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Abstract001

Although feed-forward neurons in pre-trained002
language models (PLMs) can store knowledge003
and their importance in influencing model out-004
puts has been studied, existing work focuses on005
finding a limited set of neurons and analyzing006
their relative importance. However, the global007
quantitative role of activation values in shap-008
ing outputs remains unclear, hindering further009
advancements in applications like knowledge010
editing. Our study first investigates the numeri-011
cal relationship between neuron activations and012
model output and discovers the global linear re-013
lationship between them through neuron inter-014
ventions on a knowledge probing dataset. We015
refer to the gradient of this linear relationship016
as neuron empirical gradient (NEG), and in-017
troduce NeurGrad, an accurate and efficient018
method for computing NEG. NeurGrad enables019
quantitative analysis of all neurons in PLMs,020
advancing our understanding of neurons’ con-021
trollability. Furthermore, we explore NEG’s022
ability to represent language skills across di-023
verse prompts via skill neuron probing. Experi-024
ments on MCEval8k, a multi-choice knowledge025
benchmark spanning various genres, validate026
NEG’s representational ability. The data and027
code are released.1028

1 Introduction029

Transformer (Vaswani et al., 2017)-based pre-030

trained language models (PLMs) exhibit a remark-031

able ability to possess human knowledge, drawing032

significant attention to understand their internal033

mechanisms. While prior studies have highlighted034

the crucial role of feed-forward (FF) layers’ neu-035

rons in representing diverse knowledge, including036

factual knowledge (Dai et al., 2022; Yu and Ana-037

niadou, 2024) and general language skills (Wang038

et al., 2022; Tan et al., 2024), they face several chal-039

lenges. First, the existing methods primarily focus040

on ranking neurons to identify important ones (Dai041
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Figure 1: Overview of our contributions: i) observation
of the neuron linearity, ii) an efficient method, Neur-
Grad, to quantify the linearity, iii) skill neuron probing
on MCEval8K to confirm NEG captures language skills.

et al., 2022; Meng et al., 2022; Yu and Ananiadou, 042

2024), yet they lack a direct and global quantita- 043

tive measurement between neuron activations and 044

model output, limiting their applicability to neuron- 045

level adjustment applications, like knowledge edit- 046

ing (Zhang et al., 2024). Second, the existing neu- 047

ron importance-ranking methods are computation- 048

ally expensive, requiring either multiple activation 049

modification (Dai et al., 2022; Meng et al., 2022; 050

Goldowsky-Dill et al., 2023) or extensive tensor 051

calculation (Yu and Ananiadou, 2024), making in- 052

efficient to analyze all neurons on large models 053

across diverse prompts, thereby hindering a global 054

understanding of their roles. 055

Initially, our study conducts a quantitative anal- 056

ysis to understand how neuron activations deter- 057

mine model outputs (RQ1). We investigate this by 058

gradually modifying activations of randomly sam- 059

pled neurons and observing the resulting changes 060

in the probabilities of target tokens for correct 061
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knowledge (hereafter, output shift), using Myri-062

adLAMA (Zhao et al., 2024), a factual knowledge063

probing dataset on nine PLMs, including large lan-064

guage models (LLMs) like Llama2-70B (§ 3). No-065

tably, we discover that, within a certain range of066

activations, shifts in neuron activations (hereafter,067

activation shifts) have a linear relationship with068

the output shift. We call and quantify the gradient069

of this linear relationship as neuron empirical gra-070

dient (NEG), enabling quantitative neuron analysis.071

Next, we ask: can we precisely adjust PLMs’072

output probabilities by shifting neuron activa-073

tions? (RQ2). As estimating NEG requires ex-074

tensive inference over PLMs, we first introduce075

NeurGrad (§ 4), an accurate yet efficient method to076

calculate NEG for the single neuron, grounded in077

the empirical observation that computational gradi-078

ents( 4.1) strongly correlate with NEG magnitudes079

but weakly with their directions. We validate its080

performance using MyriadLAMA by measuring081

their relative relationship to ground-truth NEGs.082

NeurGrad even shows superiority over baselines,083

including existing neuron-ranking methods (Dai084

et al., 2022; Yu and Ananiadou, 2024). Leveraging085

NeurGrad, we further investigate neuron controlla-086

bility over multiple neurons through multi-neuron087

intervention (§ 5). We observe that NEG can be088

accumulated with multiple neurons, while the cor-089

relation diminishes as more neurons are involved090

or larger activation shifts are applied.091

Finally, we investigate whether NEG can rep-092

resent general language skills associated with093

diverse prompts rather than specific factual094

prompts (RQ3). To answer this, we conduct skill095

neuron probing that identifies neurons associated096

with language skills using NEGs as inputs. While097

prior studies conducted skill neuron probing, they098

focus on using neuron activation to build probers,099

leaving the representational ability of NEG unex-100

amined (Wang et al., 2022; Song et al., 2024). Fur-101

thermore, as they only used multi-choice datasets102

with limited language skills, we introduce MCE-103

val8K, a multi-choice knowledge evaluation bench-104

mark spanning six genres and 22 tasks for com-105

prehensive LLMs evaluation. Our experiment dis-106

covers NEG’s ability to represent diverse language107

skills, providing a basis for future language skill-108

oriented neuron-based model adjustments.109

Our contributions (Figrue 1) are as follows:110

• We confirm that activation shifts are linearly111

correlated to output shifts within a specific ac-112

tivation shift range, referred to and quantified 113

as neuron empirical gradients. (§ 3) 114

• We present NeurGrad, an efficient method 115

for estimating neuron empirical gradients(§ 4), 116

and conduct analysis to deepen the under- 117

standing of neuron controllability (§ 5). 118

• We find NEG’s ability to express language 119

skills by skill neuron probing (§ 6,§ 7). 120

• We built MCEval8K, a multi-choice bench- 121

mark spanning six knowledge genres and 22 122

language-understanding tasks (§ 6.2, § F). 123

2 Related Work 124

Neuron-level knowledge attribution methods. 125

Existing studies built the connections between 126

knowledge and neurons by measuring the impor- 127

tance scores of neurons to the model prediction on 128

the target knowledge; some of them rely on causal 129

observations of how knowledge changes with neu- 130

ron modifications (Meng et al., 2022; Geva et al., 131

2021; Wang et al., 2024; Chen et al., 2023), while 132

others use extensive tensor calculations to estimate 133

neuron contributions (Geva et al., 2022; Lee et al., 134

2024; Yu and Ananiadou, 2024). However, these 135

methods are computationally expensive, limiting 136

their scalability for large-scale probing across di- 137

verse prompts in LLMs. Moreover, they often cap- 138

ture relative relationships (e.g., neuron rankings) 139

rather than the direct, quantitative relationships be- 140

tween specific neurons and model outputs, restrict- 141

ing neurons’ utility in scenarios requiring precise, 142

such as knowledge editing (Zhang et al., 2024) and 143

bias mitigation (Gallegos et al., 2024) on LLMs. 144

Although gradient-based approaches (Lundstrom 145

et al., 2022; Dai et al., 2022) seek to integrate gra- 146

dients through neuron intervention, they also suffer 147

from high computational costs. 148

Skill neuron probing. Neurons in FF layers show 149

the ability to convey specific skills so that using 150

the neuron activations solely can tackle the lan- 151

guage tasks, which these neurons are referred to 152

as skill neurons (Wang et al., 2022; Song et al., 153

2024). Existing studies found neurons can express 154

semantic skills like sentiment classification (Wang 155

et al., 2022; Song et al., 2024) or complex skills, 156

such as style transfer (Lai et al., 2024) and transla- 157

tion (Tan et al., 2024). However, previous research 158

viewed neuron activations as knowledge indicators, 159

and the representational ability of neuron gradients 160

to language skills is not examined, hindering the 161

application of neuron-level model adjustment. 162
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3 Neuron Linearity to Model Output163

This section empirically answers how neurons in164

PLMs’ FF layers influence model output by observ-165

ing the resulting change in output tokens’ probabil-166

ities for fine-grained neuron-level interventions.167

3.1 Neuron-level Intervention Experiment168

Models. To make the analysis result general, we169

experiment with masked and causal LMs of var-170

ied sizes and learning strategies. For masked LMs,171

we use three BERT (Vaswani et al., 2017; Devlin172

et al., 2019) models: BERTbase, BERTlarge, and173

BERTwwm. We construct masked prompts and let174

the model predict the masked token. For causal175

LMs, we examine diverse open-source LLMs, in-176

cluding instruction-tuned and pre-trained LLMs.177

The instruction-tuned LLMs are selected from two178

families: Llama2 (Touvron et al., 2023) with sizes179

of 7B, 13B, and 70B, and Phi3-mini (Abdin et al.,180

2024), a model with 3.8B parameters. The pre-181

trained LLMs are Llama2 models with 7B and 13B182

parameters. Following the zero-shot prompt setting183

in Zhao et al. (2024), we instruct them to generate184

single-token answers. See § E for model details.185

Dataset. We utilize a multi-prompt knowledge186

probing dataset, MyriadLAMA (Zhao et al., 2024),187

for neuron intervention. MyriadLAMA offers di-188

verse prompts per fact, reducing the influence of189

specific linguistic expressions on probing results.190

We focus on single-token probing, where the target191

answer is represented by a single token. For each192

PLM, we randomly sample 1000 prompts from193

MyriadLAMA, where the model correctly predicts194

the target token. Due to differences in tokenizers,195

the probing prompts may vary across PLMs, and196

the results are not comparable across the PLMs.197

Neuron-wise intervention. We conduct a neuron-198

wise intervention to analyze how activation shift199

affects model outputs. Specifically, we alter the200

neuron activations within a range of [-10, 10] with201

a step size of 0.2 to observe the resulting changes202

in target token output probabilities. To establish203

a global observation over all neurons while mini-204

mizing computational cost, since assessing a sin-205

gle neuron’s effect on one token for one prompt206

requires 100 inferences, we conduct neuron inter-207

ventions on randomly sampled neurons.208

Result and Analysis To understand how output209

shifts respond to neuron activation shifts, we cal-210

culate the Pearson correlation (hereafter, Corr)211
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Figure 2: Average absolute Corr between activation
shifts and output shifts.

