized contextual bandit formulation. The
result is further refined in (Xie et al., 2024) and Xie et al.
(2024); Liu et al. (2024); Cen et al. (2024) propose provably
efficient algorithms with optimistically biased optimization
targets, which originate from the feel-good sampling (Zhang,
2022). In parallel, Wang et al. (2023); Ye et al. (2024) extend
the techniques of preference learning to the general prefer-
ence setting under the Markov game formulation. However,
their techniques simply discard the KL divergence in the
target, and use the standard techniques to get results that
are similar to the non-regularized problems, which are es-
sentially sub-optimal for the KL-regularized framework. In
contrast, in this work, we aim to leverage the structure of

the KL-regularized problem and develop new techniques
and algorithms that achieve superior theoretical guarantees
compared to prior studies.

The most closely related work to our project is Zhao et al.
(2024), which considers the KL-regularized RL in the bandit
setting. They propose a two-stage mixed-policy sampling al-
gorithm and provide a regret bound which enjoys an O(1/ϵ)
sample complexity. However, their results rely on a rela-
tively strong coverage assumption, which is not compatible
with the practical applications of RLHF. In contrast, our
work provides a novel algorithm and analysis that achieves
a logarithmic regret bound without the coverage assumption.
We summarize the comparison of our work with the existing
literature in Table 1.

Notation. For a finite function class F , we use NF to
represent its cardinality. We use Õ to omit the logarith-
mic orders. We use the convention [n] = {1, . . . , n}. For
any vector x and a matrix Σ, let ∥x∥Σ =

√
x⊤Σx. For

a function R : X × A → R, parameter η > 0 and
the reference policy πref , let the normalization constant
ZR(x) = Ea∼πref (·|x) exp(ηR(x, a)).

3. Background
3.1. KL-Regularized Contextual Bandits

The contextual bandit problem with KL-regularized objec-
tive is defined as follows.

At each round t ≥ 1, the learner observes a context xt ∈ X ,
and chooses an action at ∈ A, where X is the context
space and A is the action space. The learner then receives a
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reward rt ∈ R which characterizes the gain of the learner
from choosing action at under context xt. We assume that
the reward rt is generated by

rt = R∗(xt, at) + ϵt,

where R∗(xt, at) is the unknown reward function and ϵt is
an independent 1-sub-Gaussian zero-mean random noise.
In practice, the context can be a prompt, and the action is
the response generated by the LLMs. The reward signal is
a sentence reward that is commonly used (Ouyang et al.,
2022; Bai et al., 2022; Touvron et al., 2023).

Remark 3.1. We do not consider the preference feedback
here since the more recent applications in building reason-
ing models (DeepSeek-AI et al., 2025) and improving LLM
safety (Guan et al., 2024) assume the existence of the ab-
solute reward value (e.g. the binary reward indicator of
the correctness). The results presented in this work can
be readily extended to the preference feedback using the
techniques developed in dueling bandit or RL (Yue et al.,
2012; Pacchiano et al., 2021; Xiong et al., 2024a; Li et al.,
2024).

Assumption 3.2 (Reward function realizability). Assume
that there exists a reward function class R : X ×A → [0, 1]
such that R∗(x, a) ∈ R.

Without loss of generality, we assume that the function class
has finite cardinality |R|, and we can generalize the analy-
sis to an infinite function class by considering a covering
number (Zhang, 2023).

Definition 3.3 (Uncertainty and eluder dimension). For any
sequence Dt−1 = {(xi, ai)}t−1

i=1 , we define the uncertainty
of (x, a) with respect to R as:

UR(λ, x, a;Dt−1)

= sup
R1,R2∈R

|R1(x, a)−R2(x, a)|√
λ+

∑t−1
i=1

(
R1(xi, ai)−R2(xi, ai)

)2 .
Then, the eluder dimension is given by d(R, λ, T ) :=

supx1:T ,a1:T

∑T
t=1 min

(
1, [UR(λ, xt, at;Dt−1)]

2
)
.

The uncertainty UR(λ, x, a;Dt) measures how much dif-
ference the new-coming data x, a has with the history data
Dt, and is widely adopted in RL literature with general
function approximation (Zhang, 2023; Ye et al., 2023; Agar-
wal et al., 2023; Zhao et al., 2023a). To illustrate it bet-
ter, we use the linear function as a special case, where the
function class R can be embedded into a linear mapping
R = {θ⊤ϕ(·, ·) : θ ∈ Rd, ∥θ∥2 ≤ B}. Let the covariance
matrix Σt =

∑t
i=1 ϕ(xi, ai)ϕ(xi, ai)

⊤ + λ/B · I . Then,

the eluder coefficient can be simplified as

UR(λ, x, a;Dt)

= sup
θ1,θ2∈Rd

|((θ1 − θ2)
⊤ϕ(x, a))|√

λ+
∑

i∈[t]((θ1 − θ2)⊤ϕ(xi, ai))2

≤ sup
θ1,θ2∈Rd

|((θ1 − θ2)
⊤ϕ(x, a))|√

(θ1 − θ2)⊤Σt(θ1 − θ2)
≤

∥∥ϕ(x, a)∥∥
Σ−1

t
,

where the inequality uses the Cauchy–Schwarz inequality.
Hence, the uncertainty reflects how much a direction in
the feature space has been explored. Further, the eluder
dimension represents how many times the model can be
“surprised” by the out-of-sample data over T rounds. One
can show that this definition is more general than the original
one in (Russo & Van Roy, 2013) as we further take the
magnitude of violation into consideration while the original
eluder dimension only counts the frequency (Zhang, 2023;
Xie et al., 2022).

We consider a KL-regularized objective as follows:

J(π) :=Ex∼d0Ea∼π(·|x)

[
R∗(x, a)− 1

η
log

π(a|x)
πref(a|x)

]
=Ex∼d0Ea∼π(·|x)[R

∗(x, a)]− 1

η
KL

(
π(·|x)∥πref(·|x)

)
,

where πref is the reference policy known to the learner, and
η > 0 is the regularization parameter. This formulation is
adopted in nearly all RLHF practice for LLM alignment
(Bai et al., 2022; Ouyang et al., 2022; Touvron et al., 2023),
and there is a closed-form solution for this optimization,
also known as Gibbs distribution.

Lemma 3.4 (Solution of KL-regularized Optimization
(Proposition 7.16 and Theorem 15.3 of Zhang (2023)). For
any fixed x ∈ X and reward function R, we have

max
π

Ea∼π(·|x)

[
R(x, a)− η−1KL

(
π(·|x)∥πref(·|x

)]
=

1

η
· logEa∼πref (·|x) exp

(
ηR(x, a)

)
,

where ZR(x) is the normalization constant and the mini-
mizer of the loss functional is

πη
R(a|x) =

1

ZR(x)
πref(a|x) exp

(
ηR(x, a)

)
.