between the activation shift ranges and the out- 212

put shifts of the correct tokens, considering only 213

the absolute Corr values. The absolute Corr is av- 214

eraged over 10 prompts randomly sampled from 215

1000 prompts to reduce the computational cost, 216

each with 1000 randomly sampled neurons given 217

a specific shift range (x-axis). Figure 2 shows that 218

all activation shifts and output shifts have a nearly 219

linear, strong Corr, even with a broad range2 of 220

±10. Figure 2 also indicates that activation shifts 221

tend to show stronger Corr with output shifts at 222

smaller shift ranges, consistent across all models. 223

It indicates that the shifting neuron activation with 224

a specific value can have a predictable result in 225

output shifts. 226

Noted that as all PLMs show similar behaviors, 227

we consider the BERT PLMs and three instruction- 228

tuned Llama2 LLMs for the following analysis. 229

3.2 Neuron Linearity 230

Based on the above discussion, we ask: do neurons 231

generally exhibit linearity to model output? We 232

first define neurons as possessing linearity if their 233

correlation (Corr) is at least 0.953 within a shift 234

range of ±2 from the observation in Figure 2. 235

We present a quantitative analysis of the preva- 236

lence of neuron linearity across different prompts 237

and Transformer layers. Specifically, we report 238

the ratio of neurons exhibiting linearity from 1000 239

prompts paired with 100 neurons.4 The ratios of 240

‘linear’ neurons in BERTbase/large/wwm models are 241

0.9565/0.8756/0.9564, respectively, and the ratios 242

for Llama-7B/13B/70B are 0.9387/0.9677/0.9208, 243

indicating that majority of neurons exhibit linearity. 244

We analyze the generality of linear neurons across 245

layers and prompts, revealing their widespread 246

2±10 is an appropriate range considering the distribution
of activations; see § B.1 for details.

3Since linearity lacks a strict definition, we use Corr>=0.95
to indicate a strong linear relationship.

4We only chose 200 prompts and 100 neurons for Llama2-
70B due to the large model size.
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presence (§ A). Furthermore, we term the linear-247

ity direction as polarity, where neurons are posi-248

tive/negative if increasing/decreasing their activa-249

tions enhances the target output probabilities.250

Neuron empirical gradient. We quantify the neu-251

rons’ linearity and polarity by the gradient of the252

linear relationship between activation shift and out-253

put shifts, which we term neuron empirical gradient254

(NEG). We calculate NEG as follows: we fit a zero-255

intercept linear regression between activation shifts256

and output shifts acquired through neuron interven-257

tion, and the regression coefficient is identified as258

the NEG for a specific neuron, prompt, and token.259

4 NeurGrad for NEG Estimation260

Efficiently and accurately computing NEG is cru-261

cial for quantitative analysis of neuron-level inter-262

pretability in PLMs. However, quantifying NEG263

through neuron-wise intervention is impractical264

due to the high computational cost. While prior265

studies proposed knowledge attribution methods266

that measure neurons’ importance in influencing267

model output, these methods require either exten-268

sive calculation or can only estimate the neurons’269

relative importance but cannot directly estimate the270

NEG (Dai et al., 2022; Geva et al., 2022; Meng271

et al., 2022; Yu and Ananiadou, 2024).272

4.1 NeurGrad273

In this section, we propose NeurGrad, an accu-274

rate yet efficient NEG estimation method, to fa-275

cilitate further analysis using NEG. The proposal276

of NeurGrad comes from the preliminary investi-277

gations into using computational gradients7 (here-278

after, CG) to measure the NEG. We observe that279

the Corr between CGs’ absolute values and NEGs280

is high, but the signs of NEGs are decided by281

CG and neuron activations. Specifically, we col-282

lect ground-truth NEGs from 1000 prompts with283

100 neurons per prompt, with a shift range of ±2284

on six PLMs, BERT families and three Llama2285

instruction-tuned LLMs. After collecting CG on286

these prompt-neuron pairs, the data reveal a low287

Corr (-0.429 on average) between the CG and NEG,288

but a high Corr (0.961) between their absolute val-289

ues. Moreover, the sign of NEG correlates with the290

signs of both activation and CG. Based on these291

findings, we propose NeurGrad:292

ḠE = CG × sign(A), (1)293

7Computational gradient refers to the gradient computed
from the computational graph through backpropagation.
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Figure 3: Comparison of neuron attribution methods
in token probability enhancement. X-axis: activation
shifts of selected neurons; Y-axis: average output shifts
over 1000 factual prompts.

where ḠE , A, and sign(A) represents the estimated 294

NEG, activation, and sign of A (1 for A > 0 and 295

-1 for A < 0), respectively. 296

4.2 NEG Estimation Evaluation 297

We evaluate NeurGrad’s effectiveness in estimating 298

NEG. We use the same setting as CG evaluation 299

above to collect the ground-truth NEGs. Our ex- 300

periment involves three baselines, including two 301

gradient estimation methods, CG and integrated 302

gradients (IG) (Dai et al., 2022), and one logit- 303

based knowledge attribution method (Yu and Ana- 304

niadou, 2024). IG intervenes with neurons in small 305

step sizes multiple times to simulate the NEG. The 306

Log-Probability-Increase (LPI) (Yu and Ananiadou, 307

2024) identifies important neurons by estimating 308

increased probabilities with specific neurons.8 309

We evaluate how well these methods calculate 310

NEG with two metrics: Corr and mean absolute 311

error (MAE). Table 1 (left) reports the Corr be- 312

tween the estimated and ground-truth NEGs that 313

can assess their ability to capture the neurons’ rela- 314

tive relationship, such as ordering. NeurGrad con- 315

sistently achieves high Corr over the six PLMs, out- 316

performing all other methods. Moreover, Table 1 317

(right) reports the Corr the MAE that quantifies 318

the accuracy of NEGs’ calculation. It is observed 319

that NeurGrad can largely reduce the estimation 320

error to the true NEG, revealing its ability to pre- 321

cisely calculate NEGs. Finally, the average running 322

time (Table 1 (bottom)) demonstrates NeurGrad’s 323

efficiency compared to other methods. The time 324

estimation uses Llama2-7B with an NVIDIA RTX 325

A6000 GPU. 326

8We did not consider other causal-tracing-based meth-
ods (Meng et al., 2022) due to their high computational cost,
which conflicts with our efficiency goal.
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Corr MAE

CG IG LPI NeurGrad CG IG LPI NeurGrad

BERTbase -.8909 .7360 -5 .9998 6.1e-03 3.0e-03 - 2.6e-05
BERTlarge -.9307 .7167 - .9958 4.6e-03 2.1e-03 - 1.9e-04
BERTwwm -.8914 .8584 - .9989 4.5e-03 2.2e-03 - 2.3e-05
Llama2-7B .3020 .5383 .6469 .8136 1.7e-06 1.2e-06 1.9e-03 1.3e-06
Llama2-13B -.1973 .7261 .1141 .9965 2.1e-06 1.5e-06 4.3e-04 6.0e-08
Llama2-70B .0283 n/a6 n/a 1.000 5.9e-07 n/a n/a 2.1e-09

Avg. Runtime (Llama2-7B) 0.149s 19.349s 6.086s 0.161s Same as left

Table 1: Evaluation of NeurGrad and baselines in calculating NEGs, including two metrics: Corr and MAE.

BERTbase/large/wwm Llama2-7/13/70B

Pos. ratio .5019/.5008/.4996 .4604/.4664/.4484
Neg. ratio .4981/.4992/.5004 .4592/.4660/.4480

Table 2: The pos/neg neuron ratios over 1000 prompts.

4.3 Knowledge Attribution Evaluation327

Finally, we evaluate NeurGrad’s ability to locate328

important neurons. Specifically, for 1000 prompts,329

we identify the top-K neurons (K = 1, 4, 16) with330

the highest attribution scores using CG, IG, LPI,331

and NeurGrad. We enhance neuron activations by332

shifting positive neurons from 0.1 to 1 and negative333

neurons from -0.1 to -1, both in increments of 0.1.334

Figure 3 reports the output shifts of target tokens335

on Llama2-7b, with different activation shifts and336

top-k neurons selected from different attribution337

methods. Figure 3 demonstrates that NeurGrad338

outperforms baselines in attribution accuracy. This339

superiority stems from NeurGrad’s precise mea-340

surement of NEG and its inclusion of negative neu-341

rons in intervention, unlike IG and LPI, which only342

consider positive neurons despite their equal ratio343

to negative neurons (Table 2). See details in § C.344

5 Understanding Neurons’ Controllability345

This section deepens our understanding of neuron346

controllability: the ability to precisely adjust PLM347

output probabilities by modifying neuron activa-348

tions, using NEGs estimated by NeurGrad.349

5.1 How Are NEGs Distributed?350

Do neurons have polarity preference? Table 2 re-351

ports the ratios of positive/negative neurons across352

1000 prompts in the six PLMs, showing that the353

numbers of positive/negative neurons are nearly354

7We follow code released in Yu and Ananiadou (2024) and
only Llama2 LLMs are supported.