3.2. KL-Regularized Reinforcement Learning

In this section, we introduce the KL-regularized MDP prob-
lem. A Markov Decision Process (MDP) is defined by a
tuple M = (S,A, H,P, d0, r), where S is the state space,
A is the action space, H is the time horizon, transition proba-
bility P = {Ph}Hh=1 denotes the probability P(sh+1|sh, ah)
of transition from the current (sh, ah) to the next state
sh+1 at each step h, d0 is the initial state distribution, and
r = {rh : S ×A → R}Hh=1 is the reward function.
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A policy π is a sequence of function π = {π1, . . . , πh} with
πh : S × A → [0, 1] for all h ∈ [H]. The objective is to
find a policy π that maximizes the following KL-regularized
value:

J(π) =Eπ

[ H∑
h=1

rh(sh, ah)− η−1
H∑

h=1

log
πh(ah|sh)

πref,h(ah|sh)

]
,

where Eπ denotes the expectation {(sh, ah, rh)}Hh=1 of the
reward and the trajectory induced by policy π from the
initial state s1 ∼ d0.

We can define the value functions as the expected future
return with KL-regularization:

V π
h (sh) =

H∑
h′=h

Eπ
[
rh′(sh′ , ah′)

− 1

η
·KL

(
πh′(·|sh′)∥πref,h′(·|sh′)

) ∣∣∣ sh],
Qπ

h(sh, ah) =rh(sh, ah) + Eπ
H∑

h′=h+1

[
rh′(sh′ , ah′)

− 1

η
·KL

(
πh′(·|sh′)∥πref,h′(·|sh′)

) ∣∣∣ sh, ah

]
.

We can also iteratively define the regularized value function
as follows: V π

H+1(sH+1) = 0, and

V π
h (sh) = Eah∼πh(·|sh)

[
Qπ

h(sh, ah)

− 1

η
·KL

(
πh(·|sh)∥πref,h(·|sh)

)]
,

Qπ
h(sh, ah) = rh(sh, ah) + Esh+1∼Ph(·|sh,ah)

[
V π
h+1(sh+1)

]
.

We further define the optimal value function {V ∗
h }h∈[H] and

the optimal action-value function {Q∗
h}h∈[H] as

V ∗
h (sh) = max

π
V π
h (sh), Q∗

h(sh, ah) = max
π

Qπ
h(sh, ah).

Assume optimal policy is achieved at π∗, using Lemma 3.4
and a backward iteration starting from the V ∗

H+1(sH+1) =
0, we have the following proposition.
Proposition 3.5. The optimal policy is a layer-wise Gibbs
distribution of the Q∗:

π∗
h(ah|sh) =

1

Z∗
h(sh)

πref,h(ah|sh) · exp
(
ηQ∗

h(sh, ah)
)
,

where Z∗
h(sh) := Eah∼πref,h(·|sh) exp

(
ηQ∗

h(sh, ah)
)

is the
normalization constant. Also, the V value is the maximum
value of the single-step KL-regularized optimization prob-
lem:

V ∗
h (sh) =

1

η
logEah∼πref,h(·|sh) exp

(
ηQ∗

h(sh, ah)
)
. (1)

We also have the following connection between the Q∗ and
V ∗:

Q∗
h(sh, ah) = rh(sh, ah)+Esh+1∼Ph(·|sh,ah)V

∗
h+1(sh+1). (2)

Without loss of generality, we assume that Q∗
h(sh, ah) ∈

[0, 1] for any (sh, ah) ∈ S × A1. From (1), we know that
V ∗
h (sh) ∈ [0, 1] for any sh ∈ A.

Function approximation We approximate the value func-
tion {Q∗

h}h∈[H] by a function class F = F1 × . . . × FH

where Fh : S × A → [0, 1]. Similarly, we can define re-
lated optimal policies and value functions with the estimated
Q-function Q̂h ∈ Fh and V -function V̂h.

Then, we define the KL-regularized Bellman operator T h
η

on space F : for any fh+1 ∈ Fh+1,

T h
η fh+1(sh, ah) := rh(sh, ah) +

1

η
Esh+1|sh,ah

V f
h+1(sh+1),

where V f
h+1(sh+1) =

η−1 logEah+1∼πref,h+1(·|sh+1) exp
(
ηfh+1(sh+1, ah+1)

)
.

To ensure efficient learning, we suppose that the true Q-
value function belongs to the considered function class and
the one-step backward of the value function also remains in
the considered function class, which are known as realizabil-
ity and Bellman completeness assumptions, respectively.

Assumption 3.6 (Realizability). For each h ∈ [H], we have
Q∗

h ∈ Fh.

Assumption 3.7 (Bellman completeness). For each h ∈ [H]
and any fh+1 ∈ Fh+1, we have T h

η fh+1 ∈ Fh.

These two assumptions are standard and normal in RL lit-
erature with general function approximation (Wang et al.,
2020; Jin et al., 2021; Zhang, 2023).

4. KL-Regularized Contextual Bandits
4.1. The Proposed Algorithm and Result

We develop the KL-regularized Upper Confidence Bound
(KL-UCB) algorithm in Algorithm 1. In each round t ∈ [T ],
after observing context xt ∼ d0, taking action at ∼
πt(·|xt), and receiving the reward rt = R∗(xt, at) + ϵt,
we compute the estimator R̂t by solving the least square
regression. Then, we perform optimism by adding the fol-
lowing bonus term to the reward estimator:

bt(x, a) = min
{
1, βT · URt(λ, x, a;Dt)

}
, (3)

where URt−1
is the uncertainty in Definition 3.3, Dt−1 =

{(xi, ai)}i∈[t−1], and we define the confidence set itera-
tively:

Rt = {R ∈ R :

t∑
i=1

(R(xi, ai)− R̂t(xi, ai))
2 + λ ≤ β2

T }.

1This is for the simplicity of analysis. By multiplying the
results by H , our analysis can be applied to the cases where rh ∈
[0, 1] for h ∈ [H].
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Algorithm 1 KL-Regularized UCB
1: Input: η, ϵ, πref ,R.
2: for t = 1, . . . , T do
3: Sample context xt ∼ d0 and action at ∼ πt(·|xt).
4: Observe reward rt = R∗(xt, at) + ϵt, where ϵt is the

random noise.
5: Compute the least square estimate of the reward function

based on Dt = {(xi, ai, ri)}ti=1:

R̂t ← argmin
R∈R

t∑
i=1

(R(xi, ai)− ri)
2.

6: Apply the planning oracle to compute πt+1(·|·) ∝
πref(·|·) exp

[
η
(
R̂t(·, ·) + bt(·, ·)

)]
, where bt is the ex-

ploration bonus term defined in (3).
7: end for

Theorem 4.1. Under Assumption 3.2, for any δ > 0, by
taking βT = 16 log(NRT/δ), with probability at least 1−δ,
the output of Algorithm 1 satisfies

Regret(T ) = O
(
η log(NRT/δ) · d(R, λ, T )

)
.

Remark 4.2. Theorem 4.1 establishes that the regret of Al-
gorithm 1 scales logarithmically with T , rather than at the
typical O(

√
T ) rate, thereby improving upon the previous

analysis in Xiong et al. (2024a) under the standard online
RL setting. To the best of our knowledge, this is the first
analysis of a KL-regularized contextual bandit that achieves
this logarithmic regret bound.

4.2. Proof Outline of Theorem 4.1

We first explain where the previous methods loosen and then
highlight our methods to get the sharp bound.