8Due to the high memory cost of IG and LPI, we preclude
Llama2-70B experiments on these methods.
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Figure 4: Cumulative distribution of NEG magnitudes.
(X-axis: the percentiles of NEG magnitudes; Y-axis:
the cumulative contribution of neurons to the total sum).

equivalent. It indicates that PLMs show no prefer- 355

ence for their neurons’ polarities, suggesting that 356

enhancing or suppressing neurons should be guided 357

by their gradient polarity rather than merely increas- 358

ing or decreasing their activations (Dai et al., 2022). 359

See detailed distribution analysis in § B.2,B.3. 360

Does only a few neurons exhibit strong gradi- 361

ents? Figure 4 shows the cumulative distribution 362

of NEG for all neurons in PLMs. Rising curves are 363

steady and do not converge until all neurons are 364

present, indicating that most neurons can affect the 365

model’s output probabilities. 366

5.2 Does Linearity Hold for Multi-neuron? 367

We conduct multi-neuron intervention experiments 368

to investigate: can output shifts be predicted when 369

modifying multiple neuron activations? We ran- 370

domly sample N neurons and enhance them by 371

shifting their activations according to their polar- 372

ities measured by NeurGrad, in which positive 373

and negative activation shifts are applied to posi- 374

tive/negative neurons. We experiment on BERTbase 375

and Llama2-7B using neuron sizes of 2N (0 ≤ 376

N ≤ 12) across 1000 prompts. 377

Figure 5 shows the average Corr across all 378

prompt-neuron pairs with an enhancement range 379

of [0, 0.5] and a step size of 0.01. We observe 380

that even Corr decreases as more neurons are in- 381

volved due to neuron interactions, a strong cor- 382
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Figure 5: Multi-neuron enhancement with range [0,0.5]
with different number of neurons.

relation (≥0.7) remains even with 4096 neurons383

in both PLMs. Additionally, Figure 5 (right y-384

axis) shows that involving more neurons can cause385

larger output shifts, suggesting that the output shifts386

caused by individual neurons can be accumulated.387

Note that despite the small average output shifts388

in Llama2 due to the small NEG magnitudes per389

neuron (see § B.2 for details), significant proba-390

bility changes can still be observed when more391

than 1024 neurons are involved in Llama2-7B mod-392

els with specific neuron combinations. Moreover,393

our analysis with larger enhancement ranges re-394

veals consistent trends: increasing the shift range395

reduces Corr, making output shifts less predictable.396

See § D for experiments with different ranges.397

The analysis above demonstrates that modifying398

neuron activations, as guided by NeurGrad, en-399

ables partial prediction of output shifts. However,400

the number of modified neurons and the range of401

modifications require careful examination.402

5.3 Local Linear Approximation Hypothesis403

We present the Local Linearity Approximation404

Hypothesis to explain neuron linearity, based on405

three key observations: (1) expanding the shift406

range reduces Corr (Figure 2); (2) PLMs with more407

parameters diminish the importance of individual408

neurons, leading to higher Corr (Figure 2); (3) in-409

volving more neurons weakens linearity (Figure 5).410

Let f : Rn → Rm be a PLM, where x ∈ Rn411

represents neuron activations and f(x) represents412

the output token probabilities. Within a constrained413

region, the influence of a single neuron xi can be414

locally approximated as: f(xi + δe) ≈ f(xi) +415
∂f
∂xi

δ, for small δ, where ei is the unit basis vector.416

This follows from the first-order Taylor expansion,417

reflecting the model’s local differentiability with418

respect to neuron activations.419

6 Skill Neuron Probing using NeurGard 420

While NEG and NeurGrad enable neuron-level 421

modifications to model outputs, the variability of 422

neurons’ NEG values across different prompts lim- 423

its their ability to support modifications for spe- 424

cific types of knowledge, such as language skills. 425

These skills often involve handling a range of 426

prompts that require linguistic diversity. This sec- 427

tion explores whether NEG can effectively cap- 428

ture general language skills linked to diverse 429

prompts through skill neuron probing. Skill neu- 430

ron probing seeks to identify neurons that encode 431

the ability to solve language tasks. Note that prior 432

work (Wang et al., 2022; Song et al., 2024) ex- 433

plored the effectiveness of using neuron activations 434

for this purpose, yet we focus on neurons’ NEG. 435

6.1 Task Definition 436

Following Wang et al. (2022), we formulate the 437

skill neuron probing task as follows. A dataset 438

conveying specific language skills D consists of 439

language sequence pairs, including knowledge in- 440

quiries Q = {q1, ..., q|T |} and answer sequences 441

A = {a1, ..., a|T |}, where arbitrary ai belongs to 442

the answer candidate set Âcands. For example, in 443

the sentiment classification task, Q is the docu- 444

ments set, and A is the ground-truth sentiment la- 445

bels. We then build classifiers that take behaviors 446

of arbitrary neuron subset Ns ⊆ N as features to 447

indicate the correct answer sequences ai for the 448

knowledge inquiry qi. N refers to all the neurons.9 449

Our skill neuron prober aims to find N ∗
s that can 450

achieve optimal accuracy over the target dataset D. 451

N ∗
s = argmax

Ns⊆N
Acc(f(Ns), D) (2) 452

453

Acc(f(Ns), D) =
1

|D|

|D|∑
i=1

1[f(Ns, qi) = ai].

(3) 454

Here, f(Ns, qi) is the output of the classifier F 455

using the neuron subset Ns for the prompt qi. 456

1[X = Y ] is an indicator function that equals 1 457

if X matches Y , and 0 otherwise. 458

6.2 Evaluation Benchmark: MCEval8K 459

This section, we create a multi-choice knowledge 460

evaluation benchmark-MCEval8K for skill neuron 461

probing. As skill neuron probing requires a fixed 462

target token, previous studies (Wang et al., 2022; 463

9We focus on intermediate outputs (neurons) of FF layers.
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Song et al., 2024) relied on multi-choice datasets464

that forces PLMs to generate a single-token option465

label (A, B, etc.) named for category labels (A:466

positive, B: negative, etc.). While we adopt a simi-467

lar setup, earlier work focused on small PLMs with468

datasets limited to basic language understanding469

tasks, which are insufficient for evaluating LLMs.470

To address this, we introduce MCEval8K, a di-471

verse multi-choice benchmark covering 22 tasks472

across six genres, designed to assess a wide range473

of language skills, incorporating most datasets474

from previous studies. Since tasks vary in different475

sizes, with some, such as cLang-8 (Rothe et al.,476

2021; Mizumoto et al., 2011), containing millions477

of data points, we standardize the evaluation by478

limiting each task to 8K queries.10 It minimizes479

unnecessary computational costs while ensuring480

consistency across tasks. We also ensure the num-481

ber of ground-truth options per task is balanced482

to eliminate bias introduced by imbalanced clas-483

sification. The skill genres, tasks, and datasets484

information are shown below (detailed in § F).485

Linguistic: Part-of-speech tagging (POS), phrase-486

chunking (CHUNK), named entity recognition487

(NER), and grammatical error detection (GED).488

Content classification: Sentiment (IMDB), topic489

classification (Agnews), and Amazon reviews490

with numerical labels (Amazon). Natural491

language inference (NLI): textual entailment492

(MNLI), paraphrase identification (PAWS), and493

grounded commonsense inference (SWAG). Factu-494

ality: Fact-checking (FEVER), factual knowledge495

probing (MyriadLAMA), commonsense knowl-496

edge (CSQA), and temporary facts probing (Tem-497

pLAMA). Self-reflection: Examine PLMs’ inter-498

nal status, including hallucination (HaluEval), toxi-499

city (Toxic), and stereotype (Stereoset) detections.500

Multilinguality: We select tasks with multilingual501

queries, including language identification (LTI),502

multilingual POS-tagging on Universal Dependen-503

cies (M-POS), Amazon review classification (M-504

Amazon), factual knowledge probing (mLAMA)505

and textual entailment (XNLI).506

7 NEG as Knowledge Feature507

We train skill neuron probers based on NeurGrad’s508

estimated gradients to investigate whether and how509

NEG encodes language knowledge.510

10Only the Stereoset task has fewer than 8K queries due to
the limited size of the original dataset.

7.1 Gradient-based Skill Neuron Prober 511

For each task dataset D, we split it into: training set 512

Dtrain to train the classifiers, validation set Dvalid 513

to decide hyperparameters, and test set Dtest for 514

evaluation, with the ratio of 6:1:1. We train three 515

probers with different designs for comparison. 516

Polarity-based majority vote (Polar-prober) 517

adopts a simple majority-vote classifier, taking 518

each neuron in Ns as one voter. A polarity-based 519

classifier leverages the polarity of neurons (positive 520

or negative) as features for classification. Given 521

Dtrain = {(qi, ai)} and any neuron nk ∈ N , 522

we identify the polarity as feature xnk
qi,ai for each 523

(qi, ai) pair. For each nk, we calculate the ratio of 524

being positive and negative across all |Dtrain| exam- 525

ples and the dominant polarity is identified as their 526

global polarity x̄nk . Neurons with more consistent 527

polarity are ranked higher. 528

To make prediction of qi, we measure all polar- 529

ities of xnk
qi,aj , where aj ∈ Âcands, nj ∈ N ∗

s . The 530

prediction of each qi is made as follows: 531

f(N ∗
s , qi) = argmax

aj∈Âcands

∑
nk∈N ∗

s

1[xnk
qi,aj = x̄nk ] (4) 532

We identify the optimal size of N ∗
s with Dvalid. 533

Magnitude-based majority vote (Magn-prober) 534

utilizes gradient magnitudes as features for a 535

majority-vote classifier. During training, for a spe- 536

cific qi and nk, we compare the gradients between 537

a ∈ Âcands. Neurons that consistently exhibit the 538

largest or smallest gradients for the ground truth 539

ai compared to other candidates are used as skill 540

indicators. We record each neuron’s preference 541

for being either the largest or smallest. Neurons 542

exhibiting more consistent behavior are assigned 543

higher importance and identified as skill neurons. 544

During inference, similar to Eq. 4, the prediction 545

is made by selecting aj that satisfies the majority 546

of nk ∈ N ∗
s . This prober is designed to compare 547

against the polarity-based prober, aiming to exam- 548

ine whether NEGs’ magnitude can bring additional 549

skill information compared to polarity. 550

7.2 Experimental Setup 551

Dataset & Prompt Since our probing method re- 552

stricts the output sequence length to one, we care- 553

fully craft instructions and options for all datasets 554

in MCEval8K through human effort. We evalu- 555

ate both zero-shot and few-shot settings, ensuring 556

in few-shot experiments that all candidate tokens 557
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Figure 6: MCEval8K accuracies on Llama2-7B across tasks in zero-shot and few-shot settings, reported for Rand
(random guess), TProb (token probability), and two proposed probers. Legends show average accuracies.