Review of Analysis in Previous Work Previous anal-
ysis (Xiong et al., 2024a; Ye et al., 2024; Song et al.,
2024) neglects the pivotal role of KL-regularization in
the suboptimality decomposition and reduce to the tradi-
tional bandit analysis. Specifically, using the short-hand
notation R(x, π) = Ea∼π(·|x)R(x, a) and KL(π∥π′) =
KL(π(·|x)∥π′(·|x)), they derive that

R∗(x, π∗)−KL(π∗∥πref)−
(
R∗(x, πt)−KL(πt∥πref)

)
= R(x, π∗)− R̂t(x, π

∗)− bt(x, π
∗)︸ ︷︷ ︸

≤ 0 (By Optimism)

+ R̂t(x, πt)−R∗(x, πt) + bt(x, πt)︸ ︷︷ ︸
≤ 2bt(x, πt)

+
(
R̂t(x, π

∗) + bt(x, π
∗)−KL(π∗(·|x)∥πref(·|x))

)
−

(
R̂t(x, πt) + bt(x, π

∗)−KL(πt(·|x)∥πref(·|x))
)
,

where on the right-hand side of the last equality, the first
two terms follow from the optimistic reward estimator and

the definition of the bonus, the subtraction of the last two
terms is upper bounded by 0 since πt is the maximizer
of the KL-regularized reward according to Algorithm 1.
Essentially, deserting the last two terms is where they loosen
and reduce to the traditional analysis. As a result, their regret
is upper bounded by the first-order summation of bonuses
2
∑T

t=1 Ex∼d0
bt(x, πt) and finally get an Õ(

√
T ) regret.

Our Analysis. We provide the proof sketch of Theo-
rem 4.1 here. The details are provided in Appendix A.
Our analysis is divided into the following four parts.

Part I: Single-Step Regret Decomposition. For all t ≥
1, with R∗(x, a) = 1

η log exp
(
ηR∗(x, a)

)
and the closed-

form solution of π∗ and π from Lemma 3.4, we have the
following equality for the suboptimality gap:

Eπ∗

[
R∗(x, a)− 1

η
log

π∗(a|x)
πref(a|x)

]
− Eπt

[
R∗(x, a)− 1

η
log

πt(a|x)
πref(a|x)

]
=

1

η
logZR∗(x)− 1

η
logZR̂t−1+bt−1

(x)

+ Eπt

[
R̂t−1(x, a)−R∗(x, a) + bt−1(x, a)

]
,

(4)

where ZR(x) is the normalization term for the policy with
respect to reward function R. We defer the detailed deriva-
tion of (4) to Appendix A.
Remark 4.3. Compared to previous work (Xiong et al.,
2024a; Xie et al., 2024; Ye et al., 2024) that neglect the
KL term and reduce to the traditional RL analysis, the upper
bound in (4) is more refined and involves the gap of the
normalization term ZR(x), which is crucial for the analysis
of the KL-regularized objective.

Part II: Shape of Regularized Suboptimality Gap. To
further analyze (4), we define a function

∆(x,R) := −1

η
logZR(x) + Eπ

η
R

[
R(x, a)−R∗(x, a)

]
. (5)

and write (4) as the function gap:

Ex∼d0 [∆(x, R̂t−1 + bt−1)−∆(x,R∗)]. (6)

To analyze the behavior of (6), we have the following lemma,
which reveals the gradient of ∆(x,R) with respect to R.

Lemma 4.4. Let ZR(x) =
∑

a∈A πref(a|x)·exp(ηR(x, a))
and πη

R(a|x) = πref(a|x) exp(ηR(x, a))/ZR(x). We have
the following partial gradient result:

∂∆(x,R)

∂R(x, a)
= ηπη

R(a|x) ·
(
R(x, a)−R∗(x, a)

)
− η

∑
a′∈A

πη
R(a|x) · π

η
R(a

′|x) ·
(
R(x, a′)−R∗(x, a′)

)
.

(7)
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The proof of this lemma is deferred to Appendix A. With the
gradient information above, we can apply the mean value
theorem to show that there exists an fλ = λ·(R̂t−1+bt−1)+
(1− λ) ·R∗ for some λ ∈ (0, 1) such that

Ex∼d0 [∆(x, R̂t−1 + bt−1)−∆(x,R∗)]

= Ex∼d0

[ ∑
a∈A

(
ηπη

fλ
(a|x) ·

(
fλ(x, a)−R∗(x, a)

)
− η

∑
a′∈A

πη
fλ
(a|x) · πη

fλ
(a′|x) ·

(
fλ(x, a

′)−R∗(x, a′)
))

·
(
R̂t−1(x, a) + bt−1(x, a)−R∗(x, a)

)]
,

Part III: Benefits of Optimism. The bonus used in Algo-
rithm 1 ensures that with high probability, the true reward
function is upper bounded by the optimistic reward function,
which is formally stated in the following lemma.

Lemma 4.5. Under Algorithm 1 and Assumption 3.2 and
the condition that the noises ϵt are conditional 1-sub-
Gaussian, we have with probability at least 1 − δ for
all t ∈ [T ], the uniform optimism event that Et

opt =

{R̂t(x, a) + bt(x, a) − R∗(x, a) ≥ 0, ∀(x, a) ∈ X × A}
holds true.

Hence, conditioning on Et
opt we have fλ(x, a

′) −
R∗(x, a′) ≥ 0, ∀(x, a) ∈ X × A, which is substituted
back into (8) to get

Ex∼d0 [∆(x, R̂t−1 + bt−1)−∆(x,R∗)]

≤ ηEx∼d0

[ ∑
a∈A

(
R̂t−1(x, a) + bt−1(x, a)−R∗(x, a)

)
·
(
fλ(x, a)−R∗(x, a)

)
· πη

fλ
(a|x)︸ ︷︷ ︸

U(x,a)

]
≤ ηEx∼d0Ea∼π

η

R̂t−1+bt−1
(·|x)

[
(
R̂t−1(x, a) + bt−1(x, a)−R∗(x, a)

)2]
,

(8)

where the last inequality holds since by taking the derivative
of U(x, a) with respect to λ, we can show that U(x, a)
reaches the maximum when λ = 1.

Part IV: Regret Bound. Conditioning on high-probability
event ∪t∈[T ]Et

opt, we derive the regret bound from (8):

Regret(T ) ≤ η

T∑
t=1

Ext∼d0Eat∼πt

[
(
R̂t−1(xt, at) + bt−1(xt, at)−R∗(xt, at)

)2]
≤ 4η

T∑
t=1

Ext∼d0Eat∼πt

(
bt−1(xt, at)

)2
,

Thus, according to the definition of bonus bt in (3), we can
follow standard analyses for general function approximation
under the finite eluder dimension to obtain the desired result.

5. KL-Regularized RL
5.1. The Proposed Algorithm and Result

Algorithm 2 KL-regularized LSVI with UCB
1: Input: η, ϵ, πref , F .
2: for episode t = 1, . . . , T do
3: Receive the intial state st1.
4: for stage h = H, . . . , 1 do
5: Set f̂ t

h ← argminfh∈Fh

∑t−1
i=1(fh(s

i
h, a

i
h) − rih −

V̂ t
h+1(s

i
h+1))

2.
6: Construct bonus bth(·, ·) defined in (9).
7: Set Q̂t

h(s, a) ← f̂ t
h(s, a) + bth(s, a) for any (s, a) ∈

S ×A.
8: Set V̂ t

h(s) ← maxπ Ea∼π(·|s)
[
Q̂t

h(s, a) − η−1 ·
KL(π(·|s), πref(·|s))

]
.

9: end for
10: for stage h = 1 . . . , H do
11: Observe sth.
12: Follow πt

h(·|·) ∝ πref(·|·) exp
[
ηQ̂t

h(·, ·)
]
.

13: Choose action at
h ∼ πt

h(·|sth).
14: end for
15: end for

We adapt the KL-regularization to the Least Square Value
Iteration with UCB framework (Zhang, 2022; Wang et al.,
2020) to propose the KL-LSVI-UCB algorithm in Algorithm
2, which establishes the optimistic Q-value function estima-
tions Q̂t

h backward from step H to step 1, with Q̂t
H+1 ≡ 0.

In each step h ∈ [H], we first learn the estimator f̂ t
h to

minimize the Bellman backward error:

f̂ t
h = argmin

fh∈Fh

t−1∑
i=1

(fh(s
i
h, a

i
h)− rih − V̂ t

h+1(s
i
h+1))

2.

Then, under the principle of optimism, we construct the
confidence set iteratively

F t−1
h =

{
fh ∈ Fh :

t−1∑
i=1

(fh(s
i
h, a

i
h)− f̂ t

h(s
i
h, a

i
h))

2 + λ ≤ (βT
h )

2
}
,

and the bonus:

bth(s, a) = min
{
1, βT

h · Uh
Ft−1

h

(λ, s, a;Dh
t−1)

}
, (9)

where Uh
Ft−1

h

is the uncertainty formulated in Definition 3.3,

and Dh
t−1 = {sih, aih, rih, sih+1}i∈[t−1]. Hence, we add the

bonus to the value function estimation to get the optimistic
estimation Q̂t

h(s, a) = f̂ t
h(s, a) + bth(s, a) and

V̂ t
h(s) =

1

η
logEa∼πref,h(·|s) exp

(
ηQ̂t

h(s, a)
)
.

For the analysis, we follow Ye et al. (2023); Wang et al.
(2020) and assume that there exists a bonus function class

7



Logarithmic Regret for Online KL-Regularized Reinforcement Learning

Bh with cardinality NBh
that accommodates bonus func-

tions bth. Ye et al. (2023); Wang et al. (2020) have used
examples and algorithms to show that this type of bonus can
be approximately calculated under suitable conditions.

Theorem 5.1. Under Algorithm 2 and Assumptions 3.6
and 3.7 with βT

h = Θ(
√
log(NhTH/δ)), we have with

probability at least 1− δ,

Regret(T ) = O
(
ηH2d(F , λ, T ) · log(NF⊕BTH/δ)

)
,

where d(F , λ, T ) =
∑H

h=1 d(Fh, λ, T ) and NF⊕B =
maxh NFh

·NFh+1
·NBh+1

.

5.2. Proof Outline of Theorem 5.1

We defer the detailed proof in Appendix B and highlight the
crucial part of the proof in the sequel.

The crucial part of the analysis for the MDP setting lies in
decomposing the regret into the errors of Bellman backup in
each step. For conciseness, we omit the superscript t for es-
timators when there is no confusion. We denote the Bellman
error as eh(sh, ah) = Q̂h(sh, ah)− T h

η V̂h+1(sh, ah).

Review of Standard Policy Loss Decomposition. We
first recall the standard decomposition without KL-
regularization (Zhang, 2023):

V π∗
1 (s1)− V π̂

1 (s1) ≤ V̂1(s1)− V π̂
1 (s1)

≤ Eπ̂[Q̂1(s1, a1)− T 1V̂2(s1, a1)

+ T 1V̂2(s1, a1)− T 1V π̂
2 (s1, a1)

]
≤ . . . ≤ Eπ̂

[ H∑
h=1

(
Q̂h(sh, ah)− T h

η V̂h+1(sh, ah)
)]
,

(10)

where Eπ̂ denotes the expectation of trajectories generated
by d0 × π̂, and T denotes the Bellman operator without KL-
regularization. Thus, following the standard decomposition
results in the polynomial dependence on T for the previous
works (Xiong et al., 2024a; Xie et al., 2024).

Our Analysis. In this work, to avoid the direct summation
of Bellman errors as in (10), we develop a novel decompo-
sition to obtain the square of the Bellman errors. To realize
this goal, instead of decomposing the value functions, we
decompose the policies.

For each h, let π̂(h) := π̂1:h ⊕ π∗
h+1:H be the concatenated

policy of π̂ and π∗ at time step h. Then, π∗ can be denoted
as π̂(0) and V ∗

1 = V π̂(0)

1 . Then the suboptimality gap for π̂
can be decomposed as follows:

J(π∗)− J(π̂) =

H−1∑
h=0

Es1∼d0

[
V π̂(h)

1 (s1)− V π̂(h+1)

1 (s1)
]︸ ︷︷ ︸

Ih+1

.

For each term Ih+1, since π̂(h) and π̂(h+1) only differs at
step h + 1, and they are both π∗

h′ for h′ = h + 2, . . . ,H ,
we use the notation KL(πh, π

′
h) := KL(πh(·|sh)∥π′

h(·|sh))
for short and can reduce the step-wise gap back into the
bandit gap:

Esh+1∼dπ̂
h+1

{
Qπ∗

h+1(sh+1, π
∗
h+1)− η−1KL(π∗

h+1∥πref,h+1)

−
[
Qπ∗

h+1(sh+1, π̂h+1)− η−1KL(π̂h+1, πref,h+1)
]}

≤ ηEπ̂[(Q̂h+1(sh+1, ah+1)−Q∗
h+1(sh+1, ah+1)

)2]
,

where the inequality holds by applying (8) with R∗ = Qπ∗

h+1

and R̂t+bt = Q̂h+1. Therefore, we can obtain the following
bound for each (Ih+1).

Lemma 5.2. We use the notation Eπ̂ for the expectation
of trajectories generated by d0 × π̂. Conditioning on
the uniform optimism event that Eopt = {Q̂(sh, ah) −
Q∗

h(sh, ah) ≥ 0, ∀(sh, ah) ∈ S ×A, h ∈ [H]} holds,

Ih+1 ≤ ηEπ̂
·|sh+1,ah+1

[( H∑
j=h+1

ej(sj , aj)
))2]

.

The proof is shown in Appendix B.1. Therefore, we can
decompose the regret as follows:

J(π∗)− J(π̂) ≤ η

H−1∑
h=0

Eπ̂
[( H∑

j=h+1

ej(sj , aj)
))2]

≤ ηH2Eπ̂
[ H∑
h=1

(eh(sh, ah))
2
]
,

where the second inequality is the Cauchy-Schwarz inequal-
ity. Since the summation over H steps is inside the square,
we can only pay an additional order of H .

Then, following the standard analysis of MDP literature
(Zhang, 2023), we can demonstrate that the optimism Eopt
holds with a high probability and obtain the desired bound.

6. Conclusion
In this paper, we study KL-regularized contextual bandits
and MDPs in the standard online RL setting. While these
frameworks have been widely applied in the empirical post-
training of modern foundation generative models, their theo-
retical properties are substantially less explored. We propose
two provably efficient algorithms: KL-regularized UCB and
KL-regularized LSVI with UCB, based on the standard op-
timism principle and show that they achieve regret bounds
that scale logarithmically with T , significantly improving
over the typical O(

√
T ) rate. To the best of our knowledge,

this is the first theoretical analysis of KL-regularized RL
to establish such logarithmic regret bounds in the standard
online setting, aligning well with the empirically observed
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superior sample efficiency of KL-regularized RL (Bai et al.,
2022; DeepSeek-AI et al., 2025). An expense of this log-
arithmic bound for MDPs is that the bound has additional
dependence on the horizon H , which can be left as future
work.