appear once in the demonstrations to prevent ma-558

jority label bias (Zhao et al., 2021). See § J for the559

designed instructions for all tasks.560

Prober During validation, we select the optimal561

neuron size for majority-vote probers from 2n(0 ≤562

n ≤ 13). See § G for detailed prober settings.563

Model We perform skill neuron probing on564

Llama2-7B using three probers, all datasets in565

MCEval8K, and the full training set (6000) per task.566

For Llama2-70B, due to high cost, we probe one567

dataset per genre—NER, Agnews, PAWS, CSQA,568

HaluEval, and mLAMA—using 1024 training ex-569

amples and only train major-vote probers.570

7.3 Result and Analysis571

Skill neuron-based classifier accuracy is compared572

to two baselines: random guessing (Rand), and573

answer token probability-based classification (LM-574

Prob) which selects the candidate token with the575

highest probability as the prediction, serving as a576

benchmark for the LLMs’ prompting performance.577

Empirical gradients encode language skills. Fig-578

ure 6 shows accuracies for all tasks in MCEval8K579

using the Llama2-7B, with both zero- and few-shot580

settings. The results demonstrate that LM-Prob581

outperforms Rand, indicating that Llama2-7B is582

capable of understanding instructions and recalling583

skills from its parameters. We also confirm the584

effectiveness of our skill neuron probers in address-585

ing language tasks. The two simple major-vote586

classifiers outperform LM-Prob in both settings.587

The per-task classification accuracies in Figure 6588

show that skill neurons effectively represent diverse589

language skills, achieving consistently high results590

across tasks. See Table 7,8 for accuracy values.591

Larger PLMs excel in skill recall. Table 3 com-592

pares LM-Prob and Magn-prober across six tasks593

in the few-shot setting between Llama-7B and -594

Tasks
Llama2-7B Llama2-70B

LM-Prob Magn-Prober LM-Prob Magn-Prober

NER .3610 .4980 .7900 .8170
Agnews .5880 .7020 .7630 .8240
PAWS .5240 .8150 .7790 .8460
CSQA .6100 .6390 .7540 .7630
HaluEval .5200 .7830 .7530 .8250
mLAMA .6080 .6370 .7430 .7600

Table 3: Accuracies of 6 tasks on Llama2-7B and -70B.

70B. Llama-70B outperforms Llama-7B in both 595

LM-Prob and skill neuron probing. However, the 596

difference between LM-Prob and Magn-prober is 597

smaller in Llama2-70B than in Llama2-7B, indicat- 598

ing the large model’s strong ability to recall knowl- 599

edge from its parameters. See § H for further anal- 600

ysis on the properties of skill neurons: efficiency, 601

generality, and inclusivity. 602

8 Conclusions 603

This is the first study to establish a global quan- 604

titative measurement between neurons and model 605

output, laying a foundation for precise PLM output 606

control by modifying neurons. Our study uncovers 607

a linear relationship between neurons in FF lay- 608

ers and model outputs through neuron intervention 609

experiments. We call and quantify this linearity 610

by “neuron empirical gradients” and propose Neur- 611

Grad, an accurate yet effective NEG estimation 612

method. Building on NeurGrad, we deepen the un- 613

derstanding of neuron controllability. Finally, we 614

demonstrate NEG’s representational ability of gen- 615

eral language skills associated with diverse prompts 616

through skill neuron probing experiments. 617

As the future work, we will investigate the neu- 618

ron modification methods that can main both the 619

preciseness and strength to apply to applications 620

like knowledge editing and bias mitigation. 621
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9 Limitations622

Our research establishes a framework for quanti-623

tatively measuring neurons’ influence on model624

output and demonstrates the effectiveness of em-625

pirical gradients in representing language skills,626

linking language skill representation to model out-627

put through neuron empirical gradients. However,628

the potential for achieving skill-level model output629

adjustment by tuning neuron values remains unex-630

plored. Directly adjusting neuron values could of-631

fer a more efficient alternative to traditional weight-632

level tuning methods. Furthermore, we also plan633

to examine NEG’s representational ability on lan-634

guage generation tasks. This approach may enable635

dynamic behavior modification without altering the636

underlying parameters of LLMs, potentially reduc-637

ing computational costs and enabling more flexible638

model adaptation.639

Furthermore, our discussion on neuron linear-640

ity and empirical gradient measurements is cur-641

rently confined to single-token probing with fac-642

tual prompts. In the future, we plan to expand our643

experiments to include prompts from diverse do-644

mains and investigate neuron attribution methods645

for multi-token contexts, aiming to support broader646

applications in generative language tasks.647
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A Generality of Neuron Linearity966

In this section, we provide additional evidence to967

verify that linearity is a general property for neu-968

rons in LLMs. Specifically, we want to verify969

whether the linear neurons exist widely across dif-970

ferent Transformer feed-forward layers and within971

different prompts. We use the metrics of layer gen-972

erality (LG) and prompt generality (PG) to mea-973

sure the prevalence of their existence. Intuitively,974

we can consider a simplified problem as follows:975

suppose we have many colored balls (green, blue,976

...) and 10 bins, and if we want to verify whether977

the blue ball has “generality,” it means (1) high978

coverage: the blue ball exists in most of the bins;979

(2) even distribution: the number of blue balls in980

each bin hardly differs from others. For our neuron981

generality, the “balls” are the “linear neurons,” and982

the “bins” refer to either “feed-forward layers” (for983

LG) or “different prompt” (for PG). To address984

these two aspects simultaneously, we define LG985

and PG as follows:986

LG ≜ coveragelayer × distributionlayer, (5)987

PG ≜ coverageprompt × distributionprompt, (6)988

where coverage and distribution are defined as:989

coveragex =
Σi1(linear neuron exists in xi)

# of x
,

(7)990

distributionx = 1− Var(#neurons in x)

maxVar(#neurons in x)
,

(8)991

where x refers to either layer or prompt, maxVar(·)992

denotes the max possible variance. High coverage993

and distribution are desirable; a perfect generality994

then achieves coverage of one and distribution of995

one.996

B Neurons’ Statistics997

B.1 Distribution of Neuron Activations998

In this section, we analyze the distribution of neu-999

ron activations across six PLMs, illustrated in Fig-1000

ure 7. The models include three BERT-based1001

Linear
neuron
ratio

Prompt-
wise
gen.

Layer-
wise
gen.

BERTbase .9565 .9999 .9982
BERTlarge .8756 .9999 .9989
BERTwwm .9564 .9999 .9990
Llama2-7B .9387 .9999 .9986
Llama2-13B .9677 .9999 .8618
Llama2-70B .9208 .9999 .6294

Table 4: Neuron linearity statistics. We choose 1000
prompts and their corresponding 100 neurons with top
gradient magnitudes. For Llama2-70B, since the model
is giant, we only chose 200 prompts and 100 neurons
due to the high computational cost. The shift range is
set to ± 2.

PLMs and three instruction-tuned LLaMA-2 LLMs. 1002

Figure 7 reveals that most neuron activations fall 1003

within the range of ±10. While there are still some 1004

neurons that have a value out of the range of ±10, 1005

the number of such neurons is comparably fewer, 1006

and increasing the range linearly increases the com- 1007

putational cost. Considering the balance between 1008

coverage and computational cost, we finally set the 1009

intervention range as ±10 as shown in § 3. 1010

B.2 Distribution of Neuron NEGs 1011

In this section, we report the distribution of neu- 1012

rons’ NEG (Neuron Effect on Gradient) across the 1013

six PLMs, as illustrated in Figure 8. Similar to 1014

our discussion in § 5.1, we observe that neurons 1015

capable of altering model output are not rare. For 1016

instance, in BERTbase, over 1,000 neurons exhibit 1017

NEG magnitudes larger than 0.1. Additionally, the 1018

NEG magnitudes of neurons in LLaMA-2 LLMs 1019

are significantly smaller than those in BERT PLMs, 1020

likely due to the smaller parameter size of BERT 1021

models, which grants individual neurons greater 1022

influence over model output. Notably, all models 1023

tend to exhibit zero gradients when averaging the 1024

NEGs across all neurons. 1025

B.3 How are neurons distributed across 1026

layers? 1027

We examine the variation in NEG across Trans- 1028

former layers to understand the distribution of neu- 1029

ron controllability. Figure 9 illustrates the means 1030

and variances of magnitudes of NEG across lay- 1031

ers. The mean NEG magnitude reflects the inten- 1032

sity with which PLMs adjust output probabilities 1033

through neurons in a given layer, while the variance 1034

indicates how concentrated the effective neurons 1035

are within that layer. A positive Corr is observed 1036
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Figure 7: Histograms of neuron activations for six models across 1,000 prompts, displayed on a logarithmic y-axis.
The figure includes three BERT models and three LLaMA-2 models, with each subplot showing the distribution of
activations for one model.

between variances and means,11 suggesting that as1037

PLMs increase the intensity of gradient activity in1038

specific layers, they also focus more on a limited1039

subset of neurons. Specifically, in BERT models,1040

a strong Corr is evident between layer depth and1041

neuron controllability intensity, with deeper lay-1042

ers exhibiting larger gradient magnitudes, whereas1043

Llama2 displays a distinct pattern: gradient magni-1044

tudes peak in the middle layers, decrease towards1045

the deeper layers and then increase at the final lay-1046

ers. This divergence underscores the differences1047

between the BERT and Llama2 families, empha-1048

sizing the need for case-by-case analysis in LLM1049

mechanism investigation.1050

C Knowledge Attribution Evaluation:1051

Supplementary Experiments1052

In this section, we report the knowledge evaluation1053

experiments on other PLMs, including three BERT1054

PLMs. We exclude LPI from the following experi-1055

ments as LPI cannot be applied to BERT models.1056

We follow a similar experiment setup to § 4.3.1057

The evaluation results are illustrated in Figure 10.1058

NeurGrad consistently outperforms other gradient-1059

11The Corr between means and variances of neuron mag-
nitudes across different layers are 0.88, 0.79, 0.87 for
BERTbase/large/wwm, and 0.57, 0.51, 0.42 for Llama2-
7B/13B/70B.

based methods in finding the top-K important neu- 1060

rons. Furthermore, we can observe that output 1061

shifts made on BERT PLMs are much larger than 1062

shifts on Llama2-7B (Figure 3). This is due to 1063

the small NEG magnitudes in Llama2-7B as intro- 1064

duced in § B.2. 1065

D Multi-neuron Intervention: 1066

Supplementary Experiments 1067

In this section, we report the multi-neuron interven- 1068

tion experiments conducted with different enhance- 1069

ment ranges on BERTbase and Llama2-7B, follow- 1070

ing the similar experiment setup to § 5.2. Specifi- 1071

cally, we report the correlation between output shift 1072

and the accumulated NEGs estimated by NeurGrad 1073

with the enhancement ranges of [0, 0.1], [0, 1], [0, 1074

1.5], and [0, 2], illustrated in Figure 11). Figure 11) 1075

demonstrates that with a larger enhancement range, 1076

involving more neurons can largely reduce the Corr, 1077

suggesting the output shift is less predictable. How- 1078

ever, we can observe that BERTbase consistently 1079

achieves strong Corr.(>0.8) for any scenario. While 1080

Llama2-7B is less stable as BERTbase, it can still 1081

maintain moderate positive Corr. (>0.5) for 4096 1082

neurons with enhancement range of [0,2]. 1083
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Figure 8: Histograms of neuron NEGs for six models across 1,000 prompts, displayed on a logarithmic y-axis.
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Figure 9: Means and variances of NEG magnitudes across Transformer layers on six models. The data is calculated
from the average of 1000 prompts.