The key to this improvement lies in a refined value decom-
position for the bandit setting and a novel policy decomposi-
tion technique for MDPs, both of which may be of indepen-
dent interest. We hope our study inspires further theoretical
investigations into the learning dynamics of KL-regularized
RL.
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A. Proofs for KL-Regularized Contextual Bandits
Lemma A.1 (Objective Decomposition). For any t ∈ [T ], conditioning on the uniform optimism event that Et

opt =

{R̂t(x, a) + bt(x, a)−R∗(x, a) ≥ 0, ∀(x, a) ∈ X ×A} holds, we have

J(π∗)− J(πt) ≤ ηEx∼d0
Ea∼πt

[(
R̂t−1(x, a) + bt−1(x, a)−R∗(x, a)

)2]
.

Proof. For all t ≥ 1, with R∗(x, a) = 1
η log exp

(
ηR∗(x, a)

)
and the closed-form solution of π∗ and π from Lemma 3.4,

we have the following equality for the suboptimality gap:

Eπ∗

[
R∗(x, a)− 1

η
log

π∗(a|x)
πref(a|x)

]
− Eπt

[
R∗(x, a)− 1

η
log

πt(a|x)
πref(a|x)

]
=

1

η
Eπ∗

[
log

πref(a|x) · exp(ηR∗(x, a))

π∗(a|x)

]
− 1

η
Eπt

[
log

πref(a|x) · exp(ηR∗(x, a))

πt(a|x)

]
=

1

η
Eπ∗

[
log

πref(a|x) · exp(ηR∗(x, a))

π∗(a|x)

]
− 1

η
Eπt

[
log

πref(a|x) · exp(η(R̂t−1(x, a) + bt−1(x, a)))

πt(a|x)

]
+ Eπt

[
R̂t−1(x, a)−R∗(x, a) + bt−1(x, a)

]
=

1

η
logZR∗(x)− 1

η
logZR̂t−1+bt−1

(x) + Eπt

[
R̂t−1(x, a)−R∗(x, a) + bt−1(x, a)

]
, (11)

where ZR(x) :=
∑

a∈A πref(a|x) · exp(ηR(x, a)) is the normalization term for the policy with respect to reward function
R.

We define ∆(x,R) as the following quantity for a reward function R : X ×A → R:

∆(x,R) :=− 1

η
logZR(x) +

∑
a∈A

πref(a|x) · exp(ηR(x, a))

ZR(x)
·
(
R(x, a)−R∗(x, a)

)
= −1

η
logZR(x) + Eπη

R

[
R(x, a)−R∗(x, a)

]
.

(12)

With the definition of ∆(x, a), the gap in (11) can be written as Ex∼d0
[∆(x, R̂t−1 + bt−1) −∆(x,R∗)]. To analyze the

behavior of Ex∼d0 [∆(x, R̂t−1+bt−1)−∆(x,R∗)], we now study the gradient of ∆(x,R). We are interested in the gradient
of ∆(x,R) with respect to R(x, a) for each a ∈ A.

Then, by invoking Lemma A.2 to simplify the computation, we can write the gradient as follows:

∂∆(x,R)

∂R(x, a)
=

∂
[
− 1

η logZR(x) + Eπη
R

[
R(x, a)−R∗(x, a)

]]
∂R(x, a)

= −1

η

1

ZR(x)

∂ZR(x)

∂R(x, a)
+

∂

∂R(x, a)

[
πη
R(a|x) ·

(
R(x, a)−R∗(x, a)

)]
+

∂

∂R(x, a)

[ ∑
a′ ̸=a

πη
R(a

′|x) ·
(
R(x, a′)−R∗(x, a′)

)]
= −πη

R(a|x) +
[
πη
R(a|x) +

∂πη
R(a|x)

∂R(x, a)
·
(
R(x, a′)−R∗(x, a′)

)]
+

∑
a′ ̸=a

∂πη
R(a

′|x)
∂R(x, a)

·
(
R(x, a)−R∗(x, a)

)
=

[
ηπη

R(a|x)− ηπη
R(a|x)

2
]
·
(
R(x, a)−R∗(x, a)

)
−

∑
a′ ̸=a

ηπη
R(a|x) · π

η
R(a

′|x) ·
(
R(x, a′)−R∗(x, a′)

)
= ηπη

R(a|x) ·
(
R(x, a)−R∗(x, a)

)
− η

∑
a′∈A

πη
R(a|x) · π

η
R(a

′|x) ·
(
R(x, a′)−R∗(x, a′)

)
,

where the third equality uses (14) and the fourth equality uses (15) and (16), the second equality and the last equality simply
use the linearity of ∂ and summation.
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Since ∂∆(x,R)
∂R(x,a) is uniformly bounded when R is uniformly bounded, by the Mean Value Theorem, there exists fλ =

λ · (R̂t−1 + bt−1) + (1− λ) ·R∗ for some λ ∈ [0, 1] such that

Ex∼d0
[∆(x, R̂t−1 + bt−1)−∆(x,R∗)]

= Ex′∼d0

[ ∑
a∈A

∂∆(x′, fλ)

∂R(x, a)
(R̂t−1(x, a) + bt−1(x, a)−R∗(x, a))

]
= Ex′∼d0

[ ∑
a∈A

(
ηπη

fλ
(a|x) ·

(
fλ(x, a)−R∗(x, a)

)
− η

∑
a′∈A

πη
fλ
(a|x) · πη

fλ
(a′|x) ·

(
fλ(x, a

′)−R∗(x, a′)
))

· (R̂t−1(x, a) + bt−1(x, a)−R∗(x, a))
]

≤ ηEx∼d0

[∑
a∈A

(
R̂t−1(x, a) + bt−1(x, a)−R∗(x, a)

)
·
(
fλ(x, a)−R∗(x, a)

)
· πη

fλ
(a|x)︸ ︷︷ ︸

U(x,a)

]
, (13)

where the last inequality holds since conditioning on Et
opt we have

fλ(x, a
′)−R∗(x, a′) = λ(R̂t−1(x, a) + bt−1(x, a)−R∗(x, a))) ≥ 0, ∀(x, a) ∈ X ×A.

We use the notation δt = R̂t + bt −R∗. Let

U(λ) =
∑
a∈A

λδt−1(x, a)
2 ·

π0(a|x) · exp
(
η(λδt−1(x, a) +R∗(x, a))

)
Eπ0

exp
(
η(λδt−1(x, a) +R∗(x, a))

) , for λ ∈ [0, 1].

We take the derivative as follows:

∂U(λ)

∂λ
=

∑
a∈A

[
δt−1(x, a)

2πη
fλ

+ λδt−1(x, a)
2 ·

(π0(a|x) exp
(
η(λδt−1(x, a) +R∗(x, a))

)
· ηδt−1(x, a)

Eπ0
exp

(
η(λδt−1(x, a) +R∗(x, a))

) )
−

π0(a|x) exp
(
η(λδt−1(x, a) +R∗(x, a))

)
· Eπ0ηδt−1(x, a) · exp

(
η(λδt−1(x, a) +R∗(x, a))

)(
Eπ0 exp

(
η(λδt−1(x, a) +R∗(x, a))

))2 ]
=

∑
a∈A

[
δt−1(x, a)

2πη
fλ

+ λδt−1(x, a)
2πη

fλ
· η

(
δt−1(x, a)− Eπη

fλ

δt−1(x, a)
)]

=Eπη
fλ

[
δt−1(x, a)

2
]
+ λ

{
Eπη

fλ

[
δt−1(x, a)

3
]
− Eπη

fλ

[
δt−1(x, a)

2
]
· Eπη

fλ

[
δt−1(x, a)

]}
≥0,

where the inequality holds since for random variable X ≥ 0 we have

E[X3]− E[X2] · E[X] = E[(X2 − E[X2])(X − E[X])]

= E[
(
X2 − (E[X])2

)
(X − E[X])] + E[

(
(E[X])2 − E[X2]

)
(X − E[X])]

= E[
(
X + E[X]

)
(X − E[X])2] + 0

≥ 0,

, which follows from Lemma 2.14 in (Zhao et al., 2025). Therefore, since fλ(x, a) ≤ R̂t−1(x, a) + bt−1(x, a) for any
(x, a) ∈ X ×A, we can obtain that

U(λ) ≤ U(1) =
∑
a∈A

δt−1(x, a)
2 · πη

R̂t−1+bt−1
(a|x).

We further have the following bound for RHS of (13):

J(π∗)− J(πt) =Ex∼d0 [∆(x, R̂t−1 + bt−1)−∆(x,R∗)]
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≤ηEx∼d0
Ea∼πη

R̂t−1+bt−1
(·|x)

[(
R̂t−1(x, a) + bt−1(x, a)−R∗(x, a)

)2]
.

Lemma A.2. Let ZR(x) :=
∑

a∈A πref(a|x) · exp(ηR(x, a)) and πη
R(a|x) =

πref (a|x) exp(ηR(x,a))
ZR(x) . We have the following

partial gradient results:
∂ZR(x)

∂R(x, a)
= ηπref(a|x) exp

(
ηR(x, a)

)
, (14)

∂πη
R(a|x)

∂R(x, a)
= ηπη

R(a|x)− ηπη
R(a|x)

2. (15)

For a′ ̸= a, we have
∂πη

R(a
′|x)

∂R(x, a)
= −ηπη

R(a|x) · π
η
R(a

′|x). (16)

Proof. The proof is deferred to Appendix C.

Lemma A.3. Under Algorithm 1 and Assumption 3.2 and the condition that the noises ϵt are conditional 1-sub-Gaussian, we
have with probability at least 1−δ for all t ∈ [T ], the uniform optimism event that Et

opt = {R̂t(x, a)+bt(x, a)−R∗(x, a) ≥
0, ∀(x, a) ∈ X ×A} holds true.

Proof. By invoking Lemma C.1 with F = R, Z = X ×A and η = 1,we have for all t ∈ [T ] with probability at least 1− δ,

t∑
i=1

(R̂t(xi, ai)−R∗(xi, ai))
2 ≤ 8 log(NRT/δ) =

1

2
β2
T . (17)

Hence, we deduce that for any (x, a) ∈ X ×A,

R∗(x, a)− R̂t(x, a) ≤ sup
R1,R2∈R

|R1(x, a)−R2(x, a)|√
λ+

∑t
i=1(R1(xi, ai)−R2(xi, ai))2

·

√√√√λ+

t∑
i=1

(R∗(xi, ai)− R̂t(xi, ai))2

≤ URt
(λ, x, a;Dt) ·

√
λ+

1

2
β2
T

≤ URt
(λ, x, a;Dt) · βT ,

where the second inequality follows from the definition of UR and (17), and the last inequality uses λ ≤ 1
2β

2
T and the choice

of bonus bt. Besides, since R∗(x, a)− R̂t(x, a) ≤ 1, we have

R∗(x, a)− R̂t(x, a) ≤ bt(x, a).

Therefore, we get
R̂t(x, a) + bt(x, a)−R∗(x, a) ≥ 0.

Proof of Theorem 4.1. Let

Ut := sup
R1,R2∈Rt−1

|R1(xt, at)−R2(xt, at)|√
λ+

∑t−1
i=1(R1(xi, ai)−R2(xi, ai))2

.

We know from Lemma A.3 that ∪t∈[T ]Et
opt holds with probability at least 1 − δ. Thus, conditioning on ∪t∈[T ]Et

opt, we
invoke Lemma A.1 to get

Regret(T ) =

T∑
t=1

(J(π∗)− J(πt))
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≤ η

T∑
t=1

Ext∼d0Eat∼πt

[(
R̂t−1(xt, at) + bt−1(xt, at)−R∗(xt, at)

)2]
≤ 4η

T∑
t=1

Ext∼d0
Eat∼πt

(
bt−1(xt, at)

)2
= 4ηβ2

T

T∑
t=1

Ext∼d0
Eat∼πt

min
{
1,
(
URt−1

(λ, xt, at;Dt−1)
)2}

≤ O
(
η log(NRT/δ) · d(R, λ, T )

)
,

where the second inequality uses the condition Et−1, the second equality uses the definition of bonus bt in (3), and the last
inequality follows from the value of βT and the eluder dimension in Definition 3.3.

B. Proofs for KL-Regularized RL
B.1. Regret Decomposition

Lemma B.1. We use the short-hand notation Eπ̂ for the expectation of trajectories generated by d0 × π̂, and

eh(sh, ah) = Q̂h(sh, ah)− T h
η V̂h+1(sh, ah) = Q̂h(sh, ah)− Erh,sh+1|sh,ah

[rh + V̂h+1(sh+1)].

Conditioning on the uniform optimism event that Eopt = {Q̂(sh, ah) − Q∗
h(sh, ah) ≥ 0, ∀(sh, ah) ∈ S × A, h ∈ [H]}

holds, we have

J(π∗)− J(π̂) ≤ ηEπ̂
H∑

h=1

[( H∑
j=h

ej(sj , aj)
))2]

.

Proof. For each h, let π̂(h) := π̂1:h ⊕ π∗
h+1:H be the concatenated policy of π̂ and π∗ at time step h. Then, π∗ can be

denoted as π̂(0) and V ∗
1 = V π̂(0)

1 . Then the suboptimality gap for π̂ can be decomposed as follows:

J(π∗)− J(π̂) = V π∗

1 (s1)− V π̂
1 (s1) =

H−1∑
h=0

Es1∼d0

[
V π̂(h)

1 (s1)− V π̂(h+1)

1 (s1)
]︸ ︷︷ ︸

Ih+1

.

For each term Ih+1, we deduce that

Es1∼d0,sh+1∼dπ̂
h+1

[
V π̂(h)

h+1 (sh+1)− V π̂(h+1)

h+1 (sh+1)
]

= Es1∼d0,sh+1∼dπ̂
h+1

{
Eπ∗

h+1

[
Qπ̂(h)

h+1(sh+1, ah+1)− η−1KL(π∗
h+1(·|sh+1)∥πref,h+1(·|sh+1))

]
− Eπ̂h+1

[
Qπ̂(h+1)

h+1 (sh+1, ah+1)− η−1KL(π̂h+1(·|sh+1)∥πref,h+1(·|sh+1))
]}

= Es1∼d0,sh+1∼dπ̂
h+1

{
Eπ∗

h+1

[
Qπ∗

h+1(sh+1, ah+1)− η−1KL(π∗
h+1(·|sh+1)∥πref,h+1(·|sh+1))

]
− Eπ̂h+1

[
Qπ∗

h+1(sh+1, ah+1)− η−1KL(π̂h+1(·|sh+1)∥πref,h+1(·|sh+1))
]}

,

where the second equality follows from the fact that π̂(h)
l = π̂

(h+1)
l = π∗

h for l = h+ 2, . . . ,H .