E Model cards1084

Here are the links from Hugging Face to load each1085

model:1086

BERTbase: https://huggingface.co/1087
bert-base-uncased1088

BERTlarge: https://huggingface.co/1089
bert-large-uncased1090

BERTwwm: https://huggingface.co/1091
bert-large-uncased-whole-word-masking1092

Llama2-7B: https://huggingface.co/meta-llama/1093
Llama-2-7B-hf1094

Llama2-13B: https://huggingface.co/meta-llama/1095
Llama-2-13B-hf1096

Llama2-70B: https://huggingface.co/meta-llama/ 1097
Llama-2-70B-hf 1098

Llama2-7B-PT: https://huggingface.co/meta-llama/ 1099
Llama-2-7B 1100

Llama2-13B-PT: https://huggingface.co/ 1101
meta-llama/Llama-2-13B 1102

Phi3-mini: https://huggingface.co/microsoft/ 1103
Phi-3-mini-128k-instruct 1104

The statistics of these six PLMs, including the 1105

number of layers (#n_layers) and neurons per layer 1106

(#neurons_per_layer) are listed in Table 5. 1107
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(a) Evaluation results on BERTbase.
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(b) Evaluation results on BERTlarge.
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(c) Evaluation results on BERTlarge.

Figure 10: Knowledge attribution evaluation by com-
paring CG, IG, and NeurGrad on Three BERT.

F Construction of MCEval8K1108

The motivation behind creating MCEval8K is to1109

establish a comprehensive benchmark that spans di-1110

verse knowledge genres and language skills. Since1111

our goal is to facilitate skill neuron probing experi-1112

ments where a single token must represent answers,1113

we adopt a multi-choice task format. Additionally,1114

we aim for the benchmark to be adaptable while1115

avoiding redundancy for effective evaluation. In1116

summary, we adhere to several guiding principles1117

to design MCEval8K.1118

1. All datasets must be in multi-choice format.1119

2. Avoid including datasets that covey similar1120

language skills.1121

3. To eliminate potential bias from imbalanced1122

classifications, we ensure that the number of1123

Model #n_layers #neurons_per_layer

BERTbase 12 3,072
BERTlarge 24 4,096
BERTwwm 24 4,096
LLama2-7B(-PT) 32 11,008
Llama2-13B(-PT) 40 13,824
Llama2-70B 80 28,672
Phi3-mini 32 8,192

Table 5: Number of Layers and Intermediate Neurons
per Layer for BERT and Llama2 Models

correct options is evenly distributed across all 1124

answer choices. This balance helps maintain 1125

fairness and accuracy in the analysis results. 1126

4. We use a unified number (8000) of data to 1127

avoid high computational costs. 1128

Multi-choice format: We created MCEval8K to 1129

include six different genres with 22 tasks, which are 1130

linguistic, content classification, natural language 1131

inference (NLI), factuality, self-reflection, and mul- 1132

tilingualism. All the genres and tasks are listed in 1133

Table 6. For datasets that are not multi-choice tasks, 1134

we create options for each inquiry following rules. 1135

These datasets include POS, CHUNK, NER, Myr- 1136

iadLAMA, TempLAMA, Stereoset, M-POS, and 1137

mLAMA. The rules we adhere to create options 1138

are listed below: 1139

POS We use weighted sampling across all POS 1140

tags to select three additional tags alongside 1141

the ground-truth tag. 1142

CHUNK The process is analogous to POS. 1143

NER The process is analogous to POS. 1144

MyriadLAMA For factual inquiries formed from 1145

< subi, relj >, we collect all objects that ap- 1146

pear as the target of the relj within the dataset 1147

and perform sampling to select three addi- 1148

tional objects alongside the ground-truth tag. 1149

TempLAMA We randomly sample three addi- 1150

tional candidate years from the range 2009 1151

to 2020, alongside the ground-truth tag. 1152

M-POS The process is similar to POS, applied 1153

separately for each language. 1154

mLAMA The process is similar to MyriadLAMA, 1155

applied separately for each language. 1156
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20 21 22 23 24 25 26 27 28 29 210211212

Number of Neurons

0.6

0.8

1.0

Av
er

ag
e 

Co
rr

Average Corr
BERTbase
Llama2-7B

1.0

0.5

0.0

0.5

1.0

Ou
tp

ut
 S

hi
fts

Mean Output Shifts
BERTbase
Llama2-7B

(b) Enhancement range of [0, 1].
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(c) Enhancement range of [0, 1.5].
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Figure 11: Multi-neuron intervention experiment results with different enhancement ranges.

Balanced Options: Most datasets, except for Stere-1157

oset, contain more than 8000 data points. To ensure1158

balance across all options, we perform balanced1159

sampling so that each option has an equal num-1160

ber of examples. From these datasets, we split1161

8000 examples into training, validation, and test1162

sets, allocating 6,000, 1000, and 1000 examples,1163

respectively. For instance, in the case of mLAMA,1164

where each inquiry has four options, we ensure that1165

the correct answer is represented equally across all1166

four positions. This results in 1,500 occurrences1167

(6,000/4) per position in the training set and 2501168

occurrences per position in both the validation and1169

test sets.1170

Creation of multilingual tasks: For multilingual1171

datasets, we focus on five languages: English (en),1172

German (de), Spanish (es), French (fr), and Chinese1173

(zh). These languages vary significantly in linguis-1174

tic distance, with English being closer to German,1175

French closer to Spanish, and Chinese being distant1176

from all of them. This selection allows for a deeper1177

analysis considering linguistic distances between1178

languages. We ensure that 5 languages have the1179

same number of datAn examples in each dataset1180

(1,600 per language). Furthermore, for datasets 1181

like mLAMA, XNLI, and M-AMAZON, we en- 1182

sure that each piece of knowledge is expressed in 1183

all five languages. This consistency enables direct 1184

comparisons of language understanding abilities 1185

across different languages. 1186

G Details of Skill Neuron Probing 1187

In this section, we report the details of our skill 1188

neuron probing evaluation, including the full opti- 1189

mal accuracies on all tasks with zero-shot prompt 1190

setting (Table 7), few-shot prompt setting (Table 8). 1191

For two major vote probers, optimal accuracies are 1192

acquired by performing a hyper-parameter (optimal 1193

neuron size) search on the validation set and eval- 1194

uating the test set. We report the optimal neuron 1195

sizes for all tasks along with the accuracies in the 1196

table. 1197
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H Properties of Skill Neurons1198

H.1 Representation & Acquisition Efficiency1199

Neuron sizes Tasks

20 ∼ 23 Toxic, LTI, M-POS, FEVER, TempLAMA

24 ∼ 28
GED, POS, CHUNK, NER,
Amazon, IMDB, PAWS, MNLI,
SWAG, HaluEval, XNLI, M-Amazon

29 ∼ 213 Agnews, MyriadLAMA, CSQA, mLAMA

Table 9: Optimal number of skill neurons in Magn-
prober.

Representational efficiency: By finding the op-1200

timal neuron size on the validation set, we ob-1201

serve that skill-neuron prober can achieve high1202

accuracy with a few neurons. We summarize op-1203

timal neuron sizes for all tasks with Magn-prober1204

in Table 9. Most tasks achieved optimal accuracy1205

within 256 neurons, demonstrating the efficiency of1206

NEG in representing language skills. Notably, fac-1207

tuality tasks, such as MyriadLAMA, CSQA, and1208

mLAMA, engage a larger number of neurons, sug-1209

gesting that handling facts requires more diverse1210

neurons, reflecting the complexity of factual under-1211

standing tasks.1212
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Figure 12: Accuracies with varying training sizes.

Acquisition efficiency: We report the accuracy of1213

skill-neuron probers with different training exam-1214

ples in Figure 12. While adding training examples1215

can consistently increase the probers’ accuracy, the1216

earnings slow down after 128, indicating the effi-1217

ciency of acquiring skill neurons with limited data.1218

H.2 Generality Across Diverse Contexts1219

We investigate how skill neurons change when1220

we provide different contexts, including instruc-1221

tions, demonstrations, and options for the same1222

task. Given context X , we first acquire the skill1223

neurons NX
s and the accuracy ACCX

NX
s

. Then, we1224

use the classifier built with NX
s to evaluate the task 1225

by context Y as ACCY
NX

s
. We denote the generality 1226

of NX
s on context Y as

max(ACCY

NX
s

−α,0)

max(ACCY

NY
s
−α,0)

, where α 1227

is the accuracy by Rand. 1228

Using PAWS as an example, we create 12 dis- 1229

tinct contexts by varying the instructions, the selec- 1230

tion of demonstrations, and the output token styles. 1231

By measuring the generality for different combina- 1232

tions, we observe that the generality for prompting 1233

settings with different instructions and demonstra- 1234

tions is very high (close to 1), while the generality 1235

largely decreases if target tokens are changed. The 1236

results indicate that skill neurons maintain strong 1237

generality across different inputs, including varia- 1238

tions in instructions and demonstrations. However, 1239

this generality diminishes when the output tokens 1240

are changed. See § K for details of experimental 1241

settings and results, including 12 designed contexts 1242

and generality results. 1243

H.3 Are Neurons Exclusive in Skill 1244

Representations? 1245
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Figure 13: Accuracies of Magn-prober probers with
different neuron sets, plotting the mean accuracy within
each window, along with the accuracy ranges (min to
max), as the envelope. Neuron sets are selected from
all neurons in Llama2-7B in groups of 64, ranked by
importance to be used as skill indicators.

We investigate whether skill neurons exclusively 1246

represent specific skills or can be substituted by dif- 1247

ferent neuron sets. We thus build Magn-probers us- 1248

ing various neuron sets. Specifically, we select 64 1249

consecutive neurons from the ranked list, ordered 1250

by their importance as skill indicators (§ 7.1).12 1251

Figure 13 depicts the accuracies across six tasks. 1252

The result suggests skill neurons are broadly dis- 1253

tributed, with numerous neurons acting as skill 1254

12We use 64-neurons units, which maintain high accuracies
across tasks (§ A). With 352,256 neurons in Llama2-7B’s FF
layers, this yields 5,504 accuracy values per task.
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indicators. Even when relying on less important1255

neurons, the model’s representational ability only1256

gradually declines. Moreover, using only the least1257

important neurons (end of each line) still yields1258

better performance than random guesses, under-1259

scoring the inclusivity of skill neurons (See § I.31260

for inclusivity evaluation on all datasets).1261

I Additional Analysis on Probing Results1262

I.1 Interpreting in-context learning with1263

empirical gradients.1264

To understand why simple majority-vote classifiers1265

achieve high accuracy, we analyze the gradients1266

associated with each answer choice. Using PAWS1267

(binary classification) as an example, we inspect the1268

gradient pairs for target tokens (yes/no) across all1269

training prompts. We find that 97.21% of neurons1270

display opposite signs for yes/no tokens. Moreover,1271

the Corr between yes/no gradients is -0.9996. This1272

pronounced inverse Corr suggests that empirical1273

gradients are sharply polarized, making it easier for1274

a majority-vote approach to distinguish between1275

the target tokens. Furthermore, we examine how1276

zero-shot and few-shot prompting differ from the1277

perspective of empirical gradients. Our analysis re-1278

veals that the total gradient magnitudes in few-shot1279

scenarios over 22 tasks are 5.36 times greater than1280

in zero-shot. This indicates that demonstrations1281

in context can effectively activate skill neurons,1282

leading to better task understanding.1283

I.2 More Data about Efficiency1284

We report the accuracies of major-vote probers with1285

different neuron sizes for all tasks to provide addi-1286

tional evidence for the discussion about the repre-1287

sentation and acquisition efficiency of skill neurons1288

in § H.1. The results are demonstrated in Figure 161289

and Figure 17 for zero-shot and few-shot prompt-1290

ing settings.1291

I.3 Probing With Varying Neuron Sets1292

We report the aggregated accuracies across all 221293

tasks in MCEval8K in Figure 18 to provide addi-1294

tional evidence for discussion in § H.3. It demon-1295

strates that many neurons can construct the classi-1296

fiers in solving the language tasks, showing their1297

ability to represent language skills and knowledge.1298

J Prompting Setups1299

In this subsection, we list all the instructions we1300

use for each task in MCEval8K. It includes design1301

instructions, options, and a selection of few-shot 1302

examples. As mentioned in § 7.2, we adopt two 1303

instruction settings, zero-shot and few-shot. For 1304

few-shot prompting, we set the number of examples 1305

to the same number as the number of options and 1306

ensure each option only appears once to prevent 1307

majority label bias (Zhao et al., 2021). All the few- 1308

shot examples are sampled from the training set. 1309

Finally, we list all the instructions and options we 1310

used for skill neuron probing examples by showing 1311

one zero-shot prompt. 1312

GED 1313

### Instruction: Which of the sentence 1314

below is linguistically acceptable? 1315

### Sentences: 1316

a.I set the alarm for 10:00 PM but I could 1317

n’t wake up then . 1318

b.I set the alarm for 10:00PM but I could 1319

n’t wake up then . 1320

### Answer: 1321

POS 1322

### Instruction: Determine the 1323

part-of-speech (POS) tag for the 1324

highlighted target word in the given 1325

text. Choose the correct tag from the 1326

provided options. 1327

### Input text:One of the largest 1328

population centers in pre-Columbian 1329

America and home to more than 100,000 1330

people at its height in about 500 CE, 1331

Teotihuacan was located about thirty 1332

miles northeast of modern Mexico City. 1333

### Target word:’pre-Columbian’ 1334

### Options: 1335

a.DET 1336

b.ADJ 1337

c.PRON 1338

d.PUNCT 1339

### Answer: 1340

CHUNK 1341

### Instruction: Identify the chunk type 1342

for the specified target phrase in the 1343

sentence and select the correct label from 1344

the provided options. 1345

### Input text:B.A.T said it purchased 1346

2.5 million shares at 785 . 1347

### Target phrase:’said’ 1348

### Options: 1349

a.PP 1350

b.VP 1351
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Figure 14: Per-task accuracies with varying neuron sizes on Llama2-7B, zero-shot prompt setting.

c.NP1352

d.ADVP1353

### Answer:1354

NER1355

### Identify the named entity type for1356

the specified target phrase in the given1357

text. Choose the correct type from the1358

provided options1359

### Input text:With one out in the fifth1360

Ken Griffey Jr and Edgar Martinez stroked1361

back-to-back singles off Orioles starter1362

Rocky Coppinger ( 7-5 ) and Jay Buhner1363

walked .1364

### Target phrase:’Orioles’1365

### Options:1366

a.LOC1367

b.ORG1368

c.MISC1369

d.PER1370

### Answer:1371

Agnews1372

### Instruction: Determine the genre of1373

the news article. Please choose from1374

the following options: a.World b.Sports1375

c.Business d.science. Select the letter1376

corresponding to the most appropriate1377

genre.1378

### Text:Context Specific Mirroring 1379

"Now, its not that I dont want to have 1380

this content here. Far from it. Ill 1381

always post everything to somewhere on 1382

this site. I just want to treat each 1383

individual posting as a single entity 1384

and place it in as fertile a set of beds 1385

as possible. I want context specific 1386

mirroring. I want to be able to 1387

newlinechoose 1388

multiple endpoints for a post, and 1389

publish to all of them with a single 1390

button 1391

click." 1392

1393

### Genres: 1394

a.World 1395

b.Sports 1396

c.Business 1397

d.Science 1398

### Answer: 1399

Amazon 1400

### Instruction: Analyze the sentiment 1401

of the given Amazon review and assign a 1402

score from 1 (very negative) to 5 (very 1403

positive) based on the review. Output 1404

only the score. 1405

### Input Review:I never write reviews, 1406
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Figure 15: Per-task accuracies with varying neuron sizes on Llama2-7B, few-shot prompt setting.

but this one really works, doesn’t float1407

up, is clean and fun. Kids can finally1408

take a bath!1409

### Output Score:1410

IMDB1411

### Instruction: Based the review, is the1412

movie good or bad?1413

### Review:Stewart is a Wyoming cattleman1414

who dreams to make enough money to1415

buy a small ranch in Utah ranch1416

<...abbreviation...>. In spontaneous1417

manner, Stewart is lost between the1418

ostentatious saloon owner and the1419

wife-candidate...1420

### Answer:1421

MyriadLAMA1422

### Instruction: Predict the [MASK] in1423

the sentence from the options. Do not1424

provide any additional information or1425

explanation.1426

### Question:What is the native language1427

of Bernard Tapie? [MASK].1428

### Options:1429

a.Dutch1430

b.Telugu1431

c.Russian1432

d.French1433

### Answer: 1434

CSQA 1435

### Instruction: Please select the most 1436

accurate and relevant answer based on the 1437

context. 1438

### Context: What does a lead for a 1439

journalist lead to? 1440

### Options: 1441

a.very heavy 1442

b.lead pencil 1443

c.store 1444

d.card game 1445

e.news article 1446

### Answer: 1447

TempLAMA 1448

### Instruction: Select the correct year 1449

from the provided options that match the 1450

temporal fact in the sentence. Output the 1451

index of the correct year. 1452

### Question:Pete Hoekstra holds the 1453

position of United States representative. 1454

### Options: 1455

a.2013 1456

b.2014 1457

c.2018 1458

d.2011 1459

### Answer: 1460
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Figure 16: Per-task accuracies with the varying number of training examples on Llama2-7B, zero-shot prompt
setting.

PAWS1461

### Instruction: Is the second sentence1462

a paraphrase of the first? Answer exactly1463

’yes’ or ’no’.1464

### Sentence 1: It is directed by Kamala1465

Lopez and produced by Cameron Crain ,1466

Richard Shelgren and Kamala Lopez .1467

### Sentence 2: It was produced by Cameron1468

Crain , Richard Shelgren and Kamala Lopez1469

and directed by Kamala Lopez .1470

### Answer:1471

MNLI1472

### Instruction: Given a premise and a1473

hypothesis, determine the relationship.1474

### Premise: easily yeah yeah and then1475

if you want popcorn and stuff it’s just1476

i mean uh it’s incredible1477

### Hypothesis: It’s anti-incredible,1478

very ordinary and unimpressive.1479

### Question: What is the relationship1480

between the two sentences?.1481

### Options:1482

a.Entailment1483

b.Neutral1484

c.Contradiction1485

### Answer:1486

SWAG 1487

### Instruction: Given the context, 1488

select the most likely completion from the 1489

following choices. Please exactly answer 1490

the label. 1491

### Context: He looks back at her kindly 1492

and watches them go. In someone’s dark 1493

bedroom, someone 1494

### Options: 1495

a.paces with the bandage, his back to 1496

someone. 1497

b.spies a framed photo of a burmese 1498

soldier on a black horse. 1499

c.blinks covers the apartment’s couch. 1500

d.lays her sleeping niece down gently onto 1501

the bed. 1502

### Answer: 1503

HaluEval 1504

### Instruction: Given the knowledge 1505

context, dialogue histroy and response, 1506

determine if any hallucination is present. 1507

Provide a response of either ’yes’ or ’no’ 1508

only. 1509

### Context:Kim Edwards wrote The Memory 1510

Keeper’s Daughter 1511

### Dialogue history:[Human]: Could 1512

you recommend something by Kim Edwards? 1513
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Figure 17: Per-task accuracies with the varying number of training examples on Llama2-7B, few-shot prompt
setting.