Then, we can follow the analysis of Lemma A.1 for each step h + 1 with d0 = dπ̂h+1, R∗ = Qπ∗

h+1, π∗ = π∗
h+1 and

π̂ = π̂h+1 to derive that

Ih+1 ≤ ηEπ̂
[(
Q̂h+1(sh+1, ah+1)−Q∗

h+1(sh+1, ah+1)
)2]

.

Further, conditioning on Eopt, we deduce that

0 ≥ Q∗
h+1(sh+1, ah+1)− Q̂h+1(sh+1, ah+1)

16
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= Esh+2|sh+1,ah+1
(V ∗

h+2(sh+2)− V̂h+2(sh+2))− eh+1(sh+1, ah+1)

= Eπ̂
·|sh+1,ah+1

η−1 logEah+2∼πref,h+2
eη(Q

∗
h+2(sh+2,ah+2)−Q̂h+2(sh+2,ah+2)) − eh+1(sh+1, ah+1)

≥ Eπ̂
·|sh+1,ah+1

[(
Q∗

h+2(sh+2, ah+2)− Q̂h+2(sh+2, ah+2)
)
− e(sh+1, ah+1)

]
≥ · · ·

≥ −Eπ̂
·|sh+1,ah+1

∑
j≥h+1

ej(sj , aj),

where second inequality holds due to the Jensen’s inequality. Taking this back to Ih+1 leads to

Ih+1 ≤ ηEπ̂
[(
Eπ̂
·|sh+1,ah+1

∑
j≥h+1

ej(sj , aj)
)2]

≤ ηEπ̂
·|sh+1,ah+1

[( H∑
j=h+1

ej(sj , aj)
))2]

,

where the second inequality uses the Jensen’s inequality.

Therefore, we get

J(π∗)− J(π̂) ≤ η

H−1∑
h=0

Eπ̂
[( H∑

j=h+1

ej(sj , aj)
))2]

.

Lemma B.2 (Confidence Sets for Value Function). Let f̂ t
h be the estimator as defined in Algorithm 2 and

βT
h = 4

√
log(4NhTH/δ),

where we define Nh = NFh
·NFh+1

·NBh+1(λ). Then, with probability at least 1− δ, we have for all t ∈ [T ] and h ∈ [H],

|f̂ t
h(s, a)− T h

η V̂ t
h+1(s, a)| ≤ βT

h · Uh
Fh

(s, a;Dh
t−1) ∀(s, a) ∈ S ×A,

Q̂t
h(sh, ah)−Q∗

h(sh, ah) ≥ 0,

where Dh
t−1 denotes the history data {xi

h, a
i
h}i∈[t−1].

Proof. For k ∈ [K], h ∈ [H], let St
h be the σ-algebra generated by the random variables representing the state-action pairs

up to and including those that appear stage h of episode k. That is, St
h is generated by

s11, a
1
1, . . . , s

1
h, a

1
h, . . . , s

1
H , a1H ,

s21, a
2
1, . . . , s

2
h, a

2
h, . . . , s

2
H , a2H ,

...

st1, a
t
1, . . . , s

t
h, a

t
h .

Let Qh+1, Vh+1 be the set of possible value functions, i.e.

Qh+1 =
{
g : S ×A → R|∃fh+1 ∈ Fh+1, bh+1 ∈ Bh+1 s.t. g = fh+1 + bh+1

}
,

Vh+1 =
{
g : S → R|∃Qh+1 ∈ Qh+1 s.t. g(·) = max

a∈A
Qh+1(·, a)

}
.

The proof is based on the standard concentration inequality for the least square estimator (Zhang, 2023).

For simplicity, we denote by eth the noise term in the least square estimator with respect to an arbitrary value function
Vh+1 ∈ Vh+1, i.e.,

eth := rth + Vh+1(s
t
h+1)− T h

η Vh+1(s
t
h, a

t
h).

17
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By definition,

E[eth|St
h] = 0, |eth| ≤ 1.

Hence, by invoking Lemma C.1 and using a union bound over Vh+1, we have for all t ∈ [T ] and h ∈ [H], with probability
at least 1− δ,

t−1∑
i=1

[
f̂ t
h(s

i
h, a

i
h)− T h

η V̂ t
h+1(s

i
h, a

i
h)
]2 ≤ 8 log(4NhtH/δ) ≤ 1

2
(βT

h )
2, (18)

where the first inequality follows from the definition of Nh and |Vh+1| ≤ NFh+1
·NBh+1

. Then we can complete the proof
using union bound over all t ≥ 1.

Therefore, for any (s, a) ∈ S ×A, we have

|f̂ t
h(s, a)− T h

η V̂ t
h+1(s, a)| ≤ Uh

Fh
(s, a;Dh

t−1) ·

√√√√λ+

t−1∑
i=1

[
f̂ t
h(s

i
h, a

i
h)− T h

η V̂ t
h+1(s

i
h, a

i
h)
]2

≤ (βT
h )

2 · Uh
Fh

(s, a;Dh
t−1), (19)

where the first inequality holds by using the completeness of the Bellman operator T h
η V̂ t

h+1 ∈ Fh and the definition of
uncertainty Uh

Fh
, and the last inequality applies (18) and λ ≤ 1

2 (β
T
h )

2.

Moreover, we will prove Q̂t
h(sh, ah)−Q∗

h(sh, ah) ≥ 0,∀ h ∈ [H] by induction. At step H+1, we know that Q∗
h = Q̂ ≡ 0.

Assume that at step h+ 1, we have

Q̂t
h+1(sh+1, ah+1)−Q∗

h+1(sh+1, ah+1) ≥ 0.

Then, at step h, we obtain that

Q̂t
h(sh, ah)−Q∗

h(sh, ah) = f̂ t
h(sh, ah) + bth(sh, ah)− T h

η V ∗
h+1(sh, ah)

≥ T h
η V̂ t

h+1(sh, ah)− (βT
h )

2 · Uh
Fh

(s, a;Dh
t−1) + (βT

h )
2 · Uh

Fh
(s, a;Dh

t−1)− T h
η V ∗

h+1(sh, ah)

≥ 1

η
Esh+1|sh,ah

[
logEah+1∼πref,h+1(·|sh+1) exp

(
η(Q̂t

h+1(sh+1, ah+1)−Q∗
h+1(sh+1, ah+1))

)]
≥ 0,

where the first inequality uses (19) and the definition of bonus bth in (3), the second inequality follows from the derivation of
the value function in (1), and the last inequality is due to the induction hypothesis at step h+ 1.