[Assistant]: Absolutely, The Memory1514

Keeper’s Daughter is good. Do you like1515

Fiction? [Human]: Yes, I do. I really1516

love Sci Fi. [Assistant]: OK. Some Sci1517

Fi choices are Blade Runner, The Matrix1518

and Alien. Do you like any of these?1519

[Human]: I wasn’t fond of Alien or Blade1520

Runner but I loved The Matrix.1521

### Response:Actually, Kim Edwards is a1522

director and her best work so far is The1523

Memory Keeper’s Daughter. For Sci-Fi, I1524

suggest you watch the 1989 classic Field1525

of Dreams. Would you like to give it a1526

try?1527

### Hallucination (yes or no):1528

Toxic1529

### Instruction: Determine if1530

the provided text contains toxic1531

content.Provide a response of either1532

’yes’ or ’no’ only.1533

### Text:Dear SchfiftyThree1534

I would just like to say that i hate you1535

and the rest of the wikipedia editors1536

for deleting my creations. fuck you.1537

### Toxicity (yes or no):1538

Stereoset 1539

### Instruction: Given the context, 1540

identify and select the sentence that does 1541

not convey the stereotype related to the 1542

context. 1543

### Context:A performing artist is often 1544

up late at night. 1545

### Options: 1546

a.Many artists are very likeable people. 1547

b.Having children is a momentous 1548

occasion. 1549

c.Any who performs is a diva. 1550

### Answer: 1551

M-Amazon 1552

### Anweisung: Analysieren Sie die 1553

Stimmung der gegebenen Amazon-Bewertung 1554

und vergeben Sie eine Punktzahl von 1 1555

(sehr negativ) bis. 1556

### Eingabebewertung:Produkt ist 1557

gefährlich. Hat den Fi rausgehen. 1558

Man hat das gefühl es fällt auseinander. 1559

Billigste Qualität!! Man fühlt sich 1560

einfach betrogen!!! 1561

### Ausgabewertung: 1562

LTI 1563

### Instruction: Identify the language of 1564
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Figure 18: Per-task accuracies with varying neuron sets per with 64 neurons. We report the aggregated accuracies
with a window size of 64 for better visualization, plotting the mean accuracy within each window, along with the
corresponding accuracy ranges (minimum to maximum) as the envelope.

the given sentence.1565

### Text:S’en retournait, et assis sur1566

son chariot, lisait le prophète Ésaïe.1567

### Options:1568

a.English1569

b.French1570

a.German1571

a.Chinese1572

a.Spanish1573

### Answer:1574

mLAMA1575

### Instrucción: Prediga el [MASK] en la1576

oración a partir de las opciones. No1577

proporcione información ni explicaciones1578

adicionales.1579

### Respuesta:La capital de Irán es1580

[MASK].1581

### Opciones:1582

a.Indianápolis1583

b.Génova1584

c.Teherán1585

d.París1586

### Pregunta:1587

XNLI1588

### Instruction: Étant donné une prémisse1589

et une hypothèse, déterminez la relation.1590

### Prémisse: Ouais nous sommes à environ1591

km au sud du lac Ontario en fait celui qui1592

a construit la ville était un idiot à mon 1593

avis parce qu’ ils l’ ont construit ils l’ 1594

ont construit assez loin de la ville qu’ 1595

il ne pouvait pas être une ville portuaire 1596

### Hypothèse: Nous sommes à 10 km au sud 1597

du lac Ontario en bas i-35 . 1598

### Options: 1599

a.Implication 1600

b.Neutre 1601

c.Contradiction 1602

### Réponse: 1603

M-POS 1604

### 指令：确定给定文本中高亮目标词的词 1605

性。从提供的选项中选择正确的词性标签。 1606

### 文本:但是，有一個全面的人口統計數據 1607

分析，對象包括婦女，特是有養育孩子的那 1608

些。 1609

### 目标词:’一’ 1610

### 选项: 1611

a.NUM 1612

b.AUX 1613

c.ADJ 1614

d.VERB 1615

### 问题: 1616
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Skill-neuron evaluation context
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Figure 19: Generality of skill neurons across different contexts. X-axis: the context used to acquire skill neurons.
Y-axis: evaluation context. The contexts on the x-axis are in the same order as on the y-axis. The context using the
i-th instruction, k-th set of j-shot demonstrations, and yes/no answers is denoted as IT(i)-(j)D(k)-YN. “AB” refers to
the a/b style options.

K Diverse Contexts for Skill Neuron1617

Generality Evaluation1618

In this section, we report the instructions we used1619

for experiments to measure the generality of skill1620

neurons in § H.2. We report five types of instruction1621

settings with 2-shot, IT0, IT1, IT2, IT3, IT4, where1622

IT0 use yes/no as it candidate target tokens while1623

others use a/b.1624

We fix the number of skill neurons to 32 when1625

training the skill-neuron-based probers. We use1626

32 as the optimal neuron size of PAWS with the1627

few-shot setting is 32. Finally, we report the pair-1628

wise generality values among different prompting1629

settings in Figure 19.1630

An example of IT01631

### Instruction: Is the second sentence1632

a paraphrase of the first? Answer exactly1633

’yes’ or ’no’.1634

### Sentence 1: The canopy was destroyed1635

in September 1938 by Hurricane New England1636

in 1938 , and the station was damaged but1637

repaired .1638

### Sentence 2: The canopy was destroyed1639

in September 1938 by the New England1640

Hurricane in 1938 , but the station was1641

repaired .1642

### Answer:no1643

### Sentence 1: Pierre Bourdieu and Basil1644

Bernstein explore , how the cultural1645

capital of the legitimate classes has been1646

viewed throughout history as the “ most1647

dominant knowledge ” .1648

### Sentence 2: Pierre Bourdieu and1649

Basil Bernstein explore how the cultural 1650

capital of the legitimate classes has 1651

been considered the “ dominant knowledge 1652

” throughout history . 1653

### Answer:yes 1654

### Sentence 1: It is directed by Kamala 1655

Lopez and produced by Cameron Crain , 1656

Richard Shelgren and Kamala Lopez . 1657

### Sentence 2: It was produced by Cameron 1658

Crain , Richard Shelgren and Kamala Lopez 1659

and directed by Kamala Lopez . 1660

### Answer: 1661

An example of IT1 1662

### Instruction: Given two sentences, 1663

determine if they are paraphrases of each 1664

other. 1665

### Sentence 1: The canopy was destroyed 1666

in September 1938 by Hurricane New England 1667

in 1938 , and the station was damaged but 1668

repaired . 1669

### Sentence 2: The canopy was destroyed 1670

in September 1938 by the New England 1671

Hurricane in 1938 , but the station was 1672

repaired . 1673

### Options: 1674

a.not paraphrase 1675

b.paraphrase 1676

### Answer:a 1677

### Sentence 1: Pierre Bourdieu and Basil 1678

Bernstein explore , how the cultural 1679

capital of the legitimate classes has been 1680

viewed throughout history as the “ most 1681

dominant knowledge ” . 1682
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### Sentence 2: Pierre Bourdieu and1683

Basil Bernstein explore how the cultural1684

capital of the legitimate classes has1685

been considered the “ dominant knowledge1686

” throughout history .1687

### Options:1688

a.not paraphrase1689

b.paraphrase1690

### Answer:b1691

### Sentence 1: It is directed by Kamala1692

Lopez and produced by Cameron Crain ,1693

Richard Shelgren and Kamala Lopez .1694

### Sentence 2: It was produced by Cameron1695

Crain , Richard Shelgren and Kamala Lopez1696

and directed by Kamala Lopez .1697

### Options:1698

a.not paraphrase1699

b.paraphrase1700

### Answer:1701

An example of IT21702

### Instruction: Review the two given1703

sentences and decide if they express the1704

same idea in different words.1705

### Sentence 1: The canopy was destroyed1706

in September 1938 by Hurricane New1707

England in 1938 , and the station was1708

damaged but repaired .1709

### Sentence 2: The canopy was destroyed1710

in September 1938 by the New England1711

Hurricane in 1938 , but the station was1712

repaired .1713

### Options:1714

a.non-equivalent1715

b.equivalent1716

### Answer:a1717

### Sentence 1: Pierre Bourdieu and Basil1718

Bernstein explore , how the cultural1719

capital of the legitimate classes has1720

been viewed throughout history as the “1721

most dominant knowledge ” .1722

### Sentence 2: Pierre Bourdieu and1723

Basil Bernstein explore how the cultural1724

capital of the legitimate classes has1725

been considered the “ dominant knowledge1726

” throughout history .1727

### Options:1728

a.non-equivalent1729

b.equivalent1730

### Answer:b1731

### Sentence 1: It is directed by Kamala1732

Lopez and produced by Cameron Crain ,1733

Richard Shelgren and Kamala Lopez . 1734

### Sentence 2: It was produced by 1735

Cameron Crain , Richard Shelgren and 1736

Kamala Lopez and directed by Kamala Lopez 1737

. 1738

### Options: 1739

a.non-equivalent 1740

b.equivalent 1741

### Answer: 1742

1743

An example of IT3 1744

### Instruction: Examine the two 1745

sentences provided. Determine if the 1746

second sentence is a valid paraphrase of 1747

the first sentence. 1748

### Sentence 1: The canopy was destroyed 1749

in September 1938 by Hurricane New 1750

England in 1938 , and the station was 1751

damaged but repaired . 1752

### Sentence 2: The canopy was destroyed 1753

in September 1938 by the New England 1754

Hurricane in 1938 , but the station was 1755

repaired . 1756

### Options: 1757

a.different 1758

b.similar 1759

### Answer:a 1760

### Sentence 1: Pierre Bourdieu and Basil 1761

Bernstein explore , how the cultural 1762

capital of the legitimate classes has 1763

been viewed throughout history as the “ 1764

most dominant knowledge ” . 1765

### Sentence 2: Pierre Bourdieu and 1766

Basil Bernstein explore how the cultural 1767

capital of the legitimate classes has 1768

been considered the “ dominant knowledge 1769

” throughout history . 1770

### Options: 1771

a.different 1772

b.similar 1773

### Answer:b 1774

### Sentence 1: It is directed by Kamala 1775

Lopez and produced by Cameron Crain , 1776

Richard Shelgren and Kamala Lopez . 1777

### Sentence 2: It was produced by 1778

Cameron Crain , Richard Shelgren and 1779

Kamala Lopez and directed by Kamala Lopez 1780

. 1781

### Options: 1782

a.different 1783

b.similar 1784
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### Answer:1785

1786

An example of IT41787

### Instruction: You are provided with1788

two sentences. Identify whether they1789

convey identical ideas or differ in1790

meaning.1791

### Sentence 1: The canopy was destroyed1792

in September 1938 by Hurricane New1793

England in 1938 , and the station was1794

damaged but repaired .1795

### Sentence 2: The canopy was destroyed1796

in September 1938 by the New England1797

Hurricane in 1938 , but the station was1798

repaired .1799

### Options:1800

a.The sentences convey different idea.1801

b.The sentences convey the same ideas.1802

### Answer:a1803

### Sentence 1: Pierre Bourdieu and Basil1804

Bernstein explore , how the cultural1805

capital of the legitimate classes has1806

been viewed throughout history as the “1807

most dominant knowledge ” .1808

### Sentence 2: Pierre Bourdieu and1809

Basil Bernstein explore how the cultural1810

capital of the legitimate classes has1811

been considered the “ dominant knowledge1812

” throughout history .1813

### Options:1814

a.The sentences convey different idea.1815

b.The sentences convey the same ideas.1816

### Answer:b1817

### Sentence 1: It is directed by Kamala1818

Lopez and produced by Cameron Crain ,1819

Richard Shelgren and Kamala Lopez .1820

### Sentence 2: It was produced by1821

Cameron Crain , Richard Shelgren and1822

Kamala Lopez and directed by Kamala Lopez1823

.1824

### Options:1825

a.The sentences convey different idea.1826

b.The sentences convey the same ideas.1827

### Answer:1828

1829
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Genres Task Language skills Dataset #n_choices #n_examples

Linguistics

POS Part-of-speech tagging Universal Dependencies (Nivre
et al., 2017)

4 8000

CHUNK Phrase chunking CoNLL-2000 (Tjong Kim Sang
and Buchholz, 2000)

4 8000

NER Named entity recognition CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003)

4 8000

GED Grammatic error detection cLang-8 (Rothe et al., 2021;
Mizumoto et al., 2011)

2 8000

Content
classification

IMDB Sentiment classification IMDB (Maas et al., 2011) 2 8000

Agnews Topic classification Agnews (Zhang et al., 2015) 4 8000

Amazon Numerical sentiment classi-
fication

Amazon Reviews (Hou et al.,
2024)

5 8000

Natural
language
inference (NLI)

MNLI Entailment inference MNLI (Williams et al., 2018) 3 8000

PAWS Paraphrase identification PAWS (Zhang et al., 2019) 2 8000

SWAG Grounded commonsense
inference

SWAG (Zellers et al., 2018) 4 8000

Factuality

FEVER Fact checking FEVER (Thorne et al., 2018) 2 8000

MyriadLAMA Factual knowledge
question-answering

MyriadLAMA (Zhao et al.,
2024)

4 8000

CSQA Commonsense knowledge
question-answering

CommonsenseQA (Talmor
et al., 2019)

4 8000

TempLAMA Temporary facts question-
answering

TempLAMA (Dhingra et al.,
2022)

4 8000

Self-reflection

HaluEval Hallucination detection HaluEval-diag (Li et al., 2023) 2 8000

Toxic Toxicity post identification Toxicity prediction (cjadams
et al., 2017)

2 8000

Stereoset Social stereotype detection Stereoset (Nadeem et al., 2021) 3 4230

Multilinguality

LTI Language identification LTI LangID corpus (Brown,
2014; Lovenia et al., 2024)

5 8000

M-POS Multilingual POS-tagging Universal Dependencies
(Nivre et al., 2017)

4 8000

M-Amazon Multilingual Amazon re-
view classification

Amazon Reviews Multi (Ke-
ung et al., 2020)

5 8000

mLAMA Multilingual factual knowl-
edge question-answering

mLAMA (Kassner et al., 2021) 4 8000

XNLI Multilingual entailment in-
ference

XNLI (Conneau et al., 2018) 3 8000

Table 6: Details of datasets in MCEval8K.
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https://github.com/UniversalDependencies/UD_English-GUM
https://huggingface.co/datasets/eriktks/conll2000
https://huggingface.co/datasets/eriktks/conll2003
https://github.com/google-research-datasets/clang8
https://huggingface.co/datasets/stanfordnlp/imdb
https://huggingface.co/datasets/fancyzhx/ag_news
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https://www.kaggle.com/datasets/mexwell/amazon-reviews-multi
https://huggingface.co/datasets/cis-lmu/m_lama
https://huggingface.co/datasets/facebook/xnli


Tasks Rand LM-Prob Polar-prober
(#n_neurons)

Magn-prober
(#n_neurons)

GED .5000 .5000 .7580 (16) .8050 (1024)
POS .2500 .5050 .5190 (16) .5470 (4)
CHUNK .2500 .3510 .4660 (8) .4490 (16)
NER .2500 .3950 .4120 (32) .4490 (8)
Agnews .2500 .4950 .6410 (32) .6900 (2)
Amazon .2000 .3750 .2750 (256) .4680 (128)
IMDB .5000 .9660 .9630 (8192) .9650 (1024)
MyriadLAMA .2500 .5080 .5200 (4) .5760 (4)
FEVER .5000 .6530 .7830 (32) .7610 (32)
CSQA .2000 .5170 .3490 (1) .5380 (16)
TempLAMA .2500 .2430 .3560 (4096) .3640 (16)
PAWS .5000 .5000 .7640 (128) .7920 (128)
MNLI .3333 .3560 .4980 (4) .5590 (128)
SWAG .2500 .4610 .3360 (512) .5310 (2)
HaluEval .5000 .4990 .7540 (1024) .7510 (32)
Toxic .5000 .7230 .8250 (1024) .8210 (16)
Stereoset .3333 .1096 .8299 (16) .7335 (16)
M-Amazon .2000 .2990 .2350 (4096) .3740 (2)
LTI .2000 .3670 .4300 (4) .5830 (8)
mLAMA .2500 .4020 .3880 (128) .4470 (4)
XNLI .3333 .3270 .3500 (256) .3620 (16)
M-POS .2500 .3890 .2610 (1024) .3930 (4)

Table 7: Optimal accuracies across all MCEval8K tasks in the zero-shot prompt setting on Llama2-7B, along with
the neuron sizes achieving these accuracies.
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Tasks Rand LM-Prob Polar-prober
(#n_neurons)

Magn-prober
(#n_neurons)

GED .5000 .5060 .8330 (16) .8330 (64)
POS .2500 .5730 .5870 (4) .6210 (16)
CHUNK .2500 .2710 .2820 (8192) .3910 (64)
NER .2500 .3610 .4300 (4) .4970 (64)
Agnews .2500 .5880 .7060 (64) .6890 (512)
Amazon .2000 .4840 .5310 (1) .5680 (128)
IMDB .5000 .9700 .9700 (64) .9690 (64)
MyriadLAMA .2500 .7380 .7450 (256) .7530 (4096)
FEVER .5000 .6780 .8000 (1) .8030 (4)
CSQA .2000 .6100 .6180 (32) .6340 (8192)
TempLAMA .2500 .2600 .2500 (1) .4110 (4)
PAWS .5000 .5240 .8180 (16) .8210 (32)
MNLI .3333 .5100 .5780 (32) .5860 (64)
SWAG .2500 .4100 .4430 (256) .4710 (64)
HaluEval .5000 .5200 .7750 (2048) .7770 (256)
Toxic .5000 .7800 .8250 (8) .8260 (4)
Stereoset .3333 .1040 .7297 (128) .5180 (16)
M-Amazon .2000 .5250 .5470 (1024) .5880 (128)
LTI .2000 .3680 .5480 (64) .6950 (8)
mLAMA .2500 .6080 .6230 (8192) .6360 (512)
XNLI .3333 .3970 .4860 (32) .4980 (32)
M-POS .2500 .4440 .4830 (4) .5130 (8)

Table 8: Optimal accuracies across all MCEval8K tasks in the few-shot prompt setting on Llama2-7B, along with
the neuron sizes achieving these accuracies. The number of demonstrations is set as the same number of options for
each task.

29


	Introduction
	Related Work
	Neuron Linearity to Model Output
	Neuron-level Intervention Experiment
	Neuron Linearity

	NeurGrad for NEG Estimation
	NeurGrad
	NEG Estimation Evaluation
	Knowledge Attribution Evaluation

	Understanding Neurons' Controllability
	How Are NEGs Distributed?
	Does Linearity Hold for Multi-neuron?
	Local Linear Approximation Hypothesis

	Skill Neuron Probing using NeurGard
	Task Definition
	Evaluation Benchmark: MCEval8K

	NEG as Knowledge Feature
	Gradient-based Skill Neuron Prober
	Experimental Setup
	Result and Analysis

	Conclusions
	Limitations
	Generality of Neuron Linearity 
	Neurons' Statistics
	Distribution of Neuron Activations
	Distribution of Neuron NEGs
	How are neurons distributed across layers?

	Knowledge Attribution Evaluation: Supplementary Experiments
	Multi-neuron Intervention: Supplementary Experiments
	Model cards
	Construction of MCEval8K
	Details of Skill Neuron Probing
	Properties of Skill Neurons
	Representation & Acquisition Efficiency
	Generality Across Diverse Contexts
	Are Neurons Exclusive in Skill Representations?

	Additional Analysis on Probing Results
	Interpreting in-context learning with empirical gradients.
	More Data about Efficiency
	Probing With Varying Neuron Sets

	Prompting Setups
	Diverse Contexts for Skill Neuron Generality Evaluation