Proof of Theorem 5.1. From Lemma B.2 we know that Eopt holds at all time step t ∈ [T ] with probability a least 1 − δ.
Hence, by applying Lemma 5.2 for each t ∈ [T ], we have

J(π∗)− J(π̂t) ≤ ηEπt
H∑

h=1

[( H∑
j=h

(Q̂t
j(sj , aj)− T j

η V̂
t
j+1(sj , aj))

))2]

≤ ηHEπt
H∑

h=1

H∑
j=h

[(
Q̂t

j(sj , aj)− T j
η V̂

t
j+1(sj , aj)

)2]

≤ ηH2Eπt
H∑

h=1

[(
Q̂t

h(sh, ah)− T h
η V̂ t

h+1(sh, ah)
)2]

,

where the second inequality applies the Jensen’s inequality.

Then, by Lemma B.2, with probability at least 1− δ, we have for all t ∈ [T ] and h ∈ [H],

Q̂t
h(sh, ah)− T h

η V̂ t
h+1(sh, ah) = bth(sh, ah) + f̂ t

h(sh, ah)− T h
η V̂ t

h+1(sh, ah)

18
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≤ bth(sh, ah) + βT
h · Uh

Fh
(sh, ah;Dh

t−1)

= 2βT
h · Uh

Fh
(sh, ah;Dh

t−1),

where the last equality uses the definition of bonus bth.

Therefore, we have

Regret(T ) =

T∑
t=1

[
J(π∗)− J(π̂t)

]
≤ 4ηH2

T∑
t=1

H∑
h=1

(βT
h )

2Es1∼d0,π̂[(U
h
Fh

(sh, ah;Dh
t−1))

2]

= O
(
ηH2d(F , λ, T ) ·O(log(NFTH/δ))

)
,

where d(F , λ, T ) =
∑H

h=1 d(Fh, λ, T ).

C. Proof of Technical Lemmas
Proof of Lemma A.2. For the first equation, we notice that

∂ZR(x)

∂R(x, a)
=

∂
∑

a′∈A πref(a
′|x) exp

(
ηR(x, a′)

)
∂R(x, a)

,

=
∂πref(a|x) exp

(
ηR(x, a)

)
∂R(x, a)

,

= ηπref(a|x) exp
(
ηR(x, a)

)
.

For the second equation, with the derivation rule of ( f(z)g(z) )
′ = f ′(z)g(z)−f(z)g′(z)

(g(z))2 , we have

∂πη
R(a|x)

∂R(x, a)
=

∂
[
πref(a|x) exp

(
ηR(x, a)

)
/ZR(x)

]
∂R(x, a)

=
ηπref(a|x) exp

(
ηR(x, a)

)
ZR(x)− ∂ZR(x) · πref(a|x) exp

(
ηR(x, a)

)
ZR(x)2

= ηπη
R(a|x)− ηπη

R(a|x)
2,

where we use the first equation in the last step. Finally, for the last equation, we have

∂πη
R(a

′|x)
∂R(x, a)

=
∂
[
πref(a

′|x) exp
(
ηR(x, a′)

)
/ZR(x)

]
∂R(x, a)

= −
πref(a

′|x) exp
(
ηR(x, a′)

)
· ∂ZR(x)

ZR(x)2

= −ηπη
R(a|x) · π

η
R(a

′|x).

We follow Theorem 13.15 from Zhang (2023) and Ye et al. (2023) to derive the in-sample error for the function.

Lemma C.1. Consider a function space F : Z → R and a filtered sequence {zt, ϵt} ∈ Z × R so that ϵt is conditional
zero-mean η-sub-Gaussian noise. Suppose that F is a finite space with cardinality NF For f∗(·) : Z → R, suppose that
yt = f∗(xt, at) + ϵt. If f̂t is an ERM solution:

f̂t = argmin
f∈F

t∑
i=1

(f(zi)− yi)
2,
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with probability at least 1− δ, we have for all t ∈ [T ],

t∑
i=1

(f̂t(zi)− f∗(zi)
2 ≤8η2 log(NFT/δ).

Proof. For f ∈ F , define

ϕ(f, zt) = −a
[
(f(zt)− yt)

2 − (f∗(zt)− yt)
2
]

= −a
[
(f(zt)− f∗(zt)− ϵt)

2 − ϵ2t
]

= 2a(f(zt)− f∗(zt)) · ϵt − a(f(zt)− f∗(zt))
2,

where a = η−2/4. Since ϵt is η-sub-Gasussian conditional on zt,St−1 := {zi, ϵi}i∈[t−1], we get

logEyt

[
exp

(
ϕ(f, zt) + a(f(zt)− f∗(zt))

2
)]

≤ 4a2(f(zt)− f∗(zt))
2η2

2
=

(f(zt)− f∗(zt))
2

8η2
,

which means that

logEyt

[
exp

(
ϕ(f, zt)

)]
≤ (f(zt)− f∗(zt))

2

8η2
− (f(zt)− f∗(zi))

2

4η2
= − (f(zt)− f∗(zt))

2

8η2
.

Then, by Lemma D.1 with λ = 1, we have for all f ∈ F and t ∈ [T ], with probability at least 1− δ,

t∑
i=1

ϕ(f, zi) ≤ logEyt

[
exp

(
ϕ(f, zt)

)]
+ log(NFT/δ)

≤− (f(zt)− f∗(zt))
2

8η2
+ log(NFT/δ).

Additionally, since f̂t is the ERM solution, we have

t∑
i=1

ϕ(f̂t, zi) = a
[ t∑

i=1

(f∗(zi)− yi)
2 −

t∑
i=1

(f̂t(zi)− yi)
2
]
≥ 0.

Combining the results above leads to

t∑
i=1

(f̂t(zi)− f∗(zi)
2 ≤8η2 log(NFT/δ).

D. Auxliary Lemmas
Lemma D.1 (Russo & Van Roy 2013). Consider a sequence of random variables {Zt}t∈N adapted to the filtration {St}t∈N
and a function f ∈ F . For any λ > 0, with probability at least 1− δ, for all t ≥ 1, we have

−
t∑

s=1

f(Zs)−
1

λ

t∑
s=1

logE[e−λf(Zs)|Ss−1] ≤
log(1/δ)

λ

Proof. For a detailed proof, see Theorem 13.2 of Zhang (2023) or Lemma 34 of Foster & Rakhlin (2023).

Lemma D.2 (Online-to-batch conversion). If an algorithm has a sublinear regret of c† · log T , then the algorithm finds an
ϵ-optimal policy with at most Θ̃

(
c†/ϵ

)
samples, where Θ̃ omit logarithmic terms of c†/ϵ. Here c† is a problem-dependent

constant.
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Proof. We denote the policy sequence as {π1, · · · , πT }. Then, by definition of regret, we know

Regret(T ) = T · V ∗
1 (x1)−

T∑
t=1

V πt

1 (x1)

≤ c† · log T.

We consider the uniform policy π̃ := Uniform(π1, · · · , πT ). It follows that

V ∗
1 (x1)− V π̃

1 (x1) = V ∗
1 (x1)−

1

T

T∑
t=1

V πt

1 (x1) ≤ c† · log T
T

.

It suffices to prove that

c† · log T
T

≤ ϵ,

which is equivalent to solving
T ≤ exp(T · ϵ/c†).

By using the Lambert W function2, we can prove that

T ≥ W (1)c†

ϵ
,

where W (1) ≥ log(1/ϵ)− log log(1/ϵ).

2https://en.wikipedia.org/wiki/Lambert_W_function
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